WorldWideScience

Sample records for genetic disorders

  1. Genetic Disorders

    Science.gov (United States)

    ... This can cause a medical condition called a genetic disorder. You can inherit a gene mutation from ... during your lifetime. There are three types of genetic disorders: Single-gene disorders, where a mutation affects ...

  2. Genetic Disorders

    Science.gov (United States)

    ... 21 (Down syndrome) . Other trisomies include trisomy 13 (Patau syndrome) and trisomy 18 (Edwards syndrome) . Monosomy is another ... which there is an extra chromosome. Trisomy 13 (Patau Syndrome): A chromosomal disorder that causes serious problems with ...

  3. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  4. Genetics of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Kerner B

    2014-02-01

    Full Text Available Berit Kerner Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA Abstract: Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a “risk” allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders. In many Mendelian syndromes, psychiatric symptoms are prevalent. Although these conditions do not fit the classic description of any specific psychiatric disorder, they often show nonspecific psychiatric symptoms that cross diagnostic boundaries, including intellectual disability, behavioral abnormalities, mood disorders, anxiety disorders, attention deficit, impulse control deficit, and psychosis. Although testing for chromosomal disorders and monogenic Mendelian disorders is well established, testing for common variants is still controversial. The standard concept of genetic testing includes at least three broad criteria that need to be fulfilled before new genetic tests should be introduced: analytical validity, clinical validity, and clinical utility. These criteria are

  5. Genetics and delusional disorder.

    Science.gov (United States)

    Cardno, Alastair G; McGuffin, Peter

    2006-01-01

    This article gives an overview of genetic research approaches and their application to delusional disorder. Most studies have been based on small samples and have had other methodological limitations, so it is not clear whether there is a genetic contribution to the aetiology of delusional disorder. It is unlikely that delusional disorder is strongly related genetically to affective disorder or schizophrenia, but more subtle relationships cannot be ruled out. The rarity of multiply affected families prohibits linkage studies and, to date, molecular genetic investigations have been mainly limited to small association studies of dopamine receptor polymorphisms. A range of considerably larger, epidemiologically rigorous studies is required, but the uncommonness and other features of the disorder put strong limitations on the prospects for ascertaining adequate samples.

  6. Autism Spectrum Disorder - A Complex Genetic Disorder

    Directory of Open Access Journals (Sweden)

    Ivanov Hristo Y.

    2015-03-01

    Full Text Available Autism spectrum disorder is an entity that reflects a scientific consensus that several previously separated disorders are actually a single spectrum disorder with different levels of symptom severity in two core domains - deficits in social communication and interaction, and restricted repetitive behaviors. Autism spectrum disorder is diagnosed in all racial, ethnic and socioeconomic groups and because of its increased prevalence, reported worldwide through the last years, made it one of the most discussed child psychiatric disorders. In term of aetiology as several other complex diseases, Autism spectrum disorder is considered to have a strong genetic component.

  7. Genetic disorders producing compressive radiculopathy.

    Science.gov (United States)

    Corey, Joseph M

    2006-11-01

    Back pain is a frequent complaint seen in neurological practice. In evaluating back pain, neurologists are asked to evaluate patients for radiculopathy, determine whether they may benefit from surgery, and help guide management. Although disc herniation is the most common etiology of compressive radiculopathy, there are many other causes, including genetic disorders. This article is a discussion of genetic disorders that cause or contribute to radiculopathies. These genetic disorders include neurofibromatosis, Paget's disease of bone, and ankylosing spondylitis. Numerous genetic disorders can also lead to deformities of the spine, including spinal muscular atrophy, Friedreich's ataxia, Charcot-Marie-Tooth disease, familial dysautonomia, idiopathic torsional dystonia, Marfan's syndrome, and Ehlers-Danlos syndrome. However, the extent of radiculopathy caused by spine deformities is essentially absent from the literature. Finally, recent investigation into the heritability of disc degeneration and lumbar disc herniation suggests a significant genetic component in the etiology of lumbar disc disease.

  8. Genetic determinants of eating disorders

    NARCIS (Netherlands)

    Slof-Op 't Landt, Margarita Cornelia Theodora

    2011-01-01

    In this thesis, a series of studies on different aspects of the genetics of eating disorders is presented. The heritability of disordered eating behavior and attitudes in relation with body mass index (BMI) was evaluated in a large adolescent twin-family sample ascertained through the Netherlands Tw

  9. Genetic determinants of eating disorders

    NARCIS (Netherlands)

    Slof-Op 't Landt, Margarita Cornelia Theodora

    2011-01-01

    In this thesis, a series of studies on different aspects of the genetics of eating disorders is presented. The heritability of disordered eating behavior and attitudes in relation with body mass index (BMI) was evaluated in a large adolescent twin-family sample ascertained through the Netherlands

  10. Imaging genetics and psychiatric disorders.

    Science.gov (United States)

    Hashimoto, R; Ohi, K; Yamamori, H; Yasuda, Y; Fujimoto, M; Umeda-Yano, S; Watanabe, Y; Fukunaga, M; Takeda, M

    2015-01-01

    Imaging genetics is an integrated research method that uses neuroimaging and genetics to assess the impact of genetic variation on brain function and structure. Imaging genetics is both a tool for the discovery of risk genes for psychiatric disorders and a strategy for characterizing the neural systems affected by risk gene variants to elucidate quantitative and mechanistic aspects of brain function implicated in psychiatric disease. Early studies of imaging genetics included association analyses between brain morphology and single nucleotide polymorphisms whose function is well known, such as catechol-Omethyltransferase (COMT) and brain-derived neurotrophic factor (BDNF). GWAS of psychiatric disorders have identified genes with unknown functions, such as ZNF804A, and imaging genetics has been used to investigate clues of the biological function of these genes. The difficulty in replicating the findings of studies with small sample sizes has motivated the creation of largescale collaborative consortiums, such as ENIGMA, CHARGE and IMAGEN, to collect thousands of images. In a genome-wide association study, the ENIGMA consortium successfully identified common variants in the genome associated with hippocampal volume at 12q24, and the CHARGE consortium replicated this finding. The new era of imaging genetics has just begun, and the next challenge we face is the discovery of small effect size signals from large data sets obtained from genetics and neuroimaging. New methods and technologies for data reduction with appropriate statistical thresholds, such as polygenic analysis and parallel independent component analysis (ICA), are warranted. Future advances in imaging genetics will aid in the discovery of genes and provide mechanistic insight into psychiatric disorders.

  11. Imaging Genetics and Psychiatric Disorders

    Science.gov (United States)

    Hashimoto, R; Ohi, K; Yamamori, H; Yasuda, Y; Fujimoto, M; Umeda-Yano, S; Watanabe, Y; Fukunaga, M; Takeda, M

    2015-01-01

    Imaging genetics is an integrated research method that uses neuroimaging and genetics to assess the impact of genetic variation on brain function and structure. Imaging genetics is both a tool for the discovery of risk genes for psychiatric disorders and a strategy for characterizing the neural systems affected by risk gene variants to elucidate quantitative and mechanistic aspects of brain function implicated in psychiatric disease. Early studies of imaging genetics included association analyses between brain morphology and single nucleotide polymorphisms whose function is well known, such as catechol-O-methyltransferase (COMT) and brain-derived neurotrophic factor (BDNF). GWAS of psychiatric disorders have identified genes with unknown functions, such as ZNF804A, and imaging genetics has been used to investigate clues of the biological function of these genes. The difficulty in replicating the findings of studies with small sample sizes has motivated the creation of large-scale collaborative consortiums, such as ENIGMA, CHARGE and IMAGEN, to collect thousands of images. In a genome-wide association study, the ENIGMA consortium successfully identified common variants in the genome associated with hippocampal volume at 12q24, and the CHARGE consortium replicated this finding. The new era of imaging genetics has just begun, and the next challenge we face is the discovery of small effect size signals from large data sets obtained from genetics and neuroimaging. New methods and technologies for data reduction with appropriate statistical thresholds, such as polygenic analysis and parallel independent component analysis (ICA), are warranted. Future advances in imaging genetics will aid in the discovery of genes and provide mechanistic insight into psychiatric disorders. PMID:25732148

  12. Molecular Genetics of Mitochondrial Disorders

    Science.gov (United States)

    Wong, Lee-Jun C.

    2010-01-01

    Mitochondrial respiratory chain (RC) disorders (RCDs) are a group of genetically and clinically heterogeneous diseases because of the fact that protein components of the RC are encoded by both mitochondrial and nuclear genomes and are essential in all cells. In addition, the biogenesis, structure, and function of mitochondria, including DNA…

  13. Autism Spectrum Disorder - A Complex Genetic Disorder

    OpenAIRE

    Ivanov Hristo Y.; Stoyanova Vili K.; Popov Nikolay T.; Vachev Tihomir I.

    2015-01-01

    Autism spectrum disorder is an entity that reflects a scientific consensus that several previously separated disorders are actually a single spectrum disorder with different levels of symptom severity in two core domains - deficits in social communication and interaction, and restricted repetitive behaviors. Autism spectrum disorder is diagnosed in all racial, ethnic and socioeconomic groups and because of its increased prevalence, reported worldwide through the last years, made it one of the...

  14. Genetic Causes of Cerebrovascular Disorders in Childhood

    NARCIS (Netherlands)

    M.E.C. Meuwissen (Marije)

    2014-01-01

    markdownabstract__Abstract__ Cerebrovascular disorders in childhood comprise ischemic stroke and hemorrhagic stroke. This thesis comprises a escription of genetic causes of childhood cerebrovascular disorders. Two examples of genetic causes of ischemic stroke, comprising a case of ACTA2 mutation an

  15. Genetic relationships between schizophrenia, bipolar disorder, and schizoaffective disorder.

    Science.gov (United States)

    Cardno, Alastair G; Owen, Michael J

    2014-05-01

    There is substantial evidence for partial overlap of genetic influences on schizophrenia and bipolar disorder, with family, twin, and adoption studies showing a genetic correlation between the disorders of around 0.6. Results of genome-wide association studies are consistent with commonly occurring genetic risk variants, contributing to both the shared and nonshared aspects, while studies of large, rare chromosomal structural variants, particularly copy number variants, show a stronger influence on schizophrenia than bipolar disorder to date. Schizoaffective disorder has been less investigated but shows substantial familial overlap with both schizophrenia and bipolar disorder. A twin analysis is consistent with genetic influences on schizoaffective episodes being entirely shared with genetic influences on schizophrenic and manic episodes, while association studies suggest the possibility of some relatively specific genetic influences on broadly defined schizoaffective disorder, bipolar subtype. Further insights into genetic relationships between these disorders are expected as studies continue to increase in sample size and in technical and analytical sophistication, information on phenotypes beyond clinical diagnoses are increasingly incorporated, and approaches such as next-generation sequencing identify additional types of genetic risk variant.

  16. Genetics Home Reference: bipolar disorder

    Science.gov (United States)

    ... Conditions Genes Chromosomes & mtDNA Resources Help Me Understand Genetics Share: Email Facebook Twitter Home Health Conditions bipolar ... my family? What is the prognosis of a genetic condition? Genetic and Rare Diseases Information Center Frequency ...

  17. Genetic analysis of bleeding disorders.

    Science.gov (United States)

    Edison, E; Konkle, B A; Goodeve, A C

    2016-07-01

    Molecular genetic analysis of inherited bleeding disorders has been practised for over 30 years. Technological changes have enabled advances, from analyses using extragenic linked markers to next-generation DNA sequencing and microarray analysis. Two approaches for genetic analysis are described, each suiting their environment. The Christian Medical Centre in Vellore, India, uses conformation-sensitive gel electrophoresis mutation screening of multiplexed PCR products to identify candidate mutations, followed by Sanger sequencing confirmation of variants identified. Specific analyses for F8 intron 1 and 22 inversions are also undertaken. The MyLifeOurFuture US project between the American Thrombosis and Hemostasis Network, the National Hemophilia Foundation, Bloodworks Northwest and Biogen uses molecular inversion probes (MIP) to capture target exons, splice sites plus 5' and 3' sequences and to detect F8 intron 1 and 22 inversions. This allows screening for all F8 and F9 variants in one sequencing run of multiple samples (196 or 392). Sequence variants identified are subsequently confirmed by a diagnostic laboratory. After having identified variants in genes of interest through these processes, a systematic procedure determining their likely pathogenicity should be applied. Several scientific societies have prepared guidelines. Systematic analysis of the available evidence facilitates reproducible scoring of likely pathogenicity. Documentation of frequency in population databases of variant prevalence and in locus-specific mutation databases can provide initial information on likely pathogenicity. Whereas null mutations are often pathogenic, missense and splice site variants often require in silico analyses to predict likely pathogenicity and using an accepted suite of tools can help standardize their documentation.

  18. Genetic disorders involving adrenal development.

    Science.gov (United States)

    Lin, Lin; Ferraz-de-Souza, Bruno; Achermann, John C

    2007-01-01

    The past decade has seen significant advances in our understanding of the genetic aetiology of several forms of adrenal failure that present in infancy or childhood. Several of these disorders affect adrenal development and are termed 'adrenal hypoplasia'. These conditions can be broadly divided into: (1) secondary forms of adrenal hypoplasia due to panhypopituitarism (e.g. HESX1, LHX4, SOX3) or abnormalities in ACTH synthesis (TPIT) or processing (e.g. POMC or PC1); (2) adrenal hypoplasia as part of an ACTH resistance syndrome [MC2R/ACTH receptor, MRAP, AAAS (triple A syndrome)], and (3) primary defects in the development of the adrenal gland itself (primary adrenal hypoplasia). Primary adrenal hypoplasia most commonly occurs in an X-linked form due to mutations in the nuclear receptor DAX1 (NR0B1) but can occur in a poorly understood recessive form or as part of the IMAGe (intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia, genitourinary anomalies) syndrome. Defining the molecular basis of these conditions can have significant clinical implications for management, counselling and presymptomatic diagnosis, as well as providing fascinating insight into normal and abnormal mechanisms of adrenal development in humans.

  19. Metabolic, endocrine, and other genetic disorders.

    Science.gov (United States)

    Dahmoush, Hisham M; Melhem, Elias R; Vossough, Arastoo

    2016-01-01

    Metabolic, endocrine, and genetic diseases of the brain include a very large array of disorders caused by a wide range of underlying abnormalities and involving a variety of brain structures. Often these disorders manifest as recognizable, though sometimes overlapping, patterns on neuroimaging studies that may enable a diagnosis based on imaging or may alternatively provide enough clues to direct further diagnostic evaluation. The diagnostic workup can include various biochemical laboratory or genetic studies. In this chapter, after a brief review of normal white-matter development, we will describe a variety of leukodystrophies resulting from metabolic disorders involving the brain, including mitochondrial and respiratory chain diseases. We will then describe various acidurias, urea cycle disorders, disorders related to copper and iron metabolism, and disorders of ganglioside and mucopolysaccharide metabolism. Lastly, various other hypomyelinating and dysmyelinating leukodystrophies, including vanishing white-matter disease, megalencephalic leukoencephalopathy with subcortical cysts, and oculocerebrorenal syndrome will be presented. In the following section on endocrine disorders, we will examine various disorders of the hypothalamic-pituitary axis, including developmental, inflammatory, and neoplastic diseases. Neonatal hypoglycemia will also be briefly reviewed. In the final section, we will review a few of the common genetic phakomatoses. Throughout the text, both imaging and brief clinical features of the various disorders will be discussed. © 2016 Elsevier B.V. All rights reserved.

  20. Human Genetic Disorders of Axon Guidance

    Science.gov (United States)

    Engle, Elizabeth C.

    2010-01-01

    This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Genes mutated in these disorders can encode axon growth cone ligands and receptors, downstream signaling molecules, and axon transport motors, as well as proteins without currently recognized roles in axon guidance. Advances in neuroimaging and genetic techniques have the potential to rapidly expand this field, and it is feasible that axon guidance disorders will soon be recognized as a new and significant category of human neurodevelopmental disorders. PMID:20300212

  1. [Copper metabolism and genetic disorders].

    Science.gov (United States)

    Shimizu, Norikazu

    2016-07-01

    Copper is one of essential trace elements. Copper deficiency lead to growth and developmental failure and/or neurological dysfunction. However, excess copper is also problems for human life. There are two disorders of inborn error of copper metabolism, Menkes disease and Wilson disease. Menkes disease is an X linked recessive disorder with copper deficiency and Wilson disease is an autosomal recessive disorder with copper accumulation. These both disorders result from the defective functioning of copper transport P-type ATPase, ATP7A of Menkes disease and ATP7B of Wilson disease. In this paper, the author describes about copper metabolism of human, and clinical feature, diagnosis and treatment of Menkes disease and Wilson disease.

  2. [The genetic bases of neurodevelopmental disorders].

    Science.gov (United States)

    Artigas-Pallarés, Josep; Guitart, Miriam; Gabau-Vila, Elisabeth

    2013-02-22

    In the last decade, progress made in genetics is questioning the current implicit nosological model in the Diagnostic and Statistical Manual of Mental Disorders, fourth edition, text revision (DSM-IV-TR) and the International Classification of Diseases, tenth revision. Both the categorical nature and the comorbidity detected on applying diagnostic criteria become unsustainable in the light of the genetic architecture that is emerging from studies being conducted on the genetics of mental disorders. The classical paradigms -one gene for one disease- or even a specific distinctive genetic pattern for each condition, are concepts restricted to specific cases. In this review the objective is to describe the current scenario that has arisen following the latest advances in genetics. The lines of work being traced by research both in the present and in the near future include: the identification of variations in the number of copies (both frequent and rare), indiscriminately linked to different disorders; the concurrence of multiple variants for a single disorder; the double hit phenomenon; and epigenetic modulation. The new version of the DSM, fully aware of the deficiencies in the current model, will mark a turning point that, while somewhat timid, is decidedly oriented towards incorporating a dimensional conception of mental disorders.

  3. Genetic analysis of rare disorders

    DEFF Research Database (Denmark)

    van den Berg, Stéphanie M; von Bornemann Hjelmborg, Jacob

    2012-01-01

    Twin concordance rates provide insight into the possibility of a genetic background for a disease. These concordance rates are usually estimated within a frequentistic framework. Here we take a Bayesian approach. For rare diseases, estimation methods based on asymptotic theory cannot be applied due...

  4. Fluency Disorders in Genetic Syndromes

    Science.gov (United States)

    Van Borsel, John; Tetnowski, John A.

    2007-01-01

    The characteristics of various genetic syndromes have included "stuttering" as a primary symptom associated with that syndrome. Specifically, Down syndrome, fragile X syndrome, Prader-Willi syndrome, Tourette syndrome, Neurofibromatosis type I, and Turner syndrome all list "stuttering" as a characteristic of that syndrome. An extensive review of…

  5. Genetics of fear and anxiety disorders.

    Science.gov (United States)

    Marks, I M

    1986-10-01

    From protozoa to mammals, organisms have been selectively bred for genetic differences in defensive behaviour which are accompanied by differences in brain and other biological functions. Studies of twins indicate some genetic control of normal human fear from infancy onwards, of anxiety as a symptom and as a syndrome, and of phobic and obsessive-compulsive phenomena. Anxiety disorders are more common among the relatives of affected probands than of controls, especially among female and first-degree relatives; alcoholism and secondary depression may also be over-represented. Familial influences have been found for panic disorder, agoraphobia, and obsessive-compulsive problems. Panic disorder in depressed probands increases the risk to their relatives of phobia as well as of panic disorder, major depression, and alcoholism. The strongest family history of all anxiety disorders is seen in blood-injury phobia; even though it can be successfully treated by exposure, its roots may lie in a genetically determined specific autonomic susceptibility. Some genetic effects can be modified by environmental means.

  6. Human Genetic Disorders of Axon Guidance

    OpenAIRE

    Engle, Elizabeth C

    2010-01-01

    This article reviews symptoms and signs of aberrant axon connectivity in humans, and summarizes major human genetic disorders that result, or have been proposed to result, from defective axon guidance. These include corpus callosum agenesis, L1 syndrome, Joubert syndrome and related disorders, horizontal gaze palsy with progressive scoliosis, Kallmann syndrome, albinism, congenital fibrosis of the extraocular muscles type 1, Duane retraction syndrome, and pontine tegmental cap dysplasia. Gene...

  7. Suppose It Were a Genetic Disorder?

    Science.gov (United States)

    Krugman, Richard D.

    1997-01-01

    This editorial contemplates some of the implications of the possibility that child abuse and neglect might be a genetic disorder by describing a 1996 study (Brown, et al.) that seemed to identify a nurturing gene in mice and described the symptoms of its absence. Parallels between mouse and human displays of non-nurturing behavior are discussed.…

  8. Genetically determined coagulation disorders in ischemic stroke

    NARCIS (Netherlands)

    M.P.J. van Goor (Marie-Louise)

    2004-01-01

    textabstractThe aim of the research described in this thesis was to investigate the role of genetically determined coagulation disorders in ischemic stroke. We therefore performed several retrospective studies and one prospective case-control study of patients with recent ischemic stroke (the COCOS

  9. Developing genetic therapies for polyglutamine disorders

    NARCIS (Netherlands)

    Evers, Melvin Maurice

    2015-01-01

    In this thesis various genetic therapies to reduce polyglutamine-induced toxicity are discussed. Although polyglutamine disorders are caused by CAG triplet repeat expansions in different genes, they all result in gain of toxic polyglutamine protein function and subsequently neurodegeneration. The po

  10. Interspecies genetics of eating disorder traits

    NARCIS (Netherlands)

    Kas, Martien J H; Kaye, Walter H; Foulds Mathes, Wendy; Bulik, Cynthia M

    2009-01-01

    Family and twin studies have indicated that genetic factors play a role in the development of eating disorders, such as anorexia and bulimia nervosa, but novel views and tools may enhance the identification of neurobiological mechanisms underlying these conditions. Here we propose an integrative gen

  11. Genetic Testing for Autism Spectrum Disorders

    Science.gov (United States)

    Bauer, Sarah C.; Msall, Michael E.

    2011-01-01

    Children with autism spectrum disorders (ASD) have unique developmental and behavioral phenotypes, and they have specific challenges with communication, social skills, and repetitive behaviors. At this time, no single etiology for ASD has been identified. However, evidence from family studies and linkage analyses suggests that genetic factors play…

  12. Genetics and epigenetics of eating disorders

    Directory of Open Access Journals (Sweden)

    Yilmaz Z

    2015-03-01

    Full Text Available Zeynep Yilmaz,1 J Andrew Hardaway,1 Cynthia M Bulik1–3 1Department of Psychiatry, 2Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 3Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden Abstract: Eating disorders (EDs are serious psychiatric conditions influenced by biological, psychological, and sociocultural factors. A better understanding of the genetics of these complex traits and the development of more sophisticated molecular biology tools have advanced our understanding of the etiology of EDs. The aim of this review is to critically evaluate the literature on the genetic research conducted on three major EDs: anorexia nervosa, bulimia nervosa, and binge eating disorder. We will first review the diagnostic criteria, clinical features, prevalence, and prognosis of anorexia nervosa, bulimia nervosa, and binge eating disorder, followed by a review of family, twin, and adoption studies. We then review the history of genetic studies of EDs covering linkage analysis, candidate-gene association studies, genome-wide association studies, and the study of rare variants in EDs. Our review also incorporates a translational perspective by covering animal models of ED-related phenotypes. Finally, we review the nascent field of epigenetics of EDs and a look forward to future directions for ED genetic research. Keywords: anorexia nervosa, binge eating disorder, bulimia nervosa, animal models, genome-wide association studies, high-throughput sequencing

  13. The genetic basis of panic disorder.

    Science.gov (United States)

    Na, Hae-Ran; Kang, Eun-Ho; Lee, Jae-Hon; Yu, Bum-Hee

    2011-06-01

    Panic disorder is one of the chronic and disabling anxiety disorders. There has been evidence for either genetic heterogeneity or complex inheritance, with environmental factor interactions and multiple single genes, in panic disorder's etiology. Linkage studies have implicated several chromosomal regions, but no research has replicated evidence for major genes involved in panic disorder. Researchers have suggested several neurotransmitter systems are related to panic disorder. However, to date no candidate gene association studies have established specific loci. Recently, researchers have emphasized genome-wide association studies. Results of two genome-wide association studies on panic disorder failed to show significant associations. Evidence exists for differences regarding gender and ethnicity in panic disorder. Increasing evidence suggests genes underlying panic disorder overlap, transcending current diagnostic boundaries. In addition, an anxious temperament and anxiety-related personality traits may represent intermediate phenotypes that predispose to panic disorder. Future research should focus on broad phenotypes, defined by comorbidity or intermediate phenotypes. Genome-wide association studies in large samples, studies of gene-gene and gene-environment interactions, and pharmacogenetic studies are needed.

  14. Genetics of inherited primary arrhythmia disorders

    Directory of Open Access Journals (Sweden)

    Spears DA

    2015-09-01

    Full Text Available Danna A Spears, Michael H Gollob Division of Cardiology – Electrophysiology, University Health Network, Toronto General Hospital, Toronto, ON, Canada Abstract: A sudden unexplained death is felt to be due to a primary arrhythmic disorder when no structural heart disease is found on autopsy, and there is no preceding documentation of heart disease. In these cases, death is presumed to be secondary to a lethal and potentially heritable abnormality of cardiac ion channel function. These channelopathies include congenital long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, Brugada syndrome, and short QT syndrome. In certain cases, genetic testing may have an important role in supporting a diagnosis of a primary arrhythmia disorder, and can also provide prognostic information, but by far the greatest strength of genetic testing lies in the screening of family members, who may be at risk. The purpose of this review is to describe the basic genetic and molecular pathophysiology of the primary inherited arrhythmia disorders, and to outline a rational approach to genetic testing, management, and family screening. Keywords: long QT syndrome, catecholaminergic polymorphic ventricular tachycardia, Brugada syndrome, short QT syndrome, genetics

  15. Molecular genetics of autism spectrum disorders.

    Science.gov (United States)

    Shastry, Barkur S

    2003-01-01

    Autistic disorder belongs to a broad spectrum of pervasive developmental disorders. Autism is a clinically and genetically heterogeneous condition. It is characterized by impairment in a broad range of social interactions, communication, and repetitive patterns of behavior and interest. Although the exact etiology of the condition is not known, family and twin studies strongly support genetic factors in autism. Genome-wide scans suggest several susceptibility loci that may contain one or more predisposing genes. However, no such genes have been identified so far that predispose patients to autism. The condition is over 90% heritable, but the mode of inheritance is not clear. Moreover, it does not seem to be a single gene disorder. There is no cure for autism. Individualized structured education, family support services, and antipsychotic drugs are recommended. These may alleviate some behavioral problems. The identification of autism genes, an understanding of the neurobiology of the condition, and additional clinical studies may help to develop pharmacological interventions in the future.

  16. Genetics of homocysteine metabolism and associated disorders

    Directory of Open Access Journals (Sweden)

    S. Brustolin

    2010-01-01

    Full Text Available Homocysteine is a sulfur-containing amino acid derived from the metabolism of methionine, an essential amino acid, and is metabolized by one of two pathways: remethylation or transsulfuration. Abnormalities of these pathways lead to hyperhomocysteinemia. Hyperhomocysteinemia is observed in approximately 5% of the general population and is associated with an increased risk for many disorders, including vascular and neurodegenerative diseases, autoimmune disorders, birth defects, diabetes, renal disease, osteoporosis, neuropsychiatric disorders, and cancer. We review here the correlation between homocysteine metabolism and the disorders described above with genetic variants on genes coding for enzymes of homocysteine metabolism relevant to clinical practice, especially common variants of the MTHFR gene, 677C>T and 1298A>C. We also discuss the management of hyperhomocysteinemia with folic acid supplementation and fortification of folic acid and the impact of a decrease in the prevalence of congenital anomalies and a decline in the incidence of stroke mortality.

  17. Advances in gene technology: Human genetic disorders

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.A.; Ahmad, F.; Black, S.; Schultz, J.; Whelan, W.J.

    1984-01-01

    This book discusses the papers presented at the conference on the subject of ''advances in Gene technology: Human genetic disorders''. Molecular biology of various carcinomas and inheritance of metabolic diseases is discussed and technology advancement in diagnosis of hereditary diseases is described. Some of the titles discussed are-Immunoglobulin genes translocation and diagnosis; hemophilia; oncogenes; oncogenic transformations; experimental data on mice, hamsters, birds carcinomas and sarcomas.

  18. Genetics and epigenetics of eating disorders

    OpenAIRE

    Yilmaz Z; Hardaway JA; Bulik CM

    2015-01-01

    Zeynep Yilmaz,1 J Andrew Hardaway,1 Cynthia M Bulik1–3 1Department of Psychiatry, 2Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 3Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden Abstract: Eating disorders (EDs) are serious psychiatric conditions influenced by biological, psychological, and sociocultural factors. A better understanding of the genetics of these complex traits and the developm...

  19. Neuroimaging genetic approaches to Posttraumatic Stress Disorder.

    Science.gov (United States)

    Lebois, Lauren A M; Wolff, Jonathan D; Ressler, Kerry J

    2016-10-01

    Neuroimaging genetic studies that associate genetic and epigenetic variation with neural activity or structure provide an opportunity to link genes to psychiatric disorders, often before psychopathology is discernable in behavior. Here we review neuroimaging genetics studies with participants who have Posttraumatic Stress Disorder (PTSD). Results show that genes related to the physiological stress response (e.g., glucocorticoid receptor and activity, neuroendocrine release), learning and memory (e.g., plasticity), mood, and pain perception are tied to neural intermediate phenotypes associated with PTSD. These genes are associated with and sometimes predict neural structure and function in areas involved in attention, executive function, memory, decision-making, emotion regulation, salience of potential threats, and pain perception. Evidence suggests these risk polymorphisms and neural intermediate phenotypes are vulnerabilities toward developing PTSD in the aftermath of trauma, or vulnerabilities toward particular symptoms once PTSD has developed. Work distinguishing between the re-experiencing and dissociative sub-types of PTSD, and examining other PTSD symptom clusters in addition to the re-experiencing and hyperarousal symptoms, will further clarify neurobiological mechanisms and inconsistent findings. Furthermore, an exciting possibility is that genetic associations with PTSD may eventually be understood through differential intermediate phenotypes of neural circuit structure and function, possibly underlying the different symptom clusters seen within PTSD. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Genetics of Recurrent Vertigo and Vestibular Disorders

    Science.gov (United States)

    Gazquez, Irene; Lopez-Escamez, Jose A

    2011-01-01

    We present recent advances in the genetics of recurrent vertigo, including familial episodic ataxias, migraneous vertigo, bilateral vestibular hypofunction and Meniere’s disease. Although several vestibular disorders are more common within families, the genetics of vestibulopathies is largely not known. Genetic loci and clinical features of familial episodic ataxias have been defined in linkage disequilibrium studies with mutations in neuronal genes KCNA1 and CACNA1A. Migrainous vertigo is a clinical disorder with a high comorbidity within families much more common in females with overlapping features with episodic ataxia and migraine. Bilateral vestibular hypofunction is a heterogeneous clinical group defined by episodes of vertigo leading to progressive loss of vestibular function which also can include migraine. Meniere’s disease is a clinical syndrome characterized by spontaneous episodes of recurrent vertigo, sensorineural hearing loss, tinnitus and aural fullness and familial Meniere’s disease in around 10-20% of cases. An international collaborative effort to define the clinical phenotype and recruiting patients with migrainous vertigo and Meniere’s disease is ongoing for genome-wide association studies. PMID:22379397

  1. Periodontal disease associated to systemic genetic disorders.

    Science.gov (United States)

    Nualart Grollmus, Zacy Carola; Morales Chávez, Mariana Carolina; Silvestre Donat, Francisco Javier

    2007-05-01

    A number of systemic disorders increase patient susceptibility to periodontal disease, which moreover evolves more rapidly and more aggressively. The underlying factors are mainly related to alterations in immune, endocrine and connective tissue status. These alterations are associated with different pathologies and syndromes that generate periodontal disease either as a primary manifestation or by aggravating a pre-existing condition attributable to local factors. This is where the role of bacterial plaque is subject to debate. In the presence of qualitative or quantitative cellular immune alterations, periodontal disease may manifest early on a severe localized or generalized basis--in some cases related to the presence of plaque and/or specific bacteria (severe congenital neutropenia or infantile genetic agranulocytosis, Chediak-Higiashi syndrome, Down syndrome and Papillon-Lefévre syndrome). In the presence of humoral immune alterations, periodontal damage may result indirectly as a consequence of alterations in other systems. In connective tissue disorders, bacterial plaque and alterations of the periodontal tissues increase patient susceptibility to gingival inflammation and alveolar resorption (Marfan syndrome and Ehler-Danlos syndrome). The management of periodontal disease focuses on the control of infection and bacterial plaque by means of mechanical and chemical methods. Periodontal surgery and even extraction of the most seriously affected teeth have also been suggested. There are variable degrees of consensus regarding the background systemic disorder, as in the case of Chediak-Higiashi syndrome, where antibiotic treatment proves ineffective; in severe congenital neutropenia or infantile genetic agranulocytosis, where antibiotic prophylaxis is suggested; and in Papillon-Lefévre syndrome, where an established treatment protocol is available.

  2. The Genetics of Stress-Related Disorders: PTSD, Depression, and Anxiety Disorders.

    Science.gov (United States)

    Smoller, Jordan W

    2016-01-01

    Research into the causes of psychopathology has largely focused on two broad etiologic factors: genetic vulnerability and environmental stressors. An important role for familial/heritable factors in the etiology of a broad range of psychiatric disorders was established well before the modern era of genomic research. This review focuses on the genetic basis of three disorder categories-posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and the anxiety disorders-for which environmental stressors and stress responses are understood to be central to pathogenesis. Each of these disorders aggregates in families and is moderately heritable. More recently, molecular genetic approaches, including genome-wide studies of genetic variation, have been applied to identify specific risk variants. In this review, I summarize evidence for genetic contributions to PTSD, MDD, and the anxiety disorders including genetic epidemiology, the role of common genetic variation, the role of rare and structural variation, and the role of gene-environment interaction. Available data suggest that stress-related disorders are highly complex and polygenic and, despite substantial progress in other areas of psychiatric genetics, few risk loci have been identified for these disorders. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. The phenotypic complexity and genetic overlap among these disorders present further challenges. The review concludes with a discussion of prospects for clinical translation of genetic findings and future directions for research.

  3. Specific Genetic Disorders and Autism: Clinical Contribution towards Their Identification

    Science.gov (United States)

    Cohen, David; Pichard, Nadege; Tordjman, Sylvie; Baumann, Clarisse; Burglen, Lydie; Excoffier, Elsa; Lazar, Gabriela; Mazet, Philippe; Pinquier, Clement; Verloes, Alian; Heron, Delphine

    2005-01-01

    Autism is a heterogeneous disorder that can reveal a specific genetic disease. This paper describes several genetic diseases consistently associated with autism (fragile X, tuberous sclerosis, Angelman syndrome, duplication of 15q11-q13, Down syndrome, San Filippo syndrome, MECP2 related disorders, phenylketonuria, Smith-Magenis syndrome, 22q13…

  4. Prevalence of genetic disorders in dog breeds: a literature review

    NARCIS (Netherlands)

    Wirth, J.

    2015-01-01

    Genetic disorders are common in dogs and in the media it is reported that genetic disorders are more frequent in pedigree dogs than in look-a-likes or in mixed-breed dogs. Here, we consider pedigree dogs as purebred dogs (i.e. matching a breed-specific morphology) with a registered and certified ped

  5. Genetics in eating disorders: extending the boundaries of research

    Directory of Open Access Journals (Sweden)

    Andréa Poyastro Pinheiro

    2006-09-01

    Full Text Available OBJECTIVE: To review the recent literature relevant to genetic research in eating disorders and to discuss unique issues which are crucial for the development of a genetic research project in eating disorders in Brazil. METHOD: A computer literature review was conducted in the Medline database between 1984 and may 2005 with the search terms "eating disorders", "anorexia nervosa", "bulimia nervosa", "binge eating disorder", "family", "twin" and "molecular genetic" studies. RESULTS: Current research findings suggest a substantial influence of genetic factors on the liability to anorexia nervosa and bulimia nervosa. Genetic research with admixed populations should take into consideration sample size, density of genotyping and population stratification. Through admixture mapping it is possible to study the genetic structure of admixed human populations to localize genes that underlie ethnic variation in diseases or traits of interest. CONCLUSIONS: The development of a major collaborative genetics initiative of eating disorders in Brazil and South America would represent a realistic possibility of studying the genetics of eating disorders in the context of inter ethnic groups, and also integrate a new perspective on the biological etiology of eating disorders.

  6. Genomics in pediatric endocrinology-genetic disorders and new techniques.

    Science.gov (United States)

    Tenore, Alfred; Driul, Daniela

    2011-10-01

    In the last few years, there have been remarkable advances in the development of new and more sophisticated genetic techniques. These have allowed a better understanding of the molecular mechanisms of genetically determined pediatric endocrine disorders and are paving the way for a radical change in diagnosis and treatment. This article introduces some of these concepts and some of the genetic techniques being used.

  7. A Primer on the Genetics of Comorbid Eating Disorders and Substance Use Disorders.

    Science.gov (United States)

    Munn-Chernoff, Melissa A; Baker, Jessica H

    2016-03-01

    Eating disorders (EDs) and substance use disorders (SUDs) frequently co-occur; however, the reasons for this are unclear. We review the current literature on genetic risk for EDs and SUDs, as well as preliminary findings exploring whether these classes of disorders have overlapping genetic risk. Overall, genetic factors contribute to individual differences in liability to multiple EDs and SUDs. Although initial family studies concluded that no shared familial (which includes genetic) risk between EDs and SUDs exists, twin studies suggest a moderate proportion of shared variance is attributable to overlapping genetic factors, particularly for those EDs characterized by binge eating and/or inappropriate compensatory behaviours. No adoption or molecular genetic studies have examined shared genetic risk between these classes of disorders. Research investigating binge eating and inappropriate compensatory behaviours using emerging statistical genetic methods, as well as examining gene-environment interplay, will provide important clues into the aetiology of comorbid EDs and SUDs.

  8. The genetic basis of myeloproliferative disorders.

    Science.gov (United States)

    Skoda, Radek

    2007-01-01

    For many decades, myeloproliferative disorders (MPD) were largely neglected orphan diseases. The conceptual work of William Dameshek in 1951 provided the basis for understanding MPD as a continuum of related syndromes, possibly with a common pathogenetic cause. Recognition of the clonal origin of peripheral blood cells in MPD in 1976 and the ability to grow erythroid colonies in vitro in the absence of added growth factors in 1974 initiated the search for genetic alterations that might be responsible for myeloproliferation. Mutations in the genes for the erythropoietin receptor, thrombopoietin and the von Hippel-Lindau protein were found to cause familial syndromes resembling MPD, but despite their phenotypic similarities, none of these mutations were later found in patients with the sporadic form of MPD. The discovery of activating mutations in the Janus kinase 2 (JAK2) in most patients with MPD has fully transformed and energized the MPD field. Sensitive assays for detecting the JAK2-V617F mutation have become an essential part of the diagnostic work-up, and JAK2 now constitutes a prime target for developing specific inhibitors for the treatment of patients with MPD. Despite this progress, many questions remain unsolved, including how a single JAK2 mutation causes three different MPD phenotypes, what other genes might be involved in the pathogenesis, and what are the factors determining the progression to acute leukemia.

  9. Progeria: a rare genetic premature ageing disorder.

    Science.gov (United States)

    Sinha, Jitendra Kumar; Ghosh, Shampa; Raghunath, Manchala

    2014-05-01

    Progeria is characterized by clinical features that mimic premature ageing. Although the mutation responsible for this syndrome has been deciphered, the mechanism of its action remains elusive. Progeria research has gained momentum particularly in the last two decades because of the possibility of revealing evidences about the ageing process in normal and other pathophysiological conditions. Various experimental models, both in vivo and in vitro, have been developed in an effort to understand the cellular and molecular basis of a number of clinically heterogeneous rare genetic disorders that come under the umbrella of progeroid syndromes (PSs). As per the latest clinical trial reports, Lonafarnib, a farnesyltranferase inhibitor, is a potent 'drug of hope' for Hutchinson-Gilford progeria syndrome (HGPS) and has been successful in facilitating weight gain and improving cardiovascular and skeletal pathologies in progeroid children. This can be considered as the dawn of a new era in progeria research and thus, an apt time to review the research developments in this area highlighting the molecular aspects, experimental models, promising drugs in trial and their implications to gain a better understanding of PSs.

  10. Progeria: A rare genetic premature ageing disorder

    Directory of Open Access Journals (Sweden)

    Jitendra Kumar Sinha

    2014-01-01

    Full Text Available Progeria is characterized by clinical features that mimic premature ageing. Although the mutation responsible for this syndrome has been deciphered, the mechanism of its action remains elusive. Progeria research has gained momentum particularly in the last two decades because of the possibility of revealing evidences about the ageing process in normal and other pathophysiological conditions. Various experimental models, both in vivo and in vitro, have been developed in an effort to understand the cellular and molecular basis of a number of clinically heterogeneous rare genetic disorders that come under the umbrella of progeroid syndromes (PSs. As per the latest clinical trial reports, Lonafarnib, a farnesyltranferase inhibitor, is a potent ′drug of hope′ for Hutchinson-Gilford progeria syndrome (HGPS and has been successful in facilitating weight gain and improving cardiovascular and skeletal pathologies in progeroid children. This can be considered as the dawn of a new era in progeria research and thus, an apt time to review the research developments in this area highlighting the molecular aspects, experimental models, promising drugs in trial and their implications to gain a better understanding of PSs.

  11. Shared Genetic Factors Influence Risk for Bipolar Disorder and Alcohol Use Disorders

    Science.gov (United States)

    Carmiol, Nasdia; Peralta, Juan M; Almasy, Laura; Contreras, Javier; Pacheco, Adriana; Escamilla, Michael A; Knowles, Emma E; Raventós, Henriette; Glahn, David C

    2014-01-01

    Bipolar disorder and alcohol use disorder (AUD) have a high rate of comorbidity, more than 50% of individuals with bipolar disorder also receive a diagnosis of AUD in their lifetimes. Although both disorders are heritable, it is unclear if the same genetic factors mediate risk for bipolar disorder and AUD. We examined 733 Costa Rican individuals from 61 bipolar pedigrees. Based on a best-estimate process, 32% of the sample met criteria for bipolar disorder, 17% had a lifetime AUD diagnosis, 32% met criteria for lifetime nicotine dependence, and 21% had an anxiety disorder. AUD, nicotine dependence and anxiety disorders were relatively more common among individuals with bipolar disorder than in their non-bipolar relatives. All illnesses were shown to be heritable and bipolar disorder was genetically correlated with AUD, nicotine dependence and anxiety disorders. The genetic correlation between bipolar and AUD remained when controlling for anxiety, suggesting that unique genetic factors influence risk for comorbid bipolar and AUD independent of anxiety. Our findings provide evidence for shared genetic effects on bipolar disorder and AUD risk. Demonstrating that common genetic factors influence these independent diagnostic constructs could help to refine our diagnostic nosology. PMID:24321773

  12. The genetic basis of panic and phobic anxiety disorders.

    Science.gov (United States)

    Smoller, Jordan W; Gardner-Schuster, Erica; Covino, Jennifer

    2008-05-15

    Panic disorder and phobic anxiety disorders are common disorders that are often chronic and disabling. Genetic epidemiologic studies have documented that these disorders are familial and moderately heritable. Linkage studies have implicated several chromosomal regions that may harbor susceptibility genes; however, candidate gene association studies have not established a role for any specific loci to date. Increasing evidence from family and genetic studies suggests that genes underlying these disorders overlap and transcend diagnostic boundaries. Heritable forms of anxious temperament, anxiety-related personality traits and neuroimaging assays of fear circuitry may represent intermediate phenotypes that predispose to panic and phobic disorders. The identification of specific susceptibility variants will likely require much larger sample sizes and the integration of insights from genetic analyses of animal models and intermediate phenotypes.

  13. Genetics of homocysteine metabolism and associated disorders

    National Research Council Canada - National Science Library

    Brustolin, S; Giugliani, R; Félix, T.M

    2010-01-01

    .... Hyperhomocysteinemia is observed in approximately 5% of the general population and is associated with an increased risk for many disorders, including vascular and neurodegenerative diseases, autoimmune disorders, birth defects, diabetes, renal disease...

  14. Ethical and Social Implications of Genetic Testing for Communication Disorders

    Science.gov (United States)

    Arnos, Kathleen S.

    2008-01-01

    Advances in genetics and genomics have quickly led to clinical applications to human health which have far-reaching consequences at the individual and societal levels. These new technologies have allowed a better understanding of the genetic factors involved in a wide range of disorders. During the past decade, incredible progress has been made in…

  15. The etiology and molecular genetics of human pigmentation disorders.

    Science.gov (United States)

    Baxter, Laura L; Pavan, William J

    2013-01-01

    Pigmentation, defined as the placement of pigment in skin, hair, and eyes for coloration, is distinctive because the location, amount, and type of pigmentation provides a visual manifestation of genetic heterogeneity in pathways regulating the pigment-producing cells, melanocytes. The scope of this genetic heterogeneity in humans ranges from normal to pathological pigmentation phenotypes. Clinically, normal human pigmentation encompasses a variety of skin and hair color as well as punctate pigmentation such as melanocytic nevi (moles) or ephelides (freckles), while abnormal human pigmentation exhibits markedly reduced or increased pigment levels, known as hypopigmentation and hyperpigmentation, respectively. Elucidation of the molecular genetics underlying pigmentation has revealed genes important for melanocyte development and function. Furthermore, many pigmentation disorders show additional defects in cells other than melanocytes, and identification of the genetic insults in these disorders has revealed pleiotropic genes, where a single gene is required for various functions in different cell types. Thus, unravelling the genetics of easily visualized pigmentation disorders has identified molecular similarities between melanocytes and less visible cell types/tissues, arising from a common developmental origin and/or shared genetic regulatory pathways. Herein we discuss notable human pigmentation disorders and their associated genetic alterations, focusing on the fact that the developmental genetics of pigmentation abnormalities are instructive for understanding normal pathways governing development and function of melanocytes. Copyright © 2012 Wiley Periodicals, Inc.

  16. Cross-Disorder Genetic Analysis of Tic Disorders, Obsessive-Compulsive, and Hoarding Symptoms.

    Science.gov (United States)

    Zilhão, Nuno R; Smit, Dirk J; Boomsma, Dorret I; Cath, Danielle C

    2016-01-01

    Hoarding, obsessive-compulsive disorder (OCD), and Tourette's disorder (TD) are psychiatric disorders that share symptom overlap, which might partly be the result of shared genetic variation. Population-based twin studies have found significant genetic correlations between hoarding and OCD symptoms, with genetic correlations varying between 0.1 and 0.45. For tic disorders, studies examining these correlations are lacking. Other lines of research, including clinical samples and GWAS or CNV data to explore genetic relationships between tic disorders and OCD, have only found very modest if any shared genetic variation. Our aim was to extend current knowledge on the genetic structure underlying hoarding, OC symptoms (OCS), and lifetime tic symptoms and, in a trivariate analysis, assess the degree of common and unique genetic factors contributing to the etiology of these disorders. Data have been gathered from participants in the Netherlands Twin Register comprising a total of 5293 individuals from a sample of adult monozygotic (n = 2460) and dizygotic (n = 2833) twin pairs (mean age 33.61 years). The data on Hoarding, OCS, and tic symptoms were simultaneously analyzed in Mplus. A liability threshold model was fitted to the twin data, analyzing heritability of phenotypes and of their comorbidity. Following the criteria for a probable clinical diagnosis in all phenotypes, 6.8% of participants had a diagnosis of probable hoarding disorder (HD), 6.3% of OCS, and 12.8% of any probable lifetime tic disorder. Genetic factors explained 50.4, 70.1, and 61.1% of the phenotypic covariance between hoarding-OCS, hoarding-tics, and OCS-tics, respectively. Substantial genetic correlations were observed between hoarding and OCS (0.41), hoarding and tics (0.35), and between OCS and tics (0.37). These results support the contribution of genetic factors in the development of these disorders and their comorbidity. Furthermore, tics were mostly influenced by specific

  17. Law & psychiatry: Genetic discrimination in mental disorders: the impact of the genetic information nondiscrimination act.

    Science.gov (United States)

    Appelbaum, Paul S

    2010-04-01

    Genetics is one of the most active areas of research on mental disorders. As genetic tests related to psychiatric disorders and their treatments proliferate in research and clinical settings, the possibility becomes more troubling that such information will be used for purposes other than those for which it was collected. Because of this, the federal Genetic Information Nondiscrimination Act of 2008 is of substantial importance to persons with mental disorders, persons at risk for the conditions, and family members of both groups. This column discusses the process of passing the legislation, along with the implications of the act.

  18. A Genetic Study of Attention Deficit Hyperactivity Disorder, Conduct Disorder, Oppositional Defiant Disorder and Reading Disability: Aetiological Overlaps and Implications

    Science.gov (United States)

    Martin, Neilson C.; Levy, Florence; Pieka, Jan; Hay, David A.

    2006-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) commonly co-occurs with Oppositional Defiant Disorder, Conduct Disorder and Reading Disability. Twin studies are an important approach to understanding and modelling potential causes of such comorbidity. Univariate and bivariate genetic models were fitted to maternal report data from 2040 families of…

  19. Towards a deeper understanding of the genetics of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Berit eKerner

    2015-08-01

    Full Text Available Bipolar disorder is a common, complex psychiatric disorder characterized by mania and depression. The disease aggregates in families, but despite much effort, it has been difficult to delineate the basic genetic model or identify specific genetic risk factors. Single gene Mendelian transmission and common variant hypotheses, but also multivariate threshold models and oligogenic quasi-Mendelian modes of inheritance have dominated the discussion at times. Almost complete sequence information of the human genome and falling sequencing costs now offer the opportunity to test these models in families in which the disorder is transmitted over several generations. Exome-wide sequencing studies have revealed an astonishing number of rare and potentially damaging mutations in brain expressed genes that could have contributed to the disease manifestation. However, the statistical analysis of these data has been challenging, because genetic risk factors displayed a high degree of dissimilarity across families. This scenario is not unique to bipolar disorder, but similar results have also been found in schizophrenia, a potentially related psychiatric disorder. Recently, our group has published data which supported an oligogenic genetic model of transmission in a family with bipolar disorder. In this family, three affected siblings shared rare, damaging mutations in multiple genes, which were linked to stress response pathways. These pathways are also the target for drugs frequently used to treat bipolar disorder. This article discusses these findings in the context of previously proclaimed disease models and suggests future research directions, including biological confirmation and phenotype stratification as an approach to disease heterogeneity.

  20. Revertant mosaicism in human genetic disorders

    NARCIS (Netherlands)

    Jonkman, MF

    1999-01-01

    Somatic reversion of inherited mutations is known for many years in plant breeding, however it was recognized only recently in humans. The concept of revertant mosaicism is important in medical genetics. (C) 1999 Wiley-Liss, Inc.

  1. Genetics Home Reference: MYH9-related disorder

    Science.gov (United States)

    ... They Important? Merck Manual Consumer Version: Glomerulonephritis Merck Manual Consumer Version: Thrombocytopenia Orphanet: MYH9-related disease Patient Support and Advocacy Resources (3 links) National Kidney Foundation National Organization for Rare Disorders (NORD): May Hegglin Anomaly University ...

  2. Basics on Genes and Genetic Disorders

    Science.gov (United States)

    ... ay-kon-druh-PLAY-zhuh, a form of dwarfism), Marfan syndrome (a connective tissue disorder), and Huntington ... Parents MORE ON THIS TOPIC Albinism Muscular Dystrophy Dwarfism Marfan Syndrome Cystic Fibrosis Hemophilia von Willebrand Disease ...

  3. Identifying the genetic components underlying the pathophysiology of movement disorders

    Directory of Open Access Journals (Sweden)

    Ezquerra M

    2011-06-01

    Full Text Available Mario Ezquerra, Yaroslau Compta, Maria J MartiParkinson’s Disease and Movement Disorders Unit, Service of Neurology, Institute of Clinical Neurosciences, Hospital Clinic of Barcelona, IDIBAPS, CIBERNED, SpainAbstract: Movement disorders are a heterogeneous group of neurological conditions, few of which have been classically described as bona fide hereditary illnesses (Huntington’s chorea, for instance. Most are considered to be either sporadic or to feature varying degrees of familial aggregation (parkinsonism and dystonia. In the late twentieth century, Mendelian monogenic mutations were found for movement disorders with a clear and consistent family history. Although important, these findings apply only to very rare forms of movement disorders. Already in the twenty-first century, and taking advantage of the modern developments in genetics and molecular biology, growing attention is being paid to the complex genetics of movement disorders. The search for risk genetic variants (polymorphisms in large cohorts and the identification of different risk variants across different populations and ethnic groups are under way, with the most relevant findings to date corresponding to recent genome wide association studies in Parkinson’s disease. These new approaches focusing on risk variants may enable the design of screening tests for early or even preclinical disease, and the identification of likely therapeutic targets.Keywords: genetics, movement disorders, Parkinson’s disease, parkinsonism, dystonia

  4. Genetics of ischaemic stroke; single gene disorders.

    Science.gov (United States)

    Flossmann, Enrico

    2006-08-01

    Examples of single gene disorders have been described for all major subtypes of ischaemic stroke: accelerated atherosclerosis and subsequent thrombo-embolism (e.g. homocysteinuria), weakening of connective tissue resulting in arterial dissections (e.g. Ehler-Danlos type IV), disorders of cerebral small vessels (e.g. cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and the collagen COL4A1 mutation), disorders increasing the thrombogenic potential of the heart through affecting the myocardium or the heart valves or through disturbance of the heart rhythm (e.g. hypertrophic cardiomyopathy), mitochondrial cytopathies increasing cerebral tissue susceptibility to insults (e.g. mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), and finally disorders of coagulation that can either directly cause stroke or act synergistically with the aforementioned abnormalities (e.g. sickle cell disease). Most of these disorders are rare but they are important to consider particularly in young patients with stroke, those with a family history or those who have other characteristics of a particular syndrome.

  5. Guidelines for genetic testing of inherited cardiac disorders.

    Science.gov (United States)

    Ingles, Jodie; Zodgekar, Poonam R; Yeates, Laura; Macciocca, Ivan; Semsarian, Christopher; Fatkin, Diane

    2011-11-01

    Inherited gene variants have been implicated increasingly in cardiac disorders but the clinical impact of these discoveries has been variable. For some disorders, such as familial hypertrophic cardiomyopathy, long QT syndrome, and familial hypercholesterolaemia, genetic testing has a high yield and has become an integral part of family management. For other disorders, including dilated cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, and atrial fibrillation, relatively less is known about the genes involved and genetic testing has a lower yield. Recent advances in sequencing and array-based technologies promise to change the landscape of our understanding of the genetic basis of human disease and will dramatically increase the rate of detection of genomic variants. Since every individual is expected to harbour thousands of variants, many of which may be novel, interpretation of the functional significance of any single variant is critical, and should be undertaken by experienced personnel. Genotype results can have a wide range of medical and psychosocial implications for affected and unaffected individuals and hence, genetic testing should be performed in a specialised cardiac genetic clinic or clinical genetics service where appropriate family management and genetic counselling can be offered. Copyright © 2011 Australasian Society of Cardiac and Thoracic Surgeons and the Cardiac Society of Australia and New Zealand. Published by Elsevier B.V. All rights reserved.

  6. Bioethical issues in neuropsychiatric genetic disorders.

    Science.gov (United States)

    Fuentes, Joaquin; Martín-Arribas, M Concepción

    2007-07-01

    Neurogenetic disorders share many characteristics with other rare disorders and raise complex bioethical issues for clinical practice and research. Because patients frequently present with cognitive or communicative impairments, special measures to guarantee consent and assent are required. Many neurogenetic disorders present with autistic behavior or borderline sociocommunicative aspects. The likelihood that early educational intervention benefits the adaptive skills of these persons leads to screening programs that pose bioethical challenges. The biggest conflicts come from the lack of research in clinical care and the limited application of biomedical ethics in the personal support services arena. Alternatives include the development of personal services portfolios, establishing and supporting bioethical committees, reviewing and improving ethical aspects in research initiatives in this population, and empowering clients (and their legally authorized representatives) for participation and representation.

  7. Genetic Aspects of Autism Spectrum Disorders: Insights from Animal Models

    Directory of Open Access Journals (Sweden)

    Swati eBanerjee

    2014-02-01

    Full Text Available Autism spectrum disorders (ASD are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute towards the formation, stabilization and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD.

  8. Kartagener syndrome: a rare genetic disorder.

    Science.gov (United States)

    Shakya, K

    2009-01-01

    Kartagener Syndrome is a rare autosomal recessive disorder consisting of triad of sinusitis, bronchiectasis and situs inversus with dextrocardia. It is the subset of disorder called primary ciliary dyskinesia in which the cilia have abnormal structure and/or function resulting in multisystem diseases of various severity. Clinical manifestations include lifelong, chronic upper and lower respiratory tract diseases secondary to ineffective mucociliary clearance. Early diagnosis and management of chest infections can prevent irreversible damage to lungs and prevent potential lifelong complications. This case report is on a patient who presented with long standing history of sinusitis, bronchiectasis and on examination situs inversus with dextrocardia.

  9. Nomenclature of genetic movement disorders: Recommendations of the international Parkinson and movement disorder society task force.

    Science.gov (United States)

    Marras, Connie; Lang, Anthony; van de Warrenburg, Bart P; Sue, Carolyn M; Tabrizi, Sarah J; Bertram, Lars; Mercimek-Mahmutoglu, Saadet; Ebrahimi-Fakhari, Darius; Warner, Thomas T; Durr, Alexandra; Assmann, Birgit; Lohmann, Katja; Kostic, Vladimir; Klein, Christine

    2016-04-01

    The system of assigning locus symbols to specify chromosomal regions that are associated with a familial disorder has a number of problems when used as a reference list of genetically determined disorders,including (I) erroneously assigned loci, (II) duplicated loci, (III) missing symbols or loci, (IV) unconfirmed loci and genes, (V) a combination of causative genes and risk factor genes in the same list, and (VI) discordance between phenotype and list assignment. In this article, we report on the recommendations of the International Parkinson and Movement Disorder Society Task Force for Nomenclature of Genetic Movement Disorders and present a system for naming genetically determined movement disorders that addresses these problems. We demonstrate how the system would be applied to currently known genetically determined parkinsonism, dystonia, dominantly inherited ataxia, spastic paraparesis, chorea, paroxysmal movement disorders, neurodegeneration with brain iron accumulation, and primary familial brain calcifications. This system provides a resource for clinicians and researchers that, unlike the previous system, can be considered an accurate and criterion-based list of confirmed genetically determined movement disorders at the time it was last updated.

  10. Genetic disorders and malaria in Indo-China region

    Directory of Open Access Journals (Sweden)

    Viroj Wiwanitkit

    2008-05-01

    Full Text Available High prevalence of malaria in Southeast Asia including Thailand is believed to be a major public health problem to the population in this area since time immemorial. Adaptation of the population in this area following the principle of natural selection coupled with genetic disorders can be expected. Some good examples for natural selection of malaria are the co-existence of high prevalence of thalassaemia as well as glucose-6-phosphate dehydrogenase deficiency. In this report, general aspects of some important genetic disorders and malaria in Indo-China area (Thailand, Laos, Cambodia, Myanmar, Vietnam, Yunnan and Manipur are summarized and discussed.

  11. Genetic influences on the development of childhood psychiatric disorders.

    Science.gov (United States)

    Thapar, Anita; Stergiakouli, Evangelia

    2008-07-01

    This review covers the key types of genetic research design, the methodology involved and emerging, and established findings in relation to child and adolescent psychiatry. Traditional family, twin, and adoption studies show that child and adolescent psychiatric disorders are familial and genetically influenced. Genes and environment contribute to all disorders. Genetic factors seem especially important for autism and attention deficit hyperactivity disorder. Twin and adoption study designs are now being used to examine gene-environment interplay, the effects of environmental risk factors, co-morbidity, phenotype definition, and developmental change. Molecular genetic strategies are increasingly being adopted to identify gene variants that increase risk of specific disorders. The ways in which specific gene variants exert risk effects at cellular and biological system levels are proving to be highly complex. There is also interest in examining the brain mechanisms that may be involved in risk pathways that link gene variant to psychopathology. Finally, molecular genetic studies also highlight the importance of gene-environment interplay, which seems to be especially important in depression and antisocial behaviour.

  12. Orthodontic Treatment, Genetic Factors and Risk of Temporomandibular Disorder

    OpenAIRE

    Slade, Gary D.; Diatchenko, Luda; Ohrbach, Richard; Maixner, William

    2008-01-01

    Traditionally, four groups of factors have been identified in the etiology of temporomandibular disorder (TMD): anatomical variation in the masticatory system; psychosocial characteristics; pain in other body regions; and demographics. Orthodontic treatment has been variously cited both as a protective and harmful factor in TMD etiology. Recently, a search has begun for a genetic influence on TMD etiology. Genetic markers can be of additional value in identifying gene-environment interactions...

  13. Presymptomatic Diagnosis of Genetic Disorders: Is it worth the anxiety?

    OpenAIRE

    1991-01-01

    Through recent advances in DNA technology, presymptomatic diagnosis of several genetic disorders is now possible. This technology can determine whether an at-risk individual is at greatly increased risk of having inherited the gene for a particular disorder many years before symptoms are expected to occur. To provide effective care, the family physician must be aware of the potential benefits and risks of presymptomatic testing.

  14. Common Genetic and Environmental Influences on Major Depressive Disorder and Conduct Disorder

    Science.gov (United States)

    Subbarao, Anjali; Rhee, Soo Hyun; Young, Susan E.; Ehringer, Marissa A.; Corley, Robin P.; Hewitt, John K.

    2008-01-01

    The evidence for common genetic and environmental influences on conduct disorder (CD) and major depressive disorder (MDD) in adolescents was examined. A sample of 570 monozygotic twin pairs, 592 dizygotic twin pairs, and 426 non-twin siblings, aged 12-18 years, was recruited from the Colorado Twin Registry. For the past year data, there was a…

  15. Human embryonic stem cells carrying mutations for severe genetic disorders.

    Science.gov (United States)

    Frumkin, Tsvia; Malcov, Mira; Telias, Michael; Gold, Veronica; Schwartz, Tamar; Azem, Foad; Amit, Ami; Yaron, Yuval; Ben-Yosef, Dalit

    2010-04-01

    Human embryonic stem cells (HESCs) carrying specific mutations potentially provide a valuable tool for studying genetic disorders in humans. One preferable approach for obtaining these cell lines is by deriving them from affected preimplantation genetically diagnosed embryos. These unique cells are especially important for modeling human genetic disorders for which there are no adequate research models. They can be further used to gain new insights into developmentally regulated events that occur during human embryo development and that are responsible for the manifestation of genetically inherited disorders. They also have great value for the exploration of new therapeutic protocols, including gene-therapy-based treatments and disease-oriented drug screening and discovery. Here, we report the establishment of 15 different mutant human embryonic stem cell lines derived from genetically affected embryos, all donated by couples undergoing preimplantation genetic diagnosis in our in vitro fertilization unit. For further information regarding access to HESC lines from our repository, for research purposes, please email dalitb@tasmc.health.gov.il.

  16. Kartagener Syndrome: A Rare Genetic Disorder

    Directory of Open Access Journals (Sweden)

    Kunjan Shakya

    2009-01-01

    Full Text Available Kartagener Syndrome is a rare autosomal recessive disorder consisting of triad of sinusitis, bronchiectasis and situs inversus with dextrocardia. It is the subset of disorder called primary ciliary dyskinesia in which the cilia have abnormal structure and/or function resulting in multisystem diseases of various severity. Clinical manifestations include lifelong, chronic upper and lower respiratory tract diseases secondary to ineffective mucociliary clearance. Early diagnosis and management of chest infections can prevent irreversible damage to lungs and prevent potential lifelong complications. This case report is on a patient who presented with long standing history of sinusitis, bronchiectasis and on examination situs inversus with dextrocardia. Key Words:bronchiectasis, dextrocardia, kartagener syndrome, primary ciliary dyskinesia, situs inversus

  17. Genetics and Function of Neocortical GABAergic Interneurons in Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    E. Rossignol

    2011-01-01

    Full Text Available A dysfunction of cortical and limbic GABAergic circuits has been postulated to contribute to multiple neurodevelopmental disorders in humans, including schizophrenia, autism, and epilepsy. In the current paper, I summarize the characteristics that underlie the great diversity of cortical GABAergic interneurons and explore how the multiple roles of these cells in developing and mature circuits might contribute to the aforementioned disorders. Furthermore, I review the tightly controlled genetic cascades that determine the fate of cortical interneurons and summarize how the dysfunction of genes important for the generation, specification, maturation, and function of cortical interneurons might contribute to these disorders.

  18. Genetics of aging, progeria and lamin disorders.

    Science.gov (United States)

    Ghosh, Shrestha; Zhou, Zhongjun

    2014-06-01

    Premature aging disorders, like Werner syndrome, Bloom's syndrome, and Hutchinson-Gilford Progeria Syndrome (HGPS), have been the subjects of immense interest as they recapitulate many of the phenotypes observed in physiological aging. They, therefore, not only provide model systems to study normal aging processes but also give valuable insights into the intricate mechanisms underlying senescence. Recent works on HGPS have revealed alterations in a spectrum of cellular and molecular pathways involved in the maintenance of genomic integrity, thus suggesting a profound impact of the nuclear lamina in nuclear organization, chromatin dynamics, regulation of gene expression and epigenetics.

  19. Cross-Disorder Genetic Analysis of Tic Disorders, Obsessive–Compulsive, and Hoarding Symptoms

    Science.gov (United States)

    Zilhão, Nuno R.; Smit, Dirk J.; Boomsma, Dorret I.; Cath, Danielle C.

    2016-01-01

    Hoarding, obsessive–compulsive disorder (OCD), and Tourette’s disorder (TD) are psychiatric disorders that share symptom overlap, which might partly be the result of shared genetic variation. Population-based twin studies have found significant genetic correlations between hoarding and OCD symptoms, with genetic correlations varying between 0.1 and 0.45. For tic disorders, studies examining these correlations are lacking. Other lines of research, including clinical samples and GWAS or CNV data to explore genetic relationships between tic disorders and OCD, have only found very modest if any shared genetic variation. Our aim was to extend current knowledge on the genetic structure underlying hoarding, OC symptoms (OCS), and lifetime tic symptoms and, in a trivariate analysis, assess the degree of common and unique genetic factors contributing to the etiology of these disorders. Data have been gathered from participants in the Netherlands Twin Register comprising a total of 5293 individuals from a sample of adult monozygotic (n = 2460) and dizygotic (n = 2833) twin pairs (mean age 33.61 years). The data on Hoarding, OCS, and tic symptoms were simultaneously analyzed in Mplus. A liability threshold model was fitted to the twin data, analyzing heritability of phenotypes and of their comorbidity. Following the criteria for a probable clinical diagnosis in all phenotypes, 6.8% of participants had a diagnosis of probable hoarding disorder (HD), 6.3% of OCS, and 12.8% of any probable lifetime tic disorder. Genetic factors explained 50.4, 70.1, and 61.1% of the phenotypic covariance between hoarding-OCS, hoarding-tics, and OCS-tics, respectively. Substantial genetic correlations were observed between hoarding and OCS (0.41), hoarding and tics (0.35), and between OCS and tics (0.37). These results support the contribution of genetic factors in the development of these disorders and their comorbidity. Furthermore, tics were mostly influenced by specific

  20. Clinical Genetic Aspects of ASD Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    G. Bradley Schaefer

    2016-01-01

    Full Text Available Early presumptions opined that autism spectrum disorder (ASD was related to the rearing of these children by emotionally-distant mothers. Advances in the 1960s and 1970s clearly demonstrated the biologic basis of autism with a high heritability. Recent advances have demonstrated that specific etiologic factors in autism spectrum disorders can be identified in 30%–40% of cases. Based on early reports newer, emerging genomic technologies are likely to increase this diagnostic yield to over 50%. To date these investigations have focused on etiologic factors that are largely mono-factorial. The currently undiagnosed causes of ASDs will likely be found to have causes that are more complex. Epigenetic, multiple interacting loci, and four dimensional causes (with timing as a variable are likely to be associated with the currently unidentifiable cases. Today, the “Why” is more important than ever. Understanding the causes of ASDs help inform families of important issues such as recurrence risk, prognosis, natural history, and predicting associated co-morbid medical conditions. In the current era of emerging efforts in “personalized medicine”, identifying an etiology will be critical in identifying endo-phenotypic groups and individual variations that will allow for tailored treatment for persons with ASD.

  1. Visual and Verbal Learning in a Genetic Metabolic Disorder

    Science.gov (United States)

    Spilkin, Amy M.; Ballantyne, Angela O.; Trauner, Doris A.

    2009-01-01

    Visual and verbal learning in a genetic metabolic disorder (cystinosis) were examined in the following three studies. The goal of Study I was to provide a normative database and establish the reliability and validity of a new test of visual learning and memory (Visual Learning and Memory Test; VLMT) that was modeled after a widely used test of…

  2. Investigation of previously implicated genetic variants in chronic tic disorders

    DEFF Research Database (Denmark)

    Abdulkadir, Mohamed; Londono, Douglas; Gordon, Derek

    2017-01-01

    Genetic studies in Tourette syndrome (TS) are characterized by scattered and poorly replicated findings. We aimed to replicate findings from candidate gene and genome-wide association studies (GWAS). Our cohort included 465 probands with chronic tic disorder (93% TS) and both parents from 412 fam...

  3. Behaviour Problems in Children with Genetic Disorders Causing Intellectual Disability

    Science.gov (United States)

    Einfeld, Stewart L.

    2005-01-01

    This paper reviews several genetic syndromes that are associated with intellectual disability. The specific focus is on the behavioural patterns associated with the syndrome. Included in this review are the patterns of disruptive behaviour disorders associated with Fragile X, Prader-Willi, and Williams syndromes. Understanding and recognition of…

  4. Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders

    OpenAIRE

    Lotan, Amit; Fenckova, Michaela; Bralten, Janita; Alttoa, Aet; Dixson, Luanna; Williams, Robert W.; van der Voet, Monique

    2014-01-01

    Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders—attention deficit hyperactivity disorder (ADHD), anxiety disorders (Anx), autistic spectrum disorders (ASD), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). We curate...

  5. The molecular genetics of keratin disorders.

    Science.gov (United States)

    Smith, Frances

    2003-01-01

    Keratins are the type I and II intermediate filament proteins which form a cytoskeletal network within all epithelial cells. They are expressed in pairs in a tissue- and differentiation-specific fashion. Epidermolysis bullosa simplex (EBS) was the first human disorder to be associated with keratin mutations. The abnormal keratin filament aggregates observed in basal cell keratinocytes of some EBS patients are composed of keratins K5 and K14. Dominant mutations in the genes encoding these proteins were shown to disrupt the keratin filament cytoskeleton resulting in cells that are less resilient and blister with mild physical trauma. Identification of mutations in other keratin genes soon followed with attention focussed on disorders showing abnormal clumping of keratin filaments in specific cells. For example, in bullous congenital ichthyosiform erythroderma, clumping of filaments in the suprabasal cells led to the identification of mutations in the suprabasal keratins, K1 and K10. Mutations have now been identified in 18 keratins, all of which produce a fragile cell phenotype. These include ichthyosis bullosa of Siemens (K2e), epidermolytic palmoplantar keratoderma (K1, K9), pachyonychia congenita (K6a, K6b, K16, K17), white sponge nevus (K4, K13), Meesmann's corneal dystrophy (K3, K12), cryptogenic cirrhosis (K8, K18) and monilethrix (hHb6, hHb1).In general, these disorders are inherited as autosomal dominant traits and the mutations act in a dominant-negative manner. Therefore, treatment in the form of gene therapy is difficult, as the mutant gene needs to be inactivated. Ways of achieving this are actively being studied. Reliable mutation detection methods from genomic DNA are now available. This enables rapid screening of patients for keratin mutations. For some of the more severe phenotypes, prenatal diagnosis may be requested and this can now be performed from chorionic villus samples at an early stage of the pregnancy. This review article describes the

  6. Crouzon’s Syndrome: A Rare Genetic Disorder

    Science.gov (United States)

    Bhatia, Hindpal; Sharma, Naresh

    2016-01-01

    Crouzon’s syndrome, also known as brachial arch syndrome, is an autosomal dominant disorder with complete penetrance and variable expressivity. Described by a French neurosurgeon in 1912, it is a rare genetic disorder. Crouzon’s syndrome is caused by mutation in the fibroblast growth factor receptor 2 (FGFR2) gene. Normally, the sutures in the human skull fuse after the complete growth of the brain, but if any of these sutures close early, then it may interfere with the growth of the brain. The disease is characterized by craniosynostosis, with associated dentofacial anomalies. This report describes the different clinical features in a 10-year-old male patient, with particular reference to characteristic findings of this syndrome. How to cite this article Kaushik A, Bhatia H, Sharma N. Crouzon’s Syndrome: A Rare Genetic Disorder. Int J Clin Pediatr Dent 2016;9(4):384-387. PMID:28127173

  7. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.

    OpenAIRE

    Lee, Hong; Ripke, Stephan; Neale, Benjamin; Faraone, Stephen,; Purcell, Shaun; Perlis, Roy,; Mowry, Bryan; Thapar, Anita; Goddard, Michael; Witte, John,; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole,

    2013-01-01

    International audience; Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply uni...

  8. The Evolving Diagnostic and Genetic Landscapes of Autism Spectrum Disorder.

    Science.gov (United States)

    Ziats, Mark N; Rennert, Owen M

    2016-01-01

    The autism spectrum disorders (ASD) are a heterogeneous set of neurodevelopmental syndromes defined by impairments in verbal and non-verbal communication, restricted social interaction, and the presence of stereotyped patterns of behavior. The prevalence of ASD is rising, and the diagnostic criteria and clinical perspectives on the disorder continue to evolve in parallel. Although the majority of individuals with ASD will not have an identifiable genetic cause, almost 25% of cases have identifiable causative DNA variants. The rapidly improving ability to identify genetic mutations because of advances in next generation sequencing, coupled with previous epidemiological studies demonstrating high heritability of ASD, have led to many recent attempts to identify causative genetic mutations underlying the ASD phenotype. However, although hundreds of mutations have been identified to date, they are either rare variants affecting only a handful of ASD patients, or are common variants in the general population conferring only a small risk for ASD. Furthermore, the genes implicated thus far are heterogeneous in their structure and function, hampering attempts to understand shared molecular mechanisms among all ASD patients; an understanding that is crucial for the development of targeted diagnostics and therapies. However, new work is beginning to suggest that the heterogeneous set of genes implicated in ASD may ultimately converge on a few common pathways. In this review, we discuss the parallel evolution of our diagnostic and genetic understanding of autism spectrum disorders, and highlight recent attempts to infer common biology underlying this complicated syndrome.

  9. Genetically meaningful phenotypic subgroups in autism spectrum disorders.

    Science.gov (United States)

    Veatch, O J; Veenstra-Vanderweele, J; Potter, M; Pericak-Vance, M A; Haines, J L

    2014-03-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with strong evidence for genetic susceptibility. However, the effect sizes for implicated chromosomal loci are small, hard to replicate and current evidence does not explain the majority of the estimated heritability. Phenotypic heterogeneity could be one phenomenon complicating identification of genetic factors. We used data from the Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, Vineland Adaptive Behavior Scales, head circumferences, and ages at exams as classifying variables to identify more clinically similar subgroups of individuals with ASD. We identified two distinct subgroups of cases within the Autism Genetic Resource Exchange dataset, primarily defined by the overall severity of evaluated traits. In addition, there was significant familial clustering within subgroups (odds ratio, OR ≈ 1.38-1.42, P Autism Genome Project, we similarly identified two distinct subgroups of cases and confirmed this severity-based dichotomy. We also observed evidence for genetic contributions to subgroups identified in the replication dataset. Our results provide more effective methods of phenotype definition that should increase power to detect genetic factors influencing risk for ASD.

  10. Genetic disorders with both hearing loss and cardiovascular abnormalities.

    Science.gov (United States)

    Belmont, John W; Craigen, William; Martinez, Hugo; Jefferies, John Lynn

    2011-01-01

    There has been a growing appreciation for conditions that affect hearing and which are accompanied by significant cardiovascular disorders. In this chapter we consider several broad classes of conditions including deafness due to abnormal structural development of the inner ear, those with physiological abnormalities in the inner ear sensory apparatus, and conditions with progressive loss of function of sensory cells or middle ear functions. Because of shared developmental controls, inner ear malformations are often associated with congenital heart defects and can be part of complex syndromes that affect other organs and neurodevelopmental outcome. Physiological disorders of the hair cells can lead to hearing loss and can be associated with cardiac arrhythmias, especially long QT syndrome. In addition, cellular energy defects such as mitochondrial disorders can affect maintenance of hair cells and are often associated with cardiomyopathy. Lysosomal storage diseases and other disorders affecting connective tissue can lead to chronic middle ear disease, with conductive hearing loss and also cause cardiac valve disease and/or cardiomyopathy. The genetic basis for these conditions is heterogeneous and includes chromosomal/genomic disorders, de novo dominant mutations, and familial dominant, autosomal-recessive, and mitochondrial (matrilineal) inheritance. Taken together, there are more than 100 individual genes implicated in genetic hearing impairment that are also associated with congenital and/or progressive cardiac abnormalities. These genes encode transcription factors, chromatin remodeling factors, components of signal transduction pathways, ion channels, mitochondrial proteins and assembly factors, extracellular matrix proteins, and enzymes involved in lysosomal functions.

  11. The epidemiology and genetics of binge eating disorder (BED).

    Science.gov (United States)

    Davis, Caroline

    2015-12-01

    This narrative review provides an overview of the epidemiology of binge eating disorder (BED), highlighting the medical history of this disorder and its entry as an independent condition in the Feeding and Eating Disorders section of the recently published Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Estimates of prevalence are provided, as well as recognition that the female to male ratio is lower in BED than in other eating disorders. Evidence is also provided of the most common comorbidities of BED, including mood and anxiety disorders and a range of addiction disorders. In addition, discussion of the viewpoint that BED itself may be an addiction - at least in severe cases - is presented. Although the genetic study of BED is still in its infancy, current research is reviewed with a focus on certain neurotransmitter genes that regulate brain reward mechanisms. To date, a focal point of this research has been on the dopamine and the μ-opioid receptor genes. Preliminary evidence suggests that a predisposing risk factor for BED may be a heightened sensitivity to reward, which could manifest as a strong dopamine signal in the brain's striatal region. Caution is encouraged, however, in the interpretation of current findings, since samples are relatively small in much of the research. To date, no genome-wide association studies have focused exclusively on BED.

  12. Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population.

    Science.gov (United States)

    Wen, Zujia; Chen, Jianhua; Khan, Raja Amjad Waheed; Song, Zhijian; Wang, Meng; Li, Zhiqiang; Shen, Jiawei; Li, Wenjin; Shi, Yongyong

    2016-04-01

    Schizophrenia, major depressive disorder, and bipolar disorder are three major psychiatric disorders affecting around 0.66%, 3.3%, and 1.5% of the Han Chinese population respectively. Several genetic linkage analyses and genome wide association studies identified NRG1 as a susceptibility gene of schizophrenia, which was validated by its role in neurodevelopment, glutamate, and other neurotransmitter receptor expression regulation. To further investigate whether NRG1 is a shared risk gene for major depressive disorder, bipolar disorder as well as schizophrenia, we performed an association study among 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls. Totally 15 tag SNPs were genotyped and analyzed, and no population stratification was found in our sample set. Among the sites, rs4236710 (corrected Pgenotye  = 0.015) and rs4512342 (Pallele  = 0.03, Pgenotye  = 0.045 after correction) were associated with schizophrenia, and rs2919375 (corrected Pgenotye  = 0.004) was associated with major depressive disorder. The haplotype rs4512342-rs6982890 showed association with schizophrenia (P = 0.03 for haplotype "TC" after correction), and haplotype rs4531002-rs11989919 proved to be a shared risk factor for both major depressive disorder ("CC": corrected P = 0.009) and bipolar disorder ("CT": corrected P = 0.003). Our results confirmed that NRG1 was a shared common susceptibility gene for major mental disorders in Han Chinese population.

  13. Asthma and endocrine disorders: shared mechanisms and genetic pleiotropy.

    Science.gov (United States)

    Tesse, Riccardina; Schieck, Maximilian; Kabesch, Michael

    2011-02-20

    Asthma is a common inflammatory disease for which the cause is not yet known. Studies of the epidemiology and natural history of childhood asthma into adulthood demonstrate a change in gender prevalence with age. Hormones and inflammation may interact in asthma pathogenesis and determine its course. The same may be true for some endocrine disorders, including diabetes and obesity. Obesity plays a major role in the development of the metabolic syndrome and has been identified as an important risk factor for chronic diseases such as type 2 diabetes mellitus. The prevalence of asthma has paralleled the rise in obesity, suggesting that shared environmental factors could affect both conditions. In addition, endocrine diseases and asthma may share common genetic determinants. In the first part of this review we assess endocrine influences on asthma and overlaps between endocrine disorders and asthma while in the second part we explore the potential benefit of comparative genetic analyses between asthma and endocrine diseases.

  14. The epidemiology of eating disorders: genetic, environmental, and societal factors

    OpenAIRE

    Mitchison D; Hay PJ

    2014-01-01

    Deborah Mitchison,1 Phillipa J Hay2,3 1School of Medicine, University of Western Sydney, Sydney, NSW, Australia; 2Centre for Health Research, School of Medicine, University of Western Sydney, Sydney, NSW, Australia; 3School of Medicine, James Cook University, Townsville City, QLD, Australia Background: The aim of this review was to summarize the literature to date regarding the sociodemographic, environmental, and genetic correlates of eating disorders (EDs) in adults. Method: A keyword sear...

  15. Parkinsonism, movement disorders and genetics in frontotemporal dementia.

    Science.gov (United States)

    Baizabal-Carvallo, José Fidel; Jankovic, Joseph

    2016-03-01

    Frontotemporal dementia (FTD) refers to a group of clinically and genetically heterogeneous neurodegenerative disorders that are a common cause of adult-onset behavioural and cognitive impairment. FTD often presents in combination with various hyperkinetic or hypokinetic movement disorders, and evidence suggests that various genetic mutations underlie these different presentations. Here, we review the known syndromatic-genetic correlations in FTD. Although no direct genotype-phenotype correlations have been identified, mutations in multiple genes have been associated with various presentations. Mutations in the genes that encode microtubule-associated protein tau (MAPT) and progranulin (PGRN) can manifest as symmetrical parkinsonism, including the phenotypes of Richardson syndrome and corticobasal syndrome (CBS). Expansions in the C9orf72 gene are most frequently associated with familial FTD, typically combined with motor neuron disease, but other manifestations, such as symmetrical parkinsonism, CBS and multiple system atrophy-like presentations, have been described in patients with these mutations. Less common gene mutations, such as those in TARDBP, CHMP2B, VCP, FUS and TREM2, can also present as atypical parkinsonism. The most common hyperkinetic movement disorders in FTD are motor and vocal stereotypies, which have been observed in up to 78% of patients with autopsy-proven FTD. Other hyperkinetic movements, such as chorea, orofacial dyskinesias, myoclonus and dystonia, are also observed in some patients with FTD.

  16. Famous people and genetic disorders: from monarchs to geniuses--a portrait of their genetic illnesses.

    Science.gov (United States)

    Ho, Nicola C; Park, Susan S; Maragh, Kevin D; Gutter, Emily M

    2003-04-15

    Famous people with genetic disorders have always been a subject of interest because such news feeds the curiosity the public has for celebrities. It gives further insight into their lives and provides a medical basis for any unexplained or idiosyncratic feature or behavior they exhibit. It draws admiration from society of those who excel in their specialized fields despite the impositions of their genetic illnesses and also elicits sympathy even in the most casual observer. Such news certainly catapults a rare genetic disorder into the realm of public awareness. We hereby present six famous figures: King George III, Toulouse-Lautrec, Queen Victoria, Nicolo Paganini, Abraham Lincoln, and Vincent van Gogh, all of whom made a huge indelible mark in either the history of politics or that of the arts.

  17. Additive genetic contribution to symptom dimensions in major depressive disorder.

    Science.gov (United States)

    Pearson, Rahel; Palmer, Rohan H C; Brick, Leslie A; McGeary, John E; Knopik, Valerie S; Beevers, Christopher G

    2016-05-01

    Major depressive disorder (MDD) is a phenotypically heterogeneous disorder with a complex genetic architecture. In this study, genomic-relatedness-matrix restricted maximum-likelihood analysis (GREML) was used to investigate the extent to which variance in depression symptoms/symptom dimensions can be explained by variation in common single nucleotide polymorphisms (SNPs) in a sample of individuals with MDD (N = 1,558) who participated in the National Institute of Mental Health Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study. A principal components analysis of items from the Hamilton Rating Scale for Depression (HRSD) obtained prior to treatment revealed 4 depression symptom components: (a) appetite, (b) core depression symptoms (e.g., depressed mood, anhedonia), (c) insomnia, and (d) anxiety. These symptom dimensions were associated with SNP-based heritability (hSNP2) estimates of 30%, 14%, 30%, and 5%, respectively. Results indicated that the genetic contribution of common SNPs to depression symptom dimensions were not uniform. Appetite and insomnia symptoms in MDD had a relatively strong genetic contribution whereas the genetic contribution was relatively small for core depression and anxiety symptoms. While in need of replication, these results suggest that future gene discovery efforts may strongly benefit from parsing depression into its constituent parts. (PsycINFO Database Record

  18. Toward a genetically-informed model of borderline personality disorder.

    Science.gov (United States)

    Livesley, John

    2008-02-01

    This article describes a conceptual framework for describing borderline personality disorder (BPD) based on empirical studies of the phenotypic structure and genetic architecture of personality. The proposed phenotype has 2 components: (1) a description of core self and interpersonal pathology-the defining features of personality disorder-as these features are expressed in the disorder; and (2) a set of traits based on the anxious-dependent or emotional dysregulation factor of the four-factor model of PD. Four kinds of traits are described: emotional (anxiousness, emotional reactivity, emotional intensity, and pessimistic-anhedonia), interpersonal (submissiveness, insecure attachment, social apprehensiveness, and need for approval), cognitive (cognitive dysregulation), and self-harm (behaviors and ideas). Formulation of the phenotype was guided by the conceptualization of personality as a system of interrelated sub-systems. The psychopathology associated with BPD involves most components of the system. The trait structure of the disorder is assumed to reflect the genetic architecture of personality and individual traits are assumed to be based on adaptive mechanisms. It is suggested that borderline traits are organized around the trait of anxiousness and that an important feature of BPD is dysregulation of the threat management system leading to pervasive fearfulness and unstable emotions. The interpersonal traits are assumed to be heritable characteristics that evolved to deal with interpersonal threats that arose as a result of social living. The potential for unstable and conflicted interpersonal relationships that is inherent to the disorder is assumed to result from the interplay between the adaptive structure of personality and psychosocial adversity. The etiology of the disorder is discussed in terms of biological and environmental factors associated with each component of the phenotype.

  19. Evidence for genetic association of RORB with bipolar disorder

    Directory of Open Access Journals (Sweden)

    Mick Eric

    2009-11-01

    Full Text Available Abstract Background Bipolar disorder, particularly in children, is characterized by rapid cycling and switching, making circadian clock genes plausible molecular underpinnings for bipolar disorder. We previously reported work establishing mice lacking the clock gene D-box binding protein (DBP as a stress-reactive genetic animal model of bipolar disorder. Microarray studies revealed that expression of two closely related clock genes, RAR-related orphan receptors alpha (RORA and beta (RORB, was altered in these mice. These retinoid-related receptors are involved in a number of pathways including neurogenesis, stress response, and modulation of circadian rhythms. Here we report association studies between bipolar disorder and single-nucleotide polymorphisms (SNPs in RORA and RORB. Methods We genotyped 355 RORA and RORB SNPs in a pediatric cohort consisting of a family-based sample of 153 trios and an independent, non-overlapping case-control sample of 152 cases and 140 controls. Bipolar disorder in children and adolescents is characterized by increased stress reactivity and frequent episodes of shorter duration; thus our cohort provides a potentially enriched sample for identifying genes involved in cycling and switching. Results We report that four intronic RORB SNPs showed positive associations with the pediatric bipolar phenotype that survived Bonferroni correction for multiple comparisons in the case-control sample. Three RORB haplotype blocks implicating an additional 11 SNPs were also associated with the disease in the case-control sample. However, these significant associations were not replicated in the sample of trios. There was no evidence for association between pediatric bipolar disorder and any RORA SNPs or haplotype blocks after multiple-test correction. In addition, we found no strong evidence for association between the age-at-onset of bipolar disorder with any RORA or RORB SNPs. Conclusion Our findings suggest that clock genes in

  20. Autism spectrum disorders: an updated guide for genetic counseling.

    Science.gov (United States)

    Griesi-Oliveira, Karina; Sertié, Andréa Laurato

    2017-01-01

    Autism spectrum disorder is a complex and genetically heterogeneous disorder, which has hampered the identification of the etiological factors in each patient and, consequently, the genetic counseling for families at risk. However, in the last decades, the remarkable advances in the knowledge of genetic aspects of autism based on genetic and molecular research, as well as the development of new molecular diagnostic tools, have substantially changed this scenario. Nowadays, it is estimated that using the currently available molecular tests, a potential underlying genetic cause can be identified in nearly 25% of cases. Combined with clinical assessment, prenatal history evaluation and investigation of other physiological aspects, an etiological explanation for the disease can be found for approximately 30 to 40% of patients. Therefore, in view of the current knowledge about the genetic architecture of autism spectrum disorder, which has contributed for a more precise genetic counseling, and of the potential benefits that an etiological investigation can bring to patients and families, molecular genetic investigation has become increasingly important. Here, we discuss the current view of the genetic architecture of autism spectrum disorder, and list the main associated genetic alterations, the available molecular tests and the key aspects for the genetic counseling of these families. RESUMO O transtorno do espectro autista é um distúrbio complexo e geneticamente heterogêneo, o que sempre dificultou a identificação de sua etiologia em cada paciente em particular e, por consequência, o aconselhamento genético das famílias. Porém, nas últimas décadas, o acúmulo crescente de conhecimento oriundo das pesquisas sobre os aspectos genéticos e moleculares desta doença, assim como o desenvolvimento de novas ferramentas de diagnóstico molecular, tem mudado este cenário de forma substancial. Atualmente, estima-se que, por meio de testes moleculares, é poss

  1. Imaging genetics in obsessive-compulsive disorder: linking genetic variations to alterations in neuroimaging.

    Science.gov (United States)

    Grünblatt, Edna; Hauser, Tobias U; Walitza, Susanne

    2014-10-01

    Obsessive-compulsive disorder (OCD) occurs in ∼1-3% of the general population, and its often rather early onset causes major disabilities in the everyday lives of patients. Although the heritability of OCD is between 35 and 65%, many linkage, association, and genome-wide association studies have failed to identify single genes that exhibit high effect sizes. Several neuroimaging studies have revealed structural and functional alterations mainly in cortico-striato-thalamic loops. However, there is also marked heterogeneity across studies. These inconsistencies in genetic and neuroimaging studies may be due to the heterogeneous and complex phenotypes of OCD. Under the consideration that genetic variants may also influence neuroimaging in OCD, researchers have started to combine both domains in the field of imaging genetics. Here, we conducted a systematic search of PubMed and Google Scholar literature for articles that address genetic imaging in OCD and related disorders (published through March 2014). We selected 8 publications that describe the combination of imaging genetics with OCD, and extended it with 43 publications of comorbid psychiatric disorders. The most promising findings of this systematic review point to the involvement of variants in genes involved in the serotonergic (5-HTTLPR, HTR2A), dopaminergic (COMT, DAT), and glutamatergic (SLC1A1, SAPAP) systems. However, the field of imaging genetics must be further explored, best through investigations that combine multimodal imaging techniques with genetic profiling, particularly profiling techniques that employ polygenetic approaches, with much larger sample sizes than have been used up to now. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Percept-genetic signs of repression in histrionic personality disorder.

    Science.gov (United States)

    Rubino, I A; Saya, A; Pezzarossa, B

    1992-04-01

    Several types of perceptual distortions of two anxiety-arousing visual stimuli are coded as repression in the Defense Mechanism Test, a tachistoscopic, percept-genetic technique. Given the well-established correspondence between hysteria and repression, the study included a clinical validation of these variants of repression against the diagnosis of histrionic personality disorder. 41 subjects with evidence of this disorder on the Millon Clinical Multiaxial Inventory-II were compared with 41 nonhistrionic controls. Significantly more histrionics were coded for the type of repression in which the threatening figure is transformed into a harmless object (code 1:42), while animal- and statue-repressions, when combined (codes 1:1 and 1:2), were significantly more characteristic of the nonhistrionic group. As an unpredicted finding, significantly more histrionic subjects employed defensive strategies, currently coded as reaction formations (code 4:). Histrionic subjects without concomitant compulsive features were coded more frequently for introaggression (code 6:) compared both with nonhistrionic controls and with histrionic-compulsive subjects. The findings are discussed within the context of the available percept-genetic literature. It is suggested that the Defense Mechanism Test may be further employed to objectify and investigate the defense mechanisms of the DSM-III-R disorders.

  3. Neurocognitive-genetic and neuroimaging-genetic research paradigms in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Kurnianingsih, Yoanna Arlina; Kuswanto, Carissa Nadia; McIntyre, Roger S; Qiu, Anqi; Ho, Beng Choon; Sim, Kang

    2011-11-01

    Studies examining intermediate phenotypes such as neurocognitive and neuroanatomical measures along with susceptibility genes are important for improving our understanding of the neural basis of schizophrenia (SZ) and bipolar disorder (BD). In this paper, we review extant studies involving neurocognitive-genetic and neuroimaging-genetic perspectives and particularly related to catechol-O-methyltransferase (COMT), brain-derived neurotrophic factor (BDNF) and neuregulin-1 (NRG1) genes in SZ and BD. In terms of neurocognitive-genetic investigations, COMT and BDNF are the two most studied candidate genes especially in patients with SZ. Whereas BDNF Met carriers perform worse on verbal working memory, problem solving and visuo-spatial abilities, COMT Met carriers perform better in working memory, attention, executive functioning with evidence of genotype by diagnosis interactions including high-risk individuals. In terms of genetic-structural MRI studies, patients with SZ are found to have reductions in the frontal, temporal, parietal cortices, and limbic regions, which are associated with BDNF, COMT, and NRGI genes. Genetic-functional MRI studies in psychotic disorders are sparse, especially with regard to BD. These neurocognitive and neuroimaging findings are associated with genes which are implicated in functional pathways related to neuronal signaling, inter-neuronal communication and neuroplasticity.

  4. Neuroinformatic Analyses of Common and Distinct Genetic Components Associated with Major Neuropsychiatric Disorders

    OpenAIRE

    Amit eLotan; Michaela eFenckova; Janita eBralten; Aet eAlttoa; Luanna eDixson; Williams, Robert W.; Monique evan der Voet

    2014-01-01

    Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders—attention deficit hyperactivity disorder, anxiety disorders, autistic spectrum disorders, bipolar disorder, major depressive disorder and schizophrenia. We curated a well-vetted list of genes based o...

  5. Ethical and legal issues arising from complex genetic disorders. DOE final report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Lori

    2002-10-09

    The project analyzed the challenges raised by complex genetic disorders in genetic counselling, for clinical practice, for public health, for quality assurance, and for protection against discrimination. The research found that, in some settings, solutions created in the context of single gene disorders are more difficult to apply to complex disorders. In other settings, the single gene solutions actually backfired and created additional problems when applied to complex genetic disorders. The literature of five common, complex genetic disorders--Alzheimer's, asthma, coronary heart disease, diabetes, and psychiatric illnesses--was evaluated in depth.

  6. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs.

    Science.gov (United States)

    Lee, S Hong; Ripke, Stephan; Neale, Benjamin M; Faraone, Stephen V; Purcell, Shaun M; Perlis, Roy H; Mowry, Bryan J; Thapar, Anita; Goddard, Michael E; Witte, John S; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E; Asherson, Philip; Azevedo, Maria H; Backlund, Lena; Badner, Judith A; Bailey, Anthony J; Banaschewski, Tobias; Barchas, Jack D; Barnes, Michael R; Barrett, Thomas B; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayés, Mònica; Bellivier, Frank; Bergen, Sarah E; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B; Black, Donald W; Blackwood, Douglas H R; Bloss, Cinnamon S; Boehnke, Michael; Boomsma, Dorret I; Breen, Gerome; Breuer, René; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G; Buitelaar, Jan K; Bunney, William E; Buxbaum, Joseph D; Byerley, William F; Byrne, Enda M; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Cloninger, C Robert; Collier, David A; Cook, Edwin H; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H; Craig, David W; Craig, Ian W; Crosbie, Jennifer; Cuccaro, Michael L; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J; Doyle, Alysa E; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P; Edenberg, Howard J; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E; Ferrier, I Nicol; Flickinger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B; Freitag, Christine M; Friedl, Marion; Frisén, Louise; Gallagher, Louise; Gejman, Pablo V; Georgieva, Lyudmila; Gershon, Elliot S; Geschwind, Daniel H; Giegling, Ina; Gill, Michael; Gordon, Scott D; Gordon-Smith, Katherine; Green, Elaine K; Greenwood, Tiffany A; Grice, Dorothy E; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P; Hamshere, Marian L; Hansen, Thomas F; Hartmann, Annette M; Hautzinger, Martin; Heath, Andrew C; Henders, Anjali K; Herms, Stefan; Hickie, Ian B; Hipolito, Maria; Hoefels, Susanne; Holmans, Peter A; Holsboer, Florian; Hoogendijk, Witte J; Hottenga, Jouke-Jan; Hultman, Christina M; Hus, Vanessa; Ingason, Andrés; Ising, Marcus; Jamain, Stéphane; Jones, Edward G; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kähler, Anna K; Kahn, René S; Kandaswamy, Radhika; Keller, Matthew C; Kennedy, James L; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K; Klauck, Sabine M; Klei, Lambertus; Knowles, James A; Kohli, Martin A; Koller, Daniel L; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landén, Mikael; Långström, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B; Leboyer, Marion; Ledbetter, David H; Lee, Phil H; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F; Lewis, Cathryn M; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A; Lin, Dan-Yu; Linszen, Don H; Liu, Chunyu; Lohoff, Falk W; Loo, Sandra K; Lord, Catherine; Lowe, Jennifer K; Lucae, Susanne; MacIntyre, Donald J; Madden, Pamela A F; Maestrini, Elena; Magnusson, Patrik K E; Mahon, Pamela B; Maier, Wolfgang; Malhotra, Anil K; Mane, Shrikant M; Martin, Christa L; Martin, Nicholas G; Mattheisen, Manuel; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A; McGhee, Kevin A; McGough, James J; McGrath, Patrick J; McGuffin, Peter; McInnis, Melvin G; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W; McMahon, Francis J; McMahon, William M; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P; Montgomery, Grant W; Moran, Jennifer L; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W; Morrow, Eric M; Moskvina, Valentina; Muglia, Pierandrea; Mühleisen, Thomas W; Muir, Walter J; Müller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M; Myin-Germeys, Inez; Neale, Michael C; Nelson, Stan F; Nievergelt, Caroline M; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A; Nöthen, Markus M; Nurnberger, John I; Nwulia, Evaristus A; Nyholt, Dale R; O'Dushlaine, Colm; Oades, Robert D; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A; Osby, Urban; Owen, Michael J; Palotie, Aarno; Parr, Jeremy R; Paterson, Andrew D; Pato, Carlos N; Pato, Michele T; Penninx, Brenda W; Pergadia, Michele L; Pericak-Vance, Margaret A; Pickard, Benjamin S; Pimm, Jonathan; Piven, Joseph; Posthuma, Danielle; Potash, James B; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J; Quinn, Emma M; Ramos-Quiroga, Josep Antoni; Rasmussen, Henrik B; Raychaudhuri, Soumya; Rehnström, Karola; Reif, Andreas; Ribasés, Marta; Rice, John P; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rossin, Lizzy; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R; Sanders, Stephan J; Santangelo, Susan L; Sergeant, Joseph A; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F; Scheftner, William A; Schellenberg, Gerard D; Scherer, Stephen W; Schork, Nicholas J; Schulze, Thomas G; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J; Shi, Jianxin; Shilling, Paul D; Shyn, Stanley I; Silverman, Jeremy M; Slager, Susan L; Smalley, Susan L; Smit, Johannes H; Smith, Erin N; Sonuga-Barke, Edmund J S; St Clair, David; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S; Strohmaier, Jana; Stroup, T Scott; Sutcliffe, James S; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C; Todorov, Alexandre A; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J C G; Van Grootheest, Gerard; Van Os, Jim; Vicente, Astrid M; Vieland, Veronica J; Vincent, John B; Visscher, Peter M; Walsh, Christopher A; Wassink, Thomas H; Watson, Stanley J; Weissman, Myrna M; Werge, Thomas; Wienker, Thomas F; Wijsman, Ellen M; Willemsen, Gonneke; Williams, Nigel; Willsey, A Jeremy; Witt, Stephanie H; Xu, Wei; Young, Allan H; Yu, Timothy W; Zammit, Stanley; Zandi, Peter P; Zhang, Peng; Zitman, Frans G; Zöllner, Sebastian; Devlin, Bernie; Kelsoe, John R; Sklar, Pamela; Daly, Mark J; O'Donovan, Michael C; Craddock, Nicholas; Sullivan, Patrick F; Smoller, Jordan W; Kendler, Kenneth S; Wray, Naomi R

    2013-09-01

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD and major depressive disorder (0.32 ± 0.07 s.e.), low between schizophrenia and ASD (0.16 ± 0.06 s.e.) and non-significant for other pairs of disorders as well as between psychiatric disorders and the negative control of Crohn's disease. This empirical evidence of shared genetic etiology for psychiatric disorders can inform nosology and encourages the investigation of common pathophysiologies for related disorders.

  7. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  8. Obsessive-compulsive disorder: an integrative genetic and neurobiological perspective.

    Science.gov (United States)

    Pauls, David L; Abramovitch, Amitai; Rauch, Scott L; Geller, Daniel A

    2014-06-01

    Obsessive-compulsive disorder (OCD) is characterized by repetitive thoughts and behaviours that are experienced as unwanted. Family and twin studies have demonstrated that OCD is a multifactorial familial condition that involves both polygenic and environmental risk factors. Neuroimaging studies have implicated the cortico-striato-thalamo-cortical circuit in the pathophysiology of the disorder, which is supported by the observation of specific neuropsychological impairments in patients with OCD, mainly in executive functions. Genetic studies indicate that genes affecting the serotonergic, dopaminergic and glutamatergic systems, and the interaction between them, play a crucial part in the functioning of this circuit. Environmental factors such as adverse perinatal events, psychological trauma and neurological trauma may modify the expression of risk genes and, hence, trigger the manifestation of obsessive-compulsive behaviours.

  9. Neuromuscular disorders: genes, genetic counseling and therapeutic trials

    Directory of Open Access Journals (Sweden)

    Mayana Zatz

    Full Text Available Abstract Neuromuscular disorders (NMD are a heterogeneous group of genetic conditions, with autosomal dominant, recessive, or X-linked inheritance. They are characterized by progressive muscle degeneration and weakness. Here, we are presenting our major contributions to the field during the past 30 years. We have mapped and identified several novel genes responsible for NMD. Genotype-phenotype correlations studies enhanced our comprehension on the effect of gene mutations on related proteins and their impact on clinical findings. The search for modifier factors allowed the identification of a novel "protective"; variant which may have important implication on therapeutic developments. Molecular diagnosis was introduced in the 1980s and new technologies have been incorporated since then. Next generation sequencing greatly improved our capacity to identify disease-causing mutations with important benefits for research and prevention through genetic counseling of patients' families. Stem cells researches, from and for patients, have been used as tools to study human genetic diseases mechanisms and for therapies development. The clinical effect of preclinical trials in mice and canine models for muscular dystrophies are under investigation. Finally, the integration of our researches and genetic services with our post-graduation program resulted in a significant output of new geneticists, spreading out this expertise to our large country.

  10. Hutchinson-Gilford Progeria Syndrome: A Rare Genetic Disorder

    Science.gov (United States)

    Panigrahi, Rajat G.; Panigrahi, Antarmayee; Vijayakumar, Poornima; Choudhury, Priyadarshini; Bhuyan, Sanat K.; Bhuyan, Ruchi; Maragathavalli, G.; Pati, Abhishek Ranjan

    2013-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is a rare pediatric genetic syndrome with incidence of one per eight million live births. The disorder is characterised by premature aging, generally leading to death at approximately 13.4 years of age. This is a follow-up study of a 9-year-old male with clinical and radiographic features highly suggestive of HGPS and presented here with description of differential diagnosis and dental consideration. This is the first case report of HGPS which showed pectus carinatum structure of chest. PMID:24288630

  11. Hutchinson-Gilford Progeria Syndrome: A Rare Genetic Disorder

    Directory of Open Access Journals (Sweden)

    Rajat G. Panigrahi

    2013-01-01

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS is a rare pediatric genetic syndrome with incidence of one per eight million live births. The disorder is characterised by premature aging, generally leading to death at approximately 13.4 years of age. This is a follow-up study of a 9-year-old male with clinical and radiographic features highly suggestive of HGPS and presented here with description of differential diagnosis and dental consideration. This is the first case report of HGPS which showed pectus carinatum structure of chest.

  12. Nanotechnology Based Treatments for Neurological Disorders from Genetics Perspective

    Directory of Open Access Journals (Sweden)

    Nicholas S. Kurek

    2013-02-01

    Full Text Available Nanotechology involves the application, analysis and manipulation of nanomaterials. These materials have unique and medically useful properties due to their nanoscale parameters. Nanotechnology based treatments and diagnostics might eventually bring great relief to people suffering from neurological disorders including autism spectrum disorders, Alzheimer’s disease and Parkinson’s disorders. A large variety of nonmaterials such as viruses, carbon nanotubes, gold and silica nanoparticles, nanoshells, quantum dots, genetic material and proteins as well as hordes of other forms of nanotechnology have been researched in order to determine their potential in enhancing disease treatments and diagnostics. Nanotechnology has shown countless applications and might eventually be used in every biotech/health industry. Nevertheless, many nanomaterials may pose some safety risks and whether their benefits overweigh the risk is still being debated. Once the proper ethical and safety protocols are established and enough research is completed, nanotechnology is expected to benefit the mankind enormously. In this article, we will discuss and analyze many ways in which, nanotechnology based treatments and diagnostics will be used to help people with neurological disorders through the methods that we currently have at our disposal. [Archives Medical Review Journal 2013; 22(1.000: 12-32

  13. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    NARCIS (Netherlands)

    Lee, S. Hong; Ripke, Stephan; Neale, Benjamin M.; Faraone, Stephen V.; Purcell, Shaun M.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; Blackwood, Douglas H. R.; Bloss, Cinnamon S.; Boehnke, Michael; Boomsma, Dorret I.; Breen, Gerome; Breuer, Rene; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G.; Buitelaar, Jan K.; Bunney, William E.; Buxbaum, Joseph D.; Byerley, William F.; Byrne, Enda M.; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M.; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Cloninger, C. Robert; Collier, David A.; Cook, Edwin H.; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H.; Craig, David W.; Craig, Ian W.; Crosbie, Jennifer; Cuccaro, Michael L.; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J.; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J.; Doyle, Alysa E.; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P.; Edenberg, Howard J.; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E.; Ferrier, I. Nicol; Flickinger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B.; Freitag, Christine M.; Friedl, Marion; Frisen, Louise; Gallagher, Louise; Gejman, Pablo V.; Georgieva, Lyudmila; Gershon, Elliot S.; Geschwind, Daniel H.; Giegling, Ina; Gill, Michael; Gordon, Scott D.; Gordon-Smith, Katherine; Green, Elaine K.; Greenwood, Tiffany A.; Grice, Dorothy E.; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L.; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P.; Hamshere, Marian L.; Hansen, Thomas F.; Hartmann, Annette M.; Hautzinger, Martin; Heath, Andrew C.; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hipolito, Maria; Hoefels, Susanne; Holmans, Peter A.; Holsboer, Florian; Hoogendijk, Witte J.; Hottenga, Jouke-Jan; Hultman, Christina M.; Hus, Vanessa; Ingason, Andres; Ising, Marcus; Jamain, Stephane; Jones, Edward G.; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kaehler, Anna K.; Kahn, Rene S.; Kandaswamy, Radhika; Keller, Matthew C.; Kennedy, James L.; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K.; Klauck, Sabine M.; Klei, Lambertus; Knowles, James A.; Kohli, Martin A.; Koller, Daniel L.; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landen, Mikael; Langstrom, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B.; Leboyer, Marion; Ledbetter, David H.; Lee, Phil H.; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F.; Lewis, Cathryn M.; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A.; Lin, Dan-Yu; Linszen, Don H.; Liu, Chunyu; Lohoff, Falk W.; Loo, Sandra K.; Lord, Catherine; Lowe, Jennifer K.; Lucae, Susanne; MacIntyre, Donald J.; Madden, Pamela A. F.; Maestrini, Elena; Magnusson, Patrik K. E.; Mahon, Pamela B.; Maier, Wolfgang; Malhotra, Anil K.; Mane, Shrikant M.; Martin, Christa L.; Martin, Nicholas G.; Mattheisen, Manuel; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A.; McGhee, Kevin A.; McGough, James J.; McGrath, Patrick J.; McGuffin, Peter; McInnis, Melvin G.; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W.; McMahon, Francis J.; McMahon, William M.; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E.; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M.; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P.; Montgomery, Grant W.; Moran, Jennifer L.; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W.; Morrow, Eric M.; Moskvina, Valentina; Muglia, Pierandrea; Muehleisen, Thomas W.; Muir, Walter J.; Mueller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M.; Myin-Germeys, Inez; Neale, Michael C.; Nelson, Stan F.; Nievergelt, Caroline M.; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A.; Noethen, Markus M.; Nurnberger, John I.; Nwulia, Evaristus A.; Nyholt, Dale R.; O'Dushlaine, Colm; Oades, Robert D.; Olincy, Ann; Oliveira, Guiomar; Olsen, Line; Ophoff, Roel A.; Osby, Urban; Owen, Michael J.; Palotie, Aarno; Parr, Jeremy R.; Paterson, Andrew D.; Pato, Carlos N.; Pato, Michele T.; Penninx, Brenda W.; Pergadia, Michele L.; Pericak-Vance, Margaret A.; Pickard, Benjamin S.; Pimm, Jonathan; Piven, Joseph; Posthuma, Danielle; Potash, James B.; Poustka, Fritz; Propping, Peter; Puri, Vinay; Quested, Digby J.; Quinn, Emma M.; Antoni Ramos-Quiroga, Josep; Rasmussen, Henrik B.; Raychaudhuri, Soumya; Rehnstroem, Karola; Reif, Andreas; Ribases, Marta; Rice, John P.; Rietschel, Marcella; Roeder, Kathryn; Roeyers, Herbert; Rossin, Lizzy; Rothenberger, Aribert; Rouleau, Guy; Ruderfer, Douglas; Rujescu, Dan; Sanders, Alan R.; Sanders, Stephan J.; Santangelo, Susan L.; Sergeant, Joseph A.; Schachar, Russell; Schalling, Martin; Schatzberg, Alan F.; Scheftner, William A.; Schellenberg, Gerard D.; Scherer, Stephen W.; Schork, Nicholas J.; Schulze, Thomas G.; Schumacher, Johannes; Schwarz, Markus; Scolnick, Edward; Scott, Laura J.; Shi, Jianxin; Shilling, Paul D.; Shyn, Stanley I.; Silverman, Jeremy M.; Slager, Susan L.; Smalley, Susan L.; Smit, Johannes H.; Smith, Erin N.; Sonuga-Barke, Edmund J. S.; St Clair, David; State, Matthew; Steffens, Michael; Steinhausen, Hans-Christoph; Strauss, John S.; Strohmaier, Jana; Stroup, T. Scott; Sutcliffe, James S.; Szatmari, Peter; Szelinger, Szabocls; Thirumalai, Srinivasa; Thompson, Robert C.; Todorov, Alexandre A.; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J. C. G.; Van Grootheest, Gerard; Van Os, Jim; Vicente, Astrid M.; Vieland, Veronica J.; Vincent, John B.; Visscher, Peter M.; Walsh, Christopher A.; Wassink, Thomas H.; Watson, Stanley J.; Weissman, Myrna M.; Werge, Thomas; Wienker, Thomas F.; Wijsman, Ellen M.; Willemsen, Gonneke; Williams, Nigel; Willsey, A. Jeremy; Witt, Stephanie H.; Xu, Wei; Young, Allan H.; Yu, Timothy W.; Zammit, Stanley; Zandi, Peter P.; Zhang, Peng; Zitman, Frans G.; Zoellner, Sebastian; Devlin, Bernie; Kelsoe, John R.; Sklar, Pamela; Daly, Mark J.; O'Donovan, Michael C.; Craddock, Nicholas; Sullivan, Patrick F.; Smoller, Jordan W.; Kendler, Kenneth S.; Wray, Naomi R.

    2013-01-01

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases

  14. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    NARCIS (Netherlands)

    Lee, S. Hong; Ripke, Stephan; Neale, Benjamin M.; Faraone, Stephen V.; Purcell, Shaun M.; Perlis, Roy H.; Mowry, Bryan J.; Thapar, Anita; Goddard, Michael E.; Witte, John S.; Absher, Devin; Agartz, Ingrid; Akil, Huda; Amin, Farooq; Andreassen, Ole A.; Anjorin, Adebayo; Anney, Richard; Anttila, Verneri; Arking, Dan E.; Asherson, Philip; Azevedo, Maria H.; Backlund, Lena; Badner, Judith A.; Bailey, Anthony J.; Banaschewski, Tobias; Barchas, Jack D.; Barnes, Michael R.; Barrett, Thomas B.; Bass, Nicholas; Battaglia, Agatino; Bauer, Michael; Bayes, Monica; Bellivier, Frank; Bergen, Sarah E.; Berrettini, Wade; Betancur, Catalina; Bettecken, Thomas; Biederman, Joseph; Binder, Elisabeth B.; Black, Donald W.; Blackwood, Douglas H. R.; Bloss, Cinnamon S.; Boehnke, Michael; Boomsma, Dorret I.; Breen, Gerome; Breuer, Rene; Bruggeman, Richard; Cormican, Paul; Buccola, Nancy G.; Buitelaar, Jan K.; Bunney, William E.; Buxbaum, Joseph D.; Byerley, William F.; Byrne, Enda M.; Caesar, Sian; Cahn, Wiepke; Cantor, Rita M.; Casas, Miguel; Chakravarti, Aravinda; Chambert, Kimberly; Choudhury, Khalid; Cichon, Sven; Cloninger, C. Robert; Collier, David A.; Cook, Edwin H.; Coon, Hilary; Cormand, Bru; Corvin, Aiden; Coryell, William H.; Craig, David W.; Craig, Ian W.; Crosbie, Jennifer; Cuccaro, Michael L.; Curtis, David; Czamara, Darina; Datta, Susmita; Dawson, Geraldine; Day, Richard; De Geus, Eco J.; Degenhardt, Franziska; Djurovic, Srdjan; Donohoe, Gary J.; Doyle, Alysa E.; Duan, Jubao; Dudbridge, Frank; Duketis, Eftichia; Ebstein, Richard P.; Edenberg, Howard J.; Elia, Josephine; Ennis, Sean; Etain, Bruno; Fanous, Ayman; Farmer, Anne E.; Ferrier, I. Nicol; Flickinger, Matthew; Fombonne, Eric; Foroud, Tatiana; Frank, Josef; Franke, Barbara; Fraser, Christine; Freedman, Robert; Freimer, Nelson B.; Freitag, Christine M.; Friedl, Marion; Frisen, Louise; Gallagher, Louise; Gejman, Pablo V.; Georgieva, Lyudmila; Gershon, Elliot S.; Geschwind, Daniel H.; Giegling, Ina; Gill, Michael; Gordon, Scott D.; Gordon-Smith, Katherine; Green, Elaine K.; Greenwood, Tiffany A.; Grice, Dorothy E.; Gross, Magdalena; Grozeva, Detelina; Guan, Weihua; Gurling, Hugh; De Haan, Lieuwe; Haines, Jonathan L.; Hakonarson, Hakon; Hallmayer, Joachim; Hamilton, Steven P.; Hamshere, Marian L.; Hansen, Thomas F.; Hartmann, Annette M.; Hautzinger, Martin; Heath, Andrew C.; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hipolito, Maria; Hoefels, Susanne; Holmans, Peter A.; Holsboer, Florian; Hoogendijk, Witte J.; Hottenga, Jouke-Jan; Hultman, Christina M.; Hus, Vanessa; Ingason, Andres; Ising, Marcus; Jamain, Stephane; Jones, Edward G.; Jones, Ian; Jones, Lisa; Tzeng, Jung-Ying; Kaehler, Anna K.; Kahn, Rene S.; Kandaswamy, Radhika; Keller, Matthew C.; Kennedy, James L.; Kenny, Elaine; Kent, Lindsey; Kim, Yunjung; Kirov, George K.; Klauck, Sabine M.; Klei, Lambertus; Knowles, James A.; Kohli, Martin A.; Koller, Daniel L.; Konte, Bettina; Korszun, Ania; Krabbendam, Lydia; Krasucki, Robert; Kuntsi, Jonna; Kwan, Phoenix; Landen, Mikael; Langstrom, Niklas; Lathrop, Mark; Lawrence, Jacob; Lawson, William B.; Leboyer, Marion; Ledbetter, David H.; Lee, Phil H.; Lencz, Todd; Lesch, Klaus-Peter; Levinson, Douglas F.; Lewis, Cathryn M.; Li, Jun; Lichtenstein, Paul; Lieberman, Jeffrey A.; Lin, Dan-Yu; Linszen, Don H.; Liu, Chunyu; Lohoff, Falk W.; Loo, Sandra K.; Lord, Catherine; Lowe, Jennifer K.; Lucae, Susanne; MacIntyre, Donald J.; Madden, Pamela A. F.; Maestrini, Elena; Magnusson, Patrik K. E.; Mahon, Pamela B.; Maier, Wolfgang; Malhotra, Anil K.; Mane, Shrikant M.; Martin, Christa L.; Martin, Nicholas G.; Mattheisen, Manuel; Matthews, Keith; Mattingsdal, Morten; McCarroll, Steven A.; McGhee, Kevin A.; McGough, James J.; McGrath, Patrick J.; McGuffin, Peter; McInnis, Melvin G.; McIntosh, Andrew; McKinney, Rebecca; McLean, Alan W.; McMahon, Francis J.; McMahon, William M.; McQuillin, Andrew; Medeiros, Helena; Medland, Sarah E.; Meier, Sandra; Melle, Ingrid; Meng, Fan; Meyer, Jobst; Middeldorp, Christel M.; Middleton, Lefkos; Milanova, Vihra; Miranda, Ana; Monaco, Anthony P.; Montgomery, Grant W.; Moran, Jennifer L.; Moreno-De-Luca, Daniel; Morken, Gunnar; Morris, Derek W.; Morrow, Eric M.; Moskvina, Valentina; Muglia, Pierandrea; Muehleisen, Thomas W.; Muir, Walter J.; Mueller-Myhsok, Bertram; Murtha, Michael; Myers, Richard M.; Myin-Germeys, Inez; Neale, Michael C.; Nelson, Stan F.; Nievergelt, Caroline M.; Nikolov, Ivan; Nimgaonkar, Vishwajit; Nolen, Willem A.; Noethen, Markus M.; Nurnberger, John I.; Nwulia, Evaristus A.; Nyholt, Dale R.; O'Dushlaine, Colm; Oades, Robert D.

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases

  15. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    DEFF Research Database (Denmark)

    Lee, S Hong; Ripke, Stephan; Neale, Benjamin M

    2013-01-01

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cas...

  16. Down syndrome--genetic and nutritional aspects of accompanying disorders.

    Science.gov (United States)

    Mazurek, Dominika; Wyka, Joanna

    2015-01-01

    Down syndrome (DS) is one of the more commonly occurring genetic disorders, where mental retardation is combined with nutritional diseases. It is caused by having a third copy of chromosome 21, and there exist 3 forms; Simple Trisomy 21, Translocation Trisomy and Mosaic Trisomy. Symptoms include intellectual disability/mental retardation, early onset of Alzheimer's disease and the appearance of various phenotypic features such as narrow slanted eyes, flat nose and short stature. In addition, there are other health problems throughout the body, consisting in part of cardiac defects and thyroid function abnormalities along with nutritional disorders (ie. overweight, obesity, hypercholesterolemia and deficiencies of vitamins and minerals). Those suffering DS have widespread body frame abnormalities and impaired brain development and function; the latter leading to impaired intellectual development. Many studies indicate excessive or deficient nutrient uptakes associated with making inappropriate foodstuff choices, food intolerance, (eg. celiac disease) or malabsorption. DS persons with overweight or obesity are linked with a slow metabolic rate, abnormal blood leptin concentrations and exhibit low levels of physical activity. Vitamin B group deficiencies and abnormal blood homocysteine levels decrease the rate of intellectual development in DS cases. Zinc deficiencies result in short stature, thyroid function disorders and an increased appetite caused by excessive supplementation. Scientific advances in the research and diagnosis of DS, as well as preventing any associated conditions, have significantly increased life expectancies of those with this genetic disorder. Early dietary interventions by parents or guardians of DS children afford an opportunity for decreasing the risk or delaying some of the DS associated conditions from appearing, thus beneficially impacting on their quality of life.

  17. Genetics of Parkinson disease and other movement disorders.

    Science.gov (United States)

    Kumar, Kishore R; Lohmann, Katja; Klein, Christine

    2012-08-01

    We will review the recent advances in the genetics of Parkinson disease and other movement disorders such as dystonia, essential tremor and restless legs syndrome (RLS). Mutations in VPS35 were identified as a novel cause of autosomal dominant Parkinson disease using exome sequencing. Next generation sequencing (NGS) was also used to identify PRRT2 mutations as a cause of paroxysmal kinesigenic dyskinesia (DYT10). Using a different technique, that is linkage analysis, mutations in EIF4G1 were implicated as a cause of Parkinson disease and mutations in SLC20A2 as a cause of familial idiopathic basal ganglia calcification. Furthermore, genome-wide association studies (GWAS) and meta-analyses have confirmed known risk genes and identified new risk loci in Parkinson disease, RLS and essential tremor. New models to study genetic forms of Parkinson disease, such as stem cell-derived neurons, have helped to elucidate disease-relevant molecular pathways, such as the molecular link between Gaucher disease and Parkinson disease. New genes have been implicated in Parkinson disease and other movement disorders through the use of NGS. The identification of risk variants has been facilitated by GWAS and meta-analyses. Furthermore, new models are being developed to study the molecular mechanisms involved in the pathogenesis of these diseases.

  18. Molecular genetics and animal models in autistic disorder.

    Science.gov (United States)

    Andres, Christian

    2002-01-01

    Autistic disorder is a behavioural syndrome beginning before the age of 3 years and lasting over the whole lifetime. It is characterised by impaired communication, impaired social interactions, and repetitive interests and behaviour. The prevalence is about 7/10,000 taking a restrictive definition and more than 1/500 with a broader definition, including all the pervasive developmental disorders. The importance of genetic factors has been highlighted by epidemiological studies showing that autistic disorder is one of the most genetic neuropsychiatric diseases. The relative risk of first relatives is about 100-fold higher than the risk in the normal population and the concordance in monozygotic twin is about 60%. Different strategies have been applied on the track of susceptibility genes. The systematic search of linked loci led to contradictory results, in part due to the heterogeneity of the clinical definitions, to the differences in the DNA markers, and to the different methods of analysis used. An oversimplification of the inferred model is probably also cause of our disappointment. More work is necessary to give a clearer picture. One region emerges more frequently: the long arm of chromosome 7. Several candidate genes have been studied and some gave indications of association: the Reelin gene and the Wnt2 gene. Cytogenetical abnormalities are frequent at 15q11-13, the region of the Angelman and Prader-Willi syndrome. Imprinting plays an important role in this region, no candidate gene has been identified in autism. Biochemical abnormalities have been found in the serotonin system. Association and linkage studies gave no consistent results with some serotonin receptors and in the transporter, although it seems interesting to go further in the biochemical characterisation of the serotonin transporter activity, particularly in platelets, easily accessible. Two monogenic diseases have been associated with autistic disorder: tuberous sclerosis and fragile X. A

  19. A genetic deconstruction of neurocognitive traits in schizophrenia and bipolar disorder

    NARCIS (Netherlands)

    C.P.D. Fernandes (Carla P.); A. Christoforou (Andrea); S. Giddaluru (Sudheer); K.M. Ersland (Kari); S. Djurovic (Srdjan); M. Mattheisen (Manuel); A.J. Lundervold (Astri); I. Reinvang (Ivar); M.M. Nöthen (Markus); M. Rietschel (Marcella); R.A. Ophoff (Roel); A. Hofman (Albert); A.G. Uitterlinden (André); T.M. Werge (Thomas); S. Cichon (Sven); T. Espeseth (Thomas); O.A. Andreassen (Ole); V.M. Steen (Vidar); S. Le Hellard (Stephanie)

    2013-01-01

    textabstractBackground: Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function i

  20. Endosomal system genetics and autism spectrum disorders: A literature review.

    Science.gov (United States)

    Patak, Jameson; Zhang-James, Yanli; Faraone, Stephen V

    2016-06-01

    Autism spectrum disorders (ASDs) are a group of debilitating neurodevelopmental disorders thought to have genetic etiology, due to their high heritability. The endosomal system has become increasingly implicated in ASD pathophysiology. In an attempt to summarize the association between endosomal system genes and ASDs we performed a systematic review of the literature. We searched PubMed for relevant articles. Simons Foundation Autism Research Initiative (SFARI) gene database was used to exclude articles regarding genes with less than minimal evidence for association with ASDs. Our search retained 55 articles reviewed in two categories: genes that regulate and genes that are regulated by the endosomal system. Our review shows that the endosomal system is a novel pathway implicated in ASDs as well as other neuropsychiatric disorders. It plays a central role in aspects of cellular physiology on which neurons and glial cells are particularly reliant, due to their unique metabolic and functional demands. The system shows potential for biomarkers and pharmacological intervention and thus more research into this pathway is warranted.

  1. Genetics of neurocutaneous disorders: basic principles of inheritance as they apply to neurocutaneous syndromes.

    Science.gov (United States)

    Dies, Kira A; Sahin, Mustafa

    2015-01-01

    Neurocutaneous disorders vary widely in clinical presentation as well as genetic cause and inheritance pattern. Recent advancements in genetic research have identified many of the causal genes for neurocutaneous disorders, allowing families to receive genetic testing and genetic counseling to better understand carrier risks, recurrence risks for future generations, and reproductive options such as prenatal testing and preimplantation diagnosis. Examples of specific neurocutaneous disorders are utilized to illustrate the various inheritance patterns seen in this heterogeneous group of disorders, including autosomal dominant, autosomal recessive, X-linked dominant, X-linked recessive, de novo, and somatic and germline mosaicism. © 2015 Elsevier B.V. All rights reserved.

  2. The Neurobiology and Genetics of Impulse Control Disorders: Relationships to Drug Addictions

    Science.gov (United States)

    Brewer, Judson A.; Potenza, Marc N.

    2008-01-01

    Impulse control disorders (ICDs), including pathological gambling, trichotillomania, kleptomania and others, have been conceptualized to lie along an impulsive-compulsive spectrum. Recent data have suggested that these disorders may be considered addictions. Here we review the genetic and neuropathological bases of the impulse control disorders and consider the disorders within these non-mutually exclusive frameworks. PMID:17719013

  3. Response to lithium in bipolar disorder: clinical and genetic findings.

    Science.gov (United States)

    Rybakowski, Janusz K

    2014-06-18

    The use of lithium is a cornerstone for preventing recurrences in bipolar disorder (BD). The response of patients with bipolar disorder to lithium has different levels of magnitude. About one-third of lithium-treated patients are excellent lithium responders (ELR), showing total prevention of the episodes. A number of clinical characteristics were delineated in patients with favorable response to lithium as regards to clinical course, family history of mood disorders, and psychiatric comorbidity. We have also demonstrated that temperamental features of hypomania (a hyperthymic temperament) and a lack of cognitive disorganization predict the best results of lithium prophylaxis. A degree of prevention against manic and depressive episodes has been regarded as an endophenotype for pharmacogenetic studies. The majority of data have been gathered from so-called "candidate" gene studies. The candidates were selected on the basis of neurobiology of bipolar disorder and mechanisms of lithium action including, among others, neurotransmission, intracellular signaling, neuroprotection or circadian rhythms. We demonstrated that response to lithium has been connected with the genotype of BDNF gene and serum BDNF levels and have shown that ELR have normal cognitive functions and serum BDNF levels, even after long-term duration of the illness. A number of genome-wide association studies (GWAS) of BD have been also performed in recent years, some of which also focused on lithium response. The Consortium on Lithium Genetics (ConLiGen) has established the large sample for performing the genome-wide association study (GWAS) of lithium response in BD, and the first results have already been published.

  4. GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Naveen S. Khanzada

    2017-02-01

    Full Text Available Bipolar disorder (BPD and schizophrenia (SCH show similar neuropsychiatric behavioral disturbances, including impaired social interaction and communication, seen in autism spectrum disorder (ASD with multiple overlapping genetic and environmental influences implicated in risk and course of illness. GeneAnalytics software was used for pathway analysis and genetic profiling to characterize common susceptibility genes obtained from published lists for ASD (792 genes, BPD (290 genes and SCH (560 genes. Rank scores were derived from the number and nature of overlapping genes, gene-disease association, tissue specificity and gene functions subdivided into categories (e.g., diseases, tissues or functional pathways. Twenty-three genes were common to all three disorders and mapped to nine biological Superpathways including Circadian entrainment (10 genes, score = 37.0, Amphetamine addiction (five genes, score = 24.2, and Sudden infant death syndrome (six genes, score = 24.1. Brain tissues included the medulla oblongata (11 genes, score = 2.1, thalamus (10 genes, score = 2.0 and hypothalamus (nine genes, score = 2.0 with six common genes (BDNF, DRD2, CHRNA7, HTR2A, SLC6A3, and TPH2. Overlapping genes impacted dopamine and serotonin homeostasis and signal transduction pathways, impacting mood, behavior and physical activity level. Converging effects on pathways governing circadian rhythms support a core etiological relationship between neuropsychiatric illnesses and sleep disruption with hypoxia and central brain stem dysfunction.

  5. Genetic and non-genetic animal models for autism spectrum disorders (ASD).

    Science.gov (United States)

    Ergaz, Zivanit; Weinstein-Fudim, Liza; Ornoy, Asher

    2016-09-01

    Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. The epidemiology of eating disorders: genetic, environmental, and societal factors

    Directory of Open Access Journals (Sweden)

    Mitchison D

    2014-02-01

    Full Text Available Deborah Mitchison,1 Phillipa J Hay2,3 1School of Medicine, University of Western Sydney, Sydney, NSW, Australia; 2Centre for Health Research, School of Medicine, University of Western Sydney, Sydney, NSW, Australia; 3School of Medicine, James Cook University, Townsville City, QLD, Australia Background: The aim of this review was to summarize the literature to date regarding the sociodemographic, environmental, and genetic correlates of eating disorders (EDs in adults. Method: A keyword search was entered into Scopus (SciVerse, Elsevier to identify relevant articles published in English up until June 2013. Articles were assessed against a range of a priori inclusion and exclusion criteria. Results: A total of 149 full-text articles were found to be eligible for the review and included 86 articles with data on sociodemographic correlates, 57 on environmental correlates, and 13 on genetic correlates. Female sex, younger age, sexual and physical abuse, participation in esthetic or weight-oriented sports, and heritability were found to be most consistently associated with higher ED prevalence and incidence. Conversely, ethnicity, socioeconomic status, education, and urbanicity did not appear to have strong associations with ED epidemiology. Conclusion: More community-based research, with an equal representation of males, needs to be conducted to confirm the current findings and provide evidence for emerging factors that may be related to EDs. Keywords: demographic, environment, abuse, prevalence, socioeconomic status, heritability

  7. Biology of hyaluronan: Insights from genetic disorders of hyaluronan metabolism

    Institute of Scientific and Technical Information of China (English)

    Barbara; Triggs-Raine; Marvin; R; Natowicz

    2015-01-01

    Hyaluronan is a rapidly turned over component of the vertebrate extracellular matrix. Its levels are determined, in part, by the hyaluronan synthases, HAS1, HAS2, and HAS3, and three hyaluronidases, HYAL1, HYAL2 and HYAL3. Hyaluronan binding proteins also regulate hyaluronan levels although their involvement is less well understood. To date, two genetic disorders of hyaluronan metabolism have been reported in humans: HYAL1 deficiency(Mucopolysaccharidosis IX) in four individuals with joint pathology as the predominant phenotypic finding and HAS2 deficiency in a single person having cardiac pathology. However, inherited disorders and induced mutations affecting hyaluronan metabolism have been characterized in other species. Overproduction of hyaluronan by HAS2 results in skin folding and thickening in shar-pei dogs and the naked mole rat, whereas a complete deficiency of HAS2 causes embryonic lethality in mice due to cardiac defects. Deficiencies of murine HAS1 and HAS3 result in a predisposition to seizures. Like humans, mice with HYAL1 deficiency exhibit joint pathology. Mice lacking HYAL2 have variably penetrant developmental defects, including skeletal and cardiac anomalies. Thus, based on mutant animal models, a partial deficiency of HAS2 or HYAL2 might be compatible with survival in humans, while complete deficiencies of HAS1, HAS3, and HYAL3 may yet be recognized.

  8. Reverse Pathway Genetic Approach Identifies Epistasis in Autism Spectrum Disorders

    Science.gov (United States)

    Traglia, Michela; Tsang, Kathryn; Bearden, Carrie E.; Rauen, Katherine A.

    2017-01-01

    Although gene-gene interaction, or epistasis, plays a large role in complex traits in model organisms, genome-wide by genome-wide searches for two-way interaction have limited power in human studies. We thus used knowledge of a biological pathway in order to identify a contribution of epistasis to autism spectrum disorders (ASDs) in humans, a reverse-pathway genetic approach. Based on previous observation of increased ASD symptoms in Mendelian disorders of the Ras/MAPK pathway (RASopathies), we showed that common SNPs in RASopathy genes show enrichment for association signal in GWAS (P = 0.02). We then screened genome-wide for interactors with RASopathy gene SNPs and showed strong enrichment in ASD-affected individuals (P < 2.2 x 10−16), with a number of pairwise interactions meeting genome-wide criteria for significance. Finally, we utilized quantitative measures of ASD symptoms in RASopathy-affected individuals to perform modifier mapping via GWAS. One top region overlapped between these independent approaches, and we showed dysregulation of a gene in this region, GPR141, in a RASopathy neural cell line. We thus used orthogonal approaches to provide strong evidence for a contribution of epistasis to ASDs, confirm a role for the Ras/MAPK pathway in idiopathic ASDs, and to identify a convergent candidate gene that may interact with the Ras/MAPK pathway. PMID:28076348

  9. Genetic and neurobiological aspects of attention deficit hyperactive disorder: a review.

    OpenAIRE

    Hechtman, L.

    1994-01-01

    This paper reviews key studies that have addressed genetic and neurobiological aspects in attention deficit hyperactive disorder. Genetic studies can be divided into three distinct types: twin, adoption, and family studies. Evidence for a particular mode of inheritance and the possible specific genetic abnormalities are also explored. There is strong evidence of genetic involvement in this condition, although a clear-cut mode of inheritance and specific genetic abnormalities are yet to be det...

  10. Shared Genetic Influences on Negative Emotionality and Major Depression/Conduct Disorder Comorbidity

    Science.gov (United States)

    Tackett, Jennifer L.; Waldman, Irwin D.; Van Hulle, Carol A.; Lahey, Benjamin B.

    2011-01-01

    Objective: To investigate whether genetic contributions to major depressive disorder and conduct disorder comorbidity are shared with genetic influences on negative emotionality. Method: Primary caregivers of 2,022 same- and opposite-sex twin pairs 6 to 18 years of age comprised a population-based sample. Participants were randomly selected across…

  11. Shared Genetic Influences on Negative Emotionality and Major Depression/Conduct Disorder Comorbidity

    Science.gov (United States)

    Tackett, Jennifer L.; Waldman, Irwin D.; Van Hulle, Carol A.; Lahey, Benjamin B.

    2011-01-01

    Objective: To investigate whether genetic contributions to major depressive disorder and conduct disorder comorbidity are shared with genetic influences on negative emotionality. Method: Primary caregivers of 2,022 same- and opposite-sex twin pairs 6 to 18 years of age comprised a population-based sample. Participants were randomly selected across…

  12. Psychiatrists’ views of the genetic bases of mental disorders and behavioral traits and their utilization of genetic tests

    OpenAIRE

    Abbate, Kristopher J.; Chung, Wendy; Marder, Karen; Ottman, Ruth; Taber, Katherine Johansen; Leu, Cheng-Shiun; Appelbaum, Paul S.

    2014-01-01

    We examined how 372 psychiatrists view genetic aspects of mental disorders and behaviors, and use genetic tests (GTs). Most thought the genetic contribution was moderate/high for several disorders (e.g. bipolar, schizophrenia, depression, Alzheimer’s, intelligence, creativity, anxiety, suicidality). In the past 6 months, 14.1% ordered GTs, 18.3% discussed prenatal testing with patients, 36.0% initiated discussions about other GTs, 41.6% had patients ask about GTs, and 5.3% excluded GT results...

  13. Psychiatrists' views of the genetic bases of mental disorders and behavioral traits and their use of genetic tests.

    Science.gov (United States)

    Klitzman, Robert; Abbate, Kristopher J; Chung, Wendy K; Marder, Karen; Ottman, Ruth; Taber, Katherine Johansen; Leu, Cheng-Shiun; Appelbaum, Paul S

    2014-07-01

    We examined how 372 psychiatrists view genetic aspects of mental disorders and behaviors and use genetic tests (GTs). Most thought that the genetic contribution was moderate/high for bipolar disorder, schizophrenia, depression, Alzheimer's, intelligence, creativity, anxiety, and suicidality. In the past 6 months, 14.1% ordered GTs, 18.3% discussed prenatal testing with patients, 36.0% initiated discussions about other GTs, 41.6% had patients ask about GTs, and 5.3% excluded GT results from patient records. Many thought that GTs; were available for schizophrenia (24.3%) and major depression (19.6%). Women were more likely to report that patients asked about GTs; and were less certain about the degree of genetic contribution to several disorders. Psychiatrists perceive strong genetic bases for numerous disorders and traits, and many have discussed and ordered tests for GTs, but have relatively limited knowledge about available tests. These data suggest possible sex differences in psychiatrists' beliefs about genetic contributions to disorders and have implications for future research, education, policy, and care.

  14. Tourette's Disorder: Genetic Update, Neurological Correlates, and Evidence-Based Interventions

    Science.gov (United States)

    Phelps, LeAdelle

    2008-01-01

    This article provides an update of the search for genetic markers related to Tourette's Disorder. The probable neurophysiology of the disorder is reviewed. Frequently prescribed medications are related to the probable biological bases of the disorder. Behavioral interventions and assessment tools are examined. It is concluded that evidence based…

  15. A genetic deconstruction of neurocognitive traits in schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Fernandes, Carla P D; Christoforou, Andrea; Giddaluru, Sudheer

    2013-01-01

    Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function in healthy individuals...... and in the dysfunction observed in psychiatric disorders....

  16. Interpreting genetics in the context of eating disorders: evidence of disease, not diversity.

    Science.gov (United States)

    Easter, Michele

    2014-07-01

    How is genetic involvement interpreted for disorders whose medicalisation is contested? Framing psychiatric and behavioural disorders in terms of genetics is expected to make them seem more medical. Yet a genetic aetiology can also be used to frame behaviour as acceptable human variation, rather than a medical problem (for example, sexual orientation). I analyse responses to the idea that there is a genetic component in anorexia and bulimia nervosa (AN or BN) via semi-structured interviews with a sample of 50 women diagnosed with an eating disorder (25 had recovered). All but three volunteered that genetics would medicalise AN or BN by (i) making eating disorders seem more like 'real diseases'; implying that these disorders need (ii) professional treatment or (iii) a biologically based treatment. The results also indicate there are several counter-logics by which genetic framing could support non-medical definitions of AN or BN. I argue that genetic framing reduces perceived individual responsibility, which can support definitions of behaviour as either a reflection of disease (which entails intervention) or a reflection of normal human diversity (which does not). In the context of public scepticism as to the 'reality' of AN or BN, genetic involvement was taken as evidence of disease in ongoing negotiations about the medical and moral status of people with eating disorders.

  17. Global distribution of consanguinity and their impact on complex diseases: Genetic disorders from an endogamous population

    Directory of Open Access Journals (Sweden)

    Abdulbari Bener

    2017-10-01

    Conclusion: The present study revealed a higher incidence of certain diseases in consanguineous population with a high significant increase in the prevalence of common adult diseases such as diabetes mellitus, cancer, blood disorders, mental disorders, heart diseases, asthma, gastro-intestinal disorders, hypertension, hearing deficit, G6PD and common eye diseases. This confirms the role of genetic factors across the full spectrum of disease and not only for Mendelian disorders.

  18. Understanding the complex etiologies of developmental disorders: behavioral and molecular genetic approaches.

    Science.gov (United States)

    Willcutt, Erik G; Pennington, Bruce F; Duncan, Laramie; Smith, Shelley D; Keenan, Janice M; Wadsworth, Sally; Defries, John C; Olson, Richard K

    2010-09-01

    This article has 2 primary goals. First, a brief tutorial on behavioral and molecular genetic methods is provided for readers without extensive training in these areas. To illustrate the application of these approaches to developmental disorders, etiologically informative studies of reading disability (RD), math disability (MD), and attention-deficit hyperactivity disorder (ADHD) are then reviewed. Implications of the results for these specific disorders and for developmental disabilities as a whole are discussed, and novel directions for future research are highlighted. Previous family and twin studies of RD, MD, and ADHD are reviewed systematically, and the extensive molecular genetic literatures on each disorder are summarized. To illustrate 4 novel extensions of these etiologically informative approaches, new data are presented from the Colorado Learning Disabilities Research Center, an ongoing twin study of the etiology of RD, ADHD, MD, and related disorders. RD, MD, and ADHD are familial and heritable, and co-occur more frequently than expected by chance. Molecular genetic studies suggest that all 3 disorders have complex etiologies, with multiple genetic and environmental risk factors each contributing to overall risk for each disorder. Neuropsychological analyses indicate that the 3 disorders are each associated with multiple neuropsychological weaknesses, and initial evidence suggests that comorbidity between the 3 disorders is due to common genetic risk factors that lead to slow processing speed.

  19. Genetic Networks of Complex Disorders: from a Novel Search Engine for PubMed Article Database.

    Science.gov (United States)

    Jung, Jae-Yoon; Wall, Dennis Paul

    2013-01-01

    Finding genetic risk factors of complex disorders may involve reviewing hundreds of genes or thousands of research articles iteratively, but few tools have been available to facilitate this procedure. In this work, we built a novel publication search engine that can identify target-disorder specific, genetics-oriented research articles and extract the genes with significant results. Preliminary test results showed that the output of this engine has better coverage in terms of genes or publications, than other existing applications. We consider it as an essential tool for understanding genetic networks of complex disorders.

  20. Eponyms related to genetic disorders associated with gingival enlargement; part II

    Directory of Open Access Journals (Sweden)

    Nora Mohammed Al-Aboud

    2015-01-01

    Full Text Available There are genetic disorders associated with gingival enlargement. In our part I, we reviewed the eponyms linked to Hereditary Gingival Fibromatosis (HGF [1]. Historical Article How to cite this article: Al Aboud A, Al-Aboud NM, Barnawi H, Al Hakami A. Eponyms related to genetic disorders associated with gingival enlargement: Part II. Our Dermatol Online. 2015;6(1:114-117. Submission: 27.05.2013; Acceptance: 21.09.2014 DOI: 10.7241/ourd.20151.32 In this part II of this review, we are going to shed some light on eponyms linked to groups of genetic disorders which may feature gingival enlargement.

  1. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Mathews, Carol A.; Scharf, Jeremiah M.; Neale, Benjamin M.; Davis, Lea K.; Gamazon, Eric R.; Derks, Eske M.; Evans, Patrick; Edlund, Christopher K.; Crane, Jacquelyn; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M.; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrio, Gabriel Bedoya; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Brentani, Helena; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond D.; Cappi, Carolina; Silgado, Julio C. Cardona; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Cook, Edwin H.; Cookson, M. R.; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniete; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald L.; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Gruenblatt, Edna; Hardy, John; Heiman, Gary A.; Hemmings, Sian M. J.; Herrera, Luis D.; Hezel, Dianne M.; Hoekstra, Pieter J.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Konkashbaev, Anuar I.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T.; Restrepo, Sandra C. Mesa; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Nurmi, Erika; Ochoa, William Cornejo; Ophoff, Roel A.; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlo N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosario, Maria C.; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Service, Susan K.; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, Eric; Tischfield, Jay A.; Turiel, Maurizio; Duarte, Ana V. Valencia; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R.; Westenberg, Herman G. M.; Shugart, Yin Yao; Hounie, Ana G.; Miguel, Euripedes C.; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C.; McMahon, William; Posthuma, Danielle; Oostra, Ben A.; Nestadt, Gerald; Routeau, Guy A.; Purcell, Shaun; Jenike, Michael A.; Heutink, Peter; Hanna, Gregory L.; Conti, David V.; Arnold, Paul D.; Freimer, Nelson B.; Stewart, Evelyn; Knowles, James A.; Cox, Nancy J.; Pauls, David L.

    2015-01-01

    Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The autho

  2. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Neale, Benjamin M; Davis, Lea K; Gamazon, Eric R; Derks, Eske M; Evans, Patrick; Edlund, Christopher K; Crane, Jacquelyn; Fagerness, Jesen A; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Berrió, Gabriel Bedoya; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Brentani, Helena; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Campbell, Desmond D; Cappi, Carolina; Silgado, Julio C Cardona; Cavallini, Maria C; Chavira, Denise A; Chouinard, Sylvain; Cook, Edwin H; Cookson, M R; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniele; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald L; Girard, Simon L; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Hardy, John; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hezel, Dianne M; Hoekstra, Pieter J; Jankovic, Joseph; Kennedy, James L; King, Robert A; Konkashbaev, Anuar I; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T; Mesa Restrepo, Sandra C; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L; Naarden, Allan L; Nurmi, Erika; Ochoa, William Cornejo; Ophoff, Roel A; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L; Renner, Tobias; Reus, Victor I; Richter, Margaret A; Riddle, Mark A; Robertson, Mary M; Romero, Roxana; Rosário, Maria C; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Service, Susan K; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H; Stein, Dan J; Strengman, Eric; Tischfield, Jay A; Turiel, Maurizio; Valencia Duarte, Ana V; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R; Westenberg, Herman G M; Shugart, Yin Yao; Hounie, Ana G; Miguel, Euripedes C; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C; McMahon, William; Posthuma, Danielle; Oostra, Ben A; Nestadt, Gerald; Rouleau, Guy A; Purcell, Shaun; Jenike, Michael A; Heutink, Peter; Hanna, Gregory L; Conti, David V; Arnold, Paul D; Freimer, Nelson B; Stewart, S Evelyn; Knowles, James A; Cox, Nancy J; Pauls, David L

    2015-01-01

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The autho

  3. Cross-disorder genome-wide analyses suggest a complex genetic relationship between Tourette's syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Cusi, Daniele; Delorme, Richard; Denys, D.; Dion, Yves; Eapen, Valsama; Heutink, Peter; Cox, Nancy J; Pauls, David L

    2015-01-01

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The autho

  4. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Neale, Benjamin M; Davis, Lea K; Gamazon, Eric R; Derks, Eske M; Evans, Patrick; Edlund, Christopher K; Crane, Jacquelyn; Fagerness, Jesen A; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Berrió, Gabriel Bedoya; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Brentani, Helena; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Campbell, Desmond D; Cappi, Carolina; Silgado, Julio C Cardona; Cavallini, Maria C; Chavira, Denise A; Chouinard, Sylvain; Cook, Edwin H; Cookson, M R; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniele; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald L; Girard, Simon L; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Hardy, John; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hezel, Dianne M; Hoekstra, Pieter J; Jankovic, Joseph; Kennedy, James L; King, Robert A; Konkashbaev, Anuar I; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T; Mesa Restrepo, Sandra C; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L; Naarden, Allan L; Nurmi, Erika; Ochoa, William Cornejo; Ophoff, Roel A; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L; Renner, Tobias; Reus, Victor I; Richter, Margaret A; Riddle, Mark A; Robertson, Mary M; Romero, Roxana; Rosário, Maria C; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Service, Susan K; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H|info:eu-repo/dai/nl/113700644; Stein, Dan J; Strengman, Eric; Tischfield, Jay A; Turiel, Maurizio; Valencia Duarte, Ana V; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R; Westenberg, Herman G M; Shugart, Yin Yao; Hounie, Ana G; Miguel, Euripedes C; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C|info:eu-repo/dai/nl/194111423; McMahon, William; Posthuma, Danielle; Oostra, Ben A; Nestadt, Gerald; Rouleau, Guy A; Purcell, Shaun; Jenike, Michael A; Heutink, Peter; Hanna, Gregory L; Conti, David V; Arnold, Paul D; Freimer, Nelson B; Stewart, S Evelyn; Knowles, James A; Cox, Nancy J; Pauls, David L

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The

  5. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Mathews, Carol A.; Scharf, Jeremiah M.; Neale, Benjamin M.; Davis, Lea K.; Gamazon, Eric R.; Derks, Eske M.; Evans, Patrick; Edlund, Christopher K.; Crane, Jacquelyn; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M.; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrio, Gabriel Bedoya; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Brentani, Helena; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond D.; Cappi, Carolina; Silgado, Julio C. Cardona; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Cook, Edwin H.; Cookson, M. R.; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniete; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald L.; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Gruenblatt, Edna; Hardy, John; Heiman, Gary A.; Hemmings, Sian M. J.; Herrera, Luis D.; Hezel, Dianne M.; Hoekstra, Pieter J.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Konkashbaev, Anuar I.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T.; Restrepo, Sandra C. Mesa; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Nurmi, Erika; Ochoa, William Cornejo; Ophoff, Roel A.; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlo N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosario, Maria C.; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Service, Susan K.; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, Eric; Tischfield, Jay A.; Turiel, Maurizio; Duarte, Ana V. Valencia; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R.; Westenberg, Herman G. M.; Shugart, Yin Yao; Hounie, Ana G.; Miguel, Euripedes C.; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C.; McMahon, William; Posthuma, Danielle; Oostra, Ben A.; Nestadt, Gerald; Routeau, Guy A.; Purcell, Shaun; Jenike, Michael A.; Heutink, Peter; Hanna, Gregory L.; Conti, David V.; Arnold, Paul D.; Freimer, Nelson B.; Stewart, Evelyn; Knowles, James A.; Cox, Nancy J.; Pauls, David L.

    Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The

  6. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Neale, Benjamin M; Davis, Lea K; Gamazon, Eric R; Derks, Eske M; Evans, Patrick; Edlund, Christopher K; Crane, Jacquelyn; Fagerness, Jesen A; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Berrió, Gabriel Bedoya; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Brentani, Helena; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Campbell, Desmond D; Cappi, Carolina; Silgado, Julio C Cardona; Cavallini, Maria C; Chavira, Denise A; Chouinard, Sylvain; Cook, Edwin H; Cookson, M R; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniele; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald L; Girard, Simon L; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Hardy, John; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hezel, Dianne M; Hoekstra, Pieter J; Jankovic, Joseph; Kennedy, James L; King, Robert A; Konkashbaev, Anuar I; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T; Mesa Restrepo, Sandra C; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L; Naarden, Allan L; Nurmi, Erika; Ochoa, William Cornejo; Ophoff, Roel A; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L; Renner, Tobias; Reus, Victor I; Richter, Margaret A; Riddle, Mark A; Robertson, Mary M; Romero, Roxana; Rosário, Maria C; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Service, Susan K; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H|info:eu-repo/dai/nl/113700644; Stein, Dan J; Strengman, Eric; Tischfield, Jay A; Turiel, Maurizio; Valencia Duarte, Ana V; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R; Westenberg, Herman G M; Shugart, Yin Yao; Hounie, Ana G; Miguel, Euripedes C; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C|info:eu-repo/dai/nl/194111423; McMahon, William; Posthuma, Danielle; Oostra, Ben A; Nestadt, Gerald; Rouleau, Guy A; Purcell, Shaun; Jenike, Michael A; Heutink, Peter; Hanna, Gregory L; Conti, David V; Arnold, Paul D; Freimer, Nelson B; Stewart, S Evelyn; Knowles, James A; Cox, Nancy J; Pauls, David L

    2015-01-01

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The autho

  7. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Mathews, Carol A.; Scharf, Jeremiah M.; Neale, Benjamin M.; Davis, Lea K.; Gamazon, Eric R.; Derks, Eske M.; Evans, Patrick; Edlund, Christopher K.; Crane, Jacquelyn; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M.; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrio, Gabriel Bedoya; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Brentani, Helena; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond D.; Cappi, Carolina; Silgado, Julio C. Cardona; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Cook, Edwin H.; Cookson, M. R.; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniete; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald L.; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Gruenblatt, Edna; Hardy, John; Heiman, Gary A.; Hemmings, Sian M. J.; Herrera, Luis D.; Hezel, Dianne M.; Hoekstra, Pieter J.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Konkashbaev, Anuar I.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T.; Restrepo, Sandra C. Mesa; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Nurmi, Erika; Ochoa, William Cornejo; Ophoff, Roel A.; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlo N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosario, Maria C.; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Service, Susan K.; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, Eric; Tischfield, Jay A.; Turiel, Maurizio; Duarte, Ana V. Valencia; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R.; Westenberg, Herman G. M.; Shugart, Yin Yao; Hounie, Ana G.; Miguel, Euripedes C.; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C.; McMahon, William; Posthuma, Danielle; Oostra, Ben A.; Nestadt, Gerald; Routeau, Guy A.; Purcell, Shaun; Jenike, Michael A.; Heutink, Peter; Hanna, Gregory L.; Conti, David V.; Arnold, Paul D.; Freimer, Nelson B.; Stewart, Evelyn; Knowles, James A.; Cox, Nancy J.; Pauls, David L.

    2015-01-01

    Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The autho

  8. Genetic and Neuroimaging Features of Personality Disorders: State of the Art.

    Science.gov (United States)

    Ma, Guorong; Fan, Hongying; Shen, Chanchan; Wang, Wei

    2016-06-01

    Personality disorders often act as a common denominator for many psychiatric problems, and studies on personality disorders contribute to the etiopathology, diagnosis, and treatment of many mental disorders. In recent years, increasing evidence from various studies has shown distinctive features of personality disorders, and that from genetic and neuroimaging studies has been especially valuable. Genetic studies primarily target the genes encoding neurotransmitters and enzymes in the serotoninergic and dopaminergic systems, and neuroimaging studies mainly focus on the frontal and temporal lobes as well as the limbic-paralimbic system in patients with personality disorders. Although some studies have suffered due to unclear diagnoses of personality disorders and some have included few patients for a given personality disorder, great opportunities remain for investigators to launch new ideas and technologies in the field.

  9. Genetics of the sleep-wake cycle and its disorders.

    Science.gov (United States)

    Hamet, Pavel; Tremblay, Johanne

    2006-10-01

    The sleep-wake cycle is under the control of the circadian clock. Recent advances in rhythm biology have identified molecular clocks and their key regulating genes. Circadian clock genes (Clock, Per) were first isolated in Drosophila, and their homologous counterparts have been found in mammals. Some of the circadian master genes have been shown to influence sleeping behavior. For instance, a point mutation in a human clock gene (Per2) was shown to produce the rare advanced sleep phase syndrome, whereas a functional polymorphism in Per3 is associated with the more frequent delayed sleep phase syndrome. Furthermore, a study examining the association between Clock gene polymorphisms and insomnia revealed a higher recurrence of initial, middle, and terminal insomnia in patients homozygous for the Clock genotype. Other genes have been shown to contribute to sleep pathologies. A point mutation in the prion protein gene appears to be the cause of fatal familial insomnia. A missense mutation has been found in the gene encoding the GABA-A beta 3 subunit in a patient with chronic insomnia. In both animal models and humans, a deficiency in the hypocretin/orexin system was proposed to be responsible for narcolepsy. Selective destruction of hypocretin neurons is the most probable culprit in humans. These findings suggest that the genetic contribution to sleep disorders and wake determinants is more important than originally thought. Beyond sleep, light/dark cycles and sleep deprivation appear also to be associated with eating habits, and epidemics of obesity have to be evaluated in the context of shortened sleep duration.

  10. A genetic deconstruction of neurocognitive traits in schizophrenia and bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Carla P D Fernandes

    Full Text Available BACKGROUND: Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function in healthy individuals and in the dysfunction observed in psychiatric disorders. METHODS: Sets of genes associated with a range of cognitive functions often impaired in schizophrenia and bipolar disorder were generated from a genome-wide association study (GWAS on a sample comprising 670 healthy Norwegian adults who were phenotyped for a broad battery of cognitive tests. These gene sets were then tested for enrichment of association in GWASs of schizophrenia and bipolar disorder. The GWAS data was derived from three independent single-centre schizophrenia samples, three independent single-centre bipolar disorder samples, and the multi-centre schizophrenia and bipolar disorder samples from the Psychiatric Genomics Consortium. RESULTS: The strongest enrichments were observed for visuospatial attention and verbal abilities sets in bipolar disorder. Delayed verbal memory was also enriched in one sample of bipolar disorder. For schizophrenia, the strongest evidence of enrichment was observed for the sets of genes associated with performance in a colour-word interference test and for sets associated with memory learning slope. CONCLUSIONS: Our results are consistent with the increasing evidence that cognitive functions share genetic factors with schizophrenia and bipolar disorder. Our data provides evidence that genetic studies using polygenic and pleiotropic models can be used to link specific cognitive functions with psychiatric disorders.

  11. Neuroinformatic Analyses of Common and Distinct Genetic Components Associated with Major Neuropsychiatric Disorders

    Directory of Open Access Journals (Sweden)

    Amit eLotan

    2014-11-01

    Full Text Available Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders—attention deficit hyperactivity disorder, anxiety disorders, autistic spectrum disorders, bipolar disorder, major depressive disorder and schizophrenia. We curated a well-vetted list of genes based on large-scale human genetic studies and verified their appearance on the NHGRI catalog of published genome-wide association studies. A total of 180 genes were accepted into the analysis on the basis of low but liberal GWAS p-values (<10-5. 22% of genes overlapped two or more disorders. The most widely shared subset of genes—common to five of six disorders–included ANK3, AS3MT, CACNA1C, CACNB2, CNNM2, CSMD1, DPCR1, ITIH3, NT5C2, PPP1R11, SYNE1, TCF4, TENM4, TRIM26, and ZNRD1. Using a suite of neuroinformatic resources, we showed that many of the shared genes are implicated in the postsynaptic density, expressed in immune tissues and co-expressed in developing human brain.. Using a translational cross-species approach, we detected two distinct genetic components that were both shared by each of the six disorders; the 1st component is involved in CNS development, neural projections and synaptic transmission, while the 2nd is implicated in various cytoplasmic organelles and cellular processes. Combined, these genetic components account for 20–30% of the genetic load. The remaining risk is conferred by distinct, disorder-specific variants. Nevertheless, the convergence of different analytical approaches on similar targets may bear important implications. Thus, although adding mostly confirmatory findings, higher resolution of shared and unique genetic factors provided in this manuscript could ultimately translate into improved diagnosis and treatment of

  12. Neuroinformatic analyses of common and distinct genetic components associated with major neuropsychiatric disorders.

    Science.gov (United States)

    Lotan, Amit; Fenckova, Michaela; Bralten, Janita; Alttoa, Aet; Dixson, Luanna; Williams, Robert W; van der Voet, Monique

    2014-01-01

    Major neuropsychiatric disorders are highly heritable, with mounting evidence suggesting that these disorders share overlapping sets of molecular and cellular underpinnings. In the current article we systematically test the degree of genetic commonality across six major neuropsychiatric disorders-attention deficit hyperactivity disorder (ADHD), anxiety disorders (Anx), autistic spectrum disorders (ASD), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ). We curated a well-vetted list of genes based on large-scale human genetic studies based on the NHGRI catalog of published genome-wide association studies (GWAS). A total of 180 genes were accepted into the analysis on the basis of low but liberal GWAS p-values (NT5C2, PPP1R11, SYNE1, TCF4, TENM4, TRIM26, and ZNRD1. Using a suite of neuroinformatic resources, we showed that many of the shared genes are implicated in the postsynaptic density (PSD), expressed in immune tissues and co-expressed in developing human brain. Using a translational cross-species approach, we detected two distinct genetic components that were both shared by each of the six disorders; the 1st component is involved in CNS development, neural projections and synaptic transmission, while the 2nd is implicated in various cytoplasmic organelles and cellular processes. Combined, these genetic components account for 20-30% of the genetic load. The remaining risk is conferred by distinct, disorder-specific variants. Our systematic comparative analysis of shared and unique genetic factors highlights key gene sets and molecular processes that may ultimately translate into improved diagnosis and treatment of these debilitating disorders.

  13. Genetics Home Reference: FOXP2-related speech and language disorder

    Science.gov (United States)

    ... FOXP2-related speech and language disorder FOXP2-related speech and language disorder Printable PDF Open All Close All Enable Javascript ... Information & Resources MedlinePlus (3 links) Encyclopedia: Apraxia Encyclopedia: Speech Disorders - Children Health Topic: Speech and Language Problems in ...

  14. Genetic Networks of Complex Disorders: from a Novel Search Engine for PubMed Article Database

    National Research Council Canada - National Science Library

    Jung, Jae-Yoon; Wall, Dennis Paul

    2013-01-01

    Finding genetic risk factors of complex disorders may involve reviewing hundreds of genes or thousands of research articles iteratively, but few tools have been available to facilitate this procedure...

  15. Cross-species genetics converge to TLL2 for mouse avoidance behavior and human bipolar disorder

    NARCIS (Netherlands)

    de Mooij-van Malsen, J G; van Lith, H A; Laarakker, M C; Brandys, M K; Oppelaar, H; Collier, D A; Olivier, B; Breen, G; Kas, M J

    2013-01-01

    Interspecies genetic analysis of neurobehavioral traits is critical for identifying neurobiological mechanisms underlying psychiatric disorders, and for developing models for translational research. Recently, after screening a chromosome substitution strain panel in an automated home cage environmen

  16. The relationship between genetic risk variants with brain structure and function in bipolar disorder

    DEFF Research Database (Denmark)

    Pereira, Licia P; Köhler, Cristiano A; de Sousa, Rafael T

    2017-01-01

    Genetic-neuroimaging paradigms could provide insights regarding the pathophysiology of bipolar disorder (BD). Nevertheless, findings have been inconsistent across studies. A systematic review of gene-imaging studies involving individuals with BD was conducted across electronic major databases fro...

  17. Preimplantation genetic diagnosis in the prevention of the haemoglobin disorders

    Directory of Open Access Journals (Sweden)

    S. Kahraman

    2011-12-01

    Full Text Available Preimplantation Genetic Diagnosis (PGD is currently an alternative for couples with high risk of pregnancies with genetic anomalies; it offers the possibility of avoiding the need to terminate affected pregnancies, since it allows the selection of unaffected embryos for transfer. PGD for inherited disorders has become extremely accurate (99.5%, and may currently be performed for any single gene disorders in which mutation is identified. PGD has been performed for more than 100 different conditions resulting in the birth of at least 1000 healthy children free of genetic disorder. PGD is presently also used together with preimplantation HLA typing for treatment of affected sibling with genetic and acquired disorders requiring HLA matched stem cell transplantation. This is not only to allow couples to have an unaffected child but also to select a potential donor progeny for stem cell transplantation. In Turkey, thalassemia is the most commonly seen genetic disorder the rate of thalassemia carriers is about 3 - 4% in Turkey. The majority of our PGD cases are thalassemia carriers. They do not only require thalassemia mutation analysis but also HLA typing for their affected child. In this study PGD results of 236 Turkish couples with or without HLA typing will be presented and discussed. A full diagnosis was achieved in 91.0% of the biopsied samples. In Group I, 17.8% of the analyzed embryos were found to be HLA compatible. HLA compatible and disease free embryos were 12.9% of all diagnosed embryos. In group II, 17.2% of embryos were found to be HLA matched and 71.4% HLA non-matched. The majority of our HLA typing combined with PGD cases were β-Thalassemia carriers (87.9%. The mutations analyzed have high heterogeneity, the most frequent mutation was IVS-I-110 G-A and comprised 46.2% of all mutations. To date, 70 healthy and HLA compatible children have been born. Twenty-five sick children have already been cured with cord blood cell and/or bone

  18. Intelligence: shared genetic basis between Mendelian disorders and a polygenic trait.

    Science.gov (United States)

    Franić, Sanja; Groen-Blokhuis, Maria M; Dolan, Conor V; Kattenberg, Mathijs V; Pool, René; Xiao, Xiangjun; Scheet, Paul A; Ehli, Erik A; Davies, Gareth E; van der Sluis, Sophie; Abdellaoui, Abdel; Hansell, Narelle K; Martin, Nicholas G; Hudziak, James J; van Beijsterveldt, Catherina E M; Swagerman, Suzanne C; Hulshoff Pol, Hilleke E; de Geus, Eco J C; Bartels, Meike; Ropers, H Hilger; Hottenga, Jouke-Jan; Boomsma, Dorret I

    2015-10-01

    Multiple inquiries into the genetic etiology of human traits indicated an overlap between genes underlying monogenic disorders (eg, skeletal growth defects) and those affecting continuous variability of related quantitative traits (eg, height). Extending the idea of a shared genetic basis between a Mendelian disorder and a classic polygenic trait, we performed an association study to examine the effect of 43 genes implicated in autosomal recessive cognitive disorders on intelligence in an unselected Dutch population (N=1316). Using both single-nucleotide polymorphism (SNP)- and gene-based association testing, we detected an association between intelligence and the genes of interest, with genes ELP2, TMEM135, PRMT10, and RGS7 showing the strongest associations. This is a demonstration of the relevance of genes implicated in monogenic disorders of intelligence to normal-range intelligence, and a corroboration of the utility of employing knowledge on monogenic disorders in identifying the genetic variability underlying complex traits.

  19. Community engagement and education: addressing the needs of South Asian families with genetic disorders.

    Science.gov (United States)

    Khan, Nasaim; Kerr, Gifford; Kingston, Helen

    2016-10-01

    Consanguineous marriage is common among the South Asian heritage community in the UK. While conferring social and cultural benefits, consanguinity is associated with an increased risk of autosomal recessive disorders and an increase in childhood death and disability. We have previously developed a genetic service to address the needs of this community. We report the extension of this service to include community-based initiatives aimed at promoting understanding of genetic issues related to consanguinity and improving access to genetic services. Our approach was to develop integrated clinical, educational and community engagement initiatives that would be sustainable on a long-term basis. The service provided for South Asian families by a specialist genetic counsellor was extended, and a series of genetics education and awareness sessions were provided for a diverse range of frontline healthcare workers. Two community genetic outreach worker posts were established to facilitate the engagement of the local South Asian population with genetics. The education and awareness sessions helped address the lack of genetic knowledge among primary health care professionals and community workers. Engagement initiatives by the genetic outreach worker raised awareness of genetic issues in the South Asian community and families affected by autosomal recessive disorders. All three elements of the extended service generated positive feedback. A three-stranded approach to addressing the needs of consanguineous families affected by autosomal recessive disorders as recommended by the World Health Organisation is suggested to be an acceptable, effective and sustainable approach to delivery of service in the UK.

  20. Studying Interactions, Reactions, and Perceptions: Can Genetic Disorders Serve as Behavioral Proxies?

    Science.gov (United States)

    Hodapp, Robert M.

    2004-01-01

    Different genetic disorders predispose individuals to display specific, etiology-related profiles, personalities, and maladaptive behaviors. Using groups with genetic etiologies as stand-ins or proxies for a specific behavior or set of behaviors, one can then examine how others in the child's environment react and whether such reactions are…

  1. Genetic and environmental influences on focal brain density in bipolar disorder

    NARCIS (Netherlands)

    van der Schot, Astrid C.; Vonk, Ronald; Brouwer, Rachel M.; van Baal, G. Caroline M.; Brans, Rachel G. H.; van Haren, Neeltje E. M.; Schnack, Hugo G.; Boomsma, Dorret I.; Nolen, Willem A.; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    2010-01-01

    Structural neuroimaging studies suggest the presence of subtle abnormalities in the brains of patients with bipolar disorder. The influence of genetic and/or environmental factors on these brain abnormalities is unknown. To investigate the contribution of genetic and environmental factors on grey

  2. Genetic effects influencing risk for major depressive disorder in China and Europe

    NARCIS (Netherlands)

    Bigdeli, T. B.; Ripke, S.; Peterson, R. E.; Trzaskowski, M.; Bacanu, S-A; Abdellaoui, A.; Andlauer, T. F. M.; Beekman, A. T. F.; Berger, K.; Blackwood, D. H. R.; Boomsma, D. I.; Breen, G.; Buttenschon, H. N.; Byrne, E. M.; Cichon, S.; Clarke, T-K; Couvy-Duchesne, B.; Craddock, N.; de Geus, E. J. C.; Degenhardt, F.; Dunn, E. C.; Edwards, A. C.; Fanous, A. H.; Forstner, A. J.; Frank, J.; Gill, M.; Gordon, S. D.; Grabe, H. J.; Hamilton, S. P.; Hardiman, O.; Hayward, C.; Heath, A. C.; Henders, A. K.; Herms, S.; Hickie, I. B.; Hoffmann, P.; Homuth, G.; Hottenga, J-J; Ising, M.; Jansen, R.; Kloiber, S.; Knowles, J. A.; Lang, M.; Li, Q. S.; Lucae, S.; MacIntyre, D. J.; Madden, P. A. F.; Martin, N. G.; McGrath, P. J.; McGuffin, P.; McIntosh, A. M.; Medland, S. E.; Mehta, D.; Middeldorp, C. M.; Milaneschi, Y.; Montgomery, G. W.; Mors, O.; Mueller-Myhsok, B.; Nauck, M.; Nyholt, D. R.; Noethen, M. M.; Owen, M. J.; Penninx, B. W. J. H.; Pergadia, M. L.; Perlis, R. H.; Peyrot, W. J.; Porteous, D. J.; Potash, J. B.; Rice, J. P.; Rietschel, M.; Riley, B. P.; Rivera, M.; Schoevers, R.; Schulze, T. G.; Shi, J.; Shyn, S. I.; Smit, J. H.; Smoller, J. W.; Streit, F.; Strohmaier, J.; Teumer, A.; Treutlein, J.; Van der Auwera, S.; van Grootheest, G.; van Hemert, A. M.; Voelzke, H.; Webb, B. T.; Weissman, M. M.; Wellmann, J.; Willemsen, G.; Witt, S. H.; Levinson, D. F.; Lewis, C. M.; Wray, N. R.; Flint, J.; Sullivan, P. F.; Kendler, K. S.

    2017-01-01

    Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite twin studies indicating its modest heritability (similar to 30-40%), extensive heterogeneity and a complex genetic architecture have complicated efforts to detect associated

  3. Application of exome sequencing in the search for genetic causes of rare disorders of copper metabolism

    NARCIS (Netherlands)

    Fuchs, S.A.; Harakalova, M.; van Haaften, G.; van Hasselt, P.M.; Cuppen, E.; Houwen, R.H.

    2012-01-01

    The genetic defect in a number of rare disorders of metal metabolism remains elusive. The limited number of patients with these disorders impedes the identification of the causative gene through positional cloning, which requires numerous families with multiple affected individuals. However, with ne

  4. Movement disorders in 2014 : Genetic advances spark a revolution in dystonia phenotyping

    NARCIS (Netherlands)

    de Koning, Tom J; Tijssen, Marina A J

    2015-01-01

    Genetic revelations in 2014 are testing traditional classification systems for movement disorders, and our approach to clinical diagnostics. Mutations in dystonia-associated genes lead to a spectrum of disorders with different phenotypes, underscoring the need for stringent clinical phenotyping of p

  5. Large-scale discovery of novel genetic causes of developmental disorders.

    Science.gov (United States)

    2015-03-12

    Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders.

  6. Genetics Home Reference: ALG1-congenital disorder of glycosylation

    Science.gov (United States)

    ... Med Genet. 2010 Nov;47(11):729-35. doi: 10.1136/jmg.2009.072504. Epub 2010 Aug 2. Erratum in: J Med Genet. 2015 Mar;52(3):216. Yayé, H S [corrected to Sadou Yayé, H]. ... glycosylation. Eur J Hum Genet. 2015 Oct;23(10). doi: 10.1038/ejhg.2015.9. Epub 2015 Feb ...

  7. A Genetic Deconstruction of Neurocognitive Traits in Schizophrenia and Bipolar Disorder

    OpenAIRE

    Carla P D Fernandes; Andrea Christoforou; Sudheer Giddaluru; Kari M Ersland; Srdjan Djurovic; Manuel Mattheisen; Lundervold, Astri J; Ivar Reinvang; Nöthen, Markus M.; Marcella Rietschel; Ophoff, Roel A; Albert Hofman; Uitterlinden, André G.; Thomas Werge; Sven Cichon

    2013-01-01

    textabstractBackground: Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function in healthy individuals and in the dysfunction observed in psychiatric disorders. Methods: Sets of genes associated with a range of cognitive functions often impaired in schizophrenia and bipolar dis...

  8. Molecular Genetic Studies of Eating Disorders: Current Status and Future Directions

    OpenAIRE

    Klump, Kelly L.; Culbert, Kristen M.

    2007-01-01

    We review association studies that have examined the genetic basis of eating disorders. Overall, findings suggest that serotonin, brain-derived neurotrophic factor, and estrogen genes may be important for the development of the disorders. These neuronal systems influence behavioral and personality characteristics (e.g., anxiety, food intake) that are disrupted in eating disorders. Future studies would benefit from larger sample sizes and inclusion of behavioral and personality covariates in a...

  9. Genetic and environmental contributions to the co-occurrence of depressive personality disorder and DSM-IV personality disorders.

    Science.gov (United States)

    Ørstavik, Ragnhild E; Kendler, Kenneth S; Røysamb, Espen; Czajkowski, Nikolai; Tambs, Kristian; Reichborn-Kjennerud, Ted

    2012-06-01

    One of the main controversies with regard to depressive personality disorder (DPD) concerns the co-occurrence with the established DSM-IV personality disorders (PDs). The main aim of this study was to examine to what extent DPD and the DSM-IV PDs share genetic and environmental risk factors, using multivariate twin modeling. The DSM-IV Structured Interview for Personality was applied to 2,794 young adult twins. Paranoid PD from Cluster A, borderline PD from Cluster B, and all three PDs from Cluster C were independently and significantly associated with DPD in multiple regression analysis. The genetic correlations between DPD and the other PDs were strong (.53-.83), while the environmental correlations were moderate (.36-.40). Close to 50% of the total variance in DPD was disorder specific. However, only 5% was due to disorder-specific genetic factors, indicating that a substantial part of the genetic vulnerability to DPD also increases the vulnerability to other PDs.

  10. Association between genetic risk scoring for schizophrenia and bipolar disorder with regional subcortical volumes

    Science.gov (United States)

    Caseras, X; Tansey, K E; Foley, S; Linden, D

    2015-01-01

    Previous research has shown coincident abnormal regional brain volume in patients with schizophrenia (SCZ) and bipolar disorder (BD) compared with controls. Whether these abnormalities are genetically driven or explained by secondary effects of the disorder or environmental factors is unknown. We aimed to investigate the association between genetic risk scoring (GRS) for SCZ and BD with volume of brain areas previously shown to be different between these clinical groups and healthy controls. We obtained subcortical brain volume measures and GRS for SCZ and BD from a sample of 274 healthy volunteers (71.4% females, mean age 24.7 (s.d. 6.9)). Volume of the globus pallidus was associated with the shared GRS between SCZ and BD, and also with the independent GRS for each of these disorders. Volume of the amygdala was associated with the non-shared GRS between SCZ and BD, and with the independent GRS for BD. Our results for volume of the globus pallidus support the idea of SCZ and BD sharing a common underlying neurobiological abnormality associated with a common genetic risk for both these disorders. Results for volume of the amygdala, though, would suggest the existence of a distinct mechanism only associated with genetic risk for BD. Finally, the lack of association between genetic risk and volume of most subcortical structures suggests that the volumetric differences reported in patient–control comparisons may not be genetically driven, but a consequence of the disorder or co-occurring environmental factors. PMID:26645627

  11. GENETICS OF AUTISTIC DISORDER (REVIEW OF FOREIGN LITERATURE)

    OpenAIRE

    M. Yu. Bobylova; H. L. Petchatnikova

    2013-01-01

    Autism can occur in combination with chromosomal and genetic syndromes, malformations of the brain, metabolic diseases, etc. In this regard, currently adopted the term «atypical» or «syndromic» autism – autism, which is a symptom of another disease. Genetic and chromosomal causes account for 25-50% of cases of autism. The authors presented a detailed review of the literature devoted to the genetic aspects of autism. The article discusses known hereditary diseases, manifested as autistic disor...

  12. Familial resemblance of borderline personality disorder features: genetic or cultural transmission?

    Directory of Open Access Journals (Sweden)

    Marijn A Distel

    Full Text Available Borderline personality disorder is a severe personality disorder for which genetic research has been limited to family studies and classical twin studies. These studies indicate that genetic effects explain 35 to 45% of the variance in borderline personality disorder and borderline personality features. However, effects of non-additive (dominance genetic factors, non-random mating and cultural transmission have generally not been explored. In the present study an extended twin-family design was applied to self-report data of twins (N = 5,017 and their siblings (N = 1,266, parents (N = 3,064 and spouses (N = 939 from 4,015 families, to estimate the effects of additive and non-additive genetic and environmental factors, cultural transmission and non-random mating on individual differences in borderline personality features. Results showed that resemblance among biological relatives could completely be attributed to genetic effects. Variation in borderline personality features was explained by additive genetic (21%; 95% CI 17-26% and dominant genetic (24%; 95% CI 17-31% factors. Environmental influences (55%; 95% CI 51-60% explained the remaining variance. Significant resemblance between spouses was observed, which was best explained by phenotypic assortative mating, but it had only a small effect on the genetic variance (1% of the total variance. There was no effect of cultural transmission from parents to offspring.

  13. The Genetic Basis of Thought Disorder and Language and Communication Disturbances in Schizophrenia

    Science.gov (United States)

    Levy, Deborah L.; Coleman, Michael J.; Sung, Heejong; Ji, Fei; Matthysse, Steven; Mendell, Nancy R.; Titone, Debra

    2009-01-01

    Thought disorder as well as language and communication disturbances are associated with schizophrenia and are over-represented in clinically unaffected relatives of schizophrenics. All three kinds of dysfunction involve some element of deviant verbalizations, most notably, semantic anomalies. Of particular importance, thought disorder characterized primarily by deviant verbalizations has a higher recurrence in relatives of schizophrenic patients than schizophrenia itself. These findings suggest that deviant verbalizations may be more penetrant expressions of schizophrenia susceptibility genes than schizophrenia. This paper reviews the evidence documenting the presence of thought, language and communication disorders in schizophrenic patients and in their first-degree relatives. This familial aggregation potentially implicates genetic factors in the etiology of thought disorder, language anomalies, and communication disturbances in schizophrenia families. We also present two examples of ways in which thought, language and communication disorders can enrich genetic studies, including those involving schizophrenia. PMID:20161689

  14. The molecular genetics of Marfan syndrome and related disorders

    Science.gov (United States)

    Robinson, P N; Arteaga‐Solis, E; Baldock, C; Collod‐Béroud, G; Booms, P; De Paepe, A; Dietz, H C; Guo, G; Handford, P A; Judge, D P; Kielty, C M; Loeys, B; Milewicz, D M; Ney, A; Ramirez, F; Reinhardt, D P; Tiedemann, K; Whiteman, P; Godfrey, M

    2006-01-01

    Marfan syndrome (MFS), a relatively common autosomal dominant hereditary disorder of connective tissue with prominent manifestations in the skeletal, ocular, and cardiovascular systems, is caused by mutations in the gene for fibrillin‐1 (FBN1). The leading cause of premature death in untreated individuals with MFS is acute aortic dissection, which often follows a period of progressive dilatation of the ascending aorta. Recent research on the molecular physiology of fibrillin and the pathophysiology of MFS and related disorders has changed our understanding of this disorder by demonstrating changes in growth factor signalling and in matrix‐cell interactions. The purpose of this review is to provide a comprehensive overview of recent advances in the molecular biology of fibrillin and fibrillin‐rich microfibrils. Mutations in FBN1 and other genes found in MFS and related disorders will be discussed, and novel concepts concerning the complex and multiple mechanisms of the pathogenesis of MFS will be explained. PMID:16571647

  15. Genetics Home Reference: nonsyndromic congenital nail disorder 10

    Science.gov (United States)

    ... from Nemours: Your Nails MalaCards: nail disorder nonsyndromic congenital 10 Merck Manual Consumer Version: Deformities, Dystrophies, and Discoloration of the Nails Orphanet: Autosomal recessive nail dysplasia Patient Support and Advocacy Resources (1 link) British ...

  16. Genetics Home Reference: ALG12-congenital disorder of glycosylation

    Science.gov (United States)

    ... FW, Aylsworth AS, Freeze HH. Expanding spectrum of congenital disorder of glycosylation Ig (CDG-Ig): sibs with a unique skeletal dysplasia, hypogammaglobulinemia, cardiomyopathy, genital malformations, and early lethality. Am ...

  17. Obsessive-compulsive disorder - Glossary Entry - Genetics Home Reference [Genetics Home Reference (Glossary)

    Lifescience Database Archive (English)

    Full Text Available er Synonym(s) OCD Definition(s) An anxiety disorder characterized by recurrent, persistent obsessions or compulsion...guage System at the National Library of Medicine Disorder characterized by recurrent obsessions or compulsion

  18. GENE MUTATIONS, GENETIC DISEASE AND PHARMACOGENETIC GENES DISORDER

    OpenAIRE

    Ishak

    2010-01-01

    Somatic cell mutation is able to create genetic variance in a cell population and can induce cancer and tumor when gene mutations took place at repressor gene in controlling cell cycles such as p53 gene. Whereas germline cell mutation can cause genetic disease such as sickle cell anemia, breast cancer, thalassemia, parkinson’s as well as defect of biochemical pathway that influence drug-receptor interaction, which has negative effect and lead to hospitalized of patient. Most of reports mentio...

  19. Connection between Genetic and Clinical Data in Bipolar Disorder

    DEFF Research Database (Denmark)

    Mellerup, Erling; Andreassen, Ole; Bennike, Bente

    2012-01-01

    Complex diseases may be associated with combinations of changes in DNA, where the single change has little impact alone. In a previous study of patients with bipolar disorder and controls combinations of SNP genotypes were analyzed, and four large clusters of combinations were found...... to be significantly associated with bipolar disorder. It has now been found that these clusters may be connected to clinical data....

  20. A common genetic factor underlies hypertension and other cardiovascular disorders

    Directory of Open Access Journals (Sweden)

    Spector Tim D

    2004-11-01

    Full Text Available Abstract Background Certain conditions characterised by blood vessel occlusion or vascular spasm have been found to cluster together in epidemiological studies. However the biological causes for these associations remain controversial. This study used a classical twin design to examine whether these conditions are linked through shared environmental exposures or by a common underlying genetic propensity to vasospasm. Methods We investigated the association between hypertension, migraine, Raynaud's phenomenon and coronary artery disease in twins from a national register. Phenotype status was determined using a questionnaire and the genetic and environmental association between phenotypes was estimated through variance components analysis. Results Responses were obtained from 2,204 individuals comprising 525 monozygotic and 577 dizygotic pairs. There was a significant genetic contribution to all four traits with heritabilities ranging from 0.34 to 0.64. Multivariate model-fitting demonstrated that a single common genetic factor underlies the four conditions. Conclusions We have confirmed an association between hypertension, migraine, Raynaud's phenomenon and coronary artery disease, and shown that a single genetic factor underlies them. The demonstration of a shared genetic factor explains the association between them and adds weight to the theory of an inherited predisposition to vasospasm.

  1. Emerging Genetic Counselor Roles within the Biotechnology and Pharmaceutical Industries: as Industry Interest Grows in Rare Genetic Disorders, How are Genetic Counselors Joining the Discussion?

    Science.gov (United States)

    Field, Tessa; Brewster, Stephanie Jo; Towne, Meghan; Campion, MaryAnn W

    2016-08-01

    Traditionally, the biotechnology and pharmaceutical industry (BPI) has focused drug development at the mass-market level targeting common medical issues. However, a recent trend is the development of therapies for orphan or rare disorders, including many genetic disorders. Developing treatments for genetic disorders requires an understanding of the needs of the community and translating genomic information to clinical and non-clinical audiences. The core skills of genetic counselors (GCs) include a deep knowledge of genetics and ability to communicate complex information to a broad audience, making GCs a choice fit for this shift in drug development. To date there is limited data defining the roles GCs hold within this industry. This exploratory study aimed to define the roles and motivation of GCs working in BPI, assess job satisfaction, and identify translatable skills and current gaps in GC training programs. The authors surveyed 26 GCs working in BPI in the United States; 79 % work for companies focused on rare disorders. GC positions in BPI are growing, with 57 % of respondents being the first GC in their role. GCs in BPI continue to utilize core genetic counseling competencies, though 72 % felt their training did not fully prepare them for BPI. These data suggest opportunities for exposure to BPI in GC training to better prepare future generations of GCs for these career opportunities. GC satisfaction was high in BPI, notably in areas traditionally reported as less satisfying on the National Society for Genetic Counselors Professional Status Survey: salary and advancement opportunities. BPI's growing interest in rare disorders represents a career opportunity for GCs, addressing both historic areas of dissatisfaction for GCs and BPI's genomic communication needs.

  2. Genetic associations between delusional disorder and paranoid schizophrenia: A novel etiologic approach.

    Science.gov (United States)

    Debnath, Monojit; Das, Sujit K; Bera, Nirmal K; Nayak, Chitta R; Chaudhuri, Tapas K

    2006-05-01

    Genetic associations between delusional disorder and paranoid schizophrenia are not well understood, although involvement of biological factors has been suspected. We investigated the incidence of human leukocyte antigen (HLA) class I alleles in patients with delusional disorder and paranoid schizophrenia, first, to explore a possible immunogenetic etiology of these paranoid disorders and, second, to determine whether they share similar etiologic mechanisms. We employed a nested case-control study design. Psychiatric reference data were available for 38,500 patients attending a hospital-based psychiatric outpatient department between 1998 and 2005. We enrolled 100 patients with delusional disorder and 50 patients with paranoid schizophrenia as the subject cases, using DSM-IV criteria. We considered equivalent numbers of healthy volunteers matched for age and ethnic background as control subjects. All subjects came from an India-born Bengali population. We applied the polymerase chain reaction-based molecular typing method to all patients and healthy subjects. The HLA-A*03 gene is significantly associated with delusional disorder as well as with paranoid schizophrenia. This HLA gene alone or in linkage disequilibrium with other HLA genes or other closely linked non-HLA genes may influence susceptibility to delusional disorder and paranoid schizophrenia. The study reveals important associations between HLA genes and paranoid disorders. Delusional disorder and paranoid schizophrenia may share similar etiologic mechanisms. This preliminary observation may help our understanding of the genetic basis of these paranoid disorders.

  3. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette Syndrome and Obsessive-Compulsive Disorder

    Science.gov (United States)

    Yu, Dongmei; Mathews, Carol A.; Scharf, Jeremiah M.; Neale, Benjamin M.; Davis, Lea K.; Gamazon, Eric R.; Derks, Eske M.; Evans, Patrick; Edlund, Christopher K.; Crane, Jacquelyn; Fagerness, Jesen A.; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M.; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrió, Gabriel Bedoya; Bienvenu, O. Joseph; Black, Donald; Bloch, Michael H.; Brentani, Helena; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond D.; Cappi, Carolina; Cardona Silgado, Julio C.; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Cook, Edwin H.; Cookson, M. R.; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniele; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Hardy, John; Heiman, Gary A.; Hemmings, Sian M.J.; Herrera, Luis D.; Hezel, Dianne M.; Hoekstra, Pieter J.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Konkashbaev, Anuar I.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T.; Mesa Restrepo, Sandra C.; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Ochoa, William Cornejo; Ophoff, Roel A.; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosário, Maria C.; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Service, Susan K.; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, Eric; Tischfield, Jay A.; Turiel, Maurizio; Valencia Duarte, Ana V.; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Walkup, John; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R.; Westenberg, Herman G.M.; Yao, Yin; Hounie, Ana G.; Miguel, Euripedes C.; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C.; McMahon, William; Posthuma, Danielle; Oostra, Ben A.; Nestadt, Gerald; Rouleau, Guy A.; Purcell, Shaun; Jenike, Michael A.; Heutink, Peter; Hanna, Gregory L.; Conti, David V.; Arnold, Paul D.; Freimer, Nelson; Stewart, S. Evelyn; Knowles, James A.; Cox, Nancy J.; Pauls, David L.

    2014-01-01

    Obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS) are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. Here, we report a combined genome-wide association study (GWAS) of TS and OCD in 2723 cases (1310 with OCD, 834 with TS, 579 with OCD plus TS/chronic tics (CT)), 5667 ancestry-matched controls, and 290 OCD parent-child trios. Although no individual single nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels, i.e. expression quantitative loci (eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10−4), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, TS had a smaller, non-significant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and TS/CT were included in the analysis (p=0.01). Previous work has shown that TS and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of TS and OCD. Furthermore, OCD with co-occurring TS/CT may have different underlying genetic susceptibility compared to OCD alone. PMID:25158072

  4. Genetic Overlap Between Affective Disorders: An Association Analysis of M18 and M23 SNPs of DAOA/G72 Gene With Schizophrenia and Bipolar Disorder

    OpenAIRE

    Leila Ahmadi; Seyyed Reza Kazeminezhad; Niloufar Khajehdin; Mehdi Pourmehdi-Boroujeni; Parisima Behbahani

    2015-01-01

    Background: Schizophrenia and bipolar disorder are common and often destructive brain disorders. It has generally been assumed that dozens of genes, along with environmental factors, contribute to the development of these diseases. Schizophrenia and bipolar mood disorder affect many families simultaneously. This theme suggests that these disorders have a shared genetic etiology at least to some extent. The DAOA/G72 gene is one of the common loci shared both by schizophrenia and bipolar disord...

  5. The genetics of axonal transport and axonal transport disorders.

    Directory of Open Access Journals (Sweden)

    Jason E Duncan

    2006-09-01

    Full Text Available Neurons are specialized cells with a complex architecture that includes elaborate dendritic branches and a long, narrow axon that extends from the cell body to the synaptic terminal. The organized transport of essential biological materials throughout the neuron is required to support its growth, function, and viability. In this review, we focus on insights that have emerged from the genetic analysis of long-distance axonal transport between the cell body and the synaptic terminal. We also discuss recent genetic evidence that supports the hypothesis that disruptions in axonal transport may cause or dramatically contribute to neurodegenerative diseases.

  6. The Brazilian contribution to Attention-Deficit/Hyperactivity Disorder molecular genetics in children and adolescents

    Science.gov (United States)

    Genro, Júlia Pasqualini; Roman, Tatiana; Rohde, Luis Augusto; Hutz, Mara Helena

    2012-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) is a common psychiatric condition of children worldwide. This disorder is defined by a combination of symptoms of inattention and hyperactivity/impulsivity. Diagnosis is based on a sufficient number of symptoms causing impairment in these two domains determining several problems in personal and academic life. Although genetic and environmental factors are important in ADHD etiology, how these factors influence the brain and consequently behavior is still under debate. It seems to be consensus that a frontosubcortical dysfunction is responsible, at least in part, for the ADHD phenotype spectrum. The main results from association and pharmacogenetic studies performed in Brazil are discussed. The investigations performed so far on ADHD genetics in Brazil and elsewhere are far from conclusive. New plausible biological hypotheses linked to neurotransmission and neurodevelopment, as well as new analytic approaches are needed to fully disclose the genetic component of the disorder. PMID:23411749

  7. Neuroimaging and genetic risk for Alzheimer's disease and addiction-related degenerative brain disorders.

    Science.gov (United States)

    Roussotte, Florence F; Daianu, Madelaine; Jahanshad, Neda; Leonardo, Cassandra D; Thompson, Paul M

    2014-06-01

    Neuroimaging offers a powerful means to assess the trajectory of brain degeneration in a variety of disorders, including Alzheimer's disease (AD). Here we describe how multi-modal imaging can be used to study the changing brain during the different stages of AD. We integrate findings from a range of studies using magnetic resonance imaging (MRI), positron emission tomography (PET), functional MRI (fMRI) and diffusion weighted imaging (DWI). Neuroimaging reveals how risk genes for degenerative disorders affect the brain, including several recently discovered genetic variants that may disrupt brain connectivity. We review some recent neuroimaging studies of genetic polymorphisms associated with increased risk for late-onset Alzheimer's disease (LOAD). Some genetic variants that increase risk for drug addiction may overlap with those associated with degenerative brain disorders. These common associations offer new insight into mechanisms underlying neurodegeneration and addictive behaviors, and may offer new leads for treating them before severe and irreversible neurological symptoms appear.

  8. Studying the genetics of Hirschsprung's disease : unraveling an oligogenic disorder

    NARCIS (Netherlands)

    Brooks, AS; Oostra, BA; Hofstra, RMW

    2005-01-01

    Hirschsprung's disease is characterized by the absence of ganglion cells in the myenteric and submucosal plexuses of the gastrointestinal tract. Genetic dissection was successful as nine genes and four loci for Hirschsprung's disease susceptibility were identified. Different approaches were used to

  9. Genetic Etiology and Clinical Consequences of Cone Disorders

    NARCIS (Netherlands)

    A.A.H.J. Thiadens (Alberta)

    2011-01-01

    textabstractHereditary retinal disorders constitute a large heterogeneous group of diseases in which the photoreceptors are primarily aff ected. When cone cells are aff ected, one cannot see details or perceive color. In this thesis, we focused on the three most important diseases in which the

  10. Genetic disorders in the growth hormone - IGF-I Axis

    NARCIS (Netherlands)

    Walenkamp, Maria Josephina Elisabeth

    2007-01-01

    Growth is a complex process, regulated by multiple external and internal factors. Deviation from the normal growth pattern can be one of the first manifestations of an underlying disorder, disrupting the normal growth process. The growth hormone – IGF-I axis plays a key role in regulating this growt

  11. Environmental, Physiological, and Cultural Injuries and Genetic Disorders

    Science.gov (United States)

    There are some disorders of citrus that are not currently known to be caused by a pathogenic agent, but appears to be inherited, physiologically based, or caused by environmental conditions. Environmental injuries include heat injury and sunburn; wind injury; smog; flooding; hail damage; lightning; ...

  12. Genetic Etiology and Clinical Consequences of Cone Disorders

    NARCIS (Netherlands)

    A.A.H.J. Thiadens (Alberta)

    2011-01-01

    textabstractHereditary retinal disorders constitute a large heterogeneous group of diseases in which the photoreceptors are primarily aff ected. When cone cells are aff ected, one cannot see details or perceive color. In this thesis, we focused on the three most important diseases in which the cones

  13. Genetic effects influencing risk for major depressive disorder in China and Europe

    DEFF Research Database (Denmark)

    Bigdeli, Tim B; Ripke, S; Peterson, Roseann E

    2017-01-01

    Major depressive disorder (MDD) is a common, complex psychiatric disorder and a leading cause of disability worldwide. Despite twin studies indicating its modest heritability (~30-40%), extensive heterogeneity and a complex genetic architecture have complicated efforts to detect associated genetic...... directions of effect, assessed the significance of polygenic risk scores and estimated the genetic correlation of MDD across ancestries. Subsequent trans-ancestry meta-analyses combined SNP-level evidence of association. Sign tests and polygenic score profiling weakly support an overlap of SNP effects...... between East Asian and European populations. We estimated the trans-ancestry genetic correlation of lifetime MDD as 0.33; female-only and recurrent MDD yielded estimates of 0.40 and 0.41, respectively. Common variants downstream of GPHN achieved genome-wide significance by Bayesian trans-ancestry meta...

  14. Birth defects and genetic disorders among Arab Americans--Michigan, 1992-2003.

    Science.gov (United States)

    Yanni, Emad A; Copeland, Glenn; Olney, Richard S

    2010-06-01

    Birth defects and genetic disorders are leading causes of infant morbidity and mortality in many countries. Population-based data on birth defects among Arab-American children have not been documented previously. Michigan has the second largest Arab-American community in the United States after California. Using data from the Michigan Birth Defects Registry (MBDR), which includes information on parents' country of birth and ancestry, birth prevalences were estimated in offspring of Michigan women of Arab ancestry for 21 major categories of birth defects and 12 congenital endocrine, metabolic, and hereditary disorders. Compared with other non-Hispanic white children in Michigan, Arab-American children had similar or lower birth prevalences of the selected types of structural birth defects, with higher rates of certain hereditary blood disorders and three categories of metabolic disorders. These estimates are important for planning preconception and antenatal health care, genetic counseling, and clinical care for Arab Americans.

  15. Progress in the genetics of polygenic brain disorders: significant new challenges for neurobiology.

    Science.gov (United States)

    McCarroll, Steven A; Hyman, Steven E

    2013-10-30

    Advances in genome analysis, accompanied by the assembly of large patient cohorts, are making possible successful genetic analyses of polygenic brain disorders. If the resulting molecular clues, previously hidden in the genomes of affected individuals, are to yield useful information about pathogenesis and inform the discovery of new treatments, neurobiology will have to rise to many difficult challenges. Here we review the underlying logic of the genetic investigations, describe in more detail progress in schizophrenia and autism, and outline the challenges for neurobiology that lie ahead. We argue that technologies at the disposal of neuroscience are adequately advanced to begin to study the biology of common and devastating polygenic disorders.

  16. Is PFAPA syndrome really a sporadic disorder or is it genetic?

    Science.gov (United States)

    Akelma, Ahmet Zulfikar; Cizmeci, Mehmet Nevzat; Kanburoglu, Mehmet Kenan; Mete, Emin; Bozkaya, Davut; Tufan, Naile; Catal, Ferhat

    2013-08-01

    Periodic fever syndromes are a group of disorders sharing similar symptoms, characterized primarily by regularly recurring fevers. PFAPA syndrome, one of the members of this group of disorders, is a clinical entity of unknown etiology which is frequently seen in the early childhood. Currently, the pathogenesis and the genetic basis of most of the disorders in the periodic fever spectrum are known, other than that of PFAPA syndrome. Although, classically PFAPA syndrome is known as a sporadic disease, we propose that it is not sporadic. We think that PFAPA syndrome may be an inherited disease and this hypothesis is supported by the clinical mimicry of PFAPA syndrome with other periodic fever syndromes with well-known genetic transmissions, frequent occurrence of the condition in members of the same family and emergence of common genetic mutations in the periodic fever syndrome spectrum. Moreover, our clinical observation that most of the patients diagnosed with PFAPA syndrome were of the same families strongly suggest a probable genetic transmission of this disorder. We have decided to discuss this hypothesis to contribute to the literature and assist our colleagues who are dealing with this commonly overlooked and often misdiagnosed disorder. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  17. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population

    DEFF Research Database (Denmark)

    Robinson, Elise B; St Pourcain, Beate; Anttila, Verneri

    2016-01-01

    Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of this risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortium and population-based resources (total n > 38,000), we...... and developmental traits, the severe tail of which can result in diagnosis with an ASD or other neuropsychiatric disorder. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology....

  18. A behavioral-genetic investigation of bulimia nervosa and its relationship with alcohol use disorder

    Science.gov (United States)

    Trace, Sara Elizabeth; Thornton, Laura Marie; Baker, Jessica Helen; Root, Tammy Lynn; Janson, Lauren Elizabeth; Lichtenstein, Paul; Pedersen, Nancy Lee; Bulik, Cynthia Marie

    2013-01-01

    Bulimia nervosa (BN) and alcohol use disorder (AUD) frequently co-occur and may share genetic factors; however, the nature of their association is not fully understood. We assessed the extent to which the same genetic and environmental factors contribute to liability to BN and AUD. A bivariate structural equation model using a Cholesky decomposition was fit to data from 7,241 women who participated in the Swedish Twin study of Adults: Genes and Environment. The proportion of variance accounted for by genetic and environmental factors for BN and AUD and the genetic and environmental correlations between these disorders were estimated. In the best-fitting model, the heritability estimates were 0.55 (95% CI: 0.37; 0.70) for BN and 0.62 (95% CI: 0.54; 0.70) for AUD. Unique environmental factors accounted for the remainder of variance for BN. The genetic correlation between BN and AUD was 0.23 (95% CI: 0.01; 0.44), and the correlation between the unique environmental factors for the two disorders was 0.35 (95% CI: 0.08; 0.61), suggesting moderate overlap in these factors. Findings from this investigation provide additional support that some of the same genetic factors may influence liability to both BN and AUD. PMID:23790978

  19. Keratinization Disorders and Genetic Aspects in Palmar and Plantar Keratodermas.

    Science.gov (United States)

    Stypczyńska, Ewa; Placek, Waldemar; Zegarska, Barbara; Czajkowski, Rafał

    2016-06-01

    Palmoplantar keratoderma (PPK) is a heterogeneous group of hereditary and acquired disorders characterized by abnormal thickening of the palms and soles. There are three clinical patterns: diffuse, focal, and punctuate. Palmoplantar keratodermas can be divided into the following functional subgroups: disturbed gene functions in structural proteins (keratins), cornified envelope (loricrin, transglutaminase), cohesion (plakophilin, desmoplakin, desmoglein 1), cell-to-cell communication (connexins) and transmembrane signal transduction (cathepsin C). Unna-Thost disease is the most common variety of hereditary PPK. Mutations in keratin 1 have been reported in Unna-Thost disease. We report 12 cases in which Unna-Thost disease was diagnosed. Genealogical study demonstrated that the genodermatosis was a familial disease inherited as an autosomal dominant disorder. Dermatological examination revealed yellowish hyperkeratosis on the palms and soles. Oral mucosa, teeth, and nails remained unchanged. Histopathological examination of the biopsy sample taken from the soles of the patients showed orthokeratotic keratosis, hypergranulosis, and acanthosis without epidermolysis.

  20. 双相情感障碍的遗传学%The genetics of bipolar disorder

    Institute of Scientific and Technical Information of China (English)

    续稳稳(综述); 刘传新(审校)

    2016-01-01

    双相情感障碍(bipolar disorder,BD)又称心境障碍,目前其发病机制尚不明确。BD 具有遗传性,目前发现一些染色体区域和特定基因与 BD 相关,但尚不能明确这些特定基因的参与或序列变异的发生与 BD 的关系。因此,仍需进行大量研究来进一步探究 BD 遗传方式。%Bipolar disorder is also known as mood disorders and the pathogenesis is unclear until now. Family and twin studies have confirmed the genetics of bipolar disorder. Although the researchers have dis-covered some related chromosomal regions and specific genes,they have not confirmed the relationship be-tween the involvement of any specific gene or sequence variant and the bipolar disorder. The scholars both at home and abroad still needs a lot of studies to explore the genetics of bipolar disorder. We review the re-search status of the genetic of bipolar disorder in this paper.

  1. Imaging of genetic and degenerative disorders primarily causing Parkinsonism.

    Science.gov (United States)

    Brooks, David J

    2016-01-01

    In this chapter the structural and functional imaging changes associated with both genetic causes of Parkinson's disease and the sporadic condition are reviewed. The role of imaging for supporting diagnosis and detecting subclinical disease is discussed and the potential use and drawbacks of using imaging biomarkers for monitoring disease progression are debated. Additionally, the use of imaging for differentiating atypical parkinsonian syndromes from Parkinson's disease is presented.

  2. Mouse genetic models for temporomandibular joint development and disorders

    OpenAIRE

    Suzuki, A.; Iwata, J.

    2015-01-01

    The temporomandibular joint (TMJ) is a synovial joint essential for hinge and sliding movements of the mammalian jaw. Temporomandibular joint disorders (TMD) are dysregulations of the muscles or the TMJ in structure, function, and physiology, and result in pain, limited mandibular mobility, and TMJ noise and clicking. Although approximately 40–70% adults in the USA have at least one sign of TMD, the etiology of TMD remains largely unknown. Here, we highlight recent advances in our understandi...

  3. Application of Molecular Genetics to the Investigation of Inherited Bleeding Disorders

    DEFF Research Database (Denmark)

    Lethagen, Stefan Rune; Dunø, Morten; Nielsen, Lars Bo

    2013-01-01

    22. In hemophilia B, more than 1100 unique F9 mutations have been described scattered all over the gene. Carrier analysis, genetic counseling, prenatal and pre-implantation genetic diagnosis are all based on correct identifying the disease-causing mutation. Linkage analysis can be considered when...... the causative mutation is unknown. More rare bleeding disorders are generally recessively inherited, and are often caused by mutations that are specific for individual families, and mutations are scattered throughout the genes. Laboratories performing molecular genetic analyses must have validated internal...

  4. A review of cognitive neuropsychiatry in the taxonomy of eating disorders: state, trait, or genetic?

    Science.gov (United States)

    Kanakam, Natalie; Treasure, Janet

    2013-01-01

    A greater understanding of neuropsychological traits in eating disorders may help to construct a more biologically based taxonomy. The aim of this paper is to review the current evidence base of neuropsychological traits in people with eating disorders. Evidence of difficulties in set shifting, weak central coherence, emotional processing difficulties, and altered reward sensitivity is presented for people both in the acute and recovered phase of the illness. These traits are also seen in first degree relatives. At present there is limited research linking these neuropsychological traits with genetic and neuroanatomical measures. In addition to improving the taxonomy of eating disorders, neuropsychological traits may be of value in producing targeted treatments.

  5. Systems genetics view of endometriosis: a common complex disorder.

    Science.gov (United States)

    Baranov, Vladislav S; Ivaschenko, Tatyana E; Liehr, Thomas; Yarmolinskaya, Maria I

    2015-02-01

    Endometriosis is a condition in which cells derived from the endometrium grow outside the uterus, e.g. in the peritoneum (external genital endometriosis). As these cells are under the influence of female hormones, major symptoms of endometriosis are pain, especially during the cycle, and infertility. Numerous hypotheses for the formation of endometriosis can be found in the literature, but there is growing evidence of serious genetic contributions to endometriosis susceptibility. The involvement of genes, steroid hormone metabolism, immunological reactions, receptor formation, inflammation, proliferation, apoptosis, intercellular adhesion, cell invasion and angiogenesis as well as genes regulating the activity of aforementioned enzymes have been suggested. Some more recently suggested candidate genes picked up in genome-wide association studies are involved in oncogenesis, metaplasia of endometrium cells and pathways of embryonic development of the female reproductive system. However, gene mutations proven to be causative for endometriosis have not been identified so far, even though the abnormal expression of candidate genes for endometriosis could be provoked by different epigenetic modifications including DNA methylation, heterochromatization or introduction of regulatory miRNA. We hypothesize that endometriosis is induced by a combination of abnormal genetic and/or epigenetic mutations: the latter pave the way for pathological changes which become irreversible, and according to the "epigenetic landscape" theory, this proceeds to the typical clinical manifestations. Two stages in the endometriosis pathway are suggested: (1) induction of primary endometrial cells toward endometriosis, and (2) implantation and progression of these cells into endometriosis lesions. The model favors endometriosis as an outgrowth of primary cells different in their origin, canalization of pathological processes, manifestation diversity provoked by unique genetic background and

  6. Mouse genetic models for temporomandibular joint development and disorders.

    Science.gov (United States)

    Suzuki, A; Iwata, J

    2016-01-01

    The temporomandibular joint (TMJ) is a synovial joint essential for hinge and sliding movements of the mammalian jaw. Temporomandibular joint disorders (TMD) are dysregulations of the muscles or the TMJ in structure, function, and physiology, and result in pain, limited mandibular mobility, and TMJ noise and clicking. Although approximately 40-70% adults in the USA have at least one sign of TMD, the etiology of TMD remains largely unknown. Here, we highlight recent advances in our understanding of TMD in mouse models. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  8. An aid to the diagnosis of genetic disorders underlying adult-onset renal failure : a literature review

    NARCIS (Netherlands)

    Joosten, H.; Strunk, A. L. M.; Meijer, S.; Boers, J. E.; Aries, M.J.H.; Abbes, A. P.; Engel, H.; Beukhof, J. R.

    2010-01-01

    Several genetic disorders can present in adult patients with renal insufficiency. Genetic renal disease other than ADPKD accounts for ESRD in 3% of the adult Dutch population. Because of this low prevalence and their clinical heterogeneity most adult nephrologists are less familiar with these disord

  9. Inherited Platelet Function Disorders: Algorithms for Phenotypic and Genetic Investigation.

    Science.gov (United States)

    Gresele, Paolo; Bury, Loredana; Falcinelli, Emanuela

    2016-04-01

    Inherited platelet function disorders (IPFDs) manifest with mucocutaneous bleeding and are frequently difficult to diagnose due to their heterogeneity, the complexity of the platelet activation pathways and a lack of standardization of the platelet function laboratory assays and of their use for this purpose. A rational diagnostic approach to IPFDs should follow an algorithm where clinical examination and a stepwise laboratory evaluation play a crucial role. A streamlined panel of laboratory tests, with consecutive steps of increasing level of complexity, allows the phenotypic characterization of most IPFDs. A first-line diagnosis of a significant fraction of the IPFD may be made also at nonspecialized centers by using relatively simple tests, including platelet count, peripheral blood smear, light transmission aggregometry, measurement of platelet granule content and release, and the expression of glycoproteins by flow cytometry. Some of the most complex, second- and third-step tests may be performed only in highly specialized laboratories. Genotyping, including the widespread application of next-generation sequencing, has enabled discovery in the last few years of several novel genes associated with platelet disorders and this method may eventually become a first-line diagnostic approach; however, a preliminary clinical and laboratory phenotypic characterization nowadays still remains crucial for diagnosis of IPFDs.

  10. Spermatogonial Stem Cells: Implications for Genetic Disorders and Prevention

    Science.gov (United States)

    Yamada, Makiko; De Chiara, Letizia

    2016-01-01

    Spermatogonial stem cells (SSCs) propagate mammalian spermatogenesis throughout male reproductive life by continuously self-renewing and differentiating, ultimately, into sperm. SSCs can be cultured for long periods and restore spermatogenesis upon transplantation back into the native microenvironment in vivo. Conventionally, SSC research has been focused mainly on male infertility and, to a lesser extent, on cell reprogramming. With the advent of genome-wide sequencing technology, however, human studies have uncovered a wide range of pathogenic alleles that arise in the male germ line. A subset of de novo point mutations was shown to originate in SSCs and cause congenital disorders in children. This review describes both monogenic diseases (eg, Apert syndrome) and complex disorders that are either known or suspected to be driven by mutations in SSCs. We propose that SSC culture is a suitable model for studying the origin and mechanisms of these diseases. Lastly, we discuss strategies for future clinical implementation of SSC-based technology, from detecting mutation burden by sperm screening to gene correction in vitro. PMID:27596369

  11. Featural versus configural face processing in a rare genetic disorder: Williams syndrome

    NARCIS (Netherlands)

    Isaac, L.; Lincoln, A.

    2011-01-01

    Background Williams syndrome (WMS) is a rare genetic disorder with an estimated prevalence of 1 in 20 000 live births. Among other characteristics, WMS has a distinctive cognitive profile with spared face processing and language skills that contrasts with impairment in the cognitive domains of spat

  12. Delineation of Behavioral Phenotypes in Genetic Syndromes: Characteristics of Autism Spectrum Disorder, Affect and Hyperactivity

    Science.gov (United States)

    Oliver, Chris; Berg, Katy; Moss, Jo; Arron, Kate; Burbidge, Cheryl

    2011-01-01

    We investigated autism spectrum disorder (ASD) symptomatology, hyperactivity and affect in seven genetic syndromes; Angelman (AS; n = 104), Cri du Chat (CdCS; 58), Cornelia de Lange (CdLS; 101), Fragile X (FXS; 191), Prader-Willi (PWS; 189), Smith-Magenis (SMS; 42) and Lowe (LS; 56) syndromes (age range 4-51). ASD symptomatology was heightened in…

  13. Delineation of Behavioral Phenotypes in Genetic Syndromes: Characteristics of Autism Spectrum Disorder, Affect and Hyperactivity

    Science.gov (United States)

    Oliver, Chris; Berg, Katy; Moss, Jo; Arron, Kate; Burbidge, Cheryl

    2011-01-01

    We investigated autism spectrum disorder (ASD) symptomatology, hyperactivity and affect in seven genetic syndromes; Angelman (AS; n = 104), Cri du Chat (CdCS; 58), Cornelia de Lange (CdLS; 101), Fragile X (FXS; 191), Prader-Willi (PWS; 189), Smith-Magenis (SMS; 42) and Lowe (LS; 56) syndromes (age range 4-51). ASD symptomatology was heightened in…

  14. Is autoimmune thyroiditis part of the genetic vulnerability (or an endophenotype) for bipolar disorder?

    NARCIS (Netherlands)

    Vonk, Ronald; van der Schot, Astrid C.; Kahn, Rene S.; Nolen, Willem A.; Drexhage, Hemmo A.

    2007-01-01

    Background: Both genetic and environmental factors are involved in the etiology of bipolar disorder; however, biological markers for the transmission of the bipolar genotype ("endophenotypes") have not been found. Autoimmune thyroiditis with raised levels of thyroperoxidase antibodies (TPO-Abs) is r

  15. The bipolar puzzle, adding new pieces. Factors associated with bipolar disorder, Genetic and environmental influences

    NARCIS (Netherlands)

    van der Schot, A.C.

    2009-01-01

    The focus of this thesis is twofold. The first part will discuss the structural brain abnormalities and schoolperformance associated with bipolar disorder and the influence of genetic and/or environmental factors to this association. It is part of a large twin study investigating several potential b

  16. Personality Mediation of Genetic Effects on Attention-Deficit/Hyperactivity Disorder

    Science.gov (United States)

    Martel, Michelle M.; Nikolas, Molly; Jernigan, Katherine; Friderici, Karen; Nigg, Joel T.

    2010-01-01

    Personality traits may be viable candidates for mediators of the relationship between genetic risk and ADHD. Participants were 578 children (331 boys; 320 children with ADHD) between the ages of six and 18. Parents and teachers completed a comprehensive, multi-stage diagnostic procedure to assess ADHD and comorbid disorders. Mother completed the…

  17. Genetic and Environmental Influences on Pro-Inflammatory Monocytes in Bipolar Disorder A Twin Study

    NARCIS (Netherlands)

    Padmos, Roos C.; Van Baal, G. Caroline M.; Vonk, Ronald; Wijkhuijs, Annemarie J. M.; Kahn, Rene S.; Nolen, Willem A.; Drexhage, Hemmo A.

    Context: A monocyte pro-inflammatory state has previously been reported in bipolar disorder (BD). Objective: To determine the contribution of genetic and environmental influences on the association between monocyte pro- inflammatory state and BD. Design: A quantitative polymerase chain reaction

  18. Unravelling the genetic basis of hereditary disorders by high-throughput exome sequencing strategies

    NARCIS (Netherlands)

    Jazayeri, Omid

    2016-01-01

    The research presented in this thesis focuses on using Whole Exome Sequencing (WES) to unravel the genetic basis of human hereditary disorders with different inheritance patterns. We set out to apply WES as a diagnostic approach for establishing a molecular diagnosis in a highly heterogeneous group

  19. New technologies provide insights into genetic basis of psychiatric disorders and explain their co-morbidity.

    Science.gov (United States)

    Rudan, Igor

    2010-06-01

    The completion of Human Genome Project and the "HapMap" project was followed by translational activities from companies within the private sector. This led to the introduction of genome-wide scans based on hundreds of thousands of single nucleotide polymorphysms (SNP). These scans were based on common genetic variants in human populations. This new and powerful technology was then applied to the existing DNA-based datasets with information on psychiatric disorders. As a result, an unprecedented amount of novel scientific insights related to the underlying biology and genetics of psychiatric disorders was obtained. The dominant design of these studies, so called "genome-wide association studies" (GWAS), used statistical methods which minimized the risk of false positive reports and provided much greater power to detect genotype-phenotype associations. All findings were entirely data-driven rather than hypothesis-driven, which often made it difficult for researchers to understand or interpret the findings. Interestingly, this work in genetics is indicating how non-specific some genes are for psychiatric disorders, having associations in common for schizophrenia, bipolar disorder and autism. This suggests that the earlier stages of psychiatric disorders may be multi-valent and that early detection, coupled with a clearer understanding of the environmental factors, may allow prevention. At the present time, the rich "harvest" from GWAS still has very limited power to predict the variation in psychiatric disease status at individual level, typically explaining less than 5% of the total risk variance. The most recent studies of common genetic variation implicated the role of major histocompatibility complex in schizophrenia and other disorders. They also provided molecular evidence for a substantial polygenic component to the risk of psychiatric diseases, involving thousands of common alleles of very small effect. The studies of structural genetic variation, such as copy

  20. Pediatric medicine and the genetic disorders of the Amish and Mennonite people of Pennsylvania.

    Science.gov (United States)

    Morton, D Holmes; Morton, Caroline S; Strauss, Kevin A; Robinson, Donna L; Puffenberger, Erik G; Hendrickson, Christine; Kelley, Richard I

    2003-08-15

    The Clinic for Special Children in Lancaster County, Pennsylvania, is a community-supported, nonprofit pediatric medical practice for Amish and Mennonite children who have genetic disorders. Over a 14-year period, 1988-2002, we have encountered 39 heritable disorders among the Amish and 23 among the Mennonites. We emphasize early recognition and long-term medical care of children with genetic conditions. In the clinic laboratory we perform amino acid analyses by high-performance liquid chromatography (HPLC), organic acid analyses by gas chromatography/mass spectrometry (GC/MS), and molecular diagnoses and carrier tests by polymerase chain reaction (PCR) amplification and sequencing or restriction digestion. Regional hospitals and midwives routinely send whole-blood filter paper neonatal screens for tandem mass spectrometry and other modern analytical methods to detect 14 of the metabolic disorders found in these populations as part of the NeoGen Inc. Supplemental Newborn Screening Program (Pittsburgh, PA). Medical care based on disease pathophysiology reduces morbidity, mortality, and costs for the majority of disorders. Among our patients who are homozygous for the same mutation, differences in disease severity are not unusual. Clinical problems typically arise from the interaction of the underlying genetic disorder with common infections, malnutrition, injuries, and immune dysfunction that act through classical pathophysiological disease mechanisms to influence the natural history of disease. Copyright 2003 Wiley-Liss, Inc.

  1. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population

    DEFF Research Database (Denmark)

    Robinson, Elise B; St Pourcain, Beate; Anttila, Verneri

    2016-01-01

    Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of this risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortium and population-based resources (total n > 38,000), we...... find genome-wide genetic links between ASDs and typical variation in social behavior and adaptive functioning. This finding is evidenced through both LD score correlation and de novo variant analysis, indicating that multiple types of genetic risk for ASDs influence a continuum of behavioral...... and developmental traits, the severe tail of which can result in diagnosis with an ASD or other neuropsychiatric disorder. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology....

  2. Role of genetic disorders in acute recurrent pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Volker Keim

    2008-01-01

    There was remarkable progress in the understanding of the role genetic risk factors in chronic pancreatitis.These factors seem to be much more important than thought in the past.The rare autosomal-dominant mutations N29I and R122H of PRSS1(cationic trypsinogen) as well as the variant N34S of SPINK1(pancreatic secretory trypsin inhibitor) are associated to a disease onset in childhood or youth.Compared to chronic alcoholic pancreatitis the progression is slow so that for a long time only signs of acute-recurrent pancreatitis are found.Only at later time points(more than 10-15 years) there is evidence for chronic pancreatitis in the majority of patients.Acute recurrent pancreatitis may therefore be regarded as a transition state until definite signs of chronic pancreatitis are detectable.

  3. Molecular and genetic basis of X-linked immunodeficiency disorders

    Energy Technology Data Exchange (ETDEWEB)

    Puck, J.M. (National Center for Human Genome Research, Bethesda, MD (United States))

    1994-03-01

    Within a short time interval the specific gene defects causing three X-linked human immunodeficiencies, agammaglobulinemia (XLA), hyper-IgM syndrome (HIGM), and severe combined immunodeficiency (XSCID), have been identified. These represent the first human disease phenotypes associated with each of three gene families already recognized to be important in lymphocyte development and signaling: XLA is caused by mutations of a B cell-specific intracellular tyrosine kinase; HIGM, by mutations in the TNF-related CD40 ligand, through which T cells deliver helper signals by direct contact with B cell CD40; and XSCID, by mutations in the [gamma] chain of the lymphocyte receptor for IL-2. Each patient mutation analyzed to date has been unique, representing both a challenge for genetic diagnosis and management and an important resource for dissecting molecular domains and understanding the physiologic function of the gene products.

  4. Genetics of multifactorial disorders: proceedings of the 6th Pan Arab Human Genetics Conference

    OpenAIRE

    Nair, Pratibha; Bizzari, Sami; Rajah, Nirmal; Assaf, Nada; Al-Ali, Mahmoud Taleb; Hamzeh, Abdul Rezzak

    2016-01-01

    The 6th Pan Arab Human Genetics Conference (PAHGC), “Genetics of Multifactorial Disorders” was organized by the Center for Arab Genomic Studies (http://www.cags.org.ae) in Dubai, United Arab Emirates from 21 to 23 January, 2016. The PAHGCs are held biennially to provide a common platform to bring together regional and international geneticists to share their knowledge and to discuss common issues. Over 800 delegates attended the first 2 days of the conference and these came from various medic...

  5. Familial clustering of epilepsy and behavioral disorders: Evidence for a shared genetic basis

    Science.gov (United States)

    Hesdorffer, Dale C.; Caplan, Rochelle; Berg, Anne T.

    2011-01-01

    Purpose To examine whether family history of unprovoked seizures is associated with behavioral disorders in epilepsy probands, thereby supporting the hypothesis of shared underlying genetic susceptibility to these disorders. Methods We conducted an analysis of the 308 probands with childhood onset epilepsy from the Connecticut Study of Epilepsy with information on first degree family history of unprovoked seizures and of febrile seizures whose parents completed the Child Behavior Checklist (CBCL) at the 9-year follow-up. Clinical cut-offs for CBCL problem and DSM-Oriented scales were examined. The association between first degree family history of unprovoked seizure and behavioral disorders was assessed separately in uncomplicated and complicated epilepsy and separately for first degree family history of febrile seizures. A subanalysis, accounting for the tendency for behavioral disorders to run in families, adjusted for siblings with the same disorder as the proband. Prevalence ratios were used to describe the associations. Key findings In probands with uncomplicated epilepsy, first degree family history of unprovoked seizure was significantly associated with clinical cut-offs for Total Problems and Internalizing Disorders. Among Internalizing Disorders, clinical cut-offs for Withdrawn/Depressed, and DSM-Oriented scales for Affective Disorder and Anxiety Disorder were significantly associated with family history of unprovoked seizures. Clinical cut-offs for Aggressive Behavior and Delinquent Behavior, and DSM-Oriented scales for Conduct Disorder and Oppositional Defiant Disorder were significantly associated with family history of unprovoked seizure. Adjustment for siblings with the same disorder revealed significant associations for the relationship between first degree family history of unprovoked seizure and Total Problems and Agressive Behavior in probands with uncomplicated epilepsy; marginally significant results were seen for Internalizing Disorder

  6. Social Engagement with Parents in 11-Month-Old Siblings at High and Low Genetic Risk for Autism Spectrum Disorder

    Science.gov (United States)

    Campbell, Susan B.; Leezenbaum, Nina B.; Mahoney, Amanda S.; Day, Taylor N.; Schmidt, Emily N.

    2015-01-01

    Infant siblings of children with an autism spectrum disorder are at heightened genetic risk to develop autism spectrum disorder. We observed high risk (n?=?35) and low risk (n?=?27) infants at 11?months during free play with a parent. Children were assessed for autism spectrum disorder in toddlerhood. High-risk infants with a later diagnosis…

  7. Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder

    DEFF Research Database (Denmark)

    Andreassen, O A; Harbo, H F; Wang, Y

    2014-01-01

    in SNPs associated with SCZ (n=21 856) and multiple sclerosis (MS) (n=43 879), an inflammatory, demyelinating disease of the central nervous system. Because SCZ and bipolar disorder (BD) show substantial clinical and genetic overlap, we also investigated pleiotropy between BD (n=16 731) and MS. We found...... significant genetic overlap between SCZ and MS and identified 21 independent loci associated with SCZ, conditioned on association with MS. This enrichment was driven by the major histocompatibility complex (MHC). Importantly, we detected the involvement of the same human leukocyte antigen (HLA) alleles...... in both SCZ and MS, but with an opposite directionality of effect of associated HLA alleles (that is, MS risk alleles were associated with decreased SCZ risk). In contrast, we found no genetic overlap between BD and MS. Considered together, our findings demonstrate genetic pleiotropy between SCZ and MS...

  8. Introduction: Special issue on genetic research of alcohol use disorder in diverse racial/ethnic populations.

    Science.gov (United States)

    Chartier, Karen G; Hesselbrock, Michie N; Hesselbrock, Victor M

    2017-08-01

    This special issue of The American Journal on Addictions is an extension of a workshop held at the Research Society on Alcoholism (2015) highlighting several important issues related to studies of the genetic bases of alcohol use disorder among racially/ethnically diverse populations. While not exhaustive in their coverage, the papers in this special issue focus on three important topics: (1) the importance of considering the social and environmental context in genetic analyses; (2) social and cultural considerations for engaging diverse communities in genetic research; and (3) methodologies related to phenotype development for use with racially/ethnically diverse populations. A brief overview of each paper included in these three sections is presented. The issue concludes with additional considerations for genetic research with racially/ethnically diverse population groups along with a commentary. (Am J Addict 2017;26:422-423). © 2017 American Academy of Addiction Psychiatry.

  9. [Diagnostics of the genetic causes of autism spectrum disorders - a clinical geneticist's view].

    Science.gov (United States)

    Szczaluba, Krzysztof

    2014-01-01

    Explanation of the genetic basis of autism spectrum disorders has, for many decades, been a part of interest of researchers and clinicians. In recent years, thanks to modern molecular and cytogenetic techniques, a significant progress has been achieved in the diagnosis of genetic causes of autism. This applies particularly, but not exclusively, to those cases of autism that are accompanied by other clinical signs (i. e. complex phenotypes). The important clinical markers belong to different categories, and include congenital defects/anomalies, dysmorphism and macro-/microcephaly, to name the few. Thus, the choice of the diagnostic strategy depends on the clinical and pedigree information and, under Polish circumstances, the availability of specific diagnostic techniques and the amount of reimbursement under the National Health Service. Overall, the identification of the genetic causes of autism spectrum disorders is possible in about 10-30% of patients. In this paper the practical aspects of the use of different diagnostic techniques are briefly described. Some clinical examples and current recommendations for the diagnosis of patients with autism spectrum disorders are also presented. The point of view of a specialist in clinical genetics, increasingly involved, as part of the multidisciplinary care team, in the diagnostics of an autistic child has been demonstrated.

  10. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate.

    Directory of Open Access Journals (Sweden)

    Benjamin Georgi

    2014-03-01

    Full Text Available Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders.

  11. Molecular and genetic insights into an infantile epileptic encephalopathy-CDKL5 disorder

    Institute of Scientific and Technical Information of China (English)

    Ailing Zhou; Song Han; Zhaolan Joe Zhou

    2017-01-01

    BACKGROUND:The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder.Given the large number of literature published thus far,this review aims to summarize current genetic studies,draw a consensus on proposed molecular functions,and point to gaps of knowledge in CDKL5 research.METHODS:A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years.We analyzed these publications and summarized the findings into four sections:genetic studies,CDKL5 expression pattems,molecular functions,and animal models.We also discussed challenges and future directions in each section.RESULTS:On the clinical side,CDKL5 disorder is characterized by early onset epileptic seizures,intellectual disability,and stereotypical behaviors.On the research side,a series of molecular and genetic studies in human patients,cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy,and pointed to a key role for CDKL5 in regulating neuronal function in the brain.Mouse models of CDKL5 disorder have also been developed,and notably,manifest behavioral phenotypes,mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage.CONCLUSIONS:Given what we have leamed thus far,future identification of robust,quantitative,and sensitive outcome measures would be the key in animal model studies,particularly in heterozygous females.In the meantime,molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  12. Large animal models of rare genetic disorders: sheep as phenotypically relevant models of human genetic disease.

    Science.gov (United States)

    Pinnapureddy, Ashish R; Stayner, Cherie; McEwan, John; Baddeley, Olivia; Forman, John; Eccles, Michael R

    2015-09-02

    Animals that accurately model human disease are invaluable in medical research, allowing a critical understanding of disease mechanisms, and the opportunity to evaluate the effect of therapeutic compounds in pre-clinical studies. Many types of animal models are used world-wide, with the most common being small laboratory animals, such as mice. However, rodents often do not faithfully replicate human disease, despite their predominant use in research. This discordancy is due in part to physiological differences, such as body size and longevity. In contrast, large animal models, including sheep, provide an alternative to mice for biomedical research due to their greater physiological parallels with humans. Completion of the full genome sequences of many species, and the advent of Next Generation Sequencing (NGS) technologies, means it is now feasible to screen large populations of domesticated animals for genetic variants that resemble human genetic diseases, and generate models that more accurately model rare human pathologies. In this review, we discuss the notion of using sheep as large animal models, and their advantages in modelling human genetic disease. We exemplify several existing naturally occurring ovine variants in genes that are orthologous to human disease genes, such as the Cln6 sheep model for Batten disease. These, and other sheep models, have contributed significantly to our understanding of the relevant human disease process, in addition to providing opportunities to trial new therapies in animals with similar body and organ size to humans. Therefore sheep are a significant species with respect to the modelling of rare genetic human disease, which we summarize in this review.

  13. Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders.

    Science.gov (United States)

    Marian, Ali J; van Rooij, Eva; Roberts, Robert

    2016-12-27

    This is the first of 2 review papers on genetics and genomics appearing as part of the series on "omics." Genomics pertains to all components of an organism's genes, whereas genetics involves analysis of a specific gene or genes in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. The five-factor model of personality and borderline personality disorder: a genetic analysis of comorbidity.

    Science.gov (United States)

    Distel, Marijn A; Trull, Timothy J; Willemsen, Gonneke; Vink, Jacqueline M; Derom, Catherine A; Lynskey, Michael; Martin, Nicholas G; Boomsma, Dorret I

    2009-12-15

    Recently, the nature of personality disorders and their relationship with normal personality traits has received extensive attention. The five-factor model (FFM) of personality, consisting of the personality traits neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness, is one of the proposed models to conceptualize personality disorders as maladaptive variants of continuously distributed personality traits. The present study examined the phenotypic and genetic association between borderline personality and FFM personality traits. Data were available for 4403 monozygotic twins, 4425 dizygotic twins, and 1661 siblings from 6140 Dutch, Belgian, and Australian families. Broad-sense heritability estimates for neuroticism, agreeableness, conscientiousness, extraversion, openness to experience, and borderline personality were 43%, 36%, 43%, 47%, 54%, and 45%, respectively. Phenotypic correlations between borderline personality and the FFM personality traits ranged from .06 for openness to experience to .68 for neuroticism. Multiple regression analyses showed that a combination of high neuroticism and low agreeableness best predicted borderline personality. Multivariate genetic analyses showed the genetic factors that influence individual differences in neuroticism, agreeableness, conscientiousness, and extraversion account for all genetic liability to borderline personality. Unique environmental effects on borderline personality, however, were not completely shared with those for the FFM traits (33% is unique to borderline personality). Borderline personality shares all genetic variation with neuroticism, agreeableness, conscientiousness, and extraversion. The unique environmental influences specific to borderline personality may cause individuals with a specific pattern of personality traits to cross a threshold and develop borderline personality.

  15. Integrating Genetic, Neuropsychological and Neuroimaging Data to Model Early-Onset Obsessive Compulsive Disorder Severity.

    Directory of Open Access Journals (Sweden)

    Sergi Mas

    Full Text Available We propose an integrative approach that combines structural magnetic resonance imaging data (MRI, diffusion tensor imaging data (DTI, neuropsychological data, and genetic data to predict early-onset obsessive compulsive disorder (OCD severity. From a cohort of 87 patients, 56 with complete information were used in the present analysis. First, we performed a multivariate genetic association analysis of OCD severity with 266 genetic polymorphisms. This association analysis was used to select and prioritize the SNPs that would be included in the model. Second, we split the sample into a training set (N = 38 and a validation set (N = 18. Third, entropy-based measures of information gain were used for feature selection with the training subset. Fourth, the selected features were fed into two supervised methods of class prediction based on machine learning, using the leave-one-out procedure with the training set. Finally, the resulting model was validated with the validation set. Nine variables were used for the creation of the OCD severity predictor, including six genetic polymorphisms and three variables from the neuropsychological data. The developed model classified child and adolescent patients with OCD by disease severity with an accuracy of 0.90 in the testing set and 0.70 in the validation sample. Above its clinical applicability, the combination of particular neuropsychological, neuroimaging, and genetic characteristics could enhance our understanding of the neurobiological basis of the disorder.

  16. Integrating Genetic, Neuropsychological and Neuroimaging Data to Model Early-Onset Obsessive Compulsive Disorder Severity.

    Science.gov (United States)

    Mas, Sergi; Gassó, Patricia; Morer, Astrid; Calvo, Anna; Bargalló, Nuria; Lafuente, Amalia; Lázaro, Luisa

    2016-01-01

    We propose an integrative approach that combines structural magnetic resonance imaging data (MRI), diffusion tensor imaging data (DTI), neuropsychological data, and genetic data to predict early-onset obsessive compulsive disorder (OCD) severity. From a cohort of 87 patients, 56 with complete information were used in the present analysis. First, we performed a multivariate genetic association analysis of OCD severity with 266 genetic polymorphisms. This association analysis was used to select and prioritize the SNPs that would be included in the model. Second, we split the sample into a training set (N = 38) and a validation set (N = 18). Third, entropy-based measures of information gain were used for feature selection with the training subset. Fourth, the selected features were fed into two supervised methods of class prediction based on machine learning, using the leave-one-out procedure with the training set. Finally, the resulting model was validated with the validation set. Nine variables were used for the creation of the OCD severity predictor, including six genetic polymorphisms and three variables from the neuropsychological data. The developed model classified child and adolescent patients with OCD by disease severity with an accuracy of 0.90 in the testing set and 0.70 in the validation sample. Above its clinical applicability, the combination of particular neuropsychological, neuroimaging, and genetic characteristics could enhance our understanding of the neurobiological basis of the disorder.

  17. Genetic counseling, activism and 'genotype-first' diagnosis of developmental disorders.

    Science.gov (United States)

    Navon, Daniel

    2012-12-01

    This paper presents a sociological examination of the role of genetic counselors as advocates, not only for patients and their families, but also for genetic conditions themselves. In becoming activists for new disorders, genetic counselors are helping to create new categories that will shape expectations and treatment regimens for both existing patients and those who are yet to be diagnosed. By virtue of their expertise and their position at the intersection of several key professions and constituencies, genetic counselors are likely to play a central role in the way the genetic testing technologies, and especially 'genotype-first' diagnosis, impacts the way we understand and categorize developmental difference. I outline some of the promises and dangers that this kind of activism holds for people with developmental disabilities, and particularly the challenge presented by systemic ascertainment bias in the face of genotype-phenotype uncertainty. I argue that new testing techniques like microarray analysis that do not need to be targeted on the basis of clinical presentation throw these challenges into sharp relief, and that the genetic counseling community should consider how to marry advocacy for new genetic conditions with an emphasis on the indeterminate developmental potential of every child.

  18. The Genetic and Environmental Sources of Resemblance Between Normative Personality and Personality Disorder Traits.

    Science.gov (United States)

    Kendler, K S; Aggen, S H; Gillespie, Nathan; Neale, M C; Knudsen, G P; Krueger, R F; Czajkowski, Nikolai; Ystrom, Eivind; Reichborn-Kjennerud, T

    2017-04-01

    Recent work has suggested a high level of congruence between normative personality, most typically represented by the "big five" factors, and abnormal personality traits. In 2,293 Norwegian adult twins ascertained from a population-based registry, the authors evaluated the degree of sharing of genetic and environmental influences on normative personality, assessed by the Big Five Inventory (BFI), and personality disorder traits (PDTs), assessed by the Personality Inventory for DSM-5-Norwegian Brief Form (PID-5-NBF). For four of the five BFI dimensions, the strongest genetic correlation was observed with the expected PID-5-NBF dimension (e.g., neuroticism with negative affectivity [+], conscientiousness with disinhibition [-]). However, neuroticism, conscientiousness, and agreeableness had substantial genetic correlations with other PID-5-NBF dimensions (e.g., neuroticism with compulsivity [+], agreeableness with detachment [-]). Openness had no substantial genetic correlations with any PID-5-NBF dimension. The proportion of genetic risk factors shared in aggregate between the BFI traits and the PID-5-NBF dimensions was quite high for conscientiousness and neuroticism, relatively robust for extraversion and agreeableness, but quite low for openness. Of the six PID-5-NBF dimensions, three (negative affectivity, detachment, and disinhibition) shared, in aggregate, most of their genetic risk factors with normative personality traits. Genetic factors underlying psychoticism, antagonism, and compulsivity were shared to a lesser extent, suggesting that they are influenced by etiological factors not well indexed by the BFI.

  19. Molecular, Phenotypic Aspects and Therapeutic Horizons of Rare Genetic Bone Disorders

    Directory of Open Access Journals (Sweden)

    Taha Faruqi

    2014-01-01

    Full Text Available A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities.

  20. Genetic testing of children for predisposition to mood disorders: anticipating the clinical issues.

    Science.gov (United States)

    Erickson, Jessica A; Kuzmich, Lili; Ormond, Kelly E; Gordon, Erynn; Christman, Michael F; Cho, Mildred K; Levinson, Douglas F

    2014-08-01

    Large-scale sequencing information may provide a basis for genetic tests for predisposition to common disorders. In this study, participants in the Coriell Personalized Medicine Collaborative (N = 53) with a personal and/or family history of Major Depressive Disorder or Bipolar Disorder were interviewed based on the Health Belief Model around hypothetical intention to test one's children for probability of developing a mood disorder. Most participants (87 %) were interested in a hypothetical test for children that had high ("90 %") positive predictive value, while 51 % of participants remained interested in a modestly predictive test ("20 %"). Interest was driven by beliefs about effects of test results on parenting behaviors and on discrimination. Most participants favored testing before adolescence (64 %), and were reluctant to share results with asymptomatic children before adulthood. Participants anticipated both positive and negative effects of testing on parental treatment and on children's self-esteem. Further investigation will determine whether these findings will generalize to other complex disorders for which early intervention is possible but not clearly demonstrated to improve outcomes. More information is also needed about the effects of childhood genetic testing and sharing of results on parent-child relationships, and about the role of the child in the decision-making process.

  1. Genetic variations of human neuropsin gene and psychiatric disorders: polymorphism screening and possible association with bipolar disorder and cognitive functions.

    Science.gov (United States)

    Izumi, Aiko; Iijima, Yoshimi; Noguchi, Hiroko; Numakawa, Tadahiro; Okada, Takeya; Hori, Hiroaki; Kato, Tadafumi; Tatsumi, Masahiko; Kosuga, Asako; Kamijima, Kunitoshi; Asada, Takashi; Arima, Kunimasa; Saitoh, Osamu; Shiosaka, Sadao; Kunugi, Hiroshi

    2008-12-01

    Human neuropsin (NP) (hNP) has been implicated in the progressive change of cognitive abilities during primate evolution. The hNP gene maps to chromosome 19q13, a region reportedly linked to schizophrenia and bipolar disorder. Therefore, hNP is a functional and positional candidate gene for association with schizophrenia, mood disorders, and cognitive ability. Polymorphism screening was performed for the entire hNP gene. The core promoter region was determined and whether or not transcriptional activity alters in an allele-dependent manner was examined by using the dual-luciferase system. Allelic and genotypic distributions of five single-nucleotide polymorphisms (SNPs) were compared between patients with schizophrenia (n=439), major depression (n=409), bipolar disorder (n=207), and controls (n=727). A possible association of the hNP genotype with memory index (assessed with Wechsler Memory Scale, revised, WMS-R) and intelligence quotient (IQ assessed with Wechsler Adult Intelligence Scale, revised; WAIS-R) was examined in healthy controls (n=166). A total of 28 SNPs, including nine novel SNPs, were identified. No significant effects on transcriptional activity were observed for SNPs in the promoter region. A significant allelic association was found between several SNPs and bipolar disorder (for SNP23 at the 3' regulatory region; odds ratio 1.48, 95% confidential interval 1.16-1.88, P=0.0015). However, such an association was not detected for schizophrenia or depression. Significant differences were observed between SNP23 and attention/concentration sub-scale score of WMS-R (P=0.016) and verbal IQ (P<0.001). Genetic variation of the hNP gene may contribute to molecular mechanisms of bipolar disorder and some aspects of memory and intelligence.

  2. Environmental and Genetic Influences in Attention Deficit Hyperactivity Disorder (ADHD) and its Comorbidities

    OpenAIRE

    Johansson Capusan, Andrea

    2016-01-01

    Research in past decades has demonstrated the persistence of attention deficit hyperactivity disorder (ADHD) into adulthood, but many questions regarding prevalence, causes, and comorbidities of ADHD in adults remain to be investigated. Previous research focusing on childhood ADHD identified high heritability. Genetic and environmental influences on ADHD symptoms in adults and their association with comorbid conditions are not fully understood. The overall aim of this thesis was to study adul...

  3. The Molecular Genetics of Autism Spectrum Disorders: Genomic Mechanisms, Neuroimmunopathology, and Clinical Implications

    OpenAIRE

    Guerra, Daniel J.

    2011-01-01

    Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting th...

  4. Waardenburg syndrome: A rare genetic disorder, a report of two cases

    Directory of Open Access Journals (Sweden)

    Sudesh Kumar

    2012-01-01

    Full Text Available Waardenburg syndrome (WS is a rare genetic disorder. Patients have heterochromia or eyes with iris of different color, increased inter-canthal distance, distopia canthorum, pigmentation anomalies, and varying degree of deafness. It usually follows autosomal dominant pattern. In this report, two cases have been discussed but no familial history of WS has been found. Counseling of the patient is necessary and cases of irreversible deafness have been treated.

  5. Waardenburg syndrome: A rare genetic disorder, a report of two cases.

    Science.gov (United States)

    Kumar, Sudesh; Rao, Kiran

    2012-05-01

    Waardenburg syndrome (WS) is a rare genetic disorder. Patients have heterochromia or eyes with iris of different color, increased inter-canthal distance, distopia canthorum, pigmentation anomalies, and varying degree of deafness. It usually follows autosomal dominant pattern. In this report, two cases have been discussed but no familial history of WS has been found. Counseling of the patient is necessary and cases of irreversible deafness have been treated.

  6. Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture.

    Directory of Open Access Journals (Sweden)

    Lea K Davis

    2013-10-01

    Full Text Available The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD and Tourette Syndrome (TS, using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12 for TS, and 0.37 (se = 0.07, p = 1.5e-07 for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum for which we had available expression quantitative trait loci (eQTLs. Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002. These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.

  7. Partitioning the Heritability of Tourette Syndrome and Obsessive Compulsive Disorder Reveals Differences in Genetic Architecture

    Science.gov (United States)

    Davis, Lea K.; Yu, Dongmei; Keenan, Clare L.; Gamazon, Eric R.; Konkashbaev, Anuar I.; Derks, Eske M.; Neale, Benjamin M.; Yang, Jian; Lee, S. Hong; Evans, Patrick; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrio, Gabriel Bedoya; Bienvenu, Oscar J.; Bloch, Michael H.; Blom, Rianne M.; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond; Cappi, Carolina; Cardona Silgado, Julio C.; Cath, Danielle C.; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Conti, David V.; Cook, Edwin H.; Coric, Vladimir; Cullen, Bernadette A.; Deforce, Dieter; Delorme, Richard; Dion, Yves; Edlund, Christopher K.; Egberts, Karin; Falkai, Peter; Fernandez, Thomas V.; Gallagher, Patience J.; Garrido, Helena; Geller, Daniel; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Haddad, Stephen; Heiman, Gary A.; Hemmings, Sian M. J.; Hounie, Ana G.; Illmann, Cornelia; Jankovic, Joseph; Jenike, Michael A.; Kennedy, James L.; King, Robert A.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Macciardi, Fabio; McCracken, James T.; McGrath, Lauren M.; Mesa Restrepo, Sandra C.; Moessner, Rainald; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Ochoa, William Cornejo; Ophoff, Roel A.; Osiecki, Lisa; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias J.; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosàrio, Maria C.; Rosenberg, David; Rouleau, Guy A.; Ruhrmann, Stephan; Ruiz-Linares, Andres; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, E.; Tischfield, Jay A.; Valencia Duarte, Ana V.; Vallada, Homero; Van Nieuwerburgh, Filip; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R.; Westenberg, Herman G. M.; Shugart, Yin Yao; Miguel, Euripedes C.; McMahon, William; Wagner, Michael; Nicolini, Humberto; Posthuma, Danielle; Hanna, Gregory L.; Heutink, Peter; Denys, Damiaan; Arnold, Paul D.; Oostra, Ben A.; Nestadt, Gerald; Freimer, Nelson B.; Pauls, David L.; Wray, Naomi R.

    2013-01-01

    The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures. PMID:24204291

  8. Genetic variation in the endocannabinoid system and response to Cognitive Behavior Therapy for child anxiety disorders.

    Science.gov (United States)

    Lester, Kathryn J; Coleman, Jonathan R I; Roberts, Susanna; Keers, Robert; Breen, Gerome; Bögels, Susan; Creswell, Cathy; Hudson, Jennifer L; McKinnon, Anna; Nauta, Maaike; Rapee, Ronald M; Schneider, Silvia; Silverman, Wendy K; Thastum, Mikael; Waite, Polly; Wergeland, Gro Janne H; Eley, Thalia C

    2017-03-01

    Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re-emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre- and post-treatment and during the follow-up period in the full sample and a subset with fear-based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P < 0.05) with two SNPs. During the follow-up period, five SNPs were nominally associated with a poorer treatment response (rs806365 [CNR1]; rs2501431 [CNR2]; rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH]) and one with a more favorable response (rs6928813 [CNR1]). Within the fear-based subset, the effect of rs806365 survived multiple testing corrections (P < 0.0016). We found very limited evidence for an association between variants in endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by

  9. A systematic review of genetic skeletal disorders reported in Chinese biomedical journals between 1978 and 2012

    Directory of Open Access Journals (Sweden)

    Cui Yazhou

    2012-08-01

    Full Text Available Abstract Little information is available on the prevalence, geographic distribution and mutation spectrum of genetic skeletal disorders (GSDs in China. This study systematically reviewed GSDs as defined in “Nosology and Classification of genetic skeletal disorders (2010 version” using Chinese biomedical literature published over the past 34 years from 1978 to 2012. In total, 16,099 GSDs have been reported. The most frequently reported disorders were Marfan syndrome, osteogenesis imperfecta, fibrous dysplasia, mucopolysaccharidosis, multiple cartilaginous exostoses, neurofibromatosis type 1 (NF1, osteopetrosis, achondroplasia, enchondromatosis (Ollier, and osteopoikilosis, accounting for 76.5% (12,312 cases of the total cases. Five groups (group 8, 12, 14, 18, 21 defined by “Nosology and Classification of genetic skeletal disorders” have not been reported in the Chinese biomedical literature. Gene mutation testing was performed in only a minor portion of the 16,099 cases of GSDs (187 cases, 1.16%. In total, 37 genes for 41 different GSDs were reported in Chinese biomedical literature, including 43 novel mutations. This review revealed a significant imbalance in rare disease identification in terms of geographic regions and hospital levels, suggesting the need to create a national multi-level network to meet the specific challenge of care for rare diseases in China.

  10. Molecular and Genetic Characterization of Depression: Overlap with other Psychiatric Disorders and Aging.

    Science.gov (United States)

    Ding, Ying; Chang, Lun-Ching; Wang, Xingbin; Guilloux, Jean-Philippe; Parrish, Jenna; Oh, Hyunjung; French, Beverly J; Lewis, David A; Tseng, George C; Sibille, Etienne

    2015-05-01

    Genome-wide expression and genotyping technologies have uncovered the genetic bases of complex diseases at unprecedented rates; However despite its heavy burden and high prevalence, the molecular characterization of major depressive disorder (MDD) has lagged behind. Transcriptome studies report multiple brain disturbances but are limited by small sample sizes. Genome-wide association studies (GWAS) report weak results but suggest overlapping genetic risk with other neuropsychiatric disorders. We performed systematic molecular characterization of altered brain function in MDD, using meta-analysis of differential expression in eight gene array studies in three corticolimbic brain regions in 101 subjects. The identified "metaA-MDD" genes suggest altered neurotrophic support, brain plasticity and neuronal signaling in MDD. Notably, metaA-MDD genes display low connectivity and hubness in coexpression networks, and uniform genomic distribution, consistent with diffuse polygenic mechanisms. We next integrated these findings with results from over 1800 published GWAS and show that genetic variations nearby metaA-MDD genes predict greater risk for neuropsychiatric disorders and notably for age-related phenotypes, but not for other medical illnesses, including those frequently co-morbid with depression, or body characteristics. Collectively, the intersection of unbiased investigations of gene function (transcriptome) and structure (GWAS) provides novel leads to investigate molecular mechanisms of MDD and suggest common biological pathways between depression, other neuropsychiatric diseases, and brain aging.

  11. Genetic polymorphisms: impact on the risk of fetal alcohol spectrum disorders.

    Science.gov (United States)

    Warren, Kenneth R; Li, Ting-Kai

    2005-04-01

    Clinical reports on monozygotic and dizygotic twins provided the initial evidence for the involvement of genetic factors in risk vulnerability for fetal alcohol spectrum disorders (FASD) including fetal alcohol syndrome (FAS). Research with selectively bred and inbred rodents, genetic crosses of these lines and strains, and embryo culture studies have further clarified the role of both maternal and fetal genetics in the development of FASD. Research to identify specific polymorphisms contributing to FASD is still at an early stage. To date, polymorphisms of only one of the genes for the alcohol dehydrogenase enzyme family, the ADH1B, have been demonstrated to contribute to FASD vulnerability. In comparison with ADH1B*1, both maternal and fetal ADH1B*2 have been shown to reduce risk for FAS in a mixed ancestry South African population. ADH1B*3 appears to afford protection for FASD outcomes in African-American populations. Other candidate genes should be examined with respect to FASD risk, including those for the enzymes of serotonin metabolism, in particular the serotonin transporter. By its very nature, alcohol teratogenesis is the expression of the interaction of genes with environment. The study of genetic factors in FASD falls within the new field of ecogenetics. Understanding of the array of genetic factors in FASD will be enhanced by future genetic investigations, including case-control, family association, and linkage studies.

  12. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    Science.gov (United States)

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna S; Bocchini, Carol A; McKusick, Victor A

    2005-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  13. C9orf72-related disorders: expanding the clinical and genetic spectrum of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paulo Victor Sgobbi de Souza

    2015-03-01

    Full Text Available Neurodegenerative diseases represent a heterogeneous group of neurological conditions primarily involving dementia, motor neuron disease and movement disorders. They are mostly related to different pathophysiological processes, notably in family forms in which the clinical and genetic heterogeneity are lush. In the last decade, much knowledge has been acumulated about the genetics of neurodegenerative diseases, making it essential in cases of motor neuron disease and frontotemporal dementia the repeat expansions of C9orf72 gene. This review analyzes the main clinical, radiological and genetic aspects of the phenotypes related to the hexanucleotide repeat expansions (GGGGCC of C9orf72 gene. Future studies will aim to further characterize the neuropsychological, imaging and pathological aspects of the extra-motor features of motor neuron disease, and will help to provide a new classification system that is both clinically and biologically relevant.

  14. The variation game: Cracking complex genetic disorders with NGS and omics data.

    Science.gov (United States)

    Cui, Hongzhu; Dhroso, Andi; Johnson, Nathan; Korkin, Dmitry

    2015-06-01

    Tremendous advances in Next Generation Sequencing (NGS) and high-throughput omics methods have brought us one step closer towards mechanistic understanding of the complex disease at the molecular level. In this review, we discuss four basic regulatory mechanisms implicated in complex genetic diseases, such as cancer, neurological disorders, heart disease, diabetes, and many others. The mechanisms, including genetic variations, copy-number variations, posttranscriptional variations, and epigenetic variations, can be detected using a variety of NGS methods. We propose that malfunctions detected in these mechanisms are not necessarily independent, since these malfunctions are often found associated with the same disease and targeting the same gene, group of genes, or functional pathway. As an example, we discuss possible rewiring effects of the cancer-associated genetic, structural, and posttranscriptional variations on the protein-protein interaction (PPI) network centered around P53 protein. The review highlights multi-layered complexity of common genetic disorders and suggests that integration of NGS and omics data is a critical step in developing new computational methods capable of deciphering this complexity.

  15. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  16. FINDbase: a relational database recording frequencies of genetic defects leading to inherited disorders worldwide.

    Science.gov (United States)

    van Baal, Sjozef; Kaimakis, Polynikis; Phommarinh, Manyphong; Koumbi, Daphne; Cuppens, Harry; Riccardino, Francesca; Macek, Milan; Scriver, Charles R; Patrinos, George P

    2007-01-01

    Frequency of INherited Disorders database (FINDbase) (http://www.findbase.org) is a relational database, derived from the ETHNOS software, recording frequencies of causative mutations leading to inherited disorders worldwide. Database records include the population and ethnic group, the disorder name and the related gene, accompanied by links to any corresponding locus-specific mutation database, to the respective Online Mendelian Inheritance in Man entries and the mutation together with its frequency in that population. The initial information is derived from the published literature, locus-specific databases and genetic disease consortia. FINDbase offers a user-friendly query interface, providing instant access to the list and frequencies of the different mutations. Query outputs can be either in a table or graphical format, accompanied by reference(s) on the data source. Registered users from three different groups, namely administrator, national coordinator and curator, are responsible for database curation and/or data entry/correction online via a password-protected interface. Databaseaccess is free of charge and there are no registration requirements for data querying. FINDbase provides a simple, web-based system for population-based mutation data collection and retrieval and can serve not only as a valuable online tool for molecular genetic testing of inherited disorders but also as a non-profit model for sustainable database funding, in the form of a 'database-journal'.

  17. Accuracy of preimplantation genetic diagnosis (PGD) of single gene and chromosomal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Verlinsky, Y.; Strom, C.; Rechitsky, S. [Reproductive Genetics Institute, Chicage, IL (United States)] [and others

    1994-09-01

    We have developed a polar body inferred approach for preconception diagnosis of single gene and chromosomal disorders. Preconception PCR or FISH analysis was performed in a total of 310 first polar bodies for the following genetic conditions: cystic fibrosis, hemophilia A, alpha-1-antitrypsin deficiency, Tay Sachs disease, retinitis pigmentosa and common chromosomal trisomies. An important advantage of this approach is the avoidance of sperm (DNA) contamination, which is the major problem of PGD. We are currently applying FISH analysis of biopsied blastomeres, in combination with PCR or separately, and have demonstrated a significant improvement of the accuracy of PGD of X-linked disorders at this stage. Our data have also demonstrated feasibility of the application of FISH technique for PGD of chromosomal disorders. It was possible to detect chromosomal non-disjunctions and chromatid malsegregations in the first meiotic division, as well as to evaluate chromosomal mutations originating from the second meiotic nondisjunction.

  18. Attitudes about Future Genetic Testing for Posttraumatic Stress Disorder and Addiction among Community-Based Veterans.

    Science.gov (United States)

    Lent, Michelle R; Hoffman, Stuart N; Kirchner, H Lester; Urosevich, Thomas G; Boscarino, Joseph J; Boscarino, Joseph A

    2017-01-01

    This study explored attitudes toward hypothetical genetic testing for posttraumatic stress disorder (PTSD) and addiction among veterans. We surveyed a random sample of community-based veterans (n = 700) by telephone. One year later, we asked the veterans to provide a DNA sample for analysis and 41.9% of them returned the DNA samples. Overall, most veterans were not interested in genetic testing neither for PTSD (61.7%) nor for addiction (68.7%). However, bivariate analyses suggested there was an association between having the condition of interest and the likelihood of genetic testing on a 5-point scale (p < 0.001 for PTSD; p = 0.001 for alcohol dependence). While ordinal regressions confirmed these associations, the models with the best statistical fit were bivariate models of whether the veteran would likely test or not. Using logistic regressions, significant predictors for PTSD testing were receiving recent mental health treatment, history of a concussion, younger age, having PTSD, having alcohol dependence, currently taking opioids for pain, and returning the DNA sample during the follow-up. For addiction testing, significant predictors were history of concussion, younger age, psychotropic medication use, having alcohol dependence, and currently taking opioids for pain. Altogether, 25.9% of veterans reported that they would have liked to have known their genetic results before deployment, 15.6% reported after deployment, and 58.6% reported they did not want to know neither before nor after deployment. As advancements in genetic testing continue to evolve, our study suggests that consumer attitudes toward genetic testing for mental disorders are complex and better understanding of these attitudes and beliefs will be crucial to successfully promote utilization.

  19. Attitudes about Future Genetic Testing for Posttraumatic Stress Disorder and Addiction among Community-Based Veterans

    Directory of Open Access Journals (Sweden)

    Michelle R. Lent

    2017-05-01

    Full Text Available This study explored attitudes toward hypothetical genetic testing for posttraumatic stress disorder (PTSD and addiction among veterans. We surveyed a random sample of community-based veterans (n = 700 by telephone. One year later, we asked the veterans to provide a DNA sample for analysis and 41.9% of them returned the DNA samples. Overall, most veterans were not interested in genetic testing neither for PTSD (61.7% nor for addiction (68.7%. However, bivariate analyses suggested there was an association between having the condition of interest and the likelihood of genetic testing on a 5-point scale (p < 0.001 for PTSD; p = 0.001 for alcohol dependence. While ordinal regressions confirmed these associations, the models with the best statistical fit were bivariate models of whether the veteran would likely test or not. Using logistic regressions, significant predictors for PTSD testing were receiving recent mental health treatment, history of a concussion, younger age, having PTSD, having alcohol dependence, currently taking opioids for pain, and returning the DNA sample during the follow-up. For addiction testing, significant predictors were history of concussion, younger age, psychotropic medication use, having alcohol dependence, and currently taking opioids for pain. Altogether, 25.9% of veterans reported that they would have liked to have known their genetic results before deployment, 15.6% reported after deployment, and 58.6% reported they did not want to know neither before nor after deployment. As advancements in genetic testing continue to evolve, our study suggests that consumer attitudes toward genetic testing for mental disorders are complex and better understanding of these attitudes and beliefs will be crucial to successfully promote utilization.

  20. A novel analytical framework for dissecting the genetic architecture of behavioral symptoms in neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Anthony J Deo

    Full Text Available BACKGROUND: For diagnosis of neuropsychiatric disorders, a categorical classification system is often utilized as a simple way for conceptualizing an often complex clinical picture. This approach provides an unsatisfactory model of mental illness, since in practice patients do not conform to these prototypical diagnostic categories. Family studies show notable familial co-aggregation between schizophrenia and bipolar illness and between schizoaffective disorders and both bipolar disorder and schizophrenia, revealing that mental illness does not conform to such categorical models and is likely to follow a continuum encompassing a spectrum of behavioral symptoms. RESULTS AND METHODOLOGY: We introduce an analytic framework to dissect the phenotypic heterogeneity present in complex psychiatric disorders based on the conceptual paradigm of a continuum of psychosis. The approach identifies subgroups of behavioral symptoms that are likely to be phenotypically and genetically homogenous. We have evaluated this approach through analysis of simulated data with simulated behavioral traits and predisposing genetic factors. We also apply this approach to a psychiatric dataset of a genome scan for schizophrenia for which extensive behavioral information was collected for each individual patient and their families. With this approach, we identified significant evidence for linkage among depressed individuals with two distinct symptom profiles, that is individuals with sleep disturbance symptoms with linkage on chromosome 2q13 and also a mutually exclusive group of individuals with symptoms of concentration problems with linkage on chromosome 2q35. In addition we identified a subset of individuals with schizophrenia defined by language disturbances with linkage to chromosome 2p25.1 and a group of patients with a phenotype intermediate between those of schizophrenia and schizoaffective disorder with linkage to chromosome 2p21. CONCLUSIONS: The findings presented

  1. Network dysfunction of emotional and cognitive processes in those at genetic risk of bipolar disorder.

    Science.gov (United States)

    Breakspear, Michael; Roberts, Gloria; Green, Melissa J; Nguyen, Vinh T; Frankland, Andrew; Levy, Florence; Lenroot, Rhoshel; Mitchell, Philip B

    2015-11-01

    The emotional and cognitive vulnerabilities that precede the development of bipolar disorder are poorly understood. The inferior frontal gyrus-a key cortical hub for the integration of cognitive and emotional processes-exhibits both structural and functional changes in bipolar disorder, and is also functionally impaired in unaffected first-degree relatives, showing diminished engagement during inhibition of threat-related emotional stimuli. We hypothesized that this functional impairment of the inferior frontal gyrus in those at genetic risk of bipolar disorder reflects the dysfunction of broader network dynamics underlying the coordination of emotion perception and cognitive control. To test this, we studied effective connectivity in functional magnetic resonance imaging data acquired from 41 first-degree relatives of patients with bipolar disorder, 45 matched healthy controls and 55 participants with established bipolar disorder. Dynamic causal modelling was used to model the neuronal interaction between key regions associated with fear perception (the anterior cingulate), inhibition (the left dorsolateral prefrontal cortex) and the region upon which these influences converge, namely the inferior frontal gyrus. Network models that embodied non-linear, hierarchical relationships were the most strongly supported by data from our healthy control and bipolar participants. We observed a marked difference in the hierarchical influence of the anterior cingulate on the effective connectivity from the dorsolateral prefrontal cortex to the inferior frontal gyrus that is unique to the at-risk cohort. Non-specific, non-hierarchical mechanisms appear to compensate for this network disturbance. We thus establish a specific network disturbance suggesting dysfunction in the processes that support hierarchical relationships between emotion and cognitive control in those at high genetic risk for bipolar disorder. © The Author (2015). Published by Oxford University Press on behalf

  2. Heritability and Genetic Relationship of Adult Self-Reported Stuttering, Cluttering and Childhood Speech-Language Disorders

    DEFF Research Database (Denmark)

    Fagnani, Corrado; Fibiger, Steen; Skytthe, Axel

    2011-01-01

    Genetic influence and mutual genetic relationship for adult self-reported childhood speech-language disorders, stuttering, and cluttering were studied. Using nationwide questionnaire answers from 34,944 adult Danish twins, a multivariate biometric analysis based on the liability-threshold model...... for monozygotic compared to dizygotic pairs, suggesting genetic influence. Multivariate biometric analyses showed that additive genetic and unique environmental factors best explained the observed concordance patterns. Heritability estimates for males/females were 0.71/0.87 for childhood speech-language disorders......, 0.78/0.80 for stuttering, and 0.53/0.65 for cluttering. For each trait, the same genes were suggested to affect liability in males and females. Furthermore, high genetic correlations between the traits were obtained; the estimates for childhood speech-language disorders and stuttering were 0...

  3. Anxiety and affective disorder comorbidity related to serotonin and other neurotransmitter systems: obsessive–compulsive disorder as an example of overlapping clinical and genetic heterogeneity

    Science.gov (United States)

    Murphy, Dennis L.; Moya, Pablo R.; Fox, Meredith A.; Rubenstein, Liza M.; Wendland, Jens R.; Timpano, Kiara R.

    2013-01-01

    Individuals with obsessive–compulsive disorder (OCD) have also been shown to have comorbid lifetime diagnoses of major depressive disorder (MDD; rates greater than 70%), bipolar disorder (rates greater than 10%) and other anxiety disorders (e.g. panic disorder, post-traumatic stress disorder (PTSD)). In addition, overlap exists in some common genetic variants (e.g. the serotonin transporter gene (SLC6A4), the brain-derived neurotrophic factor (BDNF) gene), and rare variants in genes/chromosomal abnormalities (e.g. the 22q11 microdeletion syndrome) found across the affective/anxiety disorder spectrums. OCD has been proposed as a possible independent entity for DSM-5, but by others thought best retained as an anxiety disorder subtype (its current designation in DSM-IV), and yet by others considered best in the affective disorder spectrum. This review focuses on OCD, a well-studied but still puzzling heterogeneous disorder, regarding alterations in serotonergic, dopaminergic and glutamatergic neurotransmission in addition to other systems involved, and how related genes may be involved in the comorbidity of anxiety and affective disorders. OCD resembles disorders such as depression, in which gene × gene interactions, gene × environment interactions and stress elements coalesce to yield OC symptoms and, in some individuals, full-blown OCD with multiple comorbid disorders. PMID:23440468

  4. Genetic Disorders

    Science.gov (United States)

    ... done on cells from the fetus obtained through amniocentesis , chorionic villus sampling , or, rarely, fetal blood sampling. ... the option of not continuing the pregnancy. Glossary Amniocentesis: A procedure in which a needle is used ...

  5. Genetic admixture and risk of hypertensive disorders of pregnancy among Latinas in Los Angeles County.

    Science.gov (United States)

    Shahabi, Ahva; Wilson, Melissa L; Lewinger, Juan Pablo; Goodwin, T Murphy; Stern, Mariana C; Ingles, Sue A

    2013-03-01

    Latinos are a heterogeneous population in terms of demographics, culture, and genetic admixture from three racial groups (white, African, and Native American). This study examines the role of genetic ancestry and environmental risk factors in the risk of hypertensive disorder of pregnancy among Latinas in Los Angeles County. Gestational hypertension, preeclampsia, eclampsia, or hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome cases (n = 125), plus unaffected controls (n = 161), were recruited from Los Angeles County + University of Southern California Women's and Children's Hospital from 1999 through 2008. Diagnoses were confirmed with extensive chart review. Personal information, demographics, and biospecimens were collected from all participants. Ancestry informative markers were used to estimate genetic ancestry proportions. After adjusting for European ancestry and key risk factors, African ancestry was positively associated with hypertensive disorders of pregnancy risk for the highest vs. the lowest quartiles of African ancestry (odds ratio = 2.6 [95% confidence interval = 1.1-6.1]). This association was stronger among women born in Mexico with parents born in Mexico (4.3 [1.4-13]). The results from generalized additive models showed a positive association between joint European/African ancestry and hypertensive disorders of pregnancy risk and an inverse association between Native American ancestry and risk. These associations were stronger among women of Mexican origin. Our findings suggest that higher Native American ancestry among Latinas may protect against hypertensive disorders of pregnancy. Further studies are needed to determine whether this protective effect is driven by specific alleles present in this population or by other risk factors that correlate with Native American ancestry.

  6. Inbreeding levels in Northeast Brazil: strategies for the prospecting of new genetic disorders

    Directory of Open Access Journals (Sweden)

    Silvana Santos

    2010-01-01

    Full Text Available A new autosomal recessive genetic condition, the SPOAN syndrome (an acronym for spastic paraplegia, optic atrophy and neuropathy syndrome, was recently discovered in an isolated region of the State of Rio Grande do Norte in Northeast Brazil, in a population that was identified by the IBGE (Brazilian Institute of Geography and Statistics as belonging to the Brazilian communities with the highest rates of "deficiencies" (Neri, 2003, a term used to describe diseases, malformations, and handicaps in general. This prompted us to conduct a study of consanguinity levels in five of its municipal districts by directly interviewing their inhabitants. Information on 7,639 couples (corresponding to about 40% of the whole population of the studied districts was obtained. The research disclosed the existence of very high frequencies of consanguineous marriages, which varied from about 9% to 32%, suggesting the presence of a direct association between genetic diseases such as the SPOAN syndrome, genetic drift and inbreeding levels. This fact calls for the introduction of educational programs for the local populations, as well as for further studies aiming to identify and characterize other genetic conditions. Epidemiological strategies developed to collect inbreeding data, with the collaboration of health systems available in the region, might be very successful in the prospecting of genetic disorders.

  7. Inbreeding levels in Northeast Brazil: Strategies for the prospecting of new genetic disorders

    Science.gov (United States)

    2010-01-01

    A new autosomal recessive genetic condition, the SPOAN syndrome (an acronym for spastic paraplegia, optic atrophy and neuropathy syndrome), was recently discovered in an isolated region of the State of Rio Grande do Norte in Northeast Brazil, in a population that was identified by the IBGE (Brazilian Institute of Geography and Statistics) as belonging to the Brazilian communities with the highest rates of “deficiencies” (Neri, 2003), a term used to describe diseases, malformations, and handicaps in general. This prompted us to conduct a study of consanguinity levels in five of its municipal districts by directly interviewing their inhabitants. Information on 7,639 couples (corresponding to about 40% of the whole population of the studied districts) was obtained. The research disclosed the existence of very high frequencies of consanguineous marriages, which varied from about 9% to 32%, suggesting the presence of a direct association between genetic diseases such as the SPOAN syndrome, genetic drift and inbreeding levels. This fact calls for the introduction of educational programs for the local populations, as well as for further studies aiming to identify and characterize other genetic conditions. Epidemiological strategies developed to collect inbreeding data, with the collaboration of health systems available in the region, might be very successful in the prospecting of genetic disorders. PMID:21637472

  8. The Genetics of Obsessive-Compulsive Disorder and Tourette Syndrome: An Epidemiological and Pathway-Based Approach for Gene Discovery

    Science.gov (United States)

    Grados, Marco A.

    2010-01-01

    Objective: To provide a contemporary perspective on genetic discovery methods applied to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). Method: A review of research trends in genetics research in OCD and TS is conducted, with emphasis on novel approaches. Results: Genome-wide association studies (GWAS) are now in progress in OCD…

  9. The Genetics of Obsessive-Compulsive Disorder and Tourette Syndrome: An Epidemiological and Pathway-Based Approach for Gene Discovery

    Science.gov (United States)

    Grados, Marco A.

    2010-01-01

    Objective: To provide a contemporary perspective on genetic discovery methods applied to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). Method: A review of research trends in genetics research in OCD and TS is conducted, with emphasis on novel approaches. Results: Genome-wide association studies (GWAS) are now in progress in OCD…

  10. Current Issues in the Neurology and Genetics of Learning-Related Traits and Disorders: Introduction to the Special Issue.

    Science.gov (United States)

    Gilger, Jeffrey W.

    2001-01-01

    This introductory article briefly describes each of the following eight articles in this special issue on the neurology and genetics of learning related disorders. It notes the greater appreciation of learning disability as a set of complex disorders with broad and intricate neurological bases and of the large individual differences in how these…

  11. Genetic Variation in Melatonin Pathway Enzymes in Children with Autism Spectrum Disorder and Comorbid Sleep Onset Delay

    Science.gov (United States)

    Veatch, Olivia J.; Pendergast, Julie S.; Allen, Melissa J.; Leu, Roberta M.; Johnson, Carl Hirschie; Elsea, Sarah H.; Malow, Beth A.

    2015-01-01

    Sleep disruption is common in individuals with autism spectrum disorder (ASD). Genes whose products regulate endogenous melatonin modify sleep patterns and have been implicated in ASD. Genetic factors likely contribute to comorbid expression of sleep disorders in ASD. We studied a clinically unique ASD subgroup, consisting solely of children with…

  12. Current Issues in the Neurology and Genetics of Learning-Related Traits and Disorders: Introduction to the Special Issue.

    Science.gov (United States)

    Gilger, Jeffrey W.

    2001-01-01

    This introductory article briefly describes each of the following eight articles in this special issue on the neurology and genetics of learning related disorders. It notes the greater appreciation of learning disability as a set of complex disorders with broad and intricate neurological bases and of the large individual differences in how these…

  13. A Songbird Animal Model for Dissecting the Genetic Bases of Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    S. Carmen Panaitof

    2012-01-01

    Full Text Available The neural and genetic bases of human language development and associated neurodevelopmental disorders, including autism spectrum disorder (ASD, in which language impairment represents a core deficit, are poorly understood. Given that no single animal model can fully capture the behavioral and genetic complexity of ASD, work in songbird, an experimentally tractable animal model of vocal learning, can complement the valuable tool of rodent genetic models and contribute important insights to our understanding of the communication deficits observed in ASD. Like humans, but unlike traditional laboratory animals such as rodents or non-human primates, songbirds exhibit the capacity of vocal learning, a key subcomponent of language. Human speech and birdsong reveal important parallels, highlighting similar developmental critical periods, a homologous cortico-basal ganglia-thalamic circuitry, and a critical role for social influences in the learning of vocalizations. Here I highlight recent advances in using the songbird model to probe the cellular and molecular mechanisms underlying the formation and function of neural circuitry for birdsong and, by analogy, human language, with the ultimate goal of identifying any shared or human unique biological pathways underscoring language development and its disruption in ASD.

  14. Genetics of borderline personality disorder: systematic review and proposal of an integrative model.

    Science.gov (United States)

    Amad, Ali; Ramoz, Nicolas; Thomas, Pierre; Jardri, Renaud; Gorwood, Philip

    2014-03-01

    Borderline personality disorder (BPD) is one of the most common mental disorders and is characterized by a pervasive pattern of emotional lability, impulsivity, interpersonal difficulties, identity disturbances, and disturbed cognition. Here, we performed a systematic review of the literature concerning the genetics of BPD, including familial and twin studies, association studies, and gene-environment interaction studies. Moreover, meta-analyses were performed when at least two case-control studies testing the same polymorphism were available. For each gene variant, a pooled odds ratio (OR) was calculated using fixed or random effects models. Familial and twin studies largely support the potential role of a genetic vulnerability at the root of BPD, with an estimated heritability of approximately 40%. Moreover, there is evidence for both gene-environment interactions and correlations. However, association studies for BPD are sparse, making it difficult to draw clear conclusions. According to our meta-analysis, no significant associations were found for the serotonin transporter gene, the tryptophan hydroxylase 1 gene, or the serotonin 1B receptor gene. We hypothesize that such a discrepancy (negative association studies but high heritability of the disorder) could be understandable through a paradigm shift, in which "plasticity" genes (rather than "vulnerability" genes) would be involved. Such a framework postulates a balance between positive and negative events, which interact with plasticity genes in the genesis of BPD.

  15. Polygenic risk assessment reveals pleiotropy between sarcoidosis and inflammatory disorders in the context of genetic ancestry.

    Science.gov (United States)

    Lareau, C A; DeWeese, C F; Adrianto, I; Lessard, C J; Gaffney, P M; Iannuzzi, M C; Rybicki, B A; Levin, A M; Montgomery, C G

    2017-03-01

    Sarcoidosis is a complex disease of unknown etiology characterized by the presence of granulomatous inflammation. Though various immune system pathways have been implicated in disease, the relationship between the genetic determinants of sarcoidosis and other inflammatory disorders has not been characterized. Herein, we examined the degree of genetic pleiotropy common to sarcoidosis and other inflammatory disorders to identify shared pathways and disease systems pertinent to sarcoidosis onset. To achieve this, we quantify the association of common variant polygenic risk scores from nine complex inflammatory disorders with sarcoidosis risk. Enrichment analyses of genes implicated in pleiotropic associations were further used to elucidate candidate pathways. In European-Americans, we identify significant pleiotropy between risk of sarcoidosis and risk of asthma (R(2)=2.03%; P=8.89 × 10(-9)), celiac disease (R(2)=2.03%; P=8.21 × 10(-9)), primary biliary cirrhosis (R(2)=2.43%; P=2.01 × 10(-10)) and rheumatoid arthritis (R(2)=4.32%; P=2.50 × 10(-17)). These associations validate in African Americans only after accounting for the proportion of genome-wide European ancestry, where we demonstrate similar effects of polygenic risk for African-Americans with the highest levels of European ancestry. Variants and genes implicated in European-American pleiotropic associations were enriched for pathways involving interleukin-12, interleukin-27 and cell adhesion molecules, corroborating the hypothesized immunopathogenesis of disease.

  16. Association between genetic polymorphisms in the serotonergic system and comorbid personality disorders among patients with first-episode depression.

    Science.gov (United States)

    Bukh, Jens D; Bock, Camilla; Kessing, Lars V

    2014-06-01

    Studies on the association between genetic polymorphisms and personality disorders have provided inconsistent results. Using the "enriched sample method," the authors of the present study aimed to assess the association between polymorphisms in the serotonergic transmitter system and comorbid personality disorders in patients recently diagnosed with first-episode depression. A total of 290 participants were systematically recruited via the Danish Psychiatric Central Research Register. Diagnoses of personality disorders were assessed by a SCID-II interview, and polymorphisms in the genes encoding the serotonin transporter, serotonin receptors 1A, 2A, 2C, and tryptophan hydroxylase 1 were genotyped. The authors found a significant effect of the length polymorphism in the serotonin transporter gene (5-HTTLPR) on cluster B personality disorder (mainly borderline disorder), but no influence on cluster C personality disorder, and no associations between other polymorphisms and personality disorders. The study adds evidence to the effect of the serotonin transporter gene specifically on cluster B personality disorders.

  17. A qualitative inquiry of the financial concerns of couples opting to use preimplantation genetic diagnosis to prevent the transmission of known genetic disorders.

    Science.gov (United States)

    Drazba, Kathryn T; Kelley, Michele A; Hershberger, Patricia E

    2014-04-01

    Preimplantation genetic diagnosis (PGD) is an innovative prenatal testing option because the determination of whether a genetic disorder or chromosomal abnormality is evident occurs prior to pregnancy. However, PGD is not covered financially under the majority of private and public health insurance institutions in the United States, leaving couples to decide whether PGD is financially feasible. The aim of this qualitative study was to understand the role of finances in the decision-making process among couples who were actively considering PGD. In-depth, semi-structured interviews were completed with 18 genetic high-risk couples (36 individual partners). Grounded theory guided the analysis, whereby three themes emerged: 1) Cost is salient, 2) Emotions surrounding affordability, and 3) Financial burden and sacrifice. Ultimately, couples determined that the opportunity to avoid passing on a genetic disorder to a future child was paramount to the cost of PGD, but expressed financial concerns and recognized financial access as a major barrier to PGD utilization.

  18. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    Science.gov (United States)

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family

  19. Clinical and genetic factors associated with suicide in mood disorder patients.

    Science.gov (United States)

    Antypa, Niki; Souery, Daniel; Tomasini, Mario; Albani, Diego; Fusco, Federica; Mendlewicz, Julien; Serretti, Alessandro

    2016-03-01

    Suicidality is a continuum ranging from ideation to attempted and completed suicide, with a complex etiology involving both genetic heritability and environmental factors. The majority of suicide events occur in the context of psychiatric conditions, preeminently major depression and bipolar disorder. The present study investigates clinical factors associated with suicide in a sample of 553 mood disorder patients, recruited within the 'Psy Pluriel' center, Centre Européen de Psychologie Médicale, and the Department of Psychiatry of Erasme Hospital (Brussels). Furthermore, genetic association analyses examining polymorphisms within COMT, BDNF, MAPK1 and CREB1 genes were performed in a subsample of 259 bipolar patients. The presence or absence of a previous suicide attempt and of current suicide risk were assessed. A positive association with suicide attempt was reported for younger patients, females, lower educated, smokers, those with higher scores on depressive symptoms and higher functional disability and those with anxiety comorbidity and familial history of suicidality in first- and second-degree relatives. Anxiety disorder comorbidity was the stronger predictor of current suicide risk. No associations were found with polymorphisms within COMT and BDNF genes, whereas significant associations were found with variations in rs13515 (MAPK1) and rs6740584 (CREB1) polymorphisms. From a clinical perspective, our study proposes several clinical characteristics, such as increased depressive symptomatology, anxiety comorbidity, functional disability and family history of suicidality, as correlates associated with suicide. Genetic risk variants in MAPK1 and CREB1 genes might be involved in a dysregulation of inflammatory and neuroplasticity pathways and are worthy of future investigation.

  20. Psychosis genetics: modeling the relationship between schizophrenia, bipolar disorder, and mixed (or "schizoaffective") psychoses.

    Science.gov (United States)

    Craddock, Nick; O'Donovan, M C; Owen, M J

    2009-05-01

    As a result of improving technologies and greatly increased sample sizes, the last 2 years has seen unprecedented advances in identification of specific genetic risk factors for psychiatric phenotypes. Strong genetic associations have been reported at common polymorphisms within ANK3 and CACNA1C in bipolar disorder and ZNF804A in schizophrenia and a relatively specific association between common variation in GABA(A) receptor genes and cases with features of both bipolar disorder and schizophrenia. Further, the occurrence of rare copy number variants (CNVs) has been shown to be increased in schizophrenia compared with controls. These emerging data provide a powerful resource for exploring the relationship between psychiatric phenotypes and can, and should, be used to inform conceptualization, classification, and diagnosis in psychiatry. It is already clear that, in general, genetic associations are not specific to one of the traditional diagnostic categories. For example, variation at ZNF804A is associated with risk of both bipolar disorder and schizophrenia, and some rare CNVs are associated with risk of autism and epilepsy as well as schizophrenia. These data are not consistent with a simple dichotomous model of functional psychosis and indicate the urgent need for moves toward approaches that (a) better represent the range of phenotypic variation seen in the clinical population and (b) reflect the underlying biological variation that gives rise to the phenotypes. We consider the implications for models of psychosis and the importance of recognizing and studying illness that has prominent affective and psychotic features. We conclude that if psychiatry is to translate the opportunities offered by new research methodologies, we must finally abandon a 19th-century dichotomy and move to a classificatory approach that is worthy of the 21st century.

  1. Adaptive and maladaptive functioning in Kleefstra syndrome compared to other rare genetic disorders with intellectual disabilities.

    Science.gov (United States)

    Vermeulen, Karlijn; de Boer, Anneke; Janzing, Joost G E; Koolen, David A; Ockeloen, Charlotte W; Willemsen, Marjolein H; Verhoef, Floor M; van Deurzen, Patricia A M; van Dongen, Linde; van Bokhoven, Hans; Egger, Jos I M; Staal, Wouter G; Kleefstra, Tjitske

    2017-05-12

    Detailed neurobehavioural profiles are of major value for specific clinical management, but have remained underexposed in the population with intellectual disabilities (ID). This was traditionally classified based on IQ level only. Rapid advances in genetics enable etiology based stratification in the majority of patients, which reduces clinical heterogeneity. This paper illustrates that specific profiles can be obtained for rare syndromes with ID. Our main aim was to study (mal)adaptive functioning in Kleefstra Syndrome (KS) by comparing and contrasting our findings to three other subgroups: Koolen-de Vries Syndrome, GATAD2B-related syndrome, and a mixed control group of individuals with ID. In total, we studied 58 individuals (28 males, 30 females) with ID; 24 were diagnosed with KS, 13 with Koolen-de Vries Syndrome, 6 with the GATAD2B-related syndrome, and 15 individuals with undefined neurodevelopmental disorders. All individuals were examined with a Vineland Adaptive Behavior Scale, mini PAS-ADD interview, and an Autism Diagnostic Observation Schedule to obtain measures of adaptive and maladaptive functioning. Each of the three distinctive genetic disorders showed its own specific profile of adaptive and maladaptive functioning, while being contrasted mutually. However, when data of the subgroups altogether are contrasted to the data of KS, such differences could not be demonstrated. Based on our findings, specific management recommendations were discussed for each of the three syndromes. It is strongly suggested to consider the genetic origin in individuals with congenital neurodevelopmental disorders for individual based psychiatric and behavioral management. © 2017 Wiley Periodicals, Inc.

  2. Behavior genetics of personality disorders: informing classification and conceptualization in DSM-5.

    Science.gov (United States)

    South, Susan C; DeYoung, Nathaniel J

    2013-07-01

    Personality pathology is currently captured in the Diagnostic and Statistical Manual through 10 categorical personality disorder (PD) diagnoses grouped into three descriptive clusters. This classification system has been criticized by many for using discrete categories and arbitrary thresholds when making clinical decisions. To address these critiques, the DSM-5 Personality and Personality Disorders Work Group has put forth a proposal that significantly alters the structure and content of the DSM-IV PD section. If this DSM-5 Work Group has conducted its own systematic review of the empirical literature, this review has not been released or made widely available. As such, it is up to the psychology community at large to determine how well the suggested changes align with findings from extant PD research. The current article joins this effort by addressing the contribution of behavior genetic findings to the revision process for classification of PDs in DSM-5. First, we provide a brief review of the history of PD classification in the DSM. Next, we present an overview and rationale for each of the five major suggested changes to PD diagnoses. For each suggested change, we outline the available evidence from behavior genetics and interpretations of these findings. Finally, we offer a summary of considerations for PD classification as the DSM-5 moves forward. Review of the behavior genetics literature suggests that several features of the DSM-5 proposal, including the elimination of 4 PDs, merging clinical disorders and PDs on a single axis, and the implementation of a trait rating system, require significantly greater explication before a product is finalized.

  3. Personality as an intermediate phenotype for genetic dissection of alcohol use disorder.

    Science.gov (United States)

    Oreland, Lars; Lagravinese, Gianvito; Toffoletto, Simone; Nilsson, Kent W; Harro, Jaanus; Robert Cloninger, C; Comasco, Erika

    2017-01-04

    Genetic and environmental interactive influences on predisposition to develop alcohol use disorder (AUD) account for the high heterogeneity among AUD patients and make research on the risk and resiliency factors complicated. Several attempts have been made to identify the genetic basis of AUD; however, only few genetic polymorphisms have consistently been associated with AUD. Intermediate phenotypes are expected to be in-between proxies of basic neuronal biological processes and nosological symptoms of AUD. Personality is likely to be a top candidate intermediate phenotype for the dissection of the genetic underpinnings of different subtypes of AUD. To date, 38 studies have investigated personality traits, commonly assessed by the Cloninger's Tridimensional Personality Questionnaire (TPQ) or Temperament and Character Inventory (TCI), in relation to polymorphisms of candidate genes of neurotransmitter systems in alcohol-dependent patients. Particular attention has been given to the functional polymorphism of the serotonin transporter gene (5-HTTLPR), however, leading to contradictory results, whereas results with polymorphisms in other candidate monoaminergic genes (e.g., tryptophan hydroxylase, serotonin receptors, monoamine oxidases, dopamine receptors and transporter) are sparse. Only one genome-wide association study has been performed so far and identified the ABLIM1 gene of relevance for novelty seeking, harm avoidance and reward dependence in alcohol-dependent patients. Studies investigating genetic factors together with personality could help to define more homogenous subgroups of AUD patients and facilitate treatment strategies. This review also urges the scientific community to combine genetic data with psychobiological and environmental data to further dissect the link between personality and AUD.

  4. Genetics and pharmacogenetics of aminergic transmitter pathways in functional gastrointestinal disorders.

    Science.gov (United States)

    Martinucci, Irene; Blandizzi, Corrado; de Bortoli, Nicola; Bellini, Massimo; Antonioli, Luca; Tuccori, Marco; Fornai, Matteo; Marchi, Santino; Colucci, Rocchina

    2015-01-01

    Functional gastrointestinal disorders (FGIDs) are highly prevalent syndromes, without evident underlying organic causes. Their pathogenesis is multifactorial in nature, with a combination of environmental and genetic factors contributing to their clinical manifestations, for which most of current treatments are not satisfactory. It is acknowledged that amine mediators (noradrenaline, dopamine and serotonin) play pivotal regulatory actions on gut functions and visceral sensation. In addition, drugs of therapeutic interest for FGIDs act on these transmitter pathways. The present article reviews current knowledge on the impact of genetics and pharmacogenetics of aminergic pathways on FGID pathophysiology, clinical presentations, symptom severity and medical management, in an attempt of highlighting the most relevant evidence and point out issues that should be addressed in future investigations.

  5. The Molecular Genetics of Autism Spectrum Disorders: Genomic Mechanisms, Neuroimmunopathology, and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Daniel J. Guerra

    2011-01-01

    Full Text Available Autism spectrum disorders (ASDs have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.

  6. Biological underpinnings of trauma and post-traumatic stress disorder: focusing on genetics and epigenetics.

    Science.gov (United States)

    Ryan, Joanne; Chaudieu, Isabelle; Ancelin, Marie-Laure; Saffery, Richard

    2016-11-01

    Certain individuals are more susceptible to stress and trauma, as well as the physical and mental health consequences following such exposure, including risk for post-traumatic stress disorder (PTSD). This differing vulnerability is likely to be influenced by genetic predisposition and specific characteristics of the stress itself (nature, intensity and duration), as well as epigenetic mechanisms. In this review we provide an overview of research findings in this field. We highlight some of the key genetic risk factors identified for PTSD, and the evidence that epigenetic processes might play a role in the biological response to trauma, as well as being potential biomarkers of PTSD risk. We also discuss important considerations for future research in this area.

  7. The molecular genetics of autism spectrum disorders: genomic mechanisms, neuroimmunopathology, and clinical implications.

    Science.gov (United States)

    Guerra, Daniel J

    2011-01-01

    Autism spectrum disorders (ASDs) have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.

  8. Accelerating discovery for complex neurological and behavioral disorders through systems genetics and integrative genomics in the laboratory mouse.

    Science.gov (United States)

    Bubier, Jason A; Chesler, Elissa J

    2012-04-01

    Recent advances in systems genetics and integrative functional genomics have greatly improved the study of complex neurological and behavioral traits. The methods developed for the integrated characterization of new, high-resolution mouse genetic reference populations and systems genetics enable behavioral geneticists an unprecedented opportunity to address questions of the molecular basis of neurological and psychiatric disorders and their comorbidities. Integrative genomics augment these strategies by enabling rapid informatics-assisted candidate gene prioritization, cross-species translation, and mechanistic comparison across related disorders from a wealth of existing data in mouse and other model organisms. Ultimately, through these complementary approaches, finding the mechanisms and sources of genetic variation underlying complex neurobehavioral disease related traits is becoming tractable. Furthermore, these methods enable categorization of neurobehavioral disorders through their underlying biological basis. Together, these model organism-based approaches can lead to a refinement of diagnostic categories and targeted treatment of neurological and psychiatric disease.

  9. Velo-cardio-facial syndrome and psychotic disorders: Implications for psychiatric genetics

    Energy Technology Data Exchange (ETDEWEB)

    Chow, W.C.; Bassett, A.S.; Weksberg, R. [Univ. of Toronto, Ontario (Canada)

    1994-06-15

    Psychiatric disorders have been reported in over 10% of patients with velo-cardio-facial syndrome (VCFS) in long-term follow-up. To further explore the behavioral and psychiatric findings associated with VCFS in adulthood, detailed clinical histories of two patients - one with VCFS who developed a psychotic illness, and one with schizophrenia who was found to have dysmorphological features associated with VCFS - are described in the current report. The observed overlap of physical and psychiatric symptoms in these two patients suggests that VCFS and psychotic disorders may share a pathogenetic mechanism. This could be consistent with a contiguous gene model for VCFS and psychosis, suggesting chromosome 22q11 as a possible candidate region for genetic studies of schizophrenia. 26 refs., 2 tabs.

  10. Clinical and Molecular Features of Laron Syndrome, A Genetic Disorder Protecting from Cancer.

    Science.gov (United States)

    Janecka, Anna; Kołodziej-Rzepa, Marta; Biesaga, Beata

    2016-01-01

    Laron syndrome (LS) is a rare, genetic disorder inherited in an autosomal recessive manner. The disease is caused by mutations of the growth hormone (GH) gene, leading to GH/insulin-like growth factor type 1 (IGF1) signalling pathway defect. Patients with LS have characteristic biochemical features, such as a high serum level of GH and low IGF1 concentration. Laron syndrome was first described by the Israeli physician Zvi Laron in 1966. Globally, around 350 people are affected by this syndrome and there are two large groups living in separate geographic regions: Israel (69 individuals) and Ecuador (90 individuals). They are all characterized by typical appearance such as dwarfism, facial phenotype, obesity and hypogenitalism. Additionally, they suffer from hypoglycemia, hypercholesterolemia and sleep disorders, but surprisingly have a very low cancer risk. Therefore, studies on LS offer a unique opportunity to better understand carcinogenesis and develop new strategies of cancer treatment.

  11. Radiological Diagnosis of a Rare Premature Aging Genetic Disorder: Progeria (Hutchinson-Gilford Syndrome

    Directory of Open Access Journals (Sweden)

    Haji Mohammed Nazir

    2017-01-01

    Full Text Available Hutchinson-Gilford Progeria Syndrome (HGPS is a rare disease with a combination of short stature, bone abnormalities, premature ageing, and skin changes. Though the physical appearance of these patients is characteristic, there is little emphasis on the characteristic radiological features. In this paper, we report a 16-year-old boy with clinical and radiological features of this rare genetic disorder. He had a characteristic facial appearance with a large head, large eyes, thin nose with beaked tip, small chin, protruding ears, prominent scalp veins, and absence of hair.

  12. Bohring-opitz syndrome - A case of a rare genetic disorder.

    Science.gov (United States)

    Visayaragawan, N; Selvarajah, N; Apparau, H; Kamaru Ambu, V

    2017-08-01

    The diagnostic challenge of Bohring-Opitz Syndrome, a rare genetic disorder has haunted clinicians for ages. Our patient was born at term via caesarean-section with a birth weight of 1.95 kilograms. She had mild laryngomalacia, gastroesophageal reflux disease and seizures. Physical signs included microcephaly, hemangioma, low set ears, cleft palate, micrognatia and the typical BOS posture. Chromosomal analysis showed 46 xx -Bohring-Opitz Syndrome overlapped with C- syndrome. Goal-directed holistic care with integration of parent/carer training was started very early. She succumbed to a Respiratory- Syncitial-Virus and Pseudomonas pneumonia complicated with sepsis at the age of two years and 11 months.

  13. Expanding the clinical and genetic heterogeneity of hereditary disorders of connective tissue.

    Science.gov (United States)

    Alazami, Anas M; Al-Qattan, Sarah M; Faqeih, Eissa; Alhashem, Amal; Alshammari, Muneera; Alzahrani, Fatema; Al-Dosari, Mohammed S; Patel, Nisha; Alsagheir, Afaf; Binabbas, Bassam; Alzaidan, Hamad; Alsiddiky, Abdulmonem; Alharbi, Nasser; Alfadhel, Majid; Kentab, Amal; Daza, Riza M; Kircher, Martin; Shendure, Jay; Hashem, Mais; Alshahrani, Saif; Rahbeeni, Zuhair; Khalifa, Ola; Shaheen, Ranad; Alkuraya, Fowzan S

    2016-05-01

    Ehlers-Danlos syndrome (EDS) describes a group of clinical entities in which the connective tissue, primarily that of the skin, joint and vessels, is abnormal, although the resulting clinical manifestations can vary widely between the different historical subtypes. Many cases of hereditary disorders of connective tissue that do not seem to fit these historical subtypes exist. The aim of this study is to describe a large series of patients with inherited connective tissue disorders evaluated by our clinical genetics service and for whom a likely causal variant was identified. In addition to clinical phenotyping, patients underwent various genetic tests including molecular karyotyping, candidate gene analysis, autozygome analysis, and whole-exome and whole-genome sequencing as appropriate. We describe a cohort of 69 individuals representing 40 families, all referred because of suspicion of an inherited connective tissue disorder by their primary physician. Molecular lesions included variants in the previously published disease genes B3GALT6, GORAB, ZNF469, B3GAT3, ALDH18A1, FKBP14, PYCR1, CHST14 and SPARC with interesting variations on the published clinical phenotypes. We also describe the first recessive EDS-like condition to be caused by a recessive COL1A1 variant. In addition, exome capture in a familial case identified a homozygous truncating variant in a novel and compelling candidate gene, AEBP1. Finally, we also describe a distinct novel clinical syndrome of cutis laxa and marked facial features and propose ATP6V1E1 and ATP6V0D2 (two subunits of vacuolar ATPase) as likely candidate genes based on whole-genome and whole-exome sequencing of the two families with this new clinical entity. Our study expands the clinical spectrum of hereditary disorders of connective tissue and adds three novel candidate genes including two that are associated with a highly distinct syndrome.

  14. Focal Treatment for Genetic Disorders (A Fairy Tale or a True Story?

    Directory of Open Access Journals (Sweden)

    Mohamad Hossein Nikoo

    2014-12-01

    Full Text Available Genetic is widely involved in pathophysiology of many diseases. However, certain gene abnormalities could cause cardiac disorders called monogenic disorders (1. Since the genetic information and hence abnormal gene is present in all cells, treatments are focused on symptoms. Nowadays, gene transfer is an uprising option (2. Although all cells carry a mutant gene, the major effect of the disease is localized to a group of cells in some patients. Brugada syndrome results from a sodium channel mutation that causes ST elevation in right precordial leads and may lead to sudden ventricular fibrillation, especially in young males (3. This main electrocardiographic disturbance originates from RV epicardium (4. Therefore, some interventionists try to treat the disease by ablation of this area (5. Although implanting a defibrillator is yet the standard recommendation, it does not cure the disease (6. Thus, ablation of a small area of epicardium which offers a definitive cure also seems appealing. Another example of applying this treatment for a genetic disorder is in catecholaminergic polymorphic ventricular tachycardia (7. This syndrome is caused by a mutation in ryanodine receptor and manifests as polymorphic ventricular tachycardia during exercise or emotion in young adults (8. One study showed that ablation of Premature Ventricular Contraction (PVC completely treated a patient (7. Although myocardial contraction duration is prolonged in all segments (9 in the patients with long QT syndrome, there is a segment with most prolonged duration in any patient (10. Ablation of PVC on this segment may cure the Ventricular Fibrillation (VF in this syndrome and prevent sudden cardiac death (11. Another lethal and seemingly incurable syndrome of sudden cardiac death is idiopathic VF. As sounded from nomenclature, the pathophysiology is somewhat unclear and, consequently, the treatment is difficult and only limited to secondary prevention (12. However, ablation of

  15. Bridging Molecular Genetics and Biomarkers in Lewy Body and Related Disorders

    Directory of Open Access Journals (Sweden)

    Gilbert J. Ho

    2011-01-01

    Full Text Available Recent advances have been made in defining the genetic and molecular basis of dementia with Lewy bodies (DLBs and related neurodegenerative disorders such as Parkinson's disease (PD and Parkinson's disease dementia (PDD which comprise the spectrum of “Lewy body disorders” (LBDs. The genetic alterations and underlying disease mechanisms in the LBD overlap substantially, suggesting common disease mechanisms. As with the other neurodegenerative dementias, early diagnosis in LBD or even identification prior to symptom onset is key to developing effective therapeutic strategies, but this is dependent upon the development of robust, specific, and sensitive biomarkers as diagnostic tools and therapeutic endpoints. Recently identified mutations in the synucleins and other relevant genes in PD and DLB as well as related biomolecular pathways suggest candidate markers from biological fluids and imaging modalities that reflect the underlying disease mechanisms. In this context, several promising biomarkers for the LBD have already been identified and examined, while other intriguing possible candidates have recently emerged. Challenges remain in defining their correlation with pathological processes and their ability to detect DLB and related disorders, and perhaps a combined array of biomarkers may be needed to distinguish various LBDs.

  16. Genetic and childhood trauma interaction effect on age of onset in bipolar disorder: An exploratory analysis.

    Science.gov (United States)

    Anand, Amit; Koller, Daniel L; Lawson, William B; Gershon, Elliot S; Nurnberger, John I

    2015-07-01

    This study investigated whether early life trauma mediates genetic effects on the age at onset (AAO) of bipolar disorder. Data from the BiGS Consortium case samples (N=1119) were used. Childhood traumatic events were documented using the Childhood Life Events Scale (CLES). Interaction between occurrence of childhood trauma and common genetic variants throughout the genome was tested to identify single nucleotide polymorphic gene variants (SNPs) whose effects on bipolar AAO differ between individuals clearly exposed (CLES≥2) and not exposed (CLES=0) to childhood trauma. The modal response to the CLES was 0 (N=480), but an additional 276 subjects had CLES=1, and 363 subjects reported 2 or more traumatic lifetime events. The distribution of age at onset showed a broad peak between ages 12 and 18, with the majority of subjects having onset during that period, and a significant decrease in age of onset with the number of traumatic events. No single SNP showed a statistically significant interaction with the presence of traumatic events to impact bipolar age at onset. However, SNPs in or near genes coding for calcium channel activity-related proteins (Gene Ontology: 0005262) were found to be more likely than other SNPs to show evidence of interaction using the INRICH method (peffects of early life trauma with genotype may have a significant effect on the development and manifestation of bipolar disorder. These effects may be mediated in part by genes involved in calcium signaling. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Genetics of Migraine: Insights into the Molecular Basis of Migraine Disorders.

    Science.gov (United States)

    Sutherland, Heidi G; Griffiths, Lyn R

    2017-04-01

    Migraine is a complex, debilitating neurovascular disorder, typically characterized by recurring, incapacitating attacks of severe headache often accompanied by nausea and neurological disturbances. It has a strong genetic basis demonstrated by rare migraine disorders caused by mutations in single genes (monogenic), as well as familial clustering of common migraine which is associated with polymorphisms in many genes (polygenic). Hemiplegic migraine is a dominantly inherited, severe form of migraine with associated motor weakness. Family studies have found that mutations in three different ion channels genes, CACNA1A, ATP1A2, and SCN1A can be causal. Functional studies of these mutations has shown that they can result in defective regulation of glutamatergic neurotransmission and the excitatory/inhibitory balance in the brain, which lowers the threshold for cortical spreading depression, a wave of cortical depolarization thought to be involved in headache initiation mechanisms. Other putative genes for monogenic migraine include KCKN18, PRRT2, and CSNK1D, which can also be involved with other disorders. There are a number of primarily vascular disorders caused by mutations in single genes, which are often accompanied by migraine symptoms. Mutations in NOTCH3 causes cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebrovascular disease that leads to ischemic strokes and dementia, but in which migraine is often present, sometimes long before the onset of other symptoms. Mutations in the TREX1 and COL4A1 also cause vascular disorders, but often feature migraine. With respect to common polygenic migraine, genome-wide association studies have now identified single nucleotide polymorphisms at 38 loci significantly associated with migraine risk. Functions assigned to the genes in proximity to these loci suggest that both neuronal and vascular pathways also contribute to the pathophysiology of common

  18. Characterization of Movement Disorder Phenomenology in Genetically Proven, Familial Frontotemporal Lobar Degeneration: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Gasca-Salas, Carmen; Masellis, Mario; Khoo, Edwin; Shah, Binit B.; Fisman, David; Lang, Anthony E.; Kleiner-Fisman, Galit

    2016-01-01

    Background Mutations in granulin (PGRN) and tau (MAPT), and hexanucleotide repeat expansions near the C9orf72 genes are the most prevalent genetic causes of frontotemporal lobar degeneration. Although behavior, language and movement presentations are common, the relationship between genetic subgroup and movement disorder phenomenology is unclear. Objective We conducted a systematic review and meta-analysis of the literature characterizing the spectrum and prevalence of movement disorders in genetic frontotemporal lobar degeneration. Methods Electronic databases were searched using terms related to frontotemporal lobar degeneration and movement disorders. Articles were included when cases had a proven genetic cause. Study-specific prevalence estimates for clinical features were transformed using Freeman-Tukey arcsine transformation, allowing for pooled estimates of prevalence to be generated using random-effects models. Results The mean age at onset was earlier in those with MAPT mutations compared to PGRN (p<0.001) and C9orf72 (p = 0.024). 66.5% of subjects had an initial non-movement presentation that was most likely a behavioral syndrome (35.7%). At any point during the disease, parkinsonism was the most common movement syndrome reported in 79.8% followed by progressive supranuclear palsy (PSPS) and corticobasal (CBS) syndromes in 12.2% and 10.7%, respectively. The prevalence of movement disorder as initial presentation was higher in MAPT subjects (35.8%) compared to PGRN subjects (10.1). In those with a non-movement presentation, language disorder was more common in PGRN subjects (18.7%) compared to MAPT subjects (5.4%). Summary This represents the first systematic review and meta-analysis of the occurrence of movement disorder phenomenology in genetic frontotemporal lobar degeneration. Standardized prospective collection of clinical information in conjunction with genetic characterization will be crucial for accurate clinico-genetic correlation. PMID:27100392

  19. Ankyrin 3: genetic association with bipolar disorder and relevance to disease pathophysiology

    Directory of Open Access Journals (Sweden)

    Leussis Melanie P

    2012-10-01

    Full Text Available Abstract Bipolar disorder (BD is a multi-factorial disorder caused by genetic and environmental influences. It has a large genetic component, with heritability estimated between 59-93%. Recent genome-wide association studies (GWAS using large BD patient populations have identified a number of genes with strong statistical evidence for association with susceptibility for BD. Among the most significant and replicated genes is ankyrin 3 (ANK3, a large gene that encodes multiple isoforms of the ankyrin G protein. This article reviews the current evidence for genetic association of ANK3 with BD, followed by a comprehensive overview of the known biology of the ankyrin G protein, focusing on its neural functions and their potential relevance to BD. Ankyrin G is a scaffold protein that is known to have many essential functions in the brain, although the mechanism by which it contributes to BD is unknown. These functions include organizational roles for subcellular domains in neurons including the axon initial segment and nodes of Ranvier, through which ankyrin G orchestrates the localization of key ion channels and GABAergic presynaptic terminals, as well as creating a diffusion barrier that limits transport into the axon and helps define axo-dendritic polarity. Ankyrin G is postulated to have similar structural and organizational roles at synaptic terminals. Finally, ankyrin G is implicated in both neurogenesis and neuroprotection. ANK3 and other BD risk genes participate in some of the same biological pathways and neural processes that highlight several mechanisms by which they may contribute to BD pathophysiology. Biological investigation in cellular and animal model systems will be critical for elucidating the mechanism through which ANK3 confers risk of BD. This knowledge is expected to lead to a better understanding of the brain abnormalities contributing to BD symptoms, and to potentially identify new targets for treatment and intervention

  20. The genetics of attention deficit/hyperactivity disorder in adults, a review.

    Science.gov (United States)

    Franke, B; Faraone, S V; Asherson, P; Buitelaar, J; Bau, C H D; Ramos-Quiroga, J A; Mick, E; Grevet, E H; Johansson, S; Haavik, J; Lesch, K-P; Cormand, B; Reif, A

    2012-10-01

    The adult form of attention deficit/hyperactivity disorder (aADHD) has a prevalence of up to 5% and is the most severe long-term outcome of this common neurodevelopmental disorder. Family studies in clinical samples suggest an increased familial liability for aADHD compared with childhood ADHD (cADHD), whereas twin studies based on self-rated symptoms in adult population samples show moderate heritability estimates of 30-40%. However, using multiple sources of information, the heritability of clinically diagnosed aADHD and cADHD is very similar. Results of candidate gene as well as genome-wide molecular genetic studies in aADHD samples implicate some of the same genes involved in ADHD in children, although in some cases different alleles and different genes may be responsible for adult versus childhood ADHD. Linkage studies have been successful in identifying loci for aADHD and led to the identification of LPHN3 and CDH13 as novel genes associated with ADHD across the lifespan. In addition, studies of rare genetic variants have identified probable causative mutations for aADHD. Use of endophenotypes based on neuropsychology and neuroimaging, as well as next-generation genome analysis and improved statistical and bioinformatic analysis methods hold the promise of identifying additional genetic variants involved in disease etiology. Large, international collaborations have paved the way for well-powered studies. Progress in identifying aADHD risk genes may provide us with tools for the prediction of disease progression in the clinic and better treatment, and ultimately may help to prevent persistence of ADHD into adulthood.

  1. Multivariate genetic determinants of EEG oscillations in schizophrenia and psychotic bipolar disorder from the BSNIP study.

    Science.gov (United States)

    Narayanan, B; Soh, P; Calhoun, V D; Ruaño, G; Kocherla, M; Windemuth, A; Clementz, B A; Tamminga, C A; Sweeney, J A; Keshavan, M S; Pearlson, G D

    2015-06-23

    Schizophrenia (SZ) and psychotic bipolar disorder (PBP) are disabling psychiatric illnesses with complex and unclear etiologies. Electroencephalogram (EEG) oscillatory abnormalities in SZ and PBP probands are heritable and expressed in their relatives, but the neurobiology and genetic factors mediating these abnormalities in the psychosis dimension of either disorder are less explored. We examined the polygenic architecture of eyes-open resting state EEG frequency activity (intrinsic frequency) from 64 channels in 105 SZ, 145 PBP probands and 56 healthy controls (HCs) from the multisite BSNIP (Bipolar-Schizophrenia Network on Intermediate Phenotypes) study. One million single-nucleotide polymorphisms (SNPs) were derived from DNA. We assessed eight data-driven EEG frequency activity derived from group-independent component analysis (ICA) in conjunction with a reduced subset of 10,422 SNPs through novel multivariate association using parallel ICA (para-ICA). Genes contributing to the association were examined collectively using pathway analysis tools. Para-ICA extracted five frequency and nine SNP components, of which theta and delta activities were significantly correlated with two different gene components, comprising genes participating extensively in brain development, neurogenesis and synaptogenesis. Delta and theta abnormality was present in both SZ and PBP, while theta differed between the two disorders. Theta abnormalities were also mediated by gene clusters involved in glutamic acid pathways, cadherin and synaptic contact-based cell adhesion processes. Our data suggest plausible multifactorial genetic networks, including novel and several previously identified (DISC1) candidate risk genes, mediating low frequency delta and theta abnormalities in psychoses. The gene clusters were enriched for biological properties affecting neural circuitry and involved in brain function and/or development.

  2. Genetic polymorphisms in folate pathway enzymes, DRD4 and GSTM1 are related to temporomandibular disorder

    Directory of Open Access Journals (Sweden)

    Mayor-Olea Alvaro

    2011-05-01

    Full Text Available Abstract Background Temporomandibular disorder (TMD is a multifactorial syndrome related to a critical period of human life. TMD has been associated with psychological dysfunctions, oxidative state and sexual dimorphism with coincidental occurrence along the pubertal development. In this work we study the association between TMD and genetic polymorphisms of folate metabolism, neurotransmission, oxidative and hormonal metabolism. Folate metabolism, which depends on genes variations and diet, is directly involved in genetic and epigenetic variations that can influence the changes of last growing period of development in human and the appearance of the TMD. Methods A case-control study was designed to evaluate the impact of genetic polymorphisms above described on TMD. A total of 229 individuals (69% women were included at the study; 86 were patients with TMD and 143 were healthy control subjects. Subjects underwent to a clinical examination following the guidelines by the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD. Genotyping of 20 Single Nucleotide Polymorphisms (SNPs, divided in two groups, was performed by multiplex minisequencing preceded by multiplex PCR. Other seven genetic polymorphisms different from SNPs (deletions, insertions, tandem repeat, null genotype were achieved by a multiplex-PCR. A chi-square test was performed to determine the differences in genotype and allelic frequencies between TMD patients and healthy subjects. To estimate TMD risk, in those polymorphisms that shown significant differences, odds ratio (OR with a 95% of confidence interval were calculated. Results Six of the polymorphisms showed statistical associations with TMD. Four of them are related to enzymes of folates metabolism: Allele G of Serine Hydoxymethyltransferase 1 (SHMT1 rs1979277 (OR = 3.99; 95%CI 1.72, 9.25; p = 0.002, allele G of SHMT1 rs638416 (OR = 2.80; 95%CI 1.51, 5.21; p = 0.013, allele T of Methylentetrahydrofolate

  3. Establishing the diagnostic criteria for eruption disorders based on genetic and clinical data.

    Science.gov (United States)

    Rhoads, Stephanie Golubic; Hendricks, Heather M; Frazier-Bowers, Sylvia A

    2013-08-01

    Proper diagnosis and management of eruption disturbances remains challenging but is critical to a functional occlusion. The objective of this study was to establish definitive criteria to differentiate and diagnose eruption disorders, specifically primary failure of eruption (PFE) and ankylosis. Sixty-four affected persons were placed into 3 cohorts: PFE diagnosed through confirmed PTH1R mutation (n = 11), PFE diagnosed based on clinical criteria (n = 47), and ankylosis diagnosed based on clinical criteria (n = 6). These groups were assessed to identify clinical features that differentiate PFE and ankylosis. Ninety-three percent of the subjects in the genetic and clinical PFE cohorts combined (n = 58) and 100% in the genetic PFE cohort had at least 1 infraoccluded first permanent molar. Additionally, a novel functional PTH1R mutation, 1092delG, was identified and linked to PFE in the deciduous dentition. An infraoccluded, supracrestal first molar is a hallmark of PFE, often involving both arches in the permanent or deciduous dentition, and with unilateral or bilateral affection, infraoccluded second premolar or second molar, and multiple affected adjacent teeth. Our results further suggest that PFE and ankylosis might be clinically indistinguishable without knowledge of prior trauma, treatment history, genetic information, or obliteration of the periodontal ligament space. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  4. The Analysis of Genetic Aberrations in Children with Inherited Neurometabolic and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Krystyna Szymańska

    2014-01-01

    Full Text Available Inherited encephalopathies include a broad spectrum of heterogeneous disorders. To provide a correct diagnosis, an integrated approach including genetic testing is warranted. We report seven patients with difficult to diagnose inborn paediatric encephalopathies. The diagnosis could not be attained only by means of clinical and laboratory investigations and MRI. Additional genetic testing was required. Cytogenetics, PCR based tests, and array-based comparative genome hybridization were performed. In 4 patients with impaired language abilities we found the presence of microduplication in the region 16q23.1 affecting two dose-sensitive genes: WWOX (OMIM 605131 and MAF (OMIM 177075 (1 case, an interstitial deletion of the 17p11.2 region (2 patients further diagnosed as Smith-Magenis syndrome, and deletion encompassing first three exons of Myocyte Enhancer Factor gene 2MEF2C (1 case. The two other cases represented progressing dystonia. Characteristic GAG deletion in DYT1 consistently with the diagnosis of torsion dystonia was confirmed in 1 case. Last enrolled patient presented with clinical picture consistent with Krabbe disease confirmed by finding of two pathogenic variants of GALC gene and the absence of mutations in PSAP. The integrated diagnostic approach including genetic testing in selected examples of complicated hereditary diseases of the brain is largely discussed in this paper.

  5. Comparing ESC and iPSC—Based Models for Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2014-10-01

    Full Text Available Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs from patients’ somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn’t be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  6. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders.

    Science.gov (United States)

    Jokela, Manu; Huovinen, Sanna; Raheem, Olayinka; Lindfors, Mikaela; Palmio, Johanna; Penttilä, Sini; Udd, Bjarne

    2016-01-01

    The objective of this study was to characterize and compare muscle histopathological findings in 3 different genetic motor neuron disorders. We retrospectively re-assessed muscle biopsy findings in 23 patients with autosomal dominant lower motor neuron disease caused by p.G66V mutation in CHCHD10 (SMAJ), 10 X-linked spinal and bulbar muscular atrophy (SBMA) and 11 autosomal dominant c9orf72-mutated amyotrophic lateral sclerosis (c9ALS) patients. Distinct large fiber type grouping consisting of non-atrophic type IIA muscle fibers were 100% specific for the late-onset spinal muscular atrophies (SMAJ and SBMA) and were never observed in c9ALS. Common, but less specific findings included small groups of highly atrophic rounded type IIA fibers in SMAJ/SBMA, whereas in c9ALS, small group atrophies consisting of small-caliber angular fibers involving both fiber types were more characteristic. We also show that in the 2 slowly progressive motor neuron disorders (SMAJ and SBMA) the initial neurogenic features are often confused with considerable secondary "myopathic" changes at later disease stages, such as rimmed vacuoles, myofibrillar aggregates and numerous fibers reactive for fetal myosin heavy chain (dMyHC) antibodies. Based on our findings, muscle biopsy may be valuable in the diagnostic work-up of suspected motor neuron disorders in order to avoid a false ALS diagnosis in patients without clear findings of upper motor neuron lesions.

  7. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders.

    Directory of Open Access Journals (Sweden)

    Manu Jokela

    Full Text Available The objective of this study was to characterize and compare muscle histopathological findings in 3 different genetic motor neuron disorders. We retrospectively re-assessed muscle biopsy findings in 23 patients with autosomal dominant lower motor neuron disease caused by p.G66V mutation in CHCHD10 (SMAJ, 10 X-linked spinal and bulbar muscular atrophy (SBMA and 11 autosomal dominant c9orf72-mutated amyotrophic lateral sclerosis (c9ALS patients. Distinct large fiber type grouping consisting of non-atrophic type IIA muscle fibers were 100% specific for the late-onset spinal muscular atrophies (SMAJ and SBMA and were never observed in c9ALS. Common, but less specific findings included small groups of highly atrophic rounded type IIA fibers in SMAJ/SBMA, whereas in c9ALS, small group atrophies consisting of small-caliber angular fibers involving both fiber types were more characteristic. We also show that in the 2 slowly progressive motor neuron disorders (SMAJ and SBMA the initial neurogenic features are often confused with considerable secondary "myopathic" changes at later disease stages, such as rimmed vacuoles, myofibrillar aggregates and numerous fibers reactive for fetal myosin heavy chain (dMyHC antibodies. Based on our findings, muscle biopsy may be valuable in the diagnostic work-up of suspected motor neuron disorders in order to avoid a false ALS diagnosis in patients without clear findings of upper motor neuron lesions.

  8. Distinct Muscle Biopsy Findings in Genetically Defined Adult-Onset Motor Neuron Disorders

    Science.gov (United States)

    Jokela, Manu; Huovinen, Sanna; Raheem, Olayinka; Lindfors, Mikaela; Palmio, Johanna; Penttilä, Sini; Udd, Bjarne

    2016-01-01

    The objective of this study was to characterize and compare muscle histopathological findings in 3 different genetic motor neuron disorders. We retrospectively re-assessed muscle biopsy findings in 23 patients with autosomal dominant lower motor neuron disease caused by p.G66V mutation in CHCHD10 (SMAJ), 10 X-linked spinal and bulbar muscular atrophy (SBMA) and 11 autosomal dominant c9orf72-mutated amyotrophic lateral sclerosis (c9ALS) patients. Distinct large fiber type grouping consisting of non-atrophic type IIA muscle fibers were 100% specific for the late-onset spinal muscular atrophies (SMAJ and SBMA) and were never observed in c9ALS. Common, but less specific findings included small groups of highly atrophic rounded type IIA fibers in SMAJ/SBMA, whereas in c9ALS, small group atrophies consisting of small-caliber angular fibers involving both fiber types were more characteristic. We also show that in the 2 slowly progressive motor neuron disorders (SMAJ and SBMA) the initial neurogenic features are often confused with considerable secondary “myopathic” changes at later disease stages, such as rimmed vacuoles, myofibrillar aggregates and numerous fibers reactive for fetal myosin heavy chain (dMyHC) antibodies. Based on our findings, muscle biopsy may be valuable in the diagnostic work-up of suspected motor neuron disorders in order to avoid a false ALS diagnosis in patients without clear findings of upper motor neuron lesions. PMID:26999347

  9. Heritability and Genetic Relationship of Adult Self-Reported Stuttering, Cluttering and Childhood Speech-Language Disorders

    DEFF Research Database (Denmark)

    Fagnani, Corrado; Fibiger, Steen; Skytthe, Axel;

    2011-01-01

    Genetic influence and mutual genetic relationship for adult self-reported childhood speech-language disorders, stuttering, and cluttering were studied. Using nationwide questionnaire answers from 34,944 adult Danish twins, a multivariate biometric analysis based on the liability-threshold model......, 0.78/0.80 for stuttering, and 0.53/0.65 for cluttering. For each trait, the same genes were suggested to affect liability in males and females. Furthermore, high genetic correlations between the traits were obtained; the estimates for childhood speech-language disorders and stuttering were 0.......71/0.79 for males/females, for childhood speech-language disorders and cluttering 0.73/0.56, and for stuttering and cluttering 0.53/0.57. Substantial unique environmental correlations between the traits were also found in both genders. Conclusion: With the limitations related to self-reporting from adult age...

  10. Genetic Hemoglobin Disorders, Infection, and Deficiencies of Iron and Vitamin A Determine Anemia in Young Cambodian Children123

    Science.gov (United States)

    George, Joby; Yiannakis, Miriam; Main, Barbara; Devenish, Robyn; Anderson, Courtney; An, Ung Sam; Williams, Sheila M.; Gibson, Rosalind S.

    2012-01-01

    In Cambodia, many factors may complicate the detection of iron deficiency. In a cross-sectional survey, we assessed the role of genetic hemoglobin (Hb) disorders, iron deficiency, vitamin A deficiency, infections, and other factors on Hb in young Cambodian children. Data on sociodemographic status, morbidity, and growth were collected from children (n = 3124) aged 6 to 59 mo selected from 3 rural provinces and Phnom Penh municipality. Blood samples were collected (n = 2695) for complete blood count, Hb type (by DNA analysis), ferritin, soluble transferrin receptor (sTfR), retinol-binding protein (RBP), C-reactive protein, and α1-acid glycoprotein (AGP). Genetic Hb disorders, anemia, and vitamin A deficiency were more common in rural than in urban provinces (P 1.0 g/L (P iron deficiency. New low-cost methods for detecting genetic Hb disorders are urgently required. PMID:22378325

  11. The phenotypic and genetic structure of depression and anxiety disorder symptoms in childhood, adolescence, and young adulthood.

    Science.gov (United States)

    Waszczuk, Monika A; Zavos, Helena M S; Gregory, Alice M; Eley, Thalia C

    2014-08-01

    The DSM-5 classifies mood and anxiety disorders as separate conditions. However, some studies in adults find a unidimensional internalizing factor that underpins anxiety and depression, while others support a bidimensional model where symptoms segregate into distress (depression and generalized anxiety) and fear factors (phobia subscales). However, little is known about the phenotypic and genetic structure of internalizing psychopathology in children and adolescents. To investigate the phenotypic associations between depression and anxiety disorder symptom subscales and to test the genetic structures underlying these symptoms (DSM-5-related, unidimensional and bidimensional) across 3 developmental stages: childhood, adolescence, and early adulthood. Two population-based prospective longitudinal twin/sibling studies conducted in the United Kingdom. The child sample included 578 twins (mean age, approximately 8 and 10 years at waves 1 and 2, respectively). The adolescent and early adulthood sample included 2619 twins/siblings at 3 waves (mean age, 15, 17, and 20 years at each wave). Self-report symptoms of depression and anxiety disorders. Phenotypically, when controlling for other anxiety subscales, depression symptoms were only associated with generalized anxiety disorder symptoms in childhood (r = 0.20-0.21); this association broadened to panic and social phobia symptoms in adolescence (r = 0.17-0.24 and r = 0.14-0.16, respectively) and all anxiety subscales in young adulthood (r = 0.06-0.19). The genetic associations were in line with phenotypic results. In childhood, anxiety subscales were influenced by a single genetic factor that did not contribute to genetic variance in depression symptoms, suggesting largely independent genetic influences on anxiety and depression. In adolescence, genetic influences were significantly shared between depression and all anxiety subscales in agreement with DSM-5 conceptualization. In young adulthood, a genetic

  12. Genetic association between BDNF gene polymorphisms and phobic disorders: a case-control study among mainland Han Chinese.

    Science.gov (United States)

    Xie, Bing; Wang, Binbin; Suo, Peisu; Kou, Changgui; Wang, Jing; Meng, Xiangfei; Cheng, Longfei; Ma, Xu; Yu, Yaqin

    2011-07-01

    Phobic disorders are a common group of syndromes comprising persistently recurring, irrational severe anxiety of specific objects, activities, or situations with avoidance behavior of the phobic stimulus. The present study investigated the association between whole region polymorphisms, (including the Val66Met variant), in the BDNF gene and phobic disorders among Han Chinese young adults. We conducted a case-control study to investigate the genetic association between BDNF polymorphisms and phobic disorders among mainland Chinese. One hundred and twenty young adults with phobic disorders and 267 matched controls were recruited. Three tag SNPs of BDNF were successfully genotyped by using PCR-based ligase detection reaction (PCR-LDR). We found significant differences in allele distributions of SNP rs10835210 (Pphobic disorders and BDNF haplotype CAC (P=0.004). Association was significant after 10(4) permutation tests (Petiology of phobic disorders in the Han Chinese population. Copyright © 2010. Published by Elsevier B.V.

  13. Population-based study of genetic variation in individuals with autism spectrum disorders from Croatia

    Directory of Open Access Journals (Sweden)

    Gidaya Nicole

    2010-09-01

    Full Text Available Abstract Background Genome-wide studies on autism spectrum disorders (ASDs have mostly focused on large-scale population samples, but examination of rare variations in isolated populations may provide additional insights into the disease pathogenesis. Methods As a first step in the genetic analysis of ASD in Croatia, we characterized genetic variation in a sample of 103 subjects with ASD and 203 control individuals, who were genotyped using the Illumina HumanHap550 BeadChip. We analyzed the genetic diversity of the Croatian population and its relationship to other populations, the degree of relatedness via Runs of Homozygosity (ROHs, and the distribution of large (>500 Kb copy number variations. Results Combining the Croatian cohort with several previously published populations in the FastME analysis (an alternative to Neighbor Joining revealed that Croatian subjects cluster, as expected, with Southern Europeans; in addition, individuals from the same geographic region within Europe cluster together. Whereas Croatian subjects could be separated from a sample of healthy control subjects of European origin from North America, Croatian ASD cases and controls are well mixed. A comparison of runs of homozygosity indicated that the number and the median length of regions of homozygosity are higher for ASD subjects than for controls (p = 6 × 10-3. Furthermore, analysis of copy number variants found a higher frequency of large chromosomal rearrangements (>2 Mb in ASD cases (5/103 than in ethnically matched control subjects (1/197, p = 0.019. Conclusions Our findings illustrate the remarkable utility of high-density genotype data for subjects from a limited geographic area in dissecting genetic heterogeneity with respect to population and disease related variation.

  14. Joubert syndrome: A model for untangling recessive disorders with extreme genetic heterogeneity

    Science.gov (United States)

    R, Bachmann-Gagescu; JC, Dempsey; IG, Phelps; BJ, O’Roak; DM, Knutzen; TC, Rue; GE, Ishak; CR, Isabella; N, Gorden; J, Adkins; EA, Boyle; N, de Lacy; D, O’Day; A, Alswaid; AR, Devi; L, Lingappa; C, Lourenço; L, Martorell; À, Garcia-Cazorla; H, Ozyürek; G, Haliloğlu; B, Tuysuz; M, Topçu; P, Chance; MA, Parisi; I, Glass; J, Shendure; D, Doherty

    2016-01-01

    Background Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, cognitive impairment, abnormal eye movements, respiratory control disturbances, and a distinctive mid-hindbrain malformation. JS demonstrates substantial phenotypic variability and genetic heterogeneity. This study provides a comprehensive view of the current genetic basis, phenotypic range and gene-phenotype associations in JS. Methods We sequenced 27 JS-associated genes in 440 affected individuals (375 families) from a cohort of 532 individuals (440 families) with JS, using molecular inversion probe-based targeted capture and next generation sequencing. Variant pathogenicity was defined using the Combined Annotation Dependent Depletion (CADD) algorithm with an optimized score cut-off. Results We identified presumed causal variants in 62% of pedigrees, including the first B9D2 mutations associated with JS. 253 different mutations in 23 genes highlight the extreme genetic heterogeneity of JS. Phenotypic analysis revealed that only 34% of individuals have a “pure JS” phenotype. Retinal disease is present in 30% of individuals, renal disease in 25%, coloboma in 17%, polydactyly in 15%, liver fibrosis in 14% and encephalocele in 8%. Loss of CEP290 function is associated with retinal dystrophy, while loss of TMEM67 function is associated with liver fibrosis and coloboma, but we observe no clear-cut distinction between JS-subtypes. Conclusion This work illustrates how combining advanced sequencing techniques with phenotypic data addresses extreme genetic heterogeneity to provide diagnostic and carrier testing, guide medical monitoring for progressive complications, facilitate interpretation of genome-wide sequencing results in individuals with a variety of phenotypes, and enable gene-specific treatments in the future. PMID:26092869

  15. Genetic and environmental factors underlying comorbid bulimic behaviours and alcohol use disorders: a moderating role for the dysregulated personality cluster?

    Science.gov (United States)

    Slane, Jennifer D; Klump, Kelly L; McGue, Matthew; Iacono, G

    2014-05-01

    Women with bulimia nervosa (BN) frequently have co-occurring alcohol use disorders (AUDs). Studies of shared genetic transmission of these disorders have been mixed. Personality heterogeneity among individuals with BN may explain discrepant findings. Cluster analysis has characterized women with BN in groups on the basis of personality profiles. One group, the Dysregulated cluster, characterized largely by behavioural disinhibition and emotional dysregulation may be more closely linked etiologically to AUDs. This study examined whether genetic associations between BN and AUDs are the strongest among the Dysregulated cluster. Symptoms of BN and AUDs were assessed in female twins at ages 17 and 25 years from the Minnesota Twin Family Study. Personality clusters were defined using the Multidimensional Personality Questionnaire. Twin moderation models suggested small-to-moderate common genetic transmission between BN and AUDs. However, shared genetic effects did not differ by personality cluster. Findings suggest that personality clusters are unlikely to account for inconsistent findings regarding their shared aetiology.

  16. EMQN best practice guidelines for the molecular genetic testing and reporting of chromosome 11p15 imprinting disorders

    DEFF Research Database (Denmark)

    Eggermann, Katja; Bliek, Jet; Brioude, Frédéric

    2016-01-01

    Molecular genetic testing for the 11p15-associated imprinting disorders Silver-Russell and Beckwith-Wiedemann syndrome (SRS, BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. With the growing knowledge on the molecular basis of these diso......Molecular genetic testing for the 11p15-associated imprinting disorders Silver-Russell and Beckwith-Wiedemann syndrome (SRS, BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. With the growing knowledge on the molecular basis...

  17. Genetic inactivation of glutamate neurons in the rat sublaterodorsal tegmental nucleus recapitulates REM sleep behaviour disorder.

    Science.gov (United States)

    Valencia Garcia, Sara; Libourel, Paul-Antoine; Lazarus, Michael; Grassi, Daniela; Luppi, Pierre-Hervé; Fort, Patrice

    2017-02-01

    SEE SCHENCK AND MAHOWALD DOI101093/AWW329 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Idiopathic REM sleep behaviour disorder is characterized by the enactment of violent dreams during paradoxical (REM) sleep in the absence of normal muscle atonia. Accumulating clinical and experimental data suggest that REM sleep behaviour disorder might be due to the neurodegeneration of glutamate neurons involved in paradoxical sleep and located within the pontine sublaterodorsal tegmental nucleus. The purpose of the present work was thus to functionally determine first, the role of glutamate sublaterodorsal tegmental nucleus neurons in paradoxical sleep and second, whether their genetic inactivation is sufficient for recapitulating REM sleep behaviour disorder in rats. For this goal, we first injected two retrograde tracers in the intralaminar thalamus and ventral medulla to disentangle neuronal circuits in which sublaterodorsal tegmental nucleus is involved; second we infused bilaterally in sublaterodorsal tegmental nucleus adeno-associated viruses carrying short hairpin RNAs targeting Slc17a6 mRNA [which encodes vesicular glutamate transporter 2 (vGluT2)] to chronically impair glutamate synaptic transmission in sublaterodorsal tegmental nucleus neurons. At the neuroanatomical level, sublaterodorsal tegmental nucleus neurons specifically activated during paradoxical sleep hypersomnia send descending efferents to glycine/GABA neurons within the ventral medulla, but not ascending projections to the intralaminar thalamus. These data suggest a crucial role of sublaterodorsal tegmental nucleus neurons rather in muscle atonia than in paradoxical sleep generation. In line with this hypothesis, 30 days after adeno-associated virus injections into sublaterodorsal tegmental nucleus rats display a decrease of 30% of paradoxical sleep daily quantities, and a significant increase of muscle tone during paradoxical sleep concomitant to a tremendous increase of abnormal motor dream

  18. Peabody Picture Vocabulary Test: Proxy for Verbal IQ in Genetic Studies of Autism Spectrum Disorder.

    Science.gov (United States)

    Krasileva, Kate E; Sanders, Stephan J; Bal, Vanessa Hus

    2017-04-01

    This study assessed the utility of a brief assessment (the Peabody Picture Vocabulary Test-4th Edition; PPVT4) as a proxy for verbal IQ (VIQ) in large-scale studies of autism spectrum disorder (ASD). In a sample of 2,420 proband with ASD, PPVT4:IQ correlations were strong. PPVT4 scores were, on average, 5.46 points higher than VIQ; 79% of children had PPVT4 scores within one standard deviation (+/-15) of their VIQ and 90% were similarly classified as having abilities above or below 70 on both measures. Distributions of PPVT4 and VIQ by de novo mutation status were highly similar. These results strongly support the utility of PPVT4 as a proxy for VIQ in large-scale ASD studies, particularly for genetic investigations.

  19. Genetic counseling for individuals with hemoglobin disorders and for their relatives: a systematic literature review

    Directory of Open Access Journals (Sweden)

    Tatiana Dela-Sávia Ferreira

    2014-10-01

    Full Text Available Objective: To identify genetic counseling programs that do not encourage therapeutic abortion for individuals with hemoglobin disorders and/or for their relatives. Method: Systematic literature review of articles published from 2001 to 2012 that are located in the PubMed, LILACS, SciELO and SCOPUS databases using keywords in Portuguese, English and Spanish and that met the inclusion and exclusion criteria described on a standardized form. Results: A total of 409 articles were located, but only eight (1.9% were selected for analysis. Conclusion: Although seldom mentioned in the literature, educational/preventive programs targeting hemoglobinopathies are feasible and allow the affected individuals to acquire knowledge on the consequences of this condition and their odds of transmitting it.

  20. Genetic treatment of a molecular disorder: gene therapy approaches to sickle cell disease.

    Science.gov (United States)

    Hoban, Megan D; Orkin, Stuart H; Bauer, Daniel E

    2016-02-18

    Effective medical management for sickle cell disease (SCD) remains elusive. As a prevalent and severe monogenic disorder, SCD has been long considered a logical candidate for gene therapy. Significant progress has been made in moving toward this goal. These efforts have provided substantial insight into the natural regulation of the globin genes and illuminated challenges for genetic manipulation of the hematopoietic system. The initial γ-retroviral vectors, next-generation lentiviral vectors, and novel genome engineering and gene regulation approaches each share the goal of preventing erythrocyte sickling. After years of preclinical studies, several clinical trials for SCD gene therapies are now open. This review focuses on progress made toward achieving gene therapy, the current state of the field, consideration of factors that may determine clinical success, and prospects for future development.

  1. To grow or not to grow: hair morphogenesis and human genetic hair disorders.

    Science.gov (United States)

    Duverger, Olivier; Morasso, Maria I

    2014-01-01

    Mouse models have greatly helped in elucidating the molecular mechanisms involved in hair formation and regeneration. Recent publications have reviewed the genes involved in mouse hair development based on the phenotype of transgenic, knockout and mutant animal models. While much of this information has been instrumental in determining molecular aspects of human hair development and cycling, mice exhibit a specific pattern of hair morphogenesis and hair distribution throughout the body that cannot be directly correlated to human hair. In this mini-review, we discuss specific aspects of human hair follicle development and present an up-to-date summary of human genetic disorders associated with abnormalities in hair follicle morphogenesis, structure or regeneration. Published by Elsevier Ltd.

  2. Primary shunt hyperbilirubinaemia in a large four-generation family confirming autosomal dominant genetic disorder

    Institute of Scientific and Technical Information of China (English)

    Chun-Lian Wang; Xiao-Wei Liu; Fang-Gen Lu; Xiao-Ping Wu; Chun-Hui Ouyang; Dong-Ye Yang

    2006-01-01

    AIM: To describe the pattern of inheritance and confirm the diagnosdc criteria of primary shunt hyperbilirubinaemia (PSH).METHODS: Forty members of a family pedigree across four generations were included in this study. All family members were interviewed and investigated by physical examination, hematology and liver function test and the pattern of inheritance was analyzed.RESULTS: Nine of the forty family members suffered primary shunt hyperbilirubinaemia. The mature erythrocytes of the propositus were irregular in shape and size.The pedigree showed transmission of the trait through four generations with equal distribution in male and female. No individual with a primary shunt hyperbilirubinaemia was born to unaffected parents. The penetrance was complete in adult.CONCLUSION: The pattern of inheritance is autosomal dominant. The abnormality of erythrocytes and decrease in white blood cell could be supplemented in the diagnosis of PSH. The PSH is a genetic disorder and could by renamed as hereditary shunt hyperbilirubinaemia.

  3. The role of the inherited disorders of hemoglobin, the first "molecular diseases," in the future of human genetics.

    Science.gov (United States)

    Weatherall, David J

    2013-01-01

    Although the inherited hemoglobin disorders were the first genetic diseases to be explored at the molecular level, they still have important messages for the future of medical genetics. In particular, they can offer a better understanding of the evolutionary and population biology of genetic disease, the mechanisms that underlie the phenotypic diversity of monogenic disease, and how, by developing appropriate partnerships, richer countries can help low-income countries to evolve programs for the control and management of these diseases where, in many cases, they are particularly common.

  4. Genetic Disorders with Dyshidrosis: Ectodermal Dysplasia, Incontinentia Pigmenti, Fabry Disease, and Congenital Insensitivity to Pain with Anhidrosis.

    Science.gov (United States)

    Wataya-Kaneda, Mari

    2016-01-01

    Sweating is regulated by various neurohormonal mechanisms. A disorder in any part of the sweating regulatory pathways, such as the thermal center, neurotransmitters in the central to peripheral nerve, innervation of periglandular neurotransmission, and sweat secretion in the sweat gland itself, induces dyshidrosis. Therefore, hereditary disorders with dyshidrosis result from a variety of causes. These diseases have characteristic symptoms derived from each pathogenesis besides dyshidrosis. The information in this chapter is useful for the differential diagnosis of representative genetic disorders with dyshidrosis. © 2016 S. Karger AG, Basel.

  5. Reno-endocrinal disorders: A basic understanding of the molecular genetics

    Directory of Open Access Journals (Sweden)

    Sukhminder Jit Singh Bajwa

    2012-01-01

    Full Text Available The successful management of endocrine diseases is greatly helped by the complete understanding of the underlying pathology. The knowledge about the molecular genetics contributes immensely in the appropriate identification of the causative factors of the diseases and their subsequent management. The fields of nephrology and endocrinology are also interrelated to a large extent. Besides performing the secretory functions, the renal tissue also acts as target organ for many hormones such as antidiuretic hormone (ADH, atrial natriuretic peptides (ANP, and aldosterone. Understanding the molecular genetics of these hormones is important because the therapeutic interventions in many of these conditions is related to shared renal and endocrine functions, including the anemia of renal disease, chronic kidney disease, mineral bone disorders, and hypertension related to chronic kidney disease. Their understanding and in-depth knowledge is very essential in designing and formulating the therapeutic plans and innovating new management strategies. However, we still have to go a long way in order to completely understand the various confounding causative relationships between the pathology and disease of these reno-endocrinal manifestations.

  6. Persistent Immune Stimulation Exacerbates Genetically Driven Myeloproliferative Disorders via Stromal Remodeling.

    Science.gov (United States)

    Tripodo, Claudio; Burocchi, Alessia; Piccaluga, Pier Paolo; Chiodoni, Claudia; Portararo, Paola; Cappetti, Barbara; Botti, Laura; Gulino, Alessandro; Isidori, Alessandro; Liso, Arcangelo; Visani, Giuseppe; Martelli, Maria Paola; Falini, Brunangelo; Pandolfi, Pier Paolo; Colombo, Mario P; Sangaletti, Sabina

    2017-07-01

    Systemic immune stimulation has been associated with increased risk of myeloid malignancies, but the pathogenic link is unknown. We demonstrate in animal models that experimental systemic immune activation alters the bone marrow stromal microenvironment, disarranging extracellular matrix (ECM) microarchitecture, with downregulation of secreted protein acidic and rich in cysteine (SPARC) and collagen-I and induction of complement activation. These changes were accompanied by a decrease in Treg frequency and by an increase in activated effector T cells. Under these conditions, hematopoietic precursors harboring nucleophosmin-1 (NPM1) mutation generated myeloid cells unfit for normal hematopoiesis but prone to immunogenic death, leading to neutrophil extracellular trap (NET) formation. NET fostered the progression of the indolent NPM1-driven myeloproliferation toward an exacerbated and proliferative dysplastic phenotype. Enrichment in NET structures was found in the bone marrow of patients with autoimmune disorders and in NPM1-mutated acute myelogenous leukemia (AML) patients. Genes involved in NET formation in the animal model were used to design a NET-related inflammatory gene signature for human myeloid malignancies. This signature identified two AML subsets with different genetic complexity and different enrichment in NPM1 mutation and predicted the response to immunomodulatory drugs. Our results indicate that stromal/ECM changes and priming of bone marrow NETosis by systemic inflammatory conditions can complement genetic and epigenetic events towards the development and progression of myeloid malignancy. Cancer Res; 77(13); 3685-99. ©2017 AACR. ©2017 American Association for Cancer Research.

  7. [Perspectives of genetic research in eating disorders using the example of anorexia nervosa].

    Science.gov (United States)

    Hinney, Anke; Volckmar, Anna-Lena

    2015-01-01

    Genetic mechanisms are relevant for both body weight regulation and eating disorders (e.g. anorexia nervosa, AN). Although genome-wide association studies (GWAS) have so far identified about 100 chromosomal regions that influence body weight, only a small part of the variance could be explained by molecular genetic factors. For AN GWAS up to now did not reveal genome-wide significant loci. There are first hints for epigenetic mechanisms involved in the described phenotypes. Epigenomics can improve our understanding of the regulation of body weight including hunger (AN) and overnutrition (obesity). Since the prenatal phase is characterized by dramatic epigenetic changes, it can be regarded as vulnerable period for the epigenotype. Adult health and disease depend on prenatal and early postnatal development. Gene expression markers that are imprinted during this phase can be heritable at the cellular level. These markers can be altered by environmental factors. Altered epigenetic profiles had been described for obese individuals. In mice it was shown that an epigenetic modification of an obesity gene locus had been transferred to the next generation. The year to come will show whether the combined analysis of epigenomic and GWAS data will deepen our understanding of the underlying biological mechanisms.

  8. Symptom dimensions as alternative phenotypes to address genetic heterogeneity in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Labbe, Aurélie; Bureau, Alexandre; Moreau, Isabel; Roy, Marc-André; Chagnon, Yvon; Maziade, Michel; Merette, Chantal

    2012-11-01

    This study introduces a novel way to use the lifetime ratings of symptoms of psychosis, mania and depression in genetic linkage analysis of schizophrenia (SZ) and bipolar disorder (BP). It suggests using a latent class model developed for family data to define more homogeneous symptom subtypes that are influenced by a smaller number of genes that will thus be more easily detectable. In a two-step approach, we proposed: (i) to form homogeneous clusters of subjects based on the symptom dimensions and (ii) to use the information from these homogeneous clusters in linkage analysis. This framework was applied to a unique SZ and BP sample composed of 1278 subjects from 48 large kindreds from the Eastern Quebec population. The results suggest that our strategy has the power to increase linkage signals previously obtained using the diagnosis as phenotype and allows for a better characterization of the linkage signals. This is the case for a linkage signal, which we formerly obtained in chromosome 13q and enhanced using the dimension mania. The analysis also suggests that the methods may detect new linkage signals not previously uncovered by using diagnosis alone, as in chromosomes 2q (delusion), 15q (bizarre behavior), 7p (anhedonia) and 9q (delusion). In the case of the 15q and 2q region, the results coincide with linkage signals detected in other studies. Our results support the view that dissecting phenotypic heterogeneity by modeling symptom dimensions may provide new insights into the genetics of SZ and BP.

  9. Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2017-03-01

    Full Text Available The indispensable roles of dermatan sulfate-proteoglycans (DS-PGs have been demonstrated in various biological events including construction of the extracellular matrix and cell signaling through interactions with collagen and transforming growth factor-β, respectively. Defects in the core proteins of DS-PGs such as decorin and biglycan cause congenital stromal dystrophy of the cornea, spondyloepimetaphyseal dysplasia, and Meester-Loeys syndrome. Furthermore, mutations in human genes encoding the glycosyltransferases, epimerases, and sulfotransferases responsible for the biosynthesis of DS chains cause connective tissue disorders including Ehlers-Danlos syndrome and spondyloepimetaphyseal dysplasia with joint laxity characterized by skin hyperextensibility, joint hypermobility, and tissue fragility, and by severe skeletal disorders such as kyphoscoliosis, short trunk, dislocation, and joint laxity. Glycobiological approaches revealed that mutations in DS-biosynthetic enzymes cause reductions in enzymatic activities and in the amount of synthesized DS and also disrupt the formation of collagen bundles. This review focused on the growing number of glycobiological studies on recently reported genetic diseases caused by defects in the biosynthesis of DS and DS-PGs.

  10. Fetal Alcohol Spectrum Disorders and their Transmission through Genetic and Epigenetic Mechanisms

    Directory of Open Access Journals (Sweden)

    Edward A Mead

    2014-06-01

    Full Text Available Fetal alcohol spectrum disorders (FASD are a group of related conditions that arise from prenatal exposure to maternal consumption of the teratogen, ethanol. It has been estimated that roughly 1% of children in the US suffer from FASD (Sampson et al., 1997, though in some world populations, such as inhabitants of some poorer regions of South Africa, the rate can climb to as high as 20% (May et al., 2013. FASD are the largest cause of mental retardation in U.S. neonates, and ironically, are entirely preventable. FASD has been linked to major changes in the hypothalamic-pituitary-adrenal (HPA axis, resulting in lifelong impairments through mental disorders, retardation, sensitivity to stress, and an impaired immune system with the related outcomes of elevated risk of cancer and other diseases. FASD arises from a complex interplay of genetic and epigenetic factors. Here, we review current literature on the topic to tease apart what is known in these areas particularly emphasizing the HPA axis dysfunction and how they tie into new studies of transgenerational inheritance in FASD.

  11. Multiple-trait estimates of genetic parameters for metabolic disease traits, fertility disorders, and their predictors in Canadian Holsteins.

    Science.gov (United States)

    Jamrozik, J; Koeck, A; Kistemaker, G J; Miglior, F

    2016-03-01

    Producer-recorded health data for metabolic disease traits and fertility disorders on 35,575 Canadian Holstein cows were jointly analyzed with selected indicator traits. Metabolic diseases included clinical ketosis (KET) and displaced abomasum (DA); fertility disorders were metritis (MET) and retained placenta (RP); and disease indicators were fat-to-protein ratio, milk β-hydroxybutyrate, and body condition score (BCS) in the first lactation. Traits in first and later (up to fifth) lactations were treated as correlated in the multiple-trait (13 traits in total) animal linear model. Bayesian methods with Gibbs sampling were implemented for the analysis. Estimates of heritability for disease incidence were low, up to 0.06 for DA in first lactation. Among disease traits, the environmental herd-year variance constituted 4% of the total variance for KET and less for other traits. First- and later-lactation disease traits were genetically correlated (from 0.66 to 0.72) across all traits, indicating different genetic backgrounds for first and later lactations. Genetic correlations between KET and DA were relatively strong and positive (up to 0.79) in both first- and later-lactation cows. Genetic correlations between fertility disorders were slightly lower. Metritis was strongly genetically correlated with both metabolic disease traits in the first lactation only. All other genetic correlations between metabolic and fertility diseases were statistically nonsignificant. First-lactation KET and MET were strongly positively correlated with later-lactation performance for these traits due to the environmental herd-year effect. Indicator traits were moderately genetically correlated (from 0.30 to 0.63 in absolute values) with both metabolic disease traits in the first lactation. Smaller and mostly nonsignificant genetic correlations were among indicators and metabolic diseases in later lactations. The only significant genetic correlations between indicators and fertility

  12. Genetic Evidence for Elevated Pathogenicity of Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Yiqin Wang

    2016-10-01

    Full Text Available Increasing clinical and biochemical evidence implicate mitochondrial dysfunction in the pathophysiology of Autism Spectrum Disorder (ASD, but little is known about the biological basis for this connection. A possible cause of ASD is the genetic variation in the mitochondrial DNA (mtDNA sequence, which has yet to be thoroughly investigated in large genomic studies of ASD. Here we evaluated mtDNA variation, including the mixture of different mtDNA molecules in the same individual (i.e., heteroplasmy, using whole-exome sequencing data from mother-proband-sibling trios from simplex families (n = 903 where only one child is affected by ASD. We found that heteroplasmic mutations in autistic probands were enriched at non-polymorphic mtDNA sites (P = 0.0015, which were more likely to confer deleterious effects than heteroplasmies at polymorphic mtDNA sites. Accordingly, we observed a ~1.5-fold enrichment of nonsynonymous mutations (P = 0.0028 as well as a ~2.2-fold enrichment of predicted pathogenic mutations (P = 0.0016 in autistic probands compared to their non-autistic siblings. Both nonsynonymous and predicted pathogenic mutations private to probands conferred increased risk of ASD (Odds Ratio, OR[95% CI] = 1.87[1.14-3.11] and 2.55[1.26-5.51], respectively, and their influence on ASD was most pronounced in families with probands showing diminished IQ and/or impaired social behavior compared to their non-autistic siblings. We also showed that the genetic transmission pattern of mtDNA heteroplasmies with high pathogenic potential differed between mother-autistic proband pairs and mother-sibling pairs, implicating developmental and possibly in utero contributions. Taken together, our genetic findings substantiate pathogenic mtDNA mutations as a potential cause for ASD and synergize with recent work calling attention to their unique metabolic phenotypes for diagnosis and treatment of children with ASD.

  13. Genetic Evidence for Elevated Pathogenicity of Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder

    Science.gov (United States)

    Wang, Yiqin; Picard, Martin; Gu, Zhenglong

    2016-01-01

    Increasing clinical and biochemical evidence implicate mitochondrial dysfunction in the pathophysiology of Autism Spectrum Disorder (ASD), but little is known about the biological basis for this connection. A possible cause of ASD is the genetic variation in the mitochondrial DNA (mtDNA) sequence, which has yet to be thoroughly investigated in large genomic studies of ASD. Here we evaluated mtDNA variation, including the mixture of different mtDNA molecules in the same individual (i.e., heteroplasmy), using whole-exome sequencing data from mother-proband-sibling trios from simplex families (n = 903) where only one child is affected by ASD. We found that heteroplasmic mutations in autistic probands were enriched at non-polymorphic mtDNA sites (P = 0.0015), which were more likely to confer deleterious effects than heteroplasmies at polymorphic mtDNA sites. Accordingly, we observed a ~1.5-fold enrichment of nonsynonymous mutations (P = 0.0028) as well as a ~2.2-fold enrichment of predicted pathogenic mutations (P = 0.0016) in autistic probands compared to their non-autistic siblings. Both nonsynonymous and predicted pathogenic mutations private to probands conferred increased risk of ASD (Odds Ratio, OR[95% CI] = 1.87[1.14–3.11] and 2.55[1.26–5.51], respectively), and their influence on ASD was most pronounced in families with probands showing diminished IQ and/or impaired social behavior compared to their non-autistic siblings. We also showed that the genetic transmission pattern of mtDNA heteroplasmies with high pathogenic potential differed between mother-autistic proband pairs and mother-sibling pairs, implicating developmental and possibly in utero contributions. Taken together, our genetic findings substantiate pathogenic mtDNA mutations as a potential cause for ASD and synergize with recent work calling attention to their unique metabolic phenotypes for diagnosis and treatment of children with ASD. PMID:27792786

  14. Association Between Genetic Polymorphisms in the Serotonergic System and Comorbid Personality Disorders Among Patients with First-Episode Depression

    DEFF Research Database (Denmark)

    Bukh, Jens D; Bock, Camilla; Kessing, Lars V

    2014-01-01

    the serotonin transporter, serotonin receptors 1A, 2A, 2C, and tryptophan hydroxylase 1 were genotyped. The authors found a significant effect of the length polymorphism in the serotonin transporter gene (5-HTTLPR) on cluster B personality disorder (mainly borderline disorder), but no influence on cluster C......Studies on the association between genetic polymorphisms and personality disorders have provided inconsistent results. Using the "enriched sample method," the authors of the present study aimed to assess the association between polymorphisms in the serotonergic transmitter system and comorbid...... personality disorders in patients recently diagnosed with first-episode depression. A total of 290 participants were systematically recruited via the Danish Psychiatric Central Research Register. Diagnoses of personality disorders were assessed by a SCID-II interview, and polymorphisms in the genes encoding...

  15. Atrioventricular canal defect and associated genetic disorders: new insights into polydactyly syndromes

    Directory of Open Access Journals (Sweden)

    M. Cristina Digilio

    2011-07-01

    Full Text Available Atrioventricular canal defect (AVCD is a common congenital heart defect (CHD, representing 7.4% of all cardiac malformations, considered secondary to an extracellular matrix anomaly. The AVCD is associated with extracardiac defects in about 75% of the cases. In this review we analyzed different syndromic AVCDs, in particular those associated with polydactyly disorders, which show remarkable genotype-phenotype correlations. Chromo - some imbalances more frequently associated with AVCD include Down syndrome, deletion 8p23 and deletion 3p25, while mendelian disorders include Noonan syndrome and related RASopathies, several polydactyly syndromes, CHARGE and 3C (cranio-cerebello-cardiac syndrome. The complete form of AVCD is prevalent in patients with chromosomal imbalances. Additional cardiac defects are found in patients affected by chromosomal imbalances different from Down syndrome. Left-sided obstructive lesions are prevalently found in patients with RASopathies. Patients with deletion 8p23 often display AVCD with tetralogy of Fallot or with pulmonary valve stenosis. Tetralogy of Fallot is the only additional cardiac defect found in patients with Down syndrome and AVCD. On the other hand, the association of AVCD and tetralogy of Fallot is also quite characteristic of CHARGE and 3C syndromes. Heterotaxia defects, including common atrium and anomalous pulmonary venous return, occur in patients with AVCD associated with polydactyly syndromes (Ellis-van Creveld, short rib polydactyly, oral-facial-digital, Bardet-Biedl, and Smith-Lemli-Opitz syndromes. The initial clinical evidence of anatomic similarities between AVCD and heterotaxia in polydactyly syndromes was corroborated and explained by experimental studies in transgenic mice. These investigations have suggested the involvement of the Sonic Hedgehog pathway in syndromes with postaxial polydactyly and heterotaxia, and ciliary dysfunction was detected as pathomechanism for these disorders

  16. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  17. Genetic Syndromes, Maternal Diseases and Antenatal Factors Associated with Autism Spectrum Disorders (ASD).

    Science.gov (United States)

    Ornoy, Asher; Weinstein-Fudim, Liza; Ergaz, Zivanit

    2016-01-01

    Autism spectrum disorder (ASD) affecting about 1% of all children is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal, and postnatal etiologies. In addition, ASD is often an important clinical presentation of some well-known genetic syndromes in human. We discuss these syndromes as well as the role of the more important prenatal factors affecting the fetus throughout pregnancy which may also be associated with ASD. Among the genetic disorders we find Fragile X, Rett syndrome, tuberous sclerosis, Timothy syndrome, Phelan-McDermid syndrome, Hamartoma tumor syndrome, Prader-Willi and Angelman syndromes, and a few others. Among the maternal diseases in pregnancy associated with ASD are diabetes mellitus (PGDM and/or GDM), some maternal autoimmune diseases like antiphospholipid syndrome (APLS) with anti-β2GP1 IgG antibodies and thyroid disease with anti-thyroid peroxidase (TPO) antibodies, preeclampsia and some other autoimmune diseases with IgG antibodies that might affect fetal brain development. Other related factors are maternal infections (rubella and CMV with fetal brain injuries, and possibly Influenza with fever), prolonged fever and maternal inflammation, especially with changes in a variety of inflammatory cytokines and antibodies that cross the placenta and affect the fetal brain. Among the drugs are valproic acid, thalidomide, misoprostol, and possibly SSRIs. β2-adrenergic receptor agonists and paracetamol have also lately been associated with increased rate of ASD but the data is too preliminary and inconclusive. Associations were also described with ethanol, cocaine, and possibly heavy metals, heavy smoking, and folic acid deficiency. Recent studies show that heavy exposure to pesticides and air pollution, especially particulate matter PM2.5 and PM10) during pregnancy is also associated with ASD. Finally, we have to remember that many of the associations mentioned in this review are only partially proven, and not

  18. Genetic Syndromes, Maternal Diseases and Antenatal Factors Associated with Autism Spectrum Disorders (ASD)

    Science.gov (United States)

    Ornoy, Asher; Weinstein- Fudim, Liza; Ergaz, Zivanit

    2016-01-01

    Autism spectrum disorder (ASD) affecting about 1% of all children is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal, and postnatal etiologies. In addition, ASD is often an important clinical presentation of some well-known genetic syndromes in human. We discuss these syndromes as well as the role of the more important prenatal factors affecting the fetus throughout pregnancy which may also be associated with ASD. Among the genetic disorders we find Fragile X, Rett syndrome, tuberous sclerosis, Timothy syndrome, Phelan–McDermid syndrome, Hamartoma tumor syndrome, Prader-Willi and Angelman syndromes, and a few others. Among the maternal diseases in pregnancy associated with ASD are diabetes mellitus (PGDM and/or GDM), some maternal autoimmune diseases like antiphospholipid syndrome (APLS) with anti-β2GP1 IgG antibodies and thyroid disease with anti-thyroid peroxidase (TPO) antibodies, preeclampsia and some other autoimmune diseases with IgG antibodies that might affect fetal brain development. Other related factors are maternal infections (rubella and CMV with fetal brain injuries, and possibly Influenza with fever), prolonged fever and maternal inflammation, especially with changes in a variety of inflammatory cytokines and antibodies that cross the placenta and affect the fetal brain. Among the drugs are valproic acid, thalidomide, misoprostol, and possibly SSRIs. β2-adrenergic receptor agonists and paracetamol have also lately been associated with increased rate of ASD but the data is too preliminary and inconclusive. Associations were also described with ethanol, cocaine, and possibly heavy metals, heavy smoking, and folic acid deficiency. Recent studies show that heavy exposure to pesticides and air pollution, especially particulate matter < 2.5 and 10 μm in diameter (PM2.5 and PM10) during pregnancy is also associated with ASD. Finally, we have to remember that many of the associations mentioned in this review are

  19. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance.

    Science.gov (United States)

    Cherlyn, Suat Ying Tan; Woon, Puay San; Liu, Jian Jun; Ong, Wei Yi; Tsai, Guo Chuan; Sim, Kang

    2010-05-01

    Schizophrenia (SZ) and bipolar disorder (BD) are debilitating neurobehavioural disorders likely influenced by genetic and non-genetic factors and which can be seen as complex disorders of synaptic neurotransmission. The glutamatergic and GABAergic neurotransmission systems have been implicated in both diseases and we have reviewed extensive literature over a decade for evidence to support the association of glutamate and GABA genes in SZ and BD. Candidate-gene based population and family association studies have implicated some ionotrophic glutamate receptor genes (GRIN1, GRIN2A, GRIN2B and GRIK3), metabotropic glutamate receptor genes (such as GRM3), the G72/G30 locus and GABAergic genes (e.g. GAD1 and GABRB2) in both illnesses to varying degrees, but further replication studies are needed to validate these results. There is at present no consensus on specific single nucleotide polymorphisms or haplotypes associated with the particular candidate gene loci in these illnesses. The genetic architecture of glutamate systems in bipolar disorder need to be better studied in view of recent data suggesting an overlap in the genetic aetiology of SZ and BD. There is a pressing need to integrate research platforms in genomics, epistatic models, proteomics, metabolomics, neuroimaging technology and translational studies in order to allow a more integrated understanding of glutamate and GABAergic signalling processes and aberrations in SZ and BD as well as their relationships with clinical presentations and treatment progress over time.

  20. Psychological Factors Associated with Genetic Test Decision-Making among Parents of Children with Autism Spectrum Disorders in Taiwan

    Science.gov (United States)

    Xu, Lei; Richman, Alice R.

    2015-01-01

    Making decisions to undergo Autism Spectrum Disorders (ASD) genetic testing can be challenging. It is important to understand how the perceptions of affected individuals might influence testing decision-making. Although evidence has shown that psychological factors are important in predicting testing decisions, affect-type variables have been…

  1. Etiologic subtypes of attention-deficit/hyperactivity disorder : Brain imaging, molecular genetic and environmental factors and the dopamine hypothesis

    NARCIS (Netherlands)

    Swanson, James M.; Kinsbourne, Marcel; Nigg, Joel; Lanphear, Bruce; Stefanatos, Gerry A.; Volkow, Nora; Taylor, Eric; Casey, B. J.; Castellanos, F. Xavier; Wadhwa, Pathik D.

    2007-01-01

    Multiple theories of Attention-Deficit/Hyperactivity Disorder (ADHD) have been proposed, but one that has stood the test of time is the dopamine deficit theory. We review the narrow literature from recent brain imaging and molecular genetic studies that has improved our understanding of the role of

  2. Start small, think big: Growth monitoring, genetic analysis, treatment and quality of life in children with growth disorders

    NARCIS (Netherlands)

    S.E. Stalman

    2016-01-01

    The aim of this thesis is to focus on issues that arise when dealing with children with growth disorders – from growth monitoring and genetic analysis to treatment effects on growth and quality of life. The first part of this thesis focuses on guidelines for diagnostic workup of children with growth

  3. Start small, think big: Growth monitoring, genetic analysis, treatment and quality of life in children with growth disorders

    NARCIS (Netherlands)

    Stalman, S.E.

    2016-01-01

    The aim of this thesis is to focus on issues that arise when dealing with children with growth disorders – from growth monitoring and genetic analysis to treatment effects on growth and quality of life. The first part of this thesis focuses on guidelines for diagnostic workup of children with growth

  4. Separation of genetic influences on attention deficit hyperactivity disorder symptoms and reaction time performance from those on IQ

    NARCIS (Netherlands)

    Wood, A. C.; Asherson, P.; van der Meere, J. J.; Kuntsi, J.

    2010-01-01

    Background. Attention deficit hyperactivity disorder (ADHD) shows a strong phenotypic and genetic association with reaction time (RI) variability, considered to reflect lapses in attention. Yet we know little about whether this aetiological pathway is shared with other affected cognitive processes i

  5. Can the classification of personality disorders be based on behavior genetics? A comment on South and DeYoung (2013).

    Science.gov (United States)

    Skodol, Andrew E; Krueger, Robert F

    2013-07-01

    Comments on the article by S. C. South and N. J. DeYoung (see record 2012-01744-001). This commentary examines how behavior genetic research can be used to inform the revision of personality disorders (PDs) during the transition from DSM-IV to DSM-5. Although supportive of the proposal put forth by the work group that extreme personality traits need to be distinguished from personality disorder by the presence of disorganization in personality structure and function, South and DeYoung note the absence of behavior genetics data on the levels of personality functioning and the new general criteria for personality disorder that incorporate impairment in personality functioning as the "A criterion." They also note, however, that literature supporting this type of definition with its focus on aspects of self-concept and interpersonal relations is rapidly growing.

  6. The role of genetic factors and pre- and perinatal influences in the etiology of autism spectrum disorders – indications for genetic referral

    Directory of Open Access Journals (Sweden)

    Filip Rybakowski

    2016-06-01

    Full Text Available Autism spectrum disorders (ASD are caused by disruptions in early stages of central nervous system development and are usually diagnosed in first years of life. Despite common features such as impairment of socio-communicative development and stereotypical behaviours, ASD are characterised by heterogeneous course and clinical picture. The most important aetiological factors comprise genetic and environmental influences acting at prenatal, perinatal and neonatal period. The role of rare variants with large effect i.e. copy number variants in genes regulating synapse formation and intrasynaptic connections is emphasised. Common variants with small effect may also be involved, i.e. polymorphisms in genes encoding prosocial peptides system – oxytocin and vasopressin. The environmental factors may include harmful effects acting during pregnancy and labour, however their specificity until now is not confirmed, and in some of them a primary genetic origin cannot be excluded. In several instances, especially with comorbid disorders – intellectual disability, epilepsy and dysmorphias – a detailed molecular diagnostics is warranted, which currently may elucidate the genetic background of disorder in about 20% of cases.

  7. Understanding the Covariation among Childhood Externalizing Symptoms: Genetic and Environmental Influences on Conduct Disorder, Attention Deficit Hyperactivity Disorder, and Oppositional Defiant Disorder Symptoms.

    Science.gov (United States)

    Dick, Danielle M.; Viken, Richard J.; Kaprio, Jaakko; Pulkkinen, Lea; Rose, Richard J.

    2005-01-01

    Conduct disorder (CD), attention deficit hyperactivity disorder (ADHD), and oppositional defiant disorder (ODD) are common childhood externalizing disorders that frequently co-occur. However, the causes of their comorbidity are not well understood. To address that question, we analyzed data from >600 Finnish twin pairs, who completed standardized…

  8. Diagnosis of Attention-Deficit/Hyperactivity Disorder and Its Behavioral, Neurological, and Genetic Roots

    Science.gov (United States)

    Mueller, Kathryn L.; Tomblin, J. Bruce

    2012-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a common developmental disorder often associated with other developmental disorders including speech, language, and reading disorders. Here, we review the principal features of ADHD and current diagnostic standards for the disorder. We outline the ADHD subtypes, which are based upon the dimensions…

  9. Brain imaging genetics in ADHD and beyond - mapping pathways from gene to disorder at different levels of complexity.

    Science.gov (United States)

    Klein, Marieke; Onnink, Marten; van Donkelaar, Marjolein; Wolfers, Thomas; Harich, Benjamin; Shi, Yan; Dammers, Janneke; Arias-Va Squez, Alejandro; Hoogman, Martine; Franke, Barbara

    2017-01-31

    Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.

  10. 常见线粒体DNA病的分子遗传学研究进展%Molecular genetics of common mitochondrial DNA disorders

    Institute of Scientific and Technical Information of China (English)

    Lee-Jun C. WONG

    2005-01-01

    SUMMARY Diagnosis of mitochondrial disorders has been difficult due to the clinical and genetic heterogeneity, as well as unique features of mitochondrial genetics. Definitive diagnosis requires the identification of molecular defects in either the mitochondrial or the nuclear genome. We describe the clinical and molecular characteristic of some common mitochondrial syndromes and molecular methodologies available for the detection of mitochondrial DNA mutations. This review provides overview of current molecular diagnosis of mitochondrial DNA disorders that is useful in patient care and genetic counseling.

  11. Oxytocin and vasopressin are dysregulated in Williams Syndrome, a genetic disorder affecting social behavior.

    Directory of Open Access Journals (Sweden)

    Li Dai

    Full Text Available The molecular and neural mechanisms regulating human social-emotional behaviors are fundamentally important but largely unknown; unraveling these requires a genetic systems neuroscience analysis of human models. Williams Syndrome (WS, a condition caused by deletion of ~28 genes, is associated with a gregarious personality, strong drive to approach strangers, difficult peer interactions, and attraction to music. WS provides a unique opportunity to identify endogenous human gene-behavior mechanisms. Social neuropeptides including oxytocin (OT and arginine vasopressin (AVP regulate reproductive and social behaviors in mammals, and we reasoned that these might mediate the features of WS. Here we established blood levels of OT and AVP in WS and controls at baseline, and at multiple timepoints following a positive emotional intervention (music, and a negative physical stressor (cold. We also related these levels to standardized indices of social behavior. Results revealed significantly higher median levels of OT in WS versus controls at baseline, with a less marked increase in AVP. Further, in WS, OT and AVP increased in response to music and to cold, with greater variability and an amplified peak release compared to controls. In WS, baseline OT but not AVP, was correlated positively with approach, but negatively with adaptive social behaviors. These results indicate that WS deleted genes perturb hypothalamic-pituitary release not only of OT but also of AVP, implicating more complex neuropeptide circuitry for WS features and providing evidence for their roles in endogenous regulation of human social behavior. The data suggest a possible biological basis for amygdalar involvement, for increased anxiety, and for the paradox of increased approach but poor social relationships in WS. They also offer insight for translating genetic and neuroendocrine knowledge into treatments for disorders of social behavior.

  12. Personality traits as an endophenotype in genetic studies on suicidality in bipolar disorder.

    Science.gov (United States)

    Pawlak, J; Dmitrzak-Węglarz, M; Maciukiewicz, M; Kapelski, P; Czerski, P; Leszczyńska-Rodziewicz, A; Zaremba, D; Hauser, J

    2017-04-01

    Introduction The influence of personality traits on suicidal behaviour risk has been well documented. Personality traits and suicidal behaviour are partially genetically determined and personality has been described as an endophenotype of suicidal behaviour. The aim of this study was to investigate a possible association between personality traits with suicidal behaviour and selected serotonergic gene polymorphisms. In the study we included 156 patients meeting DSM-IV criteria for bipolar disorder (BP) and 93 healthy controls. The personality dimensions were assessed using the Temperament and Character Inventory (TCI). We genotyped two selected polymorphisms of the tryptophan hydroxylase 1 (TPH1) gene (rs1800532 218A>C and rs1799913 779A>C) and polymorphism in the promoter region of serotonin transporter gene (5-HTTLPR, rs25531) related to serotoninergic neurotransmission. Multiple poisson regression, logistic regression and Kruskal-Wallis tests were applied. We found numerous differences between the BP patients and the control group in terms of their TCI dimensions/subdimensions. Significant differences were found between patients with, and without, suicidal attempts in fatigability and asthenia (Ha4), as well as in harm avoidance (Ha). We also found that the interactions between TCI subdimensions (the interaction of disordiness (Ns4) and spiritual acceptance (St3), disordiness (Ns4) and integrated conscience (C5), extravagance (Ns3) and resourcefulness (Sd3)) were significantly contributing for suicidal behaviour risk. We found association between all studied genetic polymorphisms and several TCI dimensions and subdimensions. Our results confirm that personality traits are partially determined by genes. Both personality traits and the interactions between temperament and character traits, may be helpful in predicting suicidal behaviour.

  13. Personality endophenotypes for bipolar affective disorder: a family-based genetic association analysis.

    Science.gov (United States)

    Savitz, J; van der Merwe, L; Ramesar, R

    2008-11-01

    Genetic analyses of complex conditions such as bipolar disorder (BD) may be facilitated by the use of intermediate phenotypes. Various personality traits are overrepresented in people with BD and their unaffected relatives, and may constitute genetically transmitted risk factors or endophenotypes of the illness. In this study, we administered a battery of seven different personality questionnaires comprising 19 subscales to 31 Caucasian BD families (n = 241). Ten of these personality traits showed significant evidence of heritability and were therefore selected as candidate endophenotypes. In addition, a principal components analysis produced two heritable components (negative affect and appetitive drive), which accounted for a considerable proportion of the variance (29% + 12%) and were also used in the analysis. A family-based quantitative association study was carried out using the orthogonal model from the quantitative transmission disequilibrium tests (QTDT) program. Monte Carlo permutations (M = 500), which allow for non-normal data and provide a global P value, corrected for multiple testing, were used to calculate empirical P values for the within-family component of association. The 3' untranslated region repeat polymorphism of the dopamine transporter gene (SLC6A3) was associated with self-directedness (P personality traits, 'Spirituality' (P = 0.040) and irritable temperament (P = 0.022). Furthermore, the met allele of the brain-derived neurotrophic factor val66met polymorphism was associated with higher hyperthymic temperament scores. We raise the possibility that the 10R allele of the SLC6A3 repeat polymorphism and the short allele of the SLC6A4 promoter variant constitute risk factors for irritable-aggressive and anxious-dysthymic subtypes of BD, respectively.

  14. Genetics of autism spectrum disorders%孤独症遗传学

    Institute of Scientific and Technical Information of China (English)

    郭辉; 胡正茂; 赵靖平; 夏昆

    2011-01-01

    Autism is a group of etiology and clinical heterogeneous neurodevelopmental disorders with an onset before 3 years old.It has 3 core characteristics:deficits in verbal communication;impairment of social interaction; restricted interests and repetitive behaviors.The incidence is increasing over time worldwide.Twin and family studies have demonstrated that autism has a high heritability ( > 90% ).Although certain progress of autism genetic study has been made in the last decades and several autism susceptibility genes and loci have been identified,there are still about 70% -80% of patients for whom an autism-related genetic change cannot be identified.%孤独症是一组具有病因和临床异质性的神经发育性疾病,通常发病于3岁以前.孤独症具有3个典型的核心症状:语言交流缺陷,社交障碍以及狭隘兴趣和重复的行为.孤独症发病率在全球范围内呈增长趋势.双生子和家族聚集性研究发现遗传因素在孤独症的发病机制中起重要作用(遗传度>90%).遗传学研究发现了孤独症的一些易感基因和位点,但仍然有70%~80%的孤独症患者遗传病因不明.

  15. Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models

    Directory of Open Access Journals (Sweden)

    Caleb Andrew Doll

    2014-02-01

    Full Text Available Early-use activity during circuit-specific critical periods refines brain circuitry by the coupled processes of eliminating inappropriate synapses and strengthening maintained synapses. We theorize these activity-dependent developmental processes are specifically impaired in autism spectrum disorders (ASDs. ASD genetic models in both mouse and Drosophila have pioneered our insights into normal activity-dependent neural circuit assembly and consolidation, and how these developmental mechanisms go awry in specific genetic conditions. The monogenic Fragile X syndrome (FXS, a common cause of heritable ASD and intellectual disability, has been particularly well linked to defects in activity-dependent critical period processes. The Fragile X Mental Retardation Protein (FMRP is positively activity-regulated in expression and function, in turn regulates excitability and activity in a negative feedback loop, and appears to be required for the activity-dependent remodeling of synaptic connectivity during early-use critical periods. The Drosophila FXS model has been shown to functionally conserve the roles of human FMRP in synaptogenesis, and has been centrally important in generating our current mechanistic understanding of the FXS disease state. Recent advances in Drosophila optogenetics, transgenic calcium reporters, highly-targeted transgenic drivers for individually-identified neurons, and a vastly improved connectome of the brain are now being combined to provide unparalleled opportunities to both manipulate and monitor activity-dependent processes during critical period brain development in defined neural circuits. The field is now poised to exploit this new Drosophila transgenic toolbox for the systematic dissection of activity-dependent mechanisms in normal versus ASD brain development, particularly utilizing the well-established Drosophila FXS disease model.

  16. Genetic Background, Adipocytokines, and Metabolic Disorders in Postmenopausal Overweight and Obese Women.

    Science.gov (United States)

    Grygiel-Górniak, Bogna; Kaczmarek, Elżbieta; Mosor, Maria; Przysławski, Juliusz; Bogacz, Anna

    2016-10-01

    The relationship between the genetic background, adipocytokines, and metabolic state in postmenopausal women has not yet been fully described. The aim of this study was to determine the relationship between PPAR gamma-2 (Pro12Ala, C1431T) and ADRB3 (Trp64Arg) polymorphisms and serum adipocytokines (adiponectin, visfatin, and resistin) and metabolic disorders in 176 postmenopausal women with increased body mass (BMI ≥ 25 kg m(-2)). The distributions of selected alleles and genotype frequencies were determined with the PCR-RFLP method. The bioimpedance method was used to determine nutritional status, and enzyme-linked immunosorbent assays were applied to determine serum concentrations of adipocytokines. Viscerally obese postmenopausal women had higher body mass, body fat content, serum glucose, insulin, total cholesterol, LDL, triglycerides, uric acid, and HOMA-IR and a higher prevalence of the Ala12 allele. In models based on cytokine concentration, higher body mass and glucose concentration (visfatin model, p = 0.008) and higher insulin and triglyceride levels (resistin model, p = 0.002) were observed in visceral fat deposition and this was potentiated by the presence of the T1431 allele. In resistin models, co-existence of Ala12/X polymorphisms with the T1431 allele was associated with higher resistin and triglyceride concentrations (p = 0.045). In postmenopausal women, metabolic parameters are mainly determined by the distribution of body fat, but Ala12/X polymorphism may increase the metabolic disorders and this effect can be enhanced by the T1431 allele.

  17. A genetic network model of cellular responses to lithium treatment and cocaine abuse in bipolar disorder.

    Science.gov (United States)

    McEachin, Richard C; Chen, Haiming; Sartor, Maureen A; Saccone, Scott F; Keller, Benjamin J; Prossin, Alan R; Cavalcoli, James D; McInnis, Melvin G

    2010-11-19

    Lithium is an effective treatment for Bipolar Disorder (BD) and significantly reduces suicide risk, though the molecular basis of lithium's effectiveness is not well understood. We seek to improve our understanding of this effectiveness by posing hypotheses based on new experimental data as well as published data, testing these hypotheses in silico, and posing new hypotheses for validation in future studies. We initially hypothesized a gene-by-environment interaction where lithium, acting as an environmental influence, impacts signal transduction pathways leading to differential expression of genes important in the etiology of BD mania. Using microarray and rt-QPCR assays, we identified candidate genes that are differentially expressed with lithium treatment. We used a systems biology approach to identify interactions among these candidate genes and develop a network of genes that interact with the differentially expressed candidates. Notably, we also identified cocaine as having a potential influence on the network, consistent with the observed high rate of comorbidity for BD and cocaine abuse. The resulting network represents a novel hypothesis on how multiple genetic influences on bipolar disorder are impacted by both lithium treatment and cocaine use. Testing this network for association with BD and related phenotypes, we find that it is significantly over-represented for genes that participate in signal transduction, consistent with our hypothesized-gene-by environment interaction. In addition, it models related pharmacogenomic, psychiatric, and chemical dependence phenotypes. We offer a network model of gene-by-environment interaction associated with lithium's effectiveness in treating BD mania, as well as the observed high rate of comorbidity of BD and cocaine abuse. We identified drug targets within this network that represent immediate candidates for therapeutic drug testing. Posing novel hypotheses for validation in future work, we prioritized SNPs near

  18. Sporadic adult onset primary torsion dystonia is a genetic disorder by the temporal discrimination test.

    LENUS (Irish Health Repository)

    Kimmich, Okka

    2012-02-01

    Adult-onset primary torsion dystonia is an autosomal dominant disorder with markedly reduced penetrance; patients with sporadic adult-onset primary torsion dystonia are much more prevalent than familial. The temporal discrimination threshold is the shortest time interval at which two stimuli are detected to be asynchronous and has been shown to be abnormal in adult-onset primary torsion dystonia. The aim was to determine the frequency of abnormal temporal discrimination thresholds in patients with sporadic adult-onset primary torsion dystonia and their first-degree relatives. We hypothesized that abnormal temporal discrimination thresholds in first relatives would be compatible with an autosomal dominant endophenotype. Temporal discrimination thresholds were examined in 61 control subjects (39 subjects <50 years of age; 22 subjects >50 years of age), 32 patients with sporadic adult-onset primary torsion dystonia (cervical dystonia n = 30, spasmodic dysphonia n = 1 and Meige\\'s syndrome n = 1) and 73 unaffected first-degree relatives (36 siblings, 36 offspring and one parent) using visual and tactile stimuli. Z-scores were calculated for all subjects; a Z > 2.5 was considered abnormal. Abnormal temporal discrimination thresholds were found in 1\\/61 (2%) control subjects, 27\\/32 (84%) patients with adult-onset primary torsion dystonia and 32\\/73 (44%) unaffected relatives [siblings (20\\/36; 56%), offspring (11\\/36; 31%) and one parent]. When two or more relatives were tested in any one family, 22 of 24 families had at least one first-degree relative with an abnormal temporal discrimination threshold. The frequency of abnormal temporal discrimination thresholds in first-degree relatives of patients with sporadic adult-onset primary torsion dystonia is compatible with an autosomal dominant disorder and supports the hypothesis that apparently sporadic adult-onset primary torsion dystonia is genetic in origin.

  19. PKCα is genetically linked to memory capacity in healthy subjects and to risk for posttraumatic stress disorder in genocide survivors.

    Science.gov (United States)

    de Quervain, Dominique J-F; Kolassa, Iris-Tatjana; Ackermann, Sandra; Aerni, Amanda; Boesiger, Peter; Demougin, Philippe; Elbert, Thomas; Ertl, Verena; Gschwind, Leo; Hadziselimovic, Nils; Hanser, Edveena; Heck, Angela; Hieber, Petra; Huynh, Kim-Dung; Klarhöfer, Markus; Luechinger, Roger; Rasch, Björn; Scheffler, Klaus; Spalek, Klara; Stippich, Christoph; Vogler, Christian; Vukojevic, Vanja; Stetak, Attila; Papassotiropoulos, Andreas

    2012-05-29

    Strong memory of a traumatic event is thought to contribute to the development and symptoms of posttraumatic stress disorder (PTSD). Therefore, a genetic predisposition to build strong memories could lead to increased risk for PTSD after a traumatic event. Here we show that genetic variability of the gene encoding PKCα (PRKCA) was associated with memory capacity--including aversive memory--in nontraumatized subjects of European descent. This finding was replicated in an independent sample of nontraumatized subjects, who additionally underwent functional magnetic resonance imaging (fMRI). fMRI analysis revealed PRKCA genotype-dependent brain activation differences during successful encoding of aversive information. Further, the identified genetic variant was also related to traumatic memory and to the risk for PTSD in heavily traumatized survivors of the Rwandan genocide. Our results indicate a role for PKCα in memory and suggest a genetic link between memory and the risk for PTSD.

  20. Dubowitz syndrome is a complex comprised of multiple, genetically distinct and phenotypically overlapping disorders.

    Directory of Open Access Journals (Sweden)

    Douglas R Stewart

    Full Text Available Dubowitz syndrome is a rare disorder characterized by multiple congenital anomalies, cognitive delay, growth failure, an immune defect, and an increased risk of blood dyscrasia and malignancy. There is considerable phenotypic variability, suggesting genetic heterogeneity. We clinically characterized and performed exome sequencing and high-density array SNP genotyping on three individuals with Dubowitz syndrome, including a pair of previously-described siblings (Patients 1 and 2, brother and sister and an unpublished patient (Patient 3. Given the siblings' history of bone marrow abnormalities, we also evaluated telomere length and performed radiosensitivity assays. In the siblings, exome sequencing identified compound heterozygosity for a known rare nonsense substitution in the nuclear ligase gene LIG4 (rs104894419, NM_002312.3:c.2440C>T that predicts p.Arg814X (MAF:0.0002 and an NM_002312.3:c.613delT variant that predicts a p.Ser205Leufs*29 frameshift. The frameshift mutation has not been reported in 1000 Genomes, ESP, or ClinSeq. These LIG4 mutations were previously reported in the sibling sister; her brother had not been previously tested. Western blotting showed an absence of a ligase IV band in both siblings. In the third patient, array SNP genotyping revealed a de novo ∼ 3.89 Mb interstitial deletion at chromosome 17q24.2 (chr 17:62,068,463-65,963,102, hg18, which spanned the known Carney complex gene PRKAR1A. In all three patients, a median lymphocyte telomere length of ≤ 1st centile was observed and radiosensitivity assays showed increased sensitivity to ionizing radiation. Our work suggests that, in addition to dyskeratosis congenita, LIG4 and 17q24.2 syndromes also feature shortened telomeres; to confirm this, telomere length testing should be considered in both disorders. Taken together, our work and other reports on Dubowitz syndrome, as currently recognized, suggest that it is not a unitary entity but instead a collection of

  1. Genetic Counseling

    Science.gov (United States)

    Genetic counseling provides information and support to people who have, or may be at risk for, genetic disorders. A ... meets with you to discuss genetic risks. The counseling may be for yourself or a family member. ...

  2. Genetic influences on attention deficit hyperactivity disorder symptoms from age 2 to 3: A quantitative and molecular genetic investigation

    Directory of Open Access Journals (Sweden)

    Saudino Kimberly J

    2010-12-01

    Full Text Available Abstract Background A twin study design was used to assess the degree to which additive genetic variance influences ADHD symptom scores across two ages during infancy. A further objective in the study was to observe whether genetic association with a number of candidate markers reflects results from the quantitative genetic analysis. Method We have studied 312 twin pairs at two time-points, age 2 and age 3. A composite measure of ADHD symptoms from two parent-rating scales: The Child Behavior Checklist/1.5 - 5 years (CBCL hyperactivity scale and the Revised Rutter Parent Scale for Preschool Children (RRPSPC was used for both quantitative and molecular genetic analyses. Results At ages 2 and 3 ADHD symptoms are highly heritable (h2 = 0.79 and 0.78, respectively with a high level of genetic stability across these ages. However, we also observe a significant level of genetic change from age 2 to age 3. There are modest influences of non-shared environment at each age independently (e2 = 0.22 and 0.21, respectively, with these influences being largely age-specific. In addition, we find modest association signals in DAT1 and NET1 at both ages, along with suggestive specific effects of 5-HTT and DRD4 at age 3. Conclusions ADHD symptoms are heritable at ages 2 and 3. Additive genetic variance is largely shared across these ages, although there are significant new effects emerging at age 3. Results from our genetic association analysis reflect these levels of stability and change and, more generally, suggest a requirement for consideration of age-specific genotypic effects in future molecular studies.

  3. What counts as effective genetic counselling for presymptomatic testing in late-onset disorders? A study of the consultand's perspective.

    Science.gov (United States)

    Guimarães, Lídia; Sequeiros, Jorge; Skirton, Heather; Paneque, Milena

    2013-08-01

    Genetic counselling must be offered in the context of presymptomatic testing (PST) for severe late-onset diseases; however, effective genetic counselling is not well defined, and measurement tools that allow a systematic evaluation of genetic practice are still not available. The aims of this qualitative study were to (1) recognize relevant aspects across the whole process of genetic counselling in PST for late-onset neurodegenerative disorders that might indicate effective practice from the consultand's perspective; and (2) analyse aspects of current protocols of counselling that might be relevant for successful practice. We interviewed 22 consultands undergoing PST for late-onset neurological disorders (Huntington disease, spinocerebellar ataxias and familial amyloid polyneuropathy ATTRV30M) in the three major counselling services for these diseases in Portugal. The main themes emerging from the content analysis were (1) the consultand's general assessment of the PST process in genetic services; (2) appropriateness and adaptation of the protocol to the consultand's personal expectations and needs; and (3) consultand's experience of the decision-making process and the role of engagement and counselling skills of the counsellor. Participants also provided a set of recommendations and constructive criticisms relating to the length of the protocol, the time gap between consultations and the way results were delivered. These issues and the construction of the relationship between counsellor and counselee should be further investigated and used for the improvement of current protocols of counselling.

  4. Update on iron metabolism and molecular perspective of common genetic and acquired disorder, hemochromatosis.

    Science.gov (United States)

    Yun, Seongseok; Vincelette, Nicole D

    2015-07-01

    Iron is an essential component of erythropoiesis and its metabolism is tightly regulated by a variety of internal and external cues including iron storage, tissue hypoxia, inflammation and degree of erythropoiesis. There has been remarkable improvement in our understanding of the molecular mechanisms of iron metabolism past decades. The classical model of iron metabolism with iron response element/iron response protein (IRE/IRP) is now extended to include hepcidin model. Endogenous and exogenous signals funnel down to hepcidin via wide range of signaling pathways including Janus Kinase/Signal Transducer and Activator of Transcription 3 (JAK/STAT3), Bone Morphogenetic Protein/Hemojuvelin/Mothers Against Decapentaplegic Homolog (BMP/HJV/SMAD), and Von Hippel Lindau/Hypoxia-inducible factor/Erythropoietin (VHL/HIF/EPO), then relay to ferroportin, which directly regulates intra- and extracellular iron levels. The successful molecular delineation of iron metabolism further enhanced our understanding of common genetic and acquired disorder, hemochromatosis. The majority of the hereditary hemochromatosis (HH) patients are now shown to have mutations in the genes coding either upstream or downstream proteins of hepcidin, resulting in iron overload. The update on hepcidin centered mechanisms of iron metabolism and their clinical perspective in hemochromatosis will be discussed in this review.

  5. Spatial Impairment and Memory in Genetic Disorders: Insights from Mouse Models

    Directory of Open Access Journals (Sweden)

    Sang Ah Lee

    2017-02-01

    Full Text Available Research across the cognitive and brain sciences has begun to elucidate some of the processes that guide navigation and spatial memory. Boundary geometry and featural landmarks are two distinct classes of environmental cues that have dissociable neural correlates in spatial representation and follow different patterns of learning. Consequently, spatial navigation depends both on the type of cue available and on the type of learning provided. We investigated this interaction between spatial representation and memory by administering two different tasks (working memory, reference memory using two different environmental cues (rectangular geometry, striped landmark in mouse models of human genetic disorders: Prader-Willi syndrome (PWScrm+/p− mice, n = 12 and Beta-catenin mutation (Thr653Lys-substituted mice, n = 12. This exploratory study provides suggestive evidence that these models exhibit different abilities and impairments in navigating by boundary geometry and featural landmarks, depending on the type of memory task administered. We discuss these data in light of the specific deficits in cognitive and brain function in these human syndromes and their animal model counterparts.

  6. Spatial Impairment and Memory in Genetic Disorders: Insights from Mouse Models

    Science.gov (United States)

    Lee, Sang Ah; Tucci, Valter; Vallortigara, Giorgio

    2017-01-01

    Research across the cognitive and brain sciences has begun to elucidate some of the processes that guide navigation and spatial memory. Boundary geometry and featural landmarks are two distinct classes of environmental cues that have dissociable neural correlates in spatial representation and follow different patterns of learning. Consequently, spatial navigation depends both on the type of cue available and on the type of learning provided. We investigated this interaction between spatial representation and memory by administering two different tasks (working memory, reference memory) using two different environmental cues (rectangular geometry, striped landmark) in mouse models of human genetic disorders: Prader-Willi syndrome (PWScrm+/p− mice, n = 12) and Beta-catenin mutation (Thr653Lys-substituted mice, n = 12). This exploratory study provides suggestive evidence that these models exhibit different abilities and impairments in navigating by boundary geometry and featural landmarks, depending on the type of memory task administered. We discuss these data in light of the specific deficits in cognitive and brain function in these human syndromes and their animal model counterparts. PMID:28208764

  7. Role of Triton X-100 in chemiluminescent enzyme immunoassays capable of diagnosing genetic disorders.

    Science.gov (United States)

    Chong, Richard; Rho, Jee-Eun R; Yoon, Hye-Joo; Park, Paul S; Rho, Tae-Ho D; Park, Jee Y; Park, Lucienne; Kim, Young-Hwan; Lee, Ji Hoon

    2013-11-15

    The use of Triton X surfactants in developing 1,1'-oxalylimidazole chemiluminescent enzyme immunoassays (ODI CEIs) with extended linear response range for the quantification of unconjugated estriol (uE3), alpha-fetoprotein (AFP), and human chorionic gonadotropin (hCG) is reported for the first time. The wider linear dynamic range in ODI CLEIA results from Triton X series (e.g., Triton X-100, -114, -405, -705) acting as an inhibitor in the interaction between Amplex Red (hydrophobic substrate) and horseradish peroxidase (hydrophilic enzyme) to produce resorufin (hydrophobic fluorescent dye). Triton X-100 acts as the appropriate inhibitor in ODI CLEIA. The maximum concentrations of AFP and hCG quantified with sandwich ODI CLEIA in the presence of Triton X-100 were 8 times higher than when analyzed with the same system in the absence of Triton X-100. In addition, the lowest concentration of uE3 determined using competitive ODI CLEIA in the presence of Triton X-100 was 20 times lower than that measured with competitive ODI CLEIA in the absence of Triton X-100. These results indicate that rapid quantification of AFP, uE3, and hCG using cost effective and highly sensitive ODI CLEIAs in the presence of Triton X-100 can be applied as an accurate, precise, and reproducible method to diagnose genetic disorders (e.g., trisomy 18 and trisomy 21) in fetuses. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Genetic Analysis For The Diagnosis of Disorders of Sexual Development in Indonesia

    Directory of Open Access Journals (Sweden)

    Sultana MH Faradz

    2016-12-01

    Full Text Available Disorders of sex development (DSD is defined by congenital conditions in which development of chromosomal, gonadal, or anatomical sex is atypical, while in clinical practice this term means any abnormality of the external genitalia. DSD patients have been managed by a multidisciplinary gender team in our center as collaboration between Dr. Kariadi province referral hospital and Faculty of Medicine Diponegoro University. Diagnosis should be established by specific physical examination hormonal, chromosomal and DNA studies; and imaging for most of the cases depending on indication. Since 2004 the involvement of molecular and cytogenetic analysis so far can diagnosed many of the DSD cases. Most of the genetically proven cases were Congenital Adrenal hyperplasia, Androgen Insensitivity syndrome and sex chromosomal DSD that lead abnormal gonadal development.  Many of them remain undiagnosed, further testing such as advanced DNA study should be carried out in collaboration with other center in overseas. The novel genes were found in some cases that contributed for the management of DSD.  Information for medical professionals, patients, family members and community about the availability and necessity of DSD diagnosis should be delivered to improve DSD management and patient quality of life.

  9. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders

    OpenAIRE

    Drenth, J.P.H.; Waxman, S G

    2007-01-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary erythermalgia and paroxysmal extreme pain disorder, while nonsense mutations in Na(v)1.7 result in los...

  10. Genetic studies in children with intellectual disability and autistic spectrum of disorders

    Directory of Open Access Journals (Sweden)

    Balasubramanian Bhanumathi

    2009-01-01

    Full Text Available Autism is one of the five disorders that falls under the umbrella of Pervasive Developmental Disorders (PDD or Autism Spectrum Disorder (ASD, a category of neurological disorders characterized by "severe and pervasive impairment in several areas of development." ASD is characterized by varying degrees of impairment in communication skills, social interaction and restricted, repetitive stereotyped patterns of behavior. The five disorders under PDD are autistic disorder, Asperger′s disorder, childhood disintegrative disorder, Rett′s disorder and PDD-not otherwise specified. ASD can often be reliably detected by the age of 3 years and, in some cases, as early as 18 months. The appearance of any warning signs of ASD is reason to have the child evaluated by a professional specializing in these disorders.

  11. Search for biological/genetic markers in a long-term epidemiological and morbid risk study of affective disorders.

    Science.gov (United States)

    Fieve, R R; Go, R; Dunner, D L; Elston, R

    1984-01-01

    A long-term epidemiological genetic study was conducted in which all new patients were evaluated prospectively at the Foundation for Depression and Manic Depression and two Lithium/Affective Disorders clinics at the Columbia-Presbyterian Medical Center between the years of 1972 and 1978. All patients met Feighner, RDC and DSM III criteria for Major Depressive Disorder after initial clinical screening interviews and were further subtyped using the Fieve-Dunner 7-point criteria. All 604 probands and 90% of 2711 first-degree relatives were interviewed blindly by diagnosticians trained in the use of the SADS structured interview. Cumulative morbid risk in parents, siblings and children of 490 bipolar probands was 15.6 +/- 3% and 14.0 +/- 1.7% in the first-degree relatives of 114 unipolar probands. A number of biological and genetic marker studies were simultaneously performed on samples of the overall population. The enzymes catechol O-methyltransferase and dopamine beta-hydroxylase, and the dexamethasone suppression test (SDT) did not show any biological marker value for outpatients even though both enzymes were determined to have hereditability. The HLA system, monoamine oxidase and acetylcholinesterase segregated differently from normal controls in samples of the patient population. The positive association findings with monoamine oxidase and the HLA system conflicted with the positive findings of other investigators, leaving doubtful their biological marker value. Red cell acetylcholinesterase was found to be significantly lower in affective disorder patients than in controls. This positive association finding was recently replicated by Mathews et al. (1982) but needs further confirmation. Using 28 blood group markers, a prior association study between the trait defining susceptibility to affective disorder and the genetic marker was positive for haptoglobin GC, and properdinfactor B, confirming earlier findings. Using the sib-pair method on the remaining 25 blood

  12. American College of Medical Genetics and Genomics technical standards and guidelines: microarray analysis for chromosome abnormalities in neoplastic disorders.

    Science.gov (United States)

    Cooley, Linda D; Lebo, Matthew; Li, Marilyn M; Slovak, Marilyn L; Wolff, Daynna J

    2013-06-01

    Microarray methodologies, to include array comparative genomic hybridization and single-nucleotide polymorphism-based arrays, are innovative methods that provide genomic data. These data should be correlated with the results from the standard methods, chromosome and/or fluorescence in situ hybridization, to ascertain and characterize the genomic aberrations of neoplastic disorders, both liquid and solid tumors. Over the past several decades, standard methods have led to an accumulation of genetic information specific to many neoplasms. This specificity is now used for the diagnosis and classification of neoplasms. Cooperative studies have revealed numerous correlations between particular genetic aberrations and therapeutic outcomes. Molecular investigation of chromosomal abnormalities identified by standard methods has led to discovery of genes, and gene function and dysfunction. This knowledge has led to improved therapeutics and, in some disorders, targeted therapies. Data gained from the higher-resolution microarray methodologies will enhance our knowledge of the genomics of specific disorders, leading to more effective therapeutic strategies. To assist clinical laboratories in validation of the methods, their consistent use, and interpretation and reporting of results from these microarray methodologies, the American College of Medical Genetics and Genomics has developed the following professional standard and guidelines.

  13. Using next-generation sequencing as a genetic diagnostic tool in rare autosomal recessive neurologic Mendelian disorders.

    Science.gov (United States)

    Chen, Zhao; Wang, Jun-Ling; Tang, Bei-Sha; Sun, Zhan-Fang; Shi, Yu-Ting; Shen, Lu; Lei, Li-Fang; Wei, Xiao-Ming; Xiao, Jing-Jing; Hu, Zheng-Mao; Pan, Qian; Xia, Kun; Zhang, Qing-Yan; Dai, Mei-Zhi; Liu, Yu; Ashizawa, Tetsuo; Jiang, Hong

    2013-10-01

    Next-generation sequencing was used to investigate 9 rare Chinese pedigrees with rare autosomal recessive neurologic Mendelian disorders. Five probands with ataxia-telangectasia and 1 proband with chorea-acanthocytosis were analyzed by targeted gene sequencing. Whole-exome sequencing was used to investigate 3 affected individuals with Joubert syndrome, nemaline myopathy, or spastic ataxia Charlevoix-Saguenay type. A list of known and novel candidate variants was identified for each causative gene. All variants were genetically verified by Sanger sequencing or quantitative polymerase chain reaction with the strategy of disease segregation in related pedigrees and healthy controls. The advantages of using next-generation sequencing to diagnose rare autosomal recessive neurologic Mendelian disorders characterized by genetic and phenotypic heterogeneity are demonstrated. A genetic diagnostic strategy combining the use of targeted gene sequencing and whole-exome sequencing with the aid of next-generation sequencing platforms has shown great promise for improving the diagnosis of neurologic Mendelian disorders. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Dectin-1 Polymorphism: A Genetic Disease Specifier in Autism Spectrum Disorders?

    Directory of Open Access Journals (Sweden)

    Meriem Bennabi

    Full Text Available In autism spectrum disorders (ASD, complex gene-environment interactions contribute to disease onset and progress. Given that gastro-intestinal dysfunctions are common in ASD, we postulated involvement of microbial dysbiosis in ASD and investigated, under a case-control design, the influence of DNA polymorphisms in the CLEC7A gene that encodes a pivotal fungal sensor, Dectin-1.DNAs from 478 ASD patients and 351 healthy controls (HC were analyzed for the CLEC7A rs16910631G/A and rs2078178 A/G single nucleotide polymorphisms (SNPs. Differences in the distribution of allele, genotype and haplotype by Chi-square testing and nonparametric analysis by Kruskal-Wallis/Mann-Whitney tests, where appropriate, were performed. The free statistical package R.2.13 software was used for the statistical analysis.We found that the CLEC7A rs2078178 G allele and GG genotype were more prevalent in HC as compared to ASD but failed to reach statistical significance for the latter (pc = 0.01, 0.06 respectively. However, after phenotype-based stratification, the CLEC7A rs2078178 G allele and GG genotype were found to be significantly more frequent in the Asperger group as compared to other ASD subsets (pc = 0.02, 0.01, a finding reinforced by haplotype analysis (rs2078178/rs16910631 G-G/G-G (pc = 0.002. Further, intellectual quotient (IQ-based stratification of ASD patients revealed that IQ values increase linearly along the CLEC7A rs2078178 AA, AG and GG genotypes (p = 0.05 and in a recessive manner (GG vs. AA+AG p = 0.02, further confirmed by haplotype distribution (CLEC7A rs2078178-16910631; A-G/A-G, A-G/G-G and G-G/G-G, p = 0.02, G-G/G-G vs. others, p = 0.01.Our data suggest that the genetic diversity of CLEC7A gene influences the ASD phenotype by behaving as a disease specifier and imply that the genetic control of innate immune response could determine the ASD phenotype.

  15. Genetic analysis of genetic basis of a physiological disorder "straighthead’’ in rice (Oryza sativa L.)

    Science.gov (United States)

    Straighthead is a physiological disorder in rice that causes yield losses and is a serious threat to rice production worldwide. Identification of QTL conferring resistance will help develop resistant cultivars for straighthead control. We conducted linkage mapping to identify QTL involved with strai...

  16. Protocol for investigating genetic determinants of posttraumatic stress disorder in women from the Nurses' Health Study II

    Directory of Open Access Journals (Sweden)

    Smoller Jordan W

    2009-05-01

    Full Text Available Abstract Background One in nine American women will meet criteria for the diagnosis of posttraumatic stress disorder (PTSD in their lifetime. Although twin studies suggest genetic influences account for substantial variance in PTSD risk, little progress has been made in identifying variants in specific genes that influence liability to this common, debilitating disorder. Methods and design We are using the unique resource of the Nurses Health Study II, a prospective epidemiologic cohort of 68,518 women, to conduct what promises to be the largest candidate gene association study of PTSD to date. The entire cohort will be screened for trauma exposure and PTSD; 3,000 women will be selected for PTSD diagnostic interviews based on the screening data. Our nested case-control study will genotype1000 women who developed PTSD following a history of trauma exposure; 1000 controls will be selected from women who experienced similar traumas but did not develop PTSD. The primary aim of this study is to detect genetic variants that predict the development of PTSD following trauma. We posit inherited vulnerability to PTSD is mediated by genetic variation in three specific neurobiological systems whose alterations are implicated in PTSD etiology: the hypothalamic-pituitary-adrenal axis, the locus coeruleus/noradrenergic system, and the limbic-frontal neuro-circuitry of fear. The secondary, exploratory aim of this study is to dissect genetic influences on PTSD in the broader genetic and environmental context for the candidate genes that show significant association with PTSD in detection analyses. This will involve: conducting conditional tests to identify the causal genetic variant among multiple correlated signals; testing whether the effect of PTSD genetic risk variants is moderated by age of first trauma, trauma type, and trauma severity; and exploring gene-gene interactions using a novel gene-based statistical approach. Discussion Identification of

  17. Comparative linkage meta-analysis reveals regionally-distinct, disparate genetic architectures: application to bipolar disorder and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Brady Tang

    Full Text Available New high-throughput, population-based methods and next-generation sequencing capabilities hold great promise in the quest for common and rare variant discovery and in the search for "missing heritability." However, the optimal analytic strategies for approaching such data are still actively debated, representing the latest rate-limiting step in genetic progress. Since it is likely a majority of common variants of modest effect have been identified through the application of tagSNP-based microarray platforms (i.e., GWAS, alternative approaches robust to detection of low-frequency (1-5% MAF and rare (<1% variants are of great importance. Of direct relevance, we have available an accumulated wealth of linkage data collected through traditional genetic methods over several decades, the full value of which has not been exhausted. To that end, we compare results from two different linkage meta-analysis methods--GSMA and MSP--applied to the same set of 13 bipolar disorder and 16 schizophrenia GWLS datasets. Interestingly, we find that the two methods implicate distinct, largely non-overlapping, genomic regions. Furthermore, based on the statistical methods themselves and our contextualization of these results within the larger genetic literatures, our findings suggest, for each disorder, distinct genetic architectures may reside within disparate genomic regions. Thus, comparative linkage meta-analysis (CLMA may be used to optimize low-frequency and rare variant discovery in the modern genomic era.

  18. Mutations in sodium-channel gene SCN9A cause a spectrum of human genetic pain disorders.

    Science.gov (United States)

    Drenth, Joost P H; Waxman, Stephen G

    2007-12-01

    The voltage-gated sodium-channel type IX alpha subunit, known as Na(v)1.7 and encoded by the gene SCN9A, is located in peripheral neurons and plays an important role in action potential production in these cells. Recent genetic studies have identified Na(v)1.7 dysfunction in three different human pain disorders. Gain-of-function missense mutations in Na(v)1.7 have been shown to cause primary erythermalgia and paroxysmal extreme pain disorder, while nonsense mutations in Na(v)1.7 result in loss of Na(v)1.7 function and a condition known as channelopathy-associated insensitivity to pain, a rare disorder in which affected individuals are unable to feel physical pain. This review highlights these recent developments and discusses the critical role of Na(v)1.7 in pain sensation in humans.

  19. Genetic polymorphisms in monoamine systems and outcome of cognitive behavior therapy for social anxiety disorder.

    Directory of Open Access Journals (Sweden)

    Evelyn Andersson

    Full Text Available OBJECTIVE: The role of genetics for predicting the response to cognitive behavior therapy (CBT for social anxiety disorder (SAD has only been studied in one previous investigation. The serotonin transporter (5-HTTLPR, the catechol-o-methyltransferase (COMT val158met, and the tryptophan hydroxylase-2 (TPH2 G-703T polymorphisms are implicated in the regulation of amygdala reactivity and fear extinction and therefore might be of relevance for CBT outcome. The aim of the present study was to investigate if these three gene variants predicted response to CBT in a large sample of SAD patients. METHOD: Participants were recruited from two separate randomized controlled CBT trials (trial 1: n = 112, trial 2: n = 202. Genotyping were performed on DNA extracted from blood or saliva samples. Effects were analyzed at follow-up (6 or 12 months after treatment for both groups and for each group separately at post-treatment. The main outcome measure was the Liebowitz Social Anxiety Scale Self-Report. RESULTS: At long-term follow-up, there was no effect of any genotype, or gene × gene interactions, on treatment response. In the subsamples, there was time by genotype interaction effects indicating an influence of the TPH2 G-703T-polymorphism on CBT short-term response, however the direction of the effect was not consistent across trials. CONCLUSIONS: None of the three gene variants, 5-HTTLPR, COMTval158met and TPH2 G-703T, was associated with long-term response to CBT for SAD. TRIAL REGISTRATION: ClinicalTrials.gov (ID-NCT0056496.

  20. Two genetic variants of CD38 in subjects with autism spectrum disorder and controls.

    Science.gov (United States)

    Munesue, Toshio; Yokoyama, Shigeru; Nakamura, Kazuhiko; Anitha, Ayyappan; Yamada, Kazuo; Hayashi, Kenshi; Asaka, Tomoya; Liu, Hong-Xiang; Jin, Duo; Koizumi, Keita; Islam, Mohammad Saharul; Huang, Jian-Jun; Ma, Wen-Jie; Kim, Uh-Hyun; Kim, Sun-Jun; Park, Keunwan; Kim, Dongsup; Kikuchi, Mitsuru; Ono, Yasuki; Nakatani, Hideo; Suda, Shiro; Miyachi, Taishi; Hirai, Hirokazu; Salmina, Alla; Pichugina, Yu A; Soumarokov, Andrei A; Takei, Nori; Mori, Norio; Tsujii, Masatsugu; Sugiyama, Toshiro; Yagi, Kunimasa; Yamagishi, Masakazu; Sasaki, Tsukasa; Yamasue, Hidenori; Kato, Nobumasa; Hashimoto, Ryota; Taniike, Masako; Hayashi, Yutaka; Hamada, Junichiro; Suzuki, Shioto; Ooi, Akishi; Noda, Mami; Kamiyama, Yuko; Kido, Mizuho A; Lopatina, Olga; Hashii, Minako; Amina, Sarwat; Malavasi, Fabio; Huang, Eric J; Zhang, Jiasheng; Shimizu, Nobuaki; Yoshikawa, Takeo; Matsushima, Akihiro; Minabe, Yoshio; Higashida, Haruhiro

    2010-06-01

    The neurobiological basis of autism spectrum disorder (ASD) remains poorly understood. Given the role of CD38 in social recognition through oxytocin (OT) release, we hypothesized that CD38 may play a role in the etiology of ASD. Here, we first examined the immunohistochemical expression of CD38 in the hypothalamus of post-mortem brains of non-ASD subjects and found that CD38 was colocalized with OT in secretory neurons. In studies of the association between CD38 and autism, we analyzed 10 single nucleotide polymorphisms (SNPs) and mutations of CD38 by re-sequencing DNAs mainly from a case-control study in Japan, and Caucasian cases mainly recruited to the Autism Genetic Resource Exchange (AGRE). The SNPs of CD38, rs6449197 (p70; designated as high-functioning autism (HFA)) in the U.S. 104 AGRE family trios, but not with Japanese 188 HFA subjects. A mutation that caused tryptophan to replace arginine at amino acid residue 140 (R140W; (rs1800561, 4693C>T)) was found in 0.6-4.6% of the Japanese population and was associated with ASD in the smaller case-control study. The SNP was clustered in pedigrees in which the fathers and brothers of T-allele-carrier probands had ASD or ASD traits. In this cohort OT plasma levels were lower in subjects with the T allele than in those without. One proband with the T allele who was taking nasal OT spray showed relief of symptoms. The two variant CD38 poloymorphysms tested may be of interest with regard of the pathophysiology of ASD.

  1. Genetic Studies of Strabismus, Congenital Cranial Dysinnervation Disorders (CCDDs), and Their Associated Anomalies

    Science.gov (United States)

    2017-02-16

    Congenital Fibrosis of Extraocular Muscles; Duane Retraction Syndrome; Duane Radial Ray Syndrome; Mobius Syndrome; Brown Syndrome; Marcus Gunn Syndrome; Strabismus Congenital; Horizontal Gaze Palsy; Horizontal Gaze Palsy With Progressive Scoliosis; Facial Palsy; Facial Paresis, Hereditary, Congenital; Third Nerve Palsy; Fourth Nerve Palsy; Sixth Nerve Palsy; Synkinesis; Ocular Motility Disorders; Levator-Medial Rectus Synkinesis; Athabaskan Brainstem Dysgenesis; Tongue Paralysis; Ninth Nerve Disorder; Fifth Nerve Palsy; Seventh Nerve Palsy; Eleventh Nerve Disorder; Twelfth Nerve Disorder; Vagus Nerve Paralysis; Moebius Sequence

  2. Pleiotropy among common genetic loci identified for cardiometabolic disorders and C-reactive protein

    NARCIS (Netherlands)

    Ligthart, Symen; de Vries, Paul S.; Uitterlinden, André G.; Hofman, Albert; Franco, Oscar H.; Chasman, Daniel I.; Dehghan, Abbas; Dupuis, Josée; Barbalic, Maja; Bis, Joshua C.; Eiriksdottir, Gudny; Lu, Chen; Pellikka, Niina; Wallaschofski, Henri; Kettunen, Johannes; Henneman, Peter; Baumert, Jens; Strachan, David P.; Fuchsberger, Christian; Vitart, Veronique; Wilson, James F.; Paré, Guillaume; Naitza, Silvia; Rudock, Megan E.; Surakka, Ida; De Geus, Eco J. C.; Alizadeh, Behrooz Z.; Guralnik, Jack M. D.; Shuldiner, Alan; Tanaka, Toshiko; Zee, Robert Y. L.; Schnabel, Renate B.; Nambi, Vijay; Kavousi, Maryam; Ripatti, Samuli; Nauck, Matthias; Smith, Nicholas L.; Smith, Albert V.; Sundvall, Jouko; Scheet, Paul; Liu, Yongmei; Ruokonen, Aimo; Rose, Lynda M.; Larson, Martin G.; Hoogeveen, Ron C.; Freimer, Nelson B.; Teumer, Alexander; Tracy, Russell P.; Launer, Lenore J.; Buring, Julie E.; Yamamoto, Jennifer F.; Folsom, Aaron R.; Sijbrands, Eric J. G.; Pankow, James; Elliott, Paul; Keaney, John F.; Sun, Wei; Sarin, Antti-Pekka; Fontes, João D.; Badola, Sunita; Astor, Brad C.; Pouta, Anneli; Werda, Karl; Greiser, Karin H.; Kuss, Oliver; Schwabedissen, Henriette E. Meyer Zu; Thiery, Joachim; Jamshidi, Yalda; Nolte, Ilja M.; Soranzo, Nicole; Spector, Timothy D.; Völzke, Henry; Parker, Alexander N.; Aspelund, Thor; Bates, David; Young, Lauren; Tsui, Kim; Siscovick, David S.; Guo, Xiuqing; Rotter, Jerome I.; Uda, Manuela; Schlessinger, David; Rudan, Igor; Hicks, Andrew A.; Penninx, Brenda W.; Thorand, Barbara; Gieger, Christian; Coresh, Joe; Willemsen, Gonneke; Harris, Tamara B.; Järvelin, Marjo-Riitta; Rice, Kenneth; Radke, Dörte; Salomaa, Veikko; Van Dijk, Ko Willems; Boerwinkle, Eric; Vasan, Ramachandran S.; Ferrucci, Luigi; Gibson, Quince D.; Bandinelli, Stefania; Snieder, Harold; Boomsma, Dorret I.; Xiao, Xiangjun; Campbell, Harry; Hayward, Caroline; Pramstaller, Peter P.; Duijn, Cornelia Mvan; Peltonen, Leena; Psaty, Bruce M.; Gudnason, Vilmundur; Ridker, Paul M.; Homuth, Georg; Koenig, Wolfgang; Ballantyne, Christie M.; Witteman, Jacqueline C. M.; Benjamin, Emelia J.; Perola, Markus; Chasman., Daniel I.

    2015-01-01

    Pleiotropic genetic variants have independent effects on different phenotypes. C-reactive protein (CRP) is associated with several cardiometabolic phenotypes. Shared genetic backgrounds may partially underlie these associations. We conducted a genome-wide analysis to identify the shared genetic back

  3. Genetic Risk for Conduct Disorder Symptom Subtypes in an ADHD Sample: Specificity to Aggressive Symptoms

    Science.gov (United States)

    Monuteaux, Michael C.; Biederman, Joseph; Doyle, Alysa E.; Mick, Eric; Faraone, Stephen V.

    2009-01-01

    Four hundred forty-four subjects aged 6-55 years were evaluated to examine the role of COMT and SLC6A4 genes in the risk for conduct disorder and its symptomatic subtypes in the context of attention deficit hyperactivity disorder. No significant association is found between these genes and the risk for conduct disorder.

  4. Genetics and Common Disorders: Implications for Primary Care and Public Health Providers

    Energy Technology Data Exchange (ETDEWEB)

    McInerney, Joseph D.; Greendale, Karen; Peay, Holly L.

    2005-06-01

    We developed this program for primary care providers (PCPs) and public health professionals (PHPs) who are interested in increasing their understanding of the genetics of common chronic diseases and of the implications of genetics and genomics for their fields. The program differs from virtually all previous educational efforts in genetics for health professionals in that it focuses on the genetics of common chronic disease and on the broad principles that emerge when one views disease from the perspectives of variation and individuality, which are at the heart of thinking genetically. The CD-ROM introduces users to content that will improve their understanding of topics such as: • A framework for genetics and common disease; • Basic information on genetics, genomics, genetic medicine, and public health genetics, all in the context of common chronic disease; • The status of research on genetic contributions to specific common diseases, including a review of research methods; • Genetic/environmental interaction as the new “central dogma” of public health genetics; • The importance of taking and analyzing a family history; • The likely impact of potential gene discovery and genetic testing on genetic counseling and risk assessment and on the practices of PCPs and PHPs; • Stratification of populations into low-, moderate-, and high-risk categories; • The potential role of PCPs and PHPs in identifying high-risk individuals and families, in providing limited genetics services, and in referring to clinical genetics specialists; the potential for standard referral algorithms; • Implications of genetic insights for diagnosis and treatment; • Ethical, legal, and social issues that arise from genetic testing for common chronic diseases; and • Specific prevention strategies based on understanding of genetics and genetic/ environmental interactions. The interactive content – developed by experts in genetics, primary care, and public health – is

  5. Common genetic and environmental contributions to post-traumatic stress disorder and alcohol dependence in young women

    Science.gov (United States)

    Sartor, C. E.; McCutcheon, V. V.; Pommer, N. E.; Nelson, E. C.; Grant, J. D.; Duncan, A. E.; Waldron, M.; Bucholz, K. K.; Madden, P. A. F.; Heath, A. C.

    2012-01-01

    Background The few genetically informative studies to examine post-traumatic stress disorder (PTSD) and alcohol dependence (AD), all of which are based on a male veteran sample, suggest that the co-morbidity between PTSD and AD may be attributable in part to overlapping genetic influences, but this issue has yet to be addressed in females. Method Data were derived from an all-female twin sample (n=3768) ranging in age from 18 to 29 years. A trivariate genetic model that included trauma exposure as a separate phenotype was fitted to estimate genetic and environmental contributions to PTSD and the degree to which they overlap with those that contribute to AD, after accounting for potential confounding effects of heritable influences on trauma exposure. Results Additive genetic influences (A) accounted for 72 % of the variance in PTSD ; individual-specific environmental (E) factors accounted for the remainder. An AE model also provided the best fit for AD, for which heritability was estimated to be 71 %. The genetic correlation between PTSD and AD was 0.54. Conclusions The heritability estimate for PTSD in our sample is higher than estimates reported in earlier studies based almost exclusively on an all-male sample in which combat exposure was the precipitating traumatic event. However, our findings are consistent with the absence of evidence for shared environmental influences on PTSD and, most importantly, the substantial overlap in genetic influences on PTSD and AD reported in these investigations. Additional research addressing potential distinctions by gender in the relative contributions of genetic and environmental influences on PTSD is merited. PMID:21054919

  6. Joint multi-population analysis for genetic linkage of bipolar disorder or "wellness" to chromosome 4p.

    Science.gov (United States)

    Visscher, P M; Haley, C S; Ewald, H; Mors, O; Egeland, J; Thiel, B; Ginns, E; Muir, W; Blackwood, D H

    2005-02-05

    To test the hypothesis that the same genetic loci confer susceptibility to, or protection from, disease in different populations, and that a combined analysis would improve the map resolution of a common susceptibility locus, we analyzed data from three studies that had reported linkage to bipolar disorder in a small region on chromosome 4p. Data sets comprised phenotypic information and genetic marker data on Scottish, Danish, and USA extended pedigrees. Across the three data sets, 913 individuals appeared in the pedigrees, 462 were classified, either as unaffected (323) or affected (139) with unipolar or bipolar disorder. A consensus linkage map was created from 14 microsatellite markers in a 33 cM region. Phenotypic and genetic data were analyzed using a variance component (VC) and allele sharing method. All previously reported elevated test statistics in the region were confirmed with one or both analysis methods, indicating the presence of one or more susceptibility genes to bipolar disorder in the three populations in the studied chromosome segment. When the results from both the VC and allele sharing method were considered, there was strong evidence for a susceptibility locus in the data from Scotland, some evidence in the data from Denmark and relatively less evidence in the data from the USA. The test statistics from the Scottish data set dominated the test statistics from the other studies, and no improved map resolution for a putative genetic locus underlying susceptibility in all three studies was obtained. Studies reporting linkage to the same region require careful scrutiny and preferably joint or meta analysis on the same basis in order to ensure that the results are truly comparable. (c) 2004 Wiley-Liss, Inc.

  7. Genetic distribution and association analysis of DRD2 gene polymorphisms with major depressive disorder in the Chinese Han population.

    Science.gov (United States)

    He, Mei; Yan, Hong; Duan, Zhao-Xia; Qu, Wei; Gong, Hai-Yan; Fan, Zheng-Li; Kang, Jian-Yi; Li, Bing-Cang; Wang, Jian-Min

    2013-01-01

    Dopamine D2 receptor is involved in reward-mediating mesocorticolimbic pathways. It plays an important role in major depressive disorder (MDD). Three gene polymorphisms Taq1A, C957T and -141C ins/del, were identified in the DRD2 gene among the Western population. These variants in the DRD2 gene might be associated with the susceptibility of MDD patients through affecting the bioeffects of endogenous dopamine neurotransmission. However, little is known about their occurrence in Chinese population and their association with the susceptibility of patients with major depressive disorder. In this study, a total of 338 unrelated adult Chinese Han population, including 224 healthy volunteers and 114 patients with major depressive disorder, were recruited. DRD2 polymorphisms (Taq1A and -141C ins/del) were detected using restriction fragment length polymorphism (RFLP) analysis and the C957T were detected by sequencing directly. As a result, three polymorphisms were identified in Chinese Han population and all were common SNP. However, we could detect no evidence of genetic association between 3 markers in DRD2 and major depressive disorder in the Chinese Han population. To conclude, this result suggests that Taq1A, C957T and -141C ins/del of DRD2 gene may not be associated with major depressive disorder, also may be the sample sizes too small to allow a meaningful test.

  8. Genetic analysis in inherited metabolic disorders--from diagnosis to treatment. Own experience, current state of knowledge and perspectives.

    Science.gov (United States)

    Wertheim-Tysarowska, Katarzyna; Gos, Monika; Sykut-Cegielska, Jolanta; Bal, Jerzy

    2015-01-01

    Inherited metabolic disorders, also referred to as inborn errors of metabolism (IEM), are a group of congenital disorders caused by mutation in genomic or mitochondrial DNA. IEM are mostly rare disorders with incidence ranging from 1/50,000-1/150,000), however in total IEM may affect even 1/1000 people. A particular mutation affects specific protein or enzyme that improper function leads to alterations in specific metabolic pathway. Inborn errors of metabolism are monogenic disorders that can be inherited in autosomal recessive manner or, less frequently, in autosomal dominant or X-linked patterns. Some exceptions to Mendelian rules of inheritance have also been described. Vast majority of mutations responsible for IEM are small DNA changes affecting single or several nucleotides, although larger rearrangements were also identified. Therefore, the methods used for the identification of pathogenic mutations are mainly based on molecular techniques, preferably on Sanger sequencing. Moreover, the next generation sequencing technique seems to be another prospective method that can be successfully implemented for the diagnosis of inborn errors of metabolism. The identification of the genetic defect underlying the disease is not only indispensable for genetic counseling, but also might be necessary to apply appropriate treatment to the patient. Therapeutic strategies for IEM are continuously elaborated and tested (eg. enzyme replacement therapy, specific cells or organ transplantation or gene therapy, both in vivo and ex vivo) and have already been implemented for several disorders. In this article we present current knowledge about various aspects of IEM on the basis of our own experience and literature review.

  9. Clinical correlates and genetic linkage of social and communication difficulties in families with obsessive-compulsive disorder: Results from the OCD Collaborative Genetics Study.

    Science.gov (United States)

    Samuels, Jack; Shugart, Yin Yao; Wang, Ying; Grados, Marco A; Bienvenu, O Joseph; Pinto, Anthony; Rauch, Scott L; Greenberg, Benjamin D; Knowles, James A; Fyer, Abby J; Piacentini, John; Pauls, David L; Cullen, Bernadette; Rasmussen, Steven A; Stewart, S Evelyn; Geller, Dan A; Maher, Brion S; Goes, Fernando S; Murphy, Dennis L; McCracken, James T; Riddle, Mark A; Nestadt, Gerald

    2014-06-01

    Some individuals with obsessive-compulsive disorder (OCD) have autistic-like traits, including deficits in social and communication behaviors (pragmatics). The objective of this study was to determine if pragmatic impairment aggregates in OCD families and discriminates a clinically and genetically distinct subtype of OCD. We conducted clinical examinations on, and collected DNA samples from, 706 individuals with OCD in 221 multiply affected OCD families. Using the Pragmatic Rating Scale (PRS), we compared the prevalence of pragmatic impairment in OCD-affected relatives of probands with and without pragmatic impairment. We also compared clinical features of OCD-affected individuals in families having at least one, versus no, individual with pragmatic impairment, and assessed for linkage to OCD in the two groups of families. The odds of pragmatic impairment were substantially greater in OCD-affected relatives of probands with pragmatic impairment. Individuals in high-PRS families had greater odds of separation anxiety disorder and social phobia, and a greater number of schizotypal personality traits. In high-PRS families, there was suggestive linkage to OCD on chromosome 12 at marker D12S1064 and on chromosome X at marker DXS7132 whereas, in low-PRS families, there was suggestive linkage to chromosome 3 at marker D3S2398. Pragmatic impairment aggregates in OCD families. Separation anxiety disorder, social phobia, and schizotypal personality traits are part of a clinical spectrum associated with pragmatic impairment in these families. Specific regions of chromosomes 12 and X are linked to OCD in high-PRS families. Thus, pragmatic impairment may distinguish a clinically and genetically homogeneous subtype of OCD. © 2014 Wiley Periodicals, Inc.

  10. Evidence That Transition from Health to Psychotic Disorder Can Be Traced to Semi-Ubiquitous Environmental Effects Operating against Background Genetic Risk

    NARCIS (Netherlands)

    van Nierop, Martine; Janssens, Mayke; Bruggeman, Richard; Cahn, Wiepke; de Haan, Lieuwe; Kahn, Rene S.; Meijer, Carin J.; Myin-Germeys, Inez; van Os, Jim; Wiersma, Durk

    2013-01-01

    Background: In order to assess the importance of environmental and genetic risk on transition from health to psychotic disorder, a prospective study of individuals at average (n=462) and high genetic risk (n=810) was conducted. Method: A three-year cohort study examined the rate of transition to psy

  11. Youth Appraisals of Inter-Parental Conflict and Genetic and Environmental Contributions to Attention-Deficit Hyperactivity Disorder: Examination of GxE Effects in a Twin Sample

    Science.gov (United States)

    Nikolas, Molly; Klump, Kelly L.; Burt, S. Alexandra

    2012-01-01

    Identification of gene x environment interactions (GxE) for attention-deficit hyperactivity disorder (ADHD) is a crucial component to understanding the mechanisms underpinning the disorder, as prior work indicates large genetic influences and numerous environmental risk factors. Building on prior research, children's appraisals of self-blame were…

  12. The NeuroIMAGE study : a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives

    NARCIS (Netherlands)

    von Rhein, Daniel; Mennes, Maarten; van Ewijk, Hanneke; Groenman, Annabeth P.; Zwiers, Marcel P.; Oosterlaan, Jaap; Heslenfeld, Dirk; Franke, Barbara; Hoekstra, Pieter J.; Faraone, Stephen V.; Hartman, Catharina; Buitelaar, Jan

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of AD

  13. Epidemiology, Comorbidity, and Behavioral Genetics of Antisocial Personality Disorder and Psychopathy.

    Science.gov (United States)

    Werner, Kimberly B; Few, Lauren R; Bucholz, Kathleen K

    2015-04-01

    Psychopathy is theorized as a disorder of personality and affective deficits while antisocial personality disorder (ASPD) diagnosis is primarily behaviorally based. While ASPD and psychopathy are similar and are highly comorbid with each other, they are not synonymous. ASPD has been well studied in community samples with estimates of its lifetime prevalence ranging from 1-4% of the general population.(4,5) In contrast, psychopathy is almost exclusively investigated within criminal populations so that its prevalence in the general population has been inferred by psychopathic traits rather than disorder (1%). Differences in etiology and comorbidity with each other and other psychiatric disorders of these two disorders are also evident. The current article will briefly review the epidemiology, etiology, and comorbidity of ASPD and psychopathy, focusing predominately on research completed in community and clinical populations. This paper aims to highlight ASPD and psychopathy as related, but distinct disorders.

  14. Biology of lithium response in bipolar disorder : genetic mechanisms and telomeres

    OpenAIRE

    Martinsson, Lina

    2016-01-01

    Background: Bipolar disorder is a common, chronic and severe mental illness, causing suffering and large costs. Lithium treatment is the golden standard and works in 2/3 of patients, of which 50% are called lithium responders. There is strong evidence that both bipolar disorder and the degree of lithium response are highly heritable, although many mechanisms are unknown. Short telomere length has been found in both somatic and psychiatric disorders, but little is known about te...

  15. Familial disorders of sexual differentiation: a clinical and molecular genetic evaluation

    NARCIS (Netherlands)

    A.L.M. Boehmer (Annemie)

    2000-01-01

    textabstractSexual determination and differentiation are series of events starting with the establishment of genetic sex at fertilization, proceeding with the translation of genetic sex into gonadal sex, and culminating in the translation of gonadal sex into body sex. This three-step model is still

  16. Pleiotropy among common genetic loci identified for cardiometabolic disorders and C-reactive protein

    NARCIS (Netherlands)

    S. Ligthart (Symen); P.S. de Vries (Paul); A.G. Uitterlinden (André); A. Hofman (Albert); O.H. Franco (Oscar); D.I. Chasman (Daniel); A. Dehghan (Abbas); J. Dupuis (Josée); M. Barbalic (maja); J.C. Bis (Joshua); G. Eiriksdottir (Gudny); Lu, C. (Chen); N. Pellikka (Niina); H. Wallaschofski (Henri); J. Kettunen (Johannes); Henneman, P. (Peter); J. Baumert (Jens); D.P. Strachan (David); C. Fuchsberger (Christian); V. Vitart (Veronique); J.F. Wilson (James F); Paré, G. (Guillaume); S. Naitza (Silvia); M.E. Rudock (Megan); I. Surakka (Ida); E.J.C. de Geus (Eco); B.Z. Alizadeh (Behrooz); J.M. Guralnik (Jack); A.R. Shuldiner (Alan); T. Tanaka (Toshiko); R.Y.L. Zee (Robert); R.B. Schnabel (Renate); V. Nambi (Vijay); M. Kavousi (Maryam); S. Ripatti (Samuli); M. Nauck (Matthias); Smith, N.L. (Nicholas L.); A.V. Smith (Albert Vernon); Sundvall, J. (Jouko); P. Scheet (Paul); Y. Liu (Yongmei); A. Ruokonen (Aimo); L.M. Rose (Lynda); M.G. Larson (Martin); R.C. Hoogeveen (Ron); N.B. Freimer (Nelson); A. Teumer (Alexander); R.P. Tracy (Russell); L.J. Launer (Lenore); J.E. Buring (Julie); J.F. Yamamoto (Jennifer); A.R. Folsom (Aaron); E.J.G. Sijbrands (Eric); J.S. Pankow (James); P. Elliott (Paul); J.F. Keaney (John); Sun, W. (Wei); A.-P. Sarin; M. Fontes (Michel); S. Badola (Sunita); B.C. Astor (Brad); Pouta, A. (Anneli); Werda, K. (Karl); K.H. Greiser (Karin Halina); O. Kuss (Oliver); Schwabedissen, H.E.M.Z. (Henriette E. Meyer Zu); Thiery, J. (Joachim); Y. Jamshidi (Yalda); Nolte, I.M. (Ilja M.); N. Soranzo (Nicole); T.D. Spector (Timothy); H. Völzke (Henry); A.N. Parker (Alex); T. Aspelund (Thor); Bates, D. (David); Young, L. (Lauren); K. Tsui (Kim); D.S. Siscovick (David); X. Guo (Xiuqing); Rotter, J.I. (Jerome I.); M. Uda (Manuela); D. Schlessinger; I. Rudan (Igor); A.A. Hicks (Andrew); B.W.J.H. Penninx (Brenda); B. Thorand (Barbara); C. Gieger (Christian); J. Coresh (Josef); G.A.H.M. Willemsen (Gonneke); T.B. Harris (Tamara); M.-R. Jarvelin (Marjo-Riitta); K.M. Rice (Kenneth); D. Radke (Dörte); V. Salomaa (Veikko); J.A.P. Willems van Dijk (Ko); E.A. Boerwinkle (Eric); R.S. Vasan (Ramachandran Srini); L. Ferrucci (Luigi); Q. Gibson (Quince); S. Bandinelli (Stefania); H. Snieder (Harold); D.I. Boomsma (Dorret); X. Xiao (Xiangjun); H. Campbell (Harry); C. Hayward (Caroline); P.P. Pramstaller (Peter Paul); C.M. van Duijn (Cock); L. Peltonen (Leena Johanna); B.M. Psaty (Bruce); V. Gudnason (Vilmundur); P.M. Ridker (Paul); G. Homuth (Georg); W. Koenig (Wolfgang); C. Ballantyne (Christie); J.C.M. Witteman (Jacqueline); E.J. Benjamin (Emelia); M. Perola (Markus); Chasman., D.I. (Daniel I.)

    2015-01-01

    textabstractPleiotropic genetic variants have independent effects on different phenotypes. C-reactive protein (CRP) is associated with several cardiometabolic phenotypes. Shared genetic backgrounds may partially underlie these associations. We conducted a genome-wide analysis to identify the shared

  17. Genetics of immune-mediated disorders : from genome-wide association to molecular mechanism

    NARCIS (Netherlands)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2014-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory

  18. Functional genetic polymorphisms and female reproductive disorders : Part II-025EFendometriosis

    NARCIS (Netherlands)

    Tempfer, C. B.; Simoni, M.; Destenaves, B.; Fauser, B. C. J. M.

    2009-01-01

    Endometriosis has a strong genetic component, and numerous genetic studies have been reported. We have systematically reviewed these studies and included 114 in our final selection. We found no consistent evidence linking endometriosis with specific polymorphisms in genes encoding inflammatory media

  19. FINDbase: A relational database recording frequencies of genetic defects leading to inherited disorders worldwide

    NARCIS (Netherlands)

    S. van Baal (Sjozef); P. Kaimakis (Polynikis); M. Phommarinh (Manyphong); D. Koumbi (Daphne); H. Cuppens (Harry); F. Riccardino (Francesca); M. Macek (Milan MI); C.R. Scriver (Charles); G.P. Patrinos (George)

    2007-01-01

    textabstractFrequency of INherited Disorders database (FINDbase) (http://www.findbase.org) is a relational database, derived from the ETHNOS software, recording frequencies of causative mutations leading to inherited disorders worldwide. Database records include the population and ethnic group, the

  20. FINDbase: A relational database recording frequencies of genetic defects leading to inherited disorders worldwide

    NARCIS (Netherlands)

    S. van Baal (Sjozef); P. Kaimakis (Polynikis); M. Phommarinh (Manyphong); D. Koumbi (Daphne); H. Cuppens (Harry); F. Riccardino (Francesca); M. Macek (Milan MI); C.R. Scriver (Charles); G.P. Patrinos (George)

    2007-01-01

    textabstractFrequency of INherited Disorders database (FINDbase) (http://www.findbase.org) is a relational database, derived from the ETHNOS software, recording frequencies of causative mutations leading to inherited disorders worldwide. Database records include the population and ethnic group, the

  1. Genetics of immune-mediated disorders: from genome-wide association to molecular mechanism

    Science.gov (United States)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2016-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory region. Expression QTL studies have shown that these variants affect disease mainly by regulating gene expression. We discuss recent findings on shared genetic loci between infectious and immune-mediated diseases and provide potential clues to explore genetic associations in the context of these infectious agents. We propose that the interdisciplinary studies (genetics-genomics-immunology-infection-bioinformatics) are the future post-GWAS approaches to advance our understanding of the pathogenesis of immune-mediated diseases. PMID:25458995

  2. Multivariate analysis reveals genetic associations of the resting default mode network in psychotic bipolar disorder and schizophrenia.

    Science.gov (United States)

    Meda, Shashwath A; Ruaño, Gualberto; Windemuth, Andreas; O'Neil, Kasey; Berwise, Clifton; Dunn, Sabra M; Boccaccio, Leah E; Narayanan, Balaji; Kocherla, Mohan; Sprooten, Emma; Keshavan, Matcheri S; Tamminga, Carol A; Sweeney, John A; Clementz, Brett A; Calhoun, Vince D; Pearlson, Godfrey D

    2014-05-13

    The brain's default mode network (DMN) is highly heritable and is compromised in a variety of psychiatric disorders. However, genetic control over the DMN in schizophrenia (SZ) and psychotic bipolar disorder (PBP) is largely unknown. Study subjects (n = 1,305) underwent a resting-state functional MRI scan and were analyzed by a two-stage approach. The initial analysis used independent component analysis (ICA) in 324 healthy controls, 296 SZ probands, 300 PBP probands, 179 unaffected first-degree relatives of SZ probands (SZREL), and 206 unaffected first-degree relatives of PBP probands to identify DMNs and to test their biomarker and/or endophenotype status. A subset of controls and probands (n = 549) then was subjected to a parallel ICA (para-ICA) to identify imaging-genetic relationships. ICA identified three DMNs. Hypo-connectivity was observed in both patient groups in all DMNs. Similar patterns observed in SZREL were restricted to only one network. DMN connectivity also correlated with several symptom measures. Para-ICA identified five sub-DMNs that were significantly associated with five different genetic networks. Several top-ranking SNPs across these networks belonged to previously identified, well-known psychosis/mood disorder genes. Global enrichment analyses revealed processes including NMDA-related long-term potentiation, PKA, immune response signaling, axon guidance, and synaptogenesis that significantly influenced DMN modulation in psychoses. In summary, we observed both unique and shared impairments in functional connectivity across the SZ and PBP cohorts; these impairments were selectively familial only for SZREL. Genes regulating specific neurodevelopment/transmission processes primarily mediated DMN disconnectivity. The study thus identifies biological pathways related to a widely researched quantitative trait that might suggest novel, targeted drug treatments for these diseases.

  3. Atopic Dermatitis: Clinical Connotations, Especially a Focus on Concomitant Atopic Undertones in Immunocompromised/Susceptible Genetic and Metabolic Disorders

    Science.gov (United States)

    Sehgal, Virendra N; Khurana, Ananta; Mendiratta, Vibhu; Saxena, Deepti; Srivastava, Govind; Aggarwal, Ashok K; Chatterjee, Kingshuk

    2016-01-01

    Atopic dermatitis (AD) is an intriguing clinical entity. Its clinical connotations are varied, the updates of which are required to be done periodically. An attempt to bring its various facets have been made highlighting its clinical features keeping in view the major and the minor criteria to facilitate the diagnosis, differential diagnosis, complications, and associated dermatoses. The benefit of the current dissertation may percolate to the trainees in dermatology, in addition to revelations that atopic undertones in genetic susceptibility and metabolic disorder may provide substantive insight for the future in the understanding of thus far enigmatic etiopathogenesis of AD. PMID:27293243

  4. Pitx3 deficient mice as a genetic animal model of co-morbid depressive disorder and parkinsonism.

    Science.gov (United States)

    Kim, Kyoung-Shim; Kang, Young-Mi; Kang, Young; Park, Tae-Shin; Park, Hye-Yeon; Kim, Yoon-Jung; Han, Baek-Soo; Kim, Chun-Hyung; Lee, Chul-Ho; Ardayfio, Paul A; Han, Pyung-Lim; Jung, Bong-Hyun; Kim, Kwang-Soo

    2014-03-13

    Approximately 40-50% of all patients with Parkinson׳s disease (PD) show symptoms and signs of depressive disorders, for which neither pathogenic understanding nor rational treatment are available. Using Pit3x-deficient mice, a model for selective nigrostriatal dopaminergic neurodegeneration, we tested depression-related behaviors and acute stress responses to better understand how a nigrostriatal dopaminergic deficit increases the prevalence of depressive disorders in PD patients. Pitx3-deficient mice showed decreased sucrose consumption and preference in the two-bottle free-choice test of anhedonia. Acute restraint stress increased c-Fos (known as a neuronal activity marker) expression levels in various brain regions, including the prefrontal cortex, striatum, nucleus accumbens, and paraventricular nucleus of the hypothalamus (PVN), in both Pitx3+/+ and -/- mice. However, the stress-induced increases in c-Fos levels in the cortex, dorsal striatum, and PVN were significantly greater in Pitx3-/- than +/+ mice, suggesting that signs of depressive disorders in parkinsonism are related to altered stress vulnerability. Based on these results, we propose that Pitx3-/- mice may serve as a useful genetic animal model for co-morbid depressive disorder and parkinsonism.

  5. Genetic factors associated with small for gestational age birth and the use of human growth hormone in treating the disorder

    Directory of Open Access Journals (Sweden)

    Saenger Paul

    2012-05-01

    Full Text Available Abstract The term small for gestational age (SGA refers to infants whose birth weights and/or lengths are at least two standard deviation (SD units less than the mean for gestational age. This condition affects approximately 3%–10% of newborns. Causes for SGA birth include environmental factors, placental factors such as abnormal uteroplacental blood flow, and inherited genetic mutations. In the past two decades, an enhanced understanding of genetics has identified several potential causes for SGA. These include mutations that affect the growth hormone (GH/insulin-like growth factor (IGF-1 axis, including mutations in the IGF-1 gene and acid-labile subunit (ALS deficiency. In addition, select polymorphisms observed in patients with SGA include those involved in genes associated with obesity, type 2 diabetes, hypertension, ischemic heart disease and deletion of exon 3 growth hormone receptor (d3-GHR polymorphism. Uniparental disomy (UPD and imprinting effects may also underlie some of the phenotypes observed in SGA individuals. The variety of genetic mutations associated with SGA births helps explain the diversity of phenotype characteristics, such as impaired motor or mental development, present in individuals with this disorder. Predicting the effectiveness of recombinant human GH (hGH therapy for each type of mutation remains challenging. Factors affecting response to hGH therapy include the dose and method of hGH administration as well as the age of initiation of hGH therapy. This article reviews the results of these studies and summarizes the success of hGH therapy in treating this difficult and genetically heterogenous disorder.

  6. Recent challenges to the psychiatric diagnostic nosology: a focus on the genetics and genomics of neurodevelopmental disorders.

    Science.gov (United States)

    Kim, Young Shin; State, Matthew W

    2014-04-01

    Recent advances in the genetics of neurodevelopmental disorder (NDD) have demonstrated that rare mutations play a role not only in Mendelian syndromes, but in complex, common forms of NDDs as well. Strikingly, both common polymorphisms and rare variations in a single gene or genetic locus have been found to carry risk for conditions previously considered to be clinically and aetiologically distinct. Recent developments in the methods and tools available for studying complex NDDs have led to systematic and reliable genome-wide variant discovery. Both common as well as rare, and structural as well as sequence, genetic variations have been identified as contributing to NDDs. There are multiple examples in which the identical variant had been found to contribute to a wide range of formerly distinct diagnoses, including autism, schizophrenia, epilepsy, intellectual disability and language disorders. These include variations in chromosomal structure at 16p11.2, rare de novo point mutations at the gene SCN2A, and common single nucleotide polymorphisms (SNPs) mapping near loci encoding the genes ITIH3, AS3MT, CACNA1C and CACNB2. These selected examples point to the challenges to current diagnostic approaches. Widely used categorical schema have been adequate to provide an entré into molecular mechanisms of NDDs, but there is a need to develop an alternative, more biologically-relevant nosology. Thus recent advances in gene discovery in the area of NDDs are leading to a re-conceptualization of diagnostic boundaries. Findings suggest that epidemiological samples may provide important new insights into the genetics and diagnosis of NDDs and that other areas of medicine may provide useful models for developing a new diagnostic nosology, one that simultaneously integrates categorical diagnoses, biomarkers and dimensional variables.

  7. Genetic factors associated with small for gestational age birth and the use of human growth hormone in treating the disorder.

    Science.gov (United States)

    Saenger, Paul; Reiter, Edward

    2012-05-15

    The term small for gestational age (SGA) refers to infants whose birth weights and/or lengths are at least two standard deviation (SD) units less than the mean for gestational age. This condition affects approximately 3%-10% of newborns. Causes for SGA birth include environmental factors, placental factors such as abnormal uteroplacental blood flow, and inherited genetic mutations. In the past two decades, an enhanced understanding of genetics has identified several potential causes for SGA. These include mutations that affect the growth hormone (GH)/insulin-like growth factor (IGF)-1 axis, including mutations in the IGF-1 gene and acid-labile subunit (ALS) deficiency. In addition, select polymorphisms observed in patients with SGA include those involved in genes associated with obesity, type 2 diabetes, hypertension, ischemic heart disease and deletion of exon 3 growth hormone receptor (d3-GHR) polymorphism. Uniparental disomy (UPD) and imprinting effects may also underlie some of the phenotypes observed in SGA individuals. The variety of genetic mutations associated with SGA births helps explain the diversity of phenotype characteristics, such as impaired motor or mental development, present in individuals with this disorder. Predicting the effectiveness of recombinant human GH (hGH) therapy for each type of mutation remains challenging. Factors affecting response to hGH therapy include the dose and method of hGH administration as well as the age of initiation of hGH therapy. This article reviews the results of these studies and summarizes the success of hGH therapy in treating this difficult and genetically heterogenous disorder.

  8. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement

    Science.gov (United States)

    Prasad, Megana K; Geoffroy, Véronique; Vicaire, Serge; Jost, Bernard; Dumas, Michael; Le Gras, Stéphanie; Switala, Marzena; Gasse, Barbara; Laugel-Haushalter, Virginie; Paschaki, Marie; Leheup, Bruno; Droz, Dominique; Dalstein, Amelie; Loing, Adeline; Grollemund, Bruno; Muller-Bolla, Michèle; Lopez-Cazaux, Séréna; Minoux, Maryline; Jung, Sophie; Obry, Frédéric; Vogt, Vincent; Davideau, Jean-Luc; Davit-Beal, Tiphaine; Kaiser, Anne-Sophie; Moog, Ute; Richard, Béatrice; Morrier, Jean-Jacques; Duprez, Jean-Pierre; Odent, Sylvie; Bailleul-Forestier, Isabelle; Rousset, Monique Marie; Merametdijan, Laure; Toutain, Annick; Joseph, Clara; Giuliano, Fabienne; Dahlet, Jean-Christophe; Courval, Aymeric; El Alloussi, Mustapha; Laouina, Samir; Soskin, Sylvie; Guffon, Nathalie; Dieux, Anne; Doray, Bérénice; Feierabend, Stephanie; Ginglinger, Emmanuelle; Fournier, Benjamin; de la Dure Molla, Muriel; Alembik, Yves; Tardieu, Corinne; Clauss, François; Berdal, Ariane; Stoetzel, Corinne; Manière, Marie Cécile; Dollfus, Hélène; Bloch-Zupan, Agnès

    2016-01-01

    Background Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. Methods We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. Results We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. Conclusions We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. Trial registration numbers NCT01746121 and NCT02397824. PMID:26502894

  9. Adaptive and maladaptive functioning in Kleefstra syndrome compared to other rare genetic disorders with intellectual disabilities

    NARCIS (Netherlands)

    Vermeulen, K.; Boer, A. de; Janzing, J.G.E.; Koolen, D.A.; Ockeloen, C.W.; Willemsen, M.H.; Verhoef, F.M.; Deurzen, P.A.M. van; Dongen, L. van; Bokhoven, H. van; Egger, J.I.M.; Staal, W.G.; Kleefstra, T.

    2017-01-01

    Detailed neurobehavioural profiles are of major value for specific clinical management, but have remained underexposed in the population with intellectual disabilities (ID). This was traditionally classified based on IQ level only. Rapid advances in genetics enable etiology based stratification in

  10. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  11. Dissecting the catatonia phenotype in psychotic and mood disorders on the basis of familial-genetic factors.

    Science.gov (United States)

    Peralta, Victor; Fañanás, Lourdes; Martín-Reyes, Migdyrai; Cuesta, Manuel J

    2017-09-14

    This study examines the familial aggregation (familiality) of different phenotypic definitions of catatonia in a sample of multiplex families with psychotic and mood disorders. Participants were probands with a lifetime diagnosis of a DSM-IV functional psychotic disorder, their parents and at least one first-degree relative with a psychotic disorder. The study sample included 441 families comprising 2703 subjects, of whom 1094 were affected and 1609 unaffected. Familiality (h(2)) was estimated by linear mixed models using family membership as a random effect, with h(2) indicating the portion of phenotypic variance accounted for by family membership. Familiality estimates highly varied for individual catatonia signs (h(2)=0.17-0.65), principal component analysis-derived factors (h(2)=0.29-0.49), number of catatonia signs present (h(2)=0.03-0.43) and severity of the catatonia syndrome (h(2)=0.25-0.59). Phenotypes maximizing familiality estimates included individual signs (mutism and rigidity, both h(2)=0.65), presence of ≥5 catatonia signs (h(2)=0.43), a classical catatonia factor (h(2)=0.49), a DSM-IV catatonia syndrome at a severity level of moderate or higher (h(2)=0.59) and the diagnostic construct of psychosis with prominent catatonia features (h(2)=0.56). Familiality estimates of a DSM-IV catatonia syndrome did not significantly differ across the diagnostic categories of psychotic and mood disorders (h(2)=0.40-0.47). The way in which catatonia is defined has a strong impact on familiality estimates with some catatonia phenotypes exhibiting substantial familial aggregation, which may inform about the most adequate phenotypes for molecular studies. From a familial-genetic perspective, the catatonia phenotype in psychotic and mood disorders has a transdiagnostic character. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Genetic variants on 3q21 and in the Sp8 transcription factor gene (SP8 as susceptibility loci for psychotic disorders: a genetic association study.

    Directory of Open Access Journals (Sweden)

    Kenji Kondo

    Full Text Available BACKGROUND: Recent genome-wide association studies (GWASs investigating bipolar disorder (BD have detected a number of susceptibility genes. These studies have also provided novel insight into shared genetic components between BD and schizophrenia (SCZ, two major psychotic disorders. To examine the replication of the risk variants for BD and the pleiotropic effect of the variants associated with BD, we conducted a genetic association study of single nucleotide polymorphisms (SNPs that were selected based upon previous BD GWASs, which targeted psychotic disorders (BD and SCZ in the Japanese population. METHODS: Forty-eight SNPs were selected based upon previous GWASs. A two-stage analysis was conducted using first-set screening (for all SNPs: BD = 1,012, SCZ = 1,032 and control = 993 and second-set replication samples (for significant SNPs in the screening analysis: BD = 821, SCZ = 1,808 and control = 2,149. We assessed allelic association between BD, SCZ, psychosis (BD+SCZ and the SNPs selected for the analysis. RESULTS: Eight SNPs revealed nominal association signals for all comparisons (Puncorrected<0.05. Among these SNPs, the top two SNPs (associated with psychosis: Pcorrected = 0.048 and 0.037 for rs2251219 and rs2709722, respectively were further assessed in the second-set samples, and we replicated the signals from the initial screening analysis (associated with psychosis: Pcorrected = 0.0070 and 0.033 for rs2251219 and rs2709722, respectively. The meta-analysis between the current and previous GWAS results showed that rs2251219 in Polybromo1 (PBRM1 was significant on genome-wide association level (P = 5×10(-8 only for BD (P = 9.4×10(-9 and psychosis (P = 2.0×10(-10. Although the association of rs2709722 in Sp8 transcription factor (SP8 was suggestive in the Asian population (P = 2.1×10(-7 for psychosis, this signal weakened when the samples size was increased by including data from a

  13. Genetic Variants on 3q21 and in the Sp8 Transcription Factor Gene (SP8) as Susceptibility Loci for Psychotic Disorders: A Genetic Association Study

    Science.gov (United States)

    Kondo, Kenji; Ikeda, Masashi; Kajio, Yusuke; Saito, Takeo; Iwayama, Yoshimi; Aleksic, Branko; Yamada, Kazuo; Toyota, Tomoko; Hattori, Eiji; Ujike, Hiroshi; Inada, Toshiya; Kunugi, Hiroshi; Kato, Tadafumi; Yoshikawa, Takeo; Ozaki, Norio; Iwata, Nakao

    2013-01-01

    Background Recent genome-wide association studies (GWASs) investigating bipolar disorder (BD) have detected a number of susceptibility genes. These studies have also provided novel insight into shared genetic components between BD and schizophrenia (SCZ), two major psychotic disorders. To examine the replication of the risk variants for BD and the pleiotropic effect of the variants associated with BD, we conducted a genetic association study of single nucleotide polymorphisms (SNPs) that were selected based upon previous BD GWASs, which targeted psychotic disorders (BD and SCZ) in the Japanese population. Methods Forty-eight SNPs were selected based upon previous GWASs. A two-stage analysis was conducted using first-set screening (for all SNPs: BD = 1,012, SCZ = 1,032 and control = 993) and second-set replication samples (for significant SNPs in the screening analysis: BD = 821, SCZ = 1,808 and control = 2,149). We assessed allelic association between BD, SCZ, psychosis (BD+SCZ) and the SNPs selected for the analysis. Results Eight SNPs revealed nominal association signals for all comparisons (Puncorrected<0.05). Among these SNPs, the top two SNPs (associated with psychosis: Pcorrected = 0.048 and 0.037 for rs2251219 and rs2709722, respectively) were further assessed in the second-set samples, and we replicated the signals from the initial screening analysis (associated with psychosis: Pcorrected = 0.0070 and 0.033 for rs2251219 and rs2709722, respectively). The meta-analysis between the current and previous GWAS results showed that rs2251219 in Polybromo1 (PBRM1) was significant on genome-wide association level (P = 5×10−8) only for BD (P = 9.4×10−9) and psychosis (P = 2.0×10−10). Although the association of rs2709722 in Sp8 transcription factor (SP8) was suggestive in the Asian population (P = 2.1×10−7 for psychosis), this signal weakened when the samples size was increased by including data from a

  14. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation.

    Directory of Open Access Journals (Sweden)

    Dimitrios Avramopoulos

    Full Text Available Inflammation and maternal or fetal infections have been suggested as risk factors for schizophrenia (SZ and bipolar disorder (BP. It is likely that such environmental effects are contingent on genetic background. Here, in a genome-wide approach, we test the hypothesis that such exposures increase the risk for SZ and BP and that the increase is dependent on genetic variants. We use genome-wide genotype data, plasma IgG antibody measurements against Toxoplasma gondii, Herpes simplex virus type 1, Cytomegalovirus, Human Herpes Virus 6 and the food antigen gliadin as well as measurements of C-reactive protein (CRP, a peripheral marker of inflammation. The subjects are SZ cases, BP cases, parents of cases and screened controls. We look for higher levels of our immunity/infection variables and interactions between them and common genetic variation genome-wide. We find many of the antibody measurements higher in both disorders. While individual tests do not withstand correction for multiple comparisons, the number of nominally significant tests and the comparisons showing the expected direction are in significant excess (permutation p=0.019 and 0.004 respectively. We also find CRP levels highly elevated in SZ, BP and the mothers of BP cases, in agreement with existing literature, but possibly confounded by our inability to correct for smoking or body mass index. In our genome-wide interaction analysis no signal reached genome-wide significance, yet many plausible candidate genes emerged. In a hypothesis driven test, we found multiple interactions among SZ-associated SNPs in the HLA region on chromosome 6 and replicated an interaction between CMV infection and genotypes near the CTNNA3 gene reported by a recent GWAS. Our results support that inflammatory processes and infection may modify the risk for psychosis and suggest that the genotype at SZ-associated HLA loci modifies the effect of these variables on the risk to develop SZ.

  15. Infection and inflammation in schizophrenia and bipolar disorder: a genome wide study for interactions with genetic variation.

    Science.gov (United States)

    Avramopoulos, Dimitrios; Pearce, Brad D; McGrath, John; Wolyniec, Paula; Wang, Ruihua; Eckart, Nicole; Hatzimanolis, Alexandros; Goes, Fernando S; Nestadt, Gerald; Mulle, Jennifer; Coneely, Karen; Hopkins, Myfanwy; Ruczinski, Ingo; Yolken, Robert; Pulver, Ann E

    2015-01-01

    Inflammation and maternal or fetal infections have been suggested as risk factors for schizophrenia (SZ) and bipolar disorder (BP). It is likely that such environmental effects are contingent on genetic background. Here, in a genome-wide approach, we test the hypothesis that such exposures increase the risk for SZ and BP and that the increase is dependent on genetic variants. We use genome-wide genotype data, plasma IgG antibody measurements against Toxoplasma gondii, Herpes simplex virus type 1, Cytomegalovirus, Human Herpes Virus 6 and the food antigen gliadin as well as measurements of C-reactive protein (CRP), a peripheral marker of inflammation. The subjects are SZ cases, BP cases, parents of cases and screened controls. We look for higher levels of our immunity/infection variables and interactions between them and common genetic variation genome-wide. We find many of the antibody measurements higher in both disorders. While individual tests do not withstand correction for multiple comparisons, the number of nominally significant tests and the comparisons showing the expected direction are in significant excess (permutation p=0.019 and 0.004 respectively). We also find CRP levels highly elevated in SZ, BP and the mothers of BP cases, in agreement with existing literature, but possibly confounded by our inability to correct for smoking or body mass index. In our genome-wide interaction analysis no signal reached genome-wide significance, yet many plausible candidate genes emerged. In a hypothesis driven test, we found multiple interactions among SZ-associated SNPs in the HLA region on chromosome 6 and replicated an interaction between CMV infection and genotypes near the CTNNA3 gene reported by a recent GWAS. Our results support that inflammatory processes and infection may modify the risk for psychosis and suggest that the genotype at SZ-associated HLA loci modifies the effect of these variables on the risk to develop SZ.

  16. Trait-based assessment of borderline personality disorder using the NEO Five-Factor Inventory: Phenotypic and genetic support

    Science.gov (United States)

    Few, Lauren R.; Miller, Joshua D.; Grant, Julia D.; Maples, Jessica; Trull, Timothy J.; Nelson, Elliot C.; Oltmanns, Thomas F.; Martin, Nicholas G.; Lynskey, Michael T.; Agrawal, Arpana

    2015-01-01

    The aim of the current study was to examine the reliability and validity of a trait-based assessment of borderline personality disorder (BPD) using the NEO Five-Factor Inventory. Correlations between the Five-Factor Inventory-BPD composite (FFI-BPD) and explicit measures of BPD were examined across six samples, including undergraduate, community, and clinical samples. The median correlation was .60, which was nearly identical to the correlation between measures of BPD and a BPD composite generated from the full Revised NEO Personality Inventory (i.e., NEO-BPD; r =.61). Correlations between FFI-BPD and relevant measures of psychiatric symptomatology and etiology (e.g., childhood abuse, drug use, depression, and personality disorders) were also examined and compared to those generated using explicit measures of BPD and NEO-BPD. As expected, the FFI-BPD composite correlated most strongly with measures associated with high levels of Neuroticism, such as depression, anxiety, and emotion dysregulation, and the pattern of correlations generated using the FFI-BPD was highly similar to those generated using explicit measures of BPD and NEO-BPD. Finally, genetic analyses estimated that FFI-BPD is 44% heritable, which is comparable to meta-analytic research examining genetics associated with BPD, and revealed that 71% of the genetic influences are shared between FFI-BPD and a self-report measure assessing BPD (Personality Assessment Inventory – Borderline subscale; Morey, 1991). Generally, these results support the use of FFI-BPD as a reasonable proxy for BPD, which has considerable implications, particularly for potential gene-finding efforts in large, epidemiological datasets that include the NEO FFI. PMID:25984635

  17. Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Claire S Leblond

    2012-02-01

    Full Text Available Autism spectrum disorders (ASD are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls. We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4% patients and in 16 of 1,090 (1.5% controls (P = 0.004, OR = 2.37, 95% CI = 1.23-4.70. In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013. Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.

  18. Structural dysconnectivity of key cognitive and emotional hubs in young people at high genetic risk for bipolar disorder.

    Science.gov (United States)

    Roberts, G; Perry, A; Lord, A; Frankland, A; Leung, V; Holmes-Preston, E; Levy, F; Lenroot, R K; Mitchell, P B; Breakspear, M

    2016-12-20

    Emerging evidence suggests that psychiatric disorders are associated with disturbances in structural brain networks. Little is known, however, about brain networks in those at high risk (HR) of bipolar disorder (BD), with such disturbances carrying substantial predictive and etiological value. Whole-brain tractography was performed on diffusion-weighted images acquired from 84 unaffected HR individuals with at least one first-degree relative with BD, 38 young patients with BD and 96 matched controls (CNs) with no family history of mental illness. We studied structural connectivity differences between these groups, with a focus on highly connected hubs and networks involving emotional centres. HR participants showed lower structural connectivity in two lateralised sub-networks centred on bilateral inferior frontal gyri and left insular cortex, as well as increased connectivity in a right lateralised limbic sub-network compared with CN subjects. BD was associated with weaker connectivity in a small right-sided sub-network involving connections between fronto-temporal and temporal areas. Although these sub-networks preferentially involved structural hubs, the integrity of the highly connected structural backbone was preserved in both groups. Weaker structural brain networks involving key emotional centres occur in young people at genetic risk of BD and those with established BD. In contrast to other psychiatric disorders such as schizophrenia, the structural core of the brain remains intact, despite the local involvement of network hubs. These results add to our understanding of the neurobiological correlates of BD and provide predictions for outcomes in young people at high genetic risk for BD.Molecular Psychiatry advance online publication, 20 December 2016; doi:10.1038/mp.2016.216.

  19. Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders

    Science.gov (United States)

    Leblond, Claire S.; Heinrich, Jutta; Delorme, Richard; Proepper, Christian; Betancur, Catalina; Huguet, Guillaume; Konyukh, Marina; Chaste, Pauline; Ey, Elodie; Rastam, Maria; Anckarsäter, Henrik; Nygren, Gudrun; Gillberg, I. Carina; Melke, Jonas; Toro, Roberto; Regnault, Beatrice; Fauchereau, Fabien; Mercati, Oriane; Lemière, Nathalie; Skuse, David; Poot, Martin; Holt, Richard; Monaco, Anthony P.; Järvelä, Irma; Kantojärvi, Katri; Vanhala, Raija; Curran, Sarah; Collier, David A.; Bolton, Patrick; Chiocchetti, Andreas; Klauck, Sabine M.; Poustka, Fritz; Freitag, Christine M.; Waltes, Regina; Kopp, Marnie; Duketis, Eftichia; Bacchelli, Elena; Minopoli, Fiorella; Ruta, Liliana; Battaglia, Agatino; Mazzone, Luigi; Maestrini, Elena; Sequeira, Ana F.; Oliveira, Barbara; Vicente, Astrid; Oliveira, Guiomar; Pinto, Dalila; Scherer, Stephen W.; Zelenika, Diana; Delepine, Marc; Lathrop, Mark; Bonneau, Dominique; Guinchat, Vincent; Devillard, Françoise; Assouline, Brigitte; Mouren, Marie-Christine; Leboyer, Marion; Gillberg, Christopher; Boeckers, Tobias M.; Bourgeron, Thomas

    2012-01-01

    Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD. PMID:22346768

  20. Recommendations from multi-disciplinary focus groups on cascade testing and genetic counseling for fragile X-associated disorders.

    Science.gov (United States)

    McConkie-Rosell, Allyn; Abrams, Liane; Finucane, Brenda; Cronister, Amy; Gane, Louise W; Coffey, Sarah M; Sherman, Stephanie; Nelson, Lawrence M; Berry-Kravis, Elizabeth; Hessl, David; Chiu, Sufen; Street, Natalie; Vatave, Ajay; Hagerman, Randi J

    2007-10-01

    The purpose of this paper is to report the outcome of a collaborative project between the Fragile X Research and Treatment Center at the Medical Investigation of Neurodevelopmental Disorders (M.I.N.D.) Institute at the University of California at Davis, the National Fragile X Foundation (NFXF), and the Centers for Disease Control and Prevention (CDC). The objective of this collaboration was to develop and disseminate protocols for genetic counseling and cascade testing for the multiple disorders associated with the fragile X mental retardation 1 (FMR1) mutation. Over the last several years, there has been increasing insight into the phenotypic range associated with both the premutation and the full mutation of the FMR1 gene. To help develop recommendations related to screening for fragile X-associated disorders, four, two day advisory focus group meetings were conducted, each with a different theme. The four themes were: (1) fragile X-associated tremor/ataxia syndrome (FXTAS); (2) premature ovarian failure (POF) and reproductive endocrinology; (3) psychiatric, behavioral and psychological issues; and (4) population screening and related ethical issues.

  1. The genetic variation of RELN expression in schizophrenia and bipolar disorder.

    Science.gov (United States)

    Ovadia, Galit; Shifman, Sagiv

    2011-01-01

    Reelin plays an important role in the development and function of the brain and has been linked to different neuropsychiatric diseases. To further clarify the connection between reelin and psychiatric disorders, we studied the factors that influence the expression of reelin gene (RELN) and its different isoforms. We examined the total expression of RELN, allelic expression, and two alternative RELN isoforms in postmortem brain samples from patients with schizophrenia and bipolar disorder, as well as unaffected controls. We did not find a significant reduction in the total expression of RELN in schizophrenia or bipolar disorder. However, we did find a significant reduction of the proportion of the short RELN isoform, missing the C-terminal region in bipolar disorder, and imbalance in the allelic expression of RELN in schizophrenia. In addition, we tested the association between variation in RELN expression and rs7341475, an intronic SNP that was found to be associated with schizophrenia in women. We did not find an association between rs7341474 and the total expression of RELN either in women or in the entire sample. However, we observed a nominally significant effect of genotype-by-sex interaction on the variation in microexon skipping. Women with the risk genotype of rs7341475 (GG) had a higher proportion of microexon skipping, which is the isoform predominant in tissues outside the brain, while men had the opposite trend. Finally, we tested 83 SNPs in the gene region for association with expression variation of RELN, but none were significant. Our study further supports the connection between RELN dysfunction and psychiatric disorders, and provides a possible functional role for a schizophrenia associated SNP. Nevertheless, the positive associations observed in this study needs further replication as it may have implications for understanding the biological causes of schizophrenia and bipolar disorder.

  2. Low Rates of Genetic Testing in Children With Developmental Delays, Intellectual Disability, and Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    John Peabody MD, PhD

    2015-12-01

    Full Text Available To explore the routine and effective use of genetic testing for patients with intellectual disability and developmental delay (ID/DD, we conducted a prospective, randomized observational study of 231 general pediatricians (40% and specialists (60%, using simulated patients with 9 rare pediatric genetic illnesses. Participants cared for 3 randomly assigned simulated patients, and care responses were scored against explicit evidence-based criteria. Scores were calculated as a percentage of criteria completed. Care varied widely, with a median overall score of 44.7% and interquartile range of 36.6% to 53.7%. Diagnostic accuracy was low: 27.4% of physicians identified the correct primary diagnosis. Physicians ordered chromosomal microarray analysis in 55.7% of cases. Specific gene sequence testing was used in 1.4% to 30.3% of cases. This study demonstrates that genetic testing is underutilized, even for widely available tests. Further efforts to educate physicians on the clinical utility of genetic testing may improve diagnosis and care in these patients.

  3. Disorders of Sex Development and Germ Cell Cancer: genetics and microenvironment

    NARCIS (Netherlands)

    R. Hersmus (Remko)

    2012-01-01

    textabstractThe ultimate purpose of sexual reproduction, which depends on specialized male and female anatomy and physiology, is to enable continuation of a species and introduction of genetic diversity. In mammals the developmental path towards a male or a female is in principle determined at the

  4. Genetic analysis of rare disorders: Bayesian estimation of twin concordance rates

    NARCIS (Netherlands)

    van den Berg, Stéphanie Martine; Hjelmborg, J.

    2012-01-01

    Twin concordance rates provide insight into the possibility of a genetic background for a disease. These concordance rates are usually estimated within a frequentistic framework. Here we take a Bayesian approach. For rare diseases, estimation methods based on asymptotic theory cannot be applied due

  5. A human phenome-interactome network of protein complexes implicated in genetic disorders

    DEFF Research Database (Denmark)

    Hansen, Kasper Lage; Karlberg, Erik, Olof, Linnart; Størling, Zenia, Marian

    2007-01-01

    the known disease-causing protein as the top candidate, and in 870 intervals with no identified disease-causing gene, provides novel candidates implicated in disorders such as retinitis pigmentosa, epithelial ovarian cancer, inflammatory bowel disease, amyotrophic lateral sclerosis, Alzheimer disease, type...

  6. Defective folding and rapid degradation of mutant proteins is a common disease mechanism in genetic disorders

    DEFF Research Database (Denmark)

    Gregersen, N; Bross, P; Jørgensen, M M

    2000-01-01

    of such 'conformational disease' are illustrated by reference to cystic fibrosis, phenylketonuria and short-chain acyl-CoA dehydrogenase deficiency. Other cellular components such as chaperones and proteases, as well as environmental factors, may combine to modulate the phenotype of such disorders and this may open up...

  7. Functional genetic polymorphisms and female reproductive disorders : Part I: polycystic ovary syndrome and ovarian response

    NARCIS (Netherlands)

    Simoni, M.; Tempfer, C. B.; Destenaves, B.; Fauser, B. C. J. M.

    2008-01-01

    BACKGROUND: The identification of polymorphisms associated with a disease can help to elucidate its pathogenesis, and this knowledge can be used to improve prognosis for women with a particular disorder, such as polycystic ovary syndrome ( PCOS). Since an altered response to ovarian stimulation is a

  8. Toward a biaxial model of "bipolar" affective disorders: further exploration of genetic, molecular and cellular substrates.

    Science.gov (United States)

    Askland, Kathleen

    2006-08-01

    Current epidemiologic and genetic evidence strongly supports the heritability of bipolar disease. Inconsistencies across linkage and association analyses have been primarily interpreted as suggesting polygenic, nonMendelian and variably-penetrant inheritance (i.e., in terms of interacting disease models). An equally-likely explanation for this genetic complexity is that trait, locus and allelic heterogeneities (i.e., a heterogeneous disease model) are primarily responsible for observed variability at the population level. The two models of genetic complexity are not mutually-exclusive, and are in fact likely to co-exist both in trait determination and disease expression. However, the current model proposes that, while both types of complex genetics are likely central to observable affective trait spectra, inheritance patterns, gross phenotypic categories and treatment-responsiveness in affective disease (as well as the widespread inconsistencies across such studies) may be primarily explained in terms of a heterogeneous disease model. Gene-gene, gene-protein and protein-protein interactions, then, are most likely to serve as trait determinants and 'phenotypic modifiers' rather than as primary pathogenic determinants. Moreover, while locus heterogeneity indicates the presence of multiple susceptibility genes at the population level, it does not necessitate polygenic inheritance at the individual or pedigree level. Rather, it is compatible with the possibility of mono- or bigenic determination of disease susceptibility within individuals/pedigrees. More specifically, the biaxial model proposes that integration of specific findings from genetic linkage and association studies, ion channels research as well as pharmacologic mechanism, phenotypic specificity and effectiveness studies suggests that each gene of potential etiologic significance in primary affective illness might be categorized into one of two classes, according to their primary role in neuronal

  9. Common Genetic Variants Found in HLA and KIR Immune Genes in Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Anthony R Torres

    2016-10-01

    Full Text Available The common variant - common disease hypothesis was proposed to explain diseases with strong inheritance. This model suggests that a genetic disease is the result of the combination of several common genetic variants. Common genetic variants are described as a 5% frequency differential between diseased versus matched control populations. This theory was recently supported by an epidemiology paper stating that about 50% of genetic risk for autism resides in common variants. However, rare variants, rather than common variants, have been found in numerous genome wide genetic studies and many have concluded that the common variant—common disease hypothesis is incorrect. One interpretation is that rare variants are major contributors to genetic diseases and autism involves the interaction of many rare variants, especially in the brain. It is obvious there is much yet to be learned about autism genetics.Evidence has been mounting over the years indicating immune involvement in autism, particularly the HLA genes on chromosome 6 and KIR genes on chromosome 19. These two large multigene complexes have important immune functions and have been shown to interact to eliminate unwanted virally infected and malignant cells. HLA proteins have important functions in antigen presentation in adaptive immunity and specific epitopes on HLA class I proteins act as cognate ligands for KIR receptors in innate immunity. Data suggests that HLA alleles and KIR activating genes/haplotypes are common variants in different autism populations. For example, class I allele (HLA-A2 and HLA-G 14bp-indel frequencies are significantly increased by more than 5% over control populations (Table2. The HLA-DR4 Class II and shared epitope frequencies are significantly above the control populations (Table 2. Three activating KIR genes: 3DS1, 2DS1 and 2DS2 have increased frequencies of 15%, 22% and 14% in autism populations, respectively. There is a 6% increase in total activating KIR

  10. Discovering new genetic and psychosocial pathways in Major Depressive Disorder: the NewMood project.

    Science.gov (United States)

    Freeborough, Annabel; Kimpton, Jessica

    2011-09-01

    The World Health Organisation predicts that Major Depressive Disorder (MDD) will be the second greatest contributor to the global burden of disease by 2020, however, the neurobiological mechanisms behind the disease and the risk factors for it are yet unknown. NewMood (New Molecules for Mood Disorders) was a research project funded by the EU, collaborating work from 10 European countries with the aim of finding new molecular mechanisms behind MDD to develop more effective treatment options. This review explains the aims and objectives of NewMood and how it intends to achieve them with regards to the current literature. It also outlines two of its most recent projects: genome wide association replication study for single nucleotide polymorphisms (SNPs) increasing susceptibility to MDD and stress related pathways in depression using the cortisol awakening response (CAR). Both of these studies had significant results and could further contribute to our current understanding of MDD.

  11. Genetic and epigenetic catalysts in early-life programming of adult cardiometabolic disorders

    OpenAIRE

    Estampador AC; Franks PW

    2014-01-01

    Angela C Estampador,1,2 Paul W Franks1,3,4 1Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden; 2Department of Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; 3Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden; 4Department of Nutrition, Harvard School of Public Health, Boston, MA, USA Abstract...

  12. In silico analysis of Progeria: A genetic disease and natural cardiovascular disorders preventive compounds

    OpenAIRE

    Shraddha Mulange; Satish Kulkarni; Vaishali Wadekar; L H Kamble

    2016-01-01

    Progeria (also known as "Hutchinson–Gilford progeria syndrome"(HGPS) is an extremely rare, severe, genetic condition wherein symptoms resembling aspects of aging are manifested at an early age. The basic objective of this study is how is it responsible for faster ageing than normal? The study of its bioinformatics aspect explaining where the mutation occurs in normal LMNA gene to form mutated Progerin. We explain its sequential and structural aspects in domain and motif. Structural visualizat...

  13. Sex differentiation disorders (SDD) prenatal sonographic diagnosis, genetic and hormonal work-up.

    Science.gov (United States)

    Katorza, Eldad; Pinhas-Hamiel, Orit; Mazkereth, Ram; Gilboa, Yinon; Achiron, Reuven

    2009-09-01

    Gender is determined by the genetic, gonadal and hormonal/ phenotypic sex. Genetic sex is determined at conception. The establishment of the gonadal sex (ovary/testis) and the phenotypic sex (external and internal genitalia) is a complicated multistep process which is determined during fetal life mainly during the first trimester. Recently more genes have been found to be involved in this process. Prenatal diagnosis of fetal gender can be made using ultrasound technology, genetic and hormonal examinations. Nowadays using a vaginal and abdominal transducer for US examination recognition of external and internal genitalia of both genders is possible. The determination of gender during fetal life is important not only as a matter of curiosity; in some cases of ambiguity (for example congenital adrenal hyperplasia) prenatal treatment can change the natural history of the disease. Prenatal diagnosis can also subtype the ambiguity, and its severity can be established. In this review we describe our experience in prenatal diagnosis and establishment of the fetal gender, the subtypes of ambiguity and our suggestion for the process of diagnostic work-up.

  14. Genetic and neurophysiological correlates of the age of onset of alcohol use disorders in adolescents and young adults.

    Science.gov (United States)

    Chorlian, David B; Rangaswamy, Madhavi; Manz, Niklas; Wang, Jen-Chyong; Dick, Danielle; Almasy, Laura; Bauer, Lance; Bucholz, Kathleen; Foroud, Tatiana; Hesselbrock, Victor; Kang, Sun J; Kramer, John; Kuperman, Sam; Nurnberger, John; Rice, John; Schuckit, Marc; Tischfield, Jay; Edenberg, Howard J; Goate, Alison; Bierut, Laura; Porjesz, Bernice

    2013-09-01

    Discrete time survival analysis was used to assess the age-specific association of event-related oscillations (EROs) and CHRM2 gene variants on the onset of regular alcohol use and alcohol dependence. The subjects were 2,938 adolescents and young adults ages 12-25. Results showed that the CHRM2 gene variants and ERO risk factors had hazards which varied considerably with age. The bulk of the significant age-specific associations occurred in those whose age of onset was under 16. These associations were concentrated in those subjects who at some time took an illicit drug. These results are consistent with studies which associate greater rates of alcohol dependence among those who begin drinking at an early age. The age specificity of the genetic and neurophysiological factors is consistent with recent studies of adolescent brain development, which locate an interval of heightened vulnerability to substance use disorders in the early to mid teens.

  15. Are There Cultural Differences in Parental Interest in Early Diagnosis and Genetic Risk Assessment for Autism Spectrum Disorder?

    Science.gov (United States)

    Amiet, Claire; Couchon, Elizabeth; Carr, Kelly; Carayol, Jerôme; Cohen, David

    2014-01-01

    Background: There are many societal and cultural differences between healthcare systems and the use of genetic testing in the US and France. These differences may affect the diagnostic process for autism spectrum disorder (ASD) in each country and influence parental opinions regarding the use of genetic screening tools for ASD. Methods: Using an internet-based tool, a survey of parents with at least one child with ASD was conducted. A total of 162 participants from the US completed an English version of the survey and 469 participants from France completed a French version of the survey. Respondents were mainly females (90%) and biological parents (94.3% in the US and 97.2% in France). Results: The mean age of ASD diagnosis reported was not significantly different between France (57.5 ± 38.4 months) and the US (56.5 ± 52.7 months) (p = 0.82) despite significant difference in the average age at which a difference in development was first suspected [29.7 months (±28.4) vs. 21.4 months (±18.1), respectively, p = 7 × 10−4]. Only 27.8% of US participants indicated that their child diagnosed with ASD had undergone diagnostic genetic testing, whereas 61.7% of the French participants indicated this was the case (p = 2.7 × 10−12). In both countries, the majority of respondents (69.3% and 80% from France and the US, respectively) indicated high interest in the use of a genetic screening test for autism. Conclusion: Parents from France and the US report a persistent delay between the initial suspicion of a difference in development and the diagnosis of ASD. Significantly fewer US participants underwent genetic testing although this result should be regarded as exploratory given the limitations. The significance of these between country differences will be discussed. PMID:24795872

  16. The vascular phenotype in pseudoxanthoma elasticum and related disorders: Contribution of a genetic disease to the understanding of vascular calcification.

    Directory of Open Access Journals (Sweden)

    Georges eLeftheriotis

    2013-02-01

    Full Text Available Vascular calcification is a complex and dynamic process occurring in various physiological conditions such as aging and exercise or in acquired metabolic disorders like diabetes or chronic renal insufficiency. Arterial calcifications are also observed in several genetic diseases revealing the important role of unbalanced or defective anti- or pro-calcifying factors. Pseudoxanthoma elasticum (PXE is an inherited disease (OMIM 264800 characterized by elastic fiber fragmentation and calcification in various soft conjunctive tissues including the skin, eyes and arterial media. The PXE disease results from mutations in the ABCC6 gene, encoding an ATP-binding cassette transporter primarily expressed in the liver, kidneys suggesting that it is a prototypic metabolic soft-tissue calcifying disease of genetic origin. The clinical expression of the PXE arterial disease is characterized by an increased risk for coronary (myocardial infarction, cerebral (aneurysm and stroke and lower limb peripheral artery disease. However, the structural and functional changes in the arterial wall induced by PXE are still unexplained. The use of a recombinant mouse model inactivated for the Abcc6 gene is an important tool for the understanding of the PXE pathophysiology although the vascular impact in this model remains limited to date. Overlapping of the PXE phenotype with other inherited calcifying diseases could bring important informations to our comprehension of the PXE disease.

  17. “Soldier’s Heart”: A Genetic Basis for Elevated Cardiovascular Disease Risk Associated with Post-traumatic Stress Disorder

    Directory of Open Access Journals (Sweden)

    Harvey B. Pollard

    2016-09-01

    Full Text Available Soldier’s Heart, is an American Civil War term linking post-traumatic stress disorder (PTSD with increased propensity for cardiovascular disease (CVD. We have hypothesized that there might be a quantifiable genetic basis for this linkage. To test this hypothesis we identified a comprehensive set of candidate risk genes for PTSD, and tested whether any were also independent risk genes for CVD. A functional analysis algorithm was used to identify associated signaling networks.We identified 106 PTSD studies that report one or more polymorphic variants in 87 candidate genes in 83,463 subjects and controls. The top upstream drivers for these PTSD risk genes are predicted to be the glucocorticoid receptor (NR3C1 and Tumor Necrosis Factor alpha (TNFA. We find that 37 of the PTSD candidate risk genes are also candidate independent risk genes for CVD. The association between PTSD and CVD is significant by Fisher’s Exact Test (P= 3*10-54. We also find 15 PTSD risk genes that are independently associated with Type 2 Diabetes Mellitus (T2DM; also significant by Fisher’s Exact Test (P= 1.8*10-16. Our findings offer quantitative evidence for a genetic link between post-traumatic stress and cardiovascular disease, Computationally, the common mechanism for this linkage between PTSD and CVD is innate immunity and NFκB-mediated inflammation.

  18. "Soldier's Heart": A Genetic Basis for Elevated Cardiovascular Disease Risk Associated with Post-traumatic Stress Disorder.

    Science.gov (United States)

    Pollard, Harvey B; Shivakumar, Chittari; Starr, Joshua; Eidelman, Ofer; Jacobowitz, David M; Dalgard, Clifton L; Srivastava, Meera; Wilkerson, Matthew D; Stein, Murray B; Ursano, Robert J

    2016-01-01

    "Soldier's Heart," is an American Civil War term linking post-traumatic stress disorder (PTSD) with increased propensity for cardiovascular disease (CVD). We have hypothesized that there might be a quantifiable genetic basis for this linkage. To test this hypothesis we identified a comprehensive set of candidate risk genes for PTSD, and tested whether any were also independent risk genes for CVD. A functional analysis algorithm was used to identify associated signaling networks. We identified 106 PTSD studies that report one or more polymorphic variants in 87 candidate genes in 83,463 subjects and controls. The top upstream drivers for these PTSD risk genes are predicted to be the glucocorticoid receptor (NR3C1) and Tumor Necrosis Factor alpha (TNFA). We find that 37 of the PTSD candidate risk genes are also candidate independent risk genes for CVD. The association between PTSD and CVD is significant by Fisher's Exact Test (P = 3 × 10(-54)). We also find 15 PTSD risk genes that are independently associated with Type 2 Diabetes Mellitus (T2DM; also significant by Fisher's Exact Test (P = 1.8 × 10(-16)). Our findings offer quantitative evidence for a genetic link between post-traumatic stress and cardiovascular disease, Computationally, the common mechanism for this linkage between PTSD and CVD is innate immunity and NFκB-mediated inflammation.

  19. “Soldier's Heart”: A Genetic Basis for Elevated Cardiovascular Disease Risk Associated with Post-traumatic Stress Disorder

    Science.gov (United States)

    Pollard, Harvey B.; Shivakumar, Chittari; Starr, Joshua; Eidelman, Ofer; Jacobowitz, David M.; Dalgard, Clifton L.; Srivastava, Meera; Wilkerson, Matthew D.; Stein, Murray B.; Ursano, Robert J.

    2016-01-01

    “Soldier's Heart,” is an American Civil War term linking post-traumatic stress disorder (PTSD) with increased propensity for cardiovascular disease (CVD). We have hypothesized that there might be a quantifiable genetic basis for this linkage. To test this hypothesis we identified a comprehensive set of candidate risk genes for PTSD, and tested whether any were also independent risk genes for CVD. A functional analysis algorithm was used to identify associated signaling networks. We identified 106 PTSD studies that report one or more polymorphic variants in 87 candidate genes in 83,463 subjects and controls. The top upstream drivers for these PTSD risk genes are predicted to be the glucocorticoid receptor (NR3C1) and Tumor Necrosis Factor alpha (TNFA). We find that 37 of the PTSD candidate risk genes are also candidate independent risk genes for CVD. The association between PTSD and CVD is significant by Fisher's Exact Test (P = 3 × 10−54). We also find 15 PTSD risk genes that are independently associated with Type 2 Diabetes Mellitus (T2DM; also significant by Fisher's Exact Test (P = 1.8 × 10−16). Our findings offer quantitative evidence for a genetic link between post-traumatic stress and cardiovascular disease, Computationally, the common mechanism for this linkage between PTSD and CVD is innate immunity and NFκB-mediated inflammation. PMID:27721742

  20. Advanced Genetic Testing Comes to the Pain Clinic to Make a Diagnosis of Paroxysmal Extreme Pain Disorder

    Directory of Open Access Journals (Sweden)

    Ashley Cannon

    2016-01-01

    Full Text Available Objective. To describe the use of an advanced genetic testing technique, whole exome sequencing, to diagnose a patient and their family with a SCN9A channelopathy. Setting. Academic tertiary care center. Design. Case report. Case Report. A 61-year-old female with a history of acute facial pain, chronic pain, fibromyalgia, and constipation was found to have a gain of function SCN9A mutation by whole exome sequencing. This mutation resulted in an SCN9A channelopathy that is most consistent with a diagnosis of paroxysmal extreme pain disorder. In addition to the patient being diagnosed, four siblings have a clinical diagnosis of SCN9A channelopathy as they have consistent symptoms and a sister with a known mutation. For treatment, gabapentin was ineffective and carbamazepine was not tolerated. Nontraditional therapies improved symptoms and constipation resolved with pelvic floor retraining with biofeedback. Conclusion. Patients with a personal and family history of chronic pain may benefit from a referral to Medical Genetics. Pelvic floor retraining with biofeedback should be considered for patients with a SCN9A channelopathy and constipation.

  1. Genetic heterogeneity of syndromic X-linked recessive microphthalmia-anophthalmia: is Lenz microphthalmia a single disorder?

    Science.gov (United States)

    Ng, David; Hadley, Donald W; Tifft, Cynthia J; Biesecker, Leslie G

    2002-07-15

    Nonsyndromic congenital microphthalmia or anophthalmia is a heterogeneous malformation with autosomal dominant, autosomal recessive, and X-linked modes of inheritance. Lenz microphthalmia syndrome comprises microphthalmia with mental retardation, malformed ears, skeletal anomalies, and is inherited in an X-linked recessive pattern. Prior studies have shown linkage of both isolated (or nonsyndromic) anophthalmos (ANOP1, [MIM 301590]) and Lenz syndrome [MIM 309800] to Xq27-q28. Nonsyndromic colobomatous microphthalmia [MIM 300345] has been linked to Xp11.4-Xq11.1. We describe a five-generation African-American family with microphthalmia or anophthalmia, mental retardation, and urogenital anomalies, in an X-linked recessive inheritance pattern, consistent with Lenz syndrome. Initial linkage analysis with microsatellite markers excluded the region in Xq27-q28 previously reported as a candidate region for ANOP1 [MIM 301590]. An X-chromosome scan revealed linkage to a 10-cM region between markers DXS228 and DXS992 in Xp11.4-p21.2. Multipoint analysis gave a maximum LOD score of 2.46 at marker DXS993. These data show that X-linked recessive syndromic microphthalmia exhibits genetic heterogeneity. In addition, it suggests that Lenz microphthalmia syndrome, previously thought to be a single disorder, may represent an amalgam of two distinct disorders.

  2. Generalised Anxiety Disorder--A Twin Study of Genetic Architecture, Genome-Wide Association and Differential Gene Expression.

    Directory of Open Access Journals (Sweden)

    Matthew N Davies

    Full Text Available Generalised Anxiety Disorder (GAD is a common anxiety-related diagnosis, affecting approximately 5% of the adult population. One characteristic of GAD is a high degree of anxiety sensitivity (AS, a personality trait which describes the fear of arousal-related sensations. Here we present a genome-wide association study of AS using a cohort of 730 MZ and DZ female twins. The GWAS showed a significant association for a variant within the RBFOX1 gene. A heritability analysis of the same cohort also confirmed a significant genetic component with h2 of 0.42. Additionally, a subset of the cohort (25 MZ twins discordant for AS was studied for evidence of differential expression using RNA-seq data. Significant differential expression of two exons with the ITM2B gene within the discordant MZ subset was observed, a finding that was replicated in an independent cohort. While previous research has shown that anxiety has a high comorbidity with a variety of psychiatric and neurodegenerative disorders, our analysis suggests a novel etiology specific to AS.

  3. Generalised Anxiety Disorder--A Twin Study of Genetic Architecture, Genome-Wide Association and Differential Gene Expression.

    Science.gov (United States)

    Davies, Matthew N; Verdi, Serena; Burri, Andrea; Trzaskowski, Maciej; Lee, Minyoung; Hettema, John M; Jansen, Rick; Boomsma, Dorret I; Spector, Tim D

    2015-01-01

    Generalised Anxiety Disorder (GAD) is a common anxiety-related diagnosis, affecting approximately 5% of the adult population. One characteristic of GAD is a high degree of anxiety sensitivity (AS), a personality trait which describes the fear of arousal-related sensations. Here we present a genome-wide association study of AS using a cohort of 730 MZ and DZ female twins. The GWAS showed a significant association for a variant within the RBFOX1 gene. A heritability analysis of the same cohort also confirmed a significant genetic component with h2 of 0.42. Additionally, a subset of the cohort (25 MZ twins discordant for AS) was studied for evidence of differential expression using RNA-seq data. Significant differential expression of two exons with the ITM2B gene within the discordant MZ subset was observed, a finding that was replicated in an independent cohort. While previous research has shown that anxiety has a high comorbidity with a variety of psychiatric and neurodegenerative disorders, our analysis suggests a novel etiology specific to AS.

  4. Molecular genetic evidence of Y chromosome loss in male patients with hematological disorders

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-jun; SHIN Eun Sim; YU Zhong-xing; LI Shi-bo

    2007-01-01

    Background There has been continuous debate as to whether Y chromosome loss is an age related phenomenon or a cytogenetic marker indicating a malignant change. This study aimed to investigate the frequency of Y chromosome loss in the specific patients in order to determine whether it is an age related phenomena or a cytogenetic marker indicating a malignant change.Methods Five hundred and ninety-two male patients with a median age of 59 years old (22-95 years) were included in this study. These patients were divided into two groups: the study group, including 237 patients who had hematological disorders included myeloproliferative disorder (MPD), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML),chronic myeloid leukemia (CML), multiple myeloma (MM), and lymphoma and the control group including 355 patients with no evidence of hematological disease. Both conventional cytogenetics and fluorescence in situ hybridization using DNA probes specific for the centromere of chromosomes X or Y were performed according to our standard laboratory protocols.Results Twenty-four out of 237 patients with hematological disorders (10.1%) had Y chromosome loss. Of these 24patients, 2 patients had AML (5.0% of all AML patients), 2 patients had CML (5.7% of all CML patients), 2 patients had MPD (8.0% of all MPD patients), 3 patients had MM (10.0% of all MM patients), 5 patients had lymphoma (10.6% of all lymphoma patients) and 10 patients had MDS (16.7% of all MDS patients). Twenty-one out of these 24 patients had a loss of Y chromosome as the sole anomaly and the remaining three had a loss of Y chromosome accompanied with otherstructural changes detected by conventional cytogenetic analysis. Fluorescence in situ hybridization (FISH) analysis confirmed the routine cytogenetic results. All 24 patients had a loss of Y chromosome with a range of 17.5%-98.5% of cells. Two of the patients, one with AML and another with CML, had karyotype and FISH testing done both at the initial

  5. Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder.

    Science.gov (United States)

    Klein, Christine; Schlossmacher, Michael G

    2007-11-27

    Over the last 10 years, an unprecedented number of scientific reports have been published that relate to the pathogenesis of parkinsonism. Since the discovery in 1997 of the first heritable form of parkinsonism that could be linked to a mutation in a single gene, SNCA, many more genetic leads have followed (Parkin, DJ-1, PINK1, LRRK2, to name a few); these have provided us with many molecular clues to better explore the etiology of parkinsonism and have led to the dismantling of many previously held dogmas about Parkinson disease (PD). Epidemiologic studies have delineated an array of environmental modulators of susceptibility to parkinsonism, which can now be examined in the context of gene expression. Furthermore, in vivo imaging data and postmortem results have generated concepts that greatly expanded our appreciation for the phenotypic spectrum of parkinsonism from its presymptomatic to advanced stages. With this plethora of new information emerged the picture of a complex syndrome that raises many questions: How many forms of classic parkinsonism/Parkinson disease(s) are there? Where does the disease begin? What causes late-onset, "idiopathic" PD? What are the caveats related to genetic testing? What is the role of Lewy bodies? What will be the best disease model to accommodate the now known genetic and environmental contributors to parkinsonism? What will be the ideal markers and targets for earlier diagnosis and cause-directed therapy? In the following article we highlight some of the burning issues surrounding the understanding of classic parkinsonism, a complex puzzle of genes, environment, and an aging host.

  6. Genetic analysis of reelin gene (RELN) SNPs: no association with autism spectrum disorder in the Indian population.

    Science.gov (United States)

    Dutta, Shruti; Sinha, Swagata; Ghosh, Saurabh; Chatterjee, Anindita; Ahmed, Shabina; Usha, Rajamma

    2008-08-15

    Involvement of reelin with Autism spectrum disorder (ASD) has been implicated through several biochemical as well as genetic studies. Reelin is an extracellular signaling protein, which plays a significant role in cytoarchitectonic pattern formation of different brain areas during development. Reelin gene (RELN) is located on chromosome 7q22; an important autism critical region identified through several genome-wide scans. A number of genetic studies have been carried out to investigate the association of reelin with autism. Recently we reported possible paternal effect in the transmission of CGG repeat alleles of RELN in the susceptibility towards autism. Further analysis on other polymorphisms is warranted to validate the status of RELN as a candidate for autism. Therefore in the present study, we have investigated six more SNPs (rs727531, rs2072403, rs2072402, rs362691, rs362719, rs736707) in 102 patients, 182 parents and 101 healthy controls. We have followed DSM-IV criteria and the screening for autism was carried out using CARS. Genomic DNA isolated from blood was used for PCR and subsequent RFLP analysis. Finally, case-control and family-based association studies were carried out to examine the genetic association of these SNP markers with ASD in the Indian population. But, we failed to detect either preferential parental transmission of any alleles of the markers to affected offspring or any biased allelic or genotypic distribution between the cases and controls. Thus the present study suggests that these SNPs of RELN are unlikely to be associated with ASD in the Indian population.

  7. CONTRIBUTION OF MARITAL DISTANCE TO COMMUNITY INBREEDING, HOMOZYGOSIS, AND REPRODUCTIVE WASTAGE FOR RECESSIVELY INHERITED GENETIC DISORDERS IN MADHYA PRADESH, INDIA

    Directory of Open Access Journals (Sweden)

    R S Balgir

    2013-11-01

    Full Text Available Background: Recessively inherited genetic disorders such as sickle cell anemia and β-thalassemia are commonly encountered in heterozygous and homozygous form in India. These hemolytic disorders cause a high degree of reproductive wastage in vulnerable communities. Inbreeding is usually the mating between two related individuals. Homozygosis is antagonistic process of heterosis. Purpose: This study was aimed at finding reproductive outcome in carrier couples of sickle cell disease, and β-thalassemia in terms of reproductive wastage in relation to varied marital distance between partners in Madhya Pradesh. Methods: A total of 107 (35 and 72, respectively carrier couples of β-thalassemia major and sickle cell anemia with confirmed affected offspring after taking detailed reproductive history were studied following the standard methodology in a tertiary hospital in Central India during March 2010 to February 2013. Results: A majority of sickle cell and b-thalassemia carrier couples (77.8% and 65.7%, respectively had married within physical distance of radius less than 50 kms. away from their native places. It was found that as the marital distance between two carrier partners of above disorders decreases, the number of abortions, still-births, neonatal mortality, infant mortality, and mortality under 10 years age increases, and vice versa, implicating inbreeding and homozygosis. The overall reproductive wastage of 28.2% and 18.6% was recorded in carrier couples of sickle cell disease and β-thalassemia, respectively. Conclusions: Relative small population size clubbed with small marital distance leads to inbreeding resulting in homozygosity which increases chances of affected offspring by recessive or deleterious traits and contributes to decreased fitness of a couple or population in Central India.

  8. Repeat-mediated genetic and epigenetic changes at the FMR1 locus in the Fragile X-related disorders

    Directory of Open Access Journals (Sweden)

    Karen eUsdin

    2014-07-01

    Full Text Available AbstractThe Fragile X-related disorders are a group of genetic conditions that include the neurodegenerative disorder, Fragile X-associated tremor and ataxia syndrome (FXTAS, the fertility disorder, Fragile X-associated primary ovarian insufficiency (FXPOI and the intellectual disability, Fragile X syndrome (FXS. The pathology in all these diseases is related to the number of CGG/CCG-repeats in the 5’ UTR of the FMR1 gene. The repeats are prone to continuous expansion and the increase in repeat number has paradoxical effects on gene expression increasing transcription on mid-sized alleles and decreasing it on longer ones. In some cases the repeats can simultaneously both increase FMR1 mRNA production and decrease the levels of the FMR1 gene product, FMRP. Since FXTAS and FXPOI result from the deleterious consequences of the expression of elevated levels of FMR1 mRNA and FXS is caused by reduced FMRP levels, the clinical picture is turning out to be more complex than once appreciated. Added complications are generated by the fact that increasing repeat numbers make the alleles somatically unstable, generating resulting in individuals sometimes having a complex mixture of different sized alleles. Furthermore, it has become apparent that the eponymous fragile site, once thought to be no more than a useful diagnostic criterion, may have clinical consequences for females who inherit chromosomes that express this site. This review will cover what is currently known about the mechanisms responsible for repeat instability, for the repeat-mediated epigenetic changes that affect expression of the FMR1 gene, and for chromosome fragility. It will also touch on what current and future options are for ameliorating some of these effects.

  9. Variants of the CNTNAP2 5' promoter as risk factors for autism spectrum disorders: a genetic and functional approach.

    Science.gov (United States)

    Chiocchetti, A G; Kopp, M; Waltes, R; Haslinger, D; Duketis, E; Jarczok, T A; Poustka, F; Voran, A; Graab, U; Meyer, J; Klauck, S M; Fulda, S; Freitag, C M

    2015-07-01

    Contactin-associated protein-like 2 gene (CNTNAP2), a member of the Neurexin gene superfamily, is one of the best-replicated risk genes for autism spectrum disorders (ASD). ASD are predominately genetically determined neurodevelopmental disorders characterized by impairments of language development, social interaction and communication, as well as stereotyped behavior and interests. Although CNTNAP2 expression levels were proposed to alter ASD risk, no study to date has focused on its 5' promoter. Here, we directly sequenced the CNTNAP2 5' promoter region of 236 German families with one child with ASD and detected four novel variants. Furthermore, we genotyped the three most frequent variants (rs150447075, rs34712024, rs71781329) in an additional sample of 356 families and found nominal association of rs34712024G with ASD and rs71781329GCG[7] with language development. The four novel and the three known minor alleles of the identified variants were predicted to alter transcription factor binding sites (TFBS). At the functional level, the respective sequences spanning these seven variants were bound by nuclear factors. In a luciferase promoter assay, the respective minor alleles showed cell line-specific and differentiation stage-dependent effects at the level of promoter activation. The novel potential rare risk-variant M2, a G>A mutation -215 base pairs 5' of the transcriptional start site, significantly reduced promoter efficiency in HEK293T and in undifferentiated and differentiated neuroblastoid SH-SY5Y cells. This variant was transmitted to a patient with autistic disorder. The under-transmitted, protective minor G allele of the common variant rs34712024, in contrast, increased transcriptional activity. These results lead to the conclusion that the pathomechanism of CNTNAP2 promoter variants on ASD risk is mediated by their effect on TFBSs, and thus confirm the hypothesis that a reduced CNTNAP2 level during neuronal development increases liability for ASD.

  10. The Association Between Genetic Variants in the Dopaminergic System and Posttraumatic Stress Disorder: A Meta-Analysis.

    Science.gov (United States)

    Li, Lizhuo; Bao, Yijun; He, Songbai; Wang, Gang; Guan, Yanlei; Ma, Dexuan; Wang, Pengfei; Huang, Xiaolong; Tao, Shanwei; Zhang, Dewei; Liu, Qiwen; Wang, Yunjie; Yang, Jingyun

    2016-03-01

    Posttraumatic stress disorder (PTSD) is a complex mental disorder and can severely interfere with the normal life of the affected people. Previous studies have examined the association of PTSD with genetic variants in multiple dopaminergic genes with inconsistent results. To perform a systematic literature search and conduct meta-analysis to examine whether genetic variants in the dopaminergic system is associated with PTSD. Data Sources: PubMed, Cochrane Library, Embase, Google Scholar, and HuGE. Study eligibility criteria and participants: The studies included subjects who had been screened for the presence of PTSD; the studies provided data for genetic variants of genes involved in the dopaminergic system; the outcomes of interest included diagnosis status of PTSD; and the studies were case-control studies. Study appraisal and synthesis methods: Odds ratio was used as a measure of association. We used random-effects model in all the meta-analyses. Between-study heterogeneity was assessed using I², and publication bias was evaluated using Egger test. Findings from meta-analyses were confirmed using random-effects meta-analyses under the framework of generalized linear model (GLM). A total of 19 studies met the eligibility criteria and were included in our analyses. We found that rs1800497 in DRD2 was significantly associated with PTSD (OR = 1.96, 95% CI: 1.15-3.33; P = 0.014). The 3'-UTR variable number tandem repeat (VNTR) in SLC6A3 also showed significant association with PTSD (OR = 1.62, 95% CI: 1.12-2.35; P = 0.010), but there was no association of rs4680 in COMT with PTSD (P = 0.595). Sample size is limited for some studies; type and severity of traumatic events varied across studies; we could not control for potential confounding factors, such as age at traumatic events and gender; and we could not examine gene-environment interaction due to lack of data. We found that rs1800497 in DRD2 and the VNTR in SLC6A3 showed significant

  11. Metallo-pathways to Alzheimer's disease: lessons from genetic disorders of copper trafficking.

    Science.gov (United States)

    Greenough, M A; Ramírez Munoz, A; Bush, A I; Opazo, C M

    2016-09-01

    Copper is an essential metal ion that provides catalytic function to numerous enzymes and also regulates neurotransmission and intracellular signaling. Conversely, a deficiency or excess of copper can cause chronic disease in humans. Menkes and Wilson disease are two rare heritable disorders of copper transport that are characterized by copper deficiency and copper overload, respectively. Changes to copper status are also a common feature of several neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD) and Amyotrophic lateral sclerosis (ALS). In the case of AD, which is characterized by brain copper depletion, changes in the distribution of copper has been linked with various aspects of the disease process; protein aggregation, defective protein degradation, oxidative stress, inflammation and mitochondrial dysfunction. Although AD is a multifactorial disease that is likely caused by a breakdown in multiple cellular pathways, copper and other metal ions such as iron and zinc play a central role in many of these cellular processes. Pioneering work by researchers who have studied relatively rare copper transport diseases has shed light on potential metal ion related disease mechanisms in other forms of neurodegeneration such as AD.

  12. Analysis of t(9;17)(q33.2;q25.3) chromosomal breakpoint regions and genetic association reveals novel candidate genes for bipolar disorder

    DEFF Research Database (Denmark)

    Rajkumar, A.P.; Christensen, Jane H.; Mattheisen, Manuel

    2015-01-01

    ,856) data. Genetic associations between these disorders and single nucleotide polymorphisms within these breakpoint regions were analysed by BioQ, FORGE, and RegulomeDB programmes. RESULTS: Four protein-coding genes [coding for (endonuclease V (ENDOV), neuronal pentraxin I (NPTX1), ring finger protein 213...

  13. Genetic and Environmental Factors in Pre- and Postnatal Growth Disorders: Studies in children born small for gestational age (SGA), with and without postnatal short stature

    NARCIS (Netherlands)

    W.A. Ester (Wietske)

    2009-01-01

    textabstractTh is thesis describes genetic and environmental factors which are important in pre- and postnatal growth disorders and specifi cally focuses on children born small for gestational age (SGA) with or without postnatal catch-up growth. It also presents a subclassifi cation of short SGA sub

  14. Candidate Genetic Pathways for Attention-Deficit/Hyperactivity Disorder (ADHD) Show Association to Hyperactive/Impulsive Symptoms in Children With ADHD

    NARCIS (Netherlands)

    Bralten, Janita; Franke, Barbara; Waldman, Irwin; Rommelse, Nanda; Hartman, Catharina; Asherson, Philip; Banaschewski, Tobias; Ebstein, Richard P.; Gill, Michael; Miranda, Ana; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A.; Oosterlaan, Jaap; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Faraone, Stephen V.; Buitelaar, Jan K.; Arias-Vasquez, Alejandro

    2013-01-01

    Objective: Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic stu

  15. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD

    NARCIS (Netherlands)

    Bralten, J.; Franke, B.; Waldman, I.; Rommelse, N.N.; Hartman, C.; Asherson, P.; Banaschewski, T.; Ebstein, R.P.; Gill, M.; Miranda, A.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Oosterlaan, J.; Sonuga-Barke, E.; Steinhausen, H.C.; Faraone, S.V.; Buitelaar, J.K.; Arias Vasquez, A.

    2013-01-01

    OBJECTIVE: Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic stu

  16. Imaging Genetics

    Science.gov (United States)

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  17. Genetic principles.

    Science.gov (United States)

    Abuelo, D

    1987-01-01

    The author discusses the basic principles of genetics, including the classification of genetic disorders and a consideration of the rules and mechanisms of inheritance. The most common pitfalls in clinical genetic diagnosis are described, with emphasis on the problem of the negative or misleading family history.

  18. Imaging Genetics

    Science.gov (United States)

    Munoz, Karen E.; Hyde, Luke W.; Hariri, Ahmad R.

    2009-01-01

    Imaging genetics is an experimental strategy that integrates molecular genetics and neuroimaging technology to examine biological mechanisms that mediate differences in behavior and the risks for psychiatric disorder. The basic principles in imaging genetics and the development of the field are discussed.

  19. Epidemiology and genetics of common mental disorders in the general population: the PEGASUS-Murcia project

    Science.gov (United States)

    Navarro-Mateu, Fernando; Tormo, MJ; Vilagut, G; Alonso, J; Ruíz-Merino, G; Escámez, T; Salmerón, D; Júdez, J; Martínez, S; Navarro, C

    2013-01-01

    Background Multidisciplinary collaboration between clinicians, epidemiologists, neurogeneticists and statisticians on research projects has been encouraged to improve our knowledge of the complex mechanisms underlying the aetiology and burden of mental disorders. The PEGASUS-Murcia (Psychiatric Enquiry to General Population in Southeast Spain-Murcia) project was designed to assess the prevalence of common mental disorders and to identify the risk and protective factors, and it also included the collection of biological samples to study the gene–environmental interactions in the context of the World Mental Health Survey Initiative. Methods and analysis The PEGASUS-Murcia project is a new cross-sectional face-to-face interview survey based on a representative sample of non-institutionalised adults in the Region of Murcia (Mediterranean Southeast, Spain). Trained lay interviewers used the latest version of the computer-assisted personal interview of the Composite International Diagnostic Interview (CIDI 3.0) for use in Spain, specifically adapted for the project. Two biological samples of buccal mucosal epithelium will be collected from each interviewed participant, one for DNA extraction for genomic and epigenomic analyses and the other to obtain mRNA for gene expression quantification. Several quality control procedures will be implemented to assure the highest reliability and validity of the data. This article describes the rationale, sampling methods and questionnaire content as well as the laboratory methodology. Ethics and dissemination Informed consent will be obtained from all participants and a Regional Ethics Research Committee has approved the protocol. Results will be disseminated in peer-reviewed publications and presented at the national and the international conferences. Discussion Cross-sectional studies, which combine detailed personal information with biological data, offer new and exciting opportunities to study the gene

  20. Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

    DEFF Research Database (Denmark)

    Wolff, Markus; Johannesen, Katrine M; Hedrich, Ulrike B S

    2017-01-01

    for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (...). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients....... In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers...

  1. Preimplantation Genetic Diagnosis for Monogenic Disorders and Chromosomal Rearrangements – The German Perspective

    Directory of Open Access Journals (Sweden)

    Koehler U

    2013-01-01

    Full Text Available Since its dawn in the late 1980s, preimplantation genetic diagnosis (PGD, or präimplantationsdiagnostik, PID has evolved into a well-established technique, which can be offered to couples at risk of transmitting a mutation or a chromosomal aberration to their offspring. Polar bodies as well as day 3 blastomeres and day 5 blastocysts (trophectoderm can be employed for the detection of a specific gene mutation or unbalanced karyotypes. For the latter, array comparative genomic hybridisation (array CGH has replaced fluorescence in situ hybridisation (FISH approaches. Furthermore, as blastocysts seem to exhibit less mosaicism compared to blastomeres, current PGD protocols focus on the analysis of blastocysts, however polar body testing is still applied for maternally derived conditions. In November 2011, the German embryo protection law (ESchG has been supplemented by §3a, which defines the conditions for the legal implementation of PGD (PräimpG in Germany.

  2. Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson's-like movement disorder.

    Science.gov (United States)

    Lu, Wei; Karuppagounder, Senthilkumar S; Springer, Danielle A; Allen, Michele D; Zheng, Lixin; Chao, Brittany; Zhang, Yan; Dawson, Valina L; Dawson, Ted M; Lenardo, Michael

    2014-09-15

    Mitophagy is a specialized form of autophagy that selectively disposes of dysfunctional mitochondria. Delineating the molecular regulation of mitophagy is of great importance because defects in this process lead to a variety of mitochondrial diseases. Here we report that mice deficient for the mitochondrial protein, phosphoglycerate mutase family member 5 (PGAM5), displayed a Parkinson's-like movement phenotype. We determined biochemically that PGAM5 is required for the stabilization of the mitophagy-inducing protein PINK1 on damaged mitochondria. Loss of PGAM5 disables PINK1-mediated mitophagy in vitro and leads to dopaminergic neurodegeneration and mild dopamine loss in vivo. Our data indicate that PGAM5 is a regulator of mitophagy essential for mitochondrial turnover and serves a cytoprotective function in dopaminergic neurons in vivo. Moreover, PGAM5 may provide a molecular link to study mitochondrial homeostasis and the pathogenesis of a movement disorder similar to Parkinson's disease.

  3. Genetic deficiency of the mitochondrial protein PGAM5 causes a Parkinson’s-like movement disorder

    Science.gov (United States)

    Lu, Wei; Karuppagounder, Senthilkumar S.; Springer, Danielle A.; Allen, Michele D.; Zheng, Lixin; Chao, Brittany; Zhang, Yan; Dawson, Valina L.; Dawson, Ted M.; Lenardo, Michael

    2015-01-01

    Mitophagy is a specialized form of autophagy that selectively disposes of dysfunctional mitochondria. Delineating the molecular regulation of mitophagy is of great importance because defects in this process lead to a variety of mitochondrial diseases. Here we report that mice deficient for the mitochondrial protein, phosphoglycerate mutase family member 5 (PGAM5), displayed a Parkinson’s-like movement phenotype. We determined biochemically that PGAM5 is required for the stabilization of the mitophagy-inducing protein PINK1 on damaged mitochondria. Loss of PGAM5 disables PINK1-mediated mitophagy in vitro and leads to dopaminergic neurodegeneration and mild dopamine loss in vivo. Our data indicate that PGAM5 is a regulator of mitophagy essential for mitochondrial turnover and serves a cytoprotective function in dopaminergic neurons in vivo. Moreover, PGAM5 may provide a molecular link to study mitochondrial homeostasis and the pathogenesis of a movement disorder similar to Parkinson’s disease. PMID:25222142

  4. Genetic and epigenetic catalysts in early-life programming of adult cardiometabolic disorders

    Directory of Open Access Journals (Sweden)

    Estampador AC

    2014-12-01

    Full Text Available Angela C Estampador,1,2 Paul W Franks1,3,4 1Department of Clinical Sciences, Genetic and Molecular Epidemiology Unit, Lund University, Skåne University Hospital Malmö, Malmö, Sweden; 2Department of Endocrinology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark; 3Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden; 4Department of Nutrition, Harvard School of Public Health, Boston, MA, USA Abstract: Evidence has emerged across the past few decades that the lifetime risk of developing morbidities like type 2 diabetes, obesity, and cardiovascular disease may be influenced by exposures that occur in utero and in childhood. Developmental abnormalities are known to occur at various stages in fetal growth. Epidemiological and mechanistic studies have sought to delineate developmental processes and plausible risk factors influencing pregnancy outcomes and later health. Whether these observations reflect causal processes or are confounded by genetic and social factors remains unclear, although animal (and some human studies suggest that epigenetic programming events may be involved. Regardless of the causal basis to observations of early-life risk factors and later disease risk, the fact that such associations exist and that they are of a fairly large magnitude justifies further research around this topic. Furthermore, additional information is needed to substantiate public health guidelines on lifestyle behaviors during pregnancy to improve infant health outcomes. Indeed, lifestyle intervention clinical trials in pregnancy are now coming online, where materials and data are being collected that should facilitate understanding of the causal nature of intrauterine exposures related with gestational weight gain, such as elevated maternal blood glucose concentrations. In this review, we provide an overview of these concepts. Keywords: early-life, epigenetic, programming, pregnancy, cardiometabolic

  5. Genetics Home Reference: hyperprolinemia

    Science.gov (United States)

    ... can also occur with other conditions, such as malnutrition or liver disease. In particular, individuals with conditions ... Topic: Amino Acid Metabolism Disorders Health Topic: Genetic Brain Disorders Health Topic: Newborn Screening Genetic and Rare ...

  6. Genetic hemoglobin disorders rather than iron deficiency are a major predictor of hemoglobin concentration in women of reproductive age in rural prey Veng, Cambodia.

    Science.gov (United States)

    Karakochuk, Crystal D; Whitfield, Kyly C; Barr, Susan I; Lamers, Yvonne; Devlin, Angela M; Vercauteren, Suzanne M; Kroeun, Hou; Talukder, Aminuzzaman; McLean, Judy; Green, Timothy J

    2015-01-01

    Anemia is common in Cambodian women. Potential causes include micronutrient deficiencies, genetic hemoglobin disorders, inflammation, and disease. We aimed to investigate factors associated with anemia (low hemoglobin concentration) in rural Cambodian women (18-45 y) and to investigate the relations between hemoglobin disorders and other iron biomarkers. Blood samples were obtained from 450 women. A complete blood count was conducted, and serum and plasma were analyzed for ferritin, soluble transferrin receptor (sTfR), folate, vitamin B-12, retinol binding protein (RBP), C-reactive protein (CRP), and α1 acid glycoprotein (AGP). Hemoglobin electrophoresis and multiplex polymerase chain reaction were used to determine the prevalence and type of genetic hemoglobin disorders. Overall, 54% of women had a genetic hemoglobin disorder, which included 25 different genotypes (most commonly, hemoglobin E variants and α(3.7)-thalassemia). Of the 420 nonpregnant women, 29.5% had anemia (hemoglobin iron stores (ferritin iron deficiency (sTfR >8.3 mg/L), iron deficiency anemia (IDA) were 14.2% and 1.5% in those with and without hemoglobin disorders, respectively. There was no biochemical evidence of vitamin A deficiency (RBP 5 mg/L) and 26% (AGP >1 g/L) of nonpregnant women, respectively. By using an adjusted linear regression model, the strongest predictors of hemoglobin concentration were hemoglobin E homozygous disorder and pregnancy status. Other predictors were 2 other heterozygous traits (hemoglobin E and Constant Spring), parity, RBP, log ferritin, and vitamin B-12. Multiple biomarkers for anemia and iron deficiency were significantly influenced by the presence of hemoglobin disorders, hence reducing their diagnostic sensitivity. Further investigation of the unexpectedly low prevalence of IDA in Cambodian women is warranted. © 2015 American Society for Nutrition.

  7. Borderline personality disorder

    Science.gov (United States)

    Personality disorder - borderline ... Cause of borderline personality disorder (BPD) is unknown. Genetic, family, and social factors are thought to play roles. Risk factors for BPD include: Abandonment ...

  8. Behavioral and genetic evidence for a novel animal model of Attention-Deficit/Hyperactivity Disorder Predominantly Inattentive Subtype

    Directory of Open Access Journals (Sweden)

    Zhang-James Y

    2008-12-01

    Full Text Available Abstract Background According to DSM-IV there are three subtypes of Attention-Deficit/Hyperactivity Disorder, namely: ADHD predominantly inattentive type (ADHD-PI, ADHD predominantly Hyperactive-Impulsive Type (ADHD-HI, and ADHD combined type (ADHD-C. These subtypes may represent distinct neurobehavioral disorders of childhood onset with separate etiologies. The diagnosis of ADHD is behaviorally based; therefore, investigations into its possible etiologies should be based in behavior. Animal models of ADHD demonstrate construct validity when they accurately reproduce elements of the etiology, biochemistry, symptoms, and treatment of the disorder. Spontaneously hypertensive rats (SHR fulfill many of the validation criteria and compare well with clinical cases of ADHD-C. The present study describes a novel rat model of the predominantly inattentive subtype (ADHD-PI. Methods ADHD-like behavior was tested with a visual discrimination task measuring overactivity, impulsiveness and inattentiveness. Several strains with varied genetic background were needed to determine what constitutes a normal comparison. Five groups of rats were used: SHR/NCrl spontaneously hypertensive and WKY/NCrl Wistar/Kyoto rats from Charles River; SD/NTac Sprague Dawley and WH/HanTac Wistar rats from Taconic Europe; and WKY/NHsd Wistar/Kyoto rats from Harlan. DNA was analyzed to determine background differences in the strains by PCR genotyping of eight highly polymorphic microsatellite markers and 2625 single nucleotide polymorphisms (SNPs. Results Compared to appropriate comparison strains (WKY/NHsd and SD/NTac rats, SHR/NCrl showed ADHD-C-like behavior: striking overactivity and poor sustained attention. Compared to WKY/NHsd rats, WKY/NCrl rats showed inattention, but no overactivity or impulsiveness. WH/HanTac rats deviated significantly from the other control groups by being more active and less attentive than the WKY/NHsd and SD/NTac rats. We also found substantial

  9. High prevalence of complementary and alternative medicine use in patients with genetically proven mitochondrial disorders.

    Science.gov (United States)

    Franik, Sebastian; Huidekoper, Hidde H; Visser, Gepke; de Vries, Maaike; de Boer, Lonneke; Hermans-Peters, Marion; Rodenburg, Richard; Verhaak, Chris; Vlieger, Arine M; Smeitink, Jan A M; Janssen, Mirian C H; Wortmann, Saskia B

    2015-05-01

    Despite major advances in understanding the pathophysiology of mitochondrial diseases, clinical management of these conditions remains largely supportive, and no effective treatment is available. We therefore assumed that the burden of disease combined with the lack of adequate treatment leaves open a big market for complementary and alternative medicine use. The objective of this study was to evaluate the use and perceived effectiveness of complementary and alternative medicine in children and adults with genetically proven mitochondrial disease. The reported use was surprisingly high, with 88% of children and 91% of adults having used some kind of complementary and alternative medicine in the last 2 years. Also, the mean cost of these treatments was impressive, being 489/year for children and 359/year for adult patients. Over-the-counter remedies (e.g., food supplements, homeopathy) and self-help techniques (e.g., Reiki, yoga) were the most frequently used complementary and alternative therapies in our cohort: 54% of children and 60% of adults reported the various complementary and alternative medicine therapies to be effective. Given the fact that currently no effective treatment exists, further research toward the different therapies is needed, as our study clearly demonstrates that such therapies are highly sought after by affected patients.

  10. Genetic and epigenetic catalysts in early-life programming of adult cardiometabolic disorders.

    Science.gov (United States)

    Estampador, Angela C; Franks, Paul W

    2014-01-01

    Evidence has emerged across the past few decades that the lifetime risk of developing morbidities like type 2 diabetes, obesity, and cardiovascular disease may be influenced by exposures that occur in utero and in childhood. Developmental abnormalities are known to occur at various stages in fetal growth. Epidemiological and mechanistic studies have sought to delineate developmental processes and plausible risk factors influencing pregnancy outcomes and later health. Whether these observations reflect causal processes or are confounded by genetic and social factors remains unclear, although animal (and some human) studies suggest that epigenetic programming events may be involved. Regardless of the causal basis to observations of early-life risk factors and later disease risk, the fact that such associations exist and that they are of a fairly large magnitude justifies further research around this topic. Furthermore, additional information is needed to substantiate public health guidelines on lifestyle behaviors during pregnancy to improve infant health outcomes. Indeed, lifestyle intervention clinical trials in pregnancy are now coming online, where materials and data are being collected that should facilitate understanding of the causal nature of intrauterine exposures related with gestational weight gain, such as elevated maternal blood glucose concentrations. In this review, we provide an overview of these concepts.

  11. From Single Variants to Protein Cascades: MULTISCALE MODELING OF SINGLE NUCLEOTIDE VARIANT SETS IN GENETIC DISORDERS.

    Science.gov (United States)

    Mueller, Sabine C; Sommer, Björn; Backes, Christina; Haas, Jan; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2016-01-22

    Understanding the role of genetics in disease has become a central part of medical research. Non-synonymous single nucleotide variants (nsSNVs) in coding regions of human genes frequently lead to pathological phenotypes. Beyond single variations, the individual combination of nsSNVs may add to pathogenic processes. We developed a multiscale pipeline to systematically analyze the existence of quantitative effects of multiple nsSNVs and gene combinations in single individuals on pathogenicity. Based on this pipeline, we detected in a data set of 842 nsSNVs discovered in 76 genes related to cardiomyopathies, associated nsSNV combinations in seven genes present in at least 70% of all 639 patient samples, but not in a control cohort of healthy humans. Structural analyses of these revealed primarily an influence on the protein stability. For amino acid substitutions located at the protein surface, we generally observed a proximity to putative binding pockets. To computationally analyze cumulative effects and their impact, pathogenicity methods are currently being developed. Our approach supports this process, as shown on the example of a cardiac phenotype but can be likewise applied to other diseases such as cancer.

  12. Epigenetic and genetic variation at SKA2 predict suicidal behavior and post-traumatic stress disorder.

    Science.gov (United States)

    Kaminsky, Z; Wilcox, H C; Eaton, W W; Van Eck, K; Kilaru, V; Jovanovic, T; Klengel, T; Bradley, B; Binder, E B; Ressler, K J; Smith, A K

    2015-08-25

    Traumatic stress results in hypothalamic pituitary adrenal (HPA) axis abnormalities and an increased risk to both suicidal behaviors and post-traumatic stress disorder (PTSD). Previous work out of our laboratory identified SKA2 DNA methylation associations with suicidal behavior in the blood and brain of multiple cohorts. Interaction of SKA2 with stress predicted suicidal behavior with ~80% accuracy. SKA2 is hypothesized to reduce the ability to suppress cortisol following stress, which is of potentially high relevance in traumatized populations. Our objective was to investigate the interaction of SKA2 and trauma exposure on HPA axis function, suicide attempt and PTSD. SKA2 DNA methylation at Illumina HM450 probe cg13989295 was assessed for association with suicidal behavior and PTSD metrics in the context of Child Trauma Questionnaire (CTQ) scores in 421 blood and 61 saliva samples from the Grady Trauma Project (GTP) cohort. Dexamethasone suppression test (DST) data were evaluated for a subset of 209 GTP subjects. SKA2 methylation interacted with CTQ scores to predict lifetime suicide attempt in saliva and blood with areas under the receiver operator characteristic curve (AUCs) of 0.76 and 0.73 (95% confidence interval (CI): 0.6-0.92, P = 0.003, and CI: 0.65-0.78, P suicidal behaviors and PTSD through dysregulation of the HPA axis in response to stress.

  13. Parallels between major depressive disorder and Alzheimer's disease: role of oxidative stress and genetic vulnerability.

    Science.gov (United States)

    Rodrigues, Roberto; Petersen, Robert B; Perry, George

    2014-10-01

    The thesis of this review is that oxidative stress is the central factor in major depressive disorder (MDD) and Alzheimer's disease (AD). The major elements involved are inflammatory cytokines, the hypothalamic-pituitary axis, the hypothalamic-pituitary gonadal, and arginine vasopressin systems, which induce glucocorticoid and "oxidopamatergic" cascades when triggered by psychosocial stress, severe life-threatening events, and mental-affective and somatic diseases. In individuals with a genomic vulnerability to depression, these cascades may result in chronic depression-anxiety-stress spectra, resulting in MDD and other known depressive syndromes. In contrast, in subjects with genomic vulnerability to AD, oxidative stress-induced brain damage triggers specific antioxidant defenses, i.e., increased levels of amyloid-β (Aβ) and aggregation of hyper-phosphorylated tau, resulting in paired helical filaments and impaired functions related to the ApoEε4 isoform, leading to complex pathological cascades culminating in AD. Surprisingly, all the AD-associated molecular pathways mentioned in this review have been shown to be similar or analogous to those found in depression, including structural damage, i.e., hippocampal and frontal cortex atrophy. Other interacting molecular signals, i.e., GSK-3β, convergent survival factors (brain-derived neurotrophic factor and heat shock proteins), and transition redox metals are also mentioned to emphasize the vast array of intermediates that could interact via comparable mechanisms in both MDD and AD.

  14. Frequently Asked Questions about Genetic Testing

    Science.gov (United States)

    ... Care Specific Genetic Disorders Frequently Asked Questions About Genetic Testing What is genetic testing? What can I learn ... find more information about genetic testing? What is genetic testing? Genetic testing uses laboratory methods to look at ...

  15. Genetic Polymorphism of the Serotonin Transporter Gene, SLC6A4 rs16965628, Is Associated with Obsessive Compulsive Disorder.

    Science.gov (United States)

    Cengiz, Mujgan; Okutan, Saide Nur; Bayoglu, Burcu; Sakalli Kani, Ayse; Bayar, Reha; Kocabasoglu, Nese

    2015-05-01

    Obsessive compulsive disorder (OCD) is a psychiatric disorder characterized by obsessive ideas and compulsive behaviors. Genetic studies have centered on candidate genes involved in OCD etiology related to serotonergic and dopaminergic systems. In this study, the relationship between cathechol-O-methyltransferase (COMT) -287A/G (rs2097063), serotonin transporters 5-HTTLPR I/D, and SLC6A4 rs16965628 polymorphisms in 80 OCD patients and 100 healthy controls was determined. Patients and controls were genotyped for COMT rs2097063 and SLC6A4 rs16965628 polymorphisms by real-time polymerase chain reaction (PCR). The 5-HTTLPR I/D polymorphism was genotyped using PCR and agarose gel electrophoresis. Severity of symptoms was checked with a Yale-Brown Obsession Compulsion Scale (Y-BOCS). When the OCD group and controls were compared, no significant difference was found between COMT -287A/G (rs2097063), 5-HTTLPR I/D polymorphisms, and OCD. However, a significant difference was found between 5-HTT rs16965628 polymorphism and OCD (p=0.025, OR=3.43, 95% CI 1.41-10.35). In addition, the G allele frequency was found to be higher for rs16965628 in the OCD group. No significant difference was observed between COMT -287A/G (rs2097063), SLC6A4 rs16965628, and 5-HTTLPR I/D polymorphisms and Y-BOCS scores (p>0.05). There was also lack of correlation between Yale-Brown scores and gender of OCD patients. On the other hand, combined genotypes of SLC6A4 rs16965628 GG+GC were found to be risk factors for OCD development (p=0.02, OR=3.464; 95% CI 1.214-9.883) in logistic regression analysis adjusted for age and gender. Our findings suggest that subjects carrying the G allele of rs16965628 have genetic susceptibility to OCD. These data are the first to suggest that polymorphism in serotonin transporter (rs16965628) is associated with the development of OCD in the Turkish population.

  16. Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study.

    Science.gov (United States)

    Hou, Liping; Heilbronner, Urs; Degenhardt, Franziska; Adli, Mazda; Akiyama, Kazufumi; Akula, Nirmala; Ardau, Raffaella; Arias, Bárbara; Backlund, Lena; Banzato, Claudio E M; Benabarre, Antoni; Bengesser, Susanne; Bhattacharjee, Abesh Kumar; Biernacka, Joanna M; Birner, Armin; Brichant-Petitjean, Clara; Bui, Elise T; Cervantes, Pablo; Chen, Guo-Bo; Chen, Hsi-Chung; Chillotti, Caterina; Cichon, Sven; Clark, Scott R; Colom, Francesc; Cousins, David A; Cruceanu, Cristiana; Czerski, Piotr M; Dantas, Clarissa R; Dayer, Alexandre; Étain, Bruno; Falkai, Peter; Forstner, Andreas J; Frisén, Louise; Fullerton, Janice M; Gard, Sébastien; Garnham, Julie S; Goes, Fernando S; Grof, Paul; Gruber, Oliver; Hashimoto, Ryota; Hauser, Joanna; Herms, Stefan; Hoffmann, Per; Hofmann, Andrea; Jamain, Stephane; Jiménez, Esther; Kahn, Jean-Pierre; Kassem, Layla; Kittel-Schneider, Sarah; Kliwicki, Sebastian; König, Barbara; Kusumi, Ichiro; Lackner, Nina; Laje, Gonzalo; Landén, Mikael; Lavebratt, Catharina; Leboyer, Marion; Leckband, Susan G; Jaramillo, Carlos A López; MacQueen, Glenda; Manchia, Mirko; Martinsson, Lina; Mattheisen, Manuel; McCarthy, Michael J; McElroy, Susan L; Mitjans, Marina; Mondimore, Francis M; Monteleone, Palmiero; Nievergelt, Caroline M; Nöthen, Markus M; Ösby, Urban; Ozaki, Norio; Perlis, Roy H; Pfennig, Andrea; Reich-Erkelenz, Daniela; Rouleau, Guy A; Schofield, Peter R; Schubert, K Oliver; Schweizer, Barbara W; Seemüller, Florian; Severino, Giovanni; Shekhtman, Tatyana; Shilling, Paul D; Shimoda, Kazutaka; Simhandl, Christian; Slaney, Claire M; Smoller, Jordan W; Squassina, Alessio; Stamm, Thomas; Stopkova, Pavla; Tighe, Sarah K; Tortorella, Alfonso; Turecki, Gustavo; Volkert, Julia; Witt, Stephanie; Wright, Adam; Young, L Trevor; Zandi, Peter P; Potash, James B; DePaulo, J Raymond; Bauer, Michael; Reininghaus, Eva Z; Novák, Tomas; Aubry, Jean-Michel; Maj, Mario; Baune, Bernhard T; Mitchell, Philip B; Vieta, Eduard; Frye, Mark A; Rybakowski, Janusz K; Kuo, Po-Hsiu; Kato, Tadafumi; Grigoroiu-Serbanescu, Maria; Reif, Andreas; Del Zompo, Maria; Bellivier, Frank; Schalling, Martin; Wray, Naomi R; Kelsoe, John R; Alda, Martin; Rietschel, Marcella; McMahon, Francis J; Schulze, Thomas G

    2016-03-12

    Lithium is a first-line treatment in bipolar disorder, but individual response is variable. Previous studies have suggested that lithium response is a heritable trait. However, no genetic markers of treatment response have been reproducibly identified. Here, we report the results of a genome-wide association study of lithium response in 2563 patients collected by 22 participating sites from the International Consortium on Lithium Genetics (ConLiGen). Data from common single nucleotide polymorphisms (SNPs) were tested for association with categorical and continuous ratings of lithium response. Lithium response was measured using a well established scale (Alda scale). Genotyped SNPs were used to generate data at more than 6 million sites, using standard genomic imputation methods. Traits were regressed against genotype dosage. Results were combined across two batches by meta-analysis. A single locus of four linked SNPs on chromosome 21 met genome-wide significance criteria for association with lithium response (rs79663003, p=1·37 × 10(-8); rs78015114, p=1·31 × 10(-8); rs74795342, p=3·31 × 10(-9); and rs75222709, p=3·50 × 10(-9)). In an independent, prospective study of 73 patients treated with lithium monotherapy for a period of up to 2 years, carriers of the response-associated alleles had a significantly lower rate of relapse than carriers of the alternate alleles (p=0·03268, hazard ratio 3·8, 95% CI 1·1-13·0). The response-associated region contains two genes for long, non-coding RNAs (lncRNAs), AL157359.3 and AL157359.4. LncRNAs are increasingly appreciated as important regulators of gene expression, particularly in the CNS. Confirmed biomarkers of lithium response would constitute an important step forward in the clinical management of bipolar disorder. Further studies are needed to establish the biological context and potential clinical utility of these findings. Deutsche Forschungsgemeinschaft, National Institute of Mental Health

  17. MOLECULAR GENETIC DISORDERS IN THE VHL GENE AND METHYLATION OF SOME SUPPRESSOR GENES IN SPORADIC CLEAR-CELL RENAL CARCINOMAS

    Directory of Open Access Journals (Sweden)

    D. S. Mikhailenko

    2014-07-01

    Full Text Available Renal carcinoma (RC is one of ten most common malignancies in adults and an urgent problem of modern oncology. The purpose of the study was to make a molecular genetic analysis of a number of suppressor genes in RC, which was aimed at searching for and characterizing the potential markers of the disease. Two hundred and nine RC samples were examined, of them there were 192 clear-cell carcinomas. VHL gene mutations were detected by single-strand conformation polymorphism and sequence analyses while the methylation of suppressor genes was by the methylation-sensitive polymerase chain reaction. Somatic VHL mutations were determined in 35.4% of cases of clear-cell RC (CCRC. VHL gene disorders were found in 53.7% of patients with Stage 1, which counts in favor of VHL inactivation in early-stage CCRC. The methylation of the VHL, RASSF1, FHIT, and CDH1 genes was identified in 12, 56, 58.4, and 46.4% of primary tumors, respectively; that of at least one gene was in 84.1% of the samples. The hypermethylation of the RASSF1 gene was associated with late stages (p = 0.015 and the presence of metastases (p = 0.036; that of the CDH1 gene was related to the progression, invasion, and dissemination of primary tumors (p = 0.009, 0.039, and 0.002, respectively. The findings show it possible to use an analysis of abnormalities in the VHL gene and the methylation of the RASSF1 and CDH1 genes to develop a system of molecular genetic markers of RC.

  18. The study of genetic polymorphisms related to serotonin in Alzheimer's disease: a new perspective in a heterogenic disorder

    Directory of Open Access Journals (Sweden)

    Oliveira J.R.M.

    1999-01-01

    Full Text Available Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD, the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the e4 allele of the apolipoprotein E (APOE gene (on chromosome 19 is the major susceptibility locus for the most common late onset AD (LOAD. Serotonin (5-hydroxytryptamine or 5-HT is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s of this 5-HTT gene-linked polymorphic region (5-HTTLPR is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.

  19. Genetic overlap of schizophrenia and bipolar disorder in a high-density linkage survey in the Portuguese Island population.

    Science.gov (United States)

    Fanous, Ayman H; Middleton, Frank A; Gentile, Karen; Amdur, Richard L; Maher, Brion S; Zhao, Zhongming; Sun, Jingchun; Medeiros, Helena; Carvalho, Celia; Ferreira, Susana R; Macedo, Antonio; Knowles, James A; Azevedo, Maria H; Pato, Michele T; Pato, Carlos N

    2012-06-01

    Recent family and genome-wide association studies strongly suggest shared genetic risk factors for schizophrenia (SZ) and bipolar disorder (BP). However, linkage studies have not been used to test for statistically significant genome-wide overlap between them. Forty-seven Portuguese families with sibpairs concordant for SZ, BP, or psychosis (PSY, which includes either SZ or psychotic BP) were genotyped for over 57,000 markers using the Affymetrix 50K Xba SNP array. NPL and Kong and Cox LOD scores were calculated in Merlin for all three phenotypes. Empirical significance was determined using 1,000 gene-dropping simulations. Significance of genome-wide genetic overlap between SZ and BP was determined by the number of simulated BP scans having the same number of loci jointly linked with the real SZ scan, and vice versa. For all three phenotypes, a number of regions previously linked in this sample remained so. For BP, chromosome 1p36 achieved significance (11.54-15.71 MB, LOD = 3.51), whereas it was not even suggestively linked at lower marker densities, as did chromosome 11q14.1 (89.32-90.15 MB, NPL = 4.15). Four chromosomes had loci at which both SZ and BP had NPL ≥ 1.98, which was more than would be expected by chance (empirical P = 0.01 using simulated SZ scans; 0.07 using simulated BP scans), although they did not necessarily meet criteria for suggestive linkage individually. These results suggest that high-density marker maps may provide greater power and precision in linkage studies than lower density maps. They also further support the hypothesis that SZ and BP share at least some risk alleles. Copyright © 2012 Wiley Periodicals, Inc.

  20. The study of genetic polymorphisms related to serotonin in Alzheimer's disease: a new perspective in a heterogenic disorder.

    Science.gov (United States)

    Oliveira, J R; Zatz, M

    1999-04-01

    Genetic and environmental factors have been implicated in the development of Alzheimer's disease (AD), the most common form of dementia in the elderly. Mutations in 3 genes mapped on chromosomes 21, 14 and 1 are related to the rare early onset forms of AD while the epsilon 4 allele of the apolipoprotein E (APOE) gene (on chromosome 19) is the major susceptibility locus for the most common late onset AD (LOAD). Serotonin (5-hydroxytryptamine or 5-HT) is a key neurotransmitter implicated in the control of mood, sleep, appetite and a variety of traits and behaviors. Recently, a polymorphism in the transcriptional control region upstream of the 5-HT transporter (5-HTT) gene has been studied in several psychiatric diseases and personality traits. It has been demonstrated that the short variant(s) of this 5-HTT gene-linked polymorphic region (5-HTTLPR) is associated with a different transcriptional efficiency of the 5-HTT gene promoter resulting in decreased 5-HTT expression and 5-HT uptake in lymphocytes. An increased frequency of this 5-HTTLPR short variant polymorphism in LOAD was recently reported. In addition, another common polymorphic variation in the 5-HT2A and 5-HT2C serotonin receptor genes previously analyzed in schizophrenic patients was associated with auditory and visual hallucinations in AD. These observations suggest that the involvement of the serotonin pathway might provide an explanation for some aspects of the affective symptoms commonly observed in AD patients. In summary, research on genetic polymorphisms related to AD and involved in receptors, transporter proteins and the enzymatic machinery of serotonin might enhance our understanding of this devastating neurodegenerative disorder.

  1. Genetic and Environmental Influences on Traits of Gender Identity Disorder: A Study of Japanese Twins Across Developmental Stages.

    Science.gov (United States)

    Sasaki, Shoko; Ozaki, Koken; Yamagata, Shinji; Takahashi, Yusuke; Shikishima, Chizuru; Kornacki, Tamara; Nonaka, Koichi; Ando, Juko

    2016-10-01

    The present study examined: (1) gender and age differences of mean gender identity disorder (GID) trait scores in Japanese twins; (2) the validity of the prenatal hormone transfer theory, which predicts that, in dizygotic (DZ) twin pairs, twins with an opposite-gender co-twin more frequently exhibit GID traits than twins with a same-gender co-twin; and (3) the magnitude of genetic and environmental influences on GID traits as a function of age and gender. Data from 1450 male twin pairs, 1882 female twin pairs, and 1022 DZ male-female pairs ranging from 3 to 26 years of age were analyzed. To quantify individual variances in GID traits, each participant completed four questionnaire items based on criteria for GID from the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR). Our most important findings were: (1) Japanese females exhibited GID traits more frequently than males and Japanese children exhibited GID traits less frequently than adolescents and adults (among females, the prevalence was 1.6 % in children, 10 % in adolescents, and 12 % in adults; among males, the prevalence was 0.5, 2, and 3 %, respectively); (2) the data did not support the prenatal hormone transfer theory for GID traits; and (3) a large part of the variance for GID traits in children was accounted for by familial factors; however, the magnitude was found to be greater in children than in adolescents or adults, particularly among females. This study suggests that although the prevalence is likely to increase, familial effects are likely to decrease as individuals age.

  2. Assessment of Response to Lithium Maintenance Treatment in Bipolar Disorder: A Consortium on Lithium Genetics (ConLiGen Report.

    Directory of Open Access Journals (Sweden)

    Mirko Manchia

    Full Text Available The assessment of response to lithium maintenance treatment in bipolar disorder (BD is complicated by variable length of treatment, unpredictable clinical course, and often inconsistent compliance. Prospective and retrospective methods of assessment of lithium response have been proposed in the literature. In this study we report the key phenotypic measures of the "Retrospective Criteria of Long-Term Treatment Response in Research Subjects with Bipolar Disorder" scale currently used in the Consortium on Lithium Genetics (ConLiGen study.Twenty-nine ConLiGen sites took part in a two-stage case-vignette rating procedure to examine inter-rater agreement [Kappa (κ] and reliability [intra-class correlation coefficient (ICC] of lithium response. Annotated first-round vignettes and rating guidelines were circulated to expert research clinicians for training purposes between the two stages. Further, we analyzed the distributional properties of the treatment response scores available for 1,308 patients using mixture modeling.Substantial and moderate agreement was shown across sites in the first and second sets of vignettes (κ = 0.66 and κ = 0.54, respectively, without significant improvement from training. However, definition of response using the A score as a quantitative trait and selecting cases with B criteria of 4 or less showed an improvement between the two stages (ICC1 = 0.71 and ICC2 = 0.75, respectively. Mixture modeling of score distribution indicated three subpopulations (full responders, partial responders, non responders.We identified two definitions of lithium response, one dichotomous and the other continuous, with moderate to substantial inter-rater agreement and reliability. Accurate phenotypic measurement of lithium response is crucial for the ongoing ConLiGen pharmacogenomic study.

  3. Analysis of t(9;17)(q33.2;q25.3) chromosomal breakpoint regions and genetic association reveals novel candidate genes for bipolar disorder

    DEFF Research Database (Denmark)

    Rajkumar, A.P.; Christensen, Jane H.; Mattheisen, Manuel

    2015-01-01

    OBJECTIVES: Breakpoints of chromosomal abnormalities facilitate identification of novel candidate genes for psychiatric disorders. Genome-wide significant evidence supports the linkage between chromosome 17q25.3 and bipolar disorder (BD). Co-segregation of translocation t(9;17)(q33.2;q25.......3) with psychiatric disorders has been reported. We aimed to narrow down these chromosomal breakpoint regions and to investigate the associations between single nucleotide polymorphisms within these regions and BD as well as schizophrenia (SZ) in large genome-wide association study samples. METHODS: We cross......,856) data. Genetic associations between these disorders and single nucleotide polymorphisms within these breakpoint regions were analysed by BioQ, FORGE, and RegulomeDB programmes. RESULTS: Four protein-coding genes [coding for (endonuclease V (ENDOV), neuronal pentraxin I (NPTX1), ring finger protein 213...

  4. Genetic Control over mtDNA and Its Relationship to Major Depressive Disorder.

    Science.gov (United States)

    Cai, Na; Li, Yihan; Chang, Simon; Liang, Jieqin; Lin, Chongyun; Zhang, Xiufei; Liang, Lu; Hu, Jingchu; Chan, Wharton; Kendler, Kenneth S; Malinauskas, Tomas; Huang, Guo-Jen; Li, Qibin; Mott, Richard; Flint, Jonathan

    2015-12-21

    Control over the number of mtDNA molecules per cell appears to be tightly regulated, but the mechanisms involved are largely unknown. Reversible alterations in the amount of mtDNA occur in response to stress suggesting that control over the amount of mtDNA is involved in stress-related diseases including major depressive disorder (MDD). Using low-coverage sequence data from 10,442 Chinese women to compute the normalized numbers of reads mapping to the mitochondrial genome as a proxy for the amount of mtDNA, we identified two loci that contribute to mtDNA levels: one within the TFAM gene on chromosome 10 (rs11006126, p value = 8.73 × 10(-28), variance explained = 1.90%) and one over the CDK6 gene on chromosome 7 (rs445, p value = 6.03 × 10(-16), variance explained = 0.50%). Both loci replicated in an independent cohort. CDK6 is thus a new molecule involved in the control of mtDNA. We identify increased rates of heteroplasmy in women with MDD, and show from an experimental paradigm using mice that the increase is likely due to stress. Furthermore, at least one heteroplasmic variant is significantly associated with changes in the amount of mtDNA (position 513, p value = 3.27 × 10(-9), variance explained = 0.48%) suggesting site-specific heteroplasmy as a possible link between stress and increase in amount of mtDNA. These findings indicate the involvement of mitochondrial genome copy number and sequence in an organism's response to stress.

  5. Oppositional defiant- and conduct disorder-like problems: neurodevelopmental predictors and genetic background in boys and girls, in a nationwide twin study

    Directory of Open Access Journals (Sweden)

    Nóra Kerekes

    2014-04-01

    Full Text Available Background. Previous research has supported gender-specific aetiological factors in oppositional defiant disorder (ODD and conduct disorder (CD. The aims of this study were to identify gender-specific associations between the behavioural problems–ODD/CD-like problems–and the neurodevelopmental disorders–attention deficit hyperactivity disorder (ADHD, autism spectrum disorder (ASD–and to investigate underlying genetic effects.Methods. 17,220 twins aged 9 or 12 were screened using the Autism–Tics, AD/HD and other Comorbidities inventory. The main covariates of ODD- and CD-like problems were investigated, and the relative importance of unique versus shared hereditary and environmental effects was estimated using twin model fitting.Results. Social interaction problems (one of the ASD subdomains was the strongest neurodevelopmental covariate of the behavioural problems in both genders, while ADHD-related hyperactivity/impulsiveness in boys and inattention in girls stood out as important covariates of CD-like problems. Genetic effects accounted for 50%–62% of the variance in behavioural problems, except in CD-like problems in girls (26%. Genetic and environmental effects linked to ADHD and ASD also influenced ODD-like problems in both genders and, to a lesser extent, CD-like problems in boys, but not in girls.Conclusions. The gender-specific patterns should be considered in the assessment and treatment, especially of CD.

  6. The role of registries in rare genetic lipid disorders: Review and introduction of the first global registry in lipoprotein lipase deficiency.

    Science.gov (United States)

    Steinhagen-Thiessen, Elisabeth; Stroes, Erik; Soran, Handrean; Johnson, Colin; Moulin, Philippe; Iotti, Giorgio; Zibellini, Marco; Ossenkoppele, Bas; Dippel, Michaela; Averna, Maurizio R

    2016-08-21

    A good understanding of the natural history of rare genetic lipid disorders is a pre-requisite for successful patient management. Disease registries have been helpful in this regard. Lipoprotein Lipase Deficiency (LPLD) is a rare, autosomal-recessive lipid disorder characterized by severe hypertriglyceridemia and a very high risk for recurrent acute pancreatitis, however, only limited data are available on its natural course. Alipogene tiparvovec (Glybera(®)) is the first gene therapy to receive Marketing Authorization in the European Union; GENIALL (GENetherapy In the MAnagement of Lipoprotein Lipase Deficiency), a 15-year registry focusing on LPLD was launched in 2014 as part of its Risk Management Plan. The aim of this publication is to introduce the GENIALL Registry within a structured literature review of registries in rare genetic lipid disorders. A total of 11 relevant initiatives/registries were identified (homozygous Familial Hypercholesterolemia (hoFH) [n = 5]; LPLD [n = 1]; Lysosomal Acid Lipase Deficiency [LALD, n = 1], detection of mutations in genetic lipid disorders [n = 4]). Besides one product registry in hoFH and the LALD registry, all other initiatives are local or country-specific. GENIALL is the first global prospective registry in LPLD that will collect physician and patient generated