WorldWideScience

Sample records for genetic disorders

  1. Genetics of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Kerner B

    2014-02-01

    Full Text Available Berit Kerner Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA Abstract: Bipolar disorder is a common, complex genetic disorder, but the mode of transmission remains to be discovered. Many researchers assume that common genomic variants carry some risk for manifesting the disease. The research community has celebrated the first genome-wide significant associations between common single nucleotide polymorphisms (SNPs and bipolar disorder. Currently, attempts are under way to translate these findings into clinical practice, genetic counseling, and predictive testing. However, some experts remain cautious. After all, common variants explain only a very small percentage of the genetic risk, and functional consequences of the discovered SNPs are inconclusive. Furthermore, the associated SNPs are not disease specific, and the majority of individuals with a “risk” allele are healthy. On the other hand, population-based genome-wide studies in psychiatric disorders have rediscovered rare structural variants and mutations in genes, which were previously known to cause genetic syndromes and monogenic Mendelian disorders. In many Mendelian syndromes, psychiatric symptoms are prevalent. Although these conditions do not fit the classic description of any specific psychiatric disorder, they often show nonspecific psychiatric symptoms that cross diagnostic boundaries, including intellectual disability, behavioral abnormalities, mood disorders, anxiety disorders, attention deficit, impulse control deficit, and psychosis. Although testing for chromosomal disorders and monogenic Mendelian disorders is well established, testing for common variants is still controversial. The standard concept of genetic testing includes at least three broad criteria that need to be fulfilled before new genetic tests should be introduced: analytical validity, clinical validity, and clinical utility. These criteria are

  2. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  3. Genetic Relationships Between Schizophrenia, Bipolar Disorder, and Schizoaffective Disorder

    Science.gov (United States)

    Cardno, Alastair G.

    2014-01-01

    There is substantial evidence for partial overlap of genetic influences on schizophrenia and bipolar disorder, with family, twin, and adoption studies showing a genetic correlation between the disorders of around 0.6. Results of genome-wide association studies are consistent with commonly occurring genetic risk variants, contributing to both the shared and nonshared aspects, while studies of large, rare chromosomal structural variants, particularly copy number variants, show a stronger influence on schizophrenia than bipolar disorder to date. Schizoaffective disorder has been less investigated but shows substantial familial overlap with both schizophrenia and bipolar disorder. A twin analysis is consistent with genetic influences on schizoaffective episodes being entirely shared with genetic influences on schizophrenic and manic episodes, while association studies suggest the possibility of some relatively specific genetic influences on broadly defined schizoaffective disorder, bipolar subtype. Further insights into genetic relationships between these disorders are expected as studies continue to increase in sample size and in technical and analytical sophistication, information on phenotypes beyond clinical diagnoses are increasingly incorporated, and approaches such as next-generation sequencing identify additional types of genetic risk variant. PMID:24567502

  4. The Genetics of Stress-Related Disorders: PTSD, Depression, and Anxiety Disorders

    Science.gov (United States)

    Smoller, Jordan W

    2016-01-01

    Research into the causes of psychopathology has largely focused on two broad etiologic factors: genetic vulnerability and environmental stressors. An important role for familial/heritable factors in the etiology of a broad range of psychiatric disorders was established well before the modern era of genomic research. This review focuses on the genetic basis of three disorder categories—posttraumatic stress disorder (PTSD), major depressive disorder (MDD), and the anxiety disorders—for which environmental stressors and stress responses are understood to be central to pathogenesis. Each of these disorders aggregates in families and is moderately heritable. More recently, molecular genetic approaches, including genome-wide studies of genetic variation, have been applied to identify specific risk variants. In this review, I summarize evidence for genetic contributions to PTSD, MDD, and the anxiety disorders including genetic epidemiology, the role of common genetic variation, the role of rare and structural variation, and the role of gene–environment interaction. Available data suggest that stress-related disorders are highly complex and polygenic and, despite substantial progress in other areas of psychiatric genetics, few risk loci have been identified for these disorders. Progress in this area will likely require analysis of much larger sample sizes than have been reported to date. The phenotypic complexity and genetic overlap among these disorders present further challenges. The review concludes with a discussion of prospects for clinical translation of genetic findings and future directions for research. PMID:26321314

  5. Genetics of hereditary neurological disorders in children.

    Science.gov (United States)

    Huang, Yue; Yu, Sui; Wu, Zhanhe; Tang, Beisha

    2014-04-01

    Hereditary neurological disorders (HNDs) are relatively common in children compared to those occurring in adulthood. Recognising clinical manifestations of HNDs is important for the selection of genetic testing, genetic testing results interpretation, and genetic consultation. Meanwhile, advances in next generation sequencing (NGS) technologies have significantly enabled the discovery of genetic causes of HNDs and also challenge paediatricians on applying genetic investigation. Combination of both clinical information and advanced technologies will enhance the genetic test yields in clinical setting. This review summarises the clinical presentations as well as genetic causes of paediatric neurological disorders in four major areas including movement disorders, neuropsychiatric disorders, neuron peripheral disorders and epilepsy. The aim of this review is to help paediatric neurologists not only to see the clinical features but also the complex genetic aspect of HNDs in order to utilise genetic investigation confidently in their clinical practice. A smooth transition from research based to clinical use of comprehensive genetic testing in HNDs in children could be foreseen in the near future while genetic testing, genetic counselling and genetic data interpretation are in place appropriately.

  6. Genetic disorders as collective phenomena

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1987-05-01

    Genetic disorders due to human chromosome aberrations in number are discussed from the point of view of Molecular Genetics. The etiology of trisomy is discussed in the light of the collective variables recently introduced and an age-dependent metabolic disorder is suggested as a possible etiological factor. (author). 11 refs

  7. Cross-Disorder Genetic Analysis of Tic Disorders, Obsessive?Compulsive, and Hoarding Symptoms

    OpenAIRE

    Zilh?o, Nuno R.; Smit, Dirk J.; Boomsma, Dorret I.; Cath, Danielle C.

    2016-01-01

    Hoarding, obsessive–compulsive disorder (OCD), and Tourette’s disorder (TD) are psychiatric disorders that share symptom overlap, which might partly be the result of shared genetic variation. Population-based twin studies have found significant genetic correlations between hoarding and OCD symptoms, with genetic correlations varying between 0.1 and 0.45. For tic disorders, studies examining these correlations are lacking. Other lines of research, including clinical samples and GWAS or CNV dat...

  8. A Primer on the Genetics of Comorbid Eating Disorders and Substance Use Disorders.

    Science.gov (United States)

    Munn-Chernoff, Melissa A; Baker, Jessica H

    2016-03-01

    Eating disorders (EDs) and substance use disorders (SUDs) frequently co-occur; however, the reasons for this are unclear. We review the current literature on genetic risk for EDs and SUDs, as well as preliminary findings exploring whether these classes of disorders have overlapping genetic risk. Overall, genetic factors contribute to individual differences in liability to multiple EDs and SUDs. Although initial family studies concluded that no shared familial (which includes genetic) risk between EDs and SUDs exists, twin studies suggest a moderate proportion of shared variance is attributable to overlapping genetic factors, particularly for those EDs characterized by binge eating and/or inappropriate compensatory behaviours. No adoption or molecular genetic studies have examined shared genetic risk between these classes of disorders. Research investigating binge eating and inappropriate compensatory behaviours using emerging statistical genetic methods, as well as examining gene-environment interplay, will provide important clues into the aetiology of comorbid EDs and SUDs. Copyright © 2015 John Wiley & Sons, Ltd and Eating Disorders Association.

  9. Cross-Disorder Genetic Analysis of Tic Disorders, Obsessive-Compulsive, and Hoarding Symptoms.

    Science.gov (United States)

    Zilhão, Nuno R; Smit, Dirk J; Boomsma, Dorret I; Cath, Danielle C

    2016-01-01

    Hoarding, obsessive-compulsive disorder (OCD), and Tourette's disorder (TD) are psychiatric disorders that share symptom overlap, which might partly be the result of shared genetic variation. Population-based twin studies have found significant genetic correlations between hoarding and OCD symptoms, with genetic correlations varying between 0.1 and 0.45. For tic disorders, studies examining these correlations are lacking. Other lines of research, including clinical samples and GWAS or CNV data to explore genetic relationships between tic disorders and OCD, have only found very modest if any shared genetic variation. Our aim was to extend current knowledge on the genetic structure underlying hoarding, OC symptoms (OCS), and lifetime tic symptoms and, in a trivariate analysis, assess the degree of common and unique genetic factors contributing to the etiology of these disorders. Data have been gathered from participants in the Netherlands Twin Register comprising a total of 5293 individuals from a sample of adult monozygotic (n = 2460) and dizygotic (n = 2833) twin pairs (mean age 33.61 years). The data on Hoarding, OCS, and tic symptoms were simultaneously analyzed in Mplus. A liability threshold model was fitted to the twin data, analyzing heritability of phenotypes and of their comorbidity. Following the criteria for a probable clinical diagnosis in all phenotypes, 6.8% of participants had a diagnosis of probable hoarding disorder (HD), 6.3% of OCS, and 12.8% of any probable lifetime tic disorder. Genetic factors explained 50.4, 70.1, and 61.1% of the phenotypic covariance between hoarding-OCS, hoarding-tics, and OCS-tics, respectively. Substantial genetic correlations were observed between hoarding and OCS (0.41), hoarding and tics (0.35), and between OCS and tics (0.37). These results support the contribution of genetic factors in the development of these disorders and their comorbidity. Furthermore, tics were mostly influenced by specific

  10. Cross-Disorder Genetic Analysis of Tic Disorders, Obsessive–Compulsive, and Hoarding Symptoms

    Science.gov (United States)

    Zilhão, Nuno R.; Smit, Dirk J.; Boomsma, Dorret I.; Cath, Danielle C.

    2016-01-01

    Hoarding, obsessive–compulsive disorder (OCD), and Tourette’s disorder (TD) are psychiatric disorders that share symptom overlap, which might partly be the result of shared genetic variation. Population-based twin studies have found significant genetic correlations between hoarding and OCD symptoms, with genetic correlations varying between 0.1 and 0.45. For tic disorders, studies examining these correlations are lacking. Other lines of research, including clinical samples and GWAS or CNV data to explore genetic relationships between tic disorders and OCD, have only found very modest if any shared genetic variation. Our aim was to extend current knowledge on the genetic structure underlying hoarding, OC symptoms (OCS), and lifetime tic symptoms and, in a trivariate analysis, assess the degree of common and unique genetic factors contributing to the etiology of these disorders. Data have been gathered from participants in the Netherlands Twin Register comprising a total of 5293 individuals from a sample of adult monozygotic (n = 2460) and dizygotic (n = 2833) twin pairs (mean age 33.61 years). The data on Hoarding, OCS, and tic symptoms were simultaneously analyzed in Mplus. A liability threshold model was fitted to the twin data, analyzing heritability of phenotypes and of their comorbidity. Following the criteria for a probable clinical diagnosis in all phenotypes, 6.8% of participants had a diagnosis of probable hoarding disorder (HD), 6.3% of OCS, and 12.8% of any probable lifetime tic disorder. Genetic factors explained 50.4, 70.1, and 61.1% of the phenotypic covariance between hoarding-OCS, hoarding-tics, and OCS-tics, respectively. Substantial genetic correlations were observed between hoarding and OCS (0.41), hoarding and tics (0.35), and between OCS and tics (0.37). These results support the contribution of genetic factors in the development of these disorders and their comorbidity. Furthermore, tics were mostly influenced by specific

  11. Cross-Disorder Genetic Analysis of Tic Disorders, Obsessive–Compulsive, and Hoarding Symptoms

    NARCIS (Netherlands)

    Rodrigues Zilhao Nogueira, N.; Smit, D.J.A.; Boomsma, D.I.; Cath, D.C.

    2016-01-01

    Hoarding, obsessive-compulsive disorder (OCD), and Tourette's disorder (TD) are psychiatric disorders that share symptom overlap, which might partly be the result of shared genetic variation. Population-based twin studies have found significant genetic correlations between hoarding and OCD symptoms,

  12. Cross-Disorder Genetic Analysis of Tic Disorders, Obsessive-Compulsive, and Hoarding Symptoms

    NARCIS (Netherlands)

    Rodrigues Zilhao Nogueira, Nuno; Smit, Dirk J; Boomsma, Dorret I; Cath, Danielle C

    2016-01-01

    Hoarding, obsessive-compulsive disorder (OCD), and Tourette's disorder (TD) are psychiatric disorders that share symptom overlap, which might partly be the result of shared genetic variation. Population-based twin studies have found significant genetic correlations between hoarding and OCD symptoms,

  13. Genetic disorders of thyroid metabolism and brain development

    Science.gov (United States)

    Kurian, Manju A; Jungbluth, Heinz

    2014-01-01

    Normal thyroid metabolism is essential for human development, including the formation and functioning of the central and peripheral nervous system. Disorders of thyroid metabolism are increasingly recognized within the spectrum of paediatric neurological disorders. Both hypothyroid and hyperthyroid disease states (resulting from genetic and acquired aetiologies) can lead to characteristic neurological syndromes, with cognitive delay, extrapyramidal movement disorders, neuropsychiatric symptoms, and neuromuscular manifestations. In this review, the neurological manifestations of genetic disorders of thyroid metabolism are outlined, with particular focus on Allan-Herndon-Dudley syndrome and benign hereditary chorea. We report in detail the clinical features, major neurological and neuropsychiatric manifestations, molecular genetic findings, disease mechanisms, and therapeutic strategies for these emerging genetic ‘brain-thyroid’ disorders. PMID:24665922

  14. [Genetic and neuroendocrine aspects in autism spectrum disorder].

    Science.gov (United States)

    Oviedo, Norma; Manuel-Apolinar, Leticia; de la Chesnaye, Elsa; Guerra-Araiza, Christian

    The autism spectrum disorder (ASD) was described in 1943 and is defined as a developmental disorder that affects social interaction and communication. It is usually identified in early stages of development from 18 months of age. Currently, autism is considered a neurological disorder with a spectrum covering cases of different degrees, which is associated with genetic factors, not genetic and environmental. Among the genetic factors, various syndromes have been described that are associated with this disorder. Also, the neurobiology of autism has been studied at the genetic, neurophysiological, neurochemical and neuropathological levels. Neuroimaging techniques have shown multiple structural abnormalities in these patients. There have also been changes in the serotonergic, GABAergic, catecholaminergic and cholinergic systems related to this disorder. This paper presents an update of the information presented in the genetic and neuroendocrine aspects of autism spectrum disorder. Copyright © 2014 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.

  15. Genetics in eating disorders: extending the boundaries of research

    Directory of Open Access Journals (Sweden)

    Andréa Poyastro Pinheiro

    2006-09-01

    Full Text Available OBJECTIVE: To review the recent literature relevant to genetic research in eating disorders and to discuss unique issues which are crucial for the development of a genetic research project in eating disorders in Brazil. METHOD: A computer literature review was conducted in the Medline database between 1984 and may 2005 with the search terms "eating disorders", "anorexia nervosa", "bulimia nervosa", "binge eating disorder", "family", "twin" and "molecular genetic" studies. RESULTS: Current research findings suggest a substantial influence of genetic factors on the liability to anorexia nervosa and bulimia nervosa. Genetic research with admixed populations should take into consideration sample size, density of genotyping and population stratification. Through admixture mapping it is possible to study the genetic structure of admixed human populations to localize genes that underlie ethnic variation in diseases or traits of interest. CONCLUSIONS: The development of a major collaborative genetics initiative of eating disorders in Brazil and South America would represent a realistic possibility of studying the genetics of eating disorders in the context of inter ethnic groups, and also integrate a new perspective on the biological etiology of eating disorders.

  16. The evolving genetic foundations of eating disorders.

    Science.gov (United States)

    Klump, K L; Kaye, W H; Strober, M

    2001-06-01

    Data described earlier are clear in establishing a role for genes in the development of eating abnormalities. Estimates from the most rigorous studies suggest that more than 50% of the variance in eating disorders and disordered eating behaviors can be accounted for by genetic effects. These high estimates indicate a need for studies identifying the specific genes contributing to this large proportion of variance. Twin and family studies suggest that several heritable characteristics that are commonly comorbid with AN and BN may share genetic transmission with these disorders, including anxiety disorders or traits, body weight, and possibly major depression. Moreover, some developmental research suggests that the genes involved in ovarian hormones or the genes that these steroids affect also may be genetically linked to eating abnormalities. Molecular genetic research of these disorders is in its infant stages. However, promising areas for future research have already been identified (e.g., 5-HT2A receptor gene, UCP-2/UCP-3 gene, and estrogen receptor beta gene), and several large-scale linkage and association studies are underway. These studies likely will provide invaluable information regarding the appropriate phenotypes to be included in genetic studies and the genes with the most influence on the development of these disorders.

  17. Genetic autonomic disorders.

    Science.gov (United States)

    Axelrod, Felicia B

    2013-03-01

    Genetic disorders affecting the autonomic nervous system can result in abnormal development of the nervous system or they can be caused by neurotransmitter imbalance, an ion-channel disturbance or by storage of deleterious material. The symptoms indicating autonomic dysfunction, however, will depend upon whether the genetic lesion has disrupted peripheral or central autonomic centers or both. Because the autonomic nervous system is pervasive and affects every organ system in the body, autonomic dysfunction will result in impaired homeostasis and symptoms will vary. The possibility of genetic confirmation by molecular testing for specific diagnosis is increasing but treatments tend to remain only supportive and directed toward particular symptoms. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Genetic determinants of eating disorders

    NARCIS (Netherlands)

    Slof-Op 't Landt, Margarita Cornelia Theodora

    2011-01-01

    In this thesis, a series of studies on different aspects of the genetics of eating disorders is presented. The heritability of disordered eating behavior and attitudes in relation with body mass index (BMI) was evaluated in a large adolescent twin-family sample ascertained through the Netherlands

  19. Genetic Forms of Epilepsies and other Paroxysmal Disorders

    Science.gov (United States)

    Olson, Heather E.; Poduri, Annapurna; Pearl, Phillip L.

    2016-01-01

    Genetic mechanisms explain the pathophysiology of many forms of epilepsy and other paroxysmal disorders such as alternating hemiplegia of childhood, familial hemiplegic migraine, and paroxysmal dyskinesias. Epilepsy is a key feature of well-defined genetic syndromes including Tuberous Sclerosis Complex, Rett syndrome, Angelman syndrome, and others. There is an increasing number of singe gene causes or susceptibility factors associated with several epilepsy syndromes, including the early onset epileptic encephalopathies, benign neonatal/infantile seizures, progressive myoclonus epilepsies, genetic generalized and benign focal epilepsies, epileptic aphasias, and familial focal epilepsies. Molecular mechanisms are diverse, and a single gene can be associated with a broad range of phenotypes. Additional features, such as dysmorphisms, head size, movement disorders, and family history may provide clues to a genetic diagnosis. Genetic testing can impact medical care and counseling. We discuss genetic mechanisms of epilepsy and other paroxysmal disorders, tools and indications for genetic testing, known genotype-phenotype associations, the importance of genetic counseling, and a look towards the future of epilepsy genetics. PMID:25192505

  20. Sleep disorders and Parkinson disease; lessons from genetics.

    Science.gov (United States)

    Gan-Or, Ziv; Alcalay, Roy N; Rouleau, Guy A; Postuma, Ronald B

    2018-01-31

    Parkinson disease is a common, age-related neurodegenerative disorder, projected to afflict millions of individuals in the near future. Understanding its etiology and identifying clinical, genetic or biological markers for Parkinson disease onset and progression is therefore of major importance. Various sleep-related disorders are the most common group of non-motor symptoms in advanced Parkinson disease, but they can also occur during its prodromal phase. However, with the exception of REM sleep behavior disorder, it is unclear whether they are part of the early pathological process of Parkinson disease, or if they develop as Parkinson disease advances because of treatments and neurodegeneration progression. The advancements in genetic studies in the past two decades have generated a wealth of information, and recent genetic studies offer new insight on the association of sleep-related disorders with Parkinson disease. More specifically, comparing genetic data between Parkinson disease and sleep-related disorders can clarify their association, which may assist in determining whether they can serve as clinical markers for Parkinson disease risk or progression. In this review, we discuss the current knowledge on the genetics of sleep-related disorders in Parkinson disease context, and the potential implications on research, diagnosis, counseling and treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Genetic aspects of pathological gambling: a complex disorder with shared genetic vulnerabilities.

    Science.gov (United States)

    Lobo, Daniela S S; Kennedy, James L

    2009-09-01

    To summarize and discuss findings from genetic studies conducted on pathological gambling (PG). Searches were conducted on PubMed and PsychInfo databases using the keywords: 'gambling and genes', 'gambling and family' and 'gambling and genetics', yielding 18 original research articles investigating the genetics of PG. Twin studies using the Vietnam Era Twin Registry have found that: (i) the heritability of PG is estimated to be 50-60%; (ii) PG and subclinical PG are a continuum of the same disorder; (iii) PG shares genetic vulnerability factors with antisocial behaviours, alcohol dependence and major depressive disorder; (iv) genetic factors underlie the association between exposure to traumatic life-events and PG. Molecular genetic investigations on PG are at an early stage and published studies have reported associations with genes involved in the brain's reward and impulse control systems. Despite the paucity of studies in this area, published studies have provided considerable evidence of the influence of genetic factors on PG and its complex interaction with other psychiatric disorders and environmental factors. The next step would be to investigate the association and interaction of these variables in larger molecular genetic studies with subphenotypes that underlie PG. Results from family and genetic investigations corroborate further the importance of understanding the biological underpinnings of PG in the development of more specific treatment and prevention strategies.

  2. Genetics and epigenetics of eating disorders

    Directory of Open Access Journals (Sweden)

    Yilmaz Z

    2015-03-01

    Full Text Available Zeynep Yilmaz,1 J Andrew Hardaway,1 Cynthia M Bulik1–3 1Department of Psychiatry, 2Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; 3Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden Abstract: Eating disorders (EDs are serious psychiatric conditions influenced by biological, psychological, and sociocultural factors. A better understanding of the genetics of these complex traits and the development of more sophisticated molecular biology tools have advanced our understanding of the etiology of EDs. The aim of this review is to critically evaluate the literature on the genetic research conducted on three major EDs: anorexia nervosa, bulimia nervosa, and binge eating disorder. We will first review the diagnostic criteria, clinical features, prevalence, and prognosis of anorexia nervosa, bulimia nervosa, and binge eating disorder, followed by a review of family, twin, and adoption studies. We then review the history of genetic studies of EDs covering linkage analysis, candidate-gene association studies, genome-wide association studies, and the study of rare variants in EDs. Our review also incorporates a translational perspective by covering animal models of ED-related phenotypes. Finally, we review the nascent field of epigenetics of EDs and a look forward to future directions for ED genetic research. Keywords: anorexia nervosa, binge eating disorder, bulimia nervosa, animal models, genome-wide association studies, high-throughput sequencing

  3. Genetic disorders affecting white matter in the pediatric age.

    Science.gov (United States)

    Di Rocco, Maja; Biancheri, Roberta; Rossi, Andrea; Filocamo, Mirella; Tortori-Donati, Paolo

    2004-08-15

    Pediatric white matter disorders can be distinguished into well-defined leukoencephalopathies, and undefined leukoencephalopathies. The first category may be subdivided into: (a) hypomyelinating disorders; (b) dysmyelinating disorders; (c) leukodystrophies; (d) disorders related to cystic degeneration of myelin; and (e) disorders secondary to axonal damage. The second category, representing up to 50% of leukoencephalopathies in childhood, requires a multidisciplinar approach in order to define novel homogeneous subgroups of patients, possibly representing "new genetic disorders" (such as megalencephalic leukoencepahlopathy with subcortical cysts and vanishing white matter disease that have recently been identified). In the majority of cases, pediatric white matter disorders are inherited diseases. An integrated description of the clinical, neuroimaging and pathophysiological features is crucial for categorizing myelin disorders and better understanding their genetic basis. A review of the genetic disorders affecting white matter in the pediatric age, including some novel entities, is provided. Copyright 2004 Wiley-Liss, Inc.

  4. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    DEFF Research Database (Denmark)

    Lee, S Hong; Ripke, Stephan; Neale, Benjamin M

    2013-01-01

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases...... and controls in schizophrenia, bipolar disorder, major depressive disorder, autism spectrum disorders (ASD) and attention-deficit/hyperactivity disorder (ADHD). We apply univariate and bivariate methods for the estimation of genetic variation within and covariation between disorders. SNPs explained 17......-29% of the variance in liability. The genetic correlation calculated using common SNPs was high between schizophrenia and bipolar disorder (0.68 ± 0.04 s.e.), moderate between schizophrenia and major depressive disorder (0.43 ± 0.06 s.e.), bipolar disorder and major depressive disorder (0.47 ± 0.06 s.e.), and ADHD...

  5. Assessing the evidence for shared genetic risks across psychiatric disorders and traits.

    Science.gov (United States)

    Martin, Joanna; Taylor, Mark J; Lichtenstein, Paul

    2017-12-04

    Genetic influences play a significant role in risk for psychiatric disorders, prompting numerous endeavors to further understand their underlying genetic architecture. In this paper, we summarize and review evidence from traditional twin studies and more recent genome-wide molecular genetic analyses regarding two important issues that have proven particularly informative for psychiatric genetic research. First, emerging results are beginning to suggest that genetic risk factors for some (but not all) clinically diagnosed psychiatric disorders or extreme manifestations of psychiatric traits in the population share genetic risks with quantitative variation in milder traits of the same disorder throughout the general population. Second, there is now evidence for substantial sharing of genetic risks across different psychiatric disorders. This extends to the level of characteristic traits throughout the population, with which some clinical disorders also share genetic risks. In this review, we summarize and evaluate the evidence for these two issues, for a range of psychiatric disorders. We then critically appraise putative interpretations regarding the potential meaning of genetic correlation across psychiatric phenotypes. We highlight several new methods and studies which are already using these insights into the genetic architecture of psychiatric disorders to gain additional understanding regarding the underlying biology of these disorders. We conclude by outlining opportunities for future research in this area.

  6. [Genetics factors in pathogenesis and clinical genetics of binge eating disorder].

    Science.gov (United States)

    Kibitov, А О; Мazo, G E

    2016-01-01

    Genetic studies have shown that binge eating disorder (ВЕD) aggregates in families, heritability was estimated as about 60% and additive genetic influences on BED up to 50%. Using a genetic approach has proved useful for verifying the diagnostic categories of BED using DSM-IV criteria and supporting the validity of considering this pathology as a separate nosological category. The results confirmed the genetic and pathogenic originality of BED as a separate psychopathological phenomenon, but not a subtype of obesity. It seems fruitful to considerate BED as a disease with hereditary predisposition with significant genetic influence and a complex psychopathological syndrome, including not only eating disorders, but also depressive and addictive component. A possible mechanism of pathogenesis of BED may be the interaction of the neuroendocrine and neurotransmitters systems including the active involvement of the reward system in response to a variety of chronic stress influences with the important modulatory role of specific personality traits. The high level of genetic influence on the certain clinical manifestations of BED confirms the ability to identify the subphenotypes of BED on genetic basis involving clinical criteria. It can not only contribute to further genetic studies, taking into account more homogeneous samples, but also help in finding differentiated therapeutic approaches.

  7. Genetic Influences on Conduct Disorder

    Science.gov (United States)

    Salvatore, Jessica E.; Dick, Danielle M.

    2016-01-01

    Conduct disorder (CD) is a moderately heritable psychiatric disorder of childhood and adolescence characterized by aggression toward people and animals, destruction of property, deceitfulness or theft, and serious violation of rules. Genome-wide scans using linkage and association methods have identified a number of suggestive genomic regions that are pending replication. A small number of candidate genes (e.g., GABRA2, MAOA, SLC6A4, AVPR1A) are associated with CD related phenotypes across independent studies; however, failures to replicate also exist. Studies of gene-environment interplay show that CD genetic predispositions also contribute to selection into higher-risk environments, and that environmental factors can alter the importance of CD genetic factors and differentially methylate CD candidate genes. The field’s understanding of CD etiology will benefit from larger, adequately powered studies in gene identification efforts; the incorporation of polygenic approaches in gene-environment interplay studies; attention to the mechanisms of risk from genes to brain to behavior; and the use of genetically informative data to test quasi-causal hypotheses about purported risk factors. PMID:27350097

  8. Ethical and legal issues arising from complex genetic disorders. DOE final report

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Lori

    2002-10-09

    The project analyzed the challenges raised by complex genetic disorders in genetic counselling, for clinical practice, for public health, for quality assurance, and for protection against discrimination. The research found that, in some settings, solutions created in the context of single gene disorders are more difficult to apply to complex disorders. In other settings, the single gene solutions actually backfired and created additional problems when applied to complex genetic disorders. The literature of five common, complex genetic disorders--Alzheimer's, asthma, coronary heart disease, diabetes, and psychiatric illnesses--was evaluated in depth.

  9. Genetic liability for schizophrenia predicts risk of immune disorders

    NARCIS (Netherlands)

    Stringer, Sven; Kahn, René S.; de Witte, Lot D.; Ophoff, Roel A.; Derks, Eske M.

    2014-01-01

    Schizophrenia patients and their parents have an increased risk of immune disorders compared to population controls and their parents. This may be explained by genetic overlap in the pathogenesis of both types of disorders. The purpose of this study was to investigate the genetic overlap between

  10. Genetic liability for schizophrenia predicts risk of immune disorders

    NARCIS (Netherlands)

    Stringer, Sven; Kahn, René S; de Witte, Lot D; Ophoff, Roel A; Derks, Eske M

    2014-01-01

    BACKGROUND: Schizophrenia patients and their parents have an increased risk of immune disorders compared to population controls and their parents. This may be explained by genetic overlap in the pathogenesis of both types of disorders. The purpose of this study was to investigate the genetic overlap

  11. Grandmothers as gems of genetic wisdom: exploring South African traditional beliefs about the causes of childhood genetic disorders.

    Science.gov (United States)

    Penn, Claire; Watermeyer, Jennifer; MacDonald, Carol; Moabelo, Colleen

    2010-02-01

    With its diverse cultural and linguistic profile, South Africa provides a unique context to explore contextual influences on the process of genetic counseling. Prior research suggests intergenerational differences regarding models of causation which influence treatment-seeking paths. This pilot study therefore aimed to explore South African traditional beliefs regarding common childhood genetic disorders. Three focus groups were conducted with fifteen grandmothers from different cultural backgrounds in an urban community. Questions pertained to the role of the grandmother, traditional beliefs regarding causes of genetic disorders, explanations of heredity, and prevention and management of genetic disorders. Results indicate a variety of cultural explanations for causes of childhood genetic disorders. These causes can be classified into categories related to lifestyle, behavior, social issues, culture, religion, genetic, and familial causes. Prevention and treatment issues are also highlighted. These findings have implications for genetic counseling practice, which needs to include a greater focus on cultural issues.

  12. [Heritability and genetic comorbidity of attention deficit disorder with hyperactivity].

    Science.gov (United States)

    Puddu, Giannina; Rothhammer, Paula; Carrasco, Ximena; Aboitiz, Francisco; Rothhammer, Francisco

    2017-03-01

    This review aims to summarize information about the genetic etiology of attention deficit disorder with hyperactivity (ADHD), with particular reference to the contributions of our research group. We also discuss the genetic comorbidity estimated from genome-wide single nucleotide polymorphisms (SNP´s) between ADHD and major psychiatric disorders such as schizophrenia (E), major depressive disorder (MDD), bipolar disorder (BD) and autism spectrum disorders (ASD). A high genetic comorbidity was found between E and BD (46%), a moderate comorbidity between MDD and E, MDD and BD and MDD and ADHD (18%, 22% and 10% respectively) and a low comorbidity between E and ASD (2.5%). Furthermore, we show evidence concerning the genetic determination of psychiatric diseases, which is significantly lower when it is estimated from genome-wide SNP´s rather than using traditional quantitative genetic methodology (ADHD = E = 23%, BD = 25%, MDD = 21% and ASD = 17%). From an evolutionary perspective, we suggest that behavioral traits such as hyperactivity, inattention and impulsivity, which play a role in ADHD and perhaps also other hereditary traits which are part of major psychiatric disorders, could have had a high adaptive value during the early stages of the evolution of Homo sapiens. However, they became progressively less adaptive and definitively disadvantageous, to the extreme that they are involved in frequently diagnosed major psychiatric disorders.

  13. Genetic Variation in Cardiomyopathy and Cardiovascular Disorders.

    Science.gov (United States)

    McNally, Elizabeth M; Puckelwartz, Megan J

    2015-01-01

    With the wider deployment of massively-parallel, next-generation sequencing, it is now possible to survey human genome data for research and clinical purposes. The reduced cost of producing short-read sequencing has now shifted the burden to data analysis. Analysis of genome sequencing remains challenged by the complexity of the human genome, including redundancy and the repetitive nature of genome elements and the large amount of variation in individual genomes. Public databases of human genome sequences greatly facilitate interpretation of common and rare genetic variation, although linking database sequence information to detailed clinical information is limited by privacy and practical issues. Genetic variation is a rich source of knowledge for cardiovascular disease because many, if not all, cardiovascular disorders are highly heritable. The role of rare genetic variation in predicting risk and complications of cardiovascular diseases has been well established for hypertrophic and dilated cardiomyopathy, where the number of genes that are linked to these disorders is growing. Bolstered by family data, where genetic variants segregate with disease, rare variation can be linked to specific genetic variation that offers profound diagnostic information. Understanding genetic variation in cardiomyopathy is likely to help stratify forms of heart failure and guide therapy. Ultimately, genetic variation may be amenable to gene correction and gene editing strategies.

  14. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs

    NARCIS (Netherlands)

    Lee, S.H.; Ripke, S.; Neale, B.; Faraone, S.V.; Purcell, S.M.; Perlis, R.H.; Mowry, B. J.; Thapar, A.; Goddard, M.E.; Witte, J.S.; Absher, D.; Agartz, I.; Akil, H.; Amin, F.; Andreassen, O.A.; Anjorin, A.; Anney, R.; Anttila, V.; Arking, D.E.; Asherson, P.; Azevedo, M.H.; Backlund, L.; Badner, J.A.; Bailey, A.J.; Banaschewski, T.; Barchas, J.D.; Barnes, M.R.; Barrett, T.B.; Bass, N.; Battaglia, A.; Bauer, M.; Bayés, M.; Bellivier, F.; Bergen, S.E.; Berrettini, W.; Betancur, C.; Bettecken, T.; Biederman, J; Binder, E.B.; Black, D.W.; Blackwood, D.H.; Bloss, C.S.; Boehnke, M.; Boomsma, D.I.; Breen, G.; Breuer, R.; Bruggeman, R.; Cormican, P.; Buccola, N.G.; Buitelaar, J.K.; Bunney, W.E.; Buxbaum, J.D.; Byerley, W. F.; Byrne, E.M.; Caesar, S.; Cahn, W.; Cantor, R.M.; Casas, M.; Chakravarti, A.; Chambert, K.; Choudhury, K.; Cichon, S.; Cloninger, C. R.; Collier, D.A.; Cook, E.H.; Coon, H.; Corman, B.; Corvin, A.; Coryell, W.H.; Craig, D.W.; Craig, I.W.; Crosbie, J.; Cuccaro, M.L.; Curtis, D.; Czamara, D.; Datta, S.; Dawson, G.; Day, R.; de Geus, E.J.C.; Degenhardt, F.; Djurovic, S.; Donohoe, G.; Doyle, A.E.; Duan, J.; Dudbridge, F.; Duketis, E.; Ebstein, R.P.; Edenberg, H.J.; Elia, J.; Ennis, S.; Etain, B.; Fanous, A.; Farmer, A.E.; Ferrier, I.N.; Flickinger, M.; Fombonne, E.; Foroud, T.; Frank, J.; Franke, B.; Fraser, C.; Freedman, R.; Freimer, N.B.; Freitag, C.; Friedl, M.; Frisén, L.; Gallagher, L.; Gejman, P.V.; Georgieva, L.; Gershon, E.S.; Geschwind, D.H.; Giegling, I.; Gill, M.; Gordon, S.D.; Gordon-Smith, K.; Green, E.K.; Greenwood, T.A.; Grice, D.E.; Gross, M.; Grozeva, D.; Guan, W.; Gurling, H.; de Haan, L.; Haines, J.L.; Hakonarson, H.; Hallmayer, J.; Hamilton, S.P.; Hamshere, M.L.; Hansen, T.F.; Hartmann, A.M.; Hautzinger, M.; Heath, A.C.; Henders, A.K.; Herms, S.; Hickie, I.B.; Hipolito, M.; Hoefels, S.; Holmans, P.A.; Holsboer, F.; Hoogendijk, W.J.G.; Hottenga, J.J.; Hultman, C. M.; Hus, V.; Ingason, A.; Ising, M.; Jamain, S.; Jones, E.G.; Jones, I.; Jones, L.; Tzeng, J.Y.; Kähler, A.K.; Kahn, R.S.; Kandaswamy, R.; Keller, M.C.; Kennedy, J.L.; Kenny, E.; Kent, L.; Kim, Y.; Kirov, G. K.; Klauck, S.M.; Klei, L.; Knowles, J.A.; Kohli, M.A.; Koller, D.L.; Konte, B.; Korszun, A.; Krabbendam, L.; Krasucki, R.; Kuntsi, J.; Kwan, P.; Landén, M.; Langstrom, N.; Lathrop, M.; Lawrence, J.; Lawson, W.B.; Leboyer, M.; Ledbetter, D.H.; Lee, P.H.; Lencz, T.; Lesch, K.P.; Levinson, D.F.; Lewis, C.M.; Li, J.; Lichtenstein, P.; Lieberman, J. A.; Lin, D.Y.; Linszen, D.H.; Liu, C.; Lohoff, F.W.; Loo, S.K.; Lord, C.; Lowe, J.K.; Lucae, S.; MacIntyre, D.J.; Madden, P.A.F.; Maestrini, E.; Magnusson, P.K.E.; Mahon, P.B.; Maier, W.; Malhotra, A.K.; Mane, S.M.; Martin, C.L.; Martin, N.G.; Mattheisen, M.; Matthews, K.; Mattingsdal, M.; McCarroll, S.A.; McGhee, K.A.; McGough, J.J.; McGrath, P.J.; McGuffin, P.; McInnis, M.G.; McIntosh, A.; McKinney, R.; McLean, A.W.; McMahon, F.J.; McMahon, W.M.; McQuillin, A.; Medeiros, H.; Medland, S.E.; Meier, S.; Melle, I.; Meng, F.; Meyer, J.; Middeldorp, C.M.; Middleton, L.; Milanova, V.; Miranda, A.; Monaco, A.P.; Montgomery, G.W.; Moran, J.L.; Moreno-De Luca, D.; Morken, G.; Morris, D.W.; Morrow, E.M.; Moskvina, V.; Muglia, P.; Mühleisen, T.W.; Muir, W.J.; Müller-Myhsok, B.; Murtha, M.; Myers, R.M.; Myin-Germeys, I.; Neale, M.C.; Nelson, S.F.; Nievergelt, C.M.; Nikolov, I.; Nimgaonkar, V.L.; Nolen, W.A.; Nöthen, M.M.; Nurnberger, J.I.; Nwulia, E.A.; Nyholt, DR; O'Dushlaine, C.; Oades, R.D.; Olincy, A.; Oliveira, G.; Olsen, L.; Ophoff, R.A.; Osby, U.; Owen, M.J.; Palotie, A.; Parr, J.R.; Paterson, A.D.; Pato, C.N.; Pato, M.T.; Penninx, B.W.J.H.; Pergadia, M.L.; Pericak-Vance, M.A.; Pickard, B.S.; Pimm, J.; Piven, J.; Posthuma, D.; Potash, J.B.; Poustka, F.; Propping, P.; Puri, V.; Quested, D.; Quinn, E.M.; Ramos-Quiroga, J.A.; Rasmussen, H.B.; Raychaudhuri, S.; Rehnström, K.; Reif, A.; Ribasés, M.; Rice, J.P.; Rietschel, M.; Roeder, K.; Roeyers, H.; Rossin, L.; Rothenberger, A.; Rouleau, G.; Ruderfer, D.; Rujescu, D.; Sanders, A.R.; Sanders, S.J.; Santangelo, S.; Sergeant, J.A.; Schachar, R.; Schalling, M.; Schatzberg, A.F.; Scheftner, W.A.; Schellenberg, G.D.; Scherer, S.W.; Schork, N.J.; Schulze, T.G.; Schumacher, J.; Schwarz, M.; Scolnick, E.; Scott, L.J.; Shi, J.; Shilling, P.D.; Shyn, S.I.; Silverman, J.M.; Slager, S.L.; Smalley, S.L.; Smit, J.H.; Smith, E.N.; Sonuga-Barke, E.J.; St Clair, D.; State, M.; Steffens, M; Steinhausen, H.C.; Strauss, J.; Strohmaier, J.; Stroup, T.S.; Sutcliffe, J.; Szatmari, P.; Szelinger, S.; Thirumalai, S.; Thompson, R.C.; Todorov, A.A.; Tozzi, F.; Treutlein, J.; Uhr, M.; van den Oord, E.J.C.G.; Grootheest, G.; van Os, J.; Vicente, A.; Vieland, V.; Vincent, J.B.; Visscher, P.M.; Walsh, C.A.; Wassink, T.H.; Watson, S.J.; Weissman, M.M.; Werge, T.; Wienker, T.F.; Wijsman, E.M.; Willemsen, G.; Williams, N.; Willsey, A.J.; Witt, S.H.; Xu, W.; Young, A.H.; Yu, T.W.; Zammit, S.; Zandi, P.P.; Zhang, P.; Zitman, F.G.; Zöllner, S.; Devlin, B.; Kelsoe, J.; Sklar, P.; Daly, M.J.; O'Donovan, M.C.; Craddock, N.; Sullivan, P.F.; Smoller, J.W.; Kendler, K.S.; Wray, N.R.

    2013-01-01

    Most psychiatric disorders are moderately to highly heritable. The degree to which genetic variation is unique to individual disorders or shared across disorders is unclear. To examine shared genetic etiology, we use genome-wide genotype data from the Psychiatric Genomics Consortium (PGC) for cases

  15. Consanguinity and genetic disorders: Profile from Jordan

    International Nuclear Information System (INIS)

    Hamamy, Hanan A.; Ajlouni, Kamel M.; Masri, Amira T.; Al-Hadidy, Azmy M.

    2007-01-01

    With 20-30% of all marriages occurring between first cousins, increasing attention in Jordan is now given to role of consanguinity in the occurrence of genetic diseases. The objective of this study is to define the specific categories of genetic disorders associated with consanguineous marriages. Etiological categories and consanguinity rates were studied among 623 families with genetic syndromes, congenital anomalies or mental retardation, or both, seen at the National Center for Diabetes, Endocrinology and Genetics for the period August 2002 to August 2006. Comparisons were made for first cousin marriage rates in the study group and that for the general population. First cousin marriages constituted 69%, 22% and 41.7% of marriages among families with autosomal recessive conditions (group 1), dominant, X-linked and chromosomal conditions (group 2) and sporadic undiagnosed conditions (group 3) respectively. The differences in the rates of the first cousin matings were highly significant when comparing known figures in the general population with group 1 and 3, but not significant with group 2. Two messages to the public and health care personnel regarding consanguinity can be derived from this study. The first message is that among genetic disorders, only autosomal recessive disorders are strongly associated with consanguinity. The second message is that approximately 30% of sporadic undiagnosed cases of mental retardation, congenital anomalies and dimorphism may have an autosomal recessive etiology with risks of recurrence in future pregnancies. (author)

  16. Stem Cell Technology for (Epi)genetic Brain Disorders.

    Science.gov (United States)

    Riemens, Renzo J M; Soares, Edilene S; Esteller, Manel; Delgado-Morales, Raul

    2017-01-01

    Despite the enormous efforts of the scientific community over the years, effective therapeutics for many (epi)genetic brain disorders remain unidentified. The common and persistent failures to translate preclinical findings into clinical success are partially attributed to the limited efficiency of current disease models. Although animal and cellular models have substantially improved our knowledge of the pathological processes involved in these disorders, human brain research has generally been hampered by a lack of satisfactory humanized model systems. This, together with our incomplete knowledge of the multifactorial causes in the majority of these disorders, as well as a thorough understanding of associated (epi)genetic alterations, has been impeding progress in gaining more mechanistic insights from translational studies. Over the last years, however, stem cell technology has been offering an alternative approach to study and treat human brain disorders. Owing to this technology, we are now able to obtain a theoretically inexhaustible source of human neural cells and precursors in vitro that offer a platform for disease modeling and the establishment of therapeutic interventions. In addition to the potential to increase our general understanding of how (epi)genetic alterations contribute to the pathology of brain disorders, stem cells and derivatives allow for high-throughput drugs and toxicity testing, and provide a cell source for transplant therapies in regenerative medicine. In the current chapter, we will demonstrate the validity of human stem cell-based models and address the utility of other stem cell-based applications for several human brain disorders with multifactorial and (epi)genetic bases, including Parkinson's disease (PD), Alzheimer's disease (AD), fragile X syndrome (FXS), Angelman syndrome (AS), Prader-Willi syndrome (PWS), and Rett syndrome (RTT).

  17. Genetic disorders of the anterior pituitary gland.

    Science.gov (United States)

    Teller, W M

    1985-01-01

    This survey deals with disorders caused by genetically disturbed function of the anterior pituitary gland. Genetic Dwarfism may be caused by isolated growth hormone deficiency (IGHD) or panpituitary diseases, such as congenital absence of the pituitary or familial panhypopituitarism. Genetic disturbances of isolated pituitary hormone secretion without dwarfism may occur as isolated gonadotropin deficiency (IGD), isolated luteinizing hormone deficiency ("fertile eunuch"), Kallmann syndrome (olfactogenital dysplasia), isolated thyrotropin deficiency (ITD) and isolated corticotropin deficiency (ICD). Pituitary dysfunction may also be associated with other genetic disease entities.

  18. Therapeutic approaches to genetic disorders

    African Journals Online (AJOL)

    salah

    Although prevention is the ideal goal for genetic disorders, various types of therapeutic ... The patient being ... pirical or aimed at controlling or mediating signs and symptoms without care. ... plications and gene therapy approaches .... genes family, have opened a wide and .... cancer where nanoparticles are used to.

  19. Genetically meaningful phenotypic subgroups in autism spectrum disorders.

    Science.gov (United States)

    Veatch, O J; Veenstra-Vanderweele, J; Potter, M; Pericak-Vance, M A; Haines, J L

    2014-03-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder with strong evidence for genetic susceptibility. However, the effect sizes for implicated chromosomal loci are small, hard to replicate and current evidence does not explain the majority of the estimated heritability. Phenotypic heterogeneity could be one phenomenon complicating identification of genetic factors. We used data from the Autism Diagnostic Interview-Revised, Autism Diagnostic Observation Schedule, Vineland Adaptive Behavior Scales, head circumferences, and ages at exams as classifying variables to identify more clinically similar subgroups of individuals with ASD. We identified two distinct subgroups of cases within the Autism Genetic Resource Exchange dataset, primarily defined by the overall severity of evaluated traits. In addition, there was significant familial clustering within subgroups (odds ratio, OR ≈ 1.38-1.42, P definition that should increase power to detect genetic factors influencing risk for ASD. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  20. Prevalence of genetic disorders in dog breeds: a literature review

    NARCIS (Netherlands)

    Wirth, J.

    2015-01-01

    Genetic disorders are common in dogs and in the media it is reported that genetic disorders are more frequent in pedigree dogs than in look-a-likes or in mixed-breed dogs. Here, we consider pedigree dogs as purebred dogs (i.e. matching a breed-specific morphology) with a registered and certified

  1. Basics on Genes and Genetic Disorders

    Science.gov (United States)

    ... for Educators Search English Español The Basics on Genes and Genetic Disorders KidsHealth / For Teens / The Basics ... such as treating health problems. What Is a Gene? To understand how genes work, let's review some ...

  2. An overview of posttraumatic stress disorder genetic studies by analyzing and integrating genetic data into genetic database PTSDgene

    NARCIS (Netherlands)

    Zhang, Kunlin; Qu, Susu; Chang, Suhua; Li, Gen; Cao, Chengqi; Fang, Kechi; Olff, Miranda; Wang, Li; Wang, Jing

    2017-01-01

    Posttraumatic stress disorder (PTSD) is a debilitating psychiatric syndrome with complex etiology. Studies aiming to explore genetic susceptibility and environmental triggers of PTSD have been increasing. However, the results are limited and highly heterogeneous. To understand the genetic study

  3. Genetic utility of broadly defined bipolar schizoaffective disorder as a diagnostic concept

    Science.gov (United States)

    Hamshere, M. L.; Green, E. K.; Jones, I. R.; Jones, L.; Moskvina, V.; Kirov, G.; Grozeva, D.; Nikolov, I.; Vukcevic, D.; Caesar, S.; Gordon-Smith, K.; Fraser, C.; Russell, E.; Breen, G.; St Clair, D.; Collier, D. A.; Young, A. H.; Ferrier, I. N.; Farmer, A.; McGuffin, P.; Holmans, P. A.; Owen, M. J.; O’Donovan, M. C.; Craddock, N.

    2009-01-01

    Background Psychiatric phenotypes are currently defined according to sets of descriptive criteria. Although many of these phenotypes are heritable, it would be useful to know whether any of the various diagnostic categories in current use identify cases that are particularly helpful for biological–genetic research. Aims To use genome-wide genetic association data to explore the relative genetic utility of seven different descriptive operational diagnostic categories relevant to bipolar illness within a large UK case–control bipolar disorder sample. Method We analysed our previously published Wellcome Trust Case Control Consortium (WTCCC) bipolar disorder genome-wide association data-set, comprising 1868 individuals with bipolar disorder and 2938 controls genotyped for 276 122 single nucleotide polymorphisms (SNPs) that met stringent criteria for genotype quality. For each SNP we performed a test of association (bipolar disorder group v. control group) and used the number of associated independent SNPs statistically significant at Pschizoaffective disorder, bipolar type; DSM–IV: bipolar I disorder; bipolar II disorder; schizoaffective disorder, bipolar type. Results The RDC schizoaffective disorder, bipolar type (v. controls) stood out from the other diagnostic subsets as having a significant excess of independent association signals (Pschizoaffective features have either a particularly strong genetic contribution or that, as a group, are genetically more homogeneous than the other phenotypes tested. The results point to the importance of using diagnostic approaches that recognise this group of individuals. Our approach can be applied to similar data-sets for other psychiatric and non-psychiatric phenotypes. PMID:19567891

  4. Genetic Aspects of Autism Spectrum Disorders: Insights from Animal Models

    Directory of Open Access Journals (Sweden)

    Swati eBanerjee

    2014-02-01

    Full Text Available Autism spectrum disorders (ASD are a complex neurodevelopmental disorder that display a triad of core behavioral deficits including restricted interests, often accompanied by repetitive behavior, deficits in language and communication, and an inability to engage in reciprocal social interactions. ASD is among the most heritable disorders but is not a simple disorder with a singular pathology and has a rather complex etiology. It is interesting to note that perturbations in synaptic growth, development and stability underlie a variety of neuropsychiatric disorders, including ASD, schizophrenia, epilepsy and intellectual disability. Biological characterization of an increasing repertoire of synaptic mutants in various model organisms indicates synaptic dysfunction as causal in the pathophysiology of ASD. Our understanding of the genes and genetic pathways that contribute towards the formation, stabilization and maintenance of functional synapses coupled with an in-depth phenotypic analysis of the cellular and behavioral characteristics is therefore essential to unraveling the pathogenesis of these disorders. In this review, we discuss the genetic aspects of ASD emphasizing on the well conserved set of genes and genetic pathways implicated in this disorder, many of which contribute to synapse assembly and maintenance across species. We also review how fundamental research using animal models is providing key insights into the various facets of human ASD.

  5. Genetics Home Reference: alcohol use disorder

    Science.gov (United States)

    ... use disorder can cause major health, social, and economic problems, and can endanger affected individuals and others ... Available from http://www.ncbi.nlm.nih.gov/books/NBK424857/ Citation on PubMed Zhu EC, Soundy TJ, ... Bulletins Genetics Home Reference Celebrates Its 15th Anniversary ...

  6. Interpreting genetics in the context of eating disorders: evidence of disease, not diversity.

    Science.gov (United States)

    Easter, Michele

    2014-07-01

    How is genetic involvement interpreted for disorders whose medicalisation is contested? Framing psychiatric and behavioural disorders in terms of genetics is expected to make them seem more medical. Yet a genetic aetiology can also be used to frame behaviour as acceptable human variation, rather than a medical problem (for example, sexual orientation). I analyse responses to the idea that there is a genetic component in anorexia and bulimia nervosa (AN or BN) via semi-structured interviews with a sample of 50 women diagnosed with an eating disorder (25 had recovered). All but three volunteered that genetics would medicalise AN or BN by (i) making eating disorders seem more like 'real diseases'; implying that these disorders need (ii) professional treatment or (iii) a biologically based treatment. The results also indicate there are several counter-logics by which genetic framing could support non-medical definitions of AN or BN. I argue that genetic framing reduces perceived individual responsibility, which can support definitions of behaviour as either a reflection of disease (which entails intervention) or a reflection of normal human diversity (which does not). In the context of public scepticism as to the 'reality' of AN or BN, genetic involvement was taken as evidence of disease in ongoing negotiations about the medical and moral status of people with eating disorders. © 2013 The Author. Sociology of Health & Illness © 2013 Foundation for the Sociology of Health & Illness/John Wiley & Sons Ltd.

  7. Quantitative genetic analysis of anxiety trait in bipolar disorder.

    Science.gov (United States)

    Contreras, J; Hare, E; Chavarría, G; Raventós, H

    2018-01-01

    Bipolar disorder type I (BPI) affects approximately 1% of the world population. Although genetic influences on bipolar disorder are well established, identification of genes that predispose to the illness has been difficult. Most genetic studies are based on categorical diagnosis. One strategy to overcome this obstacle is the use of quantitative endophenotypes, as has been done for other medical disorders. We studied 619 individuals, 568 participants from 61 extended families and 51 unrelated healthy controls. The sample was 55% female and had a mean age of 43.25 (SD 13.90; range 18-78). Heritability and genetic correlation of the trait scale from the Anxiety State and Trait Inventory (STAI) was computed by using the general linear model (SOLAR package software). we observed that anxiety trait meets the following criteria for an endophenotype of bipolar disorder type I (BPI): 1) association with BPI (individuals with BPI showed the highest trait score (F = 15.20 [5,24], p = 0.009), 2) state-independence confirmed after conducting a test-retest in 321 subjects, 3) co-segregation within families 4) heritability of 0.70 (SE: 0.060), p = 2.33 × 10 -14 and 5) genetic correlation with BPI was 0.20, (SE = 0.17, p = 3.12 × 10 -5 ). Confounding factors such as comorbid disorders and pharmacological treatment could affect the clinical relationship between BPI and anxiety trait. Further research is needed to evaluate if anxiety traits are specially related to BPI in comparison with other traits such as anger, attention or response inhibition deficit, pathological impulsivity or low self-directedness. Anxiety trait is a heritable phenotype that follows a normal distribution when measured not only in subjects with BPI but also in unrelated healthy controls. It could be used as an endophenotype in BPI for the identification of genomic regions with susceptibility genes for this disorder. Published by Elsevier B.V.

  8. Molecular genetics of inherited eye disorders.

    Science.gov (United States)

    MacDonald, I M; Sasi, R

    1994-10-01

    In the past 10 y, there have been considerable advances in the mapping, isolation, and characterization of many genes for important ocular conditions: retinitis pigmentosa, Norrie disease, Waardenburg syndrome, choroideremia, aniridia, retinoblastoma, and others. The candidate gene approach has now supplemented classical linkage studies and positional cloning in the investigation of ocular disorders. Developmentally expressed genes and animal models have provided insights as to the etiology of other disorders. With this knowledge at hand, genetic counselling for heritable eye diseases has been greatly improved.

  9. [Comorbidity in autism spectrum disorders - II. Genetic syndromes and neurological problems].

    Science.gov (United States)

    Noterdaeme, Michele A; Hutzelmeyer-Nickels, Anna

    2010-07-01

    Children with a pervasive developmental disorder show in addition to core symptoms a variety of genetic syndromes as well as neurological problems, which are relevant for the treatment and the course of the disorder. The objective of our study is to analyse the nature and the frequency of these co-morbid somatic disorders in relation to the level of intellectual functioning of the patients. The sample consists of 601 patients with a pervasive developmental disorder diagnosed at the Department of Developmental Disorders at the Heckscher-Klinikum between 1997 and 2007. In addition to genetic syndromes, we also recorded a variety of neurological disorders. 373 of the patients (62%) had at least one additional diagnosis and 121 (20%) had at least two additional diagnoses on Axis IV of the multi-axial classification scheme. Genetic syndromes were found in 6% of the patients (N = 37). Movement disorders (N = 214; 35.6%) and epilepsy (N = 98; 16.3%) were the most frequent neurological disorders. Children with mental retardation showed significantly more somatic diagnoses than children without mental retardation. Children with pervasive developmental disorders show a wide variety of co-morbid somatic problems, which are relevant for the treatment and the course of the disorder. Children with autism and mental retardation show more co-morbid conditions and are more impaired in their psychosocial adaptation than children with autism without mental retardation.

  10. A Genetic Study of Attention Deficit Hyperactivity Disorder, Conduct Disorder, Oppositional Defiant Disorder and Reading Disability: Aetiological Overlaps and Implications

    Science.gov (United States)

    Martin, Neilson C.; Levy, Florence; Pieka, Jan; Hay, David A.

    2006-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) commonly co-occurs with Oppositional Defiant Disorder, Conduct Disorder and Reading Disability. Twin studies are an important approach to understanding and modelling potential causes of such comorbidity. Univariate and bivariate genetic models were fitted to maternal report data from 2040 families of…

  11. A genetic deconstruction of neurocognitive traits in schizophrenia and bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Carla P D Fernandes

    Full Text Available Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function in healthy individuals and in the dysfunction observed in psychiatric disorders.Sets of genes associated with a range of cognitive functions often impaired in schizophrenia and bipolar disorder were generated from a genome-wide association study (GWAS on a sample comprising 670 healthy Norwegian adults who were phenotyped for a broad battery of cognitive tests. These gene sets were then tested for enrichment of association in GWASs of schizophrenia and bipolar disorder. The GWAS data was derived from three independent single-centre schizophrenia samples, three independent single-centre bipolar disorder samples, and the multi-centre schizophrenia and bipolar disorder samples from the Psychiatric Genomics Consortium.The strongest enrichments were observed for visuospatial attention and verbal abilities sets in bipolar disorder. Delayed verbal memory was also enriched in one sample of bipolar disorder. For schizophrenia, the strongest evidence of enrichment was observed for the sets of genes associated with performance in a colour-word interference test and for sets associated with memory learning slope.Our results are consistent with the increasing evidence that cognitive functions share genetic factors with schizophrenia and bipolar disorder. Our data provides evidence that genetic studies using polygenic and pleiotropic models can be used to link specific cognitive functions with psychiatric disorders.

  12. Association of adoptive child's thought disorders and schizophrenia spectrum disorders with their genetic liability for schizophrenia spectrum disorders, season of birth and parental Communication Deviance.

    Science.gov (United States)

    Roisko, Riikka; Wahlberg, Karl-Erik; Hakko, Helinä; Tienari, Pekka

    2015-04-30

    Joint effects of genotype and the environment have turned out to be significant in the development of psychotic disorders. The purpose of the present study was to assess the association of an adoptive child׳s thought and schizophrenia spectrum disorders with genetic and environmental risk indicators and their interactions. A subgroup of the total sample used in the Finnish Adoptive Family Study was considered in the present study. The subjects were 125 adoptees at a high (n=53) or low (n=72) genetic risk of schizophrenia spectrum disorders and their adoptive parents. The risk factors evaluated were the adoptive child's genetic risk for schizophrenia spectrum disorders, winter or spring birth and parental Communication Deviance (CD). Thought disorders in the adoptees were assessed using the Thought Disorder Index and diagnoses were made according to DSM-III-R criteria. The adoptive child׳s Thought Disorder Index was only associated with parental Communication Deviance. The adoptive child's heightened genetic risk or winter or spring birth or parental CD or their interactions did not predict the adoptee's schizophrenia spectrum disorder. The results suggest that studies taking several risk indicators and their interactions into account may change views on the mutual significance of well-known risk factors. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Role of Genetics in the Etiology of Autistic Spectrum Disorder: Towards a Hierarchical Diagnostic Strategy.

    Science.gov (United States)

    Robert, Cyrille; Pasquier, Laurent; Cohen, David; Fradin, Mélanie; Canitano, Roberto; Damaj, Léna; Odent, Sylvie; Tordjman, Sylvie

    2017-03-12

    Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling.

  14. Role of Genetics in the Etiology of Autistic Spectrum Disorder: Towards a Hierarchical Diagnostic Strategy

    Science.gov (United States)

    Robert, Cyrille; Pasquier, Laurent; Cohen, David; Fradin, Mélanie; Canitano, Roberto; Damaj, Léna; Odent, Sylvie; Tordjman, Sylvie

    2017-01-01

    Progress in epidemiological, molecular and clinical genetics with the development of new techniques has improved knowledge on genetic syndromes associated with autism spectrum disorder (ASD). The objective of this article is to show the diversity of genetic disorders associated with ASD (based on an extensive review of single-gene disorders, copy number variants, and other chromosomal disorders), and consequently to propose a hierarchical diagnostic strategy with a stepwise evaluation, helping general practitioners/pediatricians and child psychiatrists to collaborate with geneticists and neuropediatricians, in order to search for genetic disorders associated with ASD. The first step is a clinical investigation involving: (i) a child psychiatric and psychological evaluation confirming autism diagnosis from different observational sources and assessing autism severity; (ii) a neuropediatric evaluation examining neurological symptoms and developmental milestones; and (iii) a genetic evaluation searching for dysmorphic features and malformations. The second step involves laboratory and if necessary neuroimaging and EEG studies oriented by clinical results based on clinical genetic and neuropediatric examinations. The identification of genetic disorders associated with ASD has practical implications for diagnostic strategies, early detection or prevention of co-morbidity, specific treatment and follow up, and genetic counseling. PMID:28287497

  15. Familial resemblance of borderline personality disorder features: genetic or cultural transmission?

    Directory of Open Access Journals (Sweden)

    Marijn A Distel

    Full Text Available Borderline personality disorder is a severe personality disorder for which genetic research has been limited to family studies and classical twin studies. These studies indicate that genetic effects explain 35 to 45% of the variance in borderline personality disorder and borderline personality features. However, effects of non-additive (dominance genetic factors, non-random mating and cultural transmission have generally not been explored. In the present study an extended twin-family design was applied to self-report data of twins (N = 5,017 and their siblings (N = 1,266, parents (N = 3,064 and spouses (N = 939 from 4,015 families, to estimate the effects of additive and non-additive genetic and environmental factors, cultural transmission and non-random mating on individual differences in borderline personality features. Results showed that resemblance among biological relatives could completely be attributed to genetic effects. Variation in borderline personality features was explained by additive genetic (21%; 95% CI 17-26% and dominant genetic (24%; 95% CI 17-31% factors. Environmental influences (55%; 95% CI 51-60% explained the remaining variance. Significant resemblance between spouses was observed, which was best explained by phenotypic assortative mating, but it had only a small effect on the genetic variance (1% of the total variance. There was no effect of cultural transmission from parents to offspring.

  16. Evolutionary Perspectives on Genetic and Environmental Risk Factors for Psychiatric Disorders.

    Science.gov (United States)

    Keller, Matthew C

    2018-05-07

    Evolutionary medicine uses evolutionary theory to help elucidate why humans are vulnerable to disease and disorders. I discuss two different types of evolutionary explanations that have been used to help understand human psychiatric disorders. First, a consistent finding is that psychiatric disorders are moderately to highly heritable, and many, such as schizophrenia, are also highly disabling and appear to decrease Darwinian fitness. Models used in evolutionary genetics to understand why genetic variation exists in fitness-related traits can be used to understand why risk alleles for psychiatric disorders persist in the population. The usual explanation for species-typical adaptations-natural selection-is less useful for understanding individual differences in genetic risk to disorders. Rather, two other types of models, mutation-selection-drift and balancing selection, offer frameworks for understanding why genetic variation in risk to psychiatric (and other) disorders exists, and each makes predictions that are now testable using whole-genome data. Second, species-typical capacities to mount reactions to negative events are likely to have been crafted by natural selection to minimize fitness loss. The pain reaction to tissue damage is almost certainly such an example, but it has been argued that the capacity to experience depressive symptoms such as sadness, anhedonia, crying, and fatigue in the face of adverse life situations may have been crafted by natural selection as well. I review the rationale and strength of evidence for this hypothesis. Evolutionary hypotheses of psychiatric disorders are important not only for offering explanations for why psychiatric disorders exist, but also for generating new, testable hypotheses and understanding how best to design studies and analyze data.

  17. Tourette's Disorder: Genetic Update, Neurological Correlates, and Evidence-Based Interventions

    Science.gov (United States)

    Phelps, LeAdelle

    2008-01-01

    This article provides an update of the search for genetic markers related to Tourette's Disorder. The probable neurophysiology of the disorder is reviewed. Frequently prescribed medications are related to the probable biological bases of the disorder. Behavioral interventions and assessment tools are examined. It is concluded that evidence based…

  18. An Evolutionary Genetic Perspective of Eating Disorders.

    Science.gov (United States)

    Mayhew, Alexandra J; Pigeyre, Marie; Couturier, Jennifer; Meyre, David

    2018-01-01

    Eating disorders (ED) including anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED) affect up to 5% of the population in Western countries. Risk factors for developing an ED include personality traits, family environment, gender, age, ethnicity, and culture. Despite being moderately to highly heritable with estimates ranging from 28 to 83%, no genetic risk factors have been conclusively identified. Our objective was to explore evolutionary theories of EDs to provide a new perspective on research into novel biological mechanisms and genetic causes of EDs. We developed a framework that explains the possible interactions between genetic risk and cultural influences in the development of ED. The framework includes three genetic predisposition categories (people with mainly AN restrictive gene variants, people with mainly BED variants, and people with gene variants predisposing to both diseases) and a binary variable of either the presence or absence of pressure to be thin. We propose novel theories to explain the overlapping characteristics of the subtypes of AN (binge/purge and restrictive), BN, and BED. For instance, mutations/structural gene variants in the same gene causing opposite effects or mutations in nearby genes resulting in partial disequilibrium for the genes causing AN (restrictive) and BED may explain the overlap of phenotypes seen in AN (binge/purge). © 2017 S. Karger AG, Basel.

  19. Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity.

    Science.gov (United States)

    Tordjman, S; Cohen, D; Coulon, N; Anderson, G M; Botbol, M; Canitano, R; Roubertoux, P L

    2017-01-30

    Clinical and molecular genetics have advanced current knowledge on genetic disorders associated with autism. A review of diverse genetic disorders associated with autism is presented and for the first time discussed extensively with regard to possible common underlying mechanisms leading to a similar cognitive-behavioral phenotype of autism. The possible role of interactions between genetic and environmental factors, including epigenetic mechanisms, is in particular examined. Finally, the pertinence of distinguishing non-syndromic autism (isolated autism) from syndromic autism (autism associated with genetic disorders) will be reconsidered. Given the high genetic and etiological heterogeneity of autism, autism can be viewed as a behavioral syndrome related to known genetic disorders (syndromic autism) or currently unknown disorders (apparent non-syndromic autism), rather than a specific categorical mental disorder. It highlights the need to study autism phenotype and developmental trajectory through a multidimensional, non-categorical approach with multivariate analyses within autism spectrum disorder but also across mental disorders, and to conduct systematically clinical genetic examination searching for genetic disorders in all individuals (children but also adults) with autism. Copyright © 2017. Published by Elsevier Ltd.

  20. The incidence of genetic disorders in children and young adults

    International Nuclear Information System (INIS)

    Anderson, T.W.; Baird, P.A.; Lowry, R.B.; Newcombe, H.B.

    1987-11-01

    Current estimates of the genetic risks from exposure to ionizing radiation are based on two kinds of data: a) incidence rates in humans for the genetic diseases that are believed to be present in the population due to mutations of natural origin, and b) radiation induced mutation rates. One necessary prerequisite before any possible increase in genetic load from mutagens can be estimated is baseline information on the magnitude of genetically-caused ill health already present in the population. The present study utilizes the data base of an ongoing population-based Registry with multiple sources of ascertainment to estimate the present population load from genetic disease. It was found that 4.9% of liveborn individuals below 25 can be expected to have genetic or partly genetic diseases. This was composed of single-gene disorders (autosomal dominant, autosomal recessive and X-linked recessive), chromosomal anomalies and multifactorial disorders (including those present at birth and those later in onset). Since previous studies have usually considered all congenital anomalies (ICD 740-759) as part of the genetic load, data are also presented separately for this category to facilitate comparison with earlier studies. These new data should represent a better estimate of the genetic load in the population than previous studies

  1. Shared Genetic Influences on Negative Emotionality and Major Depression/Conduct Disorder Comorbidity

    Science.gov (United States)

    Tackett, Jennifer L.; Waldman, Irwin D.; Van Hulle, Carol A.; Lahey, Benjamin B.

    2011-01-01

    Objective: To investigate whether genetic contributions to major depressive disorder and conduct disorder comorbidity are shared with genetic influences on negative emotionality. Method: Primary caregivers of 2,022 same- and opposite-sex twin pairs 6 to 18 years of age comprised a population-based sample. Participants were randomly selected across…

  2. Famous people and genetic disorders: from monarchs to geniuses--a portrait of their genetic illnesses.

    Science.gov (United States)

    Ho, Nicola C; Park, Susan S; Maragh, Kevin D; Gutter, Emily M

    2003-04-15

    Famous people with genetic disorders have always been a subject of interest because such news feeds the curiosity the public has for celebrities. It gives further insight into their lives and provides a medical basis for any unexplained or idiosyncratic feature or behavior they exhibit. It draws admiration from society of those who excel in their specialized fields despite the impositions of their genetic illnesses and also elicits sympathy even in the most casual observer. Such news certainly catapults a rare genetic disorder into the realm of public awareness. We hereby present six famous figures: King George III, Toulouse-Lautrec, Queen Victoria, Nicolo Paganini, Abraham Lincoln, and Vincent van Gogh, all of whom made a huge indelible mark in either the history of politics or that of the arts. Copyright 2003 Wiley-Liss, Inc.

  3. Profile of genetic disorders prevalent in northeast region of Cairo ...

    African Journals Online (AJOL)

    Rabah M. Shawky

    2012-02-04

    Feb 4, 2012 ... syndromes, multiple genetic disorders in the same individual or same family and homozygosity ...... array of hereditary eye disorders has been identified. These in- ..... of ED, decreased sweating was present in 92%, dry skin in.

  4. Shared genetic and environmental influences on early temperament and preschool psychiatric disorders in Hispanic twins.

    Science.gov (United States)

    Silberg, Judy L; Gillespie, Nathan; Moore, Ashlee A; Eaves, Lindon J; Bates, John; Aggen, Steven; Pfister, Elizabeth; Canino, Glorisa

    2015-04-01

    Despite an increasing recognition that psychiatric disorders can be diagnosed as early as preschool, little is known how early genetic and environmental risk factors contribute to the development of psychiatric disorders during this very early period of development. We assessed infant temperament at age 1, and attention deficit hyperactivity disorder (ADHD), oppositional defiant disorder (ODD), and separation anxiety disorder (SAD) at ages 3 through 5 years in a sample of Hispanic twins. Genetic, shared, and non-shared environmental effects were estimated for each temperamental construct and psychiatric disorder using the statistical program MX. Multivariate genetic models were fitted to determine whether the same or different sets of genes and environments account for the co-occurrence between early temperament and preschool psychiatric disorders. Additive genetic factors accounted for 61% of the variance in ADHD, 21% in ODD, and 28% in SAD. Shared environmental factors accounted for 34% of the variance in ODD and 15% of SAD. The genetic influence on difficult temperament was significantly associated with preschool ADHD, SAD, and ODD. The association between ODD and SAD was due to both genetic and family environmental factors. The temperamental trait of resistance to control was entirely accounted for by the shared family environment. There are different genetic and family environmental pathways between infant temperament and psychiatric diagnoses in this sample of Puerto Rican preschool age children.

  5. Parental consent for bone marrow transplantation in the case of genetic disorders.

    Science.gov (United States)

    Prows, C A; McCain, G C

    1997-01-01

    To describe the responses of mothers and fathers who were offered bone marrow transplantation (BMT) for their children with genetic disorders. Qualitative. Private hospital rooms/offices. Six mothers and 4 fathers of children with genetic disorders. The basic social-psychological problem confronting the parents was the conflicting alternatives of life versus death for their children. It was certain that these children would die from their genetic disorders but without having to endure the pain and suffering of a BMT. The BMT would be difficult, possibly resulting in death, but with a chance of survival. Parents believed that BMT was the only chance of survival for their children, leaving them no choice except to pursue the BMT treatment.

  6. Genetics of recessive cognitive disorders

    OpenAIRE

    Musante, Luciana; Ropers, H. Hilger

    2014-01-01

    Most severe forms of intellectual disability (ID) have specific genetic causes. Numerous X chromosome gene defects and disease-causing copy-number variants have been linked to ID and related disorders, and recent studies have revealed that sporadic cases are often due to dominant de novo mutations with low recurrence risk. For autosomal recessive ID (ARID) the recurrence risk is high and, in populations with frequent parental consanguinity, ARID is the most common form of ID. Even so, its elu...

  7. Autism spectrum disorders: an updated guide for genetic counseling.

    Science.gov (United States)

    Griesi-Oliveira, Karina; Sertié, Andréa Laurato

    2017-01-01

    Autism spectrum disorder is a complex and genetically heterogeneous disorder, which has hampered the identification of the etiological factors in each patient and, consequently, the genetic counseling for families at risk. However, in the last decades, the remarkable advances in the knowledge of genetic aspects of autism based on genetic and molecular research, as well as the development of new molecular diagnostic tools, have substantially changed this scenario. Nowadays, it is estimated that using the currently available molecular tests, a potential underlying genetic cause can be identified in nearly 25% of cases. Combined with clinical assessment, prenatal history evaluation and investigation of other physiological aspects, an etiological explanation for the disease can be found for approximately 30 to 40% of patients. Therefore, in view of the current knowledge about the genetic architecture of autism spectrum disorder, which has contributed for a more precise genetic counseling, and of the potential benefits that an etiological investigation can bring to patients and families, molecular genetic investigation has become increasingly important. Here, we discuss the current view of the genetic architecture of autism spectrum disorder, and list the main associated genetic alterations, the available molecular tests and the key aspects for the genetic counseling of these families. RESUMO O transtorno do espectro autista é um distúrbio complexo e geneticamente heterogêneo, o que sempre dificultou a identificação de sua etiologia em cada paciente em particular e, por consequência, o aconselhamento genético das famílias. Porém, nas últimas décadas, o acúmulo crescente de conhecimento oriundo das pesquisas sobre os aspectos genéticos e moleculares desta doença, assim como o desenvolvimento de novas ferramentas de diagnóstico molecular, tem mudado este cenário de forma substancial. Atualmente, estima-se que, por meio de testes moleculares, é poss

  8. Emerging Genetic Counselor Roles within the Biotechnology and Pharmaceutical Industries: as Industry Interest Grows in Rare Genetic Disorders, How are Genetic Counselors Joining the Discussion?

    Science.gov (United States)

    Field, Tessa; Brewster, Stephanie Jo; Towne, Meghan; Campion, MaryAnn W

    2016-08-01

    Traditionally, the biotechnology and pharmaceutical industry (BPI) has focused drug development at the mass-market level targeting common medical issues. However, a recent trend is the development of therapies for orphan or rare disorders, including many genetic disorders. Developing treatments for genetic disorders requires an understanding of the needs of the community and translating genomic information to clinical and non-clinical audiences. The core skills of genetic counselors (GCs) include a deep knowledge of genetics and ability to communicate complex information to a broad audience, making GCs a choice fit for this shift in drug development. To date there is limited data defining the roles GCs hold within this industry. This exploratory study aimed to define the roles and motivation of GCs working in BPI, assess job satisfaction, and identify translatable skills and current gaps in GC training programs. The authors surveyed 26 GCs working in BPI in the United States; 79 % work for companies focused on rare disorders. GC positions in BPI are growing, with 57 % of respondents being the first GC in their role. GCs in BPI continue to utilize core genetic counseling competencies, though 72 % felt their training did not fully prepare them for BPI. These data suggest opportunities for exposure to BPI in GC training to better prepare future generations of GCs for these career opportunities. GC satisfaction was high in BPI, notably in areas traditionally reported as less satisfying on the National Society for Genetic Counselors Professional Status Survey: salary and advancement opportunities. BPI's growing interest in rare disorders represents a career opportunity for GCs, addressing both historic areas of dissatisfaction for GCs and BPI's genomic communication needs.

  9. Genetics Home Reference: FOXP2-related speech and language disorder

    Science.gov (United States)

    ... skills such as walking and tying shoelaces, and autism spectrum disorders, which are conditions characterized by impaired communication and social interaction. Related Information What does it mean if a disorder seems to run in my family? What is the prognosis of a genetic condition? ...

  10. Combinations of genetic variants associated with bipolar disorder

    DEFF Research Database (Denmark)

    Mellerup, Erling; Andreassen, Ole A; Bennike, Bente

    2017-01-01

    The main objective of the study was to find genetic variants that in combination are significantly associated with bipolar disorder. In previous studies of bipolar disorder, combinations of three and four single nucleotide polymorphisms (SNP) genotypes taken from 803 SNPs were analyzed, and five...... clusters of combinations were found to be significantly associated with bipolar disorder. In the present study, combinations of ten SNP genotypes taken from the same 803 SNPs were analyzed, and one cluster of combinations was found to be significantly associated with bipolar disorder. Combinations from......, heterozygote or variant homozygote. In the combinations containing 10 SNP genotypes almost all the genotypes were the normal homozygote. Such a finding may indicate that accumulation in the genome of combinations containing few SNP genotypes may be a risk factor for bipolar disorder when those combinations...

  11. Genetic and neurobiological aspects of attention deficit hyperactive disorder: a review.

    OpenAIRE

    Hechtman, L

    1994-01-01

    This paper reviews key studies that have addressed genetic and neurobiological aspects in attention deficit hyperactive disorder. Genetic studies can be divided into three distinct types: twin, adoption, and family studies. Evidence for a particular mode of inheritance and the possible specific genetic abnormalities are also explored. There is strong evidence of genetic involvement in this condition, although a clear-cut mode of inheritance and specific genetic abnormalities are yet to be det...

  12. Cluster analysis of obsessive-compulsive spectrum disorders in patients with obsessive-compulsive disorder: clinical and genetic correlates.

    Science.gov (United States)

    Lochner, Christine; Hemmings, Sian M J; Kinnear, Craig J; Niehaus, Dana J H; Nel, Daniel G; Corfield, Valerie A; Moolman-Smook, Johanna C; Seedat, Soraya; Stein, Dan J

    2005-01-01

    Comorbidity of certain obsessive-compulsive spectrum disorders (OCSDs; such as Tourette's disorder) in obsessive-compulsive disorder (OCD) may serve to define important OCD subtypes characterized by differing phenomenology and neurobiological mechanisms. Comorbidity of the putative OCSDs in OCD has, however, not often been systematically investigated. The Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition , Axis I Disorders-Patient Version as well as a Structured Clinical Interview for Putative OCSDs (SCID-OCSD) were administered to 210 adult patients with OCD (N = 210, 102 men and 108 women; mean age, 35.7 +/- 13.3). A subset of Caucasian subjects (with OCD, n = 171; control subjects, n = 168), including subjects from the genetically homogeneous Afrikaner population (with OCD, n = 77; control subjects, n = 144), was genotyped for polymorphisms in genes involved in monoamine function. Because the items of the SCID-OCSD are binary (present/absent), a cluster analysis (Ward's method) using the items of SCID-OCSD was conducted. The association of identified clusters with demographic variables (age, gender), clinical variables (age of onset, obsessive-compulsive symptom severity and dimensions, level of insight, temperament/character, treatment response), and monoaminergic genotypes was examined. Cluster analysis of the OCSDs in our sample of patients with OCD identified 3 separate clusters at a 1.1 linkage distance level. The 3 clusters were named as follows: (1) "reward deficiency" (including trichotillomania, Tourette's disorder, pathological gambling, and hypersexual disorder), (2) "impulsivity" (including compulsive shopping, kleptomania, eating disorders, self-injury, and intermittent explosive disorder), and (3) "somatic" (including body dysmorphic disorder and hypochondriasis). Several significant associations were found between cluster scores and other variables; for example, cluster I scores were associated

  13. Associations between Familial Rates of Psychiatric Disorders and De Novo Genetic Mutations in Autism

    Directory of Open Access Journals (Sweden)

    Kyleen Luhrs

    2017-01-01

    Full Text Available The purpose of this study was to examine the confluence of genetic and familial risk factors in children with Autism Spectrum Disorder (ASD with distinct de novo genetic events. We hypothesized that gene-disrupting mutations would be associated with reduced rates of familial psychiatric disorders relative to structural mutations. Participants included families of children with ASD in four groups: de novo duplication copy number variations (DUP, n=62, de novo deletion copy number variations (DEL, n=74, de novo likely gene-disrupting mutations (LGDM, n=267, and children without a known genetic etiology (NON, n=2111. Familial rates of psychiatric disorders were calculated from semistructured interviews. Results indicated overall increased rates of psychiatric disorders in DUP families compared to DEL and LGDM families, specific to paternal psychiatric histories, and particularly evident for depressive disorders. Higher rates of depressive disorders in maternal psychiatric histories were observed overall compared to paternal histories and higher rates of anxiety disorders were observed in paternal histories for LGDM families compared to DUP families. These findings support the notion of an additive contribution of genetic etiology and familial factors are associated with ASD risk and highlight critical need for continued work targeting these relationships.

  14. Repint of "Reframing autism as a behavioral syndrome and not a specific mental disorder: Implications of genetic and phenotypic heterogeneity".

    Science.gov (United States)

    Tordjman, S; Cohen, D; Anderson, G M; Botbol, M; Canitano, R; Coulon, N; Roubertoux, P L

    2018-06-01

    Clinical and molecular genetics have advanced current knowledge on genetic disorders associated with autism. A review of diverse genetic disorders associated with autism is presented and for the first time discussed extensively with regard to possible common underlying mechanisms leading to a similar cognitive-behavioral phenotype of autism. The possible role of interactions between genetic and environmental factors, including epigenetic mechanisms, is in particular examined. Finally, the pertinence of distinguishing non-syndromic autism (isolated autism) from syndromic autism (autism associated with genetic disorders) will be reconsidered. Given the high genetic and etiological heterogeneity of autism, autism can be viewed as a behavioral syndrome related to known genetic disorders (syndromic autism) or currently unknown disorders (apparent non-syndromic autism), rather than a specific categorical mental disorder. It highlights the need to study autism phenotype and developmental trajectory through a multidimensional, non-categorical approach with multivariate analyses within autism spectrum disorder but also across mental disorders, and to conduct systematically clinical genetic examination searching for genetic disorders in all individuals (children but also adults) with autism. Copyright © 2018. Published by Elsevier Ltd.

  15. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette Syndrome and Obsessive-Compulsive Disorder

    Science.gov (United States)

    Yu, Dongmei; Mathews, Carol A.; Scharf, Jeremiah M.; Neale, Benjamin M.; Davis, Lea K.; Gamazon, Eric R.; Derks, Eske M.; Evans, Patrick; Edlund, Christopher K.; Crane, Jacquelyn; Fagerness, Jesen A.; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M.; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrió, Gabriel Bedoya; Bienvenu, O. Joseph; Black, Donald; Bloch, Michael H.; Brentani, Helena; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond D.; Cappi, Carolina; Cardona Silgado, Julio C.; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Cook, Edwin H.; Cookson, M. R.; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniele; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Hardy, John; Heiman, Gary A.; Hemmings, Sian M.J.; Herrera, Luis D.; Hezel, Dianne M.; Hoekstra, Pieter J.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Konkashbaev, Anuar I.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T.; Mesa Restrepo, Sandra C.; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Ochoa, William Cornejo; Ophoff, Roel A.; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosário, Maria C.; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Service, Susan K.; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, Eric; Tischfield, Jay A.; Turiel, Maurizio; Valencia Duarte, Ana V.; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Walkup, John; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R.; Westenberg, Herman G.M.; Yao, Yin; Hounie, Ana G.; Miguel, Euripedes C.; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C.; McMahon, William; Posthuma, Danielle; Oostra, Ben A.; Nestadt, Gerald; Rouleau, Guy A.; Purcell, Shaun; Jenike, Michael A.; Heutink, Peter; Hanna, Gregory L.; Conti, David V.; Arnold, Paul D.; Freimer, Nelson; Stewart, S. Evelyn; Knowles, James A.; Cox, Nancy J.; Pauls, David L.

    2014-01-01

    Obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS) are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. Here, we report a combined genome-wide association study (GWAS) of TS and OCD in 2723 cases (1310 with OCD, 834 with TS, 579 with OCD plus TS/chronic tics (CT)), 5667 ancestry-matched controls, and 290 OCD parent-child trios. Although no individual single nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels, i.e. expression quantitative loci (eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10−4), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, TS had a smaller, non-significant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and TS/CT were included in the analysis (p=0.01). Previous work has shown that TS and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of TS and OCD. Furthermore, OCD with co-occurring TS/CT may have different underlying genetic susceptibility compared to OCD alone. PMID:25158072

  16. A genetic deconstruction of neurocognitive traits in schizophrenia and bipolar disorder

    NARCIS (Netherlands)

    C.P.D. Fernandes (Carla P.); A. Christoforou (Andrea); S. Giddaluru (Sudheer); K.M. Ersland (Kari); S. Djurovic (Srdjan); M. Mattheisen (Manuel); A.J. Lundervold (Astri); I. Reinvang (Ivar); M.M. Nöthen (Markus); M. Rietschel (Marcella); R.A. Ophoff (Roel); A. Hofman (Albert); A.G. Uitterlinden (André); T.M. Werge (Thomas); S. Cichon (Sven); T. Espeseth (Thomas); O.A. Andreassen (Ole); V.M. Steen (Vidar); S. Le Hellard (Stephanie)

    2013-01-01

    textabstractBackground: Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function

  17. Genetic reversion of inherited skin disorders

    Energy Technology Data Exchange (ETDEWEB)

    Magnaldo, Thierry; Sarasin, Alain

    2002-11-30

    Human epidermis is a squamous stratified epithelium whose integrity relies on balanced processes of cell attachment, proliferation, and differentiation. In monogenic skin dermatoses, such as mecano-bullous diseases, or DNA repair deficiencies such as the xeroderma pigmentosum (XP), alterations of skin integrity may have devastating consequences as illustrated by the extremely high epidermal cancer proneness of XP patients. The lack of efficient pharmacological treatments, the easy accessibility of skin, and the possibility of long term culture and genetic manipulations ex vivo of epidermal keratinocytes, have encouraged approaches toward gene transfer and skin therapy prospects. We review here some of the human genetic disorders that exhibit major traits in skin, as well as requirements and difficulties inherent to approaches aimed at stable phenotypic correction.

  18. Seasonality shows evidence for polygenic architecture and genetic correlation with schizophrenia and bipolar disorder – a meta-analysis of genetic studies

    Science.gov (United States)

    Byrne, Enda M; Raheja, Uttam; Stephens, Sarah H.; Heath, Andrew C; Madden, Pamela AF; Vaswani, Dipika; Nijjar, Gagan V.; Ryan, Kathleen A.; Youssufi, Hassaan; Gehrman, Philip R; Shuldiner, Alan R; Martin, Nicholas G; Montgomery, Grant W; Wray, Naomi R; Nelson, Elliot C; Mitchell, Braxton D; Postolache, Teodor T

    2015-01-01

    Objective To test common genetic variants for association with seasonality (seasonal changes in mood and behavior) and to investigate whether there are shared genetic risk factors between psychiatric disorders and seasonality. Methods A meta-analysis of genome-wide association studies (GWAS) conducted in Australian and Amish populations in whom the Seasonal Pattern Assessment Questionnaire (SPAQ) had been administered. The total sample size was 4,156 individuals. Genetic risk scores based on results from prior large GWAS studies of bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ) were calculated to test for overlap in risk between psychiatric disorders and seasonality. Results The most significant association was with rs11825064 (p = 1.7 × 10−6, β = 0.64, S.E = 0.13), an intergenic SNP found on chromosome 11. The evidence for overlap in risk factors was strongest for SCZ and seasonality, with the SCZ genetic profile scores explaining 3% of the variance in log-transformed GSS. BD genetic profile scores were also significantly associated with seasonality, although at much weaker levels, and no evidence for overlap in risk was detected between MDD and seasonality. Conclusions Common SNPs of very large effect likely do not exist for seasonality in the populations examined. As expected, there was overlapping genetic risk factors for BD (but not MDD) with seasonality. Unexpectedly, the risk for SCZ and seasonality had the largest overlap, an unprecedented finding that requires replication in other populations, and has potential clinical implications considering overlapping cognitive deficits in seasonal affective disorders and SCZ PMID:25562672

  19. A genetic deconstruction of neurocognitive traits in schizophrenia and bipolar disorder

    DEFF Research Database (Denmark)

    Fernandes, Carla P D; Christoforou, Andrea; Giddaluru, Sudheer

    2013-01-01

    Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function in healthy individuals...

  20. A Genetic Deconstruction of Neurocognitive Traits in Schizophrenia and Bipolar Disorder

    NARCIS (Netherlands)

    Fernandes, Carla P. D.; Christoforou, Andrea; Giddaluru, Sudheer; Ersland, Kari M.; Djurovic, Srdjan; Mattheisen, Manuel; Lundervold, Astri J.; Reinvang, Ivar; Nöthen, Markus M.; Rietschel, Marcella; Ophoff, Roel A.; Hofman, Albert; Uitterlinden, André G.; Werge, Thomas; Cichon, Sven; Espeseth, Thomas; Andreassen, Ole A.; Steen, Vidar M.; Le Hellard, Stephanie; Kahn, René S.; Linszen, Don H.; van Os, Jim; Wiersma, Durk; Bruggeman, Richard; Cahn, Wiepke; de Haan, Lieuwe; Krabbendam, Lydia; Myin-Germeys, Inez

    2013-01-01

    Background: Impairments in cognitive functions are common in patients suffering from psychiatric disorders, such as schizophrenia and bipolar disorder. Cognitive traits have been proposed as useful for understanding the biological and genetic mechanisms implicated in cognitive function in healthy

  1. Genetics of homocysteine metabolism and associated disorders

    Directory of Open Access Journals (Sweden)

    S. Brustolin

    2010-01-01

    Full Text Available Homocysteine is a sulfur-containing amino acid derived from the metabolism of methionine, an essential amino acid, and is metabolized by one of two pathways: remethylation or transsulfuration. Abnormalities of these pathways lead to hyperhomocysteinemia. Hyperhomocysteinemia is observed in approximately 5% of the general population and is associated with an increased risk for many disorders, including vascular and neurodegenerative diseases, autoimmune disorders, birth defects, diabetes, renal disease, osteoporosis, neuropsychiatric disorders, and cancer. We review here the correlation between homocysteine metabolism and the disorders described above with genetic variants on genes coding for enzymes of homocysteine metabolism relevant to clinical practice, especially common variants of the MTHFR gene, 677C>T and 1298A>C. We also discuss the management of hyperhomocysteinemia with folic acid supplementation and fortification of folic acid and the impact of a decrease in the prevalence of congenital anomalies and a decline in the incidence of stroke mortality.

  2. Genetic and environmental determinants of violence risk in psychotic disorders: a multivariate quantitative genetic study of 1.8 million Swedish twins and siblings.

    Science.gov (United States)

    Sariaslan, A; Larsson, H; Fazel, S

    2016-09-01

    Patients diagnosed with psychotic disorders (for example, schizophrenia and bipolar disorder) have elevated risks of committing violent acts, particularly if they are comorbid with substance misuse. Despite recent insights from quantitative and molecular genetic studies demonstrating considerable pleiotropy in the genetic architecture of these phenotypes, there is currently a lack of large-scale studies that have specifically examined the aetiological links between psychotic disorders and violence. Using a sample of all Swedish individuals born between 1958 and 1989 (n=3 332 101), we identified a total of 923 259 twin-sibling pairs. Patients were identified using the National Patient Register using validated algorithms based on International Classification of Diseases (ICD) 8-10. Univariate quantitative genetic models revealed that all phenotypes (schizophrenia, bipolar disorder, substance misuse, and violent crime) were highly heritable (h(2)=53-71%). Multivariate models further revealed that schizophrenia was a stronger predictor of violence (r=0.32; 95% confidence interval: 0.30-0.33) than bipolar disorder (r=0.23; 0.21-0.25), and large proportions (51-67%) of these phenotypic correlations were explained by genetic factors shared between each disorder, substance misuse, and violence. Importantly, we found that genetic influences that were unrelated to substance misuse explained approximately a fifth (21%; 20-22%) of the correlation with violent criminality in bipolar disorder but none of the same correlation in schizophrenia (Pbipolar disordergenetically similar phenotypes as the latter sources may include aetiologically important clues. Clinically, these findings underline the importance of assessing risk of different phenotypes together and integrating interventions for psychiatric disorders, substance misuse, and violence.

  3. Ethical and Social Implications of Genetic Testing for Communication Disorders

    Science.gov (United States)

    Arnos, Kathleen S.

    2008-01-01

    Advances in genetics and genomics have quickly led to clinical applications to human health which have far-reaching consequences at the individual and societal levels. These new technologies have allowed a better understanding of the genetic factors involved in a wide range of disorders. During the past decade, incredible progress has been made in…

  4. Profile of genetic disorders prevalent in northeast region of Cairo ...

    African Journals Online (AJOL)

    As clinical geneticists, we recently reviewed our 43 years experience in an attempt to represent the frequency of genetic disorders in the Division of Genetics at Pediatric Hospital, Faculty of Medicine, Ain-Shams University, Cairo, Egypt, during the period from 1966 to 2009. All patients (from birth up to 18 years) suspected of ...

  5. Intelligence : shared genetic basis between Mendelian disorders and a polygenic trait

    NARCIS (Netherlands)

    Franić, Sanja; Groen-Blokhuis, Maria M; Dolan, Conor V; Kattenberg, Mathijs V; Pool, René; Xiao, Xiangjun; Scheet, Paul A; Ehli, Erik A; Davies, Gareth E; van der Sluis, Sophie; Abdellaoui, Abdel; Hansell, Narelle K; Martin, Nicholas G; Hudziak, James J; van Beijsterveldt, Catherina E M; Swagerman, Suzanne C; Hulshoff Pol, Hilleke E; de Geus, Eco J C; Bartels, Meike; Ropers, H Hilger; Hottenga, Jouke-Jan; Boomsma, Dorret I

    2015-01-01

    Multiple inquiries into the genetic etiology of human traits indicated an overlap between genes underlying monogenic disorders (eg, skeletal growth defects) and those affecting continuous variability of related quantitative traits (eg, height). Extending the idea of a shared genetic basis between a

  6. Genetic and environmental influences on focal brain density in bipolar disorder

    NARCIS (Netherlands)

    van der Schot, Astrid C.; Vonk, Ronald; Brouwer, Rachel M.; van Baal, G. Caroline M.; Brans, Rachel G. H.; van Haren, Neeltje E. M.; Schnack, Hugo G.; Boomsma, Dorret I.; Nolen, Willem A.; Pol, Hilleke E. Hulshoff; Kahn, Rene S.

    2010-01-01

    Structural neuroimaging studies suggest the presence of subtle abnormalities in the brains of patients with bipolar disorder. The influence of genetic and/or environmental factors on these brain abnormalities is unknown. To investigate the contribution of genetic and environmental factors on grey

  7. The Neurobiology and Genetics of Impulse Control Disorders: Relationships to Drug Addictions

    Science.gov (United States)

    Brewer, Judson A.; Potenza, Marc N.

    2008-01-01

    Impulse control disorders (ICDs), including pathological gambling, trichotillomania, kleptomania and others, have been conceptualized to lie along an impulsive-compulsive spectrum. Recent data have suggested that these disorders may be considered addictions. Here we review the genetic and neuropathological bases of the impulse control disorders and consider the disorders within these non-mutually exclusive frameworks. PMID:17719013

  8. Common Psychiatric Disorders and Caffeine Use, Tolerance, and Withdrawal: An Examination of Shared Genetic and Environmental Effects

    Science.gov (United States)

    Bergin, Jocilyn E.; Kendler, Kenneth S.

    2012-01-01

    Background Previous studies examined caffeine use and caffeine dependence and risk for the symptoms, or diagnosis, of psychiatric disorders. The current study aimed to determine if generalized anxiety disorder (GAD), panic disorder, phobias, major depressive disorder (MDD), anorexia nervosa (AN), or bulimia nervosa (BN) shared common genetic or environmental factors with caffeine use, caffeine tolerance, or caffeine withdrawal. Method Using 2,270 women from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders, bivariate Cholesky decomposition models were used to determine if any of the psychiatric disorders shared genetic or environmental factors with caffeine use phenotypes. Results GAD, phobias, and MDD shared genetic factors with caffeine use, with genetic correlations estimated to be 0.48, 0.25, and 0.38, respectively. Removal of the shared genetic and environmental parameter for phobias and caffeine use resulted in a significantly worse fitting model. MDD shared unique environmental factors (environmental correlation = 0.23) with caffeine tolerance; the genetic correlation between AN and caffeine tolerance and BN and caffeine tolerance were 0.64 and 0.49, respectively. Removal of the genetic and environmental correlation parameters resulted in significantly worse fitting models for GAD, phobias, MDD, AN, and BN, which suggested that there was significant shared liability between each of these phenotypes and caffeine tolerance. GAD had modest genetic correlations with caffeine tolerance, 0.24, and caffeine withdrawal, 0.35. Conclusions There was suggestive evidence of shared genetic and environmental liability between psychiatric disorders and caffeine phenotypes. This might inform us about the etiology of the comorbidity between these phenotypes. PMID:22854069

  9. Common psychiatric disorders and caffeine use, tolerance, and withdrawal: an examination of shared genetic and environmental effects.

    Science.gov (United States)

    Bergin, Jocilyn E; Kendler, Kenneth S

    2012-08-01

    Previous studies examined caffeine use and caffeine dependence and risk for the symptoms, or diagnosis, of psychiatric disorders. The current study aimed to determine if generalized anxiety disorder (GAD), panic disorder, phobias, major depressive disorder (MDD), anorexia nervosa (AN), or bulimia nervosa (BN) shared common genetic or environmental factors with caffeine use, caffeine tolerance, or caffeine withdrawal. Using 2,270 women from the Virginia Adult Twin Study of Psychiatric and Substance Use Disorders, bivariate Cholesky decomposition models were used to determine if any of the psychiatric disorders shared genetic or environmental factors with caffeine use phenotypes. GAD, phobias, and MDD shared genetic factors with caffeine use, with genetic correlations estimated to be 0.48, 0.25, and 0.38, respectively. Removal of the shared genetic and environmental parameter for phobias and caffeine use resulted in a significantly worse fitting model. MDD shared unique environmental factors (environmental correlation=0.23) with caffeine tolerance; the genetic correlation between AN and caffeine tolerance and BN and caffeine tolerance were 0.64 and 0.49, respectively. Removal of the genetic and environmental correlation parameters resulted in significantly worse fitting models for GAD, phobias, MDD, AN, and BN, which suggested that there was significant shared liability between each of these phenotypes and caffeine tolerance. GAD had modest genetic correlations with caffeine tolerance, 0.24, and caffeine withdrawal, 0.35. There was suggestive evidence of shared genetic and environmental liability between psychiatric disorders and caffeine phenotypes. This might inform us about the etiology of the comorbidity between these phenotypes.

  10. Birth defects and genetic disorders among Arab Americans--Michigan, 1992-2003.

    Science.gov (United States)

    Yanni, Emad A; Copeland, Glenn; Olney, Richard S

    2010-06-01

    Birth defects and genetic disorders are leading causes of infant morbidity and mortality in many countries. Population-based data on birth defects among Arab-American children have not been documented previously. Michigan has the second largest Arab-American community in the United States after California. Using data from the Michigan Birth Defects Registry (MBDR), which includes information on parents' country of birth and ancestry, birth prevalences were estimated in offspring of Michigan women of Arab ancestry for 21 major categories of birth defects and 12 congenital endocrine, metabolic, and hereditary disorders. Compared with other non-Hispanic white children in Michigan, Arab-American children had similar or lower birth prevalences of the selected types of structural birth defects, with higher rates of certain hereditary blood disorders and three categories of metabolic disorders. These estimates are important for planning preconception and antenatal health care, genetic counseling, and clinical care for Arab Americans.

  11. Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia

    DEFF Research Database (Denmark)

    Witt, S H; Streit, F; Jungkunz, M

    2017-01-01

    Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report...... describes the first case-control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic...... overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score...

  12. New insights into the endophenotypic status of cognition in bipolar disorder: genetic modelling study of twins and siblings.

    Science.gov (United States)

    Georgiades, Anna; Rijsdijk, Fruhling; Kane, Fergus; Rebollo-Mesa, Irene; Kalidindi, Sridevi; Schulze, Katja K; Stahl, Daniel; Walshe, Muriel; Sahakian, Barbara J; McDonald, Colm; Hall, Mei-Hua; Murray, Robin M; Kravariti, Eugenia

    2016-06-01

    Twin studies have lacked statistical power to apply advanced genetic modelling techniques to the search for cognitive endophenotypes for bipolar disorder. To quantify the shared genetic variability between bipolar disorder and cognitive measures. Structural equation modelling was performed on cognitive data collected from 331 twins/siblings of varying genetic relatedness, disease status and concordance for bipolar disorder. Using a parsimonious AE model, verbal episodic and spatial working memory showed statistically significant genetic correlations with bipolar disorder (rg = |0.23|-|0.27|), which lost statistical significance after covarying for affective symptoms. Using an ACE model, IQ and visual-spatial learning showed statistically significant genetic correlations with bipolar disorder (rg = |0.51|-|1.00|), which remained significant after covarying for affective symptoms. Verbal episodic and spatial working memory capture a modest fraction of the bipolar diathesis. IQ and visual-spatial learning may tap into genetic substrates of non-affective symptomatology in bipolar disorder. © The Royal College of Psychiatrists 2016.

  13. The evolving diagnostic and genetic landscapes of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Mark Nicholas Ziats

    2016-04-01

    Full Text Available The autism spectrum disorders (ASD are a heterogeneous set of neurodevelopmental syndromes defined by impairments in verbal and non-verbal communication, restricted social interaction, and the presence of stereotyped patterns of behavior. The prevalence of ASD is rising, and the diagnostic criteria and clinical perspectives on the disorder continue to evolve in parallel. Although the majority of individuals with ASD will not have an identifiable genetic cause, almost 25% of cases have identifiable causative DNA variants. The rapidly improving ability to identify genetic mutations because of advances in next generation sequencing, coupled with previous epidemiological studies demonstrating high heritability of ASD, have led to many recent attempts to identify causative genetic mutations underlying the ASD phenotype. However, although hundreds of mutations have been identified to date, they are either rare variants affecting only a handful of ASD patients, or are common variants in the general population conferring only a small risk for ASD. Furthermore, the genes implicated thus far are heterogeneous in their structure and function, hampering attempts to understand shared molecular mechanisms among all ASD patients; an understanding that is crucial for the development of targeted diagnostics and therapies. However, new work is beginning to suggest that the heterogeneous set of genes implicated in ASD may ultimately converge on a few common pathways. In this review, we discuss the parallel evolution of our diagnostic and genetic understanding of autism spectrum disorders, and highlight recent attempts to infer common biology underlying this complicated syndrome.

  14. The Evolving Diagnostic and Genetic Landscapes of Autism Spectrum Disorder.

    Science.gov (United States)

    Ziats, Mark N; Rennert, Owen M

    2016-01-01

    The autism spectrum disorders (ASD) are a heterogeneous set of neurodevelopmental syndromes defined by impairments in verbal and non-verbal communication, restricted social interaction, and the presence of stereotyped patterns of behavior. The prevalence of ASD is rising, and the diagnostic criteria and clinical perspectives on the disorder continue to evolve in parallel. Although the majority of individuals with ASD will not have an identifiable genetic cause, almost 25% of cases have identifiable causative DNA variants. The rapidly improving ability to identify genetic mutations because of advances in next generation sequencing, coupled with previous epidemiological studies demonstrating high heritability of ASD, have led to many recent attempts to identify causative genetic mutations underlying the ASD phenotype. However, although hundreds of mutations have been identified to date, they are either rare variants affecting only a handful of ASD patients, or are common variants in the general population conferring only a small risk for ASD. Furthermore, the genes implicated thus far are heterogeneous in their structure and function, hampering attempts to understand shared molecular mechanisms among all ASD patients; an understanding that is crucial for the development of targeted diagnostics and therapies. However, new work is beginning to suggest that the heterogeneous set of genes implicated in ASD may ultimately converge on a few common pathways. In this review, we discuss the parallel evolution of our diagnostic and genetic understanding of autism spectrum disorders, and highlight recent attempts to infer common biology underlying this complicated syndrome.

  15. Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia

    NARCIS (Netherlands)

    Witt, S.H.; Streit, F.; Jungkunz, M; Frank, J.; Awasthi, S; Reinbold, C S; Treutlein, J.; Degenhardt, F.; Forstner, A. J.; Heilmann-Heimbach, S.; Dietl, L; Schwarze, C E; Schendel, D.J.; Strohmaier, J.; Abdellaoui, A; Adolfsson, R; Air, T M; Akil, H.; Lopezz de Alda, M.; Alliey-Rodriguez, N; Andreassen, O. A.; Babadjanova, G; Bass, N.J.; Bauer, M.; Baune, Bernard T; Bellivier, F.; Bergen, S. E.; Bethell, A.; Biernacka, J.M.; Blackwood, D H R; Boks, Marco P; Boomsma, D I; Børglum, Anders D; Borrmann-Hassenbach, M; Brennan, P.; Budde, M.; Buttenschøn, H N; Byrne, Enda M; Cervantes, P; Clarke, T.K.; Craddock, N.; Cruceanu, C; Curtis, D.; de Geus, E J C; Fischer, S B; Hottenga, J-J; Middeldorp, C M; Milaneschi, Y; Penninx, B W J H; Willemsen, G

    2017-01-01

    Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report

  16. Genetic structure of personality factors and bipolar disorder in families segregating bipolar disorder.

    Science.gov (United States)

    Hare, Elizabeth; Contreras, Javier; Raventos, Henriette; Flores, Deborah; Jerez, Alvaro; Nicolini, Humberto; Ontiveros, Alfonso; Almasy, Laura; Escamilla, Michael

    2012-02-01

    Bipolar disorder (BPD) has been associated with variations in personality dimensions, but the nature of this relationship has been unclear. In this study, the heritabilities of BPD and the Big Five personality factors and the genetic correlations between BPD and personality factors are reported. The participants in this study were 1073 individuals from 172 families of Mexican or Central American ancestry. Heritabilities and genetic correlations were calculated under a polygenic model using the maximum-likelihood method of obtaining variance components implemented in the SOLAR software package. Heritabilities of 0.49, 0.43, and 0.43 were found for the narrowest phenotype (schizoaffective bipolar and bipolar I), the intermediate phenotype (schizoaffective bipolar, bipolar I, and bipolar II), and the broadest phenotype (schizoaffective bipolar, bipolar I, bipolar II, and recurrent depression), respectively. For the Big Five personality factors, heritabilities were 0.25 for agreeableness, 0.24 for conscientiousness, 0.24 for extraversion, 0.23 for neuroticism, and 0.32 for openness to experience. For the narrowest phenotype, a significant negative correlation (-0.32) with extraversion was found. For the broadest phenotype, negative correlations were found for agreeableness (-0.35), conscientiousness (-0.39), and extraversion (-0.44). A positive correlation (0.37) was found with neuroticism. It is not possible to determine whether aspects of personality are factors in the development of bipolar disorder or vice versa. The short form of the NEO does not provide the ability to examine in detail which facets of extraversion are most closely related to bipolar disorder or to compare our results with studies that have used the long version of the scale. This study establishes a partial genetic basis for the Big Five personality factors in this set of families, while the environmental variances demonstrate that non-genetic factors are also important in their influence on

  17. Sex differences in the genetic and environmental influences on childhood conduct disorder and adult antisocial behavior.

    Science.gov (United States)

    Meier, Madeline H; Slutske, Wendy S; Heath, Andrew C; Martin, Nicholas G

    2011-05-01

    Sex differences in the genetic and environmental influences on childhood conduct disorder and adult antisocial behavior were examined in a large community sample of 6,383 adult male, female, and opposite-sex twins. Retrospective reports of childhood conduct disorder (prior to 18 years of age) were obtained when participants were approximately 30 years old, and lifetime reports of adult antisocial behavior (antisocial behavior after 17 years of age) were obtained 8 years later. Results revealed that either the genetic or the shared environmental factors influencing childhood conduct disorder differed for males and females (i.e., a qualitative sex difference), but by adulthood, these sex-specific influences on antisocial behavior were no longer apparent. Further, genetic and environmental influences accounted for proportionally the same amount of variance in antisocial behavior for males and females in childhood and adulthood (i.e., there were no quantitative sex differences). Additionally, the stability of antisocial behavior from childhood to adulthood was slightly greater for males than females. Though familial factors accounted for more of the stability of antisocial behavior for males than females, genetic factors accounted for the majority of the covariation between childhood conduct disorder and adult antisocial behavior for both sexes. The genetic influences on adult antisocial behavior overlapped completely with the genetic influences on childhood conduct disorder for both males and females. Implications for future twin and molecular genetic studies are discussed.

  18. Genetic variants of ghrelin in metabolic disorders.

    Science.gov (United States)

    Ukkola, Olavi

    2011-11-01

    An increasing understanding of the role of genes in the development of obesity may reveal genetic variants that, in combination with conventional risk factors, may help to predict an individual's risk for developing metabolic disorders. Accumulating evidence indicates that ghrelin plays a role in regulating food intake and energy homeostasis and it is a reasonable candidate gene for obesity-related co-morbidities. In cross-sectional studies low total ghrelin concentrations and some genetic polymorphisms of ghrelin have been associated with obesity-associated diseases. The present review highlights many of the important problems in association studies of genetic variants and complex diseases. It is known that population-specific differences in reported associations exist. We therefore conclude that more studies on variants of ghrelin gene are needed to perform in different populations to get deeper understanding on the relationship of ghrelin gene and its variants to obesity. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders.

    Science.gov (United States)

    Lazzeri, Elena; Ronconi, Elisa; Angelotti, Maria Lucia; Peired, Anna; Mazzinghi, Benedetta; Becherucci, Francesca; Conti, Sara; Sansavini, Giulia; Sisti, Alessandro; Ravaglia, Fiammetta; Lombardi, Duccio; Provenzano, Aldesia; Manonelles, Anna; Cruzado, Josep M; Giglio, Sabrina; Roperto, Rosa Maria; Materassi, Marco; Lasagni, Laura; Romagnani, Paola

    2015-08-01

    The critical role of genetic and epigenetic factors in the pathogenesis of kidney disorders is gradually becoming clear, and the need for disease models that recapitulate human kidney disorders in a personalized manner is paramount. In this study, we describe a method to select and amplify renal progenitor cultures from the urine of patients with kidney disorders. Urine-derived human renal progenitors exhibited phenotype and functional properties identical to those purified from kidney tissue, including the capacity to differentiate into tubular cells and podocytes, as demonstrated by confocal microscopy, Western blot analysis of podocyte-specific proteins, and scanning electron microscopy. Lineage tracing studies performed with conditional transgenic mice, in which podocytes are irreversibly tagged upon tamoxifen treatment (NPHS2.iCreER;mT/mG), that were subjected to doxorubicin nephropathy demonstrated that renal progenitors are the only urinary cell population that can be amplified in long-term culture. To validate the use of these cells for personalized modeling of kidney disorders, renal progenitors were obtained from (1) the urine of children with nephrotic syndrome and carrying potentially pathogenic mutations in genes encoding for podocyte proteins and (2) the urine of children without genetic alterations, as validated by next-generation sequencing. Renal progenitors obtained from patients carrying pathogenic mutations generated podocytes that exhibited an abnormal cytoskeleton structure and functional abnormalities compared with those obtained from patients with proteinuria but without genetic mutations. The results of this study demonstrate that urine-derived patient-specific renal progenitor cultures may be an innovative research tool for modeling of genetic kidney disorders. Copyright © 2015 by the American Society of Nephrology.

  20. What is the role of genetic testing in movement disorders practice?

    Science.gov (United States)

    Schneider, Susanne A; Klein, Christine

    2011-08-01

    Genetic testing holds many promises in movement disorders, but also pitfalls that require careful consideration for meaningful results. These include the primary indication for testing in the first place, concerns regarding the implications of symptomatic, presymptomatic, and susceptibility testing, the mutation frequency in the gene of interest, the general lack of neuroprotective treatment options for neurodegenerative movement disorders, the prognosis of the condition diagnosed, and patient confidentiality concerns. Furthermore, new technical achievements and the available technical expertise, feasibility of specific gene testing, and its coverage through a health insurance carrier should be considered. Guidelines for testing have been established by some disease societies to advise clinicians and in parallel legal regulations are being adjusted at a national and international level. We review these and other critical points and recent developments regarding genetic testing in the field of movement disorders.

  1. Integrating genetic and toxicogenomic information for determining underlying susceptibility to developmental disorders.

    Science.gov (United States)

    Robinson, Joshua F; Port, Jesse A; Yu, Xiaozhong; Faustman, Elaine M

    2010-10-01

    To understand the complex etiology of developmental disorders, an understanding of both genetic and environmental risk factors is needed. Human and rodent genetic studies have identified a multitude of gene candidates for specific developmental disorders such as neural tube defects (NTDs). With the emergence of toxicogenomic-based assessments, scientists now also have the ability to compare and understand the expression of thousands of genes simultaneously across strain, time, and exposure in developmental models. Using a systems-based approach in which we are able to evaluate information from various parts and levels of the developing organism, we propose a framework for integrating genetic information with toxicogenomic-based studies to better understand gene-environmental interactions critical for developmental disorders. This approach has allowed us to characterize candidate genes in the context of variables critical for determining susceptibility such as strain, time, and exposure. Using a combination of toxicogenomic studies and complementary bioinformatic tools, we characterize NTD candidate genes during normal development by function (gene ontology), linked phenotype (disease outcome), location, and expression (temporally and strain-dependent). In addition, we show how environmental exposures (cadmium, methylmercury) can influence expression of these genes in a strain-dependent manner. Using NTDs as an example of developmental disorder, we show how simple integration of genetic information from previous studies into the standard microarray design can enhance analysis of gene-environment interactions to better define environmental exposure-disease pathways in sensitive and resistant mouse strains. © Wiley-Liss, Inc.

  2. Impact of presymptomatic genetic testing for hereditary ataxia and neuromuscular disorders.

    Science.gov (United States)

    Smith, Corrine O; Lipe, Hillary P; Bird, Thomas D

    2004-06-01

    With the exception of Huntington disease, the psychological and psychosocial impact of DNA testing for neurogenetic disorders has not been well studied. To evaluate the psychosocial impact of genetic testing for autosomal dominant forms of hereditary ataxia and neuromuscular disorders. Patients Fifty subjects at risk for autosomal dominant forms of spinocerebellar ataxia (n = 11), muscular dystrophy (n = 28), and hereditary neuropathy (n = 12). A prospective, descriptive, observational study in a university setting of individuals who underwent genetic counseling and DNA testing. Participants completed 3 questionnaires before testing and at regular intervals after testing. The questionnaire set included the Revised Impact of Event Scale, the Hospital Anxiety and Depression Scale, demographic information, and an assessment of attitudes and feelings about genetic testing. Thirty-nine subjects (78%) completed 6 months to 5 years of posttest follow-up. Common reasons for pursuing genetic testing were to provide an explanation for symptoms, emotional relief, and information for future planning. Thirty-four (68%) had positive and 16 (32%) had negative genetic results. In those with a positive result, 26 (76%) had nonspecific signs or symptoms of the relevant disorder. Forty-two participants (84%) felt genetic testing was beneficial. Groups with positive and negative test results coped well with results. However, 13 subjects (10 with positive and 3 with negative results) reported elevated anxiety levels, and 3 (1 with positive and 2 with negative results) expressed feelings of depression during the follow-up period. The test result was not predictive of anxiety or depression. Most individuals find neurogenetic testing to be beneficial, regardless of the result. Anxiety or depression may persist in some persons with positive or negative test results. Testing can have a demonstrable impact on family planning and interpersonal relationships. Further studies are needed to

  3. Periodontal disease associated to systemic genetic disorders.

    Science.gov (United States)

    Nualart Grollmus, Zacy Carola; Morales Chávez, Mariana Carolina; Silvestre Donat, Francisco Javier

    2007-05-01

    A number of systemic disorders increase patient susceptibility to periodontal disease, which moreover evolves more rapidly and more aggressively. The underlying factors are mainly related to alterations in immune, endocrine and connective tissue status. These alterations are associated with different pathologies and syndromes that generate periodontal disease either as a primary manifestation or by aggravating a pre-existing condition attributable to local factors. This is where the role of bacterial plaque is subject to debate. In the presence of qualitative or quantitative cellular immune alterations, periodontal disease may manifest early on a severe localized or generalized basis--in some cases related to the presence of plaque and/or specific bacteria (severe congenital neutropenia or infantile genetic agranulocytosis, Chediak-Higiashi syndrome, Down syndrome and Papillon-Lefévre syndrome). In the presence of humoral immune alterations, periodontal damage may result indirectly as a consequence of alterations in other systems. In connective tissue disorders, bacterial plaque and alterations of the periodontal tissues increase patient susceptibility to gingival inflammation and alveolar resorption (Marfan syndrome and Ehler-Danlos syndrome). The management of periodontal disease focuses on the control of infection and bacterial plaque by means of mechanical and chemical methods. Periodontal surgery and even extraction of the most seriously affected teeth have also been suggested. There are variable degrees of consensus regarding the background systemic disorder, as in the case of Chediak-Higiashi syndrome, where antibiotic treatment proves ineffective; in severe congenital neutropenia or infantile genetic agranulocytosis, where antibiotic prophylaxis is suggested; and in Papillon-Lefévre syndrome, where an established treatment protocol is available.

  4. Anatomy and Cell Biology of Autism Spectrum Disorder : Lessons from Human Genetics

    NARCIS (Netherlands)

    Kleijer, Kristel T E; Huguet, Guillaume; Tastet, Julie; Bourgeron, Thomas; Burbach, J P H

    2017-01-01

    Until recently autism spectrum disorder (ASD) was regarded as a neurodevelopmental condition with unknown causes and pathogenesis. In the footsteps of the revolution of genome technologies and genetics, and with its high degree of heritability, ASD became the first neuropsychiatric disorder for

  5. Comparison of gamma radiation and radiomimmetic chemical, bleomycin in leukocytes from certain genetic disorders

    International Nuclear Information System (INIS)

    Saraswathy, Radha

    2004-01-01

    Full text: To compare the frequency and distribution pattern of bleomycin and gamma radiation induced chromosomal aberrations in human genetic disorders. To study if the induced chromosomal break points are specific for specific human genetic disorders. Human genetics disorders such as; retinitis pigmentosa, retinoblastoma, xeroderma pigmentosa and gonadal dysgenesis were used in our study. Suitable controls were maintained. The frequency and distribution pattern of chromosomal break points in individual chromosomes were determined in lymphocytes exposed to 50r of gamma radiation and 10μg/ml of bleomycin for 3h at G2. In normal individuals none of the unirradiated leukocyte cultures of any syndrome showed any accountable number of chromosomal aberrations. The frequency of radiation induced chromosomal break points showed a non random distribution pattern and frequently clustered at some specific chromosome regions to form hot spots. Lack of linear-quadratic dose response was observed in the lymphocyte exposed to bleomycin in normal individual. The frequency of chromosomal aberrations in the whole genome for the genetic disorders were higher than the controls and a varying distribution pattern of bleomycin induced breaks per cell was observed

  6. Molecular and genetic insights into an infantile epileptic encephalopathy-CDKL5 disorder

    Institute of Scientific and Technical Information of China (English)

    Ailing Zhou; Song Han; Zhaolan Joe Zhou

    2017-01-01

    BACKGROUND:The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder.Given the large number of literature published thus far,this review aims to summarize current genetic studies,draw a consensus on proposed molecular functions,and point to gaps of knowledge in CDKL5 research.METHODS:A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years.We analyzed these publications and summarized the findings into four sections:genetic studies,CDKL5 expression pattems,molecular functions,and animal models.We also discussed challenges and future directions in each section.RESULTS:On the clinical side,CDKL5 disorder is characterized by early onset epileptic seizures,intellectual disability,and stereotypical behaviors.On the research side,a series of molecular and genetic studies in human patients,cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy,and pointed to a key role for CDKL5 in regulating neuronal function in the brain.Mouse models of CDKL5 disorder have also been developed,and notably,manifest behavioral phenotypes,mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage.CONCLUSIONS:Given what we have leamed thus far,future identification of robust,quantitative,and sensitive outcome measures would be the key in animal model studies,particularly in heterozygous females.In the meantime,molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  7. Molecular and genetic insights into an infantile epileptic encephalopathy - CDKL5 disorder.

    Science.gov (United States)

    Zhou, Ailing; Han, Song; Zhou, Zhaolan Joe

    2017-02-01

    The discovery that mutations in cyclin-dependent kinase-like 5 ( CDKL5 ) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes.

  8. A behavioral-genetic investigation of bulimia nervosa and its relationship with alcohol use disorder

    Science.gov (United States)

    Trace, Sara Elizabeth; Thornton, Laura Marie; Baker, Jessica Helen; Root, Tammy Lynn; Janson, Lauren Elizabeth; Lichtenstein, Paul; Pedersen, Nancy Lee; Bulik, Cynthia Marie

    2013-01-01

    Bulimia nervosa (BN) and alcohol use disorder (AUD) frequently co-occur and may share genetic factors; however, the nature of their association is not fully understood. We assessed the extent to which the same genetic and environmental factors contribute to liability to BN and AUD. A bivariate structural equation model using a Cholesky decomposition was fit to data from 7,241 women who participated in the Swedish Twin study of Adults: Genes and Environment. The proportion of variance accounted for by genetic and environmental factors for BN and AUD and the genetic and environmental correlations between these disorders were estimated. In the best-fitting model, the heritability estimates were 0.55 (95% CI: 0.37; 0.70) for BN and 0.62 (95% CI: 0.54; 0.70) for AUD. Unique environmental factors accounted for the remainder of variance for BN. The genetic correlation between BN and AUD was 0.23 (95% CI: 0.01; 0.44), and the correlation between the unique environmental factors for the two disorders was 0.35 (95% CI: 0.08; 0.61), suggesting moderate overlap in these factors. Findings from this investigation provide additional support that some of the same genetic factors may influence liability to both BN and AUD. PMID:23790978

  9. Genetic parameters for claw disorders and the effect of preselecting cows for trimming.

    Science.gov (United States)

    van der Spek, D; van Arendonk, J A M; Vallée, A A A; Bovenhuis, H

    2013-09-01

    Claw disorders are important traits relevant to dairy cattle breeding from an economical and welfare point of view. Selection for reduced claw disorders can be based on hoof trimmer records. Typically, not all cows in a herd are trimmed. Our objectives were to estimate heritabilities and genetic correlations for claw disorders and investigate the effect of selecting cows for trimming. The data set contained 50,238 cows, of which 20,474 cows had at least one claw trimming record, with a total of 29,994 records. Six claw trimmers scored 14 different claw disorders: abscess (AB), corkscrew claw (CC), (inter-)digital dermatitis or heel erosion (DER), double sole (DS), hardship groove (HG), interdigital hyperplasia (IH), interdigital phlegmon (IP), sand crack (SC), super-foul (SF), sole hemorrhage (SH), sole injury (SI), sole ulcer (SU), white line separation (WLS), yellow discoloration of the sole (YD), and a combined claw disorder trait. Frequencies of the claw disorders for trimmed cows ranged from 0.1% (CC, YD, HG) to 23.8% (DER). More than half of the cows scored had at least one claw disorder. Heritability on the observed scale ranged from 0.02 (DS, SH) to 0.14 (IH) and on the underlying scale from 0.05 to 0.43 in trimmed cows. Genetic correlations between laminitis-related claw disorders were moderate to high, and the same was found for hygiene-related claw disorders. The effect of selecting cows for trimming was first investigated by including untrimmed cows in the analyses and assuming they were not affected by claw disorders. Heritabilities on the underlying scale showed only minor changes. Second, different subsets of the data were created based on the percentage of trimmed cows in the herd. Heritabilities for IH, DER, and SU tended to decrease when a higher percentage of cows in the herd were trimmed. Finally, a bivariate model with a claw disorder and the trait "trimming status" was used, but heritabilities were similar. Heritability for trimming status was

  10. Comparing targeted exome and whole exome approaches for genetic diagnosis of neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Svetlana Gorokhova

    2015-12-01

    Full Text Available Massively parallel sequencing is rapidly becoming a widely used method in genetic diagnostics. However, there is still no clear consensus as to which approach can most efficiently identify the pathogenic mutations carried by a given patient, while avoiding false negative and false positive results. We developed a targeted exome approach (MyoPanel2 in order to optimize genetic diagnosis of neuromuscular disorders. Using this approach, we were able to analyse 306 genes known to be mutated in myopathies as well as in related disorders, obtaining 98.8% target sequence coverage at 20×. Moreover, MyoPanel2 was able to detect 99.7% of 11,467 known mutations responsible for neuromuscular disorders. We have then used several quality control parameters to compare performance of the targeted exome approach with that of whole exome sequencing. The results of this pilot study of 140 DNA samples suggest that targeted exome sequencing approach is an efficient genetic diagnostic test for most neuromuscular diseases.

  11. Molecular, Phenotypic Aspects and Therapeutic Horizons of Rare Genetic Bone Disorders

    Directory of Open Access Journals (Sweden)

    Taha Faruqi

    2014-01-01

    Full Text Available A rare disease afflicts less than 200,000 individuals, according to the National Organization for Rare Diseases (NORD of the United States. Over 6,000 rare disorders affect approximately 1 in 10 Americans. Rare genetic bone disorders remain the major causes of disability in US patients. These rare bone disorders also represent a therapeutic challenge for clinicians, due to lack of understanding of underlying mechanisms. This systematic review explored current literature on therapeutic directions for the following rare genetic bone disorders: fibrous dysplasia, Gorham-Stout syndrome, fibrodysplasia ossificans progressiva, melorheostosis, multiple hereditary exostosis, osteogenesis imperfecta, craniometaphyseal dysplasia, achondroplasia, and hypophosphatasia. The disease mechanisms of Gorham-Stout disease, melorheostosis, and multiple hereditary exostosis are not fully elucidated. Inhibitors of the ACVR1/ALK2 pathway may serve as possible therapeutic intervention for FOP. The use of bisphosphonates and IL-6 inhibitors has been explored to be useful in the treatment of fibrous dysplasia, but more research is warranted. Cell therapy, bisphosphonate polytherapy, and human growth hormone may avert the pathology in osteogenesis imperfecta, but further studies are needed. There are still no current effective treatments for these bone disorders; however, significant promising advances in therapeutic modalities were developed that will limit patient suffering and treat their skeletal disabilities.

  12. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings.

    Science.gov (United States)

    Dichter, Gabriel S; Damiano, Cara A; Allen, John A

    2012-07-06

    This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders), neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette's syndrome, conduct disorder/oppositional defiant disorder), and genetic syndromes (i.e., Fragile X syndrome, Prader-Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome). We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.

  13. Genetics of recessive cognitive disorders.

    Science.gov (United States)

    Musante, Luciana; Ropers, H Hilger

    2014-01-01

    Most severe forms of intellectual disability (ID) have specific genetic causes. Numerous X chromosome gene defects and disease-causing copy-number variants have been linked to ID and related disorders, and recent studies have revealed that sporadic cases are often due to dominant de novo mutations with low recurrence risk. For autosomal recessive ID (ARID) the recurrence risk is high and, in populations with frequent parental consanguinity, ARID is the most common form of ID. Even so, its elucidation has lagged behind. Here we review recent progress in this field, show that ARID is not rare even in outbred Western populations, and discuss the prospects for improving its diagnosis and prevention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Communication of genetic information to families with inherited rhythm disorders.

    Science.gov (United States)

    Burns, Charlotte; James, Cynthia; Ingles, Jodie

    2017-11-23

    Given the dynamic nature of the electrical activity of the heart and ongoing challenges in the diagnostics of inherited heart rhythm disorders, genetic information can be a vital aspect of family management. Communication of genetic information is complex, and the responsibility to convey this information to the family lies with the proband. Current practice falls short, requiring additional support from the clinician and multidisciplinary team. Communication is a 2-part iterative process, reliant on both the understanding of the probands and their ability to effectively communicate with relatives. With the surge of high-throughput genetic testing, results generated are increasingly complex, making the task of communication more challenging. Here we discuss 3 key issues. First, the probabilistic nature of genetic test results means uncertainty is inherent to the practice. Second, secondary findings may arise. Third, personal preferences, values, and family dynamics also come into play and must be acknowledged when considering how best to support effective communication. Here we provide insight into the challenges and provide practical advice for clinicians to support effective family communication. These strategies include acknowledging and managing genetic uncertainty, genetic counseling and informed consent, and consideration of personal and familial barriers to effective communication. We will explore the potential for developing resources to assist clinicians in providing patients with sufficient knowledge and support to communicate complex information to their at-risk relatives. Specialized multidisciplinary clinics remain the best equipped to manage patients and families with inherited heart rhythm disorders given the need for a high level of information and support. Copyright © 2017 Heart Rhythm Society. All rights reserved.

  15. PhenomeCentral: An Integrated Portal for Sharing and Searching Patient Phenotype Data for Rare Genetic Disorders.

    OpenAIRE

    Brudno, Michael; Girdea, Marta; Dumitriu, Sergiu; Buske, Orion; Köhler, Sebastian; Robinson, Peter N.; Brookes, Andrew J.; Boycott, Kym; Boerkoel, Cornelius F.; Gahl, William A.; CARE RARE, Canadian for Consortium; NIH, Undiagnosed Diseases Program

    2014-01-01

    The availability of low-cost genome sequencing has allowed for the identification of the molecular cause of hundreds of rare genetic disorders. Solved disorders, however, only represent the “tip of the iceberg”. Because the discovery of disease-causing variants typically requires confirmation of the mutation or gene in multiple unrelated individuals, an even larger number of genetic disorders remain unsolved due to difficulty identifying second families. With many groups now tackling these re...

  16. Borderline personality traits and adult attention-deficit hyperactivity disorder symptoms: a genetic analysis of comorbidity.

    Science.gov (United States)

    Distel, Marijn A; Carlier, Angela; Middeldorp, Christel M; Derom, Catherine A; Lubke, Gitta H; Boomsma, Dorret I

    2011-12-01

    Previous research has established the comorbidity of adult Attention-Deficit Hyperactivity Disorder (ADHD) with different personality disorders including Borderline Personality Disorder (BPD). The association between adult ADHD and BPD has primarily been investigated at the phenotypic level and not yet at the genetic level. The present study investigates the genetic and environmental contributions to the association between borderline personality traits (BPT) and ADHD symptoms in a sample of 7,233 twins and siblings (aged 18-90 years) registered with the Netherlands Twin Register and the East Flanders Prospective Twin Survey (EFPTS) . Participants completed the Conners' Adult ADHD Rating Scales (CAARS-S:SV) and the Personality Assessment Inventory-Borderline Features Scale (PAI-BOR). A bivariate genetic analysis was performed to determine the extent to which genetic and environmental factors influence variation in BPT and ADHD symptoms and the covariance between them. The heritability of BPT and ADHD symptoms was estimated at 45 and 36%, respectively. The remaining variance in BPT and ADHD symptoms was explained by unique environmental influences. The phenotypic correlation between BPT and ADHD symptoms was estimated at r = 0.59, and could be explained for 49% by genetic factors and 51% by environmental factors. The genetic and environmental correlations between BPT and ADHD symptoms were 0.72 and 0.51, respectively. The shared etiology between BPT and ADHD symptoms is thus a likely cause for the comorbidity of the two disorders. Copyright © 2011 Wiley-Liss, Inc.

  17. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Mathews, Carol A.; Scharf, Jeremiah M.; Neale, Benjamin M.; Davis, Lea K.; Gamazon, Eric R.; Derks, Eske M.; Evans, Patrick; Edlund, Christopher K.; Crane, Jacquelyn; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M.; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrio, Gabriel Bedoya; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Brentani, Helena; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond D.; Cappi, Carolina; Silgado, Julio C. Cardona; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Cook, Edwin H.; Cookson, M. R.; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniete; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald L.; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Gruenblatt, Edna; Hardy, John; Heiman, Gary A.; Hemmings, Sian M. J.; Herrera, Luis D.; Hezel, Dianne M.; Hoekstra, Pieter J.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Konkashbaev, Anuar I.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T.; Restrepo, Sandra C. Mesa; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Nurmi, Erika; Ochoa, William Cornejo; Ophoff, Roel A.; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlo N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosario, Maria C.; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Service, Susan K.; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, Eric; Tischfield, Jay A.; Turiel, Maurizio; Duarte, Ana V. Valencia; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R.; Westenberg, Herman G. M.; Shugart, Yin Yao; Hounie, Ana G.; Miguel, Euripedes C.; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C.; McMahon, William; Posthuma, Danielle; Oostra, Ben A.; Nestadt, Gerald; Routeau, Guy A.; Purcell, Shaun; Jenike, Michael A.; Heutink, Peter; Hanna, Gregory L.; Conti, David V.; Arnold, Paul D.; Freimer, Nelson B.; Stewart, Evelyn; Knowles, James A.; Cox, Nancy J.; Pauls, David L.

    Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The

  18. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Neale, Benjamin M; Davis, Lea K; Gamazon, Eric R; Derks, Eske M; Evans, Patrick; Edlund, Christopher K; Crane, Jacquelyn; Fagerness, Jesen A; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Berrió, Gabriel Bedoya; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Brentani, Helena; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Campbell, Desmond D; Cappi, Carolina; Silgado, Julio C Cardona; Cavallini, Maria C; Chavira, Denise A; Chouinard, Sylvain; Cook, Edwin H; Cookson, M R; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniele; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald L; Girard, Simon L; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Hardy, John; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hezel, Dianne M; Hoekstra, Pieter J; Jankovic, Joseph; Kennedy, James L; King, Robert A; Konkashbaev, Anuar I; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T; Mesa Restrepo, Sandra C; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L; Naarden, Allan L; Nurmi, Erika; Ochoa, William Cornejo; Ophoff, Roel A; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L; Renner, Tobias; Reus, Victor I; Richter, Margaret A; Riddle, Mark A; Robertson, Mary M; Romero, Roxana; Rosário, Maria C; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Service, Susan K; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H|info:eu-repo/dai/nl/113700644; Stein, Dan J; Strengman, Eric; Tischfield, Jay A; Turiel, Maurizio; Valencia Duarte, Ana V; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R; Westenberg, Herman G M; Shugart, Yin Yao; Hounie, Ana G; Miguel, Euripedes C; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C|info:eu-repo/dai/nl/194111423; McMahon, William; Posthuma, Danielle; Oostra, Ben A; Nestadt, Gerald; Rouleau, Guy A; Purcell, Shaun; Jenike, Michael A; Heutink, Peter; Hanna, Gregory L; Conti, David V; Arnold, Paul D; Freimer, Nelson B; Stewart, S Evelyn; Knowles, James A; Cox, Nancy J; Pauls, David L

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The

  19. Cross-disorder genome-wide analyses suggest a complex genetic relationship between Tourette's syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Cusi, Daniele; Delorme, Richard; Denys, D.; Dion, Yves; Eapen, Valsama; Heutink, Peter; Cox, Nancy J; Pauls, David L

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The

  20. Cross-Disorder Genome-Wide Analyses Suggest a Complex Genetic Relationship Between Tourette's Syndrome and OCD

    NARCIS (Netherlands)

    Yu, D.M.; Mathews, C.A.; Scharf, J.M.; Neale, B.M.; Davis, L.K.; Gamazon, E.R.; Derks, E.M.; Evans, P.; Edlund, C.K.; Crane, J.; Osiecki, L.; Gallagher, P.; Gerber, G.; Haddad, S.; Illmann, C.; McGrath, L.M.; Mayerfeld, C.; Arepalli, S.; Barlassina, C.; Barr, C.L.; Bellodi, L.; Benarroch, F.; Berrio, G.B.; Bienvenu, O.J.; Black, D.W.; Bloch, M.H.; Brentani, H.; Bruun, R.D.; Budman, C.L.; Camarena, B.; Campbell, D.D.; Cappi, C.; Silgado, J.C.C.; Cavallini, M.C.; Chavira, D.A.; Chouinard, S.; Cook, E.H.; Cookson, M.R.; Coric, V.; Cullen, B.; Cusi, D.; Delorme, R.; Denys, D.; Dion, Y.; Eapen, V.; Egberts, K.; Falkai, P.; Fernandez, T.; Fournier, E.; Garrido, H.; Geller, D.; Gilbert, D.L.; Girard, S.L.; Grabe, H.J.; Grados, M.A.; Greenberg, B.D.; Gross-Tsur, V.; Grunblatt, E.; Hardy, J.; Heiman, G.A.; Hemmings, S.M.J.; Herrera, L.D.; Hezel, D.M.; Hoekstra, P.J.; Jankovic, J.; Kennedy, J.L.; King, R.A.; Konkashbaev, A.I.; Kremeyer, B.; Kurlan, R.; Lanzagorta, N.; Leboyer, M.; Leckman, J.F.; Lennertz, L.; Liu, C.Y.; Lochner, C.; Lowe, T.L.; Lupoli, S.; Macciardi, F.; Maier, W.; Manunta, P.; Marconi, M.; McCracken, J.T.; Restrepo, S.C.M.; Moessner, R.; Moorjani, P.; Morgan, J.; Muller, H.; Murphy, D.L.; Naarden, A.L.; Nurmi, E.; Ochoa, W.C.; Ophoff, R. A.; Pakstis, A.J.; Pato, M.T.; Pato, C.N.; Piacentini, J.; Pittenger, C.; Pollak, Y.; Smit, J.H.; Posthuma, D.; Cox, N.J.; Pauls, D.L.

    2015-01-01

    Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identi fication of definitive susceptibility genes for these etiologically complex disorders remains elusive. The

  1. Genetic and environmental influences on the comorbidity between depression, panic disorder, agoraphobia and social phobia: A twin study

    Science.gov (United States)

    Mosing, Miriam A.; Gordon, Scott D.; Medland, Sarah E.; Statham, Dixie J.; Nelson, Elliot C.; Heath, Andrew C.; Martin, Nicholas G.; Wray, Naomi R.

    2011-01-01

    Background Major depression (MD) and anxiety disorders such as panic disorder (PD), agoraphobia (AG) and social phobia (SP) are heritable and highly comorbid. However, the relative importance of genetic and environmental aetiology of the covariation between these disorders, particularly the relationship between PD and AG is less clear. Methods The present study measured MD, PD and AG in a population sample of 5440 twin pairs and 1245 single twins, about 45% of whom were also scored for SP. Prevalences, within individual comorbidity and twin odds ratios for comorbidity are reported. A behavioural genetic analysis of the four disorders using the classical twin design was conducted. Results Odds ratios for MD, PD, AG, and SP in twins of individuals diagnosed with one of the four disorders were increased. Heritability estimates under a threshold-liability model for MD, PD, AG, and SP respectively were 0.33 (CI:0.30–0.42), 0.38 (CI:0.24–0.55), 0.48 (CI:0.37–0.65) of, and 0.39 (CI:0.16–0.65), with no evidence for any variance explained by the common environment shared by twins. We find that a common genetic factor explains a moderate proportion of variance in these four disorders. The genetic correlation between PD and AG was 0.83. Conclusion MD, PD, AG, and SP strongly co-aggregate within families and common genetic factors explain a moderate proportion of variance in these four disorders. The high genetic correlation between PD and AG and the increased odds ratio for PD and AG in siblings of those with AG without PD suggests a common genetic aetiology for PD and AG. PMID:19750555

  2. Cross-disorder genome-wide analyses suggest a complex genetic relationship between Tourette's syndrome and OCD

    NARCIS (Netherlands)

    Yu, Dongmei; Mathews, Carol A.; Scharf, Jeremiah M.; Neale, Benjamin M.; Davis, Lea K.; Gamazon, Eric R.; Derks, Eske M.; Evans, Patrick; Edlund, Christopher K.; Crane, Jacquelyn; Fagerness, Jesen A.; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M.; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Berrió, Gabriel Bedoya; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Brentani, Helena; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Campbell, Desmond D.; Cappi, Carolina; Silgado, Julio C. Cardona; Cavallini, Maria C.; Chavira, Denise A.; Chouinard, Sylvain; Cook, Edwin H.; Cookson, M. R.; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniele; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald L.; Girard, Simon L.; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Hardy, John; Heiman, Gary A.; Hemmings, Sian M. J.; Herrera, Luis D.; Hezel, Dianne M.; Hoekstra, Pieter J.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Konkashbaev, Anuar I.; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L.; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T.; Mesa Restrepo, Sandra C.; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L.; Naarden, Allan L.; Nurmi, Erika; Ochoa, William Cornejo; Ophoff, Roel A.; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L.; Renner, Tobias; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark A.; Robertson, Mary M.; Romero, Roxana; Rosário, Maria C.; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Service, Susan K.; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Strengman, Eric; Tischfield, Jay A.; Turiel, Maurizio; Valencia Duarte, Ana V.; Vallada, Homero; Veenstra-Vanderweele, Jeremy; Walitza, Susanne; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R.; Westenberg, Herman G. M.; Shugart, Yin Yao; Hounie, Ana G.; Miguel, Euripedes C.; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C.; McMahon, William; Posthuma, Danielle; Oostra, Ben A.; Nestadt, Gerald; Rouleau, Guy A.; Purcell, Shaun; Jenike, Michael A.; Heutink, Peter; Hanna, Gregory L.; Conti, David V.; Arnold, Paul D.; Freimer, Nelson B.; Stewart, S. Evelyn; Knowles, James A.; Cox, Nancy J.; Pauls, David L.

    2015-01-01

    Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a

  3. The Brazilian contribution to Attention-Deficit/Hyperactivity Disorder molecular genetics in children and adolescents

    Science.gov (United States)

    Genro, Júlia Pasqualini; Roman, Tatiana; Rohde, Luis Augusto; Hutz, Mara Helena

    2012-01-01

    Attention-Deficit/Hyperactivity Disorder (ADHD) is a common psychiatric condition of children worldwide. This disorder is defined by a combination of symptoms of inattention and hyperactivity/impulsivity. Diagnosis is based on a sufficient number of symptoms causing impairment in these two domains determining several problems in personal and academic life. Although genetic and environmental factors are important in ADHD etiology, how these factors influence the brain and consequently behavior is still under debate. It seems to be consensus that a frontosubcortical dysfunction is responsible, at least in part, for the ADHD phenotype spectrum. The main results from association and pharmacogenetic studies performed in Brazil are discussed. The investigations performed so far on ADHD genetics in Brazil and elsewhere are far from conclusive. New plausible biological hypotheses linked to neurotransmission and neurodevelopment, as well as new analytic approaches are needed to fully disclose the genetic component of the disorder. PMID:23411749

  4. Genetics of Post-Traumatic Stress Disorder: Informing Clinical Conceptualizations and Promoting Future Research

    Science.gov (United States)

    Nugent, Nicole R.; Amstadter, Ananda B.; Koenen, Karestan C.

    2009-01-01

    The purpose of this article is to provide an overview of genetic research involving post-traumatic stress disorder (PTSD). First, we summarize evidence for genetic influences on PTSD from family investigations. Second, we discuss the distinct contributions to our understanding of the genetics of PTSD permitted by twin studies. Finally, we summarize findings from molecular genetic studies, which have the potential to inform our understanding of underlying biological mechanisms for the development of PTSD. PMID:18412098

  5. [Diagnostics of the genetic causes of autism spectrum disorders - a clinical geneticist's view].

    Science.gov (United States)

    Szczaluba, Krzysztof

    2014-01-01

    Explanation of the genetic basis of autism spectrum disorders has, for many decades, been a part of interest of researchers and clinicians. In recent years, thanks to modern molecular and cytogenetic techniques, a significant progress has been achieved in the diagnosis of genetic causes of autism. This applies particularly, but not exclusively, to those cases of autism that are accompanied by other clinical signs (i. e. complex phenotypes). The important clinical markers belong to different categories, and include congenital defects/anomalies, dysmorphism and macro-/microcephaly, to name the few. Thus, the choice of the diagnostic strategy depends on the clinical and pedigree information and, under Polish circumstances, the availability of specific diagnostic techniques and the amount of reimbursement under the National Health Service. Overall, the identification of the genetic causes of autism spectrum disorders is possible in about 10-30% of patients. In this paper the practical aspects of the use of different diagnostic techniques are briefly described. Some clinical examples and current recommendations for the diagnosis of patients with autism spectrum disorders are also presented. The point of view of a specialist in clinical genetics, increasingly involved, as part of the multidisciplinary care team, in the diagnostics of an autistic child has been demonstrated.

  6. New technologies provide insights into genetic basis of psychiatric disorders and explain their co-morbidity.

    Science.gov (United States)

    Rudan, Igor

    2010-06-01

    The completion of Human Genome Project and the "HapMap" project was followed by translational activities from companies within the private sector. This led to the introduction of genome-wide scans based on hundreds of thousands of single nucleotide polymorphysms (SNP). These scans were based on common genetic variants in human populations. This new and powerful technology was then applied to the existing DNA-based datasets with information on psychiatric disorders. As a result, an unprecedented amount of novel scientific insights related to the underlying biology and genetics of psychiatric disorders was obtained. The dominant design of these studies, so called "genome-wide association studies" (GWAS), used statistical methods which minimized the risk of false positive reports and provided much greater power to detect genotype-phenotype associations. All findings were entirely data-driven rather than hypothesis-driven, which often made it difficult for researchers to understand or interpret the findings. Interestingly, this work in genetics is indicating how non-specific some genes are for psychiatric disorders, having associations in common for schizophrenia, bipolar disorder and autism. This suggests that the earlier stages of psychiatric disorders may be multi-valent and that early detection, coupled with a clearer understanding of the environmental factors, may allow prevention. At the present time, the rich "harvest" from GWAS still has very limited power to predict the variation in psychiatric disease status at individual level, typically explaining less than 5% of the total risk variance. The most recent studies of common genetic variation implicated the role of major histocompatibility complex in schizophrenia and other disorders. They also provided molecular evidence for a substantial polygenic component to the risk of psychiatric diseases, involving thousands of common alleles of very small effect. The studies of structural genetic variation, such as copy

  7. Genetic and non-genetic animal models for autism spectrum disorders (ASD).

    Science.gov (United States)

    Ergaz, Zivanit; Weinstein-Fudim, Liza; Ornoy, Asher

    2016-09-01

    Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings

    Directory of Open Access Journals (Sweden)

    Dichter Gabriel S

    2012-07-01

    Full Text Available Abstract This review summarizes evidence of dysregulated reward circuitry function in a range of neurodevelopmental and psychiatric disorders and genetic syndromes. First, the contribution of identifying a core mechanistic process across disparate disorders to disease classification is discussed, followed by a review of the neurobiology of reward circuitry. We next consider preclinical animal models and clinical evidence of reward-pathway dysfunction in a range of disorders, including psychiatric disorders (i.e., substance-use disorders, affective disorders, eating disorders, and obsessive compulsive disorders, neurodevelopmental disorders (i.e., schizophrenia, attention-deficit/hyperactivity disorder, autism spectrum disorders, Tourette’s syndrome, conduct disorder/oppositional defiant disorder, and genetic syndromes (i.e., Fragile X syndrome, Prader–Willi syndrome, Williams syndrome, Angelman syndrome, and Rett syndrome. We also provide brief overviews of effective psychopharmacologic agents that have an effect on the dopamine system in these disorders. This review concludes with methodological considerations for future research designed to more clearly probe reward-circuitry dysfunction, with the ultimate goal of improved intervention strategies.

  9. Molecular and genetic insights into an infantile epileptic encephalopathy – CDKL5 disorder

    Science.gov (United States)

    Zhou, Ailing; Han, Song

    2017-01-01

    Background The discovery that mutations in cyclin-dependent kinase-like 5 (CDKL5) gene are associated with infantile epileptic encephalopathy has stimulated world-wide research effort to understand the molecular and genetic basis of CDKL5 disorder. Given the large number of literature published thus far, this review aims to summarize current genetic studies, draw a consensus on proposed molecular functions, and point to gaps of knowledge in CDKL5 research. Methods A systematic review process was conducted using the PubMed search engine focusing on CDKL5 studies in the recent ten years. We analyzed these publications and summarized the findings into four sections: genetic studies, CDKL5 expression patterns, molecular functions, and animal models. We also discussed challenges and future directions in each section. Results On the clinical side, CDKL5 disorder is characterized by early onset epileptic seizures, intellectual disability, and stereotypical behaviors. On the research side, a series of molecular and genetic studies in human patients, cell cultures and animal models have established the causality of CDKL5 to the infantile epileptic encephalopathy, and pointed to a key role for CDKL5 in regulating neuronal function in the brain. Mouse models of CDKL5 disorder have also been developed, and notably, manifest behavioral phenotypes, mimicking numerous clinical symptoms of CDKL5 disorder and advancing CDKL5 research to the preclinical stage. Conclusions Given what we have learned thus far, future identification of robust, quantitative, and sensitive outcome measures would be the key in animal model studies, particularly in heterozygous females. In the meantime, molecular and cellular studies of CDKL5 should focus on mechanism-based investigation and aim to uncover druggable targets that offer the potential to rescue or ameliorate CDKL5 disorder-related phenotypes. PMID:28580010

  10. Cross-disorder genome-wide analyses suggest a complex genetic relationship between Tourette's syndrome and OCD.

    Science.gov (United States)

    Yu, Dongmei; Mathews, Carol A; Scharf, Jeremiah M; Neale, Benjamin M; Davis, Lea K; Gamazon, Eric R; Derks, Eske M; Evans, Patrick; Edlund, Christopher K; Crane, Jacquelyn; Fagerness, Jesen A; Osiecki, Lisa; Gallagher, Patience; Gerber, Gloria; Haddad, Stephen; Illmann, Cornelia; McGrath, Lauren M; Mayerfeld, Catherine; Arepalli, Sampath; Barlassina, Cristina; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Berrió, Gabriel Bedoya; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Brentani, Helena; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Campbell, Desmond D; Cappi, Carolina; Silgado, Julio C Cardona; Cavallini, Maria C; Chavira, Denise A; Chouinard, Sylvain; Cook, Edwin H; Cookson, M R; Coric, Vladimir; Cullen, Bernadette; Cusi, Daniele; Delorme, Richard; Denys, Damiaan; Dion, Yves; Eapen, Valsama; Egberts, Karin; Falkai, Peter; Fernandez, Thomas; Fournier, Eduardo; Garrido, Helena; Geller, Daniel; Gilbert, Donald L; Girard, Simon L; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Hardy, John; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hezel, Dianne M; Hoekstra, Pieter J; Jankovic, Joseph; Kennedy, James L; King, Robert A; Konkashbaev, Anuar I; Kremeyer, Barbara; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Liu, Chunyu; Lochner, Christine; Lowe, Thomas L; Lupoli, Sara; Macciardi, Fabio; Maier, Wolfgang; Manunta, Paolo; Marconi, Maurizio; McCracken, James T; Mesa Restrepo, Sandra C; Moessner, Rainald; Moorjani, Priya; Morgan, Jubel; Muller, Heike; Murphy, Dennis L; Naarden, Allan L; Nurmi, Erika; Ochoa, William Cornejo; Ophoff, Roel A; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Rauch, Scott L; Renner, Tobias; Reus, Victor I; Richter, Margaret A; Riddle, Mark A; Robertson, Mary M; Romero, Roxana; Rosário, Maria C; Rosenberg, David; Ruhrmann, Stephan; Sabatti, Chiara; Salvi, Erika; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Service, Susan K; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H; Stein, Dan J; Strengman, Eric; Tischfield, Jay A; Turiel, Maurizio; Valencia Duarte, Ana V; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Weale, Mike; Weiss, Robert; Wendland, Jens R; Westenberg, Herman G M; Shugart, Yin Yao; Hounie, Ana G; Miguel, Euripedes C; Nicolini, Humberto; Wagner, Michael; Ruiz-Linares, Andres; Cath, Danielle C; McMahon, William; Posthuma, Danielle; Oostra, Ben A; Nestadt, Gerald; Rouleau, Guy A; Purcell, Shaun; Jenike, Michael A; Heutink, Peter; Hanna, Gregory L; Conti, David V; Arnold, Paul D; Freimer, Nelson B; Stewart, S Evelyn; Knowles, James A; Cox, Nancy J; Pauls, David L

    2015-01-01

    Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette's syndrome and OCD. The authors conducted a GWAS in 2,723 cases (1,310 with OCD, 834 with Tourette's syndrome, 579 with OCD plus Tourette's syndrome/chronic tics), 5,667 ancestry-matched controls, and 290 OCD parent-child trios. GWAS summary statistics were examined for enrichment of functional variants associated with gene expression levels in brain regions. Polygenic score analyses were conducted to investigate the genetic architecture within and across the two disorders. Although no individual single-nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels (expression quantitative loci, or eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10(-4)), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, Tourette's syndrome had a smaller, nonsignificant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and co-occurring Tourette's syndrome/chronic tics were included in the analysis (p=0.01). Previous work has shown that Tourette's syndrome and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct

  11. A Twin Study of Normative Personality and DSM-IV Personality Disorder Criterion Counts: Evidence for Separate Genetic Influences.

    Science.gov (United States)

    Czajkowski, Nikolai; Aggen, Steven H; Krueger, Robert F; Kendler, Kenneth S; Neale, Michael C; Knudsen, Gun Peggy; Gillespie, Nathan A; Røysamb, Espen; Tambs, Kristian; Reichborn-Kjennerud, Ted

    2018-03-21

    Both normative personality and DSM-IV personality disorders have been found to be heritable. However, there is limited knowledge about the extent to which the genetic and environmental influences underlying DSM personality disorders are shared with those of normative personality. The aims of this study were to assess the phenotypic similarity between normative and pathological personality and to investigate the extent to which genetic and environmental influences underlying individual differences in normative personality account for symptom variance across DSM-IV personality disorders. A large population-based sample of adult twins was assessed for DSM-IV personality disorder criteria with structured interviews at two waves spanning a 10-year interval. At the second assessment, participants also completed the Big Five Inventory, a self-report instrument assessing the five-factor normative personality model. The proportion of genetic and environmental liabilities unique to the individual personality disorder measures, and hence not shared with the five Big Five Inventory domains, were estimated by means of multivariate Cholesky twin decompositions. The median percentage of genetic liability to the 10 DSM-IV personality disorders assessed at wave 1 that was not shared with the Big Five domains was 64%, whereas for the six personality disorders that were assessed concurrently at wave 2, the median was 39%. Conversely, the median proportions of unique environmental liability in the personality disorders for wave 1 and wave 2 were 97% and 96%, respectively. The results indicate that a moderate-to-sizable proportion of the genetic influence underlying DSM-IV personality disorders is not shared with the domain constructs of the Big Five model of normative personality. Caution should be exercised in assuming that normative personality measures can serve as proxies for DSM personality disorders when investigating the etiology of these disorders.

  12. Genetic and environmental influences on the familial transmission of externalizing disorders in adoptive and twin offspring.

    Science.gov (United States)

    Hicks, Brian M; Foster, Katherine T; Iacono, William G; McGue, Matt

    2013-10-01

    Twin-family studies have shown that parent-child resemblance on substance use disorders and antisocial behavior can be accounted for by the transmission of a general liability to a spectrum of externalizing disorders. Most studies, however, include only biological parents and offspring, which confound genetic and environmental transmission effects. To examine the familial transmission of externalizing disorders among both adoptive (genetically unrelated) and biological relatives to better distinguish genetic and environmental mechanisms of transmission. Family study design wherein each family included the mother, father, and 2 offspring, including monozygotic twin, dizygotic twin, nontwin biological, and adoptive offspring. Structural equation modeling was used to estimate familial transmission effects and their genetic and environmental influences. Participants were recruited from the community and assessed at a university laboratory. A total of 1590 families with biological offspring and 409 families with adoptive offspring. Offspring participants were young adults (mean age, 26.2 years). Symptom counts of conduct disorder, adult antisocial behavior, and alcohol, nicotine, and drug dependence. RESULTS There was a medium effect for the transmission of the general externalizing liability for biological parents (r = 0.27-0.30) but not for adoptive parents (r = 0.03-0.07). In contrast, adoptive siblings exhibited significant similarity on the general externalizing liability (r = 0.21). Biometric analyses revealed that the general externalizing liability was highly heritable (a2 = 0.61) but also exhibited significant shared environmental influences (c2 = 0.20). Parent-child resemblance for substance use disorders and antisocial behavior is primarily due to the genetic transmission of a general liability to a spectrum of externalizing disorders. Including adoptive siblings revealed a greater role of shared environmental influences on the general externalizing liability

  13. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders.

    Science.gov (United States)

    Pain, Oliver; Dudbridge, Frank; Cardno, Alastair G; Freeman, Daniel; Lu, Yi; Lundstrom, Sebastian; Lichtenstein, Paul; Ronald, Angelica

    2018-03-31

    This study aimed to test for overlap in genetic influences between psychotic-like experience traits shown by adolescents in the community, and clinically-recognized psychiatric disorders in adulthood, specifically schizophrenia, bipolar disorder, and major depression. The full spectra of psychotic-like experience domains, both in terms of their severity and type (positive, cognitive, and negative), were assessed using self- and parent-ratings in three European community samples aged 15-19 years (Final N incl. siblings = 6,297-10,098). A mega-genome-wide association study (mega-GWAS) for each psychotic-like experience domain was performed. Single nucleotide polymorphism (SNP)-heritability of each psychotic-like experience domain was estimated using genomic-relatedness-based restricted maximum-likelihood (GREML) and linkage disequilibrium- (LD-) score regression. Genetic overlap between specific psychotic-like experience domains and schizophrenia, bipolar disorder, and major depression was assessed using polygenic risk score (PRS) and LD-score regression. GREML returned SNP-heritability estimates of 3-9% for psychotic-like experience trait domains, with higher estimates for less skewed traits (Anhedonia, Cognitive Disorganization) than for more skewed traits (Paranoia and Hallucinations, Parent-rated Negative Symptoms). Mega-GWAS analysis identified one genome-wide significant association for Anhedonia within IDO2 but which did not replicate in an independent sample. PRS analysis revealed that the schizophrenia PRS significantly predicted all adolescent psychotic-like experience trait domains (Paranoia and Hallucinations only in non-zero scorers). The major depression PRS significantly predicted Anhedonia and Parent-rated Negative Symptoms in adolescence. Psychotic-like experiences during adolescence in the community show additive genetic effects and partly share genetic influences with clinically-recognized psychiatric disorders, specifically schizophrenia and

  14. Visual and Verbal Learning in a Genetic Metabolic Disorder

    Science.gov (United States)

    Spilkin, Amy M.; Ballantyne, Angela O.; Trauner, Doris A.

    2009-01-01

    Visual and verbal learning in a genetic metabolic disorder (cystinosis) were examined in the following three studies. The goal of Study I was to provide a normative database and establish the reliability and validity of a new test of visual learning and memory (Visual Learning and Memory Test; VLMT) that was modeled after a widely used test of…

  15. GGDonto ontology as a knowledge-base for genetic diseases and disorders of glycan metabolism and their causative genes.

    Science.gov (United States)

    Solovieva, Elena; Shikanai, Toshihide; Fujita, Noriaki; Narimatsu, Hisashi

    2018-04-18

    Inherited mutations in glyco-related genes can affect the biosynthesis and degradation of glycans and result in severe genetic diseases and disorders. The Glyco-Disease Genes Database (GDGDB), which provides information about these diseases and disorders as well as their causative genes, has been developed by the Research Center for Medical Glycoscience (RCMG) and released in April 2010. GDGDB currently provides information on about 80 genetic diseases and disorders caused by single-gene mutations in glyco-related genes. Many biomedical resources provide information about genetic disorders and genes involved in their pathogenesis, but resources focused on genetic disorders known to be related to glycan metabolism are lacking. With the aim of providing more comprehensive knowledge on genetic diseases and disorders of glycan biosynthesis and degradation, we enriched the content of the GDGDB database and improved the methods for data representation. We developed the Genetic Glyco-Diseases Ontology (GGDonto) and a RDF/SPARQL-based user interface using Semantic Web technologies. In particular, we represented the GGDonto content using Semantic Web languages, such as RDF, RDFS, SKOS, and OWL, and created an interactive user interface based on SPARQL queries. This user interface provides features to browse the hierarchy of the ontology, view detailed information on diseases and related genes, and find relevant background information. Moreover, it provides the ability to filter and search information by faceted and keyword searches. Focused on the molecular etiology, pathogenesis, and clinical manifestations of genetic diseases and disorders of glycan metabolism and developed as a knowledge-base for this scientific field, GGDonto provides comprehensive information on various topics, including links to aid the integration with other scientific resources. The availability and accessibility of this knowledge will help users better understand how genetic defects impact the

  16. Genetic recombination is associated with intrinsic disorder in plant proteomes.

    Science.gov (United States)

    Yruela, Inmaculada; Contreras-Moreira, Bruno

    2013-11-09

    Intrinsically disordered proteins, found in all living organisms, are essential for basic cellular functions and complement the function of ordered proteins. It has been shown that protein disorder is linked to the G + C content of the genome. Furthermore, recent investigations have suggested that the evolutionary dynamics of the plant nucleus adds disordered segments to open reading frames alike, and these segments are not necessarily conserved among orthologous genes. In the present work the distribution of intrinsically disordered proteins along the chromosomes of several representative plants was analyzed. The reported results support a non-random distribution of disordered proteins along the chromosomes of Arabidopsis thaliana and Oryza sativa, two model eudicot and monocot plant species, respectively. In fact, for most chromosomes positive correlations between the frequency of disordered segments of 30+ amino acids and both recombination rates and G + C content were observed. These analyses demonstrate that the presence of disordered segments among plant proteins is associated with the rates of genetic recombination of their encoding genes. Altogether, these findings suggest that high recombination rates, as well as chromosomal rearrangements, could induce disordered segments in proteins during evolution.

  17. Parents' attitudes toward genetic research in autism spectrum disorder.

    Science.gov (United States)

    Johannessen, Jarle; Nærland, Terje; Bloss, Cinnamon; Rietschel, Marcella; Strohmaier, Jana; Gjevik, Elen; Heiberg, Arvid; Djurovic, Srdjan; Andreassen, Ole A

    2016-04-01

    Genetic research in autism spectrum disorder (ASD) is mainly performed in minors who are legally unable to provide consent. Thus, knowledge of the attitudes, fears, and expectations toward genetic research of the parents is important. Knowledge of the attitudes toward genetic research will improve cooperation between researchers and participants, and help establish confidence in ASD genetic research. The present study aimed to assess these attitudes. Questionnaire-based assessments of attitudes toward genetic research and toward procedures in genetic research of n=1455 parents of individuals with ASD were performed. The main motivation for participation in genetic research is to gain more knowledge of the causes and disease mechanisms of ASD (83.6%), and to contribute toward development of improved treatment in the future (63.7%). The parents also had a positive attitude towards storing genetic information (54.3%) and they requested confidentiality of data (82.9%) and expressed a need to be informed about the purpose (89%) and progress of the research (83.7%). We found a slightly more positive attitude to participation in genetic research among older parents (P=0.015), among fathers compared with mothers (P=0.01), among parents of girls compared with boys (P=0.03), and infantile autism compared with Asperger syndrome (P=0.002). However, linear regression analysis showed that parent and child characteristics seem to have too small an influence on attitudes toward genetic research to be of any relevance (R(2)=0.002-0.02). Parents of children with ASD have, in general, a very positive attitude toward genetic research. Data confidentiality is important, and they express a need for information on the purpose and progress of the research.

  18. Genetics and pharmacogenetics of mood disorders.

    Science.gov (United States)

    Serretti, Alessandro

    2017-04-30

    Genetic research in Psychiatry is viewed by clinicians with both hope and curiosity sometimes mixed with disillusionment. Indeed, in the last 30 years many results have not been confirmed and clinical applications are still missing. However recent findings suggest that we are at the beginning of a new era. A set of variants within neuroplasticity and inflammation genes have been identified as a valid basis for both bipolar disorder and major depression. Similarly, a set of genes has been identified as a liability factor for response and tolerability to antidepressants and the first clinical applications are already in the market. However, some caution should be applied until definite findings are available.

  19. Comparing ESC and iPSC?Based Models for Human Genetic Disorders

    OpenAIRE

    Halevy, Tomer; Urbach, Achia

    2014-01-01

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients’ somatic cells, and the ne...

  20. Down syndrome--genetic and nutritional aspects of accompanying disorders.

    Science.gov (United States)

    Mazurek, Dominika; Wyka, Joanna

    2015-01-01

    Down syndrome (DS) is one of the more commonly occurring genetic disorders, where mental retardation is combined with nutritional diseases. It is caused by having a third copy of chromosome 21, and there exist 3 forms; Simple Trisomy 21, Translocation Trisomy and Mosaic Trisomy. Symptoms include intellectual disability/mental retardation, early onset of Alzheimer's disease and the appearance of various phenotypic features such as narrow slanted eyes, flat nose and short stature. In addition, there are other health problems throughout the body, consisting in part of cardiac defects and thyroid function abnormalities along with nutritional disorders (ie. overweight, obesity, hypercholesterolemia and deficiencies of vitamins and minerals). Those suffering DS have widespread body frame abnormalities and impaired brain development and function; the latter leading to impaired intellectual development. Many studies indicate excessive or deficient nutrient uptakes associated with making inappropriate foodstuff choices, food intolerance, (eg. celiac disease) or malabsorption. DS persons with overweight or obesity are linked with a slow metabolic rate, abnormal blood leptin concentrations and exhibit low levels of physical activity. Vitamin B group deficiencies and abnormal blood homocysteine levels decrease the rate of intellectual development in DS cases. Zinc deficiencies result in short stature, thyroid function disorders and an increased appetite caused by excessive supplementation. Scientific advances in the research and diagnosis of DS, as well as preventing any associated conditions, have significantly increased life expectancies of those with this genetic disorder. Early dietary interventions by parents or guardians of DS children afford an opportunity for decreasing the risk or delaying some of the DS associated conditions from appearing, thus beneficially impacting on their quality of life.

  1. Genetic and environmental influences on the co-morbidity between depression, panic disorder, agoraphobia, and social phobia: a twin study.

    Science.gov (United States)

    Mosing, Miriam A; Gordon, Scott D; Medland, Sarah E; Statham, Dixie J; Nelson, Elliot C; Heath, Andrew C; Martin, Nicholas G; Wray, Naomi R

    2009-01-01

    Major depression (MD) and anxiety disorders such as panic disorder (PD), agoraphobia (AG), and social phobia (SP) are heritable and highly co-morbid. However, the relative importance of genetic and environmental etiology of the covariation between these disorders, particularly the relationship between PD and AG, is less clear. This study measured MD, PD, and AG in a population sample of 5,440 twin pairs and 1,245 single twins, about 45% of whom were also scored for SP. Prevalences, within individual co-morbidity and twin odds ratios for co-morbidity, are reported. A behavioral genetic analysis of the four disorders using the classical twin design was conducted. Odds ratios for MD, PD, AG, and SP in twins of individuals diagnosed with one of the four disorders were increased. Heritability estimates under a threshold-liability model for MD, PD, AG, and SP respectively were .33 (CI: 0.30-0.42), .38 (CI: 0.24-0.55), .48 (CI: 0.37-0.65), and .39 (CI: 0.16-0.65), with no evidence for any variance explained by the common environment shared by twins. We find that a common genetic factor explains a moderate proportion of variance in these four disorders. The genetic correlation between PD and AG was .83. MD, PD, AG, and SP strongly co-aggregate within families and common genetic factors explain a moderate proportion of variance in these four disorders. The high genetic correlation between PD and AG and the increased odds ratio for PD and AG in siblings of those with AG without PD suggests a common genetic etiology for PD and AG.

  2. Pediatric medicine and the genetic disorders of the Amish and Mennonite people of Pennsylvania.

    Science.gov (United States)

    Morton, D Holmes; Morton, Caroline S; Strauss, Kevin A; Robinson, Donna L; Puffenberger, Erik G; Hendrickson, Christine; Kelley, Richard I

    2003-08-15

    The Clinic for Special Children in Lancaster County, Pennsylvania, is a community-supported, nonprofit pediatric medical practice for Amish and Mennonite children who have genetic disorders. Over a 14-year period, 1988-2002, we have encountered 39 heritable disorders among the Amish and 23 among the Mennonites. We emphasize early recognition and long-term medical care of children with genetic conditions. In the clinic laboratory we perform amino acid analyses by high-performance liquid chromatography (HPLC), organic acid analyses by gas chromatography/mass spectrometry (GC/MS), and molecular diagnoses and carrier tests by polymerase chain reaction (PCR) amplification and sequencing or restriction digestion. Regional hospitals and midwives routinely send whole-blood filter paper neonatal screens for tandem mass spectrometry and other modern analytical methods to detect 14 of the metabolic disorders found in these populations as part of the NeoGen Inc. Supplemental Newborn Screening Program (Pittsburgh, PA). Medical care based on disease pathophysiology reduces morbidity, mortality, and costs for the majority of disorders. Among our patients who are homozygous for the same mutation, differences in disease severity are not unusual. Clinical problems typically arise from the interaction of the underlying genetic disorder with common infections, malnutrition, injuries, and immune dysfunction that act through classical pathophysiological disease mechanisms to influence the natural history of disease. Copyright 2003 Wiley-Liss, Inc.

  3. Delusional disorder: molecular genetic evidence for dopamine psychosis.

    Science.gov (United States)

    Morimoto, Kiyoshi; Miyatake, Ryosuke; Nakamura, Mitsuo; Watanabe, Takemi; Hirao, Toru; Suwaki, Hiroshi

    2002-06-01

    Since delusional disorder is characterized by mono-symptomatic paranoid symptoms, it can be a good clinical model for investigating the dopaminergic mechanism responsible for paranoid symptoms. We examined neuroleptic responses, plasma homovanillic acid (pHVA) and genes of the dopamine receptor (DR) and its synthesizing enzyme (tyrosine hydroxylase: TH) in patients with delusional disorder and compared them with those of schizophrenic patients and healthy controls. (1) A relatively small dose of haloperidol was more effective for delusional disorder than for schizophrenia. (2) The pretreatment level of pHVA was higher in patients with persecution-type, but not in those with jealousy-type delusional disorder, compared with age- and sex-matched controls. This increased pHVA level was decreased eight weeks after successful haloperidol treatment. (3) The genotype frequency of the DRD2 gene Ser311Cys was significantly higher in patients with persecution-type delusional disorder (21%), compared with schizophrenic patients (6%) or controls (6%). (4) Patients homozygous for the DRD3 gene Ser9Ser had higher pretreatment levels of pHVA than those heterozygous for Ser9Gly. (v) A significant positive correlation was found between the polymorphic (TCAT)(n) repeat in the first intron of the TH gene and pretreatment levels of pHVA in delusional disorder. We suggest that delusional disorder, especially the persecution-type, includes a "dopamine psychosis," and that polymorphism of the DRD2, DRD3 and/or TH gene is part of the genetic basis underlying the hyperdopaminergic state that produces paranoid symptoms. Further studies on a large sample size are required.

  4. Childhood separation anxiety disorder and adult onset panic attacks share a common genetic diathesis.

    Science.gov (United States)

    Roberson-Nay, Roxann; Eaves, Lindon J; Hettema, John M; Kendler, Kenneth S; Silberg, Judy L

    2012-04-01

    Childhood separation anxiety disorder (SAD) is hypothesized to share etiologic roots with panic disorder. The aim of this study was to estimate the genetic and environmental sources of covariance between childhood SAD and adult onset panic attacks (AOPA), with the primary goal to determine whether these two phenotypes share a common genetic diathesis. Participants included parents and their monozygotic or dizygotic twins (n = 1,437 twin pairs) participating in the Virginia Twin Study of Adolescent Behavioral Development and those twins who later completed the Young Adult Follow-Up (YAFU). The Child and Adolescent Psychiatric Assessment was completed at three waves during childhood/adolescence followed by the Structured Clinical Interview for DSM-III-R at the YAFU. Two separate, bivariate Cholesky models were fit to childhood diagnoses of SAD and overanxious disorder (OAD), respectively, and their relation with AOPA; a trivariate Cholesky model also examined the collective influence of childhood SAD and OAD on AOPA. In the best-fitting bivariate model, the covariation between SAD and AOPA was accounted for by genetic and unique environmental factors only, with the genetic factor associated with childhood SAD explaining significant variance in AOPA. Environmental risk factors were not significantly shared between SAD and AOPA. By contrast, the genetic factor associated with childhood OAD did not contribute significantly to AOPA. Results of the trivariate Cholesky reaffirmed outcomes of bivariate models. These data indicate that childhood SAD and AOPA share a common genetic diathesis that is not observed for childhood OAD, strongly supporting the hypothesis of a specific genetic etiologic link between the two phenotypes. © 2012 Wiley Periodicals, Inc.

  5. GeneAnalytics Pathway Analysis and Genetic Overlap among Autism Spectrum Disorder, Bipolar Disorder and Schizophrenia

    Directory of Open Access Journals (Sweden)

    Naveen S. Khanzada

    2017-02-01

    Full Text Available Bipolar disorder (BPD and schizophrenia (SCH show similar neuropsychiatric behavioral disturbances, including impaired social interaction and communication, seen in autism spectrum disorder (ASD with multiple overlapping genetic and environmental influences implicated in risk and course of illness. GeneAnalytics software was used for pathway analysis and genetic profiling to characterize common susceptibility genes obtained from published lists for ASD (792 genes, BPD (290 genes and SCH (560 genes. Rank scores were derived from the number and nature of overlapping genes, gene-disease association, tissue specificity and gene functions subdivided into categories (e.g., diseases, tissues or functional pathways. Twenty-three genes were common to all three disorders and mapped to nine biological Superpathways including Circadian entrainment (10 genes, score = 37.0, Amphetamine addiction (five genes, score = 24.2, and Sudden infant death syndrome (six genes, score = 24.1. Brain tissues included the medulla oblongata (11 genes, score = 2.1, thalamus (10 genes, score = 2.0 and hypothalamus (nine genes, score = 2.0 with six common genes (BDNF, DRD2, CHRNA7, HTR2A, SLC6A3, and TPH2. Overlapping genes impacted dopamine and serotonin homeostasis and signal transduction pathways, impacting mood, behavior and physical activity level. Converging effects on pathways governing circadian rhythms support a core etiological relationship between neuropsychiatric illnesses and sleep disruption with hypoxia and central brain stem dysfunction.

  6. Merging data from genetic and epigenetic approaches to better understand autistic spectrum disorder.

    Science.gov (United States)

    Grayson, Dennis R; Guidotti, Alessandro

    2016-01-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that is characterized by a wide range of cognitive and behavioral abnormalities. Genetic research has identified large numbers of genes that contribute to ASD phenotypes. There is compelling evidence that environmental factors contribute to ASD through influences that differentially impact the brain through epigenetic mechanisms. Both genetic mutations and epigenetic influences alter gene expression in different cell types of the brain. Mutations impact the expression of large numbers of genes and also have downstream consequences depending on specific pathways associated with the mutation. Environmental factors impact the expression of sets of genes by altering methylation/hydroxymethylation patterns, local histone modification patterns and chromatin remodeling. Herein, we discuss recent developments in the research of ASD with a focus on epigenetic pathways as a complement to current genetic screening.

  7. The genetic basis of addictive disorders.

    Science.gov (United States)

    Ducci, Francesca; Goldman, David

    2012-06-01

    Addictions are common, chronic, and relapsing diseases that develop through a multistep process. The impact of addictions on morbidity and mortality is high worldwide. Twin studies have shown that the heritability of addictions ranges from 0.39 (hallucinogens) to 0.72 (cocaine). Twin studies indicate that genes influence each stage from initiation to addiction, although the genetic determinants may differ. Addictions are by definition the result of gene × environment interaction. These disorders, which are in part volitional, in part inborn, and in part determined by environmental experience, pose the full range of medical, genetic, policy, and moral challenges. Gene discovery is being facilitated by a variety of powerful approaches, but is in its infancy. It is not surprising that the genes discovered so far act in a variety of ways: via altered metabolism of drug (the alcohol and nicotine metabolic gene variants), via altered function of a drug receptor (the nicotinic receptor, which may alter affinity for nicotine but as discussed may also alter circuitry of reward), and via general mechanisms of addiction (genes such as monoamine oxidase A and the serotonin transporter that modulate stress response, emotion, and behavioral control). Addiction medicine today benefits from genetic studies that buttress the case for a neurobiologic origin of addictive behavior, and some general information on familially transmitted propensity that can be used to guide prevention. A few well-validated, specific predictors such as OPRM1, ADH1B, ALDH2, CHRNA5, and CYP26 have been identified and can provide some specific guidance, for example, to understand alcohol-related flushing and upper GI cancer risk (ADH1B and AKLDH2), variation in nicotine metabolism (CYP26), and, potentially, naltrexone treatment response (OPRM1). However, the genetic predictors available are few in number and account for only a small portion of the genetic variance in liability, and have not been integrated

  8. Characterization of Movement Disorder Phenomenology in Genetically Proven, Familial Frontotemporal Lobar Degeneration: A Systematic Review and Meta-Analysis

    Science.gov (United States)

    Gasca-Salas, Carmen; Masellis, Mario; Khoo, Edwin; Shah, Binit B.; Fisman, David; Lang, Anthony E.; Kleiner-Fisman, Galit

    2016-01-01

    Background Mutations in granulin (PGRN) and tau (MAPT), and hexanucleotide repeat expansions near the C9orf72 genes are the most prevalent genetic causes of frontotemporal lobar degeneration. Although behavior, language and movement presentations are common, the relationship between genetic subgroup and movement disorder phenomenology is unclear. Objective We conducted a systematic review and meta-analysis of the literature characterizing the spectrum and prevalence of movement disorders in genetic frontotemporal lobar degeneration. Methods Electronic databases were searched using terms related to frontotemporal lobar degeneration and movement disorders. Articles were included when cases had a proven genetic cause. Study-specific prevalence estimates for clinical features were transformed using Freeman-Tukey arcsine transformation, allowing for pooled estimates of prevalence to be generated using random-effects models. Results The mean age at onset was earlier in those with MAPT mutations compared to PGRN (p<0.001) and C9orf72 (p = 0.024). 66.5% of subjects had an initial non-movement presentation that was most likely a behavioral syndrome (35.7%). At any point during the disease, parkinsonism was the most common movement syndrome reported in 79.8% followed by progressive supranuclear palsy (PSPS) and corticobasal (CBS) syndromes in 12.2% and 10.7%, respectively. The prevalence of movement disorder as initial presentation was higher in MAPT subjects (35.8%) compared to PGRN subjects (10.1). In those with a non-movement presentation, language disorder was more common in PGRN subjects (18.7%) compared to MAPT subjects (5.4%). Summary This represents the first systematic review and meta-analysis of the occurrence of movement disorder phenomenology in genetic frontotemporal lobar degeneration. Standardized prospective collection of clinical information in conjunction with genetic characterization will be crucial for accurate clinico-genetic correlation. PMID:27100392

  9. Phenotypic and genetic associations between reading and attention-deficit/hyperactivity disorder dimensions in adolescence.

    Science.gov (United States)

    Plourde, Vickie; Boivin, Michel; Brendgen, Mara; Vitaro, Frank; Dionne, Ginette

    2017-10-01

    Multiple studies have shown that reading abilities and attention-deficit/hyperactivity disorder symptoms, mainly inattention symptoms, are phenotypically and genetically associated during childhood. However, few studies have looked at these associations during adolescence to investigate possible developmental changes. The aim of the study is to examine the genetic and environmental etiology of the associations between inattention and hyperactivity reported by parents, and reading accuracy, reading speed, and word reading in a population-based twin sample (Quebec Newborn Twin Study). Participants were between 14 and 15 years of age at the time of testing (N = 668-837). Phenotypic results showed that when nonverbal and verbal abilities were controlled, inattention, but not hyperactivity/impulsivity, was a modest and significant predictor of reading accuracy, reading speed, and word reading. The associations between inattention and all reading abilities were partly explained by genetic and unique environmental factors. However, the genetic correlations were no longer significant after controlling for verbal abilities. In midadolescence, inattention is the attention-deficit/hyperactivity disorder dimension associated with reading abilities, but they could also share genetic factors with general verbal skills.

  10. To Your Health: NLM update transcript - Genetic architecture of mental disorders

    Science.gov (United States)

    ... html To Your Health: NLM update Transcript Genetic architecture of mental disorders : 04/30/2018 To use the sharing features on this page, please enable JavaScript. Greetings from the National Library of Medicine and MedlinePlus.gov Regards to all ...

  11. Multiple-trait estimates of genetic parameters for metabolic disease traits, fertility disorders, and their predictors in Canadian Holsteins.

    Science.gov (United States)

    Jamrozik, J; Koeck, A; Kistemaker, G J; Miglior, F

    2016-03-01

    Producer-recorded health data for metabolic disease traits and fertility disorders on 35,575 Canadian Holstein cows were jointly analyzed with selected indicator traits. Metabolic diseases included clinical ketosis (KET) and displaced abomasum (DA); fertility disorders were metritis (MET) and retained placenta (RP); and disease indicators were fat-to-protein ratio, milk β-hydroxybutyrate, and body condition score (BCS) in the first lactation. Traits in first and later (up to fifth) lactations were treated as correlated in the multiple-trait (13 traits in total) animal linear model. Bayesian methods with Gibbs sampling were implemented for the analysis. Estimates of heritability for disease incidence were low, up to 0.06 for DA in first lactation. Among disease traits, the environmental herd-year variance constituted 4% of the total variance for KET and less for other traits. First- and later-lactation disease traits were genetically correlated (from 0.66 to 0.72) across all traits, indicating different genetic backgrounds for first and later lactations. Genetic correlations between KET and DA were relatively strong and positive (up to 0.79) in both first- and later-lactation cows. Genetic correlations between fertility disorders were slightly lower. Metritis was strongly genetically correlated with both metabolic disease traits in the first lactation only. All other genetic correlations between metabolic and fertility diseases were statistically nonsignificant. First-lactation KET and MET were strongly positively correlated with later-lactation performance for these traits due to the environmental herd-year effect. Indicator traits were moderately genetically correlated (from 0.30 to 0.63 in absolute values) with both metabolic disease traits in the first lactation. Smaller and mostly nonsignificant genetic correlations were among indicators and metabolic diseases in later lactations. The only significant genetic correlations between indicators and fertility

  12. Schwartz–jampel syndrome: Clinical and diagnostic phenotype of a rare genetic disorder

    Directory of Open Access Journals (Sweden)

    Bhaskara P Shelley

    2016-01-01

    Full Text Available The distinctive phenotypic, clinical, skeletal characteristics with the typical electrophysiological features of an 11-year-old male child who presented to the neurology outpatient service are described, with the objective of emphasizing the diagnostic awareness of chondrodystrophic myotonia or Schwartz–Jampel syndrome, a very rare genetic disorder. This autosomal recessive disorder due to mutations in the gene Perlecan leads to abnormal cartilage development and anomalous neuromuscular activity.

  13. Genetic approaches to understanding post-traumatic stress disorder

    Science.gov (United States)

    Almli, Lynn M.; Fani, Negar; Smith, Alicia K.; Ressler, Kerry J.

    2015-01-01

    Post-traumatic stress disorder (PTSD) is increasingly recognized as both a disorder of enormous mental health and societal burden, but also as an anxiety disorder that may be particularly understandable from a scientific perspective. Specifically, PTSD can be conceptualized as a disorder of fear and stress dysregulation, and the neural circuitry underlying these pathways in both animals and humans are becoming increasingly well understood. Furthermore, PTSD is the only disorder in psychiatry in which the initiating factor, the trauma exposure, can be identified. Thus, the pathophysiology of the fear and stress response underlying PTSD can be examined and potentially interrupted. Twin studies have shown that the development of PTSD following a trauma is heritable, and that genetic risk factors may account for up to 30–40% of this heritability. A current goal is to understand the gene pathways that are associated with PTSD, and how those genes act on the fear/stress circuitry to mediate risk vs. resilience for PTSD. This review will examine gene pathways that have recently been analysed, primarily through candidate gene studies (including neuroimaging studies of candidate genes), in addition to genome-wide associations and the epigenetic regulation of PTSD. Future and on-going studies are utilizing larger and collaborative cohorts to identify novel gene candidates through genome-wide association and other powerful genomic approaches. Identification of PTSD biological pathways strengthens the hope of progress in the mechanistic understanding of a model psychiatric disorder and allows for the development of targeted treatments and interventions. PMID:24103155

  14. Genetic approaches to understanding post-traumatic stress disorder.

    Science.gov (United States)

    Almli, Lynn M; Fani, Negar; Smith, Alicia K; Ressler, Kerry J

    2014-02-01

    Post-traumatic stress disorder (PTSD) is increasingly recognized as both a disorder of enormous mental health and societal burden, but also as an anxiety disorder that may be particularly understandable from a scientific perspective. Specifically, PTSD can be conceptualized as a disorder of fear and stress dysregulation, and the neural circuitry underlying these pathways in both animals and humans are becoming increasingly well understood. Furthermore, PTSD is the only disorder in psychiatry in which the initiating factor, the trauma exposure, can be identified. Thus, the pathophysiology of the fear and stress response underlying PTSD can be examined and potentially interrupted. Twin studies have shown that the development of PTSD following a trauma is heritable, and that genetic risk factors may account for up to 30-40% of this heritability. A current goal is to understand the gene pathways that are associated with PTSD, and how those genes act on the fear/stress circuitry to mediate risk vs. resilience for PTSD. This review will examine gene pathways that have recently been analysed, primarily through candidate gene studies (including neuroimaging studies of candidate genes), in addition to genome-wide associations and the epigenetic regulation of PTSD. Future and on-going studies are utilizing larger and collaborative cohorts to identify novel gene candidates through genome-wide association and other powerful genomic approaches. Identification of PTSD biological pathways strengthens the hope of progress in the mechanistic understanding of a model psychiatric disorder and allows for the development of targeted treatments and interventions.

  15. Genetic and environmental influences on the codevelopment among borderline personality disorder traits, major depression symptoms, and substance use disorder symptoms from adolescence to young adulthood.

    Science.gov (United States)

    Bornovalova, Marina A; Verhulst, Brad; Webber, Troy; McGue, Matt; Iacono, William G; Hicks, Brian M

    2018-02-01

    Although borderline personality disorder (BPD) traits decline from adolescence to adulthood, comorbid psychopathology such as symptoms of major depressive disorder (MDD), alcohol use disorder (AUD), and drug use disorders (DUDs) likely disrupt this normative decline. Using a longitudinal sample of female twins (N = 1,763), we examined if levels of BPD traits were correlated with changes in MDD, AUD, and DUD symptoms from ages 14 to 24. A parallel process biometric latent growth model examined the contributions of genetic and environmental factors to the relationships between developmental components of these phenotypes. Higher BPD trait levels predicted a greater rate of increase in AUD and DUD symptoms, and higher AUD and DUD symptoms predicted a slower rate of decline of BPD traits from ages 14 to 24. Common genetic influences accounted for the associations between BPD traits and each disorder, as well as the interrelationships of AUD and DUD symptoms. Both genetic and nonshared environmental influences accounted for the correlated levels between BPD traits and MDD symptoms, but solely environmental influences accounted for the correlated changes between the two over time. Results indicate that higher levels of BPD traits may contribute to an earlier onset and faster escalation of AUD and DUD symptoms, and substance use problems slow the normative decline in BPD traits. Overall, our data suggests that primarily genetic influences contribute to the comorbidity between BPD features and substance use disorder symptoms. We discuss our data in the context of two major theories of developmental psychopathology and comorbidity.

  16. Clinical and genetic factors associated with suicide in mood disorder patients.

    Science.gov (United States)

    Antypa, Niki; Souery, Daniel; Tomasini, Mario; Albani, Diego; Fusco, Federica; Mendlewicz, Julien; Serretti, Alessandro

    2016-03-01

    Suicidality is a continuum ranging from ideation to attempted and completed suicide, with a complex etiology involving both genetic heritability and environmental factors. The majority of suicide events occur in the context of psychiatric conditions, preeminently major depression and bipolar disorder. The present study investigates clinical factors associated with suicide in a sample of 553 mood disorder patients, recruited within the 'Psy Pluriel' center, Centre Européen de Psychologie Médicale, and the Department of Psychiatry of Erasme Hospital (Brussels). Furthermore, genetic association analyses examining polymorphisms within COMT, BDNF, MAPK1 and CREB1 genes were performed in a subsample of 259 bipolar patients. The presence or absence of a previous suicide attempt and of current suicide risk were assessed. A positive association with suicide attempt was reported for younger patients, females, lower educated, smokers, those with higher scores on depressive symptoms and higher functional disability and those with anxiety comorbidity and familial history of suicidality in first- and second-degree relatives. Anxiety disorder comorbidity was the stronger predictor of current suicide risk. No associations were found with polymorphisms within COMT and BDNF genes, whereas significant associations were found with variations in rs13515 (MAPK1) and rs6740584 (CREB1) polymorphisms. From a clinical perspective, our study proposes several clinical characteristics, such as increased depressive symptomatology, anxiety comorbidity, functional disability and family history of suicidality, as correlates associated with suicide. Genetic risk variants in MAPK1 and CREB1 genes might be involved in a dysregulation of inflammatory and neuroplasticity pathways and are worthy of future investigation.

  17. Heritability and Genetic Relationship of Adult Self-Reported Stuttering, Cluttering and Childhood Speech-Language Disorders

    DEFF Research Database (Denmark)

    Fagnani, Corrado; Fibiger, Steen; Skytthe, Axel

    2011-01-01

    Genetic influence and mutual genetic relationship for adult self-reported childhood speech-language disorders, stuttering, and cluttering were studied. Using nationwide questionnaire answers from 34,944 adult Danish twins, a multivariate biometric analysis based on the liability-threshold model w...

  18. Genome-wide analysis in UK Biobank identifies four loci associated with mood instability and genetic correlation with major depressive disorder, anxiety disorder and schizophrenia.

    Science.gov (United States)

    Ward, Joey; Strawbridge, Rona J; Bailey, Mark E S; Graham, Nicholas; Ferguson, Amy; Lyall, Donald M; Cullen, Breda; Pidgeon, Laura M; Cavanagh, Jonathan; Mackay, Daniel F; Pell, Jill P; O'Donovan, Michael; Escott-Price, Valentina; Smith, Daniel J

    2017-11-30

    Mood instability is a core clinical feature of affective and psychotic disorders. In keeping with the Research Domain Criteria approach, it may be a useful construct for identifying biology that cuts across psychiatric categories. We aimed to investigate the biological validity of a simple measure of mood instability and evaluate its genetic relationship with several psychiatric disorders, including major depressive disorder (MDD), bipolar disorder (BD), schizophrenia, attention deficit hyperactivity disorder (ADHD), anxiety disorder and post-traumatic stress disorder (PTSD). We conducted a genome-wide association study (GWAS) of mood instability in 53,525 cases and 60,443 controls from UK Biobank, identifying four independently associated loci (on chromosomes 8, 9, 14 and 18), and a common single-nucleotide polymorphism (SNP)-based heritability estimate of ~8%. We found a strong genetic correlation between mood instability and MDD (r g  = 0.60, SE = 0.07, p = 8.95 × 10 -17 ) and a small but significant genetic correlation with both schizophrenia (r g  = 0.11, SE = 0.04, p = 0.01) and anxiety disorders (r g  = 0.28, SE = 0.14, p = 0.04), although no genetic correlation with BD, ADHD or PTSD was observed. Several genes at the associated loci may have a role in mood instability, including the DCC netrin 1 receptor (DCC) gene, eukaryotic translation initiation factor 2B subunit beta (eIF2B2), placental growth factor (PGF) and protein tyrosine phosphatase, receptor type D (PTPRD). Strengths of this study include the very large sample size, but our measure of mood instability may be limited by the use of a single question. Overall, this work suggests a polygenic basis for mood instability. This simple measure can be obtained in very large samples; our findings suggest that doing so may offer the opportunity to illuminate the fundamental biology of mood regulation.

  19. A network of genes, genetic disorders, and brain areas.

    Directory of Open Access Journals (Sweden)

    Satoru Hayasaka

    Full Text Available The network-based approach has been used to describe the relationship among genes and various phenotypes, producing a network describing complex biological relationships. Such networks can be constructed by aggregating previously reported associations in the literature from various databases. In this work, we applied the network-based approach to investigate how different brain areas are associated to genetic disorders and genes. In particular, a tripartite network with genes, genetic diseases, and brain areas was constructed based on the associations among them reported in the literature through text mining. In the resulting network, a disproportionately large number of gene-disease and disease-brain associations were attributed to a small subset of genes, diseases, and brain areas. Furthermore, a small number of brain areas were found to be associated with a large number of the same genes and diseases. These core brain regions encompassed the areas identified by the previous genome-wide association studies, and suggest potential areas of focus in the future imaging genetics research. The approach outlined in this work demonstrates the utility of the network-based approach in studying genetic effects on the brain.

  20. Relative variations of gut microbiota in disordered cholesterol metabolism caused by high-cholesterol diet and host genetics.

    Science.gov (United States)

    Bo, Tao; Shao, Shanshan; Wu, Dongming; Niu, Shaona; Zhao, Jiajun; Gao, Ling

    2017-08-01

    Recent studies performed provide mechanistic insight into effects of the microbiota on cholesterol metabolism, but less focus was given to how cholesterol impacts the gut microbiota. In this study, ApoE -/- Sprague Dawley (SD) rats and their wild-type counterparts (n = 12) were, respectively, allocated for two dietary condition groups (normal chow and high-cholesterol diet). Total 16S rDNA of fecal samples were extracted and sequenced by high-throughput sequencing to determine differences in microbiome composition. Data were collected and performed diversity analysis and phylogenetic analysis. The influence of cholesterol on gut microbiota was discussed by using cholesterol dietary treatment as exogenous cholesterol disorder factor and genetic modification as endogenous metabolic disorder factor. Relative microbial variations were compared to illustrate the causality and correlation of cholesterol and gut microbiota. It turned out comparing to genetically modified rats, exogenous cholesterol intake may play more effective role in changing gut microbiota profile, although the serum cholesterol level of genetically modified rats was even higher. Relative abundance of some representative species showed that the discrepancies due to dietary variation were more obvious, whereas some low abundance species changed because of genetic disorders. Our results partially demonstrated that gut microbiota are relatively more sensitive to dietary variation. Nevertheless, considering the important effect of bacteria in cholesterol metabolism, the influence to gut flora by "genetically caused cholesterol disorder" cannot be overlooked. Manipulation of gut microbiota might be an effective target for preventing cholesterol-related metabolic disorders. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  1. Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population.

    Science.gov (United States)

    Wen, Zujia; Chen, Jianhua; Khan, Raja Amjad Waheed; Song, Zhijian; Wang, Meng; Li, Zhiqiang; Shen, Jiawei; Li, Wenjin; Shi, Yongyong

    2016-04-01

    Schizophrenia, major depressive disorder, and bipolar disorder are three major psychiatric disorders affecting around 0.66%, 3.3%, and 1.5% of the Han Chinese population respectively. Several genetic linkage analyses and genome wide association studies identified NRG1 as a susceptibility gene of schizophrenia, which was validated by its role in neurodevelopment, glutamate, and other neurotransmitter receptor expression regulation. To further investigate whether NRG1 is a shared risk gene for major depressive disorder, bipolar disorder as well as schizophrenia, we performed an association study among 1,248 schizophrenia cases, 1,056 major depression cases, 1,344 bipolar disorder cases, and 1,248 controls. Totally 15 tag SNPs were genotyped and analyzed, and no population stratification was found in our sample set. Among the sites, rs4236710 (corrected Pgenotye  = 0.015) and rs4512342 (Pallele  = 0.03, Pgenotye  = 0.045 after correction) were associated with schizophrenia, and rs2919375 (corrected Pgenotye  = 0.004) was associated with major depressive disorder. The haplotype rs4512342-rs6982890 showed association with schizophrenia (P = 0.03 for haplotype "TC" after correction), and haplotype rs4531002-rs11989919 proved to be a shared risk factor for both major depressive disorder ("CC": corrected P = 0.009) and bipolar disorder ("CT": corrected P = 0.003). Our results confirmed that NRG1 was a shared common susceptibility gene for major mental disorders in Han Chinese population. © 2016 Wiley Periodicals, Inc.

  2. Consanguinity and major genetic disorders in Saudi children: Acommunity-based cross-sectional study

    International Nuclear Information System (INIS)

    El-Mouzan, Mohammad I.; Al-Salloum, Abdullah A.; Al-Herbish, Abdullah S.; Qurachi, Mansour M.; Al-Omar, Ahmad A.

    2008-01-01

    There is a high rate of consanguinity in Saudi Arabia; however,information on its relationship with genetic disorders is limited. Theobjective of this cross-sectional study was to explore the role ofconsanguinity in genetic disorders. The study sample was determined by amultistage probability random sampling procedure. Primary care physiciansperformed a history and physical examination of all children and adolescentsyounger than 19 years and all cases of genetic diseases were recorded. Thechi-square test was used to compare proportions. During the two-year studyperiod (2004-2005), 11554 of 11874 (97%) mothers answered the question onconsanguinity and 6470 of 11554 (56%) were consanguineous. There was nosignificant association between first-cousin consanguinity and Down syndrome(P=0.55). Similarly, there was no significant association with either sicklecell disease (P=0.97) or glucose-6-phosphate dehydrogenase deficiency(P=0.67) for-cousin in consanguinity. A borderline statistical significancewas found for major congenital malformations (P=0.05). However, the mostsignificant association with first-cousin consanguinity was congenital heartdisease (CHD) (P=0.01). Finally, no significant association was found fortype 1 diabetes mellitus (P=0.92). For all types of consanguinity, similartrends of association were found, with a definite statistically significantassociation only with CHD (P=0.003). The data suggest a significant role ofparental consanguinity in CHD. However, a relationship between consanguinityand other genetic diseases could not be established. The effect ofconsanguinity on genetic diseases is not uniform and this should be takeninto consideration in genetic counseling. (author)

  3. Genetic and Environmental Influences on the Co-development between Borderline Personality Disorder Traits, Major Depression Symptoms, and Substance Use Disorder Symptoms from Adolescence to Young Adulthood

    Science.gov (United States)

    Bornovalova, Marina A.; Verhulst, Brad; Webber, Troy; McGue, Matt; Iacono, William G.; Hicks, Brian M.

    2017-01-01

    Although borderline personality disorder (BPD) traits decline from adolescence to adulthood, comorbid psychopathology such as symptoms of major depressive disorder (MDD), alcohol use disorder (AUD), and drug use disorders (DUDs) likely disrupt this normative decline. Using a longitudinal sample of female twins (N = 1,763), we examined if levels of BPD traits were correlated with changes in MDD, AUD, and DUD symptoms from ages 14–24. A parallel process biometric latent growth model examined the contributions of genetic and environmental factors to the relationships between developmental components of these phenotypes. Higher BPD trait-levels predicted a greater rate of increase in AUD and DUD symptoms, and higher AUD and DUD symptoms predicted a slower rate of decline of BPD traits from ages 14–24. Common genetic influences accounted for the associations between BPD traits and each disorder, as well as the interrelationships of AUD and DUD symptoms. Both genetic and nonshared environmental influences accounted for the correlated levels between BPD traits and MDD symptoms, but solely environmental influences accounted for the correlated changes between the two over time. Results indicate that higher levels of BPD traits may contribute to an earlier onset and faster escalation of AUD and DUD symptoms, and substance use problems slow the normative decline in BPD traits. Overall, our data suggests that primarily genetic influences contribute to the comorbidity between BPD features and substance use disorder symptoms. We discuss our data in the context of two major theories of developmental psychopathology and comorbidity. PMID:28420454

  4. Investigation of previously implicated genetic variants in chronic tic disorders

    DEFF Research Database (Denmark)

    Abdulkadir, Mohamed; Londono, Douglas; Gordon, Derek

    2017-01-01

    with those from a large independent case-control cohort. After quality control 71 SNPs were available in 371 trios; 112 SNPs in 179 trios; and 3 SNPs in 192 trios. 17 were candidate SNPs implicated in TS and 2 were implicated in obsessive-compulsive disorder (OCD) or autism spectrum disorder (ASD); 142 were......Genetic studies in Tourette syndrome (TS) are characterized by scattered and poorly replicated findings. We aimed to replicate findings from candidate gene and genome-wide association studies (GWAS). Our cohort included 465 probands with chronic tic disorder (93% TS) and both parents from 412...... families (some probands were siblings). We assessed 75 single nucleotide polymorphisms (SNPs) in 465 parent-child trios; 117 additional SNPs in 211 trios; and 4 additional SNPs in 254 trios. We performed SNP and gene-based transmission disequilibrium tests and compared nominally significant SNP results...

  5. Massively parallel sequencing and targeted exomes in familial kidney disease can diagnose underlying genetic disorders.

    Science.gov (United States)

    Mallett, Andrew J; McCarthy, Hugh J; Ho, Gladys; Holman, Katherine; Farnsworth, Elizabeth; Patel, Chirag; Fletcher, Jeffery T; Mallawaarachchi, Amali; Quinlan, Catherine; Bennetts, Bruce; Alexander, Stephen I

    2017-12-01

    Inherited kidney disease encompasses a broad range of disorders, with both multiple genes contributing to specific phenotypes and single gene defects having multiple clinical presentations. Advances in sequencing capacity may allow a genetic diagnosis for familial renal disease, by testing the increasing number of known causative genes. However, there has been limited translation of research findings of causative genes into clinical settings. Here, we report the results of a national accredited diagnostic genetic service for familial renal disease. An expert multidisciplinary team developed a targeted exomic sequencing approach with ten curated multigene panels (207 genes) and variant assessment individualized to the patient's phenotype. A genetic diagnosis (pathogenic genetic variant[s]) was identified in 58 of 135 families referred in two years. The genetic diagnosis rate was similar between families with a pediatric versus adult proband (46% vs 40%), although significant differences were found in certain panels such as atypical hemolytic uremic syndrome (88% vs 17%). High diagnostic rates were found for Alport syndrome (22 of 27) and tubular disorders (8 of 10), whereas the monogenic diagnostic rate for congenital anomalies of the kidney and urinary tract was one of 13. Quality reporting was aided by a strong clinical renal and genetic multidisciplinary committee review. Importantly, for a diagnostic service, few variants of uncertain significance were found with this targeted, phenotype-based approach. Thus, use of targeted massively parallel sequencing approaches in inherited kidney disease has a significant capacity to diagnose the underlying genetic disorder across most renal phenotypes. Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate.

    Directory of Open Access Journals (Sweden)

    Benjamin Georgi

    2014-03-01

    Full Text Available Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders.

  7. Genomic View of Bipolar Disorder Revealed by Whole Genome Sequencing in a Genetic Isolate

    Science.gov (United States)

    Georgi, Benjamin; Craig, David; Kember, Rachel L.; Liu, Wencheng; Lindquist, Ingrid; Nasser, Sara; Brown, Christopher; Egeland, Janice A.; Paul, Steven M.; Bućan, Maja

    2014-01-01

    Bipolar disorder is a common, heritable mental illness characterized by recurrent episodes of mania and depression. Despite considerable effort to elucidate the genetic underpinnings of bipolar disorder, causative genetic risk factors remain elusive. We conducted a comprehensive genomic analysis of bipolar disorder in a large Old Order Amish pedigree. Microsatellite genotypes and high-density SNP-array genotypes of 388 family members were combined with whole genome sequence data for 50 of these subjects, comprising 18 parent-child trios. This study design permitted evaluation of candidate variants within the context of haplotype structure by resolving the phase in sequenced parent-child trios and by imputation of variants into multiple unsequenced siblings. Non-parametric and parametric linkage analysis of the entire pedigree as well as on smaller clusters of families identified several nominally significant linkage peaks, each of which included dozens of predicted deleterious variants. Close inspection of exonic and regulatory variants in genes under the linkage peaks using family-based association tests revealed additional credible candidate genes for functional studies and further replication in population-based cohorts. However, despite the in-depth genomic characterization of this unique, large and multigenerational pedigree from a genetic isolate, there was no convergence of evidence implicating a particular set of risk loci or common pathways. The striking haplotype and locus heterogeneity we observed has profound implications for the design of studies of bipolar and other related disorders. PMID:24625924

  8. Genetic diagnosis of Mendelian disorders via RNA sequencing.

    Science.gov (United States)

    Kremer, Laura S; Bader, Daniel M; Mertes, Christian; Kopajtich, Robert; Pichler, Garwin; Iuso, Arcangela; Haack, Tobias B; Graf, Elisabeth; Schwarzmayr, Thomas; Terrile, Caterina; Koňaříková, Eliška; Repp, Birgit; Kastenmüller, Gabi; Adamski, Jerzy; Lichtner, Peter; Leonhardt, Christoph; Funalot, Benoit; Donati, Alice; Tiranti, Valeria; Lombes, Anne; Jardel, Claude; Gläser, Dieter; Taylor, Robert W; Ghezzi, Daniele; Mayr, Johannes A; Rötig, Agnes; Freisinger, Peter; Distelmaier, Felix; Strom, Tim M; Meitinger, Thomas; Gagneur, Julien; Prokisch, Holger

    2017-06-12

    Across a variety of Mendelian disorders, ∼50-75% of patients do not receive a genetic diagnosis by exome sequencing indicating disease-causing variants in non-coding regions. Although genome sequencing in principle reveals all genetic variants, their sizeable number and poorer annotation make prioritization challenging. Here, we demonstrate the power of transcriptome sequencing to molecularly diagnose 10% (5 of 48) of mitochondriopathy patients and identify candidate genes for the remainder. We find a median of one aberrantly expressed gene, five aberrant splicing events and six mono-allelically expressed rare variants in patient-derived fibroblasts and establish disease-causing roles for each kind. Private exons often arise from cryptic splice sites providing an important clue for variant prioritization. One such event is found in the complex I assembly factor TIMMDC1 establishing a novel disease-associated gene. In conclusion, our study expands the diagnostic tools for detecting non-exonic variants and provides examples of intronic loss-of-function variants with pathological relevance.

  9. Family caregiver distress with children having rare genetic disorders: a qualitative study involving Russell-Silver Syndrome in Taiwan.

    Science.gov (United States)

    Weng, Hsin-Ju; Niu, Dau-Ming; Turale, Sue; Tsao, Lee-Ing; Shih, Fu-Jong; Yamamoto-Mitani, Noriko; Chang, Chun-Chi; Shih, Fu-Jin

    2012-01-01

    To extend nursing knowledge of distress experienced by family caregivers of children with rare genetic disorders, by exploring the perspectives of caregivers of children with Russell-Silver Syndrome in Taiwan. Caring for a child with a rare genetic disorder often has profound effects on families, especially when diagnosis and treatment is complex or not yet well developed, such as that in Russell-Silver Syndrome (or Silver-Russell syndrome). This disorder causes dwarfism and developmental difficulties, requiring long-term care planning. Previous research has focused mostly on medical care, but little is known about families' perspectives of caring difficulties, the help they need and nursing care required. An exploratory qualitative approach was used to inform this study. Family caregivers, whose children were undergoing medical care in a leading Taiwan medical centre, were invited to participate in face-to-face, in-depth interviews. Data were analysed by content analysis. Fifteen caregivers including 11 mothers, two fathers and two grandmothers participated. Five major themes and 13 sub-themes of care-giving distress were identified: endless psychological worries; the lengthy process to confirm a medical diagnosis; adjustment efforts in modifying family roles; dilemmas in deciding between Western or Chinese traditional medicine; and negative responses to society's concerns. Their primary sources of support were spouses, parents and health professionals, accordingly. Complex physio-psycho-social and decision-making distress in caring for children with a rare genetic disorder were systematically revealed from the perspectives of ethnic-Chinese family caregivers. Long-term care plans for children with a rare genetic disorder such as Russell-Silver Syndrome need to focus on positive dynamic family interactions, life-stage development and family caregiver support. Research on care-giving in rare genetic disorders is also warranted across cultures and countries to

  10. Genetics of Lipid and Lipoprotein Disorders and Traits.

    Science.gov (United States)

    Dron, Jacqueline S; Hegele, Robert A

    2016-01-01

    Plasma lipids, namely cholesterol and triglyceride, and lipoproteins, such as low-density lipoprotein (LDL) and high-density lipoprotein, serve numerous physiological roles. Perturbed levels of these traits underlie monogenic dyslipidemias, a diverse group of multisystem disorders. We are on the verge of having a relatively complete picture of the human dyslipidemias and their components. Recent advances in genetics of plasma lipids and lipoproteins include the following: (1) expanding the range of genes causing monogenic dyslipidemias, particularly elevated LDL cholesterol; (2) appreciating the role of polygenic effects in such traits as familial hypercholesterolemia and combined hyperlipidemia; (3) accumulating a list of common variants that determine plasma lipids and lipoproteins; (4) applying exome sequencing to identify collections of rare variants determining plasma lipids and lipoproteins that via Mendelian randomization have also implicated gene products such as NPC1L1 , APOC3 , LDLR , APOA5 , and ANGPTL4 as causal for atherosclerotic cardiovascular disease; and (5) using naturally occurring genetic variation to identify new drug targets, including inhibitors of apolipoprotein (apo) C-III, apo(a), ANGPTL3, and ANGPTL4. Here, we compile this disparate range of data linking human genetic variation to plasma lipids and lipoproteins, providing a "one stop shop" for the interested reader.

  11. Application of Molecular Genetics to the Investigation of Inherited Bleeding Disorders

    DEFF Research Database (Denmark)

    Lethagen, Stefan Rune; Dunø, Morten; Nielsen, Lars Bo

    2013-01-01

    Hemophilia is an inherited bleeding disorder primarily caused by deficiency of coagulation factor (F)VIII (hemophilia A) or FIX (hemophilia B). Both conditions are X-linked. More than 2100 different F8 mutations have been described, the most common being a 500 kb inversion involving exon 1 to exo...... quality control systems in place, and participate in established external quality assessment programs....... the causative mutation is unknown. More rare bleeding disorders are generally recessively inherited, and are often caused by mutations that are specific for individual families, and mutations are scattered throughout the genes. Laboratories performing molecular genetic analyses must have validated internal...

  12. Featural versus configural face processing in a rare genetic disorder: Williams syndrome

    NARCIS (Netherlands)

    Isaac, L.; Lincoln, A.

    2011-01-01

    Background Williams syndrome (WMS) is a rare genetic disorder with an estimated prevalence of 1 in 20 000 live births. Among other characteristics, WMS has a distinctive cognitive profile with spared face processing and language skills that contrasts with impairment in the cognitive domains of

  13. Non-human Primate Models for Brain Disorders - Towards Genetic Manipulations via Innovative Technology.

    Science.gov (United States)

    Qiu, Zilong; Li, Xiao

    2017-04-01

    Modeling brain disorders has always been one of the key tasks in neurobiological studies. A wide range of organisms including worms, fruit flies, zebrafish, and rodents have been used for modeling brain disorders. However, whether complicated neurological and psychiatric symptoms can be faithfully mimicked in animals is still debatable. In this review, we discuss key findings using non-human primates to address the neural mechanisms underlying stress and anxiety behaviors, as well as technical advances for establishing genetically-engineered non-human primate models of autism spectrum disorders and other disorders. Considering the close evolutionary connections and similarity of brain structures between non-human primates and humans, together with the rapid progress in genome-editing technology, non-human primates will be indispensable for pathophysiological studies and exploring potential therapeutic methods for treating brain disorders.

  14. An aid to the diagnosis of genetic disorders underlying adult-onset renal failure : a literature review

    NARCIS (Netherlands)

    Joosten, H.; Strunk, A. L. M.; Meijer, S.; Boers, J. E.; Aries, M.J.H.; Abbes, A. P.; Engel, H.; Beukhof, J. R.

    Several genetic disorders can present in adult patients with renal insufficiency. Genetic renal disease other than ADPKD accounts for ESRD in 3% of the adult Dutch population. Because of this low prevalence and their clinical heterogeneity most adult nephrologists are less familiar with these

  15. Human Genetic Disorders and Knockout Mice Deficient in Glycosaminoglycan

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2014-01-01

    Full Text Available Glycosaminoglycans (GAGs are constructed through the stepwise addition of respective monosaccharides by various glycosyltransferases and maturated by epimerases and sulfotransferases. The structural diversity of GAG polysaccharides, including their sulfation patterns and sequential arrangements, is essential for a wide range of biological activities such as cell signaling, cell proliferation, tissue morphogenesis, and interactions with various growth factors. Studies using knockout mice of enzymes responsible for the biosynthesis of the GAG side chains of proteoglycans have revealed their physiological functions. Furthermore, mutations in the human genes encoding glycosyltransferases, sulfotransferases, and related enzymes responsible for the biosynthesis of GAGs cause a number of genetic disorders including chondrodysplasia, spondyloepiphyseal dysplasia, and Ehlers-Danlos syndromes. This review focused on the increasing number of glycobiological studies on knockout mice and genetic diseases caused by disturbances in the biosynthetic enzymes for GAGs.

  16. Comparing Parental Well-Being and Its Determinants across Three Different Genetic Disorders Causing Intellectual Disability

    Science.gov (United States)

    Mori, Yuka; Downs, Jenny; Wong, Kingsley; Heyworth, Jane; Leonard, Helen

    2018-01-01

    Using the Short Form 12 Health Survey this cross-sectional study examined parental well-being in caregivers of children with one of three genetic disorders associated with intellectual disability; Down syndrome, Rett syndrome and the CDKL5 disorder. Data were sourced from the Western Australian Down Syndrome (n = 291), Australian Rett Syndrome (n…

  17. Many Genes—One Disease? Genetics of Nephronophthisis (NPHP and NPHP-Associated Disorders

    Directory of Open Access Journals (Sweden)

    Shalabh Srivastava

    2018-01-01

    Full Text Available Nephronophthisis (NPHP is a renal ciliopathy and an autosomal recessive cause of cystic kidney disease, renal fibrosis, and end-stage renal failure, affecting children and young adults. Molecular genetic studies have identified more than 20 genes underlying this disorder, whose protein products are all related to cilia, centrosome, or mitotic spindle function. In around 15% of cases, there are additional features of a ciliopathy syndrome, including retinal defects, liver fibrosis, skeletal abnormalities, and brain developmental disorders. Alongside, gene identification has arisen molecular mechanistic insights into the disease pathogenesis. The genetic causes of NPHP are discussed in terms of how they help us to define treatable disease pathways including the cyclic adenosine monophosphate pathway, the mTOR pathway, Hedgehog signaling pathways, and DNA damage response pathways. While the underlying pathology of the many types of NPHP remains similar, the defined disease mechanisms are diverse, and a personalized medicine approach for therapy in NPHP patients is likely to be required.

  18. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  19. Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture.

    Directory of Open Access Journals (Sweden)

    Lea K Davis

    2013-10-01

    Full Text Available The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD and Tourette Syndrome (TS, using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12 for TS, and 0.37 (se = 0.07, p = 1.5e-07 for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum for which we had available expression quantitative trait loci (eQTLs. Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002. These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.

  20. Modeling AEC—New Approaches to Study Rare Genetic Disorders

    Science.gov (United States)

    Koch, Peter J.; Dinella, Jason; Fete, Mary; Siegfried, Elaine C.; Koster, Maranke I.

    2015-01-01

    Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome is a rare monogenetic disorder that is characterized by severe abnormalities in ectoderm-derived tissues, such as skin and its appendages. A major cause of morbidity among affected infants is severe and chronic skin erosions. Currently, supportive care is the only available treatment option for AEC patients. Mutations in TP63, a gene that encodes key regulators of epidermal development, are the genetic cause of AEC. However, it is currently not clear how mutations in TP63 lead to the various defects seen in the patients’ skin. In this review, we will discuss current knowledge of the AEC disease mechanism obtained by studying patient tissue and genetically engineered mouse models designed to mimic aspects of the disorder. We will then focus on new approaches to model AEC, including the use of patient cells and stem cell technology to replicate the disease in a human tissue culture model. The latter approach will advance our understanding of the disease and will allow for the development of new in vitro systems to identify drugs for the treatment of skin erosions in AEC patients. Further, the use of stem cell technology, in particular induced pluripotent stem cells (iPSC), will enable researchers to develop new therapeutic approaches to treat the disease using the patient’s own cells (autologous keratinocyte transplantation) after correction of the disease-causing mutations. PMID:24665072

  1. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population

    DEFF Research Database (Denmark)

    Robinson, Elise B; St Pourcain, Beate; Anttila, Verneri

    2016-01-01

    Almost all genetic risk factors for autism spectrum disorders (ASDs) can be found in the general population, but the effects of this risk are unclear in people not ascertained for neuropsychiatric symptoms. Using several large ASD consortium and population-based resources (total n > 38,000), we...... and developmental traits, the severe tail of which can result in diagnosis with an ASD or other neuropsychiatric disorder. A continuum model should inform the design and interpretation of studies of neuropsychiatric disease biology....

  2. Evidence for genetic association of RORB with bipolar disorder

    Directory of Open Access Journals (Sweden)

    Mick Eric

    2009-11-01

    Full Text Available Abstract Background Bipolar disorder, particularly in children, is characterized by rapid cycling and switching, making circadian clock genes plausible molecular underpinnings for bipolar disorder. We previously reported work establishing mice lacking the clock gene D-box binding protein (DBP as a stress-reactive genetic animal model of bipolar disorder. Microarray studies revealed that expression of two closely related clock genes, RAR-related orphan receptors alpha (RORA and beta (RORB, was altered in these mice. These retinoid-related receptors are involved in a number of pathways including neurogenesis, stress response, and modulation of circadian rhythms. Here we report association studies between bipolar disorder and single-nucleotide polymorphisms (SNPs in RORA and RORB. Methods We genotyped 355 RORA and RORB SNPs in a pediatric cohort consisting of a family-based sample of 153 trios and an independent, non-overlapping case-control sample of 152 cases and 140 controls. Bipolar disorder in children and adolescents is characterized by increased stress reactivity and frequent episodes of shorter duration; thus our cohort provides a potentially enriched sample for identifying genes involved in cycling and switching. Results We report that four intronic RORB SNPs showed positive associations with the pediatric bipolar phenotype that survived Bonferroni correction for multiple comparisons in the case-control sample. Three RORB haplotype blocks implicating an additional 11 SNPs were also associated with the disease in the case-control sample. However, these significant associations were not replicated in the sample of trios. There was no evidence for association between pediatric bipolar disorder and any RORA SNPs or haplotype blocks after multiple-test correction. In addition, we found no strong evidence for association between the age-at-onset of bipolar disorder with any RORA or RORB SNPs. Conclusion Our findings suggest that clock genes in

  3. Genetic Differences in the Immediate Transcriptome Response to Stress Predict Risk-Related Brain Function and Psychiatric Disorders

    Science.gov (United States)

    Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V.; Balsevich, Georgia; Schmidt, Mathias V.; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E.; Conley, Emily Drabant; Ripke, Stephan; Wray, Naomi R.; Lewis, Cathryn M.; Hamilton, Steven P.; Weissman, Myrna M.; Breen, Gerome; Byrne, Enda M.; Blackwood, Douglas H.R.; Boomsma, Dorret I.; Cichon, Sven; Heath, Andrew C.; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A.F.; Martin, Nicholas G.; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M.; Penninx, Brenda P.; Pergadia, Michele L.; Potash, James B.; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J.; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H.; Preisig, Martin; Smoller, Jordan W.; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E.; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R.; Bettecken, Thomas; Binder, Elisabeth B.; Breuer, René; Castro, Victor M.; Churchill, Susanne E.; Coryell, William H.; Craddock, Nick; Craig, Ian W.; Czamara, Darina; De Geus, Eco J.; Degenhardt, Franziska; Farmer, Anne E.; Fava, Maurizio; Frank, Josef; Gainer, Vivian S.; Gallagher, Patience J.; Gordon, Scott D.; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V.; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A.; Kohane, Isaac S.; Kohli, Martin A.; Korszun, Ania; Landen, Mikael; Lawson, William B.; Lewis, Glyn; MacIntyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Middleton, Lefkos; Montgomery, Grant M.; Murphy, Shawn N.; Nauck, Matthias; Nolen, Willem A.; Nyholt, Dale R.; O’Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A.; Schulz, Andrea; Schulze, Thomas G.; Shyn, Stanley I.; Sigurdsson, Engilbert; Slager, Susan L.; Smit, Johannes H.; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J.C.G.; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B.; Willemsen, Gonneke; Zitman, Frans G.; Neale, Benjamin; Daly, Mark; Levinson, Douglas F.; Sullivan, Patrick F.; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R.; Binder, Elisabeth B.

    2015-01-01

    Summary Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain. Video Abstract PMID:26050039

  4. Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) traits in children and clinical ADHD.

    Science.gov (United States)

    Stergiakouli, Evie; Martin, Joanna; Hamshere, Marian L; Langley, Kate; Evans, David M; St Pourcain, Beate; Timpson, Nicholas J; Owen, Michael J; O'Donovan, Michael; Thapar, Anita; Davey Smith, George

    2015-04-01

    Twin studies and genome-wide complex trait analysis (GCTA) are not in agreement regarding heritability estimates for behavioral traits in children from the general population. This has sparked a debate on the possible difference in genetic architecture between behavioral traits and psychiatric disorders. In this study, we test whether polygenic risk scores associated with variation in attention-deficit/hyperactivity disorder (ADHD) trait levels in children from the general population predict ADHD diagnostic status and severity in an independent clinical sample. Single nucleotide polymorphisms (SNPs) with p ADHD traits in 4,546 children (mean age, 7 years 7 months) from the Avon Longitudinal Study of Parents and Children (ALSPAC; general population sample) were selected to calculate polygenic risk scores in 508 children with an ADHD diagnosis (independent clinical sample) and 5,081 control participants. Polygenic scores were tested for association with case-control status and severity of disorder in the clinical sample. Increased polygenic score for ADHD traits predicted ADHD case-control status (odds ratio = 1.17 [95% CI = 1.08-1.28], p = .0003), higher ADHD symptom severity (β = 0.29 [95% CI = 0.04-0.54], p = 0.02), and symptom domain severity in the clinical sample. This study highlights the relevance of additive genetic variance in ADHD, and provides evidence that shared genetic factors contribute to both behavioral traits in the general population and psychiatric disorders at least in the case of ADHD. Copyright © 2015 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  5. Eating disorder-specific risk factors moderate the relationship between negative urgency and binge eating: A behavioral genetic investigation.

    Science.gov (United States)

    Racine, Sarah E; VanHuysse, Jessica L; Keel, Pamela K; Burt, S Alexandra; Neale, Michael C; Boker, Steven; Klump, Kelly L

    2017-07-01

    Theoretical models of binge eating and eating disorders include both transdiagnostic and eating disorder-specific risk factors. Negative urgency (i.e., the tendency to act impulsively when distressed) is a critical transdiagnostic risk factor for binge eating, but limited research has examined interactions between negative urgency and disorder-specific variables. Investigating these interactions can help identify the circumstances under which negative urgency is most strongly associated with binge eating. We examined whether prominent risk factors (i.e., appearance pressures, thin-ideal internalization, body dissatisfaction, dietary restraint) specified in well-established etiologic models of eating disorders moderate negative urgency-binge eating associations. Further, we investigated whether phenotypic moderation effects were due to genetic and/or environmental associations between negative urgency and binge eating. Participants were 988 female twins aged 11-25 years from the Michigan State University Twin Registry. Appearance pressures, thin-ideal internalization, and body dissatisfaction, but not dietary restraint, significantly moderated negative urgency-binge eating associations, with high levels of these risk factors and high negative urgency associated with the greatest binge eating. Twin moderation models revealed that genetic, but not environmental, sharing between negative urgency and binge eating was enhanced at higher levels of these eating disorder-specific variables. Future longitudinal research should investigate whether eating disorder risk factors shape genetic influences on negative urgency into manifesting as binge eating. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  6. The relationship between genetic risk variants with brain structure and function in bipolar disorder

    DEFF Research Database (Denmark)

    Pereira, Licia P; Köhler, Cristiano A; de Sousa, Rafael T

    2017-01-01

    Genetic-neuroimaging paradigms could provide insights regarding the pathophysiology of bipolar disorder (BD). Nevertheless, findings have been inconsistent across studies. A systematic review of gene-imaging studies involving individuals with BD was conducted across electronic major databases fro...

  7. The genetics of attention deficit/hyperactivity disorder in adults, a review

    Science.gov (United States)

    Franke, B; Faraone, S V; Asherson, P; Buitelaar, J; Bau, C H D; Ramos-Quiroga, J A; Mick, E; Grevet, E H; Johansson, S; Haavik, J; Lesch, K-P; Cormand, B; Reif, A

    2012-01-01

    The adult form of attention deficit/hyperactivity disorder (aADHD) has a prevalence of up to 5% and is the most severe long-term outcome of this common neurodevelopmental disorder. Family studies in clinical samples suggest an increased familial liability for aADHD compared with childhood ADHD (cADHD), whereas twin studies based on self-rated symptoms in adult population samples show moderate heritability estimates of 30–40%. However, using multiple sources of information, the heritability of clinically diagnosed aADHD and cADHD is very similar. Results of candidate gene as well as genome-wide molecular genetic studies in aADHD samples implicate some of the same genes involved in ADHD in children, although in some cases different alleles and different genes may be responsible for adult versus childhood ADHD. Linkage studies have been successful in identifying loci for aADHD and led to the identification of LPHN3 and CDH13 as novel genes associated with ADHD across the lifespan. In addition, studies of rare genetic variants have identified probable causative mutations for aADHD. Use of endophenotypes based on neuropsychology and neuroimaging, as well as next-generation genome analysis and improved statistical and bioinformatic analysis methods hold the promise of identifying additional genetic variants involved in disease etiology. Large, international collaborations have paved the way for well-powered studies. Progress in identifying aADHD risk genes may provide us with tools for the prediction of disease progression in the clinic and better treatment, and ultimately may help to prevent persistence of ADHD into adulthood. PMID:22105624

  8. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders.

    Science.gov (United States)

    Hamosh, Ada; Scott, Alan F; Amberger, Joanna S; Bocchini, Carol A; McKusick, Victor A

    2005-01-01

    Online Mendelian Inheritance in Man (OMIM) is a comprehensive, authoritative and timely knowledgebase of human genes and genetic disorders compiled to support human genetics research and education and the practice of clinical genetics. Started by Dr Victor A. McKusick as the definitive reference Mendelian Inheritance in Man, OMIM (http://www.ncbi.nlm.nih.gov/omim/) is now distributed electronically by the National Center for Biotechnology Information, where it is integrated with the Entrez suite of databases. Derived from the biomedical literature, OMIM is written and edited at Johns Hopkins University with input from scientists and physicians around the world. Each OMIM entry has a full-text summary of a genetically determined phenotype and/or gene and has numerous links to other genetic databases such as DNA and protein sequence, PubMed references, general and locus-specific mutation databases, HUGO nomenclature, MapViewer, GeneTests, patient support groups and many others. OMIM is an easy and straightforward portal to the burgeoning information in human genetics.

  9. Genetic test utilization and diagnostic yield in adult patients with neurological disorders.

    Science.gov (United States)

    Bardakjian, Tanya M; Helbig, Ingo; Quinn, Colin; Elman, Lauren B; McCluskey, Leo F; Scherer, Steven S; Gonzalez-Alegre, Pedro

    2018-03-28

    To determine the diagnostic yield of different genetic test modalities in adult patients with neurological disorders, we evaluated all adult patients seen for genetic diagnostic evaluation in the outpatient neurology practice at the University of Pennsylvania between January 2016 and April 2017 as part of the newly created Penn Neurogenetics Program. Subjects were identified through our electronic medical system as those evaluated by the Program's single clinical genetic counselor in that period. A total of 377 patients were evaluated by the Penn Neurogenetics Program in different settings and genetic testing recommended. Of those, 182 (48%) were seen in subspecialty clinic setting and 195 (52%) in a General Neurogenetics Clinic. Genetic testing was completed in over 80% of patients in whom it was recommended. The diagnostic yield was 32% across disease groups. Stratified by testing modality, the yield was highest with directed testing (50%) and array comparative genomic hybridization (45%), followed by gene panels and exome testing (25% each). In conclusion, genetic testing can be successfully requested in clinic in a large majority of adult patients. Age is not a limiting factor for a genetic diagnostic evaluation and the yield of clinical testing across phenotypes (almost 30%) is consistent with previous phenotype-focused or research-based studies. These results should inform the development of specific guidelines for clinical testing and serve as evidence to improve reimbursement by insurance payers.

  10. Waardenburg syndrome: A rare genetic disorder, a report of two cases.

    Science.gov (United States)

    Kumar, Sudesh; Rao, Kiran

    2012-05-01

    Waardenburg syndrome (WS) is a rare genetic disorder. Patients have heterochromia or eyes with iris of different color, increased inter-canthal distance, distopia canthorum, pigmentation anomalies, and varying degree of deafness. It usually follows autosomal dominant pattern. In this report, two cases have been discussed but no familial history of WS has been found. Counseling of the patient is necessary and cases of irreversible deafness have been treated.

  11. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance.

    Science.gov (United States)

    Cherlyn, Suat Ying Tan; Woon, Puay San; Liu, Jian Jun; Ong, Wei Yi; Tsai, Guo Chuan; Sim, Kang

    2010-05-01

    Schizophrenia (SZ) and bipolar disorder (BD) are debilitating neurobehavioural disorders likely influenced by genetic and non-genetic factors and which can be seen as complex disorders of synaptic neurotransmission. The glutamatergic and GABAergic neurotransmission systems have been implicated in both diseases and we have reviewed extensive literature over a decade for evidence to support the association of glutamate and GABA genes in SZ and BD. Candidate-gene based population and family association studies have implicated some ionotrophic glutamate receptor genes (GRIN1, GRIN2A, GRIN2B and GRIK3), metabotropic glutamate receptor genes (such as GRM3), the G72/G30 locus and GABAergic genes (e.g. GAD1 and GABRB2) in both illnesses to varying degrees, but further replication studies are needed to validate these results. There is at present no consensus on specific single nucleotide polymorphisms or haplotypes associated with the particular candidate gene loci in these illnesses. The genetic architecture of glutamate systems in bipolar disorder need to be better studied in view of recent data suggesting an overlap in the genetic aetiology of SZ and BD. There is a pressing need to integrate research platforms in genomics, epistatic models, proteomics, metabolomics, neuroimaging technology and translational studies in order to allow a more integrated understanding of glutamate and GABAergic signalling processes and aberrations in SZ and BD as well as their relationships with clinical presentations and treatment progress over time. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Alcohol use disorder and divorce: evidence for a genetic correlation in a population-based Swedish sample.

    Science.gov (United States)

    Salvatore, Jessica E; Larsson Lönn, Sara; Sundquist, Jan; Lichtenstein, Paul; Sundquist, Kristina; Kendler, Kenneth S

    2017-04-01

    We tested the association between alcohol use disorder (AUD) and divorce; estimated the genetic and environmental influences on divorce; estimated how much genetic and environmental influences accounted for covariance between AUD and divorce; and estimated latent genetic and environmental correlations between AUD and divorce. We tested sex differences in these effects. We identified twin and sibling pairs with AUD and divorce information in Swedish national registers. We described the association between AUD and divorce using tetrachorics and used twin and sibling models to estimate genetic and environmental influences on divorce, on the covariance between AUD and divorce and the latent genetic and environmental correlations between AUD and divorce. Sweden. A total of 670 836 individuals (53% male) born 1940-1965. Life-time measures of AUD and divorce. AUD and divorce were related strongly (males: r tet  = +0.44, 95% CI = 0.43, 0.45; females r tet  = +0.37, 95% CI = 0.36, 0.38). Genetic factors accounted for a modest proportion of the variance in divorce (males: 21.3%, 95% CI = 7.6, 28.5; females: 31.0%, 95% CI = 18.8, 37.1). Genetic factors accounted for most of the covariance between AUD and divorce (males: 52.0%, 95% CI = 48.8, 67.9; females: 53.74%, 95% CI = 17.6, 54.5), followed by non-shared environmental factors (males: 45.0%, 95% CI = 37.5, 54.9; females: 41.6%, 95% CI = 40.3, 60.2). Shared environmental factors accounted for a negligible proportion of the covariance (males: 3.0%, 95% CI = -3.0, 13.5; females: 4.75%, 95% CI = 0.0, 6.6). The AUD-divorce genetic correlations were high (males: rA = +0.76, 95% CI = 0.53, 0.90; females +0.52, 95% CI = 0.24, 0.67). The non-shared environmental correlations were modest (males: rE = +0.32, 95% CI = 0.31, 0.40; females: +0.27, 95% CI = 0.27, 0.36). Divorce and alcohol use disorder are correlated strongly in the Swedish population, and the heritability of divorce is consistent

  13. Fitting the pieces together: current research on the genetic basis of attention-deficit/hyperactivity disorder (ADHD

    Directory of Open Access Journals (Sweden)

    Evangelia Stergiakouli

    2010-08-01

    Full Text Available Evangelia Stergiakouli, Anita ThaparDepartment of Psychological Medicine and Neurology, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, United KingdomAbstract: Attention-deficit/hyperactivity disorder (ADHD is a highly disruptive childhood-onset disorder that often persists into adolescence and adulthood. Comorbidity with other problems, such as autism, dyslexia and conduct disorder (CD is very common. Although little is known about the pathophysiology of ADHD, family, twin and adoption studies have shown that it is highly heritable. Whole genome linkage studies suggest there are no common susceptibility genes of moderate effect size. Most published research has been based on functional candidate gene studies. The most consistent evidence for association with ADHD relates to a dopamine D4 receptor (DRD4 gene variable number tandem repeat (VNTR, a dopamine D5 receptor (DRD5 gene microsatellite and a dopamine transporter (DAT1 gene VNTR. In addition, the catechol-O-methyltransferase (COMT val158/108 met variant has been shown to increase risk for associated antisocial behavior. The first genome-wide association studies (GWAS of ADHD have been completed and although larger studies are still required to detect common risk variants, novel risk pathways are being suggested for ADHD. Further research on the contribution of rare variants, larger genome-wide association and sequencing studies and ADHD phenotype refinement is now needed.Keywords: attention-deficit/hyperactivity disorder (ADHD, genetics, molecular genetics, genome-wide association study (GWAS, gene-environment interplay

  14. The role of conduct disorder in the relationship between alcohol, nicotine and cannabis use disorders.

    Science.gov (United States)

    Grant, J D; Lynskey, M T; Madden, P A F; Nelson, E C; Few, L R; Bucholz, K K; Statham, D J; Martin, N G; Heath, A C; Agrawal, A

    2015-12-01

    Genetic influences contribute significantly to co-morbidity between conduct disorder and substance use disorders. Estimating the extent of overlap can assist in the development of phenotypes for genomic analyses. Multivariate quantitative genetic analyses were conducted using data from 9577 individuals, including 3982 complete twin pairs and 1613 individuals whose co-twin was not interviewed (aged 24-37 years) from two Australian twin samples. Analyses examined the genetic correlation between alcohol dependence, nicotine dependence and cannabis abuse/dependence and the extent to which the correlations were attributable to genetic influences shared with conduct disorder. Additive genetic (a(2) = 0.48-0.65) and non-shared environmental factors explained variance in substance use disorders. Familial effects on conduct disorder were due to additive genetic (a(2) = 0.39) and shared environmental (c(2) = 0.15) factors. All substance use disorders were influenced by shared genetic factors (rg = 0.38-0.56), with all genetic overlap between substances attributable to genetic influences shared with conduct disorder. Genes influencing individual substance use disorders were also significant, explaining 40-73% of the genetic variance per substance. Among substance users in this sample, the well-documented clinical co-morbidity between conduct disorder and substance use disorders is primarily attributable to shared genetic liability. Interventions targeted at generally reducing deviant behaviors may address the risk posed by this shared genetic liability. However, there is also evidence for genetic and environmental influences specific to each substance. The identification of these substance-specific risk factors (as well as potential protective factors) is critical to the future development of targeted treatment protocols.

  15. Is autoimmune thyroiditis part of the genetic vulnerability (or an endophenotype) for bipolar disorder?

    NARCIS (Netherlands)

    Vonk, Ronald; van der Schot, Astrid C.; Kahn, Rene S.; Nolen, Willem A.; Drexhage, Hemmo A.

    2007-01-01

    Background: Both genetic and environmental factors are involved in the etiology of bipolar disorder; however, biological markers for the transmission of the bipolar genotype ("endophenotypes") have not been found. Autoimmune thyroiditis with raised levels of thyroperoxidase antibodies (TPO-Abs) is

  16. Is testicular dysgenesis syndrome a genetic, endocrine, or environmental disease, or an unexplained reproductive disorder?

    Science.gov (United States)

    Xing, Jian-Sheng; Bai, Zhi-Ming

    2018-02-01

    Progressive increases in the incidence of male reproductive disorders inclusive of hypospadias, cryptorchidism, poor semen quality, and testicular germ cell cancer (TGCC) have been observed in recent times. The central hypothesis of this study asserted that these disorders may all collectively signify testicular dysgenesis syndrome (TDS). This review aimed to provide evidence verifying the reality of TDS based on four key aspects: environmental endocrine-disrupting chemicals (EDCs), genetic factors, intrauterine growth disorders and lifestyle factors. Although TDS might result from genetic polymorphisms or aberration, recent evidence has highlighted links indicating the conditions associations to both environmental and lifestyle factors due to the rapid temporal changes in the clinical symptoms observed over recent decades. Based on our review of genetic and environmental factors, a key observation of our study suggested that there is an urgent need to prioritize research in reproductive physiology and pathophysiology, particularly in highly industrialized countries facing decreasing populations. At present, current research has yet to elucidate the mechanisms of TDS, in addition to the lack of genuine consideration of a variety of potentially key factors and TDS mechanisms. In conclusion, our study revealed that environmental exposures owing to modern lifestyles are primary factors involved in the associated trends of the syndrome, which are capable of affecting the adult endocrine system via direct means or through epigenetic mechanisms. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Velo-cardio-facial syndrome and psychotic disorders: Implications for psychiatric genetics

    Energy Technology Data Exchange (ETDEWEB)

    Chow, W.C.; Bassett, A.S.; Weksberg, R. [Univ. of Toronto, Ontario (Canada)

    1994-06-15

    Psychiatric disorders have been reported in over 10% of patients with velo-cardio-facial syndrome (VCFS) in long-term follow-up. To further explore the behavioral and psychiatric findings associated with VCFS in adulthood, detailed clinical histories of two patients - one with VCFS who developed a psychotic illness, and one with schizophrenia who was found to have dysmorphological features associated with VCFS - are described in the current report. The observed overlap of physical and psychiatric symptoms in these two patients suggests that VCFS and psychotic disorders may share a pathogenetic mechanism. This could be consistent with a contiguous gene model for VCFS and psychosis, suggesting chromosome 22q11 as a possible candidate region for genetic studies of schizophrenia. 26 refs., 2 tabs.

  18. Genetic Variation in Melatonin Pathway Enzymes in Children with Autism Spectrum Disorder and Comorbid Sleep Onset Delay

    Science.gov (United States)

    Veatch, Olivia J.; Pendergast, Julie S.; Allen, Melissa J.; Leu, Roberta M.; Johnson, Carl Hirschie; Elsea, Sarah H.; Malow, Beth A.

    2015-01-01

    Sleep disruption is common in individuals with autism spectrum disorder (ASD). Genes whose products regulate endogenous melatonin modify sleep patterns and have been implicated in ASD. Genetic factors likely contribute to comorbid expression of sleep disorders in ASD. We studied a clinically unique ASD subgroup, consisting solely of children with…

  19. A systematic review of genetic skeletal disorders reported in Chinese biomedical journals between 1978 and 2012

    Directory of Open Access Journals (Sweden)

    Cui Yazhou

    2012-08-01

    Full Text Available Abstract Little information is available on the prevalence, geographic distribution and mutation spectrum of genetic skeletal disorders (GSDs in China. This study systematically reviewed GSDs as defined in “Nosology and Classification of genetic skeletal disorders (2010 version” using Chinese biomedical literature published over the past 34 years from 1978 to 2012. In total, 16,099 GSDs have been reported. The most frequently reported disorders were Marfan syndrome, osteogenesis imperfecta, fibrous dysplasia, mucopolysaccharidosis, multiple cartilaginous exostoses, neurofibromatosis type 1 (NF1, osteopetrosis, achondroplasia, enchondromatosis (Ollier, and osteopoikilosis, accounting for 76.5% (12,312 cases of the total cases. Five groups (group 8, 12, 14, 18, 21 defined by “Nosology and Classification of genetic skeletal disorders” have not been reported in the Chinese biomedical literature. Gene mutation testing was performed in only a minor portion of the 16,099 cases of GSDs (187 cases, 1.16%. In total, 37 genes for 41 different GSDs were reported in Chinese biomedical literature, including 43 novel mutations. This review revealed a significant imbalance in rare disease identification in terms of geographic regions and hospital levels, suggesting the need to create a national multi-level network to meet the specific challenge of care for rare diseases in China.

  20. Brain structure–function associations in multi-generational families genetically enriched for bipolar disorder

    Science.gov (United States)

    Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K.; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C.; Aldana, Ileana; Teshiba, Terri M.; Abaryan, Zvart; Al-Sharif, Noor B.; Navarro, Linda; Tishler, Todd A.; Altshuler, Lori; Bartzokis, George; Escobar, Javier I.; Glahn, David C.; Thompson, Paul M.; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I.; Sabatti, Chiara; Cantor, Rita M.; Freimer, Nelson B.; Bearden, Carrie E.

    2015-01-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain–behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain–behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18–87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain–behaviour associations and test whether brain–behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain–behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non

  1. Comprehensive genetic testing for primary immunodeficiency disorders in a tertiary hospital: 10-year experience in Auckland, New Zealand.

    Science.gov (United States)

    Woon, See-Tarn; Ameratunga, Rohan

    2016-01-01

    New Zealand is a developed geographically isolated country in the South Pacific with a population of 4.4 million. Genetic diagnosis is the standard of care for most patients with primary immunodeficiency disorders (PIDs). Since 2005, we have offered a comprehensive genetic testing service for PIDs and other immune-related disorders with a published sequence. Here we present results for this program, over the first decade, between 2005 and 2014. We undertook testing in 228 index cases and 32 carriers during this time. The three most common test requests were for X-linked lymphoproliferative (XLP), tumour necrosis factor receptor associated periodic syndrome (TRAPS) and haemophagocytic lymphohistiocytosis (HLH). Of the 32 suspected XLP cases, positive diagnoses were established in only 2 patients. In contrast, genetic defects in 8 of 11 patients with suspected X-linked agammaglobulinemia (XLA) were confirmed. Most XLA patients were initially identified from absence of B cells. Overall, positive diagnoses were made in about 23% of all tests requested. The diagnostic rate was lowest for several conditions with locus heterogeneity. Thorough clinical characterisation of patients can assist in prioritising which genes should be tested. The clinician-driven customised comprehensive genetic service has worked effectively for New Zealand. Next generation sequencing will play an increasing role in disorders with locus heterogeneity.

  2. Peripheral neuropathy in genetically characterized patients with mitochondrial disorders: A study from south India.

    Science.gov (United States)

    Bindu, Parayil Sankaran; Govindaraju, Chikanna; Sonam, Kothari; Nagappa, Madhu; Chiplunkar, Shwetha; Kumar, Rakesh; Gayathri, Narayanappa; Bharath, M M Srinivas; Arvinda, Hanumanthapura R; Sinha, Sanjib; Khan, Nahid Akthar; Govindaraj, Periyasamy; Nunia, Vandana; Paramasivam, Arumugam; Thangaraj, Kumarasamy; Taly, Arun B

    2016-03-01

    There are relatively few studies, which focus on peripheral neuropathy in large cohorts of genetically characterized patients with mitochondrial disorders. This study sought to analyze the pattern of peripheral neuropathy in a cohort of patients with mitochondrial disorders. The study subjects were derived from a cohort of 52 patients with a genetic diagnosis of mitochondrial disorders seen over a period of 8 years (2006-2013). All patients underwent nerve conduction studies and those patients with abnormalities suggestive of peripheral neuropathy were included in the study. Their phenotypic features, genotype, pattern of peripheral neuropathy and nerve conduction abnormalities were analyzed retrospectively. The study cohort included 18 patients (age range: 18 months-50 years, M:F- 1.2:1).The genotype included mitochondrial DNA point mutations (n=11), SURF1 mutations (n=4) and POLG1(n=3). Axonal neuropathy was noted in 12 patients (sensori-motor:n=4; sensory:n=4; motor:n=4) and demyelinating neuropathy in 6. Phenotype-genotype correlations revealed predominant axonal neuropathy in mtDNA point mutations and demyelinating neuropathy in SURF1. Patients with POLG related disorders had both sensory ataxic neuropathy and axonal neuropathy. A careful analysis of the family history, clinical presentation, biochemical, histochemical and structural analysis may help to bring out the mitochondrial etiology in patients with peripheral neuropathy and may facilitate targeted gene testing. Presence of demyelinating neuropathy in Leigh's syndrome may suggest underlying SURF1 mutations. Sensory ataxic neuropathy with other mitochondrial signatures should raise the possibility of POLG related disorder. Copyright © 2015. Published by Elsevier B.V.

  3. The five-factor model of personality and borderline personality disorder: a genetic analysis of comorbidity.

    Science.gov (United States)

    Distel, Marijn A; Trull, Timothy J; Willemsen, Gonneke; Vink, Jacqueline M; Derom, Catherine A; Lynskey, Michael; Martin, Nicholas G; Boomsma, Dorret I

    2009-12-15

    Recently, the nature of personality disorders and their relationship with normal personality traits has received extensive attention. The five-factor model (FFM) of personality, consisting of the personality traits neuroticism, extraversion, openness to experience, agreeableness, and conscientiousness, is one of the proposed models to conceptualize personality disorders as maladaptive variants of continuously distributed personality traits. The present study examined the phenotypic and genetic association between borderline personality and FFM personality traits. Data were available for 4403 monozygotic twins, 4425 dizygotic twins, and 1661 siblings from 6140 Dutch, Belgian, and Australian families. Broad-sense heritability estimates for neuroticism, agreeableness, conscientiousness, extraversion, openness to experience, and borderline personality were 43%, 36%, 43%, 47%, 54%, and 45%, respectively. Phenotypic correlations between borderline personality and the FFM personality traits ranged from .06 for openness to experience to .68 for neuroticism. Multiple regression analyses showed that a combination of high neuroticism and low agreeableness best predicted borderline personality. Multivariate genetic analyses showed the genetic factors that influence individual differences in neuroticism, agreeableness, conscientiousness, and extraversion account for all genetic liability to borderline personality. Unique environmental effects on borderline personality, however, were not completely shared with those for the FFM traits (33% is unique to borderline personality). Borderline personality shares all genetic variation with neuroticism, agreeableness, conscientiousness, and extraversion. The unique environmental influences specific to borderline personality may cause individuals with a specific pattern of personality traits to cross a threshold and develop borderline personality.

  4. The Genetic Intersection of Neurodevelopmental Disorders and Shared Medical Comorbidities – Relations that Translate from Bench to Bedside

    Directory of Open Access Journals (Sweden)

    Jamsine Plummer

    2016-08-01

    Full Text Available Most psychiatric disorders are considered neurodevelopmental, and the associated genes often are expressed in tissues outside of the brain. This suggests a biological relatedness with medical co-occurrences that could have broad clinical implications for diagnosis and patient management over a lifetime. A qualitative integration of public data from genetic consortia of psychiatric disorders and medical comorbidities explores the question of whether genetically associated psychiatric illnesses present with co-occurring disturbances can be used to define specific mental-physical health relations. Novel patterns of gene-disorder relations appear with approximately one-third of conservatively defined, consortia-generated candidate risk genes with multiple psychiatric diagnoses. Moreover, nearly as many genes overlap with non-psychiatric phenotypes, including cardiovascular, renal, respiratory and metabolic disturbances. While the landscape of genetic risk will change as study populations are expanded and biological confirmations accrue, the current relationships suggest that a mostly siloed perspective of gene relatedness to one categorical psychiatric diagnosis is not clinically useful. The future holds the promise that once candidates are fully validated, genome screening and mutation identification will bring more precision for predicting the risk for complex health conditions. Our view is that as genetic data is refined, continuing to decipher a shared pattern of genetic risk for brain and peripheral organ pathophysiology is not simply an academic exercise. Rather, determining relatedness will impact predictions of multifaceted health risks, patient treatment and management.

  5. Genetics in the art and art in genetics.

    Science.gov (United States)

    Bukvic, Nenad; Elling, John W

    2015-01-15

    "Healing is best accomplished when art and science are conjoined, when body and spirit are probed together", says Bernard Lown, in his book "The Lost Art of Healing". Art has long been a witness to disease either through diseases which affected artists or diseases afflicting objects of their art. In particular, artists have often portrayed genetic disorders and malformations in their work. Sometimes genetic disorders have mystical significance; other times simply have intrinsic interest. Recognizing genetic disorders is also an art form. From the very beginning of my work as a Medical Geneticist I have composed personal "algorithms" to piece together evidence of genetics syndromes and diseases from the observable signs and symptoms. In this paper we apply some 'gestalt' Genetic Syndrome Diagnostic algorithms to virtual patients found in some art masterpieces. In some the diagnosis is clear and in others the artists' depiction only supports a speculative differential diagnosis. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The Tourette International Collaborative Genetics (TIC Genetics) study, finding the genes causing Tourette syndrome

    DEFF Research Database (Denmark)

    Dietrich, Andrea; Fernandez, Thomas V; King, Robert A

    2015-01-01

    Tourette syndrome (TS) is a neuropsychiatric disorder characterized by recurrent motor and vocal tics, often accompanied by obsessive-compulsive disorder and/or attention-deficit/hyperactivity disorder. While the evidence for a genetic contribution is strong, its exact nature has yet to be clarif......Tourette syndrome (TS) is a neuropsychiatric disorder characterized by recurrent motor and vocal tics, often accompanied by obsessive-compulsive disorder and/or attention-deficit/hyperactivity disorder. While the evidence for a genetic contribution is strong, its exact nature has yet......, it is clear that large patient cohorts and open-access repositories will be essential to further advance the field. To that end, the large multicenter Tourette International Collaborative Genetics (TIC Genetics) study was established. The goal of the TIC Genetics study is to undertake a comprehensive gene...... discovery effort, focusing both on familial genetic variants with large effects within multiply affected pedigrees and on de novo mutations ascertained through the analysis of apparently simplex parent-child trios with non-familial tics. The clinical data and biomaterials (DNA, transformed cell lines, RNA...

  7. Parental mosaicism is a pitfall in preimplantation genetic diagnosis of dominant disorders.

    Science.gov (United States)

    Steffann, Julie; Michot, Caroline; Borghese, Roxana; Baptista-Fernandes, Marcia; Monnot, Sophie; Bonnefont, Jean-Paul; Munnich, Arnold

    2014-05-01

    PCR amplification on single cells is prone to allele drop-out (PCR failure of one allele), a cause of misdiagnosis in preimplantation genetic diagnosis (PGD). Owing to this error risk, PGD usually relies on both direct and indirect genetic analyses. When the affected partner is the sporadic case of a dominant disorder, building haplotypes require spermatozoon or polar body testing prior to PGD, but these procedures are cost and time-consuming. A couple requested PGD because the male partner suffered from a dominant Cowden syndrome (CS). He was a sporadic case, but the couple had a first unaffected child and the non-mutated paternal haplotype was tentatively deduced. The couple had a second spontaneous pregnancy and the fetus was found to carry the at-risk haplotype but not the PTEN mutation. The mutation was present in blood from the affected father, but at low level, confirming the somatic mosaicism. Ignoring the possibility of mosaicism in the CS patient would have potentially led to selection of affected embryos. This observation emphasizes the risk of PGD in families at risk to transmit autosomal-dominant disorder when the affected partner is a sporadic case.

  8. Good laboratory practices for biochemical genetic testing and newborn screening for inherited metabolic disorders.

    Science.gov (United States)

    2012-04-06

    Biochemical genetic testing and newborn screening are essential laboratory services for the screening, detection, diagnosis, and monitoring of inborn errors of metabolism or inherited metabolic disorders. Under the Clinical Laboratory Improvement Amendments of 1988 (CLIA) regulations, laboratory testing is categorized on the basis of the level of testing complexity as either waived (i.e., from routine regulatory oversight) or nonwaived testing (which includes tests of moderate and high complexity). Laboratories that perform biochemical genetic testing are required by CLIA regulations to meet the general quality systems requirements for nonwaived testing and the personnel requirements for high-complexity testing. Laboratories that perform public health newborn screening are subject to the same CLIA regulations and applicable state requirements. As the number of inherited metabolic diseases that are included in state-based newborn screening programs continues to increase, ensuring the quality of performance and delivery of testing services remains a continuous challenge not only for public health laboratories and other newborn screening facilities but also for biochemical genetic testing laboratories. To help ensure the quality of laboratory testing, CDC collaborated with the Centers for Medicare & Medicaid Services, the Food and Drug Administration, the Health Resources and Services Administration, and the National Institutes of Health to develop guidelines for laboratories to meet CLIA requirements and apply additional quality assurance measures for these areas of genetic testing. This report provides recommendations for good laboratory practices that were developed based on recommendations from the Clinical Laboratory Improvement Advisory Committee, with additional input from the Secretary's Advisory Committee on Genetics, Health, and Society; the Secretary's Advisory Committee on Heritable Disorders in Newborns and Children; and representatives of newborn

  9. Genetic parameters of subclinical macromineral disorders and major clinical diseases in postparturient Holstein cows.

    Science.gov (United States)

    Tsiamadis, V; Banos, G; Panousis, N; Kritsepi-Konstantinou, M; Arsenos, G; Valergakis, G E

    2016-11-01

    The main objective of this study was to assess the genetic parameters of subclinical disorders associated with subclinical hypocalcemia, hypophosphatemia, subclinical hypomagnesemia, hypokalemia, and hyperphosphatemia, as well as major clinical diseases after calving in Holstein cows. The secondary objective was to estimate the associated genetic and phenotypic correlations among these subclinical and clinical conditions after calving in Holstein cows. The study was conducted in 9dairy herds located in Northern Greece. None of the herds used any kind of preventive measures for milk fever (MF). A total of 1,021 Holstein cows with pedigree information were examined from November 2010 until November 2012. The distribution across parities was 466 (parity 1), 242 (parity 2), 165 (parity 3), and 148 (parity 4 and above) cows. All cows were subjected to a detailed clinical examination and blood was sampled on d 1, 2, 4, and 8 after calving. Serum concentrations of Ca, P, Mg, and K were measured in all samples, whereas β-hydroxybutyrate (BHB) was measured only for d 8. The final data set included 4,064 clinical and 16,848 biochemical records (4,020 Ca, 4,019 P, 4,020Mg, 3,792K, and 997 BHB). Data of 1,988 observations of body condition score at d 1 and 8 were also available. All health traits were analyzed with a univariate random regression model. The genetic analysis for macromineral-related disorders included 986 cows with no obvious signs of MF (35 cows with MF were excluded). Analysis for other health traits included all 1,021 cows. A similar single record model was used for the analysis of BHB. Genetic correlations among traits were estimated with a series of bivariate analyses. Statistically significant daily heritabilities of subclinical hypocalcemia (0.13-0.25), hypophosphatemia (0.18-0.33), subclinical hypomagnesemia (0.11-0.38), and hyperphosphatemia (0.14-0.22) were low to moderate, whereas that of hypokalemia was low (0.08-0.10). The heritability of body

  10. Genetics of borderline personality disorder: systematic review and proposal of an integrative model.

    Science.gov (United States)

    Amad, Ali; Ramoz, Nicolas; Thomas, Pierre; Jardri, Renaud; Gorwood, Philip

    2014-03-01

    Borderline personality disorder (BPD) is one of the most common mental disorders and is characterized by a pervasive pattern of emotional lability, impulsivity, interpersonal difficulties, identity disturbances, and disturbed cognition. Here, we performed a systematic review of the literature concerning the genetics of BPD, including familial and twin studies, association studies, and gene-environment interaction studies. Moreover, meta-analyses were performed when at least two case-control studies testing the same polymorphism were available. For each gene variant, a pooled odds ratio (OR) was calculated using fixed or random effects models. Familial and twin studies largely support the potential role of a genetic vulnerability at the root of BPD, with an estimated heritability of approximately 40%. Moreover, there is evidence for both gene-environment interactions and correlations. However, association studies for BPD are sparse, making it difficult to draw clear conclusions. According to our meta-analysis, no significant associations were found for the serotonin transporter gene, the tryptophan hydroxylase 1 gene, or the serotonin 1B receptor gene. We hypothesize that such a discrepancy (negative association studies but high heritability of the disorder) could be understandable through a paradigm shift, in which "plasticity" genes (rather than "vulnerability" genes) would be involved. Such a framework postulates a balance between positive and negative events, which interact with plasticity genes in the genesis of BPD. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. The Genetic Overlap of Attention-Deficit/Hyperactivity Disorder and Autistic-like Traits: an Investigation of Individual Symptom Scales and Cognitive markers.

    Science.gov (United States)

    Pinto, Rebecca; Rijsdijk, Fruhling; Ronald, Angelica; Asherson, Philip; Kuntsi, Jonna

    2016-02-01

    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorders (ASDs) frequently co-occur. However, due to previous exclusionary diagnostic criteria, little is known about the underlying causes of this covariation. Twin studies assessing ADHD symptoms and autistic-like traits (ALTs) suggest substantial genetic overlap, but have largely failed to take into account the genetic heterogeneity of symptom subscales. This study aimed to clarify the phenotypic and genetic relations between ADHD and ASD by distinguishing between symptom subscales that characterise the two disorders. Moreover, we aimed to investigate whether ADHD-related cognitive impairments show a relationship with ALT symptom subscales; and whether potential shared cognitive impairments underlie the genetic risk shared between the ADHD and ALT symptoms. Multivariate structural equation modelling was conducted on a population-based sample of 1312 twins aged 7-10. Social-communication ALTs correlated moderately with both ADHD symptom domains (phenotypic correlations around 0.30) and showed substantial genetic overlap with both inattention and hyperactivity-impulsivity (genetic correlation = 0.52 and 0.44, respectively). In addition to previously reported associations with ADHD traits, reaction time variability (RTV) showed significant phenotypic (0.18) and genetic (0.32) association with social-communication ALTs. RTV captured a significant proportion (24 %) of the genetic influences shared between inattention and social-communication ALTs. Our findings suggest that social-communication ALTs underlie the previously observed phenotypic and genetic covariation between ALTs and ADHD symptoms. RTV is not specific to ADHD symptoms, but is also associated with social-communication ALTs and can, in part, contribute to an explanation of the co-occurrence of ASD and ADHD.

  12. Diagnosis and management of adult hereditary cardio-neuromuscular disorders: A model for the multidisciplinary care of complex genetic disorders.

    Science.gov (United States)

    Sommerville, R Brian; Vincenti, Margherita Guzzi; Winborn, Kathleen; Casey, Anne; Stitziel, Nathan O; Connolly, Anne M; Mann, Douglas L

    2017-01-01

    Genetic disorders that disrupt the structure and function of the cardiovascular system and the peripheral nervous system are common enough to be encountered in routine cardiovascular practice. Although often these patients are diagnosed in childhood and come to the cardiologist fully characterized, some patients with hereditary neuromuscular disease may not manifest until adulthood and will present initially to the adult cardiologist for an evaluation of an abnormal ECG, unexplained syncope, LV hypertrophy, and or a dilated cardiomyopathy of unknown cause. Cardiologists are often ill-equipped to manage these patients due to lack of training and exposure as well as the complete absence of practice guidelines to aid in the diagnosis and management of these disorders. Here, we review three key neuromuscular diseases that affect the cardiovascular system in adults (myotonic dystrophy type 1, Friedreich ataxia, and Emery-Dreifuss muscular dystrophy), with an emphasis on their clinical presentation, genetic and molecular pathogenesis, and recent important research on medical and interventional treatments. We also advocate the development of interdisciplinary cardio-neuromuscular clinics to optimize the care for these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Attitudes about Future Genetic Testing for Posttraumatic Stress Disorder and Addiction among Community-Based Veterans

    Directory of Open Access Journals (Sweden)

    Michelle R. Lent

    2017-05-01

    Full Text Available This study explored attitudes toward hypothetical genetic testing for posttraumatic stress disorder (PTSD and addiction among veterans. We surveyed a random sample of community-based veterans (n = 700 by telephone. One year later, we asked the veterans to provide a DNA sample for analysis and 41.9% of them returned the DNA samples. Overall, most veterans were not interested in genetic testing neither for PTSD (61.7% nor for addiction (68.7%. However, bivariate analyses suggested there was an association between having the condition of interest and the likelihood of genetic testing on a 5-point scale (p < 0.001 for PTSD; p = 0.001 for alcohol dependence. While ordinal regressions confirmed these associations, the models with the best statistical fit were bivariate models of whether the veteran would likely test or not. Using logistic regressions, significant predictors for PTSD testing were receiving recent mental health treatment, history of a concussion, younger age, having PTSD, having alcohol dependence, currently taking opioids for pain, and returning the DNA sample during the follow-up. For addiction testing, significant predictors were history of concussion, younger age, psychotropic medication use, having alcohol dependence, and currently taking opioids for pain. Altogether, 25.9% of veterans reported that they would have liked to have known their genetic results before deployment, 15.6% reported after deployment, and 58.6% reported they did not want to know neither before nor after deployment. As advancements in genetic testing continue to evolve, our study suggests that consumer attitudes toward genetic testing for mental disorders are complex and better understanding of these attitudes and beliefs will be crucial to successfully promote utilization.

  14. Genetic risk for attention-deficit/hyperactivity disorder contributes to neurodevelopmental traits in the general population.

    Science.gov (United States)

    Martin, Joanna; Hamshere, Marian L; Stergiakouli, Evangelia; O'Donovan, Michael C; Thapar, Anita

    2014-10-15

    Attention-deficit/hyperactivity disorder (ADHD) can be viewed as the extreme end of traits in the general population. Epidemiological and twin studies suggest that ADHD frequently co-occurs with and shares genetic susceptibility with autism spectrum disorder (ASD) and ASD-related traits. The aims of this study were to determine whether a composite of common molecular genetic variants, previously found to be associated with clinically diagnosed ADHD, predicts ADHD and ASD-related traits in the general population. Polygenic risk scores were calculated in the Avon Longitudinal Study of Parents and Children (ALSPAC) population sample (N = 8229) based on a discovery case-control genome-wide association study of childhood ADHD. Regression analyses were used to assess whether polygenic scores predicted ADHD traits and ASD-related measures (pragmatic language abilities and social cognition) in the ALSPAC sample. Polygenic scores were also compared in boys and girls endorsing any (rating ≥ 1) ADHD item (n = 3623). Polygenic risk for ADHD showed a positive association with ADHD traits (hyperactive-impulsive, p = .0039; inattentive, p = .037). Polygenic risk for ADHD was also negatively associated with pragmatic language abilities (p = .037) but not with social cognition (p = .43). In children with a rating ≥ 1 for ADHD traits, girls had a higher polygenic score than boys (p = .003). These findings provide molecular genetic evidence that risk alleles for the categorical disorder of ADHD influence hyperactive-impulsive and attentional traits in the general population. The results further suggest that common genetic variation that contributes to ADHD diagnosis may also influence ASD-related traits, which at their extreme are a characteristic feature of ASD. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. Genetic and environmental influences on dimensional representations of DSM-IV cluster C personality disorders: a population-based multivariate twin study.

    Science.gov (United States)

    Reichborn-Kjennerud, Ted; Czajkowski, Nikolai; Neale, Michael C; Ørstavik, Ragnhild E; Torgersen, Svenn; Tambs, Kristian; Røysamb, Espen; Harris, Jennifer R; Kendler, Kenneth S

    2007-05-01

    The DSM-IV cluster C Axis II disorders include avoidant (AVPD), dependent (DEPD) and obsessive-compulsive (OCPD) personality disorders. We aimed to estimate the genetic and environmental influences on dimensional representations of these disorders and examine the validity of the cluster C construct by determining to what extent common familial factors influence the individual PDs. PDs were assessed using the Structured Interview for DSM-IV Personality (SIDP-IV) in a sample of 1386 young adult twin pairs from the Norwegian Institute of Public Health Twin Panel (NIPHTP). A single-factor independent pathway multivariate model was applied to the number of endorsed criteria for the three cluster C disorders, using the statistical modeling program Mx. The best-fitting model included genetic and unique environmental factors only, and equated parameters for males and females. Heritability ranged from 27% to 35%. The proportion of genetic variance explained by a common factor was 83, 48 and 15% respectively for AVPD, DEPD and OCPD. Common genetic and environmental factors accounted for 54% and 64% respectively of the variance in AVPD and DEPD but only 11% of the variance in OCPD. Cluster C PDs are moderately heritable. No evidence was found for shared environmental or sex effects. Common genetic and individual environmental factors account for a substantial proportion of the variance in AVPD and DEPD. However, OCPD appears to be largely etiologically distinct from the other two PDs. The results do not support the validity of the DSM-IV cluster C construct in its present form.

  16. Comparing ESC and iPSC—Based Models for Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Tomer Halevy

    2014-10-01

    Full Text Available Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs from patients’ somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn’t be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  17. Comparing ESC and iPSC-Based Models for Human Genetic Disorders.

    Science.gov (United States)

    Halevy, Tomer; Urbach, Achia

    2014-10-24

    Traditionally, human disorders were studied using animal models or somatic cells taken from patients. Such studies enabled the analysis of the molecular mechanisms of numerous disorders, and led to the discovery of new treatments. Yet, these systems are limited or even irrelevant in modeling multiple genetic diseases. The isolation of human embryonic stem cells (ESCs) from diseased blastocysts, the derivation of induced pluripotent stem cells (iPSCs) from patients' somatic cells, and the new technologies for genome editing of pluripotent stem cells have opened a new window of opportunities in the field of disease modeling, and enabled studying diseases that couldn't be modeled in the past. Importantly, despite the high similarity between ESCs and iPSCs, there are several fundamental differences between these cells, which have important implications regarding disease modeling. In this review we compare ESC-based models to iPSC-based models, and highlight the advantages and disadvantages of each system. We further suggest a roadmap for how to choose the optimal strategy to model each specific disorder.

  18. The role of registries in rare genetic lipid disorders: Review and introduction of the first global registry in lipoprotein lipase deficiency.

    Science.gov (United States)

    Steinhagen-Thiessen, Elisabeth; Stroes, Erik; Soran, Handrean; Johnson, Colin; Moulin, Philippe; Iotti, Giorgio; Zibellini, Marco; Ossenkoppele, Bas; Dippel, Michaela; Averna, Maurizio R

    2017-07-01

    A good understanding of the natural history of rare genetic lipid disorders is a pre-requisite for successful patient management. Disease registries have been helpful in this regard. Lipoprotein Lipase Deficiency (LPLD) is a rare, autosomal-recessive lipid disorder characterized by severe hypertriglyceridemia and a very high risk for recurrent acute pancreatitis, however, only limited data are available on its natural course. Alipogene tiparvovec (Glybera ® ) is the first gene therapy to receive Marketing Authorization in the European Union; GENIALL (GENetherapy In the MAnagement of Lipoprotein Lipase Deficiency), a 15-year registry focusing on LPLD was launched in 2014 as part of its Risk Management Plan. The aim of this publication is to introduce the GENIALL Registry within a structured literature review of registries in rare genetic lipid disorders. A total of 11 relevant initiatives/registries were identified (homozygous Familial Hypercholesterolemia (hoFH) [n = 5]; LPLD [n = 1]; Lysosomal Acid Lipase Deficiency [LALD, n = 1], detection of mutations in genetic lipid disorders [n = 4]). Besides one product registry in hoFH and the LALD registry, all other initiatives are local or country-specific. GENIALL is the first global prospective registry in LPLD that will collect physician and patient generated data on the natural course of LPLD, as well as long-term outcomes of gene therapy. There is a limited number of international initiatives focusing on the natural course of specific rare genetic lipid disorders. The GENIALL LPLD Registry could be the first step towards a future broader global initiative that collects data related to familial chylomicronemia syndrome and their underlying genetic causes. Copyright © 2016. Published by Elsevier B.V.

  19. Brain structure-function associations in multi-generational families genetically enriched for bipolar disorder.

    Science.gov (United States)

    Fears, Scott C; Schür, Remmelt; Sjouwerman, Rachel; Service, Susan K; Araya, Carmen; Araya, Xinia; Bejarano, Julio; Knowles, Emma; Gomez-Makhinson, Juliana; Lopez, Maria C; Aldana, Ileana; Teshiba, Terri M; Abaryan, Zvart; Al-Sharif, Noor B; Navarro, Linda; Tishler, Todd A; Altshuler, Lori; Bartzokis, George; Escobar, Javier I; Glahn, David C; Thompson, Paul M; Lopez-Jaramillo, Carlos; Macaya, Gabriel; Molina, Julio; Reus, Victor I; Sabatti, Chiara; Cantor, Rita M; Freimer, Nelson B; Bearden, Carrie E

    2015-07-01

    Recent theories regarding the pathophysiology of bipolar disorder suggest contributions of both neurodevelopmental and neurodegenerative processes. While structural neuroimaging studies indicate disease-associated neuroanatomical alterations, the behavioural correlates of these alterations have not been well characterized. Here, we investigated multi-generational families genetically enriched for bipolar disorder to: (i) characterize neurobehavioural correlates of neuroanatomical measures implicated in the pathophysiology of bipolar disorder; (ii) identify brain-behaviour associations that differ between diagnostic groups; (iii) identify neurocognitive traits that show evidence of accelerated ageing specifically in subjects with bipolar disorder; and (iv) identify brain-behaviour correlations that differ across the age span. Structural neuroimages and multi-dimensional assessments of temperament and neurocognition were acquired from 527 (153 bipolar disorder and 374 non-bipolar disorder) adults aged 18-87 years in 26 families with heavy genetic loading for bipolar disorder. We used linear regression models to identify significant brain-behaviour associations and test whether brain-behaviour relationships differed: (i) between diagnostic groups; and (ii) as a function of age. We found that total cortical and ventricular volume had the greatest number of significant behavioural associations, and included correlations with measures from multiple cognitive domains, particularly declarative and working memory and executive function. Cortical thickness measures, in contrast, showed more specific associations with declarative memory, letter fluency and processing speed tasks. While the majority of brain-behaviour relationships were similar across diagnostic groups, increased cortical thickness in ventrolateral prefrontal and parietal cortical regions was associated with better declarative memory only in bipolar disorder subjects, and not in non-bipolar disorder family

  20. Changes in genetic and environmental influences on disordered eating between early and late adolescence: a longitudinal twin study.

    Science.gov (United States)

    Fairweather-Schmidt, A K; Wade, T D

    2015-11-01

    We investigated the genetic and environmental contributions to disordered eating (DE) between early and late adolescence in order to determine whether different sources of heritability and environmental risk contributed to these peak times of emergence of eating disorders. Adolescent female twins from the Australian Twin Registry were interviewed over the telephone with the Eating Disorder Examination (EDE). Data were collected at 12-15 and 16-19 years (wave 1: N = 699, 351 pairs; wave 3: N = 499, 247 pairs). Assessments also involved self-report measures related to negative life events and weight-related peer teasing. Unstandardized estimates from the bivariate Cholesky decomposition model showed both genetic influences and non-shared environmental influences increased over adolescence, but shared environmental influences decreased. While non-shared environmental sources active at ages 12-15 years continued to contribute at 16-19 years, new sources of both additive genetic and non-shared environmental risk were introduced at ages 16-19 years. Weight-related peer teasing in early-mid adolescence predicted increases of DE in later adolescence, while negative life events did not. Two-thirds of the heritable influence contributing to DE in late adolescence was unique to this age group. During late adolescence independent sources of genetic risk, as well as environmental influences are likely to be related in part to peer teasing, appear key antecedents in growth of DE.

  1. Protocol for investigating genetic determinants of posttraumatic stress disorder in women from the Nurses' Health Study II

    Directory of Open Access Journals (Sweden)

    Smoller Jordan W

    2009-05-01

    Full Text Available Abstract Background One in nine American women will meet criteria for the diagnosis of posttraumatic stress disorder (PTSD in their lifetime. Although twin studies suggest genetic influences account for substantial variance in PTSD risk, little progress has been made in identifying variants in specific genes that influence liability to this common, debilitating disorder. Methods and design We are using the unique resource of the Nurses Health Study II, a prospective epidemiologic cohort of 68,518 women, to conduct what promises to be the largest candidate gene association study of PTSD to date. The entire cohort will be screened for trauma exposure and PTSD; 3,000 women will be selected for PTSD diagnostic interviews based on the screening data. Our nested case-control study will genotype1000 women who developed PTSD following a history of trauma exposure; 1000 controls will be selected from women who experienced similar traumas but did not develop PTSD. The primary aim of this study is to detect genetic variants that predict the development of PTSD following trauma. We posit inherited vulnerability to PTSD is mediated by genetic variation in three specific neurobiological systems whose alterations are implicated in PTSD etiology: the hypothalamic-pituitary-adrenal axis, the locus coeruleus/noradrenergic system, and the limbic-frontal neuro-circuitry of fear. The secondary, exploratory aim of this study is to dissect genetic influences on PTSD in the broader genetic and environmental context for the candidate genes that show significant association with PTSD in detection analyses. This will involve: conducting conditional tests to identify the causal genetic variant among multiple correlated signals; testing whether the effect of PTSD genetic risk variants is moderated by age of first trauma, trauma type, and trauma severity; and exploring gene-gene interactions using a novel gene-based statistical approach. Discussion Identification of

  2. The Genetics of Obsessive-Compulsive Disorder and Tourette Syndrome: An Epidemiological and Pathway-Based Approach for Gene Discovery

    Science.gov (United States)

    Grados, Marco A.

    2010-01-01

    Objective: To provide a contemporary perspective on genetic discovery methods applied to obsessive-compulsive disorder (OCD) and Tourette syndrome (TS). Method: A review of research trends in genetics research in OCD and TS is conducted, with emphasis on novel approaches. Results: Genome-wide association studies (GWAS) are now in progress in OCD…

  3. A screening on Specific Learning Disorders in an Italian speaking high genetic homogeneity area.

    Science.gov (United States)

    Cappa, Claudia; Giulivi, Sara; Schilirò, Antonino; Bastiani, Luca; Muzio, Carlo; Meloni, Fabrizio

    2015-01-01

    The aim of the present research is to investigate the prevalence of Specific Learning Disorders (SLD) in Ogliastra, an area of the island of Sardinia, Italy. Having experienced centuries of isolation, Ogliastra has become a high genetic homogeneity area, and is considered particularly interesting for studies on different kinds of pathologies. Here we are going to describe the results of a screening carried out throughout 2 consecutive years in 49 second grade classes (24 considered in the first year and 25 in the second year of the study) of the Ogliastra region. A total of 610 pupils (average age 7.54 years; 293 female, 317 male) corresponding to 68.69% of all pupils who were attending second grade in the area, took part in the study. The tool used for the screening was "RSR-DSA. Questionnaire for the detection of learning difficulties and disorders", which allowed the identification of 83 subjects at risk (13.61% of the whole sample involved in the study). These subjects took part in an enhancement training program of about 6 months. After the program, pupils underwent assessment for reading, writing and calculation abilities, as well as cognitive assessment. According to the results of the assessment, the prevalence of SLDs is 6.06%. For what concerns dyslexia, 4.75% of the total sample manifested this disorder either in isolation or in comorbidity with other disorders. According to the first national epidemiological investigation carried out in Italy, the prevalence of dyslexia is 3.1-3.2%, which is lower than the prevalence obtained in the present study. Given the genetic basis of SLDs, this result, together with the presence of several cases of SLD in isolation (17.14%) and with a 3:1 ratio of males to females diagnosed with a SLD, was to be expected in a sample coming from a high genetic homogeneity area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Genetic association between the phospholipase A2 gene and unipolar affective disorder: a multicentre case-control study.

    Science.gov (United States)

    Papadimitriou, George N; Dikeos, Dimitris G; Souery, Daniel; Del-Favero, Jurgen; Massat, Isabelle; Avramopoulos, Dimitrios; Blairy, Sylvie; Cichon, Sven; Ivezic, Sladjana; Kaneva, Radka; Karadima, Georgia; Lilli, Roberta; Milanova, Vihra; Nöthen, Markus; Oruc, Lilijana; Rietschel, Marcella; Serretti, Alessandro; Van Broeckhoven, Christine; Stefanis, Costas N; Mendlewicz, Julien

    2003-12-01

    The co-segregation in one pedigree of bipolar affective disorder with Darier's disease whose gene is on chromosome 12q23-q24.1, and findings from linkage and association studies with the neighbouring gene of phospholipase A2 (PLA2) indicate that PLA2 may be considered as a candidate gene for affective disorders. All relevant genetic association studies, however, were conducted on bipolar patients. In the present study, the possible association between the PLA2 gene and unipolar affective disorder was examined on 321 unipolar patients and 604 controls (all personally interviewed), recruited from six countries (Belgium, Bulgaria, Croatia, Germany, Greece, and Italy) participating in the European Collaborative Project on Affective Disorders. After controlling for population group and gender, one of the eight alleles of the investigated marker (allele 7) was found to be more frequent among unipolar patients with more than three major depressive episodes than among controls (P<0.01); genotypic association was also observed, under the dominant model of genetic transmission (P<0.02). In addition, presence of allele 7 was correlated with a higher frequency of depressive episodes (P<0.02). These findings suggest that structural variations at the PLA2 gene or the chromosomal region around it may confer susceptibility for unipolar affective disorder.

  5. Accuracy of preimplantation genetic diagnosis (PGD) of single gene and chromosomal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Verlinsky, Y.; Strom, C.; Rechitsky, S. [Reproductive Genetics Institute, Chicage, IL (United States)] [and others

    1994-09-01

    We have developed a polar body inferred approach for preconception diagnosis of single gene and chromosomal disorders. Preconception PCR or FISH analysis was performed in a total of 310 first polar bodies for the following genetic conditions: cystic fibrosis, hemophilia A, alpha-1-antitrypsin deficiency, Tay Sachs disease, retinitis pigmentosa and common chromosomal trisomies. An important advantage of this approach is the avoidance of sperm (DNA) contamination, which is the major problem of PGD. We are currently applying FISH analysis of biopsied blastomeres, in combination with PCR or separately, and have demonstrated a significant improvement of the accuracy of PGD of X-linked disorders at this stage. Our data have also demonstrated feasibility of the application of FISH technique for PGD of chromosomal disorders. It was possible to detect chromosomal non-disjunctions and chromatid malsegregations in the first meiotic division, as well as to evaluate chromosomal mutations originating from the second meiotic nondisjunction.

  6. Joint multi-population analysis for genetic linkage of bipolar disorder or "wellness" to chromosome 4p.

    Science.gov (United States)

    Visscher, P M; Haley, C S; Ewald, H; Mors, O; Egeland, J; Thiel, B; Ginns, E; Muir, W; Blackwood, D H

    2005-02-05

    To test the hypothesis that the same genetic loci confer susceptibility to, or protection from, disease in different populations, and that a combined analysis would improve the map resolution of a common susceptibility locus, we analyzed data from three studies that had reported linkage to bipolar disorder in a small region on chromosome 4p. Data sets comprised phenotypic information and genetic marker data on Scottish, Danish, and USA extended pedigrees. Across the three data sets, 913 individuals appeared in the pedigrees, 462 were classified, either as unaffected (323) or affected (139) with unipolar or bipolar disorder. A consensus linkage map was created from 14 microsatellite markers in a 33 cM region. Phenotypic and genetic data were analyzed using a variance component (VC) and allele sharing method. All previously reported elevated test statistics in the region were confirmed with one or both analysis methods, indicating the presence of one or more susceptibility genes to bipolar disorder in the three populations in the studied chromosome segment. When the results from both the VC and allele sharing method were considered, there was strong evidence for a susceptibility locus in the data from Scotland, some evidence in the data from Denmark and relatively less evidence in the data from the USA. The test statistics from the Scottish data set dominated the test statistics from the other studies, and no improved map resolution for a putative genetic locus underlying susceptibility in all three studies was obtained. Studies reporting linkage to the same region require careful scrutiny and preferably joint or meta analysis on the same basis in order to ensure that the results are truly comparable. (c) 2004 Wiley-Liss, Inc.

  7. Current Issues in the Neurology and Genetics of Learning-Related Traits and Disorders: Introduction to the Special Issue.

    Science.gov (United States)

    Gilger, Jeffrey W.

    2001-01-01

    This introductory article briefly describes each of the following eight articles in this special issue on the neurology and genetics of learning related disorders. It notes the greater appreciation of learning disability as a set of complex disorders with broad and intricate neurological bases and of the large individual differences in how these…

  8. Genetics Home Reference: bipolar disorder

    Science.gov (United States)

    ... Email Facebook Twitter Home Health Conditions Bipolar disorder Bipolar disorder Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Bipolar disorder is a mental health condition that causes extreme ...

  9. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  10. The bipolar puzzle, adding new pieces. Factors associated with bipolar disorder, Genetic and environmental influences

    NARCIS (Netherlands)

    van der Schot, A.C.

    2009-01-01

    The focus of this thesis is twofold. The first part will discuss the structural brain abnormalities and schoolperformance associated with bipolar disorder and the influence of genetic and/or environmental factors to this association. It is part of a large twin study investigating several potential

  11. Polygenic risk for five psychiatric disorders and cross-disorder and disorder-specific neural connectivity in two independent populations.

    Science.gov (United States)

    Wang, Tianqi; Zhang, Xiaolong; Li, Ang; Zhu, Meifang; Liu, Shu; Qin, Wen; Li, Jin; Yu, Chunshui; Jiang, Tianzi; Liu, Bing

    2017-01-01

    Major psychiatric disorders, including attention deficit hyperactivity disorder (ADHD), autism (AUT), bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SZ), are highly heritable and polygenic. Evidence suggests that these five disorders have both shared and distinct genetic risks and neural connectivity abnormalities. To measure aggregate genetic risks, the polygenic risk score (PGRS) was computed. Two independent general populations (N = 360 and N = 323) were separately examined to investigate whether the cross-disorder PGRS and PGRS for a specific disorder were associated with individual variability in functional connectivity. Consistent altered functional connectivity was found with the bilateral insula: for the left supplementary motor area and the left superior temporal gyrus with the cross-disorder PGRS, for the left insula and right middle and superior temporal lobe associated with the PGRS for autism, for the bilateral midbrain, posterior cingulate, cuneus, and precuneus associated with the PGRS for BD, and for the left angular gyrus and the left dorsolateral prefrontal cortex associated with the PGRS for schizophrenia. No significant functional connectivity was found associated with the PGRS for ADHD and MDD. Our findings indicated that genetic effects on the cross-disorder and disorder-specific neural connectivity of common genetic risk loci are detectable in the general population. Our findings also indicated that polygenic risk contributes to the main neurobiological phenotypes of psychiatric disorders and that identifying cross-disorder and specific functional connectivity related to polygenic risks may elucidate the neural pathways for these disorders.

  12. Oppositional defiant- and conduct disorder-like problems: neurodevelopmental predictors and genetic background in boys and girls, in a nationwide twin study.

    Science.gov (United States)

    Kerekes, Nóra; Lundström, Sebastian; Chang, Zheng; Tajnia, Armin; Jern, Patrick; Lichtenstein, Paul; Nilsson, Thomas; Anckarsäter, Henrik

    2014-01-01

    Background. Previous research has supported gender-specific aetiological factors in oppositional defiant disorder (ODD) and conduct disorder (CD). The aims of this study were to identify gender-specific associations between the behavioural problems-ODD/CD-like problems-and the neurodevelopmental disorders-attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD)-and to investigate underlying genetic effects. Methods. 17,220 twins aged 9 or 12 were screened using the Autism-Tics, AD/HD and other Comorbidities inventory. The main covariates of ODD- and CD-like problems were investigated, and the relative importance of unique versus shared hereditary and environmental effects was estimated using twin model fitting. Results. Social interaction problems (one of the ASD subdomains) was the strongest neurodevelopmental covariate of the behavioural problems in both genders, while ADHD-related hyperactivity/impulsiveness in boys and inattention in girls stood out as important covariates of CD-like problems. Genetic effects accounted for 50%-62% of the variance in behavioural problems, except in CD-like problems in girls (26%). Genetic and environmental effects linked to ADHD and ASD also influenced ODD-like problems in both genders and, to a lesser extent, CD-like problems in boys, but not in girls. Conclusions. The gender-specific patterns should be considered in the assessment and treatment, especially of CD.

  13. A novel analytical framework for dissecting the genetic architecture of behavioral symptoms in neuropsychiatric disorders.

    Directory of Open Access Journals (Sweden)

    Anthony J Deo

    2010-03-01

    Full Text Available For diagnosis of neuropsychiatric disorders, a categorical classification system is often utilized as a simple way for conceptualizing an often complex clinical picture. This approach provides an unsatisfactory model of mental illness, since in practice patients do not conform to these prototypical diagnostic categories. Family studies show notable familial co-aggregation between schizophrenia and bipolar illness and between schizoaffective disorders and both bipolar disorder and schizophrenia, revealing that mental illness does not conform to such categorical models and is likely to follow a continuum encompassing a spectrum of behavioral symptoms.We introduce an analytic framework to dissect the phenotypic heterogeneity present in complex psychiatric disorders based on the conceptual paradigm of a continuum of psychosis. The approach identifies subgroups of behavioral symptoms that are likely to be phenotypically and genetically homogenous. We have evaluated this approach through analysis of simulated data with simulated behavioral traits and predisposing genetic factors. We also apply this approach to a psychiatric dataset of a genome scan for schizophrenia for which extensive behavioral information was collected for each individual patient and their families. With this approach, we identified significant evidence for linkage among depressed individuals with two distinct symptom profiles, that is individuals with sleep disturbance symptoms with linkage on chromosome 2q13 and also a mutually exclusive group of individuals with symptoms of concentration problems with linkage on chromosome 2q35. In addition we identified a subset of individuals with schizophrenia defined by language disturbances with linkage to chromosome 2p25.1 and a group of patients with a phenotype intermediate between those of schizophrenia and schizoaffective disorder with linkage to chromosome 2p21.The findings presented are novel and demonstrate the efficacy of this

  14. Relationship of genetically transmitted alpha EEG traits to anxiety disorders and alcoholism

    Energy Technology Data Exchange (ETDEWEB)

    Enoch, M.A.; Rohrbaugh, W.; Harris, C.R. [Washington School of Medicine, St. Louis, MO (United States)] [and others

    1995-10-09

    We tested the hypothesis that a heritable EEG trait, the low voltage alpha (LV), is associated with psychiatric disorders. Modest to moderate evidence for genetic linkage of both panic disorder and the low voltage alpha trait to the same region of chromosome 20q has recently been reported, raising the issue of whether there is a phenotypic correlation between these traits. A total of 124 subjects including 50 unrelated index subjects and 74 relatives were studied. Alpha EEG power was measured and EEG phenotypes were impressionistically classified. Subjects were psychiatrically interviewed using the SADS-L and blind-rated by RDC criteria. Alcoholics were four times more likely to be LV (including so-called borderline low voltage alpha) than were nonalcoholic, nonanxious subjects. Alcoholics with anxiety disorder are 10 times more likely to be LV. However, alcoholics without anxiety disorder were similar to nonalcoholics in alpha power. An anxiety disorder (panic disorder, phobia, or generalized anxiety) was found in 14/17 LV subjects as compared to 34/101 of the rest of the sample (P < 0.01). Support for these observations was found in the unrelated index subjects in whom no traits would be shared by familial clustering. Lower alpha power in anxiety disorders was not state-dependent, as indicated by the Spielberger Anxiety Scale. Familial covariance of alpha power was 0.25 (P < 0.01). These findings indicate there may be a shared factor underlying the transmissible low voltage alpha EEG variant and vulnerability to anxiety disorders with associated alcoholism. This factor is apparently not rare, because LV was found in approximately 10% of unrelated index subjects and 5% of subjects free of alcoholism and anxiety disorders. 43 refs., 1 fig., 3 tabs.

  15. Experiencing the genetic body: parents' encounters with pediatric clinical genetics.

    Science.gov (United States)

    Raspberry, Kelly; Skinner, Debra

    2007-01-01

    Because of advancements in genetic research and technologies, the clinical practice of genetics is becoming a prevalent component of biomedicine. As the genetic basis for more and more diseases are found, it is possible that ways of experiencing health, illness, identity, kin relations, and the body are becoming geneticized, or understood within a genetic model of disease. Yet, other models and relations that go beyond genetic explanations also shape interpretations of health and disease. This article explores how one group of individuals for whom genetic disorder is highly relevant formulates their views of the body in light of genetic knowledge. Using data from an ethnographic study of 106 parents or potential parents of children with known or suspected genetic disorders who were referred to a pediatric genetic counseling and evaluation clinic in the southeastern United States, we find that these parents do, to some degree, perceive of their children's disorders in terms of a genetic body that encompasses two principal qualities: a sense of predetermined health and illness and an awareness of a profound historicity that reaches into the past and extends into the present and future. They experience this genetic body as both fixed and historical, but they also express ideas of a genetic body made less deterministic by their own efforts and future possibilities. This account of parents' experiences with genetics and clinical practice contributes to a growing body of work on the ways in which genetic information and technologies are transforming popular and medical notions of the body, and with it, health, illness, kinship relations, and personal and social identities.

  16. Specific Genetic Disorders

    Science.gov (United States)

    ... Care Genomic Medicine Working Group New Horizons and Research Patient Management Policy and Ethics Issues Quick Links for Patient Care Education All About the Human Genome Project Fact Sheets Genetic Education Resources for ...

  17. Advances in molecular genetic studies of attention deficit hyperactivity disorder in China

    Science.gov (United States)

    GAO, Qian; LIU, Lu; QIAN, Qiujin; WANG, Yufeng

    2014-01-01

    Summary Attention deficit hyperactivity disorder (ADHD) is a common psychiatric condition in children worldwide that typically includes a combination of symptoms of inattention and hyperactivity/impulsivity. Genetic factors are believed to be important in the development and course of ADHD so many candidate genes studies and genome-wide association studies (GWAS) have been conducted in search of the genetic mechanisms that cause or influence the condition. This review provides an overview of gene association and pharmacogenetic studies of ADHD from mainland China and elsewhere that use Han Chinese samples. To date, studies from China and elsewhere remain inconclusive so future studies need to consider alternative analytic techniques and test new biological hypotheses about the relationship of neurotransmission and neurodevelopment to the onset and course of this disabling condition. PMID:25317006

  18. Genetic and Environmental Structure of DSM-IV Criteria for Antisocial Personality Disorder: A Twin Study.

    Science.gov (United States)

    Rosenström, Tom; Ystrom, Eivind; Torvik, Fartein Ask; Czajkowski, Nikolai Olavi; Gillespie, Nathan A; Aggen, Steven H; Krueger, Robert F; Kendler, Kenneth S; Reichborn-Kjennerud, Ted

    2017-05-01

    Results from previous studies on DSM-IV and DSM-5 Antisocial Personality Disorder (ASPD) have suggested that the construct is etiologically multidimensional. To our knowledge, however, the structure of genetic and environmental influences in ASPD has not been examined using an appropriate range of biometric models and diagnostic interviews. The 7 ASPD criteria (section A) were assessed in a population-based sample of 2794 Norwegian twins by a structured interview for DSM-IV personality disorders. Exploratory analyses were conducted at the phenotypic level. Multivariate biometric models, including both independent and common pathways, were compared. A single phenotypic factor was found, and the best-fitting biometric model was a single-factor common pathway model, with common-factor heritability of 51% (95% CI 40-67%). In other words, both genetic and environmental correlations between the ASPD criteria could be accounted for by a single common latent variable. The findings support the validity of ASPD as a unidimensional diagnostic construct.

  19. Lipid Metabolism Disorders

    Science.gov (United States)

    ... using blood tests. If there is a family history of one of these disorders, parents can get genetic testing to see whether they carry the gene. Other genetic tests can tell whether the fetus has the disorder or carries the gene for the disorder. Enzyme replacement therapies can help with a few of ...

  20. An Underlying Common Factor, Influenced by Genetics and Unique Environment, Explains the Covariation Between Major Depressive Disorder, Generalized Anxiety Disorder, and Burnout: A Swedish Twin Study.

    Science.gov (United States)

    Mather, Lisa; Blom, Victoria; Bergström, Gunnar; Svedberg, Pia

    2016-12-01

    Depression and anxiety are highly comorbid due to shared genetic risk factors, but less is known about whether burnout shares these risk factors. We aimed to examine whether the covariation between major depressive disorder (MDD), generalized anxiety disorder (GAD), and burnout is explained by common genetic and/or environmental factors. This cross-sectional study included 25,378 Swedish twins responding to a survey in 2005-2006. Structural equation models were used to analyze whether the trait variances and covariances were due to additive genetics, non-additive genetics, shared environment, and unique environment. Univariate analyses tested sex limitation models and multivariate analysis tested Cholesky, independent pathway, and common pathway models. The phenotypic correlations were 0.71 (0.69-0.74) between MDD and GAD, 0.58 (0.56-0.60) between MDD and burnout, and 0.53 (0.50-0.56) between GAD and burnout. Heritabilities were 45% for MDD, 49% for GAD, and 38% for burnout; no statistically significant sex differences were found. A common pathway model was chosen as the final model. The common factor was influenced by genetics (58%) and unique environment (42%), and explained 77% of the variation in MDD, 69% in GAD, and 44% in burnout. GAD and burnout had additive genetic factors unique to the phenotypes (11% each), while MDD did not. Unique environment explained 23% of the variability in MDD, 20% in GAD, and 45% in burnout. In conclusion, the covariation was explained by an underlying common factor, largely influenced by genetics. Burnout was to a large degree influenced by unique environmental factors not shared with MDD and GAD.

  1. Comparative linkage meta-analysis reveals regionally-distinct, disparate genetic architectures: application to bipolar disorder and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Brady Tang

    2011-04-01

    Full Text Available New high-throughput, population-based methods and next-generation sequencing capabilities hold great promise in the quest for common and rare variant discovery and in the search for "missing heritability." However, the optimal analytic strategies for approaching such data are still actively debated, representing the latest rate-limiting step in genetic progress. Since it is likely a majority of common variants of modest effect have been identified through the application of tagSNP-based microarray platforms (i.e., GWAS, alternative approaches robust to detection of low-frequency (1-5% MAF and rare (<1% variants are of great importance. Of direct relevance, we have available an accumulated wealth of linkage data collected through traditional genetic methods over several decades, the full value of which has not been exhausted. To that end, we compare results from two different linkage meta-analysis methods--GSMA and MSP--applied to the same set of 13 bipolar disorder and 16 schizophrenia GWLS datasets. Interestingly, we find that the two methods implicate distinct, largely non-overlapping, genomic regions. Furthermore, based on the statistical methods themselves and our contextualization of these results within the larger genetic literatures, our findings suggest, for each disorder, distinct genetic architectures may reside within disparate genomic regions. Thus, comparative linkage meta-analysis (CLMA may be used to optimize low-frequency and rare variant discovery in the modern genomic era.

  2. Reno-endocrinal disorders: A basic understanding of the molecular genetics

    Directory of Open Access Journals (Sweden)

    Sukhminder Jit Singh Bajwa

    2012-01-01

    Full Text Available The successful management of endocrine diseases is greatly helped by the complete understanding of the underlying pathology. The knowledge about the molecular genetics contributes immensely in the appropriate identification of the causative factors of the diseases and their subsequent management. The fields of nephrology and endocrinology are also interrelated to a large extent. Besides performing the secretory functions, the renal tissue also acts as target organ for many hormones such as antidiuretic hormone (ADH, atrial natriuretic peptides (ANP, and aldosterone. Understanding the molecular genetics of these hormones is important because the therapeutic interventions in many of these conditions is related to shared renal and endocrine functions, including the anemia of renal disease, chronic kidney disease, mineral bone disorders, and hypertension related to chronic kidney disease. Their understanding and in-depth knowledge is very essential in designing and formulating the therapeutic plans and innovating new management strategies. However, we still have to go a long way in order to completely understand the various confounding causative relationships between the pathology and disease of these reno-endocrinal manifestations.

  3. A putative causal relationship between genetically determined female body shape and posttraumatic stress disorder.

    Science.gov (United States)

    Polimanti, Renato; Amstadter, Ananda B; Stein, Murray B; Almli, Lynn M; Baker, Dewleen G; Bierut, Laura J; Bradley, Bekh; Farrer, Lindsay A; Johnson, Eric O; King, Anthony; Kranzler, Henry R; Maihofer, Adam X; Rice, John P; Roberts, Andrea L; Saccone, Nancy L; Zhao, Hongyu; Liberzon, Israel; Ressler, Kerry J; Nievergelt, Caroline M; Koenen, Karestan C; Gelernter, Joel

    2017-11-27

    The nature and underlying mechanisms of the observed increased vulnerability to posttraumatic stress disorder (PTSD) in women are unclear. We investigated the genetic overlap of PTSD with anthropometric traits and reproductive behaviors and functions in women. The analysis was conducted using female-specific summary statistics from large genome-wide association studies (GWAS) and a cohort of 3577 European American women (966 PTSD cases and 2611 trauma-exposed controls). We applied a high-resolution polygenic score approach and Mendelian randomization analysis to investigate genetic correlations and causal relationships. We observed an inverse association of PTSD with genetically determined anthropometric traits related to body shape, independent of body mass index (BMI). The top association was related to BMI-adjusted waist circumference (WC adj ; R = -0.079, P body shape and PTSD, which could be mediated by evolutionary mechanisms involved in human sexual behaviors.

  4. The Genetic and Environmental Sources of Resemblance Between Normative Personality and Personality Disorder Traits.

    Science.gov (United States)

    Kendler, K S; Aggen, S H; Gillespie, Nathan; Neale, M C; Knudsen, G P; Krueger, R F; Czajkowski, Nikolai; Ystrom, Eivind; Reichborn-Kjennerud, T

    2017-04-01

    Recent work has suggested a high level of congruence between normative personality, most typically represented by the "big five" factors, and abnormal personality traits. In 2,293 Norwegian adult twins ascertained from a population-based registry, the authors evaluated the degree of sharing of genetic and environmental influences on normative personality, assessed by the Big Five Inventory (BFI), and personality disorder traits (PDTs), assessed by the Personality Inventory for DSM-5-Norwegian Brief Form (PID-5-NBF). For four of the five BFI dimensions, the strongest genetic correlation was observed with the expected PID-5-NBF dimension (e.g., neuroticism with negative affectivity [+], conscientiousness with disinhibition [-]). However, neuroticism, conscientiousness, and agreeableness had substantial genetic correlations with other PID-5-NBF dimensions (e.g., neuroticism with compulsivity [+], agreeableness with detachment [-]). Openness had no substantial genetic correlations with any PID-5-NBF dimension. The proportion of genetic risk factors shared in aggregate between the BFI traits and the PID-5-NBF dimensions was quite high for conscientiousness and neuroticism, relatively robust for extraversion and agreeableness, but quite low for openness. Of the six PID-5-NBF dimensions, three (negative affectivity, detachment, and disinhibition) shared, in aggregate, most of their genetic risk factors with normative personality traits. Genetic factors underlying psychoticism, antagonism, and compulsivity were shared to a lesser extent, suggesting that they are influenced by etiological factors not well indexed by the BFI.

  5. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients

    International Nuclear Information System (INIS)

    Chen, Hang; Thill, Peter; Cao, Jianshu

    2016-01-01

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.

  6. Transitions in genetic toggle switches driven by dynamic disorder in rate coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hang, E-mail: hangchen@mit.edu; Thill, Peter; Cao, Jianshu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2016-05-07

    In biochemical systems, intrinsic noise may drive the system switch from one stable state to another. We investigate how kinetic switching between stable states in a bistable network is influenced by dynamic disorder, i.e., fluctuations in the rate coefficients. Using the geometric minimum action method, we first investigate the optimal transition paths and the corresponding minimum actions based on a genetic toggle switch model in which reaction coefficients draw from a discrete probability distribution. For the continuous probability distribution of the rate coefficient, we then consider two models of dynamic disorder in which reaction coefficients undergo different stochastic processes with the same stationary distribution. In one, the kinetic parameters follow a discrete Markov process and in the other they follow continuous Langevin dynamics. We find that regulation of the parameters modulating the dynamic disorder, as has been demonstrated to occur through allosteric control in bistable networks in the immune system, can be crucial in shaping the statistics of optimal transition paths, transition probabilities, and the stationary probability distribution of the network.

  7. Genetic Counseling in Mental Retardation.

    Science.gov (United States)

    Bowen, Peter

    The task of the genetic counselor who identifies genetic causes of mental retardation and assists families to understand risk of recurrence is described. Considered are chromosomal genetic disorders such as Down's syndrome, inherited disorders such as Tay-Sachs disease, identification by testing the amniotic fluid cells (amniocentresis) in time…

  8. The Molecular Genetics of Autism Spectrum Disorders: Genomic Mechanisms, Neuroimmunopathology, and Clinical Implications

    Directory of Open Access Journals (Sweden)

    Daniel J. Guerra

    2011-01-01

    Full Text Available Autism spectrum disorders (ASDs have become increasingly common in recent years. The discovery of single-nucleotide polymorphisms and accompanying copy number variations within the genome has increased our understanding of the architecture of the disease. These genetic and genomic alterations coupled with epigenetic phenomena have pointed to a neuroimmunopathological mechanism for ASD. Model animal studies, developmental biology, and affective neuroscience laid a foundation for dissecting the neural pathways impacted by these disease-generating mechanisms. The goal of current autism research is directed toward a systems biological approach to find the most basic genetic and environmental causes to this severe developmental disease. It is hoped that future genomic and neuroimmunological research will be directed toward finding the road toward prevention, treatment, and cure of ASD.

  9. Protocol for investigating genetic determinants of posttraumatic stress disorder in women from the Nurses' Health Study II

    OpenAIRE

    Koenen, Karestan C; DeVivo, Immaculata; Rich-Edwards, Janet; Smoller, Jordan W; Wright, Rosalind J; Purcell, Shaun M

    2009-01-01

    Abstract Background One in nine American women will meet criteria for the diagnosis of posttraumatic stress disorder (PTSD) in their lifetime. Although twin studies suggest genetic influences account for substantial variance in PTSD risk, little progress has been made in identifying variants in specific genes that influence liability to this common, debilitating disorder. Methods and design We are using the unique resource of the Nurses Health Study II, a prospective epidemiologic cohort of 6...

  10. Reward deficiency syndrome: genetic aspects of behavioral disorders.

    Science.gov (United States)

    Comings, D E; Blum, K

    2000-01-01

    added to the list. Like other behavioral disorders, these are polygenically inherited and each gene accounts for only a small per cent of the variance. Techniques such as the Multivariate Analysis of Associations, which simultaneously examine the contribution of multiple genes, hold promise for understanding the genetic make up of polygenic disorders.

  11. Genetics for the ophthalmologist

    Directory of Open Access Journals (Sweden)

    Karthikeyan A Sadagopan

    2012-01-01

    Full Text Available The eye has played a major role in human genomics including gene therapy. It is the fourth most common organ system after integument (skin, hair and nails, nervous system, and musculoskeletal system to be involved in genetic disorders. The eye is involved in single gene disorders and those caused by multifactorial etiology. Retinoblastoma was the first human cancer gene to be cloned. Leber hereditary optic neuropathy was the first mitochondrial disorder described. X-Linked red-green color deficiency was the first X-linked disorder described. The eye, unlike any other body organ, allows directly visualization of genetic phenomena such as skewed X-inactivation in the fundus of a female carrier of ocular albinism. Basic concepts of genetics and their application to clinical ophthalmological practice are important not only in making a precise diagnosis and appropriate referral, but also in management and genetic counseling.

  12. Familial clustering of epilepsy and behavioral disorders: Evidence for a shared genetic basis

    Science.gov (United States)

    Hesdorffer, Dale C.; Caplan, Rochelle; Berg, Anne T.

    2011-01-01

    Purpose To examine whether family history of unprovoked seizures is associated with behavioral disorders in epilepsy probands, thereby supporting the hypothesis of shared underlying genetic susceptibility to these disorders. Methods We conducted an analysis of the 308 probands with childhood onset epilepsy from the Connecticut Study of Epilepsy with information on first degree family history of unprovoked seizures and of febrile seizures whose parents completed the Child Behavior Checklist (CBCL) at the 9-year follow-up. Clinical cut-offs for CBCL problem and DSM-Oriented scales were examined. The association between first degree family history of unprovoked seizure and behavioral disorders was assessed separately in uncomplicated and complicated epilepsy and separately for first degree family history of febrile seizures. A subanalysis, accounting for the tendency for behavioral disorders to run in families, adjusted for siblings with the same disorder as the proband. Prevalence ratios were used to describe the associations. Key findings In probands with uncomplicated epilepsy, first degree family history of unprovoked seizure was significantly associated with clinical cut-offs for Total Problems and Internalizing Disorders. Among Internalizing Disorders, clinical cut-offs for Withdrawn/Depressed, and DSM-Oriented scales for Affective Disorder and Anxiety Disorder were significantly associated with family history of unprovoked seizures. Clinical cut-offs for Aggressive Behavior and Delinquent Behavior, and DSM-Oriented scales for Conduct Disorder and Oppositional Defiant Disorder were significantly associated with family history of unprovoked seizure. Adjustment for siblings with the same disorder revealed significant associations for the relationship between first degree family history of unprovoked seizure and Total Problems and Agressive Behavior in probands with uncomplicated epilepsy; marginally significant results were seen for Internalizing Disorder

  13. Genética do transtorno bipolar Genetics of bipolar disorder

    Directory of Open Access Journals (Sweden)

    Leandro Michelon

    2004-10-01

    Full Text Available O Transtorno bipolar (TB possui alta prevalência na população mundial e causa perdas significativas na vida dos portadores. É uma doença cuja herança genética se caracteriza por mecanismos complexos de transmissão envolvendo múltiplos genes. Na tentativa de identificar genes de vulnerabilidade para o TB, várias estratégias de investigação genética têm sido utilizadas. Estudos de ligação apontam diversas regiões cromossômicas potencialmente associadas ao TB, cujos marcadores ou genes podem ser candidatos para os estudos de associação. Genes associados aos sistemas monoaminérgicos e vias de sinalização intracelulares são candidatos para investigação da etiologia genética do TB. Novas técnicas de mapeamento de expressão gênica em tecidos especializados apontam para novos genes cujas mutações possam ser responsáveis pelo aparecimento da doença. Em virtude da complexidade do modo de transmissão do TB e de sua heterogeneidade fenotípica, muitas dificuldades são encontradas na determinação desses genes de vulnerabilidade. Até o momento, há apenas resultados preliminares identificando alguns genes associados à vulnerabilidade para desenvolver o TB. Entretanto, a compreensão crescente dos mecanismos epigenéticos de controle da expressão gênica e a abordagem dimensional dos transtornos mentais podem colaborar nas investigações futuras em genética psiquiátrica.Bipolar disorder (BD is a worldwide highly prevalent mental disease. This disorder has a genetic inheritance characterized by complex transmission mechanisms involving multiple genes. Many investigation strategies have been put forward in order to identify BD susceptibility genes. Linkage studies reveal markers and candidate genes for the association studies. Monoaminergic system genes and intracellular signaling pathway genes are also important candidates to be investigated in the etiology of this disorder. Recent techniques of gene expression

  14. Genetic disorders of transporters/channels in the inner ear and their relation to the kidney.

    NARCIS (Netherlands)

    Peters, T.A.; Monnens, L.A.H.; Cremers, C.W.R.J.; Curfs, J.H.A.J.

    2004-01-01

    Inner ear physiology is reviewed with emphasis on features common to renal physiology. Genetic disorders in transporters/channels for chloride (ClC-K), bicarbonate (Cl(-)/HCO(3)(-) exchanger), protons (H(+)-ATPase), sodium (ENaC, NKKC1, NBC3, NHE3), potassium (KCNQ1/KCNE1, Kcc4), and water (AQP4) in

  15. Genetic parameters for claw disorders in Dutch dairy cattle and correlations with conformation traits.

    Science.gov (United States)

    van der Waaij, E H; Holzhauer, M; Ellen, E; Kamphuis, C; de Jong, G

    2005-10-01

    Impaired claw health is one of the major problems causing production loss and reduced animal welfare in dairy cattle. In response, the Dutch Animal Health Service (GD) Ltd. initiated this study, in which claws of lactating and near-term cows and heifers in 430 herds were trimmed by hoof trimmers and the health status of the rear claws recorded. Only herds with >75% of the animals having feet trimmed were considered, resulting in records on 21,611 animals. Eight claw disorders were scored: digital dermatitis (DD), interdigital dermatitis/heel horn erosions (IDHE), sole hemorrhage (SH), chronic laminitis (CL), sole ulcer (SU), white line disease (WLD), interdigital hyperplasia (HYP), and interdigital phlegmona (IP). The prevalence varied from 0.6% (IP) to 39.9% (SH). More than 70% of the animals had at least one claw disorder. Conformation traits and locomotion were recorded once during the animal's first lactation by trained classifiers of the Royal Dutch Cattle Syndicate and completely independent of the moment of claw trimming. Heritabilities were estimated using a sire model, and ranged from <0.01 (IP) to 0.10 (DD and HYP). Genetic correlations of incidences of claw disorders with locomotion were variable, ranging from 0.13 (SH) to -0.91 (CL). Genetic correlations with the rear leg conformation traits were lower, ranging from 0.04 (ID with rear leg side view) to -0.69 (IP with rear leg rear view).

  16. Genetic controls balancing excitatory and inhibitory synaptogenesis in neurodevelopmental disorder models

    Directory of Open Access Journals (Sweden)

    Cheryl L Gatto

    2010-06-01

    Full Text Available Proper brain function requires stringent balance of excitatory and inhibitory synapse formation during neural circuit assembly. Mutation of genes that normally sculpt and maintain this balance results in severe dysfunction, causing neurodevelopmental disorders including autism, epilepsy and Rett syndrome. Such mutations may result in defective architectural structuring of synaptic connections, molecular assembly of synapses and/or functional synaptogenesis. The affected genes often encode synaptic components directly, but also include regulators that secondarily mediate the synthesis or assembly of synaptic proteins. The prime example is Fragile X syndrome (FXS, the leading heritable cause of both intellectual disability and autism spectrum disorders. FXS results from loss of mRNA-binding FMRP, which regulates synaptic transcript trafficking, stability and translation in activity-dependent synaptogenesis and plasticity mechanisms. Genetic models of FXS exhibit striking excitatory and inhibitory synapse imbalance, associated with impaired cognitive and social interaction behaviors. Downstream of translation control, a number of specific synaptic proteins regulate excitatory versus inhibitory synaptogenesis, independently or combinatorially, and loss of these proteins is also linked to disrupted neurodevelopment. The current effort is to define the cascade of events linking transcription, translation and the role of specific synaptic proteins in the maintenance of excitatory versus inhibitory synapses during neural circuit formation. This focus includes mechanisms that fine-tune excitation and inhibition during the refinement of functional synaptic circuits, and later modulate this balance throughout life. The use of powerful new genetic models has begun to shed light on the mechanistic bases of excitation/inhibition imbalance for a range of neurodevelopmental disease states.

  17. Biological underpinnings of trauma and post-traumatic stress disorder: focusing on genetics and epigenetics.

    Science.gov (United States)

    Ryan, Joanne; Chaudieu, Isabelle; Ancelin, Marie-Laure; Saffery, Richard

    2016-11-01

    Certain individuals are more susceptible to stress and trauma, as well as the physical and mental health consequences following such exposure, including risk for post-traumatic stress disorder (PTSD). This differing vulnerability is likely to be influenced by genetic predisposition and specific characteristics of the stress itself (nature, intensity and duration), as well as epigenetic mechanisms. In this review we provide an overview of research findings in this field. We highlight some of the key genetic risk factors identified for PTSD, and the evidence that epigenetic processes might play a role in the biological response to trauma, as well as being potential biomarkers of PTSD risk. We also discuss important considerations for future research in this area.

  18. Developmental cognitive genetics: How psychology can inform genetics and vice versa

    Science.gov (United States)

    Bishop, Dorothy V. M.

    2006-01-01

    Developmental neuropsychology is concerned with uncovering the underlying basis of developmental disorders such as specific language impairment (SLI), developmental dyslexia, and autistic disorder. Twin and family studies indicate that genetic influences play an important part in the aetiology of all of these disorders, yet progress in identifying genes has been slow. One way forward is to cut loose from conventional clinical criteria for diagnosing disorders and to focus instead on measures of underlying cognitive mechanisms. Psychology can inform genetics by clarifying what the key dimensions are for heritable phenotypes. However, it is not a one-way street. By using genetically informative designs, one can gain insights about causal relationships between different cognitive deficits. For instance, it has been suggested that low-level auditory deficits cause phonological problems in SLI. However, a twin study showed that, although both types of deficit occur in SLI, they have quite different origins, with environmental factors more important for auditory deficit, and genes more important for deficient phonological short-term memory. Another study found that morphosyntactic deficits in SLI are also highly heritable, but have different genetic origins from impairments of phonological short-term memory. A genetic perspective shows that a search for the underlying cause of developmental disorders may be misguided, because they are complex and heterogeneous and are associated with multiple risk factors that only cause serious disability when they occur in combination. PMID:16769616

  19. The European Prader-Willi Syndrome Clinical Research Database: An Aid in the Investigation of a Rare Genetically Determined Neurodevelopmental Disorder

    Science.gov (United States)

    Holland, A.; Whittington, J.; Cohen, O.; Curfs, L.; Delahaye, F.; Dudley, O.; Horsthemke, B.; Lindgren, A. -C.; Nourissier, C.; Sharma, N.; Vogels, A.

    2009-01-01

    Background: Prader-Willi Syndrome (PWS) is a rare genetically determined neurodevelopmental disorder with a complex phenotype that changes with age. The rarity of the syndrome and the need to control for different variables such as genetic sub-type, age and gender limits clinical studies of sufficient size in any one country. A clinical research…

  20. The Use of Patient-Specific Induced Pluripotent Stem Cells (iPSCs to Identify Osteoclast Defects in Rare Genetic Bone Disorders

    Directory of Open Access Journals (Sweden)

    I-Ping Chen

    2014-12-01

    Full Text Available More than 500 rare genetic bone disorders have been described, but for many of them only limited treatment options are available. Challenges for studying these bone diseases come from a lack of suitable animal models and unavailability of skeletal tissues for studies. Effectors for skeletal abnormalities of bone disorders may be abnormal bone formation directed by osteoblasts or anomalous bone resorption by osteoclasts, or both. Patient-specific induced pluripotent stem cells (iPSCs can be generated from somatic cells of various tissue sources and in theory can be differentiated into any desired cell type. However, successful differentiation of hiPSCs into functional bone cells is still a challenge. Our group focuses on the use of human iPSCs (hiPSCs to identify osteoclast defects in craniometaphyseal dysplasia. In this review, we describe the impact of stem cell technology on research for better treatment of such disorders, the generation of hiPSCs from patients with rare genetic bone disorders and current protocols for differentiating hiPSCs into osteoclasts.

  1. C9orf72-related disorders: expanding the clinical and genetic spectrum of neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Paulo Victor Sgobbi de Souza

    2015-03-01

    Full Text Available Neurodegenerative diseases represent a heterogeneous group of neurological conditions primarily involving dementia, motor neuron disease and movement disorders. They are mostly related to different pathophysiological processes, notably in family forms in which the clinical and genetic heterogeneity are lush. In the last decade, much knowledge has been acumulated about the genetics of neurodegenerative diseases, making it essential in cases of motor neuron disease and frontotemporal dementia the repeat expansions of C9orf72 gene. This review analyzes the main clinical, radiological and genetic aspects of the phenotypes related to the hexanucleotide repeat expansions (GGGGCC of C9orf72 gene. Future studies will aim to further characterize the neuropsychological, imaging and pathological aspects of the extra-motor features of motor neuron disease, and will help to provide a new classification system that is both clinically and biologically relevant.

  2. Neurocutaneous Disorders.

    Science.gov (United States)

    Rosser, Tena

    2018-02-01

    This article presents an up-to-date summary of the genetic etiology, diagnostic criteria, clinical features, and current management recommendations for the most common neurocutaneous disorders encountered in clinical adult and pediatric neurology practices. The phakomatoses are a phenotypically and genetically diverse group of multisystem disorders that primarily affect the skin and central nervous system. A greater understanding of the genetic and biological underpinnings of numerous neurocutaneous disorders has led to better clinical characterization, more refined diagnostic criteria, and improved treatments in neurofibromatosis type 1, Legius syndrome, neurofibromatosis type 2, Noonan syndrome with multiple lentigines, tuberous sclerosis complex, Sturge-Weber syndrome, and incontinentia pigmenti. Neurologists require a basic knowledge of and familiarity with a wide variety of neurocutaneous disorders because of the frequent involvement of the central and peripheral nervous systems. A simple routine skin examination can often open a broad differential diagnosis and lead to improved patient care.

  3. The NeuroIMAGE study : a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives

    NARCIS (Netherlands)

    von Rhein, Daniel; Mennes, Maarten; van Ewijk, Hanneke; Groenman, Annabeth P.; Zwiers, Marcel P.; Oosterlaan, Jaap; Heslenfeld, Dirk; Franke, Barbara; Hoekstra, Pieter J.; Faraone, Stephen V.; Hartman, Catharina; Buitelaar, Jan

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of

  4. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives.

    NARCIS (Netherlands)

    von Rhein, D; Mennes, M.; van Ewijk, H.; Groenman, A.P.; Zwiers, M.P.; Oosterlaan, J.; Heslenfeld, D.J.; Franke, B.; Hoekstra, P.J.; Faraone, S.V.; Hartman, C.A.; Buitelaar, J.K.

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of

  5. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives

    NARCIS (Netherlands)

    Rhein, D.T. von; Mennes, M.; Ewijk, H. van; Groenman, A.P.; Zwiers, M.P.; Oosterlaan, J.; Heslenfeld, D.; Franke, B.; Hoekstra, P.J.; Faraone, S.V; Hartman, C.; Buitelaar, J.K.

    2015-01-01

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of

  6. Genetic Causes of Syndromic and Non-Syndromic Autism

    Science.gov (United States)

    Caglayan, Ahmet O.

    2010-01-01

    Aims: Over the past decade, genetic tests have become available for numerous heritable disorders, especially those whose inheritance follows the Mendelian model. Autism spectrum disorders (ASDs) represent a group of developmental disorders with a strong genetic basis. During the past few years, genetic research in ASDs has been successful in…

  7. Association Between Genetic Polymorphisms in the Serotonergic System and Comorbid Personality Disorders Among Patients with First-Episode Depression

    DEFF Research Database (Denmark)

    Bukh, Jens D; Bock, Camilla; Kessing, Lars V

    2014-01-01

    Studies on the association between genetic polymorphisms and personality disorders have provided inconsistent results. Using the "enriched sample method," the authors of the present study aimed to assess the association between polymorphisms in the serotonergic transmitter system and comorbid...... personality disorders in patients recently diagnosed with first-episode depression. A total of 290 participants were systematically recruited via the Danish Psychiatric Central Research Register. Diagnoses of personality disorders were assessed by a SCID-II interview, and polymorphisms in the genes encoding...... the serotonin transporter, serotonin receptors 1A, 2A, 2C, and tryptophan hydroxylase 1 were genotyped. The authors found a significant effect of the length polymorphism in the serotonin transporter gene (5-HTTLPR) on cluster B personality disorder (mainly borderline disorder), but no influence on cluster C...

  8. The Tourette International Collaborative Genetics (TIC Genetics) study, finding the genes causing Tourette syndrome: objectives and methods.

    Science.gov (United States)

    Dietrich, Andrea; Fernandez, Thomas V; King, Robert A; State, Matthew W; Tischfield, Jay A; Hoekstra, Pieter J; Heiman, Gary A

    2015-02-01

    Tourette syndrome (TS) is a neuropsychiatric disorder characterized by recurrent motor and vocal tics, often accompanied by obsessive-compulsive disorder and/or attention-deficit/hyperactivity disorder. While the evidence for a genetic contribution is strong, its exact nature has yet to be clarified fully. There is now mounting evidence that the genetic risks for TS include both common and rare variants and may involve complex multigenic inheritance or, in rare cases, a single major gene. Based on recent progress in many other common disorders with apparently similar genetic architectures, it is clear that large patient cohorts and open-access repositories will be essential to further advance the field. To that end, the large multicenter Tourette International Collaborative Genetics (TIC Genetics) study was established. The goal of the TIC Genetics study is to undertake a comprehensive gene discovery effort, focusing both on familial genetic variants with large effects within multiply affected pedigrees and on de novo mutations ascertained through the analysis of apparently simplex parent-child trios with non-familial tics. The clinical data and biomaterials (DNA, transformed cell lines, RNA) are part of a sharing repository located within the National Institute for Mental Health Center for Collaborative Genomics Research on Mental Disorders, USA, and will be made available to the broad scientific community. This resource will ultimately facilitate better understanding of the pathophysiology of TS and related disorders and the development of novel therapies. Here, we describe the objectives and methods of the TIC Genetics study as a reference for future studies from our group and to facilitate collaboration between genetics consortia in the field of TS.

  9. Genetic and environmental components of female depression as a function of the severity of the disorder.

    Science.gov (United States)

    Rusby, James S M; Tasker, Fiona; Cherkas, Lynn

    2016-10-01

    Both clinical care and genome-wide studies need to account for levels of severity in the etiology of depression. The purpose of the study is to estimate the genetic and environmental components of female depression as a function of the severity of the disorder. A genetic and environmental model analysis of depression incidence was made using the IOP Depression Severity Measure (IDSM). Details of lifetime depression incidence were obtained by questionnaire from twins on the DTR registry. Data from 1449 matched female twin pairs in the age range 19-85 years in four ordinal categories of increasing severity were employed in the analysis. Estimates of additive and dominance genetic components of 27% and 25% were found when all three levels of depression were included, and near zero and 33% when the recurrent/severe level was excluded. Shared environmental effects were not significant in either case, but the estimate for random environmental effects was greater when the severe level was excluded. These results suggest that the incidence of severe depression is associated with homozygotic alleles and the less severe with heterozygotic alleles. This is in accord with the finding that the hereditary component of severe depression is relatively high and that milder forms are more dependent on life-time environmental factors. Such conclusions have clinical implications for the diagnosis and treatment of the disorder by practicing psychiatrists. They also lead to the importance of focusing future genome-wide and linkage studies on those females with severe levels of depression if progress in identifying genetic risk loci is to be made.

  10. Oppositional defiant- and conduct disorder-like problems: neurodevelopmental predictors and genetic background in boys and girls, in a nationwide twin study

    Directory of Open Access Journals (Sweden)

    Nóra Kerekes

    2014-04-01

    Full Text Available Background. Previous research has supported gender-specific aetiological factors in oppositional defiant disorder (ODD and conduct disorder (CD. The aims of this study were to identify gender-specific associations between the behavioural problems–ODD/CD-like problems–and the neurodevelopmental disorders–attention deficit hyperactivity disorder (ADHD, autism spectrum disorder (ASD–and to investigate underlying genetic effects.Methods. 17,220 twins aged 9 or 12 were screened using the Autism–Tics, AD/HD and other Comorbidities inventory. The main covariates of ODD- and CD-like problems were investigated, and the relative importance of unique versus shared hereditary and environmental effects was estimated using twin model fitting.Results. Social interaction problems (one of the ASD subdomains was the strongest neurodevelopmental covariate of the behavioural problems in both genders, while ADHD-related hyperactivity/impulsiveness in boys and inattention in girls stood out as important covariates of CD-like problems. Genetic effects accounted for 50%–62% of the variance in behavioural problems, except in CD-like problems in girls (26%. Genetic and environmental effects linked to ADHD and ASD also influenced ODD-like problems in both genders and, to a lesser extent, CD-like problems in boys, but not in girls.Conclusions. The gender-specific patterns should be considered in the assessment and treatment, especially of CD.

  11. Genetics Home Reference: ADNP syndrome

    Science.gov (United States)

    ... if a disorder seems to run in my family? What is the prognosis of a genetic condition? Genetic and ... It is estimated to account for 0.17 percent of all cases of autism spectrum disorder, making it one of the most common ...

  12. A new web-based data mining tool for the identification of candidate genes for human genetic disorders

    NARCIS (Netherlands)

    Driel, van M.A.; Cuelenaere, K.; Kemmeren, P.P.C.W.; Leunissen, J.A.M.; Brunner, H.G.

    2003-01-01

    To identify the gene underlying a human genetic disorder can be difficult and time-consuming. Typically, positional data delimit a chromosomal region that contains between 20 and 200 genes. The choice then lies between sequencing large numbers of genes, or setting priorities by combining positional

  13. Estimation of the frequency of occult mutations for an autosomal recessive disease in the presence of genetic heterogeneity: application to genetic hearing loss disorders.

    Science.gov (United States)

    Kimberling, William J

    2005-11-01

    The routine testing for pathologic mutation(s) in a patient's DNA has become the foundation of modern molecular genetic diagnosis. It is especially valuable when the phenotype shows genetic heterogeneity, and its importance will grow as treatments become genotype specific. However, the technology of mutation detection is imperfect and mutations are often missed. This can be especially troublesome when dealing with a recessive disorder where the combination of genetic heterogeneity and missed mutation creates an imprecision in the genotypic assessment of individuals who do not appear to have the expected complement of two pathologic mutations. This article describes a statistical approach to the estimation of the likelihood of a genetic diagnosis under these conditions. In addition to providing a means of testing for missed mutations, it also provides a method of estimating and testing for the presence of genetic heterogeneity in the absence of linkage data. Gene frequencies as well as estimates of sensitivity and specificity can be obtained as well. The test is applied to GJB2 recessive nonsyndromic deafness, Usher syndrome types Ib and IIa, and Pendred-enlarged vestibular aqueduct syndrome. Copyright 2005 Wiley-Liss, Inc.

  14. Pathophysiological Significance of Dermatan Sulfate Proteoglycans Revealed by Human Genetic Disorders

    Directory of Open Access Journals (Sweden)

    Shuji Mizumoto

    2017-03-01

    Full Text Available The indispensable roles of dermatan sulfate-proteoglycans (DS-PGs have been demonstrated in various biological events including construction of the extracellular matrix and cell signaling through interactions with collagen and transforming growth factor-β, respectively. Defects in the core proteins of DS-PGs such as decorin and biglycan cause congenital stromal dystrophy of the cornea, spondyloepimetaphyseal dysplasia, and Meester-Loeys syndrome. Furthermore, mutations in human genes encoding the glycosyltransferases, epimerases, and sulfotransferases responsible for the biosynthesis of DS chains cause connective tissue disorders including Ehlers-Danlos syndrome and spondyloepimetaphyseal dysplasia with joint laxity characterized by skin hyperextensibility, joint hypermobility, and tissue fragility, and by severe skeletal disorders such as kyphoscoliosis, short trunk, dislocation, and joint laxity. Glycobiological approaches revealed that mutations in DS-biosynthetic enzymes cause reductions in enzymatic activities and in the amount of synthesized DS and also disrupt the formation of collagen bundles. This review focused on the growing number of glycobiological studies on recently reported genetic diseases caused by defects in the biosynthesis of DS and DS-PGs.

  15. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement

    Science.gov (United States)

    Prasad, Megana K; Geoffroy, Véronique; Vicaire, Serge; Jost, Bernard; Dumas, Michael; Le Gras, Stéphanie; Switala, Marzena; Gasse, Barbara; Laugel-Haushalter, Virginie; Paschaki, Marie; Leheup, Bruno; Droz, Dominique; Dalstein, Amelie; Loing, Adeline; Grollemund, Bruno; Muller-Bolla, Michèle; Lopez-Cazaux, Séréna; Minoux, Maryline; Jung, Sophie; Obry, Frédéric; Vogt, Vincent; Davideau, Jean-Luc; Davit-Beal, Tiphaine; Kaiser, Anne-Sophie; Moog, Ute; Richard, Béatrice; Morrier, Jean-Jacques; Duprez, Jean-Pierre; Odent, Sylvie; Bailleul-Forestier, Isabelle; Rousset, Monique Marie; Merametdijan, Laure; Toutain, Annick; Joseph, Clara; Giuliano, Fabienne; Dahlet, Jean-Christophe; Courval, Aymeric; El Alloussi, Mustapha; Laouina, Samir; Soskin, Sylvie; Guffon, Nathalie; Dieux, Anne; Doray, Bérénice; Feierabend, Stephanie; Ginglinger, Emmanuelle; Fournier, Benjamin; de la Dure Molla, Muriel; Alembik, Yves; Tardieu, Corinne; Clauss, François; Berdal, Ariane; Stoetzel, Corinne; Manière, Marie Cécile; Dollfus, Hélène; Bloch-Zupan, Agnès

    2016-01-01

    Background Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. Methods We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. Results We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. Conclusions We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. Trial registration numbers NCT01746121 and NCT02397824. PMID:26502894

  16. Genetic variations in multiple myeloma I

    DEFF Research Database (Denmark)

    Vangsted, A.; Klausen, T.W.; Vogel, Ulla Birgitte

    2012-01-01

    Few risk factors have been established for the plasma cell disorder multiple myeloma, but some of these like African American ethnicity and a family history of B-cell lymphoproliferative diseases suggest a genetic component for the disease. Genetic variation represents the genetic basis of variab......Few risk factors have been established for the plasma cell disorder multiple myeloma, but some of these like African American ethnicity and a family history of B-cell lymphoproliferative diseases suggest a genetic component for the disease. Genetic variation represents the genetic basis...

  17. The genetic interacting landscape of 63 candidate genes in Major Depressive Disorder: an explorative study.

    Science.gov (United States)

    Lekman, Magnus; Hössjer, Ola; Andrews, Peter; Källberg, Henrik; Uvehag, Daniel; Charney, Dennis; Manji, Husseini; Rush, John A; McMahon, Francis J; Moore, Jason H; Kockum, Ingrid

    2014-01-01

    Genetic contributions to major depressive disorder (MDD) are thought to result from multiple genes interacting with each other. Different procedures have been proposed to detect such interactions. Which approach is best for explaining the risk of developing disease is unclear. This study sought to elucidate the genetic interaction landscape in candidate genes for MDD by conducting a SNP-SNP interaction analysis using an exhaustive search through 3,704 SNP-markers in 1,732 cases and 1,783 controls provided from the GAIN MDD study. We used three different methods to detect interactions, two logistic regressions models (multiplicative and additive) and one data mining and machine learning (MDR) approach. Although none of the interaction survived correction for multiple comparisons, the results provide important information for future genetic interaction studies in complex disorders. Among the 0.5% most significant observations, none had been reported previously for risk to MDD. Within this group of interactions, less than 0.03% would have been detectable based on main effect approach or an a priori algorithm. We evaluated correlations among the three different models and conclude that all three algorithms detected the same interactions to a low degree. Although the top interactions had a surprisingly large effect size for MDD (e.g. additive dominant model Puncorrected = 9.10E-9 with attributable proportion (AP) value = 0.58 and multiplicative recessive model with Puncorrected = 6.95E-5 with odds ratio (OR estimated from β3) value = 4.99) the area under the curve (AUC) estimates were low (< 0.54). Moreover, the population attributable fraction (PAF) estimates were also low (< 0.15). We conclude that the top interactions on their own did not explain much of the genetic variance of MDD. The different statistical interaction methods we used in the present study did not identify the same pairs of interacting markers. Genetic interaction studies may uncover previously

  18. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD.

    Science.gov (United States)

    Bralten, Janita; Franke, Barbara; Waldman, Irwin; Rommelse, Nanda; Hartman, Catharina; Asherson, Philip; Banaschewski, Tobias; Ebstein, Richard P; Gill, Michael; Miranda, Ana; Oades, Robert D; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A; Oosterlaan, Jaap; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Faraone, Stephen V; Buitelaar, Jan K; Arias-Vásquez, Alejandro

    2013-11-01

    Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic studies. This study investigated whether pathway-based analysis could bring scientists closer to unraveling the biology of ADHD. The pathway was described as a predefined gene selection based on a well-established database or literature data. Common genetic variants in pathways involved in dopamine/norepinephrine and serotonin neurotransmission and genes involved in neuritic outgrowth were investigated in cases from the International Multicentre ADHD Genetics (IMAGE) study. Multivariable analysis was performed to combine the effects of single genetic variants within the pathway genes. Phenotypes were DSM-IV symptom counts for inattention and hyperactivity/impulsivity (n = 871) and symptom severity measured with the Conners Parent (n = 930) and Teacher (n = 916) Rating Scales. Summing genetic effects of common genetic variants within the pathways showed a significant association with hyperactive/impulsive symptoms ((p)empirical = .007) but not with inattentive symptoms ((p)empirical = .73). Analysis of parent-rated Conners hyperactive/impulsive symptom scores validated this result ((p)empirical = .0018). Teacher-rated Conners scores were not associated. Post hoc analyses showed a significant contribution of all pathways to the hyperactive/impulsive symptom domain (dopamine/norepinephrine, (p)empirical = .0004; serotonin, (p)empirical = .0149; neuritic outgrowth, (p)empirical = .0452). The present analysis shows an association between common variants in 3 genetic pathways and the hyperactive/impulsive component of ADHD. This study demonstrates that pathway-based association analyses, using quantitative measurements of ADHD symptom domains, can increase the power of genetic analyses to

  19. A systematic review of genetic studies of thyroid disorders in Taiwan

    Directory of Open Access Journals (Sweden)

    Chun-Jui Huang

    2015-03-01

    Full Text Available A systematic review of genetic studies of thyroid disorders in Taiwan identified studies of gene mutations involved in the synthesis and binding of thyroid hormone, as well as mutations of proto-oncogenes and tumor suppressor genes in thyroid cancer. Studies related to gene polymorphisms in patients with autoimmune thyroid disease (AITD and thyroid cancer were also reviewed. The most prevalent mutations in the Han-Chinese population were c.2268insT in the thyroid peroxidase (TPO gene and c.919-2A>G in the Pendred syndrome (PDS gene. Additional mutations have also been revealed in the genes encoding TPO (n = 5, thyroglobulin (TG; n = 6, pendrin (n = 2, and thyroxine-binding globulin (TBG; n = 2, which were novel at the time they were reported. The prevalence of various somatic mutations in differentiated thyroid cancer was similar in Taiwan and Western countries, with the RAS kinase mutation and tyrosine receptor kinase (TRK and rearranged during transfection (RET proto-oncogenes being detected in lower frequencies and the B-type RAF kinase (BRAF mutation accounting for the majority of cases. Recent microRNA analysis revealed an association between miR146b and the BRAF mutation, which was associated with poor prognosis of papillary thyroid carcinoma (PTC. Susceptibility to Graves' disease (GD was linked to the human leukocyte antigen (HLA region. The associated alleles were different in Han-Chinese and Caucasians; HLA-DPB1*0501, the major allele in Taiwan, has a low frequency in the West. By contrast, a high frequency of HLA-DRB1*0301 was detected in Caucasians but not Han-Chinese. In addition to the HLA region, cytotoxic T lymphocyte-associated molecule-4 (CTLA4 gene polymorphisms +49G>A and +6230G>A (CT60 were positively associated with GD. The GG genotype and G allele of single nucleotide polymorphism (SNP +49G>A were also related to relapse of Graves' hyperthyroidism after antithyroid drug withdrawal. Differences in the genetic

  20. Moving towards causality in attention-deficit hyperactivity disorder: overview of neural and genetic mechanisms

    Science.gov (United States)

    Gallo, Eduardo F; Posner, Jonathan

    2016-01-01

    Attention-deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterised by developmentally inappropriate levels of inattention and hyperactivity or impulsivity. The heterogeneity of its clinical manifestations and the differential responses to treatment and varied prognoses have long suggested myriad underlying causes. Over the past decade, clinical and basic research efforts have uncovered many behavioural and neurobiological alterations associated with ADHD, from genes to higher order neural networks. Here, we review the neurobiology of ADHD by focusing on neural circuits implicated in the disorder and discuss how abnormalities in circuitry relate to symptom presentation and treatment. We summarise the literature on genetic variants that are potentially related to the development of ADHD, and how these, in turn, might affect circuit function and relevant behaviours. Whether these underlying neurobiological factors are causally related to symptom presentation remains unresolved. Therefore, we assess efforts aimed at disentangling issues of causality, and showcase the shifting research landscape towards endophenotype refinement in clinical and preclinical settings. Furthermore, we review approaches being developed to understand the neurobiological underpinnings of this complex disorder including the use of animal models, neuromodulation, and pharmaco-imaging studies. PMID:27183902

  1. Genetics Home Reference: X-linked adrenoleukodystrophy

    Science.gov (United States)

    ... PubMed Wanders RJ, Waterham HR. Peroxisomal disorders I: biochemistry and genetics of peroxisome biogenesis disorders. Clin Genet. ... not be used as a substitute for professional medical care or advice. Users with questions about a ...

  2. Genetic variation in the endocannabinoid system and response to Cognitive Behavior Therapy for child anxiety disorders

    Science.gov (United States)

    Coleman, Jonathan R. I.; Roberts, Susanna; Keers, Robert; Breen, Gerome; Bögels, Susan; Creswell, Cathy; Hudson, Jennifer L.; McKinnon, Anna; Nauta, Maaike; Rapee, Ronald M.; Schneider, Silvia; Silverman, Wendy K.; Thastum, Mikael; Waite, Polly; Wergeland, Gro Janne H.; Eley, Thalia C.

    2016-01-01

    Extinction learning is an important mechanism in the successful psychological treatment of anxiety. Individual differences in response and relapse following Cognitive Behavior Therapy may in part be explained by variability in the ease with which fears are extinguished or the vulnerability of these fears to re‐emerge. Given the role of the endocannabinoid system in fear extinction, this study investigates whether genetic variation in the endocannabinoid system explains individual differences in response to CBT. Children (N = 1,309) with a primary anxiety disorder diagnosis were recruited. We investigated the relationship between variation in the CNR1, CNR2, and FAAH genes and change in primary anxiety disorder severity between pre‐ and post‐treatment and during the follow‐up period in the full sample and a subset with fear‐based anxiety disorder diagnoses. Change in symptom severity during active treatment was nominally associated (P < 0.05) with two SNPs. During the follow‐up period, five SNPs were nominally associated with a poorer treatment response (rs806365 [CNR1]; rs2501431 [CNR2]; rs2070956 [CNR2]; rs7769940 [CNR1]; rs2209172 [FAAH]) and one with a more favorable response (rs6928813 [CNR1]). Within the fear‐based subset, the effect of rs806365 survived multiple testing corrections (P < 0.0016). We found very limited evidence for an association between variants in endocannabinoid system genes and treatment response once multiple testing corrections were applied. Larger, more homogenous cohorts are needed to allow the identification of variants of small but statistically significant effect and to estimate effect sizes for these variants with greater precision in order to determine their potential clinical utility. © 2016 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc. PMID:27346075

  3. The genetic and environmental contributions to attention deficit hyperactivity disorder as measured by the Conners' Rating Scales-revised

    NARCIS (Netherlands)

    Hudziak, J.; Derks, E.M.; Althoff, R.; Rettew, D.C.; Boomsma, D.I.

    2005-01-01

    Objective: The majority of published reports on twin studies of attention deficit hyperactivity disorder (ADHD) have indicated robust additive genetic influences and unique environmental influences. These studies typically used DSM ADHD symptoms collected by telephone or interviews with mothers. The

  4. The genetic and environmental contributions to attention deficit hyperactivity disorder as measured by the Conners' Rating Scales--Revised

    NARCIS (Netherlands)

    Hudziak, James J.; Derks, Eske M.; Althoff, Robert R.; Rettew, David C.; Boomsma, Dorret I.

    2005-01-01

    The majority of published reports on twin studies of attention deficit hyperactivity disorder (ADHD) have indicated robust additive genetic influences and unique environmental influences. These studies typically used DSM ADHD symptoms collected by telephone or interviews with mothers. The purpose of

  5. Genetic hemoglobin disorders rather than iron deficiency are a major predictor of hemoglobin concentration in women of reproductive age in rural prey Veng, Cambodia.

    Science.gov (United States)

    Karakochuk, Crystal D; Whitfield, Kyly C; Barr, Susan I; Lamers, Yvonne; Devlin, Angela M; Vercauteren, Suzanne M; Kroeun, Hou; Talukder, Aminuzzaman; McLean, Judy; Green, Timothy J

    2015-01-01

    Anemia is common in Cambodian women. Potential causes include micronutrient deficiencies, genetic hemoglobin disorders, inflammation, and disease. We aimed to investigate factors associated with anemia (low hemoglobin concentration) in rural Cambodian women (18-45 y) and to investigate the relations between hemoglobin disorders and other iron biomarkers. Blood samples were obtained from 450 women. A complete blood count was conducted, and serum and plasma were analyzed for ferritin, soluble transferrin receptor (sTfR), folate, vitamin B-12, retinol binding protein (RBP), C-reactive protein (CRP), and α1 acid glycoprotein (AGP). Hemoglobin electrophoresis and multiplex polymerase chain reaction were used to determine the prevalence and type of genetic hemoglobin disorders. Overall, 54% of women had a genetic hemoglobin disorder, which included 25 different genotypes (most commonly, hemoglobin E variants and α(3.7)-thalassemia). Of the 420 nonpregnant women, 29.5% had anemia (hemoglobin 8.3 mg/L), hemoglobin disorders, respectively. There was no biochemical evidence of vitamin A deficiency (RBP 5 mg/L) and 26% (AGP >1 g/L) of nonpregnant women, respectively. By using an adjusted linear regression model, the strongest predictors of hemoglobin concentration were hemoglobin E homozygous disorder and pregnancy status. Other predictors were 2 other heterozygous traits (hemoglobin E and Constant Spring), parity, RBP, log ferritin, and vitamin B-12. Multiple biomarkers for anemia and iron deficiency were significantly influenced by the presence of hemoglobin disorders, hence reducing their diagnostic sensitivity. Further investigation of the unexpectedly low prevalence of IDA in Cambodian women is warranted. © 2015 American Society for Nutrition.

  6. Combinations of Genetic Variants Occurring Exclusively in Patients

    Directory of Open Access Journals (Sweden)

    Erling Mellerup

    Full Text Available In studies of polygenic disorders, scanning the genetic variants can be used to identify variant combinations. Combinations that are exclusively found in patients can be separated from those combinations occurring in control persons. Statistical analyses can be performed to determine whether the combinations that occur exclusively among patients are significantly associated with the investigated disorder. This research strategy has been applied in materials from various polygenic disorders, identifying clusters of patient-specific genetic variant combinations that are significant associated with the investigated disorders. Combinations from these clusters are found in the genomes of up to 55% of investigated patients, and are not present in the genomes of any control persons. Keywords: Genetic variants, Polygenic disorder, Combinations of genetic variants, Patient-specific combinations

  7. Clinical approach to inherited peroxisomal disorders

    NARCIS (Netherlands)

    Poggi-Travert, F.; Fournier, B.; Poll-The, B. T.; Saudubray, J. M.

    1995-01-01

    At least 21 genetic disorders have now been found that are linked to peroxisomal dysfunction. Whatever the genetic defect might be, peroxisomal disorders should be considered in various clinical conditions, dependent on the age of onset. The prototype of peroxisomal disorders is represented by

  8. A Genetic Investigation of Sex Bias in the Prevalence of Attention-Deficit/Hyperactivity Disorder

    DEFF Research Database (Denmark)

    Martin, Joanna; Walters, Raymond K; Demontis, Ditte

    2017-01-01

    BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) shows substantial heritability and is two to seven times more common in male individuals than in female individuals. We examined two putative genetic mechanisms underlying this sex bias: sex-specific heterogeneity and higher burden of risk...... disorder and congenital malformations), potentially indicating some clinical and etiological heterogeneity. Polygenic risk score analysis did not support a higher burden of ADHD common risk variants in female cases (odds ratio [confidence interval] = 1.02 [0.98-1.06], p = .28). In contrast, epidemiological...... using two methods suggested near complete sharing of common variant effects across sexes, with rg estimates close to 1. Analyses of population data, however, indicated that female individuals with ADHD may be at especially high risk for certain comorbid developmental conditions (i.e., autism spectrum...

  9. Bipolar Disorder and Obsessive Compulsive Disorder Comorbidity

    Directory of Open Access Journals (Sweden)

    Necla Keskin

    2014-08-01

    Full Text Available The comorbidity of bipolar disorder and anxiety disorders is a well known concept. Obsessive-compulsive disorder is the most commonly seen comorbid anxiety disorder in bipolar patients. Some genetic variants, neurotransmitters especially serotonergic systems and second-messenger systems are thought to be responsible for its etiology. Bipolar disorder alters the clinical aspects of obsessive compulsive disorder and is associated with poorer outcome. The determination of comorbidity between bipolar disorder and obsessive compulsive disorder is quite important for appropriate clinical management and treatment. [Psikiyatride Guncel Yaklasimlar - Current Approaches in Psychiatry 2014; 6(4.000: 429-437

  10. Genetic variants associated with sleep disorders

    OpenAIRE

    Kripke, Daniel F.; Kline, Lawrence E.; Nievergelt, Caroline M.; Murray, Sarah S.; Shadan, Farhad F.; Dawson, Arthur; Poceta, J. Steven; Cronin, John; Jamil, Shazia M.; Tranah, Gregory J.; Loving, Richard T.; Grizas, Alexandra P.; Hahn, Elizabeth K.

    2015-01-01

    © 2014 The Authors. Objective: The diagnostic boundaries of sleep disorders are under considerable debate. The main sleep disorders are partly heritable therefore, defining heritable pathophysiologic mechanisms could delineate diagnoses and suggest treatment. We collected clinical data and DNA from consenting patients scheduled to undergo clinical polysomnograms, to expand our understanding of the polymorphisms associated with the phenotypes of particular sleep disorders. Methods: Patients at...

  11. Genetic and environmental influences on adult attention deficit hyperactivity disorder symptoms: a large Swedish population-based study of twins.

    Science.gov (United States)

    Larsson, H; Asherson, P; Chang, Z; Ljung, T; Friedrichs, B; Larsson, J-O; Lichtenstein, P

    2013-01-01

    Attention deficit hyperactivity disorder (ADHD) frequently persists into adulthood. Family and twin studies delineate a disorder with strong genetic influences among children and adolescents based on parent- and teacher-reported data but little is known about the genetic and environmental contribution to DSM-IV ADHD symptoms in adulthood. We therefore aimed to investigate the impact of genetic and environmental influences on the inattentive and hyperactive-impulsive symptoms of ADHD in adults. Twin methods were applied to self-reported assessments of ADHD symptoms from a large population-based Swedish twin study that included data from 15 198 Swedish male and female twins aged 20 to 46 years. The broad heritability [i.e., A + D, where A is an additive genetic factor and D (dominance) a non-additive genetic factor] was 37% (A = 11%, D = 26%) for inattention and 38% (A = 18%, D = 20%) for hyperactivity-impulsivity. The results also indicate that 52% of the phenotypic correlation between inattention and hyperactivity-impulsivity (r = 0.43) was explained by genetic influences whereas the remaining part of the covariance was explained by non-shared environmental influences. These results were replicated across age strata. Our findings of moderate broad heritability estimates are consistent with previous literature on self-rated ADHD symptoms in older children, adolescents and adults and retrospective reports of self-rated childhood ADHD by adults but differ from studies of younger children with informant ratings. Future research needs to clarify whether our data indicate a true decrease in the heritability of ADHD in adults compared to children, or whether this relates to the use of self-ratings in contrast to informant data.

  12. Sleep Disorders in Childhood Neurogenetic Disorders

    Directory of Open Access Journals (Sweden)

    Laura Beth Mann Dosier

    2017-09-01

    Full Text Available Genetic advances in the past three decades have transformed our understanding and treatment of many human diseases including neurogenetic disorders. Most neurogenetic disorders can be classified as “rare disease,” but collectively neurogenetic disorders are not rare and are commonly encountered in general pediatric practice. The authors decided to select eight relatively well-known neurogenetic disorders including Down syndrome, Angelman syndrome, Prader–Willi syndrome, Smith–Magenis syndrome, congenital central hypoventilation syndrome, achondroplasia, mucopolysaccharidoses, and Duchenne muscular dystrophy. Each disorder is presented in the following format: overview, clinical characteristics, developmental aspects, associated sleep disorders, management and research/future directions.

  13. Radiological Diagnosis of a Rare Premature Aging Genetic Disorder: Progeria (Hutchinson-Gilford Syndrome

    Directory of Open Access Journals (Sweden)

    Haji Mohammed Nazir

    2017-01-01

    Full Text Available Hutchinson-Gilford Progeria Syndrome (HGPS is a rare disease with a combination of short stature, bone abnormalities, premature ageing, and skin changes. Though the physical appearance of these patients is characteristic, there is little emphasis on the characteristic radiological features. In this paper, we report a 16-year-old boy with clinical and radiological features of this rare genetic disorder. He had a characteristic facial appearance with a large head, large eyes, thin nose with beaked tip, small chin, protruding ears, prominent scalp veins, and absence of hair.

  14. A genetically informative developmental study of the relationship between conduct disorder and peer deviance in males

    Science.gov (United States)

    Kendler, K. S.; Jacobson, K.; Myers, J. M.; Eaves, L. J.

    2014-01-01

    Background Conduct disorder (CD) and peer deviance (PD) both powerfully predict future externalizing behaviors. Although levels of CD and PD are strongly correlated, the causal relationship between them has remained controversial and has not been examined by a genetically informative study. Method Levels of CD and PD were assessed in 746 adult male–male twin pairs at personal interview for ages 8–11, 12–14 and 15–17 years using a life history calendar. Model fitting was performed using the Mx program. Results The best-fit model indicated an active developmental relationship between CD and PD including forward transmission of both traits over time and strong causal relationships between CD and PD within time periods. The best-fit model indicated that the causal relationship for genetic risk factors was from CD to PD and was constant over time. For common environmental factors, the causal pathways ran from PD to CD and were stronger in earlier than later age periods. Conclusions A genetically informative model revealed causal pathways difficult to elucidate by other methods. Genes influence risk for CD, which, through social selection, impacts on the deviance of peers. Shared environment, through family and community processes, encourages or discourages adolescent deviant behavior, which, via social influence, alters risk for CD. Social influence is more important than social selection in childhood, but by late adolescence social selection becomes predominant. These findings have implications for prevention efforts for CD and associated externalizing disorders. PMID:17935643

  15. Genetic screening and democracy: lessons from debating genetic screening criteria in the Netherlands

    NARCIS (Netherlands)

    van El, C.G.; Pieters, T.; Cornel, M.C.

    2012-01-01

    Recent decades have witnessed increasing possibilities for genetic testing and screening. In clinical genetics, the doctor's office defined a secluded space for discussion of sensitive reproductive options in cases of elevated risk for genetic disorders in individuals or their offspring. When

  16. Clinical correlates and genetic linkage of social and communication difficulties in families with obsessive-compulsive disorder: Results from the OCD Collaborative Genetics Study.

    Science.gov (United States)

    Samuels, Jack; Shugart, Yin Yao; Wang, Ying; Grados, Marco A; Bienvenu, O Joseph; Pinto, Anthony; Rauch, Scott L; Greenberg, Benjamin D; Knowles, James A; Fyer, Abby J; Piacentini, John; Pauls, David L; Cullen, Bernadette; Rasmussen, Steven A; Stewart, S Evelyn; Geller, Dan A; Maher, Brion S; Goes, Fernando S; Murphy, Dennis L; McCracken, James T; Riddle, Mark A; Nestadt, Gerald

    2014-06-01

    Some individuals with obsessive-compulsive disorder (OCD) have autistic-like traits, including deficits in social and communication behaviors (pragmatics). The objective of this study was to determine if pragmatic impairment aggregates in OCD families and discriminates a clinically and genetically distinct subtype of OCD. We conducted clinical examinations on, and collected DNA samples from, 706 individuals with OCD in 221 multiply affected OCD families. Using the Pragmatic Rating Scale (PRS), we compared the prevalence of pragmatic impairment in OCD-affected relatives of probands with and without pragmatic impairment. We also compared clinical features of OCD-affected individuals in families having at least one, versus no, individual with pragmatic impairment, and assessed for linkage to OCD in the two groups of families. The odds of pragmatic impairment were substantially greater in OCD-affected relatives of probands with pragmatic impairment. Individuals in high-PRS families had greater odds of separation anxiety disorder and social phobia, and a greater number of schizotypal personality traits. In high-PRS families, there was suggestive linkage to OCD on chromosome 12 at marker D12S1064 and on chromosome X at marker DXS7132 whereas, in low-PRS families, there was suggestive linkage to chromosome 3 at marker D3S2398. Pragmatic impairment aggregates in OCD families. Separation anxiety disorder, social phobia, and schizotypal personality traits are part of a clinical spectrum associated with pragmatic impairment in these families. Specific regions of chromosomes 12 and X are linked to OCD in high-PRS families. Thus, pragmatic impairment may distinguish a clinically and genetically homogeneous subtype of OCD. © 2014 Wiley Periodicals, Inc.

  17. Candidate Genetic Pathways for Attention-Deficit/Hyperactivity Disorder (ADHD) Show Association to Hyperactive/Impulsive Symptoms in Children With ADHD

    NARCIS (Netherlands)

    Bralten, Janita; Franke, Barbara; Waldman, Irwin; Rommelse, Nanda; Hartman, Catharina; Asherson, Philip; Banaschewski, Tobias; Ebstein, Richard P.; Gill, Michael; Miranda, Ana; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A.; Oosterlaan, Jaap; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Faraone, Stephen V.; Buitelaar, Jan K.; Arias-Vasquez, Alejandro

    2013-01-01

    Objective: Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic

  18. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD

    NARCIS (Netherlands)

    Bralten, J.; Franke, B.; Waldman, I.D.; Rommelse, N.N.J.; Hartman, C.; Asherson, P.; Banaschewski, T.; Ebstein, R.P.; Gill, M.; Miranda, A.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Oosterlaan, J.; Sonuga-Barke, E.; Steinhausen, H.C.; Faraone, S.; Buitelaar, J.K.; Arias-Vasquez, A.

    2013-01-01

    Objective Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic

  19. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD

    NARCIS (Netherlands)

    Bralten, J.; Franke, B.; Waldman, I.; Rommelse, N.N.J.; Hartman, C.; Asherson, P.; Banaschewski, T.; Ebstein, R.P.; Gill, M.; Miranda, A.; Oades, R.D.; Roeyers, H.; Rothenberger, A.; Sergeant, J.A.; Oosterlaan, J.; Sonuga-Barke, E.; Steinhausen, H.C.; Faraone, S.V.; Buitelaar, J.K.; Arias Vasquez, A.

    2013-01-01

    OBJECTIVE: Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic

  20. Genetic variant for behavioral regulation factor of executive function and its possible brain mechanism in attention deficit hyperactivity disorder.

    Science.gov (United States)

    Sun, Xiao; Wu, Zhaomin; Cao, Qingjiu; Qian, Ying; Liu, Yong; Yang, Binrang; Chang, Suhua; Yang, Li; Wang, Yufeng

    2018-05-16

    As a childhood-onset psychiatric disorder, attention deficit hyperactivity disorder (ADHD) is complicated by phenotypic and genetic heterogeneity. Lifelong executive function deficits in ADHD are described in many literatures and have been proposed as endophenotypes of ADHD. However, its genetic basis is still elusive. In this study, we performed a genome-wide association study of executive function, rated with Behavioral Rating Inventory of Executive Function (BRIEF), in ADHD children. We identified one significant variant (rs852004, P = 2.51e-08) for the overall score of BRIEF. The association analyses for each component of executive function found this locus was more associated with inhibit and monitor components. Further principle component analysis and confirmatory factor analysis provided an ADHD-specific executive function pattern including inhibit and monitor factors. SNP rs852004 was mainly associated with the Behavioral Regulation factor. Meanwhile, we found the significant locus was associated with ADHD symptom. The Behavioral Regulation factor mediated its effect on ADHD symptom. Functional magnetic resonance imaging (fMRI) analyses further showed evidence that this variant affected the activity of inhibition control related brain regions. It provided new insights for the genetic basis of executive function in ADHD.

  1. Trastornos generalizados del desarrollo: Aspectos clínicos y genéticos Pervasive developmental disorders: Clinical and genetics aspects

    Directory of Open Access Journals (Sweden)

    Víctor Ruggieri

    2007-01-01

    Full Text Available Los Trastornos Generalizados del Desarrollo se expresan con compromiso en la socialización, trastorno en el desarrollo del lenguaje (verbal y no verbal e intereses restringidos con conductas repetitivas. La frecuencia estimada en la población general es de 27.5/10.000. En nuestro trabajo analizamos los aspectos clínicos y genéticos de los TGD: Autismo, Síndrome de Asperger, TGD no Especificado, Síndrome de Rett y Trastorno desintegrativo de la niñez. Desde el punto de vista clínico jerarquizamos los aspectos conductuales para su reconocimiento. En los aspectos genéticos puntualizamos diversas entidades con las que se asocian consistentemente estos trastornos, denominados cuadros sindrómicos, (aproximadamente el 20% de los casos y las bases genéticas actualmente propuestas para el 80% restante o formas no sindrómicas. El reconocimiento temprano de estos trastornos del desarrollo y el diagnóstico de una entidad específica asociada permiten un temprano y adecuado abordaje terapéutico, un correcto asesoramiento genético y un control evolutivo específico previendo posibles complicaciones relacionadas a la entidad de base. Finalmente, si bien las bases genéticas del autismo no están identificadas se han propuesto diversos genes candidatos ubicados en los cromosomas: 15q, 2q, 17q, 7q, 12q, y los relacionados al X, entre otros, los que son analizados en este trabajo y permitirán en un futuro cercano comprender mejor estos trastornos.Pervasive developmental disorders (PDD encompass a heterogeneous group of children with deficits of verbal and non-verbal language, social communication, and with a restricted repertoire of activities or repetitive behaviours. The frequency in general population is considered 27.5/10,000. In this study, we analyzed the clinical and genetic aspects of Autism, Asperger Syndrome, PDD Not Otherwise Specified, Rett Syndrome and Childhood Disintegrative Disorder. We analyzed clinical, behavioural and

  2. Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches.

    Science.gov (United States)

    Balmus, Ioana Miruna; Ciobica, Alin; Antioch, Iulia; Dobrin, Romeo; Timofte, Daniel

    2016-01-01

    The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.

  3. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals

    Directory of Open Access Journals (Sweden)

    RENATA V. VELHO

    2015-08-01

    Full Text Available With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.

  4. New approaches to the treatment of orphan genetic disorders: Mitigating molecular pathologies using chemicals.

    Science.gov (United States)

    Velho, Renata V; Sperb-Ludwig, Fernanda; Schwartz, Ida V D

    2015-08-01

    With the advance and popularization of molecular techniques, the identification of genetic mutations that cause diseases has increased dramatically. Thus, the number of laboratories available to investigate a given disorder and the number of subsequent diagnosis have increased over time. Although it is necessary to identify mutations and provide diagnosis, it is also critical to develop specific therapeutic approaches based on this information. This review aims to highlight recent advances in mutation-targeted therapies with chemicals that mitigate mutational pathology at the molecular level, for disorders that, for the most part, have no effective treatment. Currently, there are several strategies being used to correct different types of mutations, including the following: the identification and characterization of translational readthrough compounds; antisense oligonucleotide-mediated splicing redirection; mismatch repair; and exon skipping. These therapies and other approaches are reviewed in this paper.

  5. Genetic Syndromes, Maternal Diseases and Antenatal Factors Associated with Autism Spectrum Disorders (ASD).

    Science.gov (United States)

    Ornoy, Asher; Weinstein-Fudim, Liza; Ergaz, Zivanit

    2016-01-01

    Autism spectrum disorder (ASD) affecting about 1% of all children is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal, and postnatal etiologies. In addition, ASD is often an important clinical presentation of some well-known genetic syndromes in human. We discuss these syndromes as well as the role of the more important prenatal factors affecting the fetus throughout pregnancy which may also be associated with ASD. Among the genetic disorders we find Fragile X, Rett syndrome, tuberous sclerosis, Timothy syndrome, Phelan-McDermid syndrome, Hamartoma tumor syndrome, Prader-Willi and Angelman syndromes, and a few others. Among the maternal diseases in pregnancy associated with ASD are diabetes mellitus (PGDM and/or GDM), some maternal autoimmune diseases like antiphospholipid syndrome (APLS) with anti-β2GP1 IgG antibodies and thyroid disease with anti-thyroid peroxidase (TPO) antibodies, preeclampsia and some other autoimmune diseases with IgG antibodies that might affect fetal brain development. Other related factors are maternal infections (rubella and CMV with fetal brain injuries, and possibly Influenza with fever), prolonged fever and maternal inflammation, especially with changes in a variety of inflammatory cytokines and antibodies that cross the placenta and affect the fetal brain. Among the drugs are valproic acid, thalidomide, misoprostol, and possibly SSRIs. β2-adrenergic receptor agonists and paracetamol have also lately been associated with increased rate of ASD but the data is too preliminary and inconclusive. Associations were also described with ethanol, cocaine, and possibly heavy metals, heavy smoking, and folic acid deficiency. Recent studies show that heavy exposure to pesticides and air pollution, especially particulate matter ASD. Finally, we have to remember that many of the associations mentioned in this review are only partially proven, and not all are "clean" of different confounding factors. The

  6. Clinical and Molecular Features of Laron Syndrome, A Genetic Disorder Protecting from Cancer.

    Science.gov (United States)

    Janecka, Anna; Kołodziej-Rzepa, Marta; Biesaga, Beata

    2016-01-01

    Laron syndrome (LS) is a rare, genetic disorder inherited in an autosomal recessive manner. The disease is caused by mutations of the growth hormone (GH) gene, leading to GH/insulin-like growth factor type 1 (IGF1) signalling pathway defect. Patients with LS have characteristic biochemical features, such as a high serum level of GH and low IGF1 concentration. Laron syndrome was first described by the Israeli physician Zvi Laron in 1966. Globally, around 350 people are affected by this syndrome and there are two large groups living in separate geographic regions: Israel (69 individuals) and Ecuador (90 individuals). They are all characterized by typical appearance such as dwarfism, facial phenotype, obesity and hypogenitalism. Additionally, they suffer from hypoglycemia, hypercholesterolemia and sleep disorders, but surprisingly have a very low cancer risk. Therefore, studies on LS offer a unique opportunity to better understand carcinogenesis and develop new strategies of cancer treatment. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. Posttraumatic stress disorder symptom severity is associated with reduced default mode network connectivity in individuals with elevated genetic risk for psychopathology.

    Science.gov (United States)

    Miller, Danielle R; Logue, Mark W; Wolf, Erika J; Maniates, Hannah; Robinson, Meghan E; Hayes, Jasmeet P; Stone, Annjanette; Schichman, Steven; McGlinchey, Regina E; Milberg, William P; Miller, Mark W

    2017-07-01

    Accumulating evidence suggests that posttraumatic stress disorder (PTSD) is associated with disrupted default mode network (DMN) connectivity, but findings across studies have not been uniform. Individual differences in relevant genes may account for some of the reported variability in the relationship between DMN connectivity and PTSD. In this study, we investigated this possibility using genome-wide association study (GWAS) derived polygenic risk scores (PRSs) for relevant psychiatric traits. We hypothesized that the association between PTSD and DMN connectivity would be moderated by genetic risk for one or more psychiatric traits such that individuals with elevated polygenic risk for psychopathology and severe PTSD would exhibit disrupted DMN connectivity. Participants were 156 white, non-Hispanic veterans of the wars in Iraq and Afghanistan who were genotyped and underwent resting state functional magnetic resonance imaging and clinical assessment. PRSs for neuroticism, anxiety, major depressive disorder, and cross-disorder risk (based on five psychiatric disorders) were calculated using summary statistics from published large-scale consortia-based GWASs. Cross-disorder polygenic risk influenced the relationship between DMN connectivity and PTSD symptom severity such that individuals at greater genetic risk showed a significant negative association between PTSD symptom severity and connectivity between the posterior cingulate cortex and right middle temporal gyrus. Polygenic risk for neuroticism, anxiety, and major depressive disorder did not influence DMN connectivity directly or through an interaction with PTSD. Findings illustrate the potential power of genome-wide PRSs to advance understanding of the relationship between PTSD and DMN connectivity, a putative neural endophenotype of the disorder. © 2017 Wiley Periodicals, Inc.

  8. Familiality of Tourette Syndrome, Obsessive-Compulsive Disorder, and Attention-Deficit/Hyperactivity Disorder: Heritability Analysis in a Large Sib-Pair Sample

    Science.gov (United States)

    Mathews, Carol A.; Grados, Marco A.

    2011-01-01

    Objective: Tourette syndrome (TS) is a neuropsychiatric disorder with a genetic component that is highly comorbid with obsessive-compulsive disorder (OCD) and attention deficit/hyperactivity disorder (ADHD). However, the genetic relations between these disorders have not been clearly elucidated. This study examined the familial relations among TS,…

  9. [Concordances between autism spectrum disorders and attention deficit hyperactivity disorder].

    Science.gov (United States)

    Mulas, F; Roca, P

    2018-03-01

    The current literature acknowledges an overlap of genetic, clinical and neuropsychological aspects between autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), suggesting that there may be a common pattern that covers features ranging from the common genetic and structural aetiology to shared patterns of symptoms. To review the current advances in these common aspects. Several studies have pointed out preschool attentional difficulties as the basis of both disorders. From the genetic perspective, it is estimated that 50-72% of the genetic factors overlap between the two disorders. They also share a decrease in the volume of the corpus callosum and left frontal grey matter, as well as functional alterations such as dorsolateral prefrontal, striato-thalamic and superior parietal hypoactivation. Results are also found regarding executive functioning, with differential profiles for the two conditions, and also concerning the relationship between the repetitive and impulsive behaviours in the early stages of ASD and ensuing problems of hyperactivity. This new conception of the ASD-ADHD continuum, with a common neurodevelopmental basis and associated clinical features, could be of great use in clinical practice. It is suggested that this association should be taken into account when it comes to deciding on the treatment.

  10. Genetics Home Reference: congenital mirror movement disorder

    Science.gov (United States)

    ... Health Conditions Congenital mirror movement disorder Congenital mirror movement disorder Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Congenital mirror movement disorder is a condition in which intentional movements ...

  11. Genetics Home Reference: autism spectrum disorder

    Science.gov (United States)

    ... Share: Email Facebook Twitter Home Health Conditions ASD Autism spectrum disorder Printable PDF Open All Close All Enable Javascript to view the expand/collapse boxes. Description Autism spectrum disorder ( ASD ) is a condition that appears very early ...

  12. Start small, think big: Growth monitoring, genetic analysis, treatment and quality of life in children with growth disorders

    NARCIS (Netherlands)

    Stalman, S.E.

    2016-01-01

    The aim of this thesis is to focus on issues that arise when dealing with children with growth disorders – from growth monitoring and genetic analysis to treatment effects on growth and quality of life. The first part of this thesis focuses on guidelines for diagnostic workup of children with growth

  13. Genetics Home Reference: CDKL5 deficiency disorder

    Science.gov (United States)

    ... Facebook Twitter Home Health Conditions CDKL5 deficiency disorder CDKL5 deficiency disorder Printable PDF Open All Close All ... Javascript to view the expand/collapse boxes. Description CDKL5 deficiency disorder is characterized by seizures that begin ...

  14. Connective Tissue Disorders

    Science.gov (United States)

    ... of connective tissue. Over 200 disorders that impact connective tissue. There are different types: Genetic disorders, such as Ehlers-Danlos syndrome, Marfan syndrome, and osteogenesis imperfecta Autoimmune disorders, such as lupus and scleroderma Cancers, like some types of soft tissue sarcoma Each ...

  15. Genetics of Dyslipidemia and Ischemic Heart Disease.

    Science.gov (United States)

    Sharma, Kavita; Baliga, Ragavendra R

    2017-05-01

    Genetic dyslipidemias contribute to the prevalence of ischemic heart disease. The field of genetic dyslipidemias and their influence on atherosclerotic heart disease is rapidly developing and accumulating increasing evidence. The purpose of this review is to describe the current state of knowledge in regard to inherited atherogenic dyslipidemias. The disorders of familial hypercholesterolemia (FH) and elevated lipoprotein(a) will be detailed. Genetic technology has made rapid advancements, leading to new discoveries in inherited atherogenic dyslipidemias, which will be explored in this review, as well as a description of possible future developments. Increasing attention has come upon the genetic disorders of familial hypercholesterolemia and elevated lipoprotein(a). This review includes new knowledge of these disorders including description of these disorders, their method of diagnosis, their prevalence, their genetic underpinnings, and their effect on the development of cardiovascular disease. In addition, it discusses major advances in genetic technology, including the completion of the human genome sequence, next-generation sequencing, and genome-wide association studies. Also discussed are rare variant studies with specific genetic mechanisms involved in inherited dyslipidemias, such as in the proprotein convertase subtilisin/kexin type 9 (PCSK9) enzyme. The field of genetics of dyslipidemia and cardiovascular disease is rapidly growing, which will result in a bright future of novel mechanisms of action and new therapeutics.

  16. Adults' perceptions of genetic counseling and genetic testing.

    Science.gov (United States)

    Houfek, Julia Fisco; Soltis-Vaughan, Brigette S; Atwood, Jan R; Reiser, Gwendolyn M; Schaefer, G Bradley

    2015-02-01

    This study described the perceptions of genetic counseling and testing of adults (N = 116) attending a genetic education program. Understanding perceptions of genetic counseling, including the importance of counseling topics, will contribute to patient-focused care as clinical genetic applications for common, complex disorders evolve. Participants completed a survey addressing: the importance of genetic counseling topics, benefits and negative effects of genetic testing, and sharing test results. Topics addressing practical information about genetic conditions were rated most important; topics involving conceptual genetic/genomic principles were rated least important. The most frequently identified benefit and negative effect of testing were prevention/early detection/treatment and psychological distress. Participants perceived that they were more likely to share test results with first-degree than other relatives. Findings suggest providing patients with practical information about genetic testing and genetic contributions to disease, while also determining whether their self-care abilities would be enhanced by teaching genetic/genomic principles. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Developmental cognitive genetics: How psychology can inform genetics and vice versa

    OpenAIRE

    Bishop, Dorothy V. M.

    2006-01-01

    Developmental neuropsychology is concerned with uncovering the underlying basis of developmental disorders such as specific language impairment (SLI), developmental dyslexia, and autistic disorder. Twin and family studies indicate that genetic influences play an important part in the aetiology of all of these disorders, yet progress in identifying genes has been slow. One way forward is to cut loose from conventional clinical criteria for diagnosing disorders and to focus instead on measures ...

  18. Inspirations in medical genetics.

    Science.gov (United States)

    Asadollahi, Reza

    2016-02-01

    There are abundant instances in the history of genetics and medical genetics to illustrate how curiosity, charisma of mentors, nature, art, the saving of lives and many other matters have inspired great discoveries. These achievements from deciphering genetic concepts to characterizing genetic disorders have been crucial for management of the patients. There remains, however, a long pathway ahead. © The Author(s) 2014.

  19. Tourette disorder and other tic disorders.

    Science.gov (United States)

    Fernandez, Thomas V; State, Matthew W; Pittenger, Christopher

    2018-01-01

    Tourette disorder is a developmental neuropsychiatric condition characterized by vocal and motor tics that can range in severity from mild to disabling. It represents one end of a spectrum of tic disorders and is estimated to affect 0.5-0.7% of the population. Accumulated evidence supports a substantial genetic contribution to disease risk, but the identification of genetic variants that confer risk has been challenging. Positive findings in candidate gene association studies have not replicated, and genomewide association studies have not generated signals of genomewide significance, in large part because of inadequate sample sizes. Rare mutations in several genes have been identified, but their causality is difficult to establish. As in other complex neuropsychiatric disorders, it is likely that Tourette disorder risk involves a combination of common, low-effect and rare, larger-effect variants in multiple genes acting together with environmental factors. With the ongoing collection of larger patient cohorts and the emergence of affordable high-throughput genomewide sequencing, progress is expected to accelerate in coming years. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Genetic Dissection of Behavioral Phenotypes. Lost & Found in Translation

    NARCIS (Netherlands)

    Bruining, H.

    2011-01-01

    This thesis shows that the exploration of human genetic disorders and animal genetic models can bring understanding of the causes and mechanisms of common psychiatric disorders. The first part of the thesis contains studies on genetic behavioral phenotypes in boys with Klinefelter syndrome, a human

  1. Relationships Among Avoidant Personality Disorder, Social Anxiety Disorder, and Normative Personality Traits: A Twin Study.

    Science.gov (United States)

    Welander-Vatn, Audun; Torvik, Fartein Ask; Czajkowski, Nikolai; Kendler, Kenneth S; Reichborn-Kjennerud, Ted; Knudsen, Gun Peggy; Ystrom, Eivind

    2018-03-05

    Avoidant personality disorder (AvPD) and social anxiety disorder (SAD) share risk factors to a substantial degree, and both are characterized by the experience of anxiety in social situations. The authors investigated whether these disorders are differentially related to the Big Five personality traits. They also examined the underlying genetic and environmental influences on these associations. A population-based sample of 1,761 female twins was interviewed at baseline, and 1,471 of these were re-interviewed 10 years later. Associations between AvPD, SAD, and personality traits were investigated with multivariate biometric analyses. The authors found that AvPD and SAD are differentially related to several personality traits at the phenotypic, genetic, and environmental level. The genetic and environmental liability to AvPD could be fully accounted for by the genetic and environmental factors influencing SAD and personality. The findings may increase current etiological understanding of these disorders and inform future classification and treatment efforts.

  2. Development of Genetic Testing for Fragile X Syndrome and Associated Disorders, and Estimates of the Prevalence of FMR1 Expansion Mutations

    Directory of Open Access Journals (Sweden)

    James N. Macpherson

    2016-11-01

    Full Text Available The identification of a trinucleotide (CGG expansion as the chief mechanism of mutation in Fragile X syndrome in 1991 heralded a new chapter in molecular diagnostic genetics and generated a new perspective on mutational mechanisms in human genetic disease, which rapidly became a central paradigm (“dynamic mutation” as more and more of the common hereditary neurodevelopmental disorders were ascribed to this novel class of mutation. The progressive expansion of a CGG repeat in the FMR1 gene from “premutation” to “full mutation” provided an explanation for the “Sherman paradox,” just as similar expansion mechanisms in other genes explained the phenomenon of “anticipation” in their pathogenesis. Later, FMR1 premutations were unexpectedly found associated with two other distinct phenotypes: primary ovarian insufficiency and tremor-ataxia syndrome. This review will provide a historical perspective on procedures for testing and reporting of Fragile X syndrome and associated disorders, and the population genetics of FMR1 expansions, including estimates of prevalence and the influence of AGG interspersions on the rate and probability of expansion.

  3. Identification of risk loci with shared effects on five major psychiatric disorders

    DEFF Research Database (Denmark)

    Steinhausen, Hans-Christoph E.; Strauss, John; Strohmaier, Jana

    2013-01-01

    Findings from family and twin studies suggest that genetic contributions to psychiatric disorders do not in all cases map to present diagnostic categories. We aimed to identify specific variants underlying genetic effects shared between the five disorders in the Psychiatric Genomics Consortium: a......: autism spectrum disorder, attention deficit-hyperactivity disorder, bipolar disorder, major depressive disorder, and schizophrenia.......Findings from family and twin studies suggest that genetic contributions to psychiatric disorders do not in all cases map to present diagnostic categories. We aimed to identify specific variants underlying genetic effects shared between the five disorders in the Psychiatric Genomics Consortium...

  4. Complex single gene disorders and epilepsy.

    LENUS (Irish Health Repository)

    Merwick, Aine

    2012-09-01

    Epilepsy is a heterogeneous group of disorders, often associated with significant comorbidity, such as intellectual disability and skin disorder. The genetic underpinnings of many epilepsies are still being elucidated, and we expect further advances over the coming 5 years, as genetic technology improves and prices fall for whole exome and whole genome sequencing. At present, there are several well-characterized complex epilepsies associated with single gene disorders; we review some of these here. They include well-recognized syndromes such as tuberous sclerosis complex, epilepsy associated with Rett syndrome, some of the progressive myoclonic epilepsies, and novel disorders such as epilepsy associated with mutations in the PCDH 19 gene. These disorders are important in informing genetic testing to confirm a diagnosis and to permit better understanding of the variability in phenotype-genotype correlation.

  5. Genetic counselling in the beta-thalassaemias

    Directory of Open Access Journals (Sweden)

    Adonis S. Ioannides

    2013-03-01

    Full Text Available The beta-thalassaemias are very important genetic disorders of haemoglobin synthesis and are amongst the commonest monogenic disorders. In view of the severity of beta-thalassaemia major, a number of screening programmes have been developed aimed at reducing the number of individuals born with the condition. Genetic counsellingplays a vital role in this process supporting the successful implementation of screening and delineating available options to at risk individuals. This review assesses the contribution of genetic counsellingat each stage of this process in the context of new diagnostic techniques and therapeutic options and discusses some of the more challenging aspects such as genotype/ phenotype correlation and coinheritance of other genetic conditions or genetic modifiers.

  6. Genetics of ischaemic stroke in young adults

    OpenAIRE

    Terni, Eva; Giannini, Nicola; Brondi, Marco; Montano, Vincenzo; Bonuccelli, Ubaldo; Mancuso, Michelangelo

    2015-01-01

    Background: Stroke may be a clinical expression of several inherited disorders in humans. Recognition of the underlined genetic disorders causing stroke is important for a correct diagnosis, for genetic counselling and, even if rarely, for a correct therapeutic management. Moreover, the genetics of complex diseases such the stroke, in which multiple genes interact with environmental risk factors to increase risk, has been revolutionized by the Genome-Wide Association Study (GWAS) approach. ...

  7. Management of sleep disorders in neurodevelopmental disorders and genetic syndromes.

    Science.gov (United States)

    Heussler, Helen S

    2016-03-01

    Sleep disorders in individuals with developmental difficulties continue to be a significant challenge for families, carers, and therapists with a major impact on individuals and carers alike. This review is designed to update the reader on recent developments in this area. A systematic search identified a variety of studies illustrating advances in the regulation of circadian rhythm and sleep disturbance in neurodevelopmental disorders. Specific advances are likely to lead in some disorders to targeted therapies. There is strong evidence that behavioural and sleep hygiene measures should be first line therapy; however, studies are still limited in this area. Nonpharmacological measures such as exercise, sensory interventions, and behavioural are reported. Behavioural regulation and sleep hygiene demonstrate the best evidence for improved sleep parameters in individuals with neurodisability. Although the mainstay of management of children with sleep problems and neurodevelopmental disability is similar to that of typically developing children, there is emerging evidence of behavioural strategies being successful in large-scale trials and the promise of more targeted therapies for more specific resistant disorders.

  8. EFNS guidelines for the molecular diagnosis of neurogenetic disorders: motoneuron, peripheral nerve and muscle disorders.

    Science.gov (United States)

    Burgunder, J-M; Schöls, L; Baets, J; Andersen, P; Gasser, T; Szolnoki, Z; Fontaine, B; Van Broeckhoven, C; Di Donato, S; De Jonghe, P; Lynch, T; Mariotti, C; Spinazzola, A; Tabrizi, S J; Tallaksen, C; Zeviani, M; Harbo, H F; Finsterer, J

    2011-02-01

    These EFNS guidelines on the molecular diagnosis of motoneuron disorders, neuropathies and myopathies are designed to summarize the possibilities and limitations of molecular genetic techniques and to provide diagnostic criteria for deciding when a molecular diagnostic work-up is indicated. To collect data about planning, conditions and performance of molecular diagnosis of these disorders, a literature search in various electronic databases was carried out and original papers, meta-analyses, review papers and guideline recommendations reviewed. The best level of evidence for genetic testing recommendation (B) can be found for the disorders with specific presentations, including familial amyotrophic lateral sclerosis, spinal and bulbar muscular atrophy, Charcot-Marie-Tooth 1A, myotonic dystrophy and Duchenne muscular dystrophy. For a number of less common disorders, a precise description of the phenotype, including the use of immunologic methods in the case of myopathies, is considered as good clinical practice to guide molecular genetic testing. These guidelines are provisional and the future availability of molecular-genetic epidemiological data about the neurogenetic disorders under discussion in this article will allow improved recommendation with an increased level of evidence. © 2010 The Author(s). European Journal of Neurology © 2010 EFNS.

  9. Comorbidity of Alcohol Use Disorder and Chronic Pain: Genetic Influences on Brain Reward and Stress Systems.

    Science.gov (United States)

    Yeung, Ellen W; Craggs, Jason G; Gizer, Ian R

    2017-11-01

    Alcohol use disorder (AUD) is highly comorbid with chronic pain (CP). Evidence has suggested that neuroadaptive processes characterized by reward deficit and stress surfeit are involved in the development of AUD and pain chronification. Neurological data suggest that shared genetic architecture associated with the reward and stress systems may contribute to the comorbidity of AUD and CP. This monograph first delineates the prevailing theories of the development of AUD and pain chronification focusing on the reward and stress systems. It then provides a brief summary of relevant neurological findings followed by an evaluation of evidence documented by molecular genetic studies. Candidate gene association studies have provided some initial support for the genetic overlap between AUD and CP; however, these results must be interpreted with caution until studies with sufficient statistical power are conducted and replications obtained. Genomewide association studies have suggested a number of genes (e.g., TBX19, HTR7, and ADRA1A) that are either directly or indirectly related to the reward and stress systems in the AUD and CP literature. Evidence reviewed in this monograph suggests that shared genetic liability underlying the comorbidity between AUD and CP, if present, is likely to be complex. As the advancement in molecular genetic methods continues, future studies may show broader central nervous system involvement in AUD-CP comorbidity. Copyright © 2017 by the Research Society on Alcoholism.

  10. Cross-tissue integration of genetic and epigenetic data offers insight into autism spectrum disorder.

    Science.gov (United States)

    Andrews, Shan V; Ellis, Shannon E; Bakulski, Kelly M; Sheppard, Brooke; Croen, Lisa A; Hertz-Picciotto, Irva; Newschaffer, Craig J; Feinberg, Andrew P; Arking, Dan E; Ladd-Acosta, Christine; Fallin, M Daniele

    2017-10-24

    Integration of emerging epigenetic information with autism spectrum disorder (ASD) genetic results may elucidate functional insights not possible via either type of information in isolation. Here we use the genotype and DNA methylation (DNAm) data from cord blood and peripheral blood to identify SNPs associated with DNA methylation (meQTL lists). Additionally, we use publicly available fetal brain and lung meQTL lists to assess enrichment of ASD GWAS results for tissue-specific meQTLs. ASD-associated SNPs are enriched for fetal brain (OR = 3.55; P < 0.001) and peripheral blood meQTLs (OR = 1.58; P < 0.001). The CpG targets of ASD meQTLs across cord, blood, and brain tissues are enriched for immune-related pathways, consistent with other expression and DNAm results in ASD, and reveal pathways not implicated by genetic findings. This joint analysis of genotype and DNAm demonstrates the potential of both brain and blood-based DNAm for insights into ASD and psychiatric phenotypes more broadly.

  11. Traumatic Stress Interacts With Bipolar Disorder Genetic Risk to Increase Risk for Suicide Attempts.

    Science.gov (United States)

    Wilcox, Holly C; Fullerton, Janice M; Glowinski, Anne L; Benke, Kelly; Kamali, Masoud; Hulvershorn, Leslie A; Stapp, Emma K; Edenberg, Howard J; Roberts, Gloria M P; Ghaziuddin, Neera; Fisher, Carrie; Brucksch, Christine; Frankland, Andrew; Toma, Claudio; Shaw, Alex D; Kastelic, Elizabeth; Miller, Leslie; McInnis, Melvin G; Mitchell, Philip B; Nurnberger, John I

    2017-12-01

    Bipolar disorder (BD) is one of the most heritable psychiatric conditions and is associated with high suicide risk. To explore the reasons for this link, this study examined the interaction between traumatic stress and BD polygenic risk score in relation to suicidal ideation, suicide attempt, and nonsuicidal self-injury (NSSI) in adolescent and young adult offspring and relatives of persons with BD (BD-relatives) compared with adolescent and young adult offspring of individuals without psychiatric disorders (controls). Data were collected from 4 sites in the United States and 1 site in Australia from 2006 through 2012. Generalized estimating equation models were used to compare rates of ideation, attempts, and NSSI between BD-relatives (n = 307) and controls (n = 166) and to determine the contribution of demographic factors, traumatic stress exposure, lifetime mood or substance (alcohol/drug) use disorders, and BD polygenic risk score. After adjusting for demographic characteristics and mood and substance use disorders, BD-relatives were at increased risk for suicidal ideation and attempts but not for NSSI. Independent of BD-relative versus control status, demographic factors, or mood and substance use disorders, exposure to trauma within the past year (including bullying, sexual abuse, and domestic violence) was associated with suicide attempts (p = .014), and BD polygenic risk score was marginally associated with attempts (p = .061). Importantly, the interaction between BD polygenic risk score and traumatic event exposures was significantly associated with attempts, independent of demographics, relative versus control status, and mood and substance use disorders (p = .041). BD-relatives are at increased risk for suicide attempts and ideation, especially if they are exposed to trauma and have evidence of increased genetic vulnerability. Copyright © 2017 American Academy of Child and Adolescent Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. Psychiatric genetic research at the National Institute of Mental Health

    Energy Technology Data Exchange (ETDEWEB)

    Berg, K.; Mullican, C.; Maestri, N. [NIMH/NIH, Rockville, MD (United States)] [and others

    1994-12-15

    For some time it has been known through the results of family, twin, and adoption studies that hereditary appears to play a significant casual role in many mental disorders, including schizophrenia, bipolar disorder, and other mood disorders, Alzheimer`s Disease, panic disorder, obsessive compulsive disorder, autism, dyslexia, and Tourette`s syndrome. The precise patterns of inheritance of these complex disorders have not been determined, nor have the relevant genes been localized or cloned. Because the genetics are complex and because there is also clearly an environmental contribution to behavior, we expect the analysis of the genetics of mental illness to be arduous and not quickly resolved. There are several compelling reasons to continue to focus our attention on uncovering the genetic factors for severe mental illness. Prominent among these are the implications for better treatment of mental disorders. The National Institute of Mental Health supports a wide range of studies on psychiatric genetic research. 16 refs.

  13. Genetics Home Reference: Schindler disease

    Science.gov (United States)

    ... childhood, with some features of autism spectrum disorders. Autism spectrum disorders are characterized by impaired communication and socialization skills. Related Information What does it mean if a disorder seems to run in my family? What is the prognosis of a genetic condition? ...

  14. Genetics Home Reference: combined malonic and methylmalonic aciduria

    Science.gov (United States)

    ... links) Health Topic: Genetic Brain Disorders Health Topic: Lipid Metabolism Disorders Genetic and Rare Diseases Information Center (1 link) Combined malonic and methylmalonic aciduria Additional NIH Resources (1 link) National Human Genome Research Institute: NHGRI Researchers Serve Up Mysterious ...

  15. The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Toward a Therapeutic Approach

    OpenAIRE

    Korf, Bruce; Ahmadian, Reza; Allanson, Judith; Aoki, Yoko; Bakker, Annette; Wright, Emma Burkitt; Denger, Brian; Elgersma, Ype; Gelb, Bruce D.; Gripp, Karen W.; Kerr, Bronwyn; Kontaridis, Maria; Lazaro, Conxi; Linardic, Corinne; Lozano, Reymundo

    2015-01-01

    "The Third International Meeting on Genetic Disorders in the RAS/MAPK Pathway: Towards a Therapeutic Approach" was held at the Renaissance Orlando at SeaWorld Hotel (August 2-4, 2013). Seventy-one physicians and scientists attended the meeting, and parallel meetings were held by patient advocacy groups (CFC International, Costello Syndrome Family Network, NF Network and Noonan Syndrome Foundation). Parent and patient advocates opened the meeting with a panel discussion to set the stage regard...

  16. Genetic Testing: MedlinePlus Health Topic

    Science.gov (United States)

    ... Your Family's Health (National Institutes of Health) - PDF Topic Image MedlinePlus Email Updates Get Genetic Testing updates ... testing and your cancer risk Karyotyping Related Health Topics Birth Defects Genetic Counseling Genetic Disorders Newborn Screening ...

  17. Abnormal temporal lobe white matter as a biomarker for genetic risk of bipolar disorder.

    Science.gov (United States)

    Mahon, Katie; Burdick, Katherine E; Ikuta, Toshikazu; Braga, Raphael J; Gruner, Patricia; Malhotra, Anil K; Szeszko, Philip R

    2013-01-15

    Brain white matter (WM) abnormalities have been hypothesized to play an important role in the neurobiology of bipolar disorder (BD). The nature of these abnormalities is not well-characterized, however, and it is unknown whether they occur after disease onset or represent potential markers of genetic risk. We examined WM integrity (assessed via fractional anisotropy [FA]) with diffusion tensor imaging in patients with BD (n=26), unaffected siblings of patients with BD (n=15), and healthy volunteers (n=27) to identify WM biomarkers of genetic risk. The FA differed significantly (punaffected siblings>BD). Moreover, FA values in this region correlated negatively and significantly with trait impulsivity in unaffected siblings. Probabilistic tractography indicated that the regional abnormality lies along the inferior fronto-occipital fasciculus, a large intrahemispheric association pathway. Our results suggest that lower WM integrity in the right temporal lobe might be a biomarker for genetic risk of BD. It is conceivable that the attenuated nature of these WM abnormalities present in unaffected siblings allows for some preservation of adaptive emotional regulation, whereas more pronounced alterations observed in patients is related to the marked emotional dysregulation characteristic of BD. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  18. The genetic overlap of attention deficit hyperactivity disorder and autistic spectrum disorder

    NARCIS (Netherlands)

    Stam, A.J.; Schothorst, P.F.; Vorstman, J.A.; Staal, W.G.

    2013-01-01

    Autistic spectrum disorders (ASD) and attention deficit hyperactivity disorder (ADHD) are classified as distinct disorders within the DSM-IV-TR (1994). The manual excludes simultaneous use of both diagnoses in case of overlap on a symptomatic level. However this does not always represent clinical

  19. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility

    Science.gov (United States)

    Skakkebaek, Niels E.; Rajpert-De Meyts, Ewa; Buck Louis, Germaine M.; Toppari, Jorma; Andersson, Anna-Maria; Eisenberg, Michael L.; Jensen, Tina Kold; Jørgensen, Niels; Swan, Shanna H.; Sapra, Katherine J.; Ziebe, Søren; Priskorn, Lærke; Juul, Anders

    2015-01-01

    It is predicted that Japan and European Union will soon experience appreciable decreases in their populations due to persistently low total fertility rates (TFR) below replacement level (2.1 child per woman). In the United States, where TFR has also declined, there are ethnic differences. Caucasians have rates below replacement, while TFRs among African-Americans and Hispanics are higher. We review possible links between TFR and trends in a range of male reproductive problems, including testicular cancer, disorders of sex development, cryptorchidism, hypospadias, low testosterone levels, poor semen quality, childlessness, changed sex ratio, and increasing demand for assisted reproductive techniques. We present evidence that several adult male reproductive problems arise in utero and are signs of testicular dysgenesis syndrome (TDS). Although TDS might result from genetic mutations, recent evidence suggests that it most often is related to environmental exposures of the fetal testis. However, environmental factors can also affect the adult endocrine system. Based on our review of genetic and environmental factors, we conclude that environmental exposures arising from modern lifestyle, rather than genetics, are the most important factors in the observed trends. These environmental factors might act either directly or via epigenetic mechanisms. In the latter case, the effects of exposures might have an impact for several generations post-exposure. In conclusion, there is an urgent need to prioritize research in reproductive physiology and pathophysiology, particularly in highly industrialized countries facing decreasing populations. We highlight a number of topics that need attention by researchers in human physiology, pathophysiology, environmental health sciences, and demography. PMID:26582516

  20. Human genetics and sleep behavior.

    Science.gov (United States)

    Shi, Guangsen; Wu, David; Ptáček, Louis J; Fu, Ying-Hui

    2017-06-01

    Why we sleep remains one of the greatest mysteries in science. In the past few years, great advances have been made to better understand this phenomenon. Human genetics has contributed significantly to this movement, as many features of sleep have been found to be heritable. Discoveries about these genetic variations that affect human sleep will aid us in understanding the underlying mechanism of sleep. Here we summarize recent discoveries about the genetic variations affecting the timing of sleep, duration of sleep and EEG patterns. To conclude, we also discuss some of the sleep-related neurological disorders such as Autism Spectrum Disorder (ASD) and Alzheimer's Disease (AD) and the potential challenges and future directions of human genetics in sleep research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Acral peeling skin syndrome: a clinically and genetically heterogeneous disorder.

    Science.gov (United States)

    Pavlovic, Sasha; Krunic, Aleksandar L; Bulj, Tanja K; Medenica, Maria M; Fong, Kenneth; Arita, Ken; McGrath, John A

    2012-01-01

    Acral peeling skin syndrome (APSS) is a rare, autosomal, recessive genodermatosis characterized by painless spontaneous exfoliation of the skin of the hands and feet at a subcorneal or intracorneal level. It usually presents at birth or appears later in childhood or early adulthood. Some cases result from mutations in the TGM5 gene that encodes transglutaminase 5, which has an important role in cross-linking cornified cell envelope proteins. We report a new APSS pedigree from Jordan that contains at least 10 affected family members, although sequencing of the TGM5 gene failed to disclose any pathogenic mutation(s). On the basis of probable consanguinity, we performed homozygosity mapping and identified areas of homozygosity on chromosomes 1, 6, 10, 13, and 16, although none of the intervals contained genes of clear relevance to cornification. APSS is a clinically and genetically heterogeneous disorder, and this Jordanian pedigree underscores the likelihood of still further heterogeneity. © 2011 Wiley Periodicals, Inc.

  2. Tic disorders and obsessive-compulsive disorder : Is autoimmunity involved?

    NARCIS (Netherlands)

    Hoekstra, PJ; Minderaa, RB

    The precise cause of tic disorders and paediatric obsessive-compulsive disorder (OCD) is unknown. In addition to genetic factors, autoimmunity may play a role, possibly as a sequela of preceding streptococcal throat infections in susceptible children. Here we review the most recent findings, from

  3. Trait-based assessment of borderline personality disorder using the NEO Five-Factor Inventory: Phenotypic and genetic support

    Science.gov (United States)

    Few, Lauren R.; Miller, Joshua D.; Grant, Julia D.; Maples, Jessica; Trull, Timothy J.; Nelson, Elliot C.; Oltmanns, Thomas F.; Martin, Nicholas G.; Lynskey, Michael T.; Agrawal, Arpana

    2015-01-01

    The aim of the current study was to examine the reliability and validity of a trait-based assessment of borderline personality disorder (BPD) using the NEO Five-Factor Inventory. Correlations between the Five-Factor Inventory-BPD composite (FFI-BPD) and explicit measures of BPD were examined across six samples, including undergraduate, community, and clinical samples. The median correlation was .60, which was nearly identical to the correlation between measures of BPD and a BPD composite generated from the full Revised NEO Personality Inventory (i.e., NEO-BPD; r =.61). Correlations between FFI-BPD and relevant measures of psychiatric symptomatology and etiology (e.g., childhood abuse, drug use, depression, and personality disorders) were also examined and compared to those generated using explicit measures of BPD and NEO-BPD. As expected, the FFI-BPD composite correlated most strongly with measures associated with high levels of Neuroticism, such as depression, anxiety, and emotion dysregulation, and the pattern of correlations generated using the FFI-BPD was highly similar to those generated using explicit measures of BPD and NEO-BPD. Finally, genetic analyses estimated that FFI-BPD is 44% heritable, which is comparable to meta-analytic research examining genetics associated with BPD, and revealed that 71% of the genetic influences are shared between FFI-BPD and a self-report measure assessing BPD (Personality Assessment Inventory – Borderline subscale; Morey, 1991). Generally, these results support the use of FFI-BPD as a reasonable proxy for BPD, which has considerable implications, particularly for potential gene-finding efforts in large, epidemiological datasets that include the NEO FFI. PMID:25984635

  4. ACTING OF THE MEDICAL GENETIC ADVISORY CENTER IN THE EARLY DETECTION AND PREVENTION OF PERSONS WITH PSHYCHOPHYSICAL DISORDERS IN THEIR DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    M. KJAEVA-PEJKOVSKA

    1997-03-01

    Full Text Available There had been a great dedication on the prevention of the acquired disease in the past. The well known are eugenetic advisory centers in which people could get information for a given inherited disease, later so called genetic advisory centers. Their work, besides is based on the principles of informing the patients for the difficulties, importance and prognoses of determined inherited disease. This activity, which is the highest achievement in the medical genetics, can be called genetic information, which is very important for regular treatment of every patient.The accurate etiological diagnosis is an essential precondition for giving the genetic information, assessment of the risk, the eventual treatment, as for the prenatal diagnosis e.i. prevention of congenital malformations.The genetic consulting is applicable in all possible phenotype manifestations of the breaking genes, regardless to the categorical custody of the examinees with retards in their development. In fact, that’s a summary of standards which are applicable in the basic prevention in disabilities in the psycho-physical development, whose reasons are genetically determined. Preventive activities are mostly used with mentally retarded as a result of the frequent intercession of the psychological disorders all together in different syndromes and diseases.The genetic consulting activities of the Center for Mental Health for children and adolescents in Skopje are based on the appliance of the following methodology: fortification of the risk for the appearance of inherited anomalies; explanation and assessment of the established risk in the concrete family situation, assurance of adequate assistance concerning the accurate and practical assessment of the risk and preparation of rational plan for subsequent treatment and decisions; consequent observation of the situations and evaluation of achieved results etc. In that way, the acting of medical-genetic advising center in the

  5. Genetics of ischaemic stroke; single gene disorders.

    Science.gov (United States)

    Flossmann, Enrico

    2006-08-01

    Examples of single gene disorders have been described for all major subtypes of ischaemic stroke: accelerated atherosclerosis and subsequent thrombo-embolism (e.g. homocysteinuria), weakening of connective tissue resulting in arterial dissections (e.g. Ehler-Danlos type IV), disorders of cerebral small vessels (e.g. cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy and the collagen COL4A1 mutation), disorders increasing the thrombogenic potential of the heart through affecting the myocardium or the heart valves or through disturbance of the heart rhythm (e.g. hypertrophic cardiomyopathy), mitochondrial cytopathies increasing cerebral tissue susceptibility to insults (e.g. mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes), and finally disorders of coagulation that can either directly cause stroke or act synergistically with the aforementioned abnormalities (e.g. sickle cell disease). Most of these disorders are rare but they are important to consider particularly in young patients with stroke, those with a family history or those who have other characteristics of a particular syndrome.

  6. Age at fatherhood: heritability and associations with psychiatric disorders.

    Science.gov (United States)

    Frans, E M; Lichtenstein, P; Hultman, C M; Kuja-Halkola, R

    2016-10-01

    Advancing paternal age has been linked to psychiatric disorders. These associations might be caused by the increased number of de novo mutations transmitted to offspring of older men. It has also been suggested that the associations are confounded by a genetic liability for psychiatric disorders in parents. The aim of this study was to indirectly test the confounding hypotheses by examining if there is a genetic component to advancing paternal age and if men with a genetic liability for psychiatric disorders have children at older ages. We examined the genetic component to advancing paternal age by utilizing the twin model in a cohort of male twins (N = 14 679). We also studied ages at childbirth in men with or without schizophrenia, bipolar disorder and/or autism spectrum disorder. Ages were examined in: (1) healthy men, (2) affected men, (3) healthy men with an affected sibling, (4) men with healthy spouses, (5) men with affected spouses, and (6) men with healthy spouses with an affected sibling. The twin analyses showed that late fatherhood is under genetic influence (heritability = 0.33). However, affected men or men with affected spouses did not have children at older ages. The same was found for healthy individuals with affected siblings. Instead, these men were generally having children at younger ages. Although there is a genetic component influencing late fatherhood, our data suggest that the associations are not explained by psychiatric disorders or a genetic liability for psychiatric disorders in the parent.

  7. Longitudinal associations between social anxiety disorder and avoidant personality disorder: A twin study.

    Science.gov (United States)

    Torvik, Fartein Ask; Welander-Vatn, Audun; Ystrom, Eivind; Knudsen, Gun Peggy; Czajkowski, Nikolai; Kendler, Kenneth S; Reichborn-Kjennerud, Ted

    2016-01-01

    Social anxiety disorder (SAD) and avoidant personality disorder (AvPD) are frequently co-occurring psychiatric disorders with symptomatology related to fear of social situations. It is uncertain to what degree the 2 disorders reflect the same genetic and environmental risk factors. The current study addresses the stability and co-occurrence of SAD and AvPD, the factor structure of the diagnostic criteria, and genetic and environmental factors underlying the disorders at 2 time points. SAD and AvPD were assessed in 1,761 young adult female twins at baseline and 1,471 of these approximately 10 years later. Biometric models were fitted to dimensional representations of SAD and AvPD. SAD and AvPD were moderately and approximately equally stable from young to middle adulthood, with increasing co-occurrence driven by environmental factors. At the first wave, approximately 1 in 3 individuals with AvPD had SAD, increasing to 1 in 2 at follow-up. The diagnostic criteria for SAD and AvPD had a two-factor structure with low cross-loadings. The relationship between SAD and AvPD was best accounted for by a model with separate, although highly correlated (r = .76), and highly heritable (.66 and .71) risk factors for each disorder. Their genetic and environmental components correlated .84 and .59, respectively. The finding of partially distinct risk factors indicates qualitative differences in the etiology of SAD and AvPD. Genetic factors represented the strongest time-invariant influences, whereas environmental factors were most important at the specific points in time. (c) 2016 APA, all rights reserved.

  8. The PsyCoLaus study: methodology and characteristics of the sample of a population-based survey on psychiatric disorders and their association with genetic and cardiovascular risk factors

    Directory of Open Access Journals (Sweden)

    Middleton Lefkos

    2009-03-01

    Full Text Available Abstract Background The Psychiatric arm of the population-based CoLaus study (PsyCoLaus is designed to: 1 establish the prevalence of threshold and subthreshold psychiatric syndromes in the 35 to 66 year-old population of the city of Lausanne (Switzerland; 2 test the validity of postulated definitions for subthreshold mood and anxiety syndromes; 3 determine the associations between psychiatric disorders, personality traits and cardiovascular diseases (CVD, 4 identify genetic variants that can modify the risk for psychiatric disorders and determine whether genetic risk factors are shared between psychiatric disorders and CVD. This paper presents the method as well as sociodemographic and somatic characteristics of the sample. Methods All 35 to 66 year-old persons previously selected for the population-based CoLaus survey on risk factors for CVD were asked to participate in a substudy assessing psychiatric conditions. This investigation included the Diagnostic Interview for Genetic Studies to elicit diagnostic criteria for threshold disorders according to DSM-IV and algorithmically defined subthreshold syndromes. Complementary information was collected on potential risk and protective factors for psychiatric disorders, migraine and on the morbidity of first-degree relatives, whereas the collection of DNA and plasma samples was already part of the original CoLaus survey. Results A total of 3,691 individuals completed the psychiatric evaluation (67% participation. The gender distribution of the sample did not differ significantly from that of the general population in the same age range. Although the youngest 5-year band of the cohort was underrepresented and the oldest 5-year band overrepresented, participants of PsyCoLaus and individuals who refused to participate revealed comparable scores on the General Health Questionnaire, a self-rating instrument completed at the somatic exam. Conclusion Despite limitations resulting from the relatively low

  9. Genetic variability of interleukin-1 beta as prospective factor from developing post-traumatic stress disorder.

    Science.gov (United States)

    Hovhannisyan, Lilit; Stepanyan, Ani; Arakelyan, Arsen

    2017-10-01

    Individual susceptibility to post-traumatic stress disorder (PTSD) is conditioned by genetic factors, and association between this disorder and polymorphisms of several genes have been shown. The aim of this study was to explore a potential association between single nucleotide polymorphisms (SNP) of the IL-1β gene (IL1B) and PTSD. In genomic DNA samples of PTSD-affected and healthy subjects, the rs16944, rs1143634, rs2853550, rs1143643, and rs1143633 SNPs of IL1B gene have been genotyped. The results obtained demonstrated that IL1B rs1143633*C and rs16944*A minor allele frequency were significantly lower in patients than in controls. Our results confirm that IL1B rs1143633 and rs16944 SNPs are negatively associated with PTSD which allows us to consider them as protective variants for PTSD. IL1B rs1143633*C and rs16944*A minor allele frequencies and carriage rates are significantly lower in the PTSD patients as compared to the controls. These results may provide a base to conclude that above-mentioned alleles can be protective against PTSD, and IL1B gene can be involved in the pathogenesis of this disorder.

  10. A study of genetic and environmental contributions to structural brain changes over time in twins concordant and discordant for bipolar disorder

    NARCIS (Netherlands)

    Bootsman, F.; Brouwer, R. M.; Schnack, H. G.; Kemner, S. M.; Hillegers, M. H. J.; Sarkisyan, G.; van der Schot, A. C.; Vonk, R.; Pol, H. E. Hulshoff; Nolen, W. A.; Kahn, R. S.; van Haren, N. E. M.

    This is the first longitudinal twin study examining genetic and environmental contributions to the association between liability to bipolar disorder (BD) and changes over time in global brain volumes, and global and regional measures of cortical surface area, cortical thickness and cortical volume.

  11. Genetic dissection of a cell-autonomous neurodegenerative disorder: lessons learned from mouse models of Niemann-Pick disease type C

    Directory of Open Access Journals (Sweden)

    Manuel E. Lopez

    2013-09-01

    Full Text Available Understanding neurodegenerative disease progression and its treatment requires the systematic characterization and manipulation of relevant cell types and molecular pathways. The neurodegenerative lysosomal storage disorder Niemann-Pick disease type C (NPC is highly amenable to genetic approaches that allow exploration of the disease biology at the organismal, cellular and molecular level. Although NPC is a rare disease, genetic analysis of the associated neuropathology promises to provide insight into the logic of disease neural circuitry, selective neuron vulnerability and neural-glial interactions. The ability to control the disorder cell-autonomously and in naturally occurring spontaneous animal models that recapitulate many aspects of the human disease allows for an unparalleled dissection of the disease neurobiology in vivo. Here, we review progress in mouse-model-based studies of NPC disease, specifically focusing on the subtype that is caused by a deficiency in NPC1, a sterol-binding late endosomal membrane protein involved in lipid trafficking. We also discuss recent findings and future directions in NPC disease research that are pertinent to understanding the cellular and molecular mechanisms underlying neurodegeneration in general.

  12. Genetics Home Reference: citrullinemia

    Science.gov (United States)

    ... belongs to a class of genetic diseases called urea cycle disorders. Learn more about the genes associated with citrullinemia ... GeneReview: Citrin Deficiency GeneReview: Citrullinemia Type I GeneReview: Urea Cycle Disorders Overview MedlinePlus Encyclopedia: Hereditary Urea Cycle Abnormality National ...

  13. Preimplantation diagnosis of genetic diseases

    Directory of Open Access Journals (Sweden)

    Adiga S

    2010-01-01

    Full Text Available One of the landmarks in clinical genetics is prenatal diagnosis of genetic disorders. The recent advances in the field have made it possible to diagnose the genetic conditions in the embryos before implantation in a setting of in vitro fertilization. Polymerase chain reaction and fluorescence in situ hybridization are the two common techniques employed on a single or two cells obtained via embryo biopsy. The couple who seek in vitro fertilization may screen their embryos for aneuploidy and the couple at risk for a monogenic disorder but averse to abortion of the affected fetuses after prenatal diagnosis, are likely to be the best candidates to undergo this procedure. This article reviews the technique, indications, benefits, and limitations of pre-implantation genetic testing in clinical practice.

  14. Genetic disorders of vitamin B12 metabolism: eight complementation groups – eight genes

    Science.gov (United States)

    Froese, D. Sean; Gravel, Roy A.

    2010-01-01

    Vitamin B12 (cobalamin, Cbl) is an essential nutrient in human metabolism. Genetic diseases of vitamin B12 utilisation constitute an important fraction of inherited newborn disease. Functionally, B12 is the cofactor for methionine synthase and methylmalonyl CoA mutase. To function as a cofactor, B12 must be metabolised through a complex pathway that modifies its structure and takes it through subcellular compartments of the cell. Through the study of inherited disorders of vitamin B12 utilisation, the genes for eight complementation groups have been identified, leading to the determination of the general structure of vitamin B12 processing and providing methods for carrier testing, prenatal diagnosis and approaches to treatment. PMID:21114891

  15. DSM-IV defined conduct disorder and oppositional defiant disorder: an investigation of shared liability in female twins.

    Science.gov (United States)

    Knopik, V S; Bidwell, L C; Flessner, C; Nugent, N; Swenson, L; Bucholz, K K; Madden, P A F; Heath, A C

    2014-04-01

    DSM-IV specifies a hierarchal diagnostic structure such that an oppositional defiant disorder (ODD) diagnosis is applied only if criteria are not met for conduct disorder (CD). Genetic studies of ODD and CD support a combination of shared genetic and environmental influences but largely ignore the imposed diagnostic structure. We examined whether ODD and CD share an underlying etiology while accounting for DSM-IV diagnostic specifications. Data from 1446 female twin pairs, aged 11-19 years, were fitted to two-stage models adhering to the DSM-IV diagnostic hierarchy. The models suggested that DSM-IV ODD-CD covariation is attributed largely to shared genetic influences. This is the first study, to our knowledge, to examine genetic and environmental overlap among these disorders while maintaining a DSM-IV hierarchical structure. The findings reflect primarily shared genetic influences and specific (i.e. uncorrelated) shared/familial environmental effects on these DSM-IV-defined behaviors. These results have implications for how best to define CD and ODD for future genetically informed analyses.

  16. Genetic factors associated with small for gestational age birth and the use of human growth hormone in treating the disorder

    Directory of Open Access Journals (Sweden)

    Saenger Paul

    2012-05-01

    Full Text Available Abstract The term small for gestational age (SGA refers to infants whose birth weights and/or lengths are at least two standard deviation (SD units less than the mean for gestational age. This condition affects approximately 3%–10% of newborns. Causes for SGA birth include environmental factors, placental factors such as abnormal uteroplacental blood flow, and inherited genetic mutations. In the past two decades, an enhanced understanding of genetics has identified several potential causes for SGA. These include mutations that affect the growth hormone (GH/insulin-like growth factor (IGF-1 axis, including mutations in the IGF-1 gene and acid-labile subunit (ALS deficiency. In addition, select polymorphisms observed in patients with SGA include those involved in genes associated with obesity, type 2 diabetes, hypertension, ischemic heart disease and deletion of exon 3 growth hormone receptor (d3-GHR polymorphism. Uniparental disomy (UPD and imprinting effects may also underlie some of the phenotypes observed in SGA individuals. The variety of genetic mutations associated with SGA births helps explain the diversity of phenotype characteristics, such as impaired motor or mental development, present in individuals with this disorder. Predicting the effectiveness of recombinant human GH (hGH therapy for each type of mutation remains challenging. Factors affecting response to hGH therapy include the dose and method of hGH administration as well as the age of initiation of hGH therapy. This article reviews the results of these studies and summarizes the success of hGH therapy in treating this difficult and genetically heterogenous disorder.

  17. Do candidate genes discriminate patients with an autism spectrum disorder from those with attention deficit/hyperactivity disorder and is there an effect of lifetime substance use disorders?

    NARCIS (Netherlands)

    Sizoo, B.B.; Brink, W. van den; Franke, B.; Arias Vasquez, A.; Wijngaarden-Cremers, P.J.M. van; Gaag, R.J. van der

    2010-01-01

    OBJECTIVE: Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are developmental disorders that overlap in a number of domains, sometimes complicating clinical distinction between both disorders. Although there is some evidence for a genetic overlap, there are no

  18. Do candidate genes discriminate patients with an autism spectrum disorder from those with attention deficit/hyperactivity disorder and is there an effect of lifetime substance use disorders?

    NARCIS (Netherlands)

    Sizoo, Bram; van den Brink, Wim; Franke, Barbara; Vasquez, Alejandro Arias; van Wijngaarden-Cremers, Patricia; van der Gaag, Rutger Jan

    2010-01-01

    Objective. Autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD) are developmental disorders that overlap in a number of domains, sometimes complicating clinical distinction between both disorders. Although there is some evidence for a genetic overlap, there are no

  19. Use of Contemporary Genetics in Cardiovascular Diagnosis

    Science.gov (United States)

    George, Alfred L.

    2015-01-01

    An explosion of knowledge regarding the genetic and genomic basis for rare and common diseases has provided a framework for revolutionizing the practice of medicine. Achieving the reality of a genomic medicine era requires that basic discoveries are effectively translated into clinical practice through implementation of genetic and genomic testing. Clinical genetic tests have become routine for many inherited disorders and can be regarded as the standard-of-care in many circumstances including disorders affecting the cardiovascular system. New, high-throughput methods for determining the DNA sequence of all coding exons or complete genomes are being adopted for clinical use to expand the speed and breadth of genetic testing. Along with these extraordinary advances have emerged new challenges to practicing physicians for understanding when and how to use genetic testing along with how to appropriately interpret test results. This review will acquaint readers with general principles of genetic testing including newer technologies, test interpretation and pitfalls. The focus will be on testing genes responsible for monogenic disorders and on other emerging applications such as pharmacogenomic profiling. The discussion will be extended to the new paradigm of direct-to-consumer genetic testing and the value of assessing genomic risk for common diseases. PMID:25421045

  20. [The genetics of collagen diseases].

    Science.gov (United States)

    Kaplan, J; Maroteaux, P; Frezal, J

    1986-01-01

    Heritable disorders of collagen include Ehler-Danlos syndromes (11 types are actually known), Larsen syndrome and osteogenesis imperfecta. Their clinical, genetic and biochemical features are reviewed. Marfan syndrome is closely related to heritable disorders of collagen.

  1. Informing DSM-5: biological boundaries between bipolar I disorder, schizoaffective disorder, and schizophrenia.

    Science.gov (United States)

    Cosgrove, Victoria E; Suppes, Trisha

    2013-05-14

    The fifth version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) opted to retain existing diagnostic boundaries between bipolar I disorder, schizoaffective disorder, and schizophrenia. The debate preceding this decision focused on understanding the biologic basis of these major mental illnesses. Evidence from genetics, neuroscience, and pharmacotherapeutics informed the DSM-5 development process. The following discussion will emphasize some of the key factors at the forefront of the debate. Family studies suggest a clear genetic link between bipolar I disorder, schizoaffective disorder, and schizophrenia. However, large-scale genome-wide association studies have not been successful in identifying susceptibility genes that make substantial etiological contributions. Boundaries between psychotic disorders are not further clarified by looking at brain morphology. The fact that symptoms of bipolar I disorder, but not schizophrenia, are often responsive to medications such as lithium and other anticonvulsants must be interpreted within a larger framework of biological research. For DSM-5, existing nosological boundaries between bipolar I disorder and schizophrenia were retained and schizoaffective disorder preserved as an independent diagnosis since the biological data are not yet compelling enough to justify a move to a more neurodevelopmentally continuous model of psychosis.

  2. The Tourette International Collaborative Genetics (TIC Genetics) study, finding the genes causing Tourette syndrome : objectives and methods

    NARCIS (Netherlands)

    Dietrich, Andrea; Fernandez, Thomas V.; King, Robert A.; State, Matthew W.; Tischfield, Jay A.; Hoekstra, Pieter J.; Heiman, Gary A.

    Tourette syndrome (TS) is a neuropsychiatric disorder characterized by recurrent motor and vocal tics, often accompanied by obsessive-compulsive disorder and/or attention-deficit/hyperactivity disorder. While the evidence for a genetic contribution is strong, its exact nature has yet to be clarified

  3. A new mouse model for mania shares genetic correlates with human bipolar disorder.

    Directory of Open Access Journals (Sweden)

    Michael C Saul

    Full Text Available Bipolar disorder (BPD is a debilitating heritable psychiatric disorder. Contemporary rodent models for the manic pole of BPD have primarily utilized either single locus transgenics or treatment with psychostimulants. Our lab recently characterized a mouse strain termed Madison (MSN that naturally displays a manic phenotype, exhibiting elevated locomotor activity, increased sexual behavior, and higher forced swimming relative to control strains. Lithium chloride and olanzapine treatments attenuate this phenotype. In this study, we replicated our locomotor activity experiment, showing that MSN mice display generationally-stable mania relative to their outbred ancestral strain, hsd:ICR (ICR. We then performed a gene expression microarray experiment to compare hippocampus of MSN and ICR mice. We found dysregulation of multiple transcripts whose human orthologs are associated with BPD and other psychiatric disorders including schizophrenia and ADHD, including: Epor, Smarca4, Cmklr1, Cat, Tac1, Npsr1, Fhit, and P2rx7. RT-qPCR confirmed dysregulation for all of seven transcripts tested. Using a novel genome enrichment algorithm, we found enrichment in genome regions homologous to human loci implicated in BPD in replicated linkage studies including homologs of human cytobands 1p36, 3p14, 3q29, 6p21-22, 12q24, 16q24, and 17q25. Using a functional network analysis, we found dysregulation of a gene system related to chromatin packaging, a result convergent with recent human findings on BPD. Our findings suggest that MSN mice represent a polygenic model for the manic pole of BPD showing much of the genetic systems complexity of the corresponding human disorder. Further, the high degree of convergence between our findings and the human literature on BPD brings up novel questions about evolution by analogy in mammalian genomes.

  4. Combat exposure severity as a moderator of genetic and environmental liability to post-traumatic stress disorder.

    Science.gov (United States)

    Wolf, E J; Mitchell, K S; Koenen, K C; Miller, M W

    2014-05-01

    Twin studies of veterans and adults suggest that approximately 30-46% of the variance in post-traumatic stress disorder (PTSD) is attributable to genetic factors. The remaining variance is attributable to the non-shared environment, which, by definition, includes combat exposure. This study used a gene by measured environment twin design to determine whether the effects of genetic and environmental factors that contribute to the etiology of PTSD are dependent on the level of combat exposure. The sample was drawn from the Vietnam Era Twin Registry (VETR) and included 620 male-male twin pairs who served in the US Military in South East Asia during the Vietnam War era. Analyses were based on data from a clinical diagnostic interview of lifetime PTSD symptoms and a self-report measure of combat exposure. Biometric modeling revealed that the effects of genetic and non-shared environment factors on PTSD varied as a function of level of combat exposure such that the association between these factors and PTSD was stronger at higher levels of combat exposure. Combat exposure may act as a catalyst that augments the impact of hereditary and environmental contributions to PTSD. Individuals with the greatest exposure to combat trauma were at increased risk for PTSD as a function of both genetic and environmental factors. Additional work is needed to determine the biological and environmental mechanisms driving these associations.

  5. The NeuroIMAGE study: a prospective phenotypic, cognitive, genetic and MRI study in children with attention-deficit/hyperactivity disorder. Design and descriptives.

    Science.gov (United States)

    von Rhein, Daniel; Mennes, Maarten; van Ewijk, Hanneke; Groenman, Annabeth P; Zwiers, Marcel P; Oosterlaan, Jaap; Heslenfeld, Dirk; Franke, Barbara; Hoekstra, Pieter J; Faraone, Stephen V; Hartman, Catharina; Buitelaar, Jan

    2015-03-01

    Attention-deficit/hyperactivity disorder (ADHD) is a persistent neuropsychiatric disorder which is associated with impairments on a variety of cognitive measures and abnormalities in structural and functional brain measures. Genetic factors are thought to play an important role in the etiology of ADHD. The NeuroIMAGE study is a follow-up of the Dutch part of the International Multicenter ADHD Genetics (IMAGE) project. It is a multi-site prospective cohort study designed to investigate the course of ADHD, its genetic and environmental determinants, its cognitive and neurobiological underpinnings, and its consequences in adolescence and adulthood. From the original 365 ADHD families and 148 control (CON) IMAGE families, consisting of 506 participants with an ADHD diagnosis, 350 unaffected siblings, and 283 healthy controls, 79 % participated in the NeuroIMAGE follow-up study. Combined with newly recruited participants the NeuroIMAGE study comprehends an assessment of 1,069 children (751 from ADHD families; 318 from CON families) and 848 parents (582 from ADHD families; 266 from CON families). For most families, data for more than one child (82 %) and both parents (82 %) were available. Collected data include a diagnostic interview, behavioural questionnaires, cognitive measures, structural and functional neuroimaging, and genome-wide genetic information. The NeuroIMAGE dataset allows examining the course of ADHD over adolescence into young adulthood, identifying phenotypic, cognitive, and neural mechanisms associated with the persistence versus remission of ADHD, and studying their genetic and environmental underpinnings. The inclusion of siblings of ADHD probands and controls allows modelling of shared familial influences on the ADHD phenotype.

  6. Age of Onset in Schizophrenia Spectrum Disorders: Complex Interactions between Genetic and Environmental Factors.

    Science.gov (United States)

    Mandelli, Laura; Toscano, Elena; Porcelli, Stefano; Fabbri, Chiara; Serretti, Alessandro

    2016-03-01

    In this study we evaluated the role of a candidate gene for major psychosis, Sialyltransferase (ST8SIA2), in the risk to develop a schizophrenia spectrum disorders, taking into account exposure to stressful life events (SLEs). Eight polymorphisms (SNPs) were tested in 94 Schizophreniainpatients and 176 healthy controls. Schizophrenia patients were also evaluated for SLEs in different life periods. None of the SNPs showed association with schizophrenia. Nevertheless, when crossing genetic variants with childhood SLEs, we could observe trends of interaction with age of onset. Though several limitations, our results support a protective role of ST8SIA2 in individuals exposed to moderate childhood stress.

  7. Genetic effects

    International Nuclear Information System (INIS)

    Abrahamson, S.; Bender, M.; Denniston, C.; Schull, W.

    1985-01-01

    Modeling analyses are used to predict the outcomes for two nuclear power plant accident scenarios, the first in which the population received a chronic dose of 0.1 Gy (10 rad) over a 50 year period, the second in which an equivalent population receives acute dose of 2 Gy. In both cases the analyses are projected over a period of five generations. The risk analysis takes on two major forms: the increase in genetic disease that would be observed in the immediate offspring of the exposed population, and the subsequent transmission of the newly induced mutations through future generations. The classes of genetic diseases studied are: dominant gene mutation, X-linked gene mutation, chromosome disorders and multifactorial disorders which involve the interaction of many mutant genes and environmental factors. 28 references, 3 figures, 5 tables

  8. Fetal magnetic resonance imaging and human genetics

    International Nuclear Information System (INIS)

    Hengstschlaeger, Markus

    2006-01-01

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data

  9. Fetal magnetic resonance imaging and human genetics

    Energy Technology Data Exchange (ETDEWEB)

    Hengstschlaeger, Markus [Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna (Austria)]. E-mail: markus.hengstschlaeger@meduniwien.ac.at

    2006-02-15

    The use of fetal magnetic resonance imaging (MRI), in addition to prenatal genetic testing and sonography, has the potential to improve prenatal diagnosis of genetic disorders. MRI plays an important role in the evaluation of fetal abnormalities and malformations. Fetal MRI often enables a differential diagnosis, a determination of the extent of the disorder, the prognosis, and an improvement in therapeutic management. For counseling of parents, as well as to basically understand how genetic aberrations affect fetal development, it is of great importance to correlate different genotypes with fetal MRI data.

  10. Genetic modifications associated with ketogenic diet treatment in the BTBRT+Tf/J mouse model of autism spectrum disorder.

    Science.gov (United States)

    Mychasiuk, Richelle; Rho, Jong M

    2017-03-01

    Autism spectrum disorder (ASD) is a prevalent and heterogeneous neurodevelopmental disorder characterized by hallmark behavioral features. The spectrum of disorders that fall within the ASD umbrella encompass a distinct but overlapping symptom complex that likely results from an array of molecular and genetic aberrations rather than a single genetic mutation. The ketogenic diet (KD) is a high-fat low-carbohydrate anti-seizure and neuroprotective diet that has demonstrated efficacy in the treatment of ASD-like behaviors in animal and human studies. We investigated changes in mRNA and gene expression in the BTBR mouse model of ASD that may contribute to the behavioral phenotype. In addition, we sought to examine changes in gene expression following KD treatment in BTBR mice. Despite significant behavioral abnormalities, expression changes in BTBR mice did not differ substantially from controls; only 33 genes were differentially expressed in the temporal cortex, and 48 in the hippocampus. Examination of these differentially expressed genes suggested deficits in the stress response and in neuronal signaling/communication. After treatment with the KD, both brain regions demonstrated improvements in ASD deficits associated with myelin formation and white matter development. Although our study supports many of the previously known impairments associated with ASD, such as excessive myelin formation and impaired GABAergic transmission, the RNAseq data and pathway analysis utilized here identified new therapeutic targets for analysis, such as Vitamin D pathways and cAMP signaling. Autism Res 2017, 10: 456-471. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  11. Obsessive-compulsive disorder, which genes? Which functions? Which pathways? An integrated holistic view regarding OCD and its complex genetic etiology.

    Science.gov (United States)

    Bozorgmehr, Ali; Ghadirivasfi, Mohammad; Shahsavand Ananloo, Esmaeil

    2017-09-01

    Obsessive-compulsive disorder (OCD) is characterized by recurrent obtrusive and repetitive acts typically occurred following anxiety. In the last two decades, studies done on the gene sequences, large-scale and point mutations and gene-gene, gene-environment and gene-drug interactions have led to the discovery of hundreds of genes associated with OCD. Although each gene in turn is a part of the etiology of this disorder; however, OCD, like other mental disorders is complex and a comprehensive and integrated view is necessary to understand its genetic basis. In this study, through an extensive review of existing published studies, all genes associated with OCD were found. Then, in order to integrate the results, all the interactions between these genes were explored and the achievement was represented as an interactive genetic network. Furthermore, the reconstructed network was analyzed. It was found that GRIN2A, GRIN2B and GRIA2 are the most central nodes in the network. Functional and pathway enrichment analysis showed that glutamate-related pathways are the main deficient systems in patients with OCD. By studying genes shared between OCD and other diseases, it was cleared that OCD, epilepsy and some types of cancer have the most number of shared genes. The results of this study, in addition to reviewing the available results as a comprehensive and integrated manner, provide new hypotheses for future studies.

  12. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis.

    Science.gov (United States)

    Donker, Albertine E; Raymakers, Reinier A P; Vlasveld, L Thom; van Barneveld, Teus; Terink, Rieneke; Dors, Natasja; Brons, Paul P T; Knoers, Nine V A M; Swinkels, Dorine W

    2014-06-19

    During recent years, our understanding of the pathogenesis of inherited microcytic anemias has gained from the identification of several genes and proteins involved in systemic and cellular iron metabolism and heme syntheses. Numerous case reports illustrate that the implementation of these novel molecular discoveries in clinical practice has increased our understanding of the presentation, diagnosis, and management of these diseases. Integration of these insights into daily clinical practice will reduce delays in establishing a proper diagnosis, invasive and/or costly diagnostic tests, and unnecessary or even detrimental treatments. To assist the clinician, we developed evidence-based multidisciplinary guidelines on the management of rare microcytic anemias due to genetic disorders of iron metabolism and heme synthesis. These genetic disorders may present at all ages, and therefore these guidelines are relevant for pediatricians as well as clinicians who treat adults. This article summarizes these clinical practice guidelines and includes background on pathogenesis, conclusions, and recommendations and a diagnostic flowchart to facilitate using these guidelines in the clinical setting. © 2014 by The American Society of Hematology.

  13. Genetics Home Reference: arginase deficiency

    Science.gov (United States)

    ... belongs to a class of genetic diseases called urea cycle disorders. The urea cycle is a sequence of reactions ... links) Baby's First Test GeneReview: Arginase Deficiency GeneReview: Urea Cycle Disorders Overview MedlinePlus Encyclopedia: Hereditary urea cycle abnormality National ...

  14. Epilepsy genetics: clinical beginnings and social consequences.

    Science.gov (United States)

    Johnston, J A; Rees, M I; Smith, P E M

    2009-07-01

    The approach to epilepsy care has transformed in the last 30 years, with more and better anti-epileptic medications, improved cerebral imaging and increased surgical options. Alongside this, developments in neuroscience and molecular genetics have furthered the understanding of epileptogenesis. Future developments in pharmacogenomics hold the promise of antiepileptic drugs matched to specific genotypes. Despite this rapid progress, one-third of epilepsy patients remain refractory to medication, with their seizures impacting upon day-to-day activity, social well-being, independence, economic output and quality of life. International genome collaborations, such as HapMap and the Welcome Trust Case-Control Consortium single nucleotide polymorphism (SNP) mapping project have identified common genetic variations in diseases of major public health importance. Such genetic signposts should help to identify at-risk populations with a view to producing more effective pharmaceutical treatments. Neurological disorders, despite comprising one-fifth of UK acute medical hospital admissions, are surprisingly under-represented in these projects. Epilepsy is the commonest serious neurological disorder worldwide. Although physically, psychologically, socially and financially disabling, it rarely receives deserved attention from physicians, scientists and governmental bodies. As outlined in this article, research into epilepsy genetics presents unique challenges. These help to explain why the identification of its complex genetic traits has lagged well behind other disciplines, particularly the efforts made in neuropsychiatric disorders. Clinical beginnings must underpin any genetic understanding in epilepsy. Success in identifying genetic traits in other disorders does not make the automatic case for genome-wide screening in epilepsy, but such is a desired goal. The essential clinical approach of accurately phenotyping, diagnosing and interpreting the dynamic nature of epilepsy

  15. Genetic mapping using haplotype, association and linkage methods suggests a locus for severe bipolar disorder (BPI) at 18q22-q23

    NARCIS (Netherlands)

    N.B. Freimer (Nelson); V.I. Reus (Victor); M.A. Escamilla (Michael); L. Alison McInnes (L.); M. Spesny (Mitzi); P. Leon (Pedro); S. Service (Susan); L.B. Smith (Lauren); S. Silva (Sandra); E. Rojas; M. Gallegos (Michael); L. Meza (Luis); E. Fournier (Eduardo); S. Baharloo (Siamak); K. Blankenship (Kathleen); D.J. Tyler (David); S. Batki (Steven); S. Vinogradov (Sophia); J. Weissenbach (Jean); S.H. Barondes (Samuel); L.A. Sandkuijl (Lodewijk)

    1996-01-01

    textabstractManic-depressive illness, or bipolar disorder (BP), is characterized by episodes of elevated mood (mania) and depression. We designed a multistage study in the genetically isolated population of the Central Valley of Costa Rica to identify genes that promote susceptibility to severe BP

  16. Autism Spectrum Disorder (ASD) and Fragile X Syndrome (FXS): Two Overlapping Disorders Reviewed through Electroencephalography—What Can be Interpreted from the Available Information?

    Science.gov (United States)

    Mc Devitt, Niamh; Gallagher, Louise; Reilly, Richard B.

    2015-01-01

    Autism Spectrum Disorder (ASD) and Fragile X syndrome (FXS) are neurodevelopmental disorders with different but potentially related neurobiological underpinnings, which exhibit significant overlap in their behavioural symptoms. FXS is a neurogenetic disorder of known cause whereas ASD is a complex genetic disorder, with both rare and common genetic risk factors and likely genetic and environmental interaction effects. A comparison of the phenotypic presentation of the two disorders may highlight those symptoms that are more likely to be under direct genetic control, for example in FXS as opposed to shared symptoms that are likely to be under the control of multiple mechanisms. This review is focused on the application and analysis of electroencephalography data (EEG) in ASD and FXS. Specifically, Event Related Potentials (ERP) and resting state studies (rEEG) studies investigating ASD and FXS cohorts are compared. This review explores the electrophysiological similarities and differences between the two disorders in addition to the potentially associated neurobiological mechanisms at play. A series of pertinent research questions which are suggested in the literature are also posed within the review. PMID:25826237

  17. Autism Spectrum Disorder (ASD and Fragile X Syndrome (FXS: Two Overlapping Disorders Reviewed through Electroencephalography—What Can be Interpreted from the Available Information?

    Directory of Open Access Journals (Sweden)

    Niamh Mc Devitt

    2015-03-01

    Full Text Available Autism Spectrum Disorder (ASD and Fragile X syndrome (FXS are neurodevelopmental disorders with different but potentially related neurobiological underpinnings, which exhibit significant overlap in their behavioural symptoms. FXS is a neurogenetic disorder of known cause whereas ASD is a complex genetic disorder, with both rare and common genetic risk factors and likely genetic and environmental interaction effects. A comparison of the phenotypic presentation of the two disorders may highlight those symptoms that are more likely to be under direct genetic control, for example in FXS as opposed to shared symptoms that are likely to be under the control of multiple mechanisms. This review is focused on the application and analysis of electroencephalography data (EEG in ASD and FXS. Specifically, Event Related Potentials (ERP and resting state studies (rEEG studies investigating ASD and FXS cohorts are compared. This review explores the electrophysiological similarities and differences between the two disorders in addition to the potentially associated neurobiological mechanisms at play. A series of pertinent research questions which are suggested in the literature are also posed within the review.

  18. Genetics Home Reference: Tourette syndrome

    Science.gov (United States)

    ... and Vocal Tic Disorder Gilles de la Tourette Syndrome Gilles de la Tourette's syndrome GTS TD Tourette Disorder Tourette's Disease TS Related ... Additional Information & Resources MedlinePlus (2 links) Encyclopedia: Gilles de la Tourette syndrome Health Topic: Tourette Syndrome Genetic and Rare Diseases ...

  19. Bipolar polygenic loading and bipolar spectrum features in major depressive disorder

    NARCIS (Netherlands)

    Wiste, Anna; Robinson, Elise B.; Milaneschi, Yuri; Meier, Sandra; Ripke, Stephan; Clements, Caitlin C.; Fitzmaurice, Garrett M.; Rietschel, Marcella; Penninx, Brenda W.; Smoller, Jordan W.; Perlis, Roy H.

    Objectives Family and genetic studies indicate overlapping liability for major depressive disorder and bipolar disorder. The purpose of the present study was to determine whether this shared genetic liability influences clinical presentation. Methods A polygenic risk score for bipolar disorder,

  20. Informing DSM-5: biological boundaries between bipolar I disorder, schizoaffective disorder, and schizophrenia

    Science.gov (United States)

    2013-01-01

    Background The fifth version of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) opted to retain existing diagnostic boundaries between bipolar I disorder, schizoaffective disorder, and schizophrenia. The debate preceding this decision focused on understanding the biologic basis of these major mental illnesses. Evidence from genetics, neuroscience, and pharmacotherapeutics informed the DSM-5 development process. The following discussion will emphasize some of the key factors at the forefront of the debate. Discussion Family studies suggest a clear genetic link between bipolar I disorder, schizoaffective disorder, and schizophrenia. However, large-scale genome-wide association studies have not been successful in identifying susceptibility genes that make substantial etiological contributions. Boundaries between psychotic disorders are not further clarified by looking at brain morphology. The fact that symptoms of bipolar I disorder, but not schizophrenia, are often responsive to medications such as lithium and other anticonvulsants must be interpreted within a larger framework of biological research. Summary For DSM-5, existing nosological boundaries between bipolar I disorder and schizophrenia were retained and schizoaffective disorder preserved as an independent diagnosis since the biological data are not yet compelling enough to justify a move to a more neurodevelopmentally continuous model of psychosis. PMID:23672587

  1. Genetics Home Reference: spondyloepiphyseal dysplasia congenita

    Science.gov (United States)

    ... bone growth disorder that results in short stature (dwarfism), skeletal abnormalities, and problems with vision and hearing. ... Diseases Health Topic: Connective Tissue Disorders Health Topic: Dwarfism Genetic and Rare Diseases Information Center (1 link) ...

  2. Atrioventricular canal defect and associated genetic disorders: new insights into polydactyly syndromes

    Directory of Open Access Journals (Sweden)

    M. Cristina Digilio

    2011-07-01

    Full Text Available Atrioventricular canal defect (AVCD is a common congenital heart defect (CHD, representing 7.4% of all cardiac malformations, considered secondary to an extracellular matrix anomaly. The AVCD is associated with extracardiac defects in about 75% of the cases. In this review we analyzed different syndromic AVCDs, in particular those associated with polydactyly disorders, which show remarkable genotype-phenotype correlations. Chromo - some imbalances more frequently associated with AVCD include Down syndrome, deletion 8p23 and deletion 3p25, while mendelian disorders include Noonan syndrome and related RASopathies, several polydactyly syndromes, CHARGE and 3C (cranio-cerebello-cardiac syndrome. The complete form of AVCD is prevalent in patients with chromosomal imbalances. Additional cardiac defects are found in patients affected by chromosomal imbalances different from Down syndrome. Left-sided obstructive lesions are prevalently found in patients with RASopathies. Patients with deletion 8p23 often display AVCD with tetralogy of Fallot or with pulmonary valve stenosis. Tetralogy of Fallot is the only additional cardiac defect found in patients with Down syndrome and AVCD. On the other hand, the association of AVCD and tetralogy of Fallot is also quite characteristic of CHARGE and 3C syndromes. Heterotaxia defects, including common atrium and anomalous pulmonary venous return, occur in patients with AVCD associated with polydactyly syndromes (Ellis-van Creveld, short rib polydactyly, oral-facial-digital, Bardet-Biedl, and Smith-Lemli-Opitz syndromes. The initial clinical evidence of anatomic similarities between AVCD and heterotaxia in polydactyly syndromes was corroborated and explained by experimental studies in transgenic mice. These investigations have suggested the involvement of the Sonic Hedgehog pathway in syndromes with postaxial polydactyly and heterotaxia, and ciliary dysfunction was detected as pathomechanism for these disorders

  3. [Study of genetic variants in the BDNF, COMT, DAT1 and SERT genes in Colombian children with attention deficit disorder].

    Science.gov (United States)

    Ortega-Rojas, Jenny; Arboleda-Bustos, Carlos E; Morales, Luis; Benítez, Bruno A; Beltrán, Diana; Izquierdo, Álvaro; Arboleda, Humberto; Vásquez, Rafael

    Attention deficit and hyperactive disorder (ADHD) is highly prevalent among children in Bogota City. Both genetic and environmental factors play a very important role in the etiology of ADHD. However, to date few studies have addressed the association of genetic variants and ADHD in the Colombian population. To test the genetic association between polymorphisms in the DAT1, HTTLPR, COMT and BDNF genes and ADHD in a sample from Bogota City. We genotyped the most common polymorphisms in DAT1, SERT, COMT and BDNF genes associated with ADHD using conventional PCR followed by restriction fragment length polymorphism (RFLP) in 97 trios recruited in a medical center in Bogota. The transmission disequilibrium test (TDT) was used to determine the association between such genetic variants and ADHD. The TDT analysis showed that no individual allele of any variant studied has a preferential transmission. Our results suggest that the etiology of the ADHD may be complex and involves several genetic factors. Further studies in other candidate polymorphisms in a larger sample size will improve our knowledge of the ADHD in Colombian population. Copyright © 2016 Asociación Colombiana de Psiquiatría. Publicado por Elsevier España. All rights reserved.

  4. The genetics of obstructive sleep apnoea.

    LENUS (Irish Health Repository)

    Kent, Brian D

    2012-02-01

    PURPOSE OF REVIEW: Obstructive sleep apnoea syndrome (OSAS) is a highly prevalent disorder associated with reduced quality of life and adverse cardiovascular and metabolic sequelae. Recent years have seen an intensification of the research effort to establish the genetic contribution to the development of OSAS and its sequelae. This review explores emerging evidence in this field. RECENT FINDINGS: A genetic basis for sleep-disordered breathing has been demonstrated for discrete disorders such as Treacher-Collins and Down syndromes, but the picture is less clear in so-called idiopathic OSAS. A degree of heritability appears likely in some of the intermediate phenotypes that lead to OSAS, particularly craniofacial morphology. However, only sparse and often contradictory evidence exists regarding the role of specific polymorphisms in causing OSAS in the general population. Similarly, investigations of the cardiovascular sequelae of OSAS have in general failed to consistently find single causative genetic mutations. Nonetheless, evidence suggests a role for tumour necrosis factor-alpha polymorphisms in particular, and large-scale family studies have suggested shared pathogenetic pathways for the development of obesity and OSAS. SUMMARY: As with other common disorders, OSAS is likely to result from multiple gene-gene interactions occurring in a suitable environment. The application of modern genetic investigative techniques, such as genome-wide association studies, may facilitate new discoveries in this field.

  5. Genetic polymorphisms in folate pathway enzymes, DRD4 and GSTM1 are related to temporomandibular disorder

    Directory of Open Access Journals (Sweden)

    Mayor-Olea Alvaro

    2011-05-01

    Full Text Available Abstract Background Temporomandibular disorder (TMD is a multifactorial syndrome related to a critical period of human life. TMD has been associated with psychological dysfunctions, oxidative state and sexual dimorphism with coincidental occurrence along the pubertal development. In this work we study the association between TMD and genetic polymorphisms of folate metabolism, neurotransmission, oxidative and hormonal metabolism. Folate metabolism, which depends on genes variations and diet, is directly involved in genetic and epigenetic variations that can influence the changes of last growing period of development in human and the appearance of the TMD. Methods A case-control study was designed to evaluate the impact of genetic polymorphisms above described on TMD. A total of 229 individuals (69% women were included at the study; 86 were patients with TMD and 143 were healthy control subjects. Subjects underwent to a clinical examination following the guidelines by the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD. Genotyping of 20 Single Nucleotide Polymorphisms (SNPs, divided in two groups, was performed by multiplex minisequencing preceded by multiplex PCR. Other seven genetic polymorphisms different from SNPs (deletions, insertions, tandem repeat, null genotype were achieved by a multiplex-PCR. A chi-square test was performed to determine the differences in genotype and allelic frequencies between TMD patients and healthy subjects. To estimate TMD risk, in those polymorphisms that shown significant differences, odds ratio (OR with a 95% of confidence interval were calculated. Results Six of the polymorphisms showed statistical associations with TMD. Four of them are related to enzymes of folates metabolism: Allele G of Serine Hydoxymethyltransferase 1 (SHMT1 rs1979277 (OR = 3.99; 95%CI 1.72, 9.25; p = 0.002, allele G of SHMT1 rs638416 (OR = 2.80; 95%CI 1.51, 5.21; p = 0.013, allele T of Methylentetrahydrofolate

  6. Genetic and Functional Analyses of SHANK2 Mutations Suggest a Multiple Hit Model of Autism Spectrum Disorders

    Science.gov (United States)

    Leblond, Claire S.; Heinrich, Jutta; Delorme, Richard; Proepper, Christian; Betancur, Catalina; Huguet, Guillaume; Konyukh, Marina; Chaste, Pauline; Ey, Elodie; Rastam, Maria; Anckarsäter, Henrik; Nygren, Gudrun; Gillberg, I. Carina; Melke, Jonas; Toro, Roberto; Regnault, Beatrice; Fauchereau, Fabien; Mercati, Oriane; Lemière, Nathalie; Skuse, David; Poot, Martin; Holt, Richard; Monaco, Anthony P.; Järvelä, Irma; Kantojärvi, Katri; Vanhala, Raija; Curran, Sarah; Collier, David A.; Bolton, Patrick; Chiocchetti, Andreas; Klauck, Sabine M.; Poustka, Fritz; Freitag, Christine M.; Waltes, Regina; Kopp, Marnie; Duketis, Eftichia; Bacchelli, Elena; Minopoli, Fiorella; Ruta, Liliana; Battaglia, Agatino; Mazzone, Luigi; Maestrini, Elena; Sequeira, Ana F.; Oliveira, Barbara; Vicente, Astrid; Oliveira, Guiomar; Pinto, Dalila; Scherer, Stephen W.; Zelenika, Diana; Delepine, Marc; Lathrop, Mark; Bonneau, Dominique; Guinchat, Vincent; Devillard, Françoise; Assouline, Brigitte; Mouren, Marie-Christine; Leboyer, Marion; Gillberg, Christopher; Boeckers, Tobias M.; Bourgeron, Thomas

    2012-01-01

    Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls). We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4%) patients and in 16 of 1,090 (1.5%) controls (P = 0.004, OR = 2.37, 95% CI = 1.23–4.70). In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013). Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11–q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the “multiple hit model” for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD. PMID:22346768

  7. Genetic and functional analyses of SHANK2 mutations suggest a multiple hit model of autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Claire S Leblond

    2012-02-01

    Full Text Available Autism spectrum disorders (ASD are a heterogeneous group of neurodevelopmental disorders with a complex inheritance pattern. While many rare variants in synaptic proteins have been identified in patients with ASD, little is known about their effects at the synapse and their interactions with other genetic variations. Here, following the discovery of two de novo SHANK2 deletions by the Autism Genome Project, we identified a novel 421 kb de novo SHANK2 deletion in a patient with autism. We then sequenced SHANK2 in 455 patients with ASD and 431 controls and integrated these results with those reported by Berkel et al. 2010 (n = 396 patients and n = 659 controls. We observed a significant enrichment of variants affecting conserved amino acids in 29 of 851 (3.4% patients and in 16 of 1,090 (1.5% controls (P = 0.004, OR = 2.37, 95% CI = 1.23-4.70. In neuronal cell cultures, the variants identified in patients were associated with a reduced synaptic density at dendrites compared to the variants only detected in controls (P = 0.0013. Interestingly, the three patients with de novo SHANK2 deletions also carried inherited CNVs at 15q11-q13 previously associated with neuropsychiatric disorders. In two cases, the nicotinic receptor CHRNA7 was duplicated and in one case the synaptic translation repressor CYFIP1 was deleted. These results strengthen the role of synaptic gene dysfunction in ASD but also highlight the presence of putative modifier genes, which is in keeping with the "multiple hit model" for ASD. A better knowledge of these genetic interactions will be necessary to understand the complex inheritance pattern of ASD.

  8. Ciliopathies: Genetics in Pediatric Medicine.

    Science.gov (United States)

    Oud, Machteld M; Lamers, Ideke J C; Arts, Heleen H

    2017-03-01

    Ciliary disorders , which are also referred to as ciliopathies , are a group of hereditary disorders that result from dysfunctional cilia. The latter are cellular organelles that stick up from the apical plasma membrane. Cilia have important roles in signal transduction and facilitate communications between cells and their surroundings. Ciliary disruption can result in a wide variety of clinically and genetically heterogeneous disorders with overlapping phenotypes. Because cilia occur widespread in our bodies many organs and sensory systems can be affected when they are dysfunctional. Ciliary disorders may be isolated or syndromic, and common features are cystic liver and/or kidney disease, blindness, neural tube defects, brain anomalies and intellectual disability, skeletal abnormalities ranging from polydactyly to abnormally short ribs and limbs, ectodermal defects, obesity, situs inversus , infertility, and recurrent respiratory tract infections. In this review, we summarize the features, frequency, morbidity, and mortality of each of the different ciliopathies that occur in pediatrics. The importance of genetics and the occurrence of genotype-phenotype correlations are indicated, and advances in gene identification are discussed. The use of next-generation sequencing by which a gene panel or all genes can be screened in a single experiment is highlighted as this technology significantly lowered costs and time of the mutation detection process in the past. We discuss the challenges of this new technology and briefly touch upon the use of whole-exome sequencing as a diagnostic test for ciliary disorders. Finally, a perspective on the future of genetics in the context of ciliary disorders is provided.

  9. Nature, Nurture, and Attention Deficit Hyperactivity Disorder.

    Science.gov (United States)

    Faraone, Stephen V.; Biederman, Joseph

    2000-01-01

    Comments on Joseph's review of the genetics of attention deficit disorder, demonstrating errors of scientific logic and oversight of relevant research in Joseph's argument. Argues for the validity of twin studies in supporting a genetic link for ADHD and for the complementary role of nature and nurture in the etiology of the disorder. (JPB)

  10. Genetic Causes of Rickets

    Science.gov (United States)

    Acar, Sezer; Demir, Korcan; Shi, Yufei

    2017-01-01

    Rickets is a metabolic bone disease that develops as a result of inadequate mineralization of growing bone due to disruption of calcium, phosphorus and/or vitamin D metabolism. Nutritional rickets remains a significant child health problem in developing countries. In addition, several rare genetic causes of rickets have also been described, which can be divided into two groups. The first group consists of genetic disorders of vitamin D biosynthesis and action, such as vitamin D-dependent rickets type 1A (VDDR1A), vitamin D-dependent rickets type 1B (VDDR1B), vitamin D-dependent rickets type 2A (VDDR2A), and vitamin D-dependent rickets type 2B (VDDR2B). The second group involves genetic disorders of excessive renal phosphate loss (hereditary hypophosphatemic rickets) due to impairment in renal tubular phosphate reabsorption as a result of FGF23-related or FGF23-independent causes. In this review, we focus on clinical, laboratory and genetic characteristics of various types of hereditary rickets as well as differential diagnosis and treatment approaches. PMID:29280738

  11. Genetic disorders from an endogamous population

    African Journals Online (AJOL)

    Abdulbari Bener

    b Dept. of Evidence for Population Health Unit, School of Epidemiology and Health Sciences, University of Manchester, Manchester, UK ... genetics counseling and screening for the hereditary diseases programme. Results: The ..... Elementary.

  12. EMQN best practice guidelines for the molecular genetic testing and reporting of fragile X syndrome and other fragile X-associated disorders

    Science.gov (United States)

    Biancalana, Valérie; Glaeser, Dieter; McQuaid, Shirley; Steinbach, Peter

    2015-01-01

    Different mutations occurring in the unstable CGG repeat in 5' untranslated region of FMR1 gene are responsible for three fragile X-associated disorders. An expansion of over ∼200 CGG repeats when associated with abnormal methylation and inactivation of the promoter is the mutation termed ‘full mutation' and is responsible for fragile X syndrome (FXS), a neurodevelopmental disorder described as the most common cause of inherited intellectual impairment. The term ‘abnormal methylation' is used here to distinguish the DNA methylation induced by the expanded repeat from the ‘normal methylation' occurring on the inactive X chromosomes in females with normal, premutation, and full mutation alleles. All male and roughly half of the female full mutation carriers have FXS. Another anomaly termed ‘premutation' is characterized by the presence of 55 to ∼200 CGGs without abnormal methylation, and is the cause of two other diseases with incomplete penetrance. One is fragile X-associated primary ovarian insufficiency (FXPOI), which is characterized by a large spectrum of ovarian dysfunction phenotypes and possible early menopause as the end stage. The other is fragile X-associated tremor/ataxia syndrome (FXTAS), which is a late onset neurodegenerative disorder affecting males and females. Because of the particular pattern and transmission of the CGG repeat, appropriate molecular testing and reporting is very important for the optimal genetic counselling in the three fragile X-associated disorders. Here, we describe best practice guidelines for genetic analysis and reporting in FXS, FXPOI, and FXTAS, including carrier and prenatal testing. PMID:25227148

  13. Methods to estimate the genetic risk

    International Nuclear Information System (INIS)

    Ehling, U.H.

    1989-01-01

    The estimation of the radiation-induced genetic risk to human populations is based on the extrapolation of results from animal experiments. Radiation-induced mutations are stochastic events. The probability of the event depends on the dose; the degree of the damage dose not. There are two main approaches in making genetic risk estimates. One of these, termed the direct method, expresses risk in terms of expected frequencies of genetic changes induced per unit dose. The other, referred to as the doubling dose method or the indirect method, expresses risk in relation to the observed incidence of genetic disorders now present in man. The advantage of the indirect method is that not only can Mendelian mutations be quantified, but also other types of genetic disorders. The disadvantages of the method are the uncertainties in determining the current incidence of genetic disorders in human and, in addition, the estimasion of the genetic component of congenital anomalies, anomalies expressed later and constitutional and degenerative diseases. Using the direct method we estimated that 20-50 dominant radiation-induced mutations would be expected in 19 000 offspring born to parents exposed in Hiroshima and Nagasaki, but only a small proportion of these mutants would have been detected with the techniques used for the population study. These methods were used to predict the genetic damage from the fallout of the reactor accident at Chernobyl in the vicinity of Southern Germany. The lack of knowledge for the interaction of chemicals with ionizing radiation and the discrepancy between the high safety standards for radiation protection and the low level of knowledge for the toxicological evaluation of chemical mutagens will be emphasized. (author)

  14. Genomics of Cardiometabolic Disorders in Sub-Saharan Africa.

    Science.gov (United States)

    Adebamowo, Sally N; Tekola-Ayele, Fasil; Adeyemo, Adebowale A; Rotimi, Charles N

    2017-01-01

    Sub-Saharan Africa (SSA) is experiencing a growing burden of cardiometabolic disorders, including diabetes, dyslipidemia, hypertension, obesity, coronary heart disease, and stroke. The increasing trends are expected to accelerate as SSA continues to experience economic progress, population growth, and the shift from communicable to noncommunicable diseases. These complex disorders are caused by multiple, potentially interacting, environmental, and genetic factors. While considerable progress has been made in the identification of the sociocultural, demographic, and lifestyle risk factors for cardiometabolic disorders, many genetic factors that underlie individual susceptibility to these diseases remain largely unknown. Although progress in genomic technologies has allowed for systematic characterization of genome-wide genetic diversity in health and disease in European and Asian ancestry populations, conduct of genetic studies in SSA has been underwhelming until recently. Here, we summarize recent understanding of the body of knowledge and highlight research opportunities on the genomics of cardiometabolic disorders in SSA. Published by S. Karger AG, Basel.

  15. Biology and genetics of oculocutaneous albinism and vitiligo ...

    African Journals Online (AJOL)

    Pigmentation disorders span the genetic spectrum from single-gene autosomal recessive disorders such as oculocutaneous albinism (OCA), the autosomal dominant disorder piebaldism to X-linked ocular albinism and multifactorial vitiligo. OCA connotes a group of disorders that result in hypopigmented skin due to ...

  16. Use of Targeted Exome Sequencing for Molecular Diagnosis of Skeletal Disorders

    Science.gov (United States)

    Polla, Daniel L.; Cardoso, Maria T. O.; Silva, Mayara C. B.; Cardoso, Isabela C. C.; Medina, Cristina T. N.; Araujo, Rosenelle; Fernandes, Camila C.; Reis, Alessandra M. M.; de Andrade, Rosangela V.; Pereira, Rinaldo W.; Pogue, Robert

    2015-01-01

    Genetic disorders of the skeleton comprise a large group of more than 450 clinically distinct and genetically heterogeneous diseases associated with mutations in more than 300 genes. Achieving a definitive diagnosis is complicated due to the genetic heterogeneity of these disorders, their individual rarity and their diverse radiographic presentations. We used targeted exome sequencing and designed a 1.4Mb panel for simultaneous testing of more than 4,800 exons in 309 genes involved in skeletal disorders. DNA from 69 individuals from 66 families with a known or suspected clinical diagnosis of a skeletal disorder was analyzed. Of 36 cases with a specific clinical hypothesis with a known genetic basis, mutations were identified for eight cases (22%). Of 20 cases with a suspected skeletal disorder but without a specific diagnosis, four causative mutations were identified. Also included were 11 cases with a specific skeletal disorder but for which there was at the time no known associated gene. For these cases, one mutation was identified in a known skeletal disease genes, and re-evaluation of the clinical phenotype in this case changed the diagnoses from osteodysplasia syndrome to Apert syndrome. These results suggest that the NGS panel provides a fast, accurate and cost-effective molecular diagnostic tool for identifying mutations in a highly genetically heterogeneous set of disorders such as genetic skeletal disorders. The data also stress the importance of a thorough clinical evaluation before DNA sequencing. The strategy should be applicable to other groups of disorders in which the molecular basis is largely known. PMID:26380986

  17. Diagnostic approach to neurotransmitter monoamine disorders: experience from clinical, biochemical, and genetic profiles.

    Science.gov (United States)

    Kuster, Alice; Arnoux, Jean-Baptiste; Barth, Magalie; Lamireau, Delphine; Houcinat, Nada; Goizet, Cyril; Doray, Bérénice; Gobin, Stéphanie; Schiff, Manuel; Cano, Aline; Amsallem, Daniel; Barnerias, Christine; Chaumette, Boris; Plaze, Marion; Slama, Abdelhamid; Ioos, Christine; Desguerre, Isabelle; Lebre, Anne-Sophie; de Lonlay, Pascale; Christa, Laurence

    2018-01-01

    To improve the diagnostic work-up of patients with diverse neurological diseases, we have elaborated specific clinical and CSF neurotransmitter patterns. Neurotransmitter determinations in CSF from 1200 patients revealed abnormal values in 228 (19%) cases. In 54/228 (24%) patients, a final diagnosis was identified. We have reported primary (30/54, 56%) and secondary (24/54, 44%) monoamine neurotransmitter disorders. For primary deficiencies, the most frequently mutated gene was DDC (n = 9), and the others included PAH with neuropsychiatric features (n = 4), PTS (n = 5), QDPR (n = 3), SR (n = 1), and TH (n = 1). We have also identified mutations in SLC6A3, FOXG1 (n = 1 of each), MTHFR (n = 3), FOLR1, and MTHFD (n = 1 of each), for dopamine transporter, neuronal development, and folate metabolism disorders, respectively. For secondary deficiencies, we have identified POLG (n = 3), ACSF3 (n = 1), NFU1, and SDHD (n = 1 of each), playing a role in mitochondrial function. Other mutated genes included: ADAR, RNASEH2B, RNASET2, SLC7A2-IT1 A/B lncRNA, and EXOSC3 involved in nuclear and cytoplasmic metabolism; RanBP2 and CASK implicated in post-traductional and scaffolding modifications; SLC6A19 regulating amino acid transport; MTM1, KCNQ2 (n = 2), and ATP1A3 playing a role in nerve cell electrophysiological state. Chromosome abnormalities, del(8)(p23)/dup(12) (p23) (n = 1), del(6)(q21) (n = 1), dup(17)(p13.3) (n = 1), and non-genetic etiologies (n = 3) were also identified. We have classified the final 54 diagnoses in 11 distinctive biochemical profiles and described them through 20 clinical features. To identify the specific molecular cause of abnormal NT profiles, (targeted) genomics might be used, to improve diagnosis and allow early treatment of complex and rare neurological genetic diseases.

  18. Clinical neurogenetics: autism spectrum disorders.

    Science.gov (United States)

    Mehta, Sunil Q; Golshani, Peyman

    2013-11-01

    Autism spectrum disorders are neurodevelopmental disorders characterized by deficits in social interactions, communication, and repetitive or restricted interests. There is strong evidence that de novo or inherited genetic alterations play a critical role in causing Autism Spectrum Disorders, but non-genetic causes, such as in utero infections, may also play a role. Magnetic resonance imaging based and autopsy studies indicate that early rapid increase in brain size during infancy could underlie the deficits in a large subset of subjects. Clinical studies show benefits for both behavioral and pharmacological treatment strategies. Genotype-specific treatments have the potential for improving outcome in the future. Published by Elsevier Inc.

  19. Frequently Asked Questions about Genetic Disorders

    Science.gov (United States)

    ... structures that carry genes). As we unlock the secrets of the human genome (the complete set of ... geneticalliance.org] More information from the Genetic Alliance Top of page Last Updated: November 10, 2015 See ...

  20. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis.

    Science.gov (United States)

    Tansey, Katherine E; Guipponi, Michel; Perroud, Nader; Bondolfi, Guido; Domenici, Enrico; Evans, David; Hall, Stephanie K; Hauser, Joanna; Henigsberg, Neven; Hu, Xiaolan; Jerman, Borut; Maier, Wolfgang; Mors, Ole; O'Donovan, Michael; Peters, Tim J; Placentino, Anna; Rietschel, Marcella; Souery, Daniel; Aitchison, Katherine J; Craig, Ian; Farmer, Anne; Wendland, Jens R; Malafosse, Alain; Holmans, Peter; Lewis, Glyn; Lewis, Cathryn M; Stensbøl, Tine Bryan; Kapur, Shitij; McGuffin, Peter; Uher, Rudolf

    2012-01-01

    It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way. The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study). After quality control, a dataset of 1,790 individuals with high-quality genome-wide genotyping provided adequate power to test the hypotheses that antidepressant response or a clinically significant differential response to the two classes of antidepressants could be predicted from a single common genetic polymorphism. None of the more than half million genetic markers significantly predicted response to antidepressants overall, serotonin reuptake inhibitors, or noradrenaline reuptake inhibitors, or differential response to the two types of antidepressants (genome-wide significance panalysis of NEWMEDS and another large sample (STAR*D), with 2,897 individuals in total. Polygenic scoring found no convergence among multiple associations in NEWMEDS and STAR*D. No single common genetic variant was associated with antidepressant response at a clinically relevant level in a European-ancestry cohort. Effects specific to particular antidepressant drugs could not be investigated in the current study. Please see later in the article for the Editors' Summary.

  1. Triparental families: a new genetic-epidemiological design applied to drug abuse, alcohol use disorders, and criminal behavior in a Swedish national sample.

    Science.gov (United States)

    Kendler, Kenneth S; Ohlsson, Henrik; Sundquist, Jan; Sundquist, Kristina

    2015-06-01

    The authors sought to clarify the sources of parent-offspring resemblance for drug abuse, alcohol use disorders, and criminal behavior, using a novel genetic-epidemiological design. Using national registries, the authors identified rates of drug abuse, alcohol use disorders, and criminal behavior in 41,360 Swedish individuals born between 1960 and 1990 and raised in triparental families comprising a biological mother who reared them, a "not-lived-with" biological father, and a stepfather. When each syndrome was examined individually, hazard rates for drug abuse in offspring of parents with drug abuse were highest for mothers (2.80, 95% CI=2.23-3.38), intermediate for not-lived-with fathers (2.45, 95% CI=2.14-2.79), and lowest for stepfathers (1.99, 95% CI=1.55-2.56). The same pattern was seen for alcohol use disorders (2.23, 95% CI=1.93-2.58; 1.84, 95% CI=1.69-2.00; and 1.27, 95% CI=1.12-1.43) and criminal behavior (1.55, 95% CI=1.44-1.66; 1.46, 95% CI=1.40-1.52; and 1.30, 95% CI=1.23-1.37). When all three syndromes were examined together, specificity of cross-generational transmission was highest for mothers, intermediate for not-lived-with fathers, and lowest for stepfathers. Analyses of intact families and other not-lived-with parents and stepparents showed similar cross-generation transmission for these syndromes in mothers and fathers, supporting the representativeness of results from triparental families. A major strength of the triparental design is its inclusion, within a single family, of parents who provide, to a first approximation, their offspring with genes plus rearing, genes only, and rearing only. For drug abuse, alcohol use disorders, and criminal behavior, the results of this study suggest that parent-offspring transmission involves both genetic and environmental processes, with genetic factors being somewhat more important. These results should be interpreted in the context of the strengths and limitations of national registry data.

  2. Inherited metabolic disorders in Thailand.

    Science.gov (United States)

    Wasant, Pornswan; Svasti, Jisnuson; Srisomsap, Chantragan; Liammongkolkul, Somporn

    2002-08-01

    The study of inborn errors of metabolism (IEM) in Thailand is in its infancy. The majority are clinically diagnosed since there are only a handful of clinicians and scientists with expertise in inherited metabolic disorders, shortage of well-equipped laboratory facilities and lack of governmental financial support. Genetic metabolic disorders are usually not considered a priority due to prevalence of infectious diseases and congenital infections. From a retrospective study at the Medical Genetics Unit, Department of Pediatrics, Siriraj Hospital; estimated pediatrics patients with suspected IEM were approximately 2-3 per cent of the total pediatric admissions of over 5,000 annually. After more than 10 years of research and accumulated clinical experiences, a genetic metabolic center is being established in collaboration with expert laboratories both in Bangkok (Chulabhorn Research Institute) and abroad (Japan and the United States). Numerous inherited metabolic disorders were identified--carbohydrate, amino acids, organic acids, mitochondrial fatty acid oxidation, peroxisomal, mucopolysaccharidoses etc. This report includes the establishment of genetic metabolic center in Thailand, research and pilot studies in newborn screening in Thailand and a multicenter study from 5 institutions (Children's National Center, King Chulalongkorn Memorial Hospital, Pramongkutklao Hospital, Ramathibodi and Siriraj Hospitals). Inherited metabolic disorders reported are fructose-1,6-bisphosphatase deficiency, phenylketonuria, homocystinuria, nonketotic hyperglycinemia, urea cycle defect (arginino succinate lyase deficiency, argininosuccinate synthetase deficiency), Menkes disease, propionic acidemia and mucopolysaccharidoses (Hurler, Hurler-Scheie).

  3. Identifying Loci for the Overlap between Attention-Deficit/Hyperactivity Disorder and Autism Spectrum Disorder Using a Genome-Wide QTL Linkage Approach

    Science.gov (United States)

    Nijmeijer, Judith S.; Arias-Vasquez, Alejandro; Rommelse, Nanda N. J.; Altink, Marieke E.; Anney, Richard J. L.; Asherson, Philip; Banaschewski, Tobias; Buschgens, Cathelijne J. M.; Fliers, Ellen A.; Gill, Michael; Minderaa, Ruud B.; Poustka, Luise; Sergeant, Joseph A.; Buitelaar, Jan K.; Franke, Barbara; Ebstein, Richard P.; Miranda, Ana; Mulas, Fernando; Oades, Robert D.; Roeyers, Herbert; Rothenberger, Aribert; Sonuga-Barke, Edmund J. S.; Steinhausen, Hans-Christoph; Faraone, Stephen V.; Hartman, Catharina A.; Hoekstra, Pieter J.

    2010-01-01

    Objective: The genetic basis for autism spectrum disorder (ASD) symptoms in children with attention-deficit/hyperactivity disorder (ADHD) was addressed using a genome-wide linkage approach. Method: Participants of the International Multi-Center ADHD Genetics study comprising 1,143 probands with ADHD and 1,453 siblings were analyzed. The total and…

  4. Genetics Home Reference: ornithine transcarbamylase deficiency

    Science.gov (United States)

    ... belongs to a class of genetic diseases called urea cycle disorders. The urea cycle is a sequence of reactions ... Baby's First Test GeneReview: Ornithine Transcarbamylase Deficiency GeneReview: Urea Cycle Disorders Overview MedlinePlus Encyclopedia: Hereditary urea cycle abnormality National ...

  5. Preimplantation genetic diagnosis guided by single-cell genomics

    Science.gov (United States)

    2013-01-01

    Preimplantation genetic diagnosis (PGD) aims to help couples with heritable genetic disorders to avoid the birth of diseased offspring or the recurrence of loss of conception. Following in vitro fertilization, one or a few cells are biopsied from each human preimplantation embryo for genetic testing, allowing diagnosis and selection of healthy embryos for uterine transfer. Although classical methods, including single-cell PCR and fluorescent in situ hybridization, enable PGD for many genetic disorders, they have limitations. They often require family-specific designs and can be labor intensive, resulting in long waiting lists. Furthermore, certain types of genetic anomalies are not easy to diagnose using these classical approaches, and healthy offspring carrying the parental mutant allele(s) can result. Recently, state-of-the-art methods for single-cell genomics have flourished, which may overcome the limitations associated with classical PGD, and these underpin the development of generic assays for PGD that enable selection of embryos not only for the familial genetic disorder in question, but also for various other genetic aberrations and traits at once. Here, we discuss the latest single-cell genomics methodologies based on DNA microarrays, single-nucleotide polymorphism arrays or next-generation sequence analysis. We focus on their strengths, their validation status, their weaknesses and the challenges for implementing them in PGD. PMID:23998893

  6. Genetic and Environmental Influences on the Developmental Course of Attention-Deficit/Hyperactivity Disorder Symptoms From Childhood to Adolescence.

    Science.gov (United States)

    Pingault, Jean-Baptiste; Viding, Essi; Galéra, Cédric; Greven, Corina U; Zheng, Yao; Plomin, Robert; Rijsdijk, Frühling

    2015-07-01

    Attention-deficit/hyperactivity disorder (ADHD) is conceptualized as a neurodevelopmental disorder that is strongly heritable. However, to our knowledge, no study to date has examined the genetic and environmental influences explaining interindividual differences in the developmental course of ADHD symptoms from childhood to adolescence (ie, systematic decreases or increases with age). The reason ADHD symptoms persist in some children but decline in others is an important concern, with implications for prognosis and interventions. To assess the proportional impact of genes and the environment on interindividual differences in the developmental course of ADHD symptom domains of hyperactivity/impulsivity and inattention between ages 8 and 16 years. A prospective sample of 8395 twin pairs from the Twins Early Development Study, recruited from population records of births in England and Wales between January 1, 1994, and December 31, 1996. Data collection at age 8 years took place between November 2002 and November 2004; data collection at age 16 years took place between February 2011 and January 2013. Both DSM-IV ADHD symptom subscales were rated 4 times by participants' mothers. Estimates from latent growth curve models indicated that the developmental course of hyperactivity/impulsivity symptoms followed a sharp linear decrease (mean score of 6.0 at age 8 years to 2.9 at age 16 years). Interindividual differences in the linear change in hyperactivity/impulsivity were under strong additive genetic influences (81%; 95% CI, 73%-88%). More than half of the genetic variation was specific to the developmental course and not shared with the baseline level of hyperactivity/impulsivity. The linear decrease in inattention symptoms was less pronounced (mean score of 5.8 at age 8 years to 4.9 at age 16 years). Nonadditive genetic influences accounted for a substantial amount of variation in the developmental course of inattention symptoms (54%; 95% CI, 8%-76%), with more than

  7. Copy number variation in obsessive-compulsive disorder and tourette syndrome: A cross-disorder study

    NARCIS (Netherlands)

    L.M. McGrath; D. Yu (D.); C.R. Marshall (Christian); L.K. Davis (Lea); B. Thiruvahindrapuram (Bhooma); B. Li (Bingbin); C. Cappi (Carolina); G. Gerber (Gloria); A. de Wolf (Anneke); F.A. Schroeder (Frederick); L. Osiecki (Lisa); C. O'Dushlaine (Colm); A. Kirby (Andrew); C. Illmann (Cornelia); S. Haddad (Stephen); P. Gallagher (Patience); J. Fagerness (Jesen); C.L. Barr (Cathy); L. Bellodi (Laura); F. Benarroch (Fortu); O.J. Bienvenu (Oscar); D.W. Black (Donald); J. Bloch (Jocelyne); R.D. Bruun (Ruth); C.L. Budman (Cathy); B. Camarena (Beatriz); D. Cath (Daniëlle); M.C. Cavallini (Maria); S. Chouinard; V. Coric (Vladimir); C. Cullen; R. Delorme (Richard); D.A.J.P. Denys (Damiaan); E.M. Derks (Eske); Y. Dion (Yves); M.C. Rosário (Maria); C.E. Eapen (Chundamannil Eapen); P. Evans; P. Falkai (Peter); T.V. Fernandez (Thomas); H. Garrido (Helena); D. Geller (Daniel); H.J. Grabe (Hans Jörgen); M. Grados (Marco); B.D. Greenberg (Benjamin); V. Gross-Tsur (Varda); E. Grünblatt (Edna); M.L. Heiman (Mark); S.M.J. Hemmings (Sian); L.D. Herrera (Luis); A.G. Hounie (Ana); J. Jankovic (Joseph); J.L. Kennedy; R.A. King; R. Kurlan; N. Lanzagorta (Nuria); M. Leboyer (Marion); J.F. Leckman; L. Lennertz (Leonhard); C. Lochner (Christine); T.L. Lowe (Thomas); H.N. Lyon (Helen); F. MacCiardi (Fabio); W. Maier (Wolfgang); J.T. McCracken (James); W.M. McMahon (William); D.L. Murphy (Dennis); A.L. Naarden (Allan); E. Nurmi (Erika); A.J. Pakstis; C. Pato (Carlos); C. Pato (Carlos); J. Piacentini (John); C. Pittenger (Christopher); M.N. Pollak (Michael); V.I. Reus (Victor); M.A. Richter (Margaret); M. Riddle (Mark); M.M. Robertson; D. Rosenberg (David); G.A. Rouleau; S. Ruhrmann (Stephan); A.S. Sampaio (Aline); J. Samuels (Jonathan); P. Sandor (Paul); B. Sheppard (Brooke); H.S. Singer (Harvey); J.H. Smit (Jan); D.J. Stein (Dan); J.A. Tischfield (Jay); H. Vallada (Homero); J. Veenstra-Vanderweele (Jeremy); S. Walitza (Susanne); Y. Wang (Ying); A. Wendland (Annika); Y.Y. Shugart; E.C. Miguel (Euripedes); H. Nicolini (Humberto); B.A. Oostra (Ben); R. Moessner (Rainald); M. Wagner (Michael); A. Ruiz-Linares (Andres); P. Heutink (Peter); G. Nestadt (Gerald); N.B. Freimer (Nelson); T.L. Petryshen (Tracey); D. Posthuma (Danielle); M.A. Jenike (Michael); N.J. Cox (Nancy); G.L. Hanna (Gregory); H. Brentani (Helena); S.W. Scherer (Stephen); P.D. Arnold (Paul); S.E. Stewart; C. Mathews; J.A. Knowles (James A); E.H. Cook (Edwin); D.L. Pauls (David); K. Wang (Kai); J.M. Scharf; B.M. Neale (Benjamin)

    2014-01-01

    textabstractObjective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and

  8. Exploring hepsin functional genetic variation association with disease specific protein expression in bipolar disorder: Applications of a proteomic informed genomic approach.

    Science.gov (United States)

    Nassan, Malik; Jia, Yun-Fang; Jenkins, Greg; Colby, Colin; Feeder, Scott; Choi, Doo-Sup; Veldic, Marin; McElroy, Susan L; Bond, David J; Weinshilboum, Richard; Biernacka, Joanna M; Frye, Mark A

    2017-12-01

    In a prior discovery study, increased levels of serum Growth Differentiation Factor 15 (GDF15), Hepsin (HPN), and Matrix Metalloproteinase-7 (MMP7) were observed in bipolar depressed patients vs controls. This exploratory post-hoc analysis applied a proteomic-informed genomic research strategy to study the potential functional role of these proteins in bipolar disorder (BP). Utilizing the Genotype-Tissue Expression (GTEx) database to identify cis-acting blood expression quantitative trait loci (cis-eQTLs), five eQTL variants from the HPN gene were analyzed for association with BP cases using genotype data of cases from the discovery study (n = 58) versus healthy controls (n = 777). After adjusting for relevant covariates, we analyzed the relationship between these 5 cis-eQTLs and HPN serum level in the BP cases. All 5 cis-eQTL minor alleles were significantly more frequent in BP cases vs controls [(rs62122114, OR = 1.6, p = 0.02), (rs67003112, OR = 1.6, p = 0.02), (rs4997929, OR = 1.7, p = 0.01), (rs12610663, OR = 1.7, p = 0.01), (rs62122148, OR = 1.7, P = 0.01)]. The minor allele (A) in rs62122114 was significantly associated with increased serum HPN level in BP cases (Beta = 0.12, P = 0.049). However, this same minor allele was associated with reduced gene expression in GTEx controls. These exploratory analyses suggest that genetic variation in/near the gene encoding for hepsin protein may influence risk of bipolar disorder. This genetic variation, at least for the rs62122114-A allele, may have functional impact (i.e. differential expression) as evidenced by serum HPN protein expression. Although limited by small sample size, this study highlights the merits of proteomic informed functional genomic studies as a tool to investigate with greater precision the genetic risk of bipolar disorder and secondary relationships to protein expression recognizing, and encouraging in subsequent studies, high likelihood of epigenetic modification of

  9. 46,XY disorder of sex development due to 17-beta hydroxysteroid dehydrogenase type 3 deficiency: a plea for timely genetic testing.

    Science.gov (United States)

    Grimbly, Chelsey; Caluseriu, Oana; Metcalfe, Peter; Jetha, Mary M; Rosolowsky, Elizabeth T

    2016-01-01

    17β-hydroxysteroid dehydrogenase type 3 (17βHSD3) deficiency is a rare cause of disorder of sex development (DSD) due to impaired conversion of androstenedione to testosterone. Traditionally, the diagnosis was determined by βHCG-stimulated ratios of testosterone:androstenedione stimulation (1500 IU IM for 2 days) suggested 17βHSD3 deficiency although androstenedione was only minimally stimulated (4.5 nmol/L to 5.4 nmol/L). Expedient genetic testing for the HSD17B3 gene provided the unequivocal diagnosis. We advocate for urgent genetic testing in rare causes of DSD as indeterminate hormone results can delay diagnosis and prolong intervention.

  10. PROSPECTS OF DIAGNOSTICS OF AUTISM SPECTRUM DISORDERS IN CHILDREN

    Directory of Open Access Journals (Sweden)

    O. G. Novoselova

    2014-01-01

    Full Text Available The relevance of a problem of autism spectrum disorder in children and the modern view on etiology and pathogenesis of these states are revealed in the article. Autism classification according to the International classification of diseases of the 10th revision adopted in Russia and important changes of a new classifier of the American psychiatric association concerning autism spectrum disorders are considered. The difficulties connected with diagnostics of autism spectrum disorders in children, autism comorbidity and some other psychiatric nosologies and the necessity of detailed differential diagnostics for a circle of these diseases are mentioned. Autism spectrum disorders are presented from the point of view of clinical genetics, the necessity of medical genetic consultation in diagnosing is proved. Definition of complex and essential autism is given. A number of widespread genetic syndromes with the description of clinical characteristics and molecular genetic mechanisms underlying the pathogenesis is allocated in the group of complex autism. Difficulties of molecular genetic confirmation of the diagnosis are revealed, the algorithm of search of mutations and the short description of methods of diagnostics are given. The efficiency of standard procedure of molecular genetic diagnostics at each stage, according to literary data, is shown in the group of children with essential autism. The opportunities and advantages of a method of the chromosomal micromatrix analysis as one of available modern methods of molecular genetic diagnostics in the group of children with autism spectrum disorders are highlighted on the example of extended microdeletion and microduplicational syndromes.

  11. [Autism: An early neurodevelopmental disorder].

    Science.gov (United States)

    Bonnet-Brilhault, F

    2017-04-01

    With approximately 67 million individuals affected worldwide, autism spectrum disorder (ASD) is the fastest growing neurodevelopmental disorder (United Nations, 2011), with a prevalence estimated to be 1/100. In France ASD affects approximately 600,000 individuals (from childhood to adulthood, half of whom are also mentally retarded), who thus have a major handicap in communication and in adapting to daily life, which leads autism to be recognized as a national public health priority. ASD is a neurodevelopmental disorder that affects several domains (i.e., socio-emotional, language, sensori-motor, executive functioning). These disorders are expressed early in life with an age of onset around 18 months. Despite evidence suggesting a strong genetic link with ASD, the genetic determinant remains unclear. The clinical picture is characterized by impairments in social interaction and communication and the presence of restrictive and repetitive behaviors (DSM-5, ICD-10). However, in addition to these two main dimensions there is significant comorbidity between ASD and other neurodevelopmental disorders such as attention deficit hyperactivity disorder or with genetic and medical conditions. One of the diagnostic features of ASD is its early emergence: symptoms must begin in early childhood for a diagnosis to be given. Due to brain plasticity, early interventions are essential to facilitate clinical improvement. Therefore, general practitioners and pediatricians are on the front line to detect early signs of ASD and to guide both medical explorations and early rehabilitation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  12. Genetic effects of ionising radiation in man

    International Nuclear Information System (INIS)

    Sankaranarayanan, K.

    1991-01-01

    A review is given of genetic risk estimation in man. Topics covered include the methods used, the germ cell stages and radiation conditions relevant for genetic risk estimation, doubling dose estimates, the classification and prevalence of naturally-occurring genetic disorders, the source of data used in the direct method of risk estimation, the genetic risk estimates from the mid-1970s to the present, the estimates of genetic risk used in ICRP 26 in 1977 and ICRP's current assessment of genetic risks. (UK)

  13. Spatial Impairment and Memory in Genetic Disorders: Insights from Mouse Models

    Directory of Open Access Journals (Sweden)

    Sang Ah Lee

    2017-02-01

    Full Text Available Research across the cognitive and brain sciences has begun to elucidate some of the processes that guide navigation and spatial memory. Boundary geometry and featural landmarks are two distinct classes of environmental cues that have dissociable neural correlates in spatial representation and follow different patterns of learning. Consequently, spatial navigation depends both on the type of cue available and on the type of learning provided. We investigated this interaction between spatial representation and memory by administering two different tasks (working memory, reference memory using two different environmental cues (rectangular geometry, striped landmark in mouse models of human genetic disorders: Prader-Willi syndrome (PWScrm+/p− mice, n = 12 and Beta-catenin mutation (Thr653Lys-substituted mice, n = 12. This exploratory study provides suggestive evidence that these models exhibit different abilities and impairments in navigating by boundary geometry and featural landmarks, depending on the type of memory task administered. We discuss these data in light of the specific deficits in cognitive and brain function in these human syndromes and their animal model counterparts.

  14. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis.

    Science.gov (United States)

    Smeets, Hubert J M; Sallevelt, Suzanne C E H; Dreesen, Jos C F M; de Die-Smulders, Christine E M; de Coo, Irenaeus F M

    2015-09-01

    Mitochondrial disorders are among the most common inborn errors of metabolism; at least 15% are caused by mitochondrial DNA (mtDNA) mutations, which occur de novo or are maternally inherited. For familial heteroplasmic mtDNA mutations, the mitochondrial bottleneck defines the mtDNA mutation load in offspring, with an often high or unpredictable recurrence risk. Oocyte donation is a safe option to prevent the transmission of mtDNA disease, but the offspring resulting from oocyte donation are genetically related only to the father. Prenatal diagnosis (PND) is technically possible but usually not applicable because of limitations in predicting the phenotype. For de novo mtDNA point mutations, recurrence risks are low and PND can be offered to provide reassurance regarding fetal health. PND is also the best option for female carriers with low-level mutations demonstrating skewing to 0% or 100%. A fairly new option for preventing the transmission of mtDNA diseases is preimplantation genetic diagnosis (PGD), in which embryos with a mutant load below a mutation-specific or general expression threshold of 18% can be transferred. PGD is currently the best reproductive option for familial heteroplasmic mtDNA point mutations. Nuclear genome transfer and genome editing techniques are currently being investigated and might offer additional reproductive options for specific mtDNA disease cases. © 2015 New York Academy of Sciences.

  15. Producing genetic knowledge and citizenship through the Internet: mothers, pediatric genetics, and cybermedicine.

    Science.gov (United States)

    Schaffer, Rebecca; Kuczynski, Kristine; Skinner, Debra

    2008-01-01

    This article analyses data from a longitudinal, ethnographic study conducted in the United States to examine how 100 mothers of children with genetic disorders used the Internet to interpret, produce, and circulate genetic knowledge pertaining to their child's condition. We describe how they came to value their own experiential knowledge, helped shift the boundaries of what counts as authoritative knowledge, and assumed the role of genetic citizen, fighting for specific rights while shouldering and contesting concomitant duties and obligations. This exploration of e-health use contributes to our understanding of the social practices and power relations that cut across online and off-line worlds to co-produce genetic knowledge and genetic citizenship in multiple contexts.

  16. Analysis of shared heritability in common disorders of the brain.

    Science.gov (United States)

    Anttila, Verneri; Bulik-Sullivan, Brendan; Finucane, Hilary K; Walters, Raymond K; Bras, Jose; Duncan, Laramie; Escott-Price, Valentina; Falcone, Guido J; Gormley, Padhraig; Malik, Rainer; Patsopoulos, Nikolaos A; Ripke, Stephan; Wei, Zhi; Yu, Dongmei; Lee, Phil H; Turley, Patrick; Grenier-Boley, Benjamin; Chouraki, Vincent; Kamatani, Yoichiro; Berr, Claudine; Letenneur, Luc; Hannequin, Didier; Amouyel, Philippe; Boland, Anne; Deleuze, Jean-François; Duron, Emmanuelle; Vardarajan, Badri N; Reitz, Christiane; Goate, Alison M; Huentelman, Matthew J; Kamboh, M Ilyas; Larson, Eric B; Rogaeva, Ekaterina; St George-Hyslop, Peter; Hakonarson, Hakon; Kukull, Walter A; Farrer, Lindsay A; Barnes, Lisa L; Beach, Thomas G; Demirci, F Yesim; Head, Elizabeth; Hulette, Christine M; Jicha, Gregory A; Kauwe, John S K; Kaye, Jeffrey A; Leverenz, James B; Levey, Allan I; Lieberman, Andrew P; Pankratz, Vernon S; Poon, Wayne W; Quinn, Joseph F; Saykin, Andrew J; Schneider, Lon S; Smith, Amanda G; Sonnen, Joshua A; Stern, Robert A; Van Deerlin, Vivianna M; Van Eldik, Linda J; Harold, Denise; Russo, Giancarlo; Rubinsztein, David C; Bayer, Anthony; Tsolaki, Magda; Proitsi, Petra; Fox, Nick C; Hampel, Harald; Owen, Michael J; Mead, Simon; Passmore, Peter; Morgan, Kevin; Nöthen, Markus M; Rossor, Martin; Lupton, Michelle K; Hoffmann, Per; Kornhuber, Johannes; Lawlor, Brian; McQuillin, Andrew; Al-Chalabi, Ammar; Bis, Joshua C; Ruiz, Agustin; Boada, Mercè; Seshadri, Sudha; Beiser, Alexa; Rice, Kenneth; van der Lee, Sven J; De Jager, Philip L; Geschwind, Daniel H; Riemenschneider, Matthias; Riedel-Heller, Steffi; Rotter, Jerome I; Ransmayr, Gerhard; Hyman, Bradley T; Cruchaga, Carlos; Alegret, Montserrat; Winsvold, Bendik; Palta, Priit; Farh, Kai-How; Cuenca-Leon, Ester; Furlotte, Nicholas; Kurth, Tobias; Ligthart, Lannie; Terwindt, Gisela M; Freilinger, Tobias; Ran, Caroline; Gordon, Scott D; Borck, Guntram; Adams, Hieab H H; Lehtimäki, Terho; Wedenoja, Juho; Buring, Julie E; Schürks, Markus; Hrafnsdottir, Maria; Hottenga, Jouke-Jan; Penninx, Brenda; Artto, Ville; Kaunisto, Mari; Vepsäläinen, Salli; Martin, Nicholas G; Montgomery, Grant W; Kurki, Mitja I; Hämäläinen, Eija; Huang, Hailiang; Huang, Jie; Sandor, Cynthia; Webber, Caleb; Muller-Myhsok, Bertram; Schreiber, Stefan; Salomaa, Veikko; Loehrer, Elizabeth; Göbel, Hartmut; Macaya, Alfons; Pozo-Rosich, Patricia; Hansen, Thomas; Werge, Thomas; Kaprio, Jaakko; Metspalu, Andres; Kubisch, Christian; Ferrari, Michel D; Belin, Andrea C; van den Maagdenberg, Arn M J M; Zwart, John-Anker; Boomsma, Dorret; Eriksson, Nicholas; Olesen, Jes; Chasman, Daniel I; Nyholt, Dale R; Avbersek, Andreja; Baum, Larry; Berkovic, Samuel; Bradfield, Jonathan; Buono, Russell; Catarino, Claudia B; Cossette, Patrick; De Jonghe, Peter; Depondt, Chantal; Dlugos, Dennis; Ferraro, Thomas N; French, Jacqueline; Hjalgrim, Helle; Jamnadas-Khoda, Jennifer; Kälviäinen, Reetta; Kunz, Wolfram S; Lerche, Holger; Leu, Costin; Lindhout, Dick; Lo, Warren; Lowenstein, Daniel; McCormack, Mark; Møller, Rikke S; Molloy, Anne; Ng, Ping-Wing; Oliver, Karen; Privitera, Michael; Radtke, Rodney; Ruppert, Ann-Kathrin; Sander, Thomas; Schachter, Steven; Schankin, Christoph; Scheffer, Ingrid; Schoch, Susanne; Sisodiya, Sanjay M; Smith, Philip; Sperling, Michael; Striano, Pasquale; Surges, Rainer; Thomas, G Neil; Visscher, Frank; Whelan, Christopher D; Zara, Federico; Heinzen, Erin L; Marson, Anthony; Becker, Felicitas; Stroink, Hans; Zimprich, Fritz; Gasser, Thomas; Gibbs, Raphael; Heutink, Peter; Martinez, Maria; Morris, Huw R; Sharma, Manu; Ryten, Mina; Mok, Kin Y; Pulit, Sara; Bevan, Steve; Holliday, Elizabeth; Attia, John; Battey, Thomas; Boncoraglio, Giorgio; Thijs, Vincent; Chen, Wei-Min; Mitchell, Braxton; Rothwell, Peter; Sharma, Pankaj; Sudlow, Cathie; Vicente, Astrid; Markus, Hugh; Kourkoulis, Christina; Pera, Joana; Raffeld, Miriam; Silliman, Scott; Boraska Perica, Vesna; Thornton, Laura M; Huckins, Laura M; William Rayner, N; Lewis, Cathryn M; Gratacos, Monica; Rybakowski, Filip; Keski-Rahkonen, Anna; Raevuori, Anu; Hudson, James I; Reichborn-Kjennerud, Ted; Monteleone, Palmiero; Karwautz, Andreas; Mannik, Katrin; Baker, Jessica H; O'Toole, Julie K; Trace, Sara E; Davis, Oliver S P; Helder, Sietske G; Ehrlich, Stefan; Herpertz-Dahlmann, Beate; Danner, Unna N; van Elburg, Annemarie A; Clementi, Maurizio; Forzan, Monica; Docampo, Elisa; Lissowska, Jolanta; Hauser, Joanna; Tortorella, Alfonso; Maj, Mario; Gonidakis, Fragiskos; Tziouvas, Konstantinos; Papezova, Hana; Yilmaz, Zeynep; Wagner, Gudrun; Cohen-Woods, Sarah; Herms, Stefan; Julià, Antonio; Rabionet, Raquel; Dick, Danielle M; Ripatti, Samuli; Andreassen, Ole A; Espeseth, Thomas; Lundervold, Astri J; Steen, Vidar M; Pinto, Dalila; Scherer, Stephen W; Aschauer, Harald; Schosser, Alexandra; Alfredsson, Lars; Padyukov, Leonid; Halmi, Katherine A; Mitchell, James; Strober, Michael; Bergen, Andrew W; Kaye, Walter; Szatkiewicz, Jin Peng; Cormand, Bru; Ramos-Quiroga, Josep Antoni; Sánchez-Mora, Cristina; Ribasés, Marta; Casas, Miguel; Hervas, Amaia; Arranz, Maria Jesús; Haavik, Jan; Zayats, Tetyana; Johansson, Stefan; Williams, Nigel; Dempfle, Astrid; Rothenberger, Aribert; Kuntsi, Jonna; Oades, Robert D; Banaschewski, Tobias; Franke, Barbara; Buitelaar, Jan K; Arias Vasquez, Alejandro; Doyle, Alysa E; Reif, Andreas; Lesch, Klaus-Peter; Freitag, Christine; Rivero, Olga; Palmason, Haukur; Romanos, Marcel; Langley, Kate; Rietschel, Marcella; Witt, Stephanie H; Dalsgaard, Soeren; Børglum, Anders D; Waldman, Irwin; Wilmot, Beth; Molly, Nikolas; Bau, Claiton H D; Crosbie, Jennifer; Schachar, Russell; Loo, Sandra K; McGough, James J; Grevet, Eugenio H; Medland, Sarah E; Robinson, Elise; Weiss, Lauren A; Bacchelli, Elena; Bailey, Anthony; Bal, Vanessa; Battaglia, Agatino; Betancur, Catalina; Bolton, Patrick; Cantor, Rita; Celestino-Soper, Patrícia; Dawson, Geraldine; De Rubeis, Silvia; Duque, Frederico; Green, Andrew; Klauck, Sabine M; Leboyer, Marion; Levitt, Pat; Maestrini, Elena; Mane, Shrikant; De-Luca, Daniel Moreno-; Parr, Jeremy; Regan, Regina; Reichenberg, Abraham; Sandin, Sven; Vorstman, Jacob; Wassink, Thomas; Wijsman, Ellen; Cook, Edwin; Santangelo, Susan; Delorme, Richard; Rogé, Bernadette; Magalhaes, Tiago; Arking, Dan; Schulze, Thomas G; Thompson, Robert C; Strohmaier, Jana; Matthews, Keith; Melle, Ingrid; Morris, Derek; Blackwood, Douglas; McIntosh, Andrew; Bergen, Sarah E; Schalling, Martin; Jamain, Stéphane; Maaser, Anna; Fischer, Sascha B; Reinbold, Céline S; Fullerton, Janice M; Guzman-Parra, José; Mayoral, Fermin; Schofield, Peter R; Cichon, Sven; Mühleisen, Thomas W; Degenhardt, Franziska; Schumacher, Johannes; Bauer, Michael; Mitchell, Philip B; Gershon, Elliot S; Rice, John; Potash, James B; Zandi, Peter P; Craddock, Nick; Ferrier, I Nicol; Alda, Martin; Rouleau, Guy A; Turecki, Gustavo; Ophoff, Roel; Pato, Carlos; Anjorin, Adebayo; Stahl, Eli; Leber, Markus; Czerski, Piotr M; Cruceanu, Cristiana; Jones, Ian R; Posthuma, Danielle; Andlauer, Till F M; Forstner, Andreas J; Streit, Fabian; Baune, Bernhard T; Air, Tracy; Sinnamon, Grant; Wray, Naomi R; MacIntyre, Donald J; Porteous, David; Homuth, Georg; Rivera, Margarita; Grove, Jakob; Middeldorp, Christel M; Hickie, Ian; Pergadia, Michele; Mehta, Divya; Smit, Johannes H; Jansen, Rick; de Geus, Eco; Dunn, Erin; Li, Qingqin S; Nauck, Matthias; Schoevers, Robert A; Beekman, Aartjan Tf; Knowles, James A; Viktorin, Alexander; Arnold, Paul; Barr, Cathy L; Bedoya-Berrio, Gabriel; Bienvenu, O Joseph; Brentani, Helena; Burton, Christie; Camarena, Beatriz; Cappi, Carolina; Cath, Danielle; Cavallini, Maria; Cusi, Daniele; Darrow, Sabrina; Denys, Damiaan; Derks, Eske M; Dietrich, Andrea; Fernandez, Thomas; Figee, Martijn; Freimer, Nelson; Gerber, Gloria; Grados, Marco; Greenberg, Erica; Hanna, Gregory L; Hartmann, Andreas; Hirschtritt, Matthew E; Hoekstra, Pieter J; Huang, Alden; Huyser, Chaim; Illmann, Cornelia; Jenike, Michael; Kuperman, Samuel; Leventhal, Bennett; Lochner, Christine; Lyon, Gholson J; Macciardi, Fabio; Madruga-Garrido, Marcos; Malaty, Irene A; Maras, Athanasios; McGrath, Lauren; Miguel, Eurípedes C; Mir, Pablo; Nestadt, Gerald; Nicolini, Humberto; Okun, Michael S; Pakstis, Andrew; Paschou, Peristera; Piacentini, John; Pittenger, Christopher; Plessen, Kerstin; Ramensky, Vasily; Ramos, Eliana M; Reus, Victor; Richter, Margaret A; Riddle, Mark A; Robertson, Mary M; Roessner, Veit; Rosário, Maria; Samuels, Jack F; Sandor, Paul; Stein, Dan J; Tsetsos, Fotis; Van Nieuwerburgh, Filip; Weatherall, Sarah; Wendland, Jens R; Wolanczyk, Tomasz; Worbe, Yulia; Zai, Gwyneth; Goes, Fernando S; McLaughlin, Nicole; Nestadt, Paul S; Grabe, Hans-Jorgen; Depienne, Christel; Konkashbaev, Anuar; Lanzagorta, Nuria; Valencia-Duarte, Ana; Bramon, Elvira; Buccola, Nancy; Cahn, Wiepke; Cairns, Murray; Chong, Siow A; Cohen, David; Crespo-Facorro, Benedicto; Crowley, James; Davidson, Michael; DeLisi, Lynn; Dinan, Timothy; Donohoe, Gary; Drapeau, Elodie; Duan, Jubao; Haan, Lieuwe; Hougaard, David; Karachanak-Yankova, Sena; Khrunin, Andrey; Klovins, Janis; Kučinskas, Vaidutis; Lee Chee Keong, Jimmy; Limborska, Svetlana; Loughland, Carmel; Lönnqvist, Jouko; Maher, Brion; Mattheisen, Manuel; McDonald, Colm; Murphy, Kieran C; Nenadic, Igor; van Os, Jim; Pantelis, Christos; Pato, Michele; Petryshen, Tracey; Quested, Digby; Roussos, Panos; Sanders, Alan R; Schall, Ulrich; Schwab, Sibylle G; Sim, Kang; So, Hon-Cheong; Stögmann, Elisabeth; Subramaniam, Mythily; Toncheva, Draga; Waddington, John; Walters, James; Weiser, Mark; Cheng, Wei; Cloninger, Robert; Curtis, David; Gejman, Pablo V; Henskens, Frans; Mattingsdal, Morten; Oh, Sang-Yun; Scott, Rodney; Webb, Bradley; Breen, Gerome; Churchhouse, Claire; Bulik, Cynthia M; Daly, Mark; Dichgans, Martin; Faraone, Stephen V; Guerreiro, Rita; Holmans, Peter; Kendler, Kenneth S; Koeleman, Bobby; Mathews, Carol A; Price, Alkes; Scharf, Jeremiah; Sklar, Pamela; Williams, Julie; Wood, Nicholas W; Cotsapas, Chris; Palotie, Aarno; Smoller, Jordan W; Sullivan, Patrick; Rosand, Jonathan; Corvin, Aiden; Neale, Benjamin M

    2018-06-22

    Disorders of the brain can exhibit considerable epidemiological comorbidity and often share symptoms, provoking debate about their etiologic overlap. We quantified the genetic sharing of 25 brain disorders from genome-wide association studies of 265,218 patients and 784,643 control participants and assessed their relationship to 17 phenotypes from 1,191,588 individuals. Psychiatric disorders share common variant risk, whereas neurological disorders appear more distinct from one another and from the psychiatric disorders. We also identified significant sharing between disorders and a number of brain phenotypes, including cognitive measures. Further, we conducted simulations to explore how statistical power, diagnostic misclassification, and phenotypic heterogeneity affect genetic correlations. These results highlight the importance of common genetic variation as a risk factor for brain disorders and the value of heritability-based methods in understanding their etiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Genetically caused congenital anomalies of reproductive system

    Directory of Open Access Journals (Sweden)

    L. F. Kurilo

    2013-01-01

    Full Text Available Classification of congenital disorders, their frequency of occurrence in populations, and some terminology questions discussed in the review. Genetically caused congenital anomalies of reproductive system are outlined. Full information about genetic syndromes is stated in the book: Kozlova S.I., Demikova N.S. Hereditary syndromes and genetic counseling. M., 2007.

  18. Genetic Evidence for Elevated Pathogenicity of Mitochondrial DNA Heteroplasmy in Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Yiqin Wang

    2016-10-01

    Full Text Available Increasing clinical and biochemical evidence implicate mitochondrial dysfunction in the pathophysiology of Autism Spectrum Disorder (ASD, but little is known about the biological basis for this connection. A possible cause of ASD is the genetic variation in the mitochondrial DNA (mtDNA sequence, which has yet to be thoroughly investigated in large genomic studies of ASD. Here we evaluated mtDNA variation, including the mixture of different mtDNA molecules in the same individual (i.e., heteroplasmy, using whole-exome sequencing data from mother-proband-sibling trios from simplex families (n = 903 where only one child is affected by ASD. We found that heteroplasmic mutations in autistic probands were enriched at non-polymorphic mtDNA sites (P = 0.0015, which were more likely to confer deleterious effects than heteroplasmies at polymorphic mtDNA sites. Accordingly, we observed a ~1.5-fold enrichment of nonsynonymous mutations (P = 0.0028 as well as a ~2.2-fold enrichment of predicted pathogenic mutations (P = 0.0016 in autistic probands compared to their non-autistic siblings. Both nonsynonymous and predicted pathogenic mutations private to probands conferred increased risk of ASD (Odds Ratio, OR[95% CI] = 1.87[1.14-3.11] and 2.55[1.26-5.51], respectively, and their influence on ASD was most pronounced in families with probands showing diminished IQ and/or impaired social behavior compared to their non-autistic siblings. We also showed that the genetic transmission pattern of mtDNA heteroplasmies with high pathogenic potential differed between mother-autistic proband pairs and mother-sibling pairs, implicating developmental and possibly in utero contributions. Taken together, our genetic findings substantiate pathogenic mtDNA mutations as a potential cause for ASD and synergize with recent work calling attention to their unique metabolic phenotypes for diagnosis and treatment of children with ASD.

  19. Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study.

    NARCIS (Netherlands)

    McGrath, L.M.; Yu, D.; Marshall, C.; Davis, L.K.; Thiruvahindrapuram, B.; Li, B.; Cappi, C.; Gerber, G.; Wolf, A.; Schroeder, F.A.; Osiecki, L.; O'Dushlaine, C.; Kirby, A.; Illmann, C.; Haddad, S.; Gallagher, P.; Fagerness, J.A.; Barr, C.L.; Bellodi, L.; Benarroch, F.; Bienvenu, O.J.; Black, D. W.; Bloch, M.H.; Bruun, R.D.; Budman, C.L.; Camarena, B.; Cath, D.C.; Cavallini, M.C.; Chouinard, S.; Coric, V.; Cullen, B.; Delorme, R.; Denys, D.; Derks, E.M.; Dion, Y.; Rosário, M.C.; Eapen, V.; Evans, P.; Falkai, P.; Fernandez, T.V.; Garrido, H.; Geller, D.; Grabe, H.J.; Grados, M.A.; Greenberg, B.D.; Gross-Tsur, V.; Grünblatt, E.; Heiman, G.A.; Hemmings, S.M.; Herrera, L.D.; Hounie, A.G.; Jankovic, J.; Kennedy, J.L.; King, R.A.; Kurlan, R.; Lanzagorta, N.; Leboyer, M.; Leckman, J.F.; Lennertz, L.; Lochner, C.; Lowe, T.L.; Lyon, G.J.; Macciardi, F.; Maier, W.; McCracken, J.T.; McMahon, W.; Murphy, D.L.; Naarden, A.L.; Neale, B. M.; Nurmi, E.; Pakstis, A.J.; Pato, M. T.; Piacentini, J.; Pittenger, C.; Pollak, Y.; Reus, V.I.; Richter, M.A.; Riddle, M.; Robertson, M.M.; Rosenberg, D.; Rouleau, G.A.; Ruhrmann, S.; Sampaio, A.S.; Samuels, J.; Sandor, P.; Sheppard, B.; Singer, H.S.; Smit, J.H.; Stein, D.J.; Tischfield, J.A.; Vallada, H.; Veenstra-Vanderweele, J.; Walitza, S.; Wang, Y.; Wendland, J.R.; Shugart, Y.Y.; Miguel, E.C.; Nicolini, H.; Oostra, B.A.; Moessner, R.; Wagner, M.; Ruiz-Linares, A.; Heutink, P.; Nestadt, G.; Freimer, N.; Petryshen, T.; Posthuma, D.; Jenike, M.A.; Cox, N.J.; Hanna, G.L.; Brentani, H.; Scherer, S.W.; Arnold, P.D.; Stewart, S.E.; Mathews, C.A.; Knowles, J.A.; Cook, E.H.; Pauls, D.L.; Wang, K.; Scharf, J.M.

    2014-01-01

    Objective Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest

  20. Copy number variation in obsessive-compulsive disorder and tourette syndrome : a cross-disorder study

    NARCIS (Netherlands)

    McGrath, Lauren M; Yu, Dongmei; Marshall, Christian; Davis, Lea K; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A; Osiecki, Lisa; O'Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A; Barr, Cathy L; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O Joseph; Black, Donald W; Bloch, Michael H; Bruun, Ruth D; Budman, Cathy L; Camarena, Beatriz; Cath, Danielle C; Cavallini, Maria C; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, D.; Derks, Eske M; Dion, Yves; Rosário, Maria C; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas V; Garrido, Helena; Geller, Daniel; Grabe, Hans J; Grados, Marco A; Greenberg, Benjamin D; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A; Hemmings, Sian M J; Herrera, Luis D; Hounie, Ana G; Jankovic, Joseph; Kennedy, James L; King, Robert A; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L; Lyon, Gholson J; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T; McMahon, William; Murphy, Dennis L; Naarden, Allan L; Neale, Benjamin M; Nurmi, Erika; Pakstis, Andrew J; Pato, Michele T; Pato, Carlos N; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I; Richter, Margaret A; Riddle, Mark; Robertson, Mary M; Rosenberg, David; Rouleau, Guy A; Ruhrmann, Stephan; Sampaio, Aline S; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S; Smit, Jan H; Stein, Dan J; Tischfield, Jay A; Vallada, Homero; Veenstra-VanderWeele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R; Shugart, Yin Yao; Miguel, Euripedes C; Nicolini, Humberto; Oostra, Ben A; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A; Cox, Nancy J; Hanna, Gregory L; Brentani, Helena; Scherer, Stephen W; Arnold, Paul D; Stewart, S Evelyn; Mathews, Carol A; Knowles, James A; Cook, Edwin H; Pauls, David L; Wang, Kai; Scharf, Jeremiah M

    OBJECTIVE: Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest

  1. Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study

    NARCIS (Netherlands)

    McGrath, Lauren M.; Yu, Dongmei; Marshall, Christian; Davis, Lea K.; Thiruvahindrapuram, Bhooma; Li, Bingbin; Cappi, Carolina; Gerber, Gloria; Wolf, Aaron; Schroeder, Frederick A.; Osiecki, Lisa; O'Dushlaine, Colm; Kirby, Andrew; Illmann, Cornelia; Haddad, Stephen; Gallagher, Patience; Fagerness, Jesen A.; Barr, Cathy L.; Bellodi, Laura; Benarroch, Fortu; Bienvenu, O. Joseph; Black, Donald W.; Bloch, Michael H.; Bruun, Ruth D.; Budman, Cathy L.; Camarena, Beatriz; Cath, Danielle C.; Cavallini, Maria C.; Chouinard, Sylvain; Coric, Vladimir; Cullen, Bernadette; Delorme, Richard; Denys, Damiaan; Derks, Eske M.; Dion, Yves; Rosário, Maria C.; Eapen, Valsama; Evans, Patrick; Falkai, Peter; Fernandez, Thomas V.; Garrido, Helena; Geller, Daniel; Grabe, Hans J.; Grados, Marco A.; Greenberg, Benjamin D.; Gross-Tsur, Varda; Grünblatt, Edna; Heiman, Gary A.; Hemmings, Sian M. J.; Herrera, Luis D.; Hounie, Ana G.; Jankovic, Joseph; Kennedy, James L.; King, Robert A.; Kurlan, Roger; Lanzagorta, Nuria; Leboyer, Marion; Leckman, James F.; Lennertz, Leonhard; Lochner, Christine; Lowe, Thomas L.; Lyon, Gholson J.; Macciardi, Fabio; Maier, Wolfgang; McCracken, James T.; McMahon, William; Murphy, Dennis L.; Naarden, Allan L.; Neale, Benjamin M.; Nurmi, Erika; Pakstis, Andrew J.; Pato, Michele T.; Pato, Carlos N.; Piacentini, John; Pittenger, Christopher; Pollak, Yehuda; Reus, Victor I.; Richter, Margaret A.; Riddle, Mark; Robertson, Mary M.; Rosenberg, David; Rouleau, Guy A.; Ruhrmann, Stephan; Sampaio, Aline S.; Samuels, Jack; Sandor, Paul; Sheppard, Brooke; Singer, Harvey S.; Smit, Jan H.; Stein, Dan J.; Tischfield, Jay A.; Vallada, Homero; Veenstra-Vanderweele, Jeremy; Walitza, Susanne; Wang, Ying; Wendland, Jens R.; Shugart, Yin Yao; Miguel, Euripedes C.; Nicolini, Humberto; Oostra, Ben A.; Moessner, Rainald; Wagner, Michael; Ruiz-Linares, Andres; Heutink, Peter; Nestadt, Gerald; Freimer, Nelson; Petryshen, Tracey; Posthuma, Danielle; Jenike, Michael A.; Cox, Nancy J.; Hanna, Gregory L.; Brentani, Helena; Scherer, Stephen W.; Arnold, Paul D.; Stewart, S. Evelyn; Mathews, Carol A.; Knowles, James A.; Cook, Edwin H.; Pauls, David L.; Wang, Kai; Scharf, Jeremiah M.

    2014-01-01

    Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare ( <1%) copy number variants (CNVs) in OCD and the largest genome-wide

  2. A genome-wide association study of bipolar disorder with comorbid eating disorder replicates the SOX2-OT region.

    Science.gov (United States)

    Liu, Xiaohua; Kelsoe, John R; Greenwood, Tiffany A

    2016-01-01

    Bipolar disorder is a heterogeneous mood disorder associated with several important clinical comorbidities, such as eating disorders. This clinical heterogeneity complicates the identification of genetic variants contributing to bipolar susceptibility. Here we investigate comorbidity of eating disorders as a subphenotype of bipolar disorder to identify genetic variation that is common and unique to both disorders. We performed a genome-wide association analysis contrasting 184 bipolar subjects with eating disorder comorbidity against both 1370 controls and 2006 subjects with bipolar disorder only from the Bipolar Genome Study (BiGS). The most significant genome-wide finding was observed bipolar with comorbid eating disorder vs. controls within SOX2-OT (p=8.9×10(-8) for rs4854912) with a secondary peak in the adjacent FXR1 gene (p=1.2×10(-6) for rs1805576) on chromosome 3q26.33. This region was also the most prominent finding in the case-only analysis (p=3.5×10(-7) and 4.3×10(-6), respectively). Several regions of interest containing genes involved in neurodevelopment and neuroprotection processes were also identified. While our primary finding did not quite reach genome-wide significance, likely due to the relatively limited sample size, these results can be viewed as a replication of a recent study of eating disorders in a large cohort. These findings replicate the prior association of SOX2-OT with eating disorders and broadly support the involvement of neurodevelopmental/neuroprotective mechanisms in the pathophysiology of both disorders. They further suggest that different clinical manifestations of bipolar disorder may reflect differential genetic contributions and argue for the utility of clinical subphenotypes in identifying additional molecular pathways leading to illness. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Genetics Home Reference: epilepsy-aphasia spectrum

    Science.gov (United States)

    ... Szepetowski P, Scheffer IE, Mefford HC. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 2013 Sep;45( ... Neubauer BA, Biskup S, von Spiczak S. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet. 2013 Sep;45( ...

  4. Egyptian Journal of Medical Human Genetics

    African Journals Online (AJOL)

    ... and genetic counseling as well as advances in prevention and treatment of genetic disorders. ... Clinical application of genomics and next generation sequencing ... vectors and SIN channels further relieves the limitations of gene therapy ... 3 gene in Malaysian subjects with neovascular age-related macular degeneration ...

  5. Genetic disorder in carbohydrates metabolism: hereditary fructose intolerance associated with celiac disease.

    Science.gov (United States)

    Păcurar, Daniela; Leşanu, Gabriela; Dijmărescu, Irina; Ţincu, Iulia Florentina; Gherghiceanu, Mihaela; Orăşeanu, Dumitru

    2017-01-01

    Celiac disease (CD) has been associated with several genetic and immune disorders, but association between CD and hereditary fructose intolerance (HFI) is extremely rare. HFI is an autosomal recessive disease caused by catalytic deficiency of aldolase B (fructose-1,6-bisphosphate aldolase). We report the case of a 5-year-old boy suffering from CD, admitted with an initial diagnosis of Reye's-like syndrome. He presented with episodic unconsciousness, seizures, hypoglycemia, hepatomegaly and abnormal liver function. The patient has been on an exclusion diet for three years, but he still had symptoms: stunting, hepatomegaly, high transaminases, but tissue transglutaminase antibodies were negative. Liver biopsy showed hepatic steatosis and mitochondrial damage. The dietary history showed an aversion to fruits, vegetables and sweet-tasting foods. The fructose tolerance test was positive, revealing the diagnostic of hereditary fructose intolerance. Appropriate dietary management and precautions were recommended. The patient has been symptom-free and exhibited normal growth and development until 10 years of age.

  6. Genetic Basis of Positive and Negative Symptom Domains in Schizophrenia.

    Science.gov (United States)

    Xavier, Rose Mary; Vorderstrasse, Allison

    2017-10-01

    Schizophrenia is a highly heritable disorder, the genetic etiology of which has been well established. Yet despite significant advances in genetics research, the pathophysiological mechanisms of this disorder largely remain unknown. This gap has been attributed to the complexity of the polygenic disorder, which has a heterogeneous clinical profile. Examining the genetic basis of schizophrenia subphenotypes, such as those based on particular symptoms, is thus a useful strategy for decoding the underlying mechanisms. This review of literature examines the recent advances (from 2011) in genetic exploration of positive and negative symptoms in schizophrenia. We searched electronic databases PubMed, Web of Science, and Cumulative Index to Nursing and Allied Health Literature using key words schizophrenia, symptoms, positive symptoms, negative symptoms, cognition, genetics, genes, genetic predisposition, and genotype in various combinations. We identified 115 articles, which are included in the review. Evidence from these studies, most of which are genetic association studies, identifies shared and unique gene associations for the symptom domains. Genes associated with neurotransmitter systems and neuronal development/maintenance primarily constitute the shared associations. Needed are studies that examine the genetic basis of specific symptoms within the broader domains in addition to functional mechanisms. Such investigations are critical to developing precision treatment and care for individuals afflicted with schizophrenia.

  7. Genetic analysis of rare disorders

    DEFF Research Database (Denmark)

    van den Berg, Stéphanie M; von Bornemann Hjelmborg, Jacob

    2012-01-01

    Twin concordance rates provide insight into the possibility of a genetic background for a disease. These concordance rates are usually estimated within a frequentistic framework. Here we take a Bayesian approach. For rare diseases, estimation methods based on asymptotic theory cannot be applied due....... The Bayesian method is able to include prior information on both concordance rates and prevalence rates at the same time and is illustrated using twin data on cleft lip and rheumatoid arthritis....

  8. The relationship between avoidant personality disorder and social phobia: a population-based twin study.

    Science.gov (United States)

    Reichborn-Kjennerud, Ted; Czajkowski, Nikolai; Torgersen, Svenn; Neale, Michael C; Ørstavik, Ragnhild E; Tambs, Kristian; Kendler, Kenneth S

    2007-11-01

    The purpose of this study was to determine the sources of comorbidity for social phobia and dimensional representations of avoidant personality disorder by estimating to what extent the two disorders are influenced by common genetic and shared or unique environmental factors versus the extent to which these factors are specific to each disorder. Young adult female-female twin pairs (N=1,427) from the Norwegian Institute of Public Health Twin Panel were assessed at personal interview for avoidant personality disorder and social phobia using the Structured Interview for DSM-IV Personality and the Composite International Diagnostic Interview. Bivariate Cholesky models were fitted using the Mx statistical program. The best-fitting model included additive genetic and unique environmental factors only. Avoidant personality disorder and social phobia were influenced by the same genetic factors, whereas the environmental factors influencing the two disorders were uncorrelated. Within the limits of statistical power, these results suggest that there is a common genetic vulnerability to avoidant personality disorder and social phobia in women. An individual with high genetic liability will develop avoidant personality disorder versus social phobia entirely as a result of the environmental risk factors unique to each disorder. The results are in accordance with the hypothesis that psychobiological dimensions span the axis I and axis II disorders.

  9. Speech-language pathologists' knowledge of genetics: perceived confidence, attitudes, knowledge acquisition and practice-based variables.

    Science.gov (United States)

    Tramontana, G Michael; Blood, Ingrid M; Blood, Gordon W

    2013-01-01

    The purpose of this study was to determine (a) the general knowledge bases demonstrated by school-based speech-language pathologists (SLPs) in the area of genetics, (b) the confidence levels of SLPs in providing services to children and their families with genetic disorders/syndromes, (c) the attitudes of SLPs regarding genetics and communication disorders, (d) the primary sources used by SLPs to learn about genetic disorders/syndromes, and (e) the association between general knowledge, confidence, attitudes, the number of years of experience working as an SLP, and the number of children currently provided services with genetic disorders/syndromes on SLPs' caseloads. Survey data from a nationwide sample of 533 SLPs was analyzed. Results showed SLPs earned a median knowledge score about genetics of 66% correct responses. Their mean confidence and attitude ratings were in the "unsure" categories while they reported they learned about genetics from three main sources, (a) self-study via web and internet-based searches, (b) on-the-job training and (c) popular press magazines and newspapers. Analyses revealed that Confidence summary scores, Attitude Summary scores, the number of children with genetic disorders/syndromes on SLPs' caseloads are positively associated with the ratings of participants with the highest Knowledge scores. Readers will be able to (a) explain the important links between developmental and communication disabilities and genetics, (b) describe the associations between knowledge about genetics and confidence, attitudes, and the number of children with genetic disorders/syndromes on their caseloads, and (c) outline the clinical and theoretical implications of the results from this study. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. SNCA 3'UTR genetic variants in patients with Parkinson's disease and REM sleep behavior disorder.

    Science.gov (United States)

    Toffoli, M; Dreussi, E; Cecchin, E; Valente, M; Sanvilli, N; Montico, M; Gagno, S; Garziera, M; Polano, M; Savarese, M; Calandra-Buonaura, G; Placidi, F; Terzaghi, M; Toffoli, G; Gigli, G L

    2017-07-01

    REM sleep behavior disorder (RBD) is an early marker of Parkinson's disease (PD); however, it is still unclear which patients with RBD will eventually develop PD. Single nucleotide polymorphisms (SNPs) in the 3'untranslated region (3'UTR) of alpha-synuclein (SNCA) have been associated with PD, but at present, no data is available about RBD. The 3'UTR hosts regulatory regions involved in gene expression control, such as microRNA binding sites. The aim of this study was to determine RBD specific genetic features associated to an increased risk of progression to PD, by sequencing of the SNCA-3'UTR in patients with "idiopathic" RBD (iRBD) and in patients with PD. We recruited 113 consecutive patients with a diagnosis of iRBD (56 patients) or PD (with or without RBD, 57 patients). Sequencing of SNCA-3'UTR was performed on genomic DNA extracted from peripheral blood samples. Bioinformatic analyses were carried out to predict the potential effect of the identified genetic variants on microRNA binding. We found three SNCA-3'UTR SNPs (rs356165, rs3857053, rs1045722) to be more frequent in PD patients than in iRBD patients (p = 0.014, 0.008, and 0.008, respectively). Four new or previously reported but not annotated specific genetic variants (KP876057, KP876056, NM_000345.3:c*860T>A, NM_000345.3:c*2320A>T) have been observed in the RBD population. The in silico approach highlighted that these variants could affect microRNA-mediated gene expression control. Our data show specific SNPs in the SNCA-3'UTR that may bear a risk for RBD to be associated with PD. Moreover, new genetic variants were identified in patients with iRBD.

  11. Analysis of t(9;17)(q33.2;q25.3) chromosomal breakpoint regions and genetic association reveals novel candidate genes for bipolar disorder

    DEFF Research Database (Denmark)

    Rajkumar, Anto P; Christensen, Jane H; Mattheisen, Manuel

    2015-01-01

    ,856) data. Genetic associations between these disorders and single nucleotide polymorphisms within these breakpoint regions were analysed by BioQ, FORGE, and RegulomeDB programmes. RESULTS: Four protein-coding genes [coding for (endonuclease V (ENDOV), neuronal pentraxin I (NPTX1), ring finger protein 213...

  12. Genome Wide Association Study (GWAS) between Attention Deficit Hyperactivity Disorder (ADHD) and Obsessive Compulsive Disorder (OCD)

    OpenAIRE

    Ritter, McKenzie L.; Guo, Wei; Samuels, Jack F.; Wang, Ying; Nestadt, Paul S.; Krasnow, Janice; Greenberg, Benjamin D.; Fyer, Abby J.; McCracken, James T.; Geller, Daniel A.; Murphy, Dennis L.; Knowles, James A.; Grados, Marco A.; Riddle, Mark A.; Rasmussen, Steven A.

    2017-01-01

    Objective: The aim of this study was to identify any potential genetic overlap between attention deficit hyperactivity disorder (ADHD) and obsessive compulsive disorder (OCD). We hypothesized that since these disorders share a sub-phenotype, they may share common risk alleles. In this manuscript, we report the overlap found between these two disorders. Methods: A meta-analysis was conducted between ADHD and OCD, and polygenic risk scores (PRS) were calculated for both disorders. In addition, ...

  13. Genetic characterization and disease mechanism of retinitis pigmentosa; current scenario.

    Science.gov (United States)

    Ali, Muhammad Umar; Rahman, Muhammad Saif Ur; Cao, Jiang; Yuan, Ping Xi

    2017-08-01

    Retinitis pigmentosa is a group of genetically transmitted disorders affecting 1 in 3000-8000 individual people worldwide ultimately affecting the quality of life. Retinitis pigmentosa is characterized as a heterogeneous genetic disorder which leads by progressive devolution of the retina leading to a progressive visual loss. It can occur in syndromic (with Usher syndrome and Bardet-Biedl syndrome) as well as non-syndromic nature. The mode of inheritance can be X-linked, autosomal dominant or autosomal recessive manner. To date 58 genes have been reported to associate with retinitis pigmentosa most of them are either expressed in photoreceptors or the retinal pigment epithelium. This review focuses on the disease mechanisms and genetics of retinitis pigmentosa. As retinitis pigmentosa is tremendously heterogeneous disorder expressing a multiplicity of mutations; different variations in the same gene might induce different disorders. In recent years, latest technologies including whole-exome sequencing contributing effectively to uncover the hidden genesis of retinitis pigmentosa by reporting new genetic mutations. In future, these advancements will help in better understanding the genotype-phenotype correlations of disease and likely to develop new therapies.

  14. A review of gambling disorder and substance use disorders

    Directory of Open Access Journals (Sweden)

    Rash CJ

    2016-03-01

    Full Text Available Carla J Rash,1 Jeremiah Weinstock,2 Ryan Van Patten2 1Calhoun Cardiology Center – Behavioral Health, UConn Health, Farmington, CT, USA; 2Department of Psychology, Saint Louis University, St Louis, MO, USA Abstract: In the fifth edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5, gambling disorder was recategorized from the “Impulse Control Disorder” section to the newly expanded “Substance-related and Addictive Disorders” section. With this move, gambling disorder has become the first recognized nonsubstance behavioral addiction, implying many shared features between gambling disorder and substance use disorders. This review examines these similarities, as well as differences, between gambling and substance-related disorders. Diagnostic criteria, comorbidity, genetic and physiological underpinnings, and treatment approaches are discussed. Keywords: pathological gambling, problem gambling, behavioral addiction, transdiagnostic factors, addiction syndrome 

  15. A case report of truncus arteriosus communis and genetic counseling

    Directory of Open Access Journals (Sweden)

    Gholamreza Nourzad

    2013-06-01

    Full Text Available BACKGROUND: Truncus arteriosus communis (TAC is a rare heart disorder with the prevalence of approximately 1%, mostly in male newborns. In this disease, aorta and pulmonary artery have not been separated during fetus development and both originate jointly from left ventricle. In addition, various disorders are reported like ventricular septal defect (VSD, mitral and tricuspid valves defects, aortic septal defect (ASD, reduction of lung and lung vessels’ resistance, pulmonary hypertension, increase in heart rate, high perspiration, bad digestion, and tetralogy of Fallot. CASR REPORT: Parents of deceased patient were referred for genetic counseling after the death of third girl due to severe cardiac disorder. Cardiologist declared the disease in deceased girl as TAC based on findings along with VSD, ASD and hypoplastic aortic arch which resulted to death in the first day of birth. CONCLUSION: There was no chromosomal disorder in chromosome analysis of patient’ skin. Parents were interested to have another child, so they were referred to university's Genetic Counseling Center to become aware of their next child’s condition. This disorder is genetically heterogeneous and multifactorial and because all external factors are not recognized, the accurate estimation of risk is not possible and the probability of risk for the next child is about 10% to 20%.   Keywords: Heart Disorder, Truncus Arteriosus Communis, Genetic Counseling 

  16. Predictive genetic tests: problems and pitfalls.

    Science.gov (United States)

    Davis, J G

    1997-12-29

    The role that genetic factors play in medicine has expanded, owing to such recent advances as those made by the Human Genome Project and the work that has spun off from it. The project is focusing particularly on localization and characterization of recognized human genetic disorders, which in turn increases awareness of the potential for improved treatment of these disorders. Technical advances in genetic testing in the absence of effective treatment has presented the health profession with major ethical challenges. The example of the identification of the BRCA1 and BRCA2 genes in families at high risk for breast and ovarian cancer is presented to illustrate the issues of the sensitivity of the method, the degree of susceptibility a positive result implies, the need for and availability of counseling and patient education, and confidentiality of the test results. A compelling need exists for adequate education about medical genetics to raise the "literacy" rate among health professionals.

  17. Radiological and clinical characterization of the lysosomal storage disorders: non-lipid disorders.

    Science.gov (United States)

    Parker, E I; Xing, M; Moreno-De-Luca, A; Harmouche, E; Terk, M R

    2014-01-01

    Lysosomal storage diseases (LSDs) are a large group of genetic metabolic disorders that result in the accumulation of abnormal material, such as mucopolysaccharides, glycoproteins, amino acids and lipids, within cells. Since many LSDs manifest during infancy or early childhood, with potentially devastating consequences if left untreated, timely identification is imperative to prevent irreversible damage and early death. In this review, the key imaging features of the non-lipid or extralipid LSDs are examined and correlated with salient clinical manifestations and genetic information. Disorders are stratified based on the type of excess material causing tissue or organ dysfunction, with descriptions of the mucopolysaccharidoses, mucolipidoses, alpha-mannosidosis, glycogen storage disorder II and cystinosis. In addition, similarities and differences in radiological findings between each of these LSDs are highlighted to facilitate further recognition. Given the rare and extensive nature of the LSDs, mastery of their multiple clinical and radiological traits may seem challenging. However, an understanding of the distinguishing imaging characteristics of LSDs and their clinical correlates may allow radiologists to play a key role in the early diagnosis of these progressive and potentially fatal disorders.

  18. Protocols in human molecular genetics

    National Research Council Canada - National Science Library

    Mathew, Christopher G

    1991-01-01

    ... sequences has led to the development of DNA fingerprinting. The application of these techniques to the study of the human genome has culminated in major advances such as the cloning of the cystic fibrosis gene, the construction of genetic linkage maps of each human chromosome, the mapping of many genes responsible for human inherited disorders, genet...

  19. Behavioral trait genetics in mice; Opportunities for translational research of psychiatric endophenotypes

    NARCIS (Netherlands)

    Mooij-van Malsen, J.G. de

    2009-01-01

    Mood disorders have powerful effects on the lives of many people. Finding the mechanisms underlying these disorders is essential to develop selective treatment. In this thesis, interspecies trait genetics are used on behavioural domains to unravel the complex genetics of involved endophenotypes. We

  20. Epidemiology, neurobiology and pharmacological interventions related to suicide deaths and suicide attempts in bipolar disorder: Part I of a report of the International Society for Bipolar Disorders Task Force on Suicide in Bipolar Disorder

    Science.gov (United States)

    Schaffer, Ayal; Isometsä, Erkki T; Tondo, Leonardo; Moreno, Doris H; Sinyor, Mark; Kessing, Lars Vedel; Turecki, Gustavo; Weizman, Abraham; Azorin, Jean-Michel; Ha, Kyooseob; Reis, Catherine; Cassidy, Frederick; Goldstein, Tina; Rihmer, Zoltán; Beautrais, Annette; Chou, Yuan-Hwa; Diazgranados, Nancy; Levitt, Anthony J; Zarate, Carlos A; Yatham, Lakshmi

    2016-01-01

    Objectives Bipolar disorder is associated with elevated risk of suicide attempts and deaths. Key aims of the International Society for Bipolar Disorders Task Force on Suicide included examining the extant literature on epidemiology, neurobiology and pharmacotherapy related to suicide attempts and deaths in bipolar disorder. Methods Systematic review of studies from 1 January 1980 to 30 May 2014 examining suicide attempts or deaths in bipolar disorder, with a specific focus on the incidence and characterization of suicide attempts and deaths, genetic and non-genetic biological studies and pharmacotherapy studies specific to bipolar disorder. We conducted pooled, weighted analyses of suicide rates. Results The pooled suicide rate in bipolar disorder is 164 per 100,000 person-years (95% confidence interval = [5, 324]). Sex-specific data on suicide rates identified a 1.7:1 ratio in men compared to women. People with bipolar disorder account for 3.4–14% of all suicide deaths, with self-poisoning and hanging being the most common methods. Epidemiological studies report that 23–26% of people with bipolar disorder attempt suicide, with higher rates in clinical samples. There are numerous genetic associations with suicide attempts and deaths in bipolar disorder, but few replication studies. Data on treatment with lithium or anticonvulsants are strongly suggestive for prevention of suicide attempts and deaths, but additional data are required before relative anti-suicide effects can be confirmed. There were limited data on potential anti-suicide effects of treatment with antipsychotics or antidepressants. Conclusion This analysis identified a lower estimated suicide rate in bipolar disorder than what was previously published. Understanding the overall risk of suicide deaths and attempts, and the most common methods, are important building blocks to greater awareness and improved interventions for suicide prevention in bipolar disorder. Replication of genetic findings and

  1. Genetic disorders from an endogamous population

    African Journals Online (AJOL)

    Background: Marriage between close relatives has been practised globally since the early existence of human society. The role of consanguinity and inbreeding affecting human health is a topic of great interest in medical genetics. Objective: The objective of the study was to investigate the extent of consanguinity and its ...

  2. CRY2 genetic variants associate with dysthymia.

    Directory of Open Access Journals (Sweden)

    Leena Kovanen

    Full Text Available People with mood disorders often have disruptions in their circadian rhythms. Recent molecular genetics has linked circadian clock genes to mood disorders. Our objective was to study two core circadian clock genes, CRY1 and CRY2 as well as TTC1 that interacts with CRY2, in relation to depressive and anxiety disorders. Of these three genes, 48 single-nucleotide polymorphisms (SNPs whose selection was based on the linkage disequilibrium and potential functionality were genotyped in 5910 individuals from a nationwide population-based sample. The diagnoses of major depressive disorder, dysthymia and anxiety disorders were assessed with a structured interview (M-CIDI. In addition, the participants filled in self-report questionnaires on depressive and anxiety symptoms. Logistic and linear regression models were used to analyze the associations of the SNPs with the phenotypes. Four CRY2 genetic variants (rs10838524, rs7121611, rs7945565, rs1401419 associated significantly with dysthymia (false discovery rate q<0.05. This finding together with earlier CRY2 associations with winter depression and with bipolar type 1 disorder supports the view that CRY2 gene has a role in mood disorders.

  3. Connectomic intermediate phenotypes for psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Alex eFornito

    2012-04-01

    Full Text Available Psychiatric disorders are phenotypically heterogeneous entities with a complex genetic basis. To mitigate this complexity, many investigators study so-called intermediate phenotypes that putatively provide a more direct index of the physiological effects of candidate genetic risk variants than overt psychiatric syndromes. Magnetic resonance imaging (MRI is a particularly popular technique for measuring such phenotypes because it allows interrogation of diverse aspects of brain structure and function in vivo. Much of this work however, has focused on relatively simple measures that quantify variations in the physiology or tissue integrity of specific brain regions in isolation, contradicting an emerging consensus that most major psychiatric disorders do not arise from isolated dysfunction in one or a few brain regions, but rather from disturbed interactions within and between distributed neural circuits; i.e., they are disorders of brain connectivity. The recent proliferation of new MRI techniques for comprehensively mapping the entire connectivity architecture of the brain, termed the human connectome, has provided a rich repertoire of tools for understanding how genetic variants implicated in mental disorder impact distinct neural circuits. In this article, we review research using these connectomic techniques to understand how genetic variation influences the connectivity and topology of human brain networks. We highlight recent evidence from twin and imaging genetics studies suggesting that the penetrance of candidate risk variants for mental illness, such as those in SLC6A4, MAOA, ZNF804A and APOE, may be higher for intermediate phenotypes characterised at the level of distributed neural systems than at the level of spatially localised brain regions. The findings indicate that imaging connectomics provides a powerful framework for understanding how genetic risk for psychiatric disease is expressed through altered structure and function of

  4. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  5. Role of genetics in the etiopathogenesis of genetic generalized epilepsy: A review of current literature

    Directory of Open Access Journals (Sweden)

    S A Balarabe

    2016-01-01

    Full Text Available Until recently, genetic generalized epilepsy (GGE was believed to be of presumed genetic etiology with no identifiable genetic mutation or demonstrable epigenetic abnormality. A wide range of epileptic disorders has clue for an inherited susceptibility. Monogenic disorders associated with epilepsy mental retardation and structural brain lesion typified by heterotopias, tuberous sclerosis, and progressive myoclonus epilepsies account for about 1% of epilepsies. This review focuses on the role of genetic mutations and epigenetic rearrangements in the pathophysiologic mechanism of GGE. To achieve this; PubMed, EMBASE, and Google Scholar were systematically and comprehensively searched using keywords (“epilepsy” “juvenile myoclonic epilepsy (JME,” “typical absences,” “idiopathic generalized epilepsy,” “JME,” “juvenile absence epilepsy,” “childhood absence epilepsy” “generalized tonic-clonic seizure” “GTCS”. Most GGE has evidence of underlying genetic inheritance. Recent animal studies have shown that early detection and treatment of genetic generalized epilepsies can alter the phenotypic presentation in rodents. These findings suggest a critical period in epileptogenesis, during which spike-and-wave seizures can be suppressed, leading to chronic changes in the brain (epileptogenesis and the preceding dysfunctions may, therefore, be targeted using therapeutic approaches that may either delay or inhibit the transition to active epileptic attack. The interplay between genetic mutations and epigenetic rearrangements play important roles in the development of GCE and that this process, especially at crucial developmental periods, is very susceptible to environmental modulations.

  6. Genetic testing and its implications: human genetics researchers grapple with ethical issues.

    Science.gov (United States)

    Rabino, Isaac

    2003-01-01

    To better understand ethical issues involved in the field of human genetics and promote debate within the scientific community, the author surveyed scientists who engage in human genetics research about the pros, cons, and ethical implications of genetic testing. This study contributes systematic data on attitudes of scientific experts. The survey finds respondents are highly supportive of voluntary testing and the right to know one's genetic heritage. The majority consider in utero testing and consequent pregnancy termination acceptable for cases involving likelihood of serious disease but disapprove for genetic reasons they consider arbitrary, leaving a gray area of distinguishing between treatment of disorders and enhancement still to be resolved. While safeguarding patient confidentiality versus protecting at-risk third parties (kin, reproductive partners) presents a dilemma, preserving privacy from misuse by institutional third parties (employers, insurers) garners strong consensus for legislation against discrimination. Finally, a call is made for greater genetic literacy.

  7. Molecular-genetic correlates of self-harming behaviors in eating-disordered women: findings from a combined Canadian-German sample.

    Science.gov (United States)

    Steiger, Howard; Fichter, Manfred; Bruce, Kenneth R; Joober, Ridha; Badawi, Ghislaine; Richardson, Jodie; Groleau, Patricia; Ramos, Cinthia; Israel, Mimi; Bondy, Brigitta; Quadflieg, Norbert; Bachetzky, Nadine

    2011-01-15

    Across populations, findings suggest that rates of self-mutilation, suicidal acts, and other self-harming behaviors (SHBs) may be influenced by polymorphisms that code for activity of the serotonin transporter (e.g., 5HTTLPR) and the enzyme, monoamine oxidase A (e.g., MAOAuVNTR). SHBs being common in patients with Eating Disorders (EDs), we evaluated (in a large sample of eating-disordered women) relationships between triallelic 5HTTLPR and MAOAuVNTR variants, on the one hand, and SHBs, on the other. We had 399 eating-disordered women report on eating symptoms and lifetime history of SHBs, and provide blood samples for genotyping. Individuals carrying high-function MAOAuVNTR alleles reported a history of SHBs about twice as often as did carriers of low-function alleles. We obtained no comparable main effect of 5HTTLPR, or MAOAuVNTR×5HTTLPR interaction effect. Genetic variations did not predict severity of eating symptoms. As in other populations, our findings link the MAOAuVNTR high-function alleles with increased risk of self-directed harm in bulimic females. We discuss theoretical and clinical ramifications of our results. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Genetic effects

    International Nuclear Information System (INIS)

    Bender, M.A.; Abrahamson, S.; Denniston, C.; Schull, W.J.

    1989-01-01

    In this chapter, we present a comprehensive analysis of the major classes of genetic diseases that would be increased as a result of an increased gonadal radiation exposure to a human population. The risk analysis takes on two major forms: the increase in genetic disease that would be observed in the immediate offspring of the exposed population, and the subsequent transmission of the newly induced mutations through future generations. The major classes of genetic disease will be induced at different frequencies, and will also impact differentially in terms of survivability and fertility on the affected individuals and their descendants. Some classes of disease will be expected to persist for only a few generations at most. Other types of genetic disease will persist through a longer period. The classes of genetic diseases studied are: dominant gene mutation, X-linked gene mutation, chromosome disorders and multifactorial disorders which involve the interaction of many mutant genes and environmental factors. For each of these classes we have derived the general equations of mutation induction for the male and female germ cells of critical importance in the mutation process. The frequency of induced mutations will be determined initially by the dose received, the type of radiation and, to some extent at high dose, by the manner in which the dose is received. We have used the modeling analyses to predict the outcomes for two nuclear power plant accident scenarios, the first in which the population receives a chronic dose of 0.1 Gy (10 rad) over a 50-year period, the second in which an equivalent population receives an acute dose of 2 Gy. In both cases the analyses are projected over a period of five generations

  9. Genetics Home Reference: N-acetylglutamate synthase deficiency

    Science.gov (United States)

    ... belongs to a class of genetic diseases called urea cycle disorders. The urea cycle is a sequence of reactions ... Other Diagnosis and Management Resources (3 links) GeneReview: Urea Cycle Disorders Overview MedlinePlus Encyclopedia: Hereditary Urea Cycle Abnormality National ...

  10. Genetics Home Reference: 16p11.2 duplication

    Science.gov (United States)

    ... if a disorder seems to run in my family? What are the different ways in which a genetic condition can be ... Children's Hospital: Autism Spectrum Disorders National Institute on Deafness and Other Communication ...

  11. Genetic predictors of response to serotonergic and noradrenergic antidepressants in major depressive disorder: a genome-wide analysis of individual-level data and a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Katherine E Tansey

    Full Text Available It has been suggested that outcomes of antidepressant treatment for major depressive disorder could be significantly improved if treatment choice is informed by genetic data. This study aims to test the hypothesis that common genetic variants can predict response to antidepressants in a clinically meaningful way.The NEWMEDS consortium, an academia-industry partnership, assembled a database of over 2,000 European-ancestry individuals with major depressive disorder, prospectively measured treatment outcomes with serotonin reuptake inhibiting or noradrenaline reuptake inhibiting antidepressants and available genetic samples from five studies (three randomized controlled trials, one part-randomized controlled trial, and one treatment cohort study. After quality control, a dataset of 1,790 individuals with high-quality genome-wide genotyping provided adequate power to test the hypotheses that antidepressant response or a clinically significant differential response to the two classes of antidepressants could be predicted from a single common genetic polymorphism. None of the more than half million genetic markers significantly predicted response to antidepressants overall, serotonin reuptake inhibitors, or noradrenaline reuptake inhibitors, or differential response to the two types of antidepressants (genome-wide significance p<5×10(-8. No biological pathways were significantly overrepresented in the results. No significant associations (genome-wide significance p<5×10(-8 were detected in a meta-analysis of NEWMEDS and another large sample (STAR*D, with 2,897 individuals in total. Polygenic scoring found no convergence among multiple associations in NEWMEDS and STAR*D.No single common genetic variant was associated with antidepressant response at a clinically relevant level in a European-ancestry cohort. Effects specific to particular antidepressant drugs could not be investigated in the current study. Please see later in the article for the

  12. Association Between Substance Use Disorder and Polygenic Liability to Schizophrenia.

    Science.gov (United States)

    Hartz, Sarah M; Horton, Amy C; Oehlert, Mary; Carey, Caitlin E; Agrawal, Arpana; Bogdan, Ryan; Chen, Li-Shiun; Hancock, Dana B; Johnson, Eric O; Pato, Carlos N; Pato, Michele T; Rice, John P; Bierut, Laura J

    2017-11-15

    There are high levels of comorbidity between schizophrenia and substance use disorder, but little is known about the genetic etiology of this comorbidity. We tested the hypothesis that shared genetic liability contributes to the high rates of comorbidity between schizophrenia and substance use disorder. To do this, polygenic risk scores for schizophrenia derived from a large meta-analysis by the Psychiatric Genomics Consortium were computed in three substance use disorder datasets: the Collaborative Genetic Study of Nicotine Dependence (ascertained for tobacco use disorder; n = 918 cases; 988 control subjects), the Collaborative Study on the Genetics of Alcoholism (ascertained for alcohol use disorder; n = 643 cases; 384 control subjects), and the Family Study of Cocaine Dependence (ascertained for cocaine use disorder; n = 210 cases; 317 control subjects). Phenotypes were harmonized across the three datasets and standardized analyses were performed. Genome-wide genotypes were imputed to the 1000 Genomes reference panel. In each individual dataset and in the mega-analysis, strong associations were observed between any substance use disorder diagnosis and the polygenic risk score for schizophrenia (mega-analysis pseudo-R 2 range 0.8-3.7%; minimum p = 4 × 10 -23 ). These results suggest that comorbidity between schizophrenia and substance use disorder is partially attributable to shared polygenic liability. This shared liability is most consistent with a general risk for substance use disorder rather than specific risks for individual substance use disorders and adds to increasing evidence of a blurred boundary between schizophrenia and substance use disorder. Copyright © 2017 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  13. Progranulin gene variability influences the risk for bipolar I disorder, but not bipolar II disorder.

    Science.gov (United States)

    Galimberti, Daniela; Prunas, Cecilia; Paoli, Riccardo A; Dell'Osso, Bernardo; Fenoglio, Chiara; Villa, Chiara; Palazzo, Carlotta; Cigliobianco, Michela; Camuri, Giulia; Serpente, Maria; Scarpini, Elio; Altamura, A Carlo

    2014-11-01

    Recent data have shown that genetic variability in the progranulin (GRN) gene may contribute to the susceptibility to developing bipolar disorder (BD). However, in regard to patients with BD, no information is available on the role of genetic variability and plasma progranulin levels in different types of this disorder. In this study, we performed an association analysis of GRN in an Italian population consisting of 134 patients with BD and 232 controls to evaluate progranulin plasma levels. The presence of the polymorphic variant of the rs5848 single nucleotide polymorphism is protective for the development of bipolar I disorder (BD-I) (odds ratio = 0.55, 95% confidence interval: 0.33-0.93; p = 0.024) but not bipolar II disorder (BD-II) (p > 0.05). In addition, plasma progranulin levels are significantly decreased in BD [mean ± standard deviation (SD) 112 ± 35 versus 183 ± 93 ng/mL in controls; p < 0.001]. Regarding the influence of GRN variability on BD susceptibility, the predisposing genetic background differs between BD-I and BD-II, possibly implying that pathogenic mechanisms differ between the two subtypes of BD. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Attitudes Toward Pre-implantation Genetic Diagnosis (PGD) for Genetic Disorders Among Potential Users in Malaysia.

    Science.gov (United States)

    Olesen, Angelina Patrick; Nor, Siti Nurani Mohd; Amin, Latifah

    2016-02-01

    While pre-implantation genetic diagnosis (PGD) is available and legal in Malaysia, there is an ongoing controversy debate about its use. There are few studies available on individuals' attitudes toward PGD, particularly among those who have a genetic disease, or whose children have a genetic disease. To the best of our knowledge, this is, in fact, the first study of its kind in Malaysia. We conducted in-depth interviews, using semi-structured questionnaires, with seven selected potential PGD users regarding their knowledge, attitudes and decisions relating to the use PGD. The criteria for selecting potential PGD users were that they or their children had a genetic disease, and they desired to have another child who would be free of genetic disease. All participants had heard of PGD and five of them were considering its use. The participants' attitudes toward PGD were based on several different considerations that were influenced by various factors. These included: the benefit-risk balance of PGD, personal experiences of having a genetic disease, religious beliefs, personal values and cost. The study's findings suggest that the selected Malaysian participants, as potential PGD users, were supportive but cautious regarding the use of PGD for medical purposes, particularly in relation to others whose experiences were similar. More broadly, the paper highlights the link between the participants' personal experiences and their beliefs regarding the appropriateness, for others, of individual decision-making on PGD, which has not been revealed by previous studies.

  15. Glutamate synapses in human cognitive disorders.

    Science.gov (United States)

    Volk, Lenora; Chiu, Shu-Ling; Sharma, Kamal; Huganir, Richard L

    2015-07-08

    Accumulating data, including those from large genetic association studies, indicate that alterations in glutamatergic synapse structure and function represent a common underlying pathology in many symptomatically distinct cognitive disorders. In this review, we discuss evidence from human genetic studies and data from animal models supporting a role for aberrant glutamatergic synapse function in the etiology of intellectual disability (ID), autism spectrum disorder (ASD), and schizophrenia (SCZ), neurodevelopmental disorders that comprise a significant proportion of human cognitive disease and exact a substantial financial and social burden. The varied manifestations of impaired perceptual processing, executive function, social interaction, communication, and/or intellectual ability in ID, ASD, and SCZ appear to emerge from altered neural microstructure, function, and/or wiring rather than gross changes in neuron number or morphology. Here, we review evidence that these disorders may share a common underlying neuropathy: altered excitatory synapse function. We focus on the most promising candidate genes affecting glutamatergic synapse function, highlighting the likely disease-relevant functional consequences of each. We first present a brief overview of glutamatergic synapses and then explore the genetic and phenotypic evidence for altered glutamate signaling in ID, ASD, and SCZ.

  16. Genetics Home Reference: SYNGAP1-related intellectual disability

    Science.gov (United States)

    ... intellectual disability develops epilepsy, and about half have autism spectrum disorder . Related Information What does it mean if a disorder seems to run in my family? What is the prognosis of a genetic condition? ...

  17. Clinical and Biochemical Pitfalls in the Diagnosis of Peroxisomal Disorders

    NARCIS (Netherlands)

    Klouwer, Femke C. C.; Huffnagel, Irene C.; Ferdinandusse, Sacha; Waterham, Hans R.; Wanders, Ronald J. A.; Engelen, Marc; Poll-The, Bwee Tien

    2016-01-01

    Peroxisomal disorders are a heterogeneous group of genetic metabolic disorders, caused by a defect in peroxisome biogenesis or a deficiency of a single peroxisomal enzyme. The peroxisomal disorders include the Zellweger spectrum disorders, the rhizomelic chondrodysplasia punctata spectrum disorders,

  18. Genetics Home Reference: hypercholesterolemia

    Science.gov (United States)

    ... Encyclopedia: Familial hypercholesterolemia Encyclopedia: High blood cholesterol and triglycerides Encyclopedia: Xanthoma Health Topic: Cholesterol Health Topic: High Cholesterol in Children and Teens Health Topic: Lipid Metabolism Disorders Genetic and Rare Diseases Information Center (1 ...

  19. The neurobiological basis of binge-eating disorder.

    Science.gov (United States)

    Kessler, Robert M; Hutson, Peter H; Herman, Barry K; Potenza, Marc N

    2016-04-01

    Relatively little is known about the neuropathophysiology of binge-eating disorder (BED). Here, the evidence from neuroimaging, neurocognitive, genetics, and animal studies are reviewed to synthesize our current understanding of the pathophysiology of BED. Binge-eating disorder may be conceptualized as an impulsive/compulsive disorder, with altered reward sensitivity and food-related attentional biases. Neuroimaging studies suggest there are corticostriatal circuitry alterations in BED similar to those observed in substance abuse, including altered function of prefrontal, insular, and orbitofrontal cortices and the striatum. Human genetics and animal studies suggest that there are changes in neurotransmitter networks, including dopaminergic and opioidergic systems, associated with binge-eating behaviors. Overall, the current evidence suggests that BED may be related to maladaptation of the corticostriatal circuitry regulating motivation and impulse control similar to that found in other impulsive/compulsive disorders. Further studies are needed to understand the genetics of BED and how neurotransmitter activity and neurocircuitry function are altered in BED and how pharmacotherapies may influence these systems to reduce BED symptoms. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Autism Spectrum Disorders and Epigenetics

    Science.gov (United States)

    Grafodatskaya, Daria; Chung, Brian; Szatmari, Peter; Weksberg, Rosanna

    2010-01-01

    Objective: Current research suggests that the causes of autism spectrum disorders (ASD) are multifactorial and include both genetic and environmental factors. Several lines of evidence suggest that epigenetics also plays an important role in ASD etiology and that it might, in fact, integrate genetic and environmental influences to dysregulate…

  1. Adrenal Gland Disorders

    Science.gov (United States)

    ... Cushing's syndrome, there's too much cortisol, while with Addison's disease, there is too little. Some people are born unable to make enough cortisol. Causes of adrenal gland disorders include Genetic mutations Tumors ...

  2. Ectodermal dysplasia: a genetic review.

    Science.gov (United States)

    Deshmukh, Seema; Prashanth, S

    2012-09-01

    Ectodermal dysplasia is a rare hereditary disorder with a characteristic physiognomy. It is a genetic disorder affecting the development or function of the teeth, hair, nails and sweat glands. Depending on the particular syndrome ectodermal dysplasia can also affect the skin, the lens or retina of the eye, parts of the inner ear, the development of fingers and toes, the nerves and other parts of the body. Each syndrome usually involves a different combination of symptoms, which can range from mild to severe. The history and lessons learned from hypohidrotic ectodermal dysplasia (HED) may serve as an example for unraveling of the cause and pathogenesis of other ectodermal dysplasia syndromes by demonstrating that phenotypically identical syndromes can be caused by mutations in different genes (EDA, EDAR, EDARADD), that mutations in the same gene can lead to different phenotypes and that mutations in the genes further downstream in the same signaling pathway (NEMO) may modify the phenotype quite profoundly. The aim of this paper is to describe and discuss the etiology, genetic review, clinical manifestations and treatment options of this hereditary disorder. How to cite this article: Deshmukh S, Prashanth S. Ectodermal Dysplasia: A Genetic Review. Int J Clin Pediatr Dent 2012; 5(3):197-202.

  3. [The pathophysiology and diagnosis of anxiety disorder].

    Science.gov (United States)

    Akiyoshi, Jotaro

    2012-01-01

    In addition to genetic factors, the role of epigenetic and other environmental factors in the promotion of anxiety disorder has attracted much attention in psychiatric research. When stress is encountered in the environment, the hypothalamus-pituitary adrenal system (HPA system) is activated and cortisol is secreted. CRHR gene function is closely related to this response. As a result of haplotype analysis of CRHR genes in depression and panic disorder patients, it was found that genetic polymorphism of CRHR1 and CRHR2 was related to both disorders. It is reported that abused children are more susceptible to developing depression and anxiety disorder upon reaching adulthood, but there also exist genetic polymorphisms that may moderate this relationship. Direct methylation of DNA (typically repressing gene expression) and modification of chromatin structure (complexes of histone proteins and DNA) via acetylation (typically facilitating gene expression) represent epigenetic modifications that are thought to influence behavioral phenotypes. For example, it is rare that schizophrenia develops in identical twins brought up together in the same environment, and thus phenotypic differences cannot be explained simply by genetic polymorphism. We also evaluated salivary cortisol and amylase reactivity (indices of the HPA system and sympathoadrenal medullary system, respectfully) after electrical stimulation stress and Trier Social Stress Test (TSST) administration. Here we found differences in the cortisol stress response between electrical stimulation and TSST stressors, in contrast to the theory of Selye. In addition, we found alterations in activity patterns and difficulties integrating sensorimotor information in panic disorder patients, suggesting links between sensorimotor integration and stress in panic disorder. Moreover, state and trait anxiety may be associated with stabilograph factors.

  4. Insights into the genetic foundations of human communication.

    Science.gov (United States)

    Graham, Sarah A; Deriziotis, Pelagia; Fisher, Simon E

    2015-03-01

    The human capacity to acquire sophisticated language is unmatched in the animal kingdom. Despite the discontinuity in communicative abilities between humans and other primates, language is built on ancient genetic foundations, which are being illuminated by comparative genomics. The genetic architecture of the language faculty is also being uncovered by research into neurodevelopmental disorders that disrupt the normally effortless process of language acquisition. In this article, we discuss the strategies that researchers are using to reveal genetic factors contributing to communicative abilities, and review progress in identifying the relevant genes and genetic variants. The first gene directly implicated in a speech and language disorder was FOXP2. Using this gene as a case study, we illustrate how evidence from genetics, molecular cell biology, animal models and human neuroimaging has converged to build a picture of the role of FOXP2 in neurodevelopment, providing a framework for future endeavors to bridge the gaps between genes, brains and behavior.

  5. Invited review: Opportunities for genetic improvement of metabolic diseases.

    Science.gov (United States)

    Pryce, J E; Parker Gaddis, K L; Koeck, A; Bastin, C; Abdelsayed, M; Gengler, N; Miglior, F; Heringstad, B; Egger-Danner, C; Stock, K F; Bradley, A J; Cole, J B

    2016-09-01

    Metabolic disorders are disturbances to one or more of the metabolic processes in dairy cattle. Dysfunction of any of these processes is associated with the manifestation of metabolic diseases or disorders. In this review, data recording, incidences, genetic parameters, predictors, and status of genetic evaluations were examined for (1) ketosis, (2) displaced abomasum, (3) milk fever, and (4) tetany, as these are the most prevalent metabolic diseases where published genetic parameters are available. The reported incidences of clinical cases of metabolic disorders are generally low (less than 10% of cows are recorded as having a metabolic disease per herd per year or parity/lactation). Heritability estimates are also low and are typically less than 5%. Genetic correlations between metabolic traits are mainly positive, indicating that selection to improve one of these diseases is likely to have a positive effect on the others. Furthermore, there may also be opportunities to select for general disease resistance in terms of metabolic stability. Although there is inconsistency in published genetic correlation estimates between milk yield and metabolic traits, selection for milk yield may be expected to lead to a deterioration in metabolic disorders. Under-recording and difficulty in diagnosing subclinical cases are among the reasons why interest is growing in using easily measurable predictors of metabolic diseases, either recorded on-farm by using sensors and milk tests or off-farm using data collected from routine milk recording. Some countries have already initiated genetic evaluations of metabolic disease traits and currently most of these use clinical observations of disease. However, there are opportunities to use clinical diseases in addition to predictor traits and genomic information to strengthen genetic evaluations for metabolic health in the future. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. Ethical principles and pitfalls of genetic testing for dementia.

    Science.gov (United States)

    Hedera, P

    2001-01-01

    Progress in the genetics of dementing disorders and the availability of clinical tests for practicing physicians increase the need for a better understanding of multifaceted issues associated with genetic testing. The genetics of dementia is complex, and genetic testing is fraught with many ethical concerns. Genetic testing can be considered for patients with a family history suggestive of a single gene disorder as a cause of dementia. Testing of affected patients should be accompanied by competent genetic counseling that focuses on probabilistic implications for at-risk first-degree relatives. Predictive testing of at-risk asymptomatic patients should be modeled after presymptomatic testing for Huntington's disease. Testing using susceptibility genes has only a limited diagnostic value at present because potential improvement in diagnostic accuracy does not justify potentially negative consequences for first-degree relatives. Predictive testing of unaffected subjects using susceptibility genes is currently not recommended because individual risk cannot be quantified and there are no therapeutic interventions for dementia in presymptomatic patients.

  7. Genetic and environmental influences on Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) maladaptive personality traits and their connections with normative personality traits.

    Science.gov (United States)

    Wright, Zara E; Pahlen, Shandell; Krueger, Robert F

    2017-05-01

    The Diagnostic and Statistical Manual for Mental Disorders-Fifth Edition (DSM-5) proposes an alternative model for personality disorders, which includes maladaptive-level personality traits. These traits can be operationalized by the Personality Inventory for the DSM-5 (PID-5). Although there has been extensive research on genetic and environmental influences on normative level personality, the heritability of the DSM-5 traits remains understudied. The present study addresses this gap in the literature by assessing traits indexed by the PID-5 and the International Personality Item Pool NEO (IPIP-NEO) in adult twins (N = 1,812 individuals). Research aims include (a) replicating past findings of the heritability of normative level personality as measured by the IPIP-NEO as a benchmark for studying maladaptive level traits, (b) ascertaining univariate heritability estimates of maladaptive level traits as measured by the PID-5, (c) establishing how much variation in personality pathology can be attributed to the same genetic components affecting variation in normative level personality, and (d) determining residual variance in personality pathology domains after variance attributable to genetic and environmental components of general personality has been removed. Results revealed that PID-5 traits reflect similar levels of heritability to that of IPIP-NEO traits. Further, maladaptive and normative level traits that correlate at the phenotypic level also correlate at the genotypic level, indicating overlapping genetic components contribute to variance in both. Nevertheless, we also found evidence for genetic and environmental components unique to maladaptive level personality traits, not shared with normative level traits. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Genetics Home Reference: 46,XX testicular disorder of sex development

    Science.gov (United States)

    ... 46,XX testicular disorder of sex development 46,XX testicular disorder of sex development Printable PDF Open ... to view the expand/collapse boxes. Description 46,XX testicular disorder of sex development is a condition ...

  9. Channelopathy Pathogenesis in Autism Spectrum Disorders

    Directory of Open Access Journals (Sweden)

    Galina eSchmunk

    2013-11-01

    Full Text Available Autism spectrum disorder (ASD is a syndrome that affects normal brain development and is characterized by impaired social interaction as well as verbal and non-verbal communication and by repetitive, stereotypic behavior. ASD is a complex disorder arising from a combination of multiple genetic and environmental factors that are independent from racial, ethnic and socioeconomical status. The high heritability of ASD suggests a strong genetic basis for the disorder. Furthermore, a mounting body of evidence implies a role of various ion channel gene defects (channelopathies in the pathogenesis of autism. Indeed, recent genome-wide association, and whole exome- and whole- genome resequencing studies linked polymorphisms and rare variants in calcium, sodium and potassium channels and their subunits with susceptibility to ASD, much as they do with bipolar disorder, schizophrenia and other neuropsychiatric disorders, and animal models with these genetic variations recapitulate endophenotypes considered to be correlates of autistic behavior seen in patients. An ion flux across the membrane regulates a variety of cell functions, from generation of action potentials to gene expression and cell morphology, thus it is not surprising that channelopathies have profound effects on brain functions. In the present work, we summarize existing evidence for the role of ion channel gene defects in the pathogenesis of autism with a focus on calcium signaling and its downstream effects.

  10. Paternal genetic contribution influences fetal vulnerability to maternal alcohol consumption in a rat model of fetal alcohol spectrum disorder.

    Directory of Open Access Journals (Sweden)

    Laura J Sittig

    2010-04-01

    Full Text Available Fetal alcohol exposure causes in the offspring a collection of permanent physiological and neuropsychological deficits collectively termed Fetal Alcohol Spectrum Disorder (FASD. The timing and amount of exposure cannot fully explain the substantial variability among affected individuals, pointing to genetic influences that mediate fetal vulnerability. However, the aspects of vulnerability that depend on the mother, the father, or both, are not known.Using the outbred Sprague-Dawley (SD and inbred Brown Norway (BN rat strains as well as their reciprocal crosses, we administered ethanol (E, pair-fed (PF, or control (C diets to the pregnant dams. The dams' plasma levels of free thyroxine (fT4, triiodothyronine (T3, free T3 (fT3, and thyroid stimulating hormone (TSH were measured to elucidate potential differences in maternal thyroid hormonal environment, which affects specific aspects of FASD. We then compared alcohol-exposed, pair fed, and control offspring of each fetal strain on gestational day 21 (G21 to identify maternal and paternal genetic effects on bodyweight and placental weight of male and female fetuses.SD and BN dams exhibited different baseline hypothalamic-pituitary-thyroid function. Moreover, the thyroid function of SD dams was more severely affected by alcohol consumption while that of BN dams was relatively resistant. This novel finding suggests that genetic differences in maternal thyroid function are one source of maternal genetic effects on fetal vulnerability to FASD. The fetal vulnerability to decreased bodyweight after alcohol exposure depended on the genetic contribution of both parents, not only maternal contribution as previously thought. In contrast, the effect of maternal alcohol consumption on placental weight was consistent and not strain-dependent. Interestingly, placental weight in fetuses with different paternal genetic contributions exhibited opposite responses to caloric restriction (pair feeding. In summary

  11. Associations between Polygenic Risk for Psychiatric Disorders and Substance Involvement.

    Science.gov (United States)

    Carey, Caitlin E; Agrawal, Arpana; Bucholz, Kathleen K; Hartz, Sarah M; Lynskey, Michael T; Nelson, Elliot C; Bierut, Laura J; Bogdan, Ryan

    2016-01-01

    Despite evidence of substantial comorbidity between psychiatric disorders and substance involvement, the extent to which common genetic factors contribute to their co-occurrence remains understudied. In the current study, we tested for associations between polygenic risk for psychiatric disorders and substance involvement (i.e., ranging from ever-use to severe dependence) among 2573 non-Hispanic European-American participants from the Study of Addiction: Genetics and Environment. Polygenic risk scores (PRS) for cross-disorder psychopathology (CROSS) were generated based on the Psychiatric Genomics Consortium's Cross-Disorder meta-analysis and then tested for associations with a factor representing general liability to alcohol, cannabis, cocaine, nicotine, and opioid involvement (GENSUB). Follow-up analyses evaluated specific associations between each of the five psychiatric disorders which comprised CROSS-attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (AUT), bipolar disorder (BIP), major depressive disorder (MDD), and schizophrenia (SCZ)-and involvement with each component substance included in GENSUB. CROSS PRS explained 1.10% of variance in GENSUB in our sample (p cannabis use, (B) MDD PRS and severe cocaine dependence, (C) SCZ PRS and non-problem cannabis use and severe cannabis dependence, and (D) SCZ PRS and severe cocaine dependence. These results suggest that shared covariance from common genetic variation contributes to psychiatric and substance involvement comorbidity.

  12. Genetics of aggression.

    Science.gov (United States)

    Anholt, Robert R H; Mackay, Trudy F C

    2012-01-01

    Aggression mediates competition for food, mating partners, and habitats and, among social animals, establishes stable dominance hierarchies. In humans, abnormal aggression is a hallmark of neuropsychiatric disorders and can be elicited by environmental factors acting on an underlying genetic susceptibility. Identifying the genetic architecture that predisposes to aggressive behavior in people is challenging because of difficulties in quantifying the phenotype, genetic heterogeneity, and uncontrolled environmental conditions. Studies on mice have identified single-gene mutations that result in hyperaggression, contingent on genetic background. These studies can be complemented by systems genetics approaches in Drosophila melanogaster, in which mutational analyses together with genome-wide transcript analyses, artificial selection studies, and genome-wide analysis of epistasis have revealed that a large segment of the genome contributes to the manifestation of aggressive behavior with widespread epistatic interactions. Comparative genomic analyses based on the principle of evolutionary conservation are needed to enable a complete dissection of the neurogenetic underpinnings of this universal fitness trait.

  13. Genetic Susceptibility and Neurotransmitters in Tourette Syndrome

    NARCIS (Netherlands)

    Paschou, Peristera; Fernandez, Thomas V.; Sharp, Frank; Heiman, Gary A.; Hoekstra, Pieter J.; Martino, D; Cavanna, AE

    2013-01-01

    Family studies have consistently shown that Tourette syndrome (TS) is a familial disorder and twin studies have clearly indicated a genetic contribution in the etiology of TS. Whereas early segregation studies of TS suggested a single-gene autosomal dominant disorder, later studies have pointed to

  14. Genetic and environmental overlap between borderline personality disorder traits and psychopathy: evidence for promotive effects of factor 2 and protective effects of factor 1.

    Science.gov (United States)

    Hunt, E; Bornovalova, M A; Patrick, C J

    2015-05-01

    Previous studies have reported strong genetic and environmental overlap between antisocial-externalizing (factor 2; F2) features of psychopathy and borderline personality disorder (BPD) tendencies. However, this line of research has yet to examine etiological associations of affective-interpersonal (factor 1, F1) features of psychopathy with BPD tendencies. The current study investigated differential phenotypic and genetic overlap of psychopathy factors 1 and 2 with BPD tendencies in a sample of over 250 male and female community-recruited adult twin pairs. Consistent with previous research, biometric analyses revealed strong genetic and non-shared environmental correlations of F2 with BPD tendencies, suggesting that common genetic and non-shared environmental factors contribute to both phenotypes. In contrast, negative genetic and non-shared environmental correlations were observed between F1 and BPD tendencies, indicating that the genetic factors underlying F1 serve as protective factors against BPD. No gender differences emerged in the analyses. These findings provide further insight into associations of psychopathic features - F1 as well as F2 - and BPD tendencies. Implications for treatment and intervention are discussed, along with how psychopathic traits may differentially influence the manifestation of BPD tendencies.

  15. Shared genetic influences between dimensional ASD and ADHD symptoms during child and adolescent development.

    Science.gov (United States)

    Stergiakouli, Evie; Davey Smith, George; Martin, Joanna; Skuse, David H; Viechtbauer, Wolfgang; Ring, Susan M; Ronald, Angelica; Evans, David E; Fisher, Simon E; Thapar, Anita; St Pourcain, Beate

    2017-01-01

    Shared genetic influences between attention-deficit/hyperactivity disorder (ADHD) symptoms and autism spectrum disorder (ASD) symptoms have been reported. Cross-trait genetic relationships are, however, subject to dynamic changes during development. We investigated the continuity of genetic overlap between ASD and ADHD symptoms in a general population sample during childhood and adolescence. We also studied uni- and cross-dimensional trait-disorder links with respect to genetic ADHD and ASD risk. Social-communication difficulties ( N  ≤ 5551, Social and Communication Disorders Checklist, SCDC) and combined hyperactive-impulsive/inattentive ADHD symptoms ( N  ≤ 5678, Strengths and Difficulties Questionnaire, SDQ-ADHD) were repeatedly measured in a UK birth cohort (ALSPAC, age 7 to 17 years). Genome-wide summary statistics on clinical ASD (5305 cases; 5305 pseudo-controls) and ADHD (4163 cases; 12,040 controls/pseudo-controls) were available from the Psychiatric Genomics Consortium. Genetic trait variances and genetic overlap between phenotypes were estimated using genome-wide data. In the general population, genetic influences for SCDC and SDQ-ADHD scores were shared throughout development. Genetic correlations across traits reached a similar strength and magnitude (cross-trait r g  ≤ 1, p min   =  3 × 10 -4 ) as those between repeated measures of the same trait (within-trait r g  ≤ 0.94, p min   =  7 × 10 -4 ). Shared genetic influences between traits, especially during later adolescence, may implicate variants in K-RAS signalling upregulated genes ( p -meta = 6.4 × 10 -4 ). Uni-dimensionally, each population-based trait mapped to the expected behavioural continuum: risk-increasing alleles for clinical ADHD were persistently associated with SDQ-ADHD scores throughout development (marginal regression R 2  = 0.084%). An age-specific genetic overlap between clinical ASD and social-communication difficulties

  16. Recent developments in the genetics of schizophrenia.

    Science.gov (United States)

    Shastry, B S

    1999-09-01

    Schizophrenia, which is also called "split personality," is a complex and multifactorial mental disorder with variable clinical manifestations. It perhaps represents several diseases and occurs throughout the world. It is a more-prevalent disorder among homeless people and is clinically characterized by hallucinations and delusions. The pathophysiology of schizophrenia is not localized to a single region of the brain and the etiology of this illness is not understood. Because of its complex pattern of inheritance, genetic techniques are not readily applicable in identifying the genes responsible for this disorder. Family, twin, and adoption studies, however, provide strong but indirect support for genetic components in the etiology of schizophrenia. Extensive linkage analyses now suggest that susceptibility genes may be present on chromosomes 5q, 6p, 8p, 13q, 18p, and 22q. Identification and characterization of these and other genes, as well as non-genetic factors, is one of the greatest challenges in biomedicine. This may ultimately lead to the development of a new line of effective and safe drugs or treatments for its prevention or cure.

  17. Ethical guidelines in genetics and genomics. An Islamic perspective.

    Science.gov (United States)

    Al-Aqeel, Aida I

    2005-12-01

    We are at a time of unprecedented increase in knowledge of rapidly changing technology. Such biotechnology especially when it involves human subjects raises complex ethical, legal, social and religious issues. A World Health Organization expert consultation concluded that "genetics advances will only be acceptable if their application is carried out ethically, with due regard to autonomy, justice, education and the beliefs and resources of each nation and community." Public health authorities are increasingly concerned by the high rate of births with genetic disorders especially in developing countries where Muslims are a majority. Therefore, it is imperative to scrutinize the available methods of prevention and management of genetic disorders. A minimum level of cultural awareness is a necessary prerequisite for the delivery of care that is culturally sensitive, especially in Islamic countries. Islam presents a complete moral, ethical, and medical framework, it is a religion which encompasses the secular with the spiritual, the mundane with the celestial and hence forms the basis of the ethical, moral and even juridical attitudes and laws towards any problem or situation. Islamic teachings carry a great deal of instructions for health promotion and disease prevention including hereditary and genetic disorders, therefore, we will discuss how these teachings play an important role in the diagnostic, management and preventive measures including: genomic research; population genetic screening pre-marital screening, pre-implantation genetic diagnosis; assisted reproduction technology; stem cell therapy; genetic counseling and others.

  18. Genetics Home Reference: paroxysmal extreme pain disorder

    Science.gov (United States)

    ... include changes in temperature (such as a cold wind) and emotional distress as well as eating spicy ... find a genetics professional in my area? Other Names for This Condition familial rectal pain PEPD PEXPD ...

  19. Derivation of HVR1, HVR2 and HVR3 human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis (PGD) for monogenic disorder

    OpenAIRE

    Abdelkrim Hmadcha; Yolanda Aguilera; Maria Dolores Lozano-Arana; Nuria Mellado; Javier Sánchez; Cristina Moya; Luis Sánchez-Palazón; Jose Palacios; Guillermo Antiñolo; Bernat Soria

    2016-01-01

    From 106 human blastocyts donate for research after in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for monogenetic disorder, 3 human embryonic stem cells (hESCs) HVR1, HVR2 and HVR3 were successfully derived. HVR1 was assumed to be genetically normal, HVR2 carrying Becker muscular dystrophy and HVR3 Hemophilia B. Despite the translocation t(9;15)(q34.3;q14) detected in HVR2, all the 3 cell lines were characterised in vitro and in vivo as normal hESCs lines and were r...

  20. Genetics Home Reference: Paget disease of bone

    Science.gov (United States)

    ... is most common in people of western European heritage. Early-onset Paget disease of bone is much rarer. This form of the disorder has been reported in only a few families. Related Information What information about a genetic condition can statistics provide? Why are some genetic ...

  1. The death(s) of close friends and family moderate genetic influences on symptoms of major depressive disorder in adolescents.

    Science.gov (United States)

    Gheyara, S; Klump, K L; McGue, M; Iacono, W G; Burt, S A

    2011-04-01

    Prior work has suggested that genetic influences on major depressive disorder (MDD) may be activated by the experience of negative life events. However, it is unclear whether these results persist when controlling for the possibility of confounding active gene-environment correlations (rGE). We examined a sample of 1230 adopted and biological siblings between the ages of 10 and 20 years from the Sibling Interaction and Behavior Study. MDD was measured via a lifetime DSM-IV symptom count. Number of deaths experienced served as our environmental risk experience. Because this variable is largely independent of the individual's choices/behaviors, we were able to examine gene-environment interactions while circumventing possible rGE confounds. Biometric analyses revealed pronounced linear increases in the magnitude of genetic influences on symptoms of MDD with the number of deaths experienced, such that genetic influences were estimated to be near-zero for those who had experienced no deaths but were quite large in those who had experienced two or more deaths (i.e. accounting for roughly two-thirds of the phenotypic variance). By contrast, shared and non-shared environmental influences on symptoms of MDD were not meaningfully moderated by the number of deaths experienced. Such results constructively replicate prior findings of genetic moderation of depressive symptoms by negative life events, thereby suggesting that this effect is not a function of active rGE confounds. Our findings are thus consistent with the notion that exposure to specific negative life events may serve to activate genetic risk for depression during adolescence.

  2. Monoamine Oxidase-A Genetic Variants and Childhood Abuse Predict Impulsiveness in Borderline Personality Disorder.

    Science.gov (United States)

    Kolla, Nathan J; Meyer, Jeffrey; Sanches, Marcos; Charbonneau, James

    2017-11-30

    Impulsivity is a core feature of borderline personality disorder (BPD) and antisocial personality disorder (ASPD) that likely arises from combined genetic and environmental influences. The interaction of the low activity variant of the monoamine oxidase-A (MAOA-L) gene and early childhood adversity has been shown to predict aggression in clinical and non-clinical populations. Although impulsivity is a risk factor for aggression in BPD and ASPD, little research has investigated potential gene-environment (G×E) influences impacting its expression in these conditions. Moreover, G×E interactions may differ by diagnosis. Full factorial analysis of variance was employed to investigate the influence of monoamine oxidase-A (MAO-A) genotype, childhood abuse, and diagnosis on Barratt Impulsiveness Scale-11 (BIS-11) scores in 61 individuals: 20 subjects with BPD, 18 subjects with ASPD, and 23 healthy controls. A group×genotype×abuse interaction was present (F(2,49)=4.4, p =0.018), such that the interaction of MAOA-L and childhood abuse predicted greater BIS-11 motor impulsiveness in BPD. Additionally, BPD subjects reported higher BIS-11 attentional impulsiveness versus ASPD participants (t(1,36)=2.3, p =0.025). These preliminary results suggest that MAOA-L may modulate the impact of childhood abuse on impulsivity in BPD. Results additionally indicate that impulsiveness may be expressed differently in BPD and ASPD.

  3. Whole genome amplification in preimplantation genetic diagnosis*

    Science.gov (United States)

    Zheng, Ying-ming; Wang, Ning; Li, Lei; Jin, Fan

    2011-01-01

    Preimplantation genetic diagnosis (PGD) refers to a procedure for genetically analyzing embryos prior to implantation, improving the chance of conception for patients at high risk of transmitting specific inherited disorders. This method has been widely used for a large number of genetic disorders since the first successful application in the early 1990s. Polymerase chain reaction (PCR) and fluorescent in situ hybridization (FISH) are the two main methods in PGD, but there are some inevitable shortcomings limiting the scope of genetic diagnosis. Fortunately, different whole genome amplification (WGA) techniques have been developed to overcome these problems. Sufficient DNA can be amplified and multiple tasks which need abundant DNA can be performed. Moreover, WGA products can be analyzed as a template for multi-loci and multi-gene during the subsequent DNA analysis. In this review, we will focus on the currently available WGA techniques and their applications, as well as the new technical trends from WGA products. PMID:21194180

  4. Genetics of complex diseases

    DEFF Research Database (Denmark)

    Mellerup, Erling; Møller, Gert Lykke; Koefoed, Pernille

    2012-01-01

    A complex disease with an inheritable component is polygenic, meaning that several different changes in DNA are the genetic basis for the disease. Such a disease may also be genetically heterogeneous, meaning that independent changes in DNA, i.e. various genotypes, can be the genetic basis...... for the disease. Each of these genotypes may be characterized by specific combinations of key genetic changes. It is suggested that even if all key changes are found in genes related to the biology of a certain disease, the number of combinations may be so large that the number of different genotypes may be close...... to the number of patients suffering from the disease. This hypothesis is based on a study of bipolar disorder....

  5. Advances in preimplantation genetic diagnosis/screening.

    Science.gov (United States)

    Yan, LiYing; Wei, Yuan; Huang, Jin; Zhu, XiaoHui; Shi, XiaoDan; Xia, Xi; Yan, Jie; Lu, CuiLing; Lian, Ying; Li, Rong; Liu, Ping; Qiao, Jie

    2014-07-01

    Preimplantation genetic diagnosis (PGD) gives couples who have a high risk of transmitting genetic disorders to their baby the chance to have a healthy offspring through embryo genetic analysis and selection. Preimplantation genetic screening (PGS) is an effective method to select euploid embryos that may prevent repeated implantation failure or miscarriage. However, how and to whom PGS should be provided is a controversial topic. The first successful case of PGD of a human being was reported in 1990, and there have been tremendous improvements in this technology since then. Both embryo biopsy and genetic technologies have been improved dramatically, which increase the accuracy and expand the indications of PGD/PGS.

  6. Monoamine Oxidase A in Antisocial Personality Disorder and Borderline Personality Disorder.

    Science.gov (United States)

    Kolla, Nathan J; Vinette, Sarah A

    2017-01-01

    Variation in the monoamine oxidase A (MAO-A) gene and MAO-A enzyme levels have been linked to antisocial behavior and aggression in clinical and non-clinical populations. Here, we provide an overview of the genetic, epigenetic, and neuroimaging research that has examined MAO-A structure and function in antisocial personality disorder (ASPD) and borderline personality disorder (BPD). The low-activity MAO-A variable nucleotide tandem repeat genetic polymorphism has shown a robust association with large samples of violent and seriously violent offenders, many of whom had ASPD. A recent positron emission tomography (PET) study of ASPD similarly revealed low MAO-A density in brain regions thought to contribute to the psychopathology of the condition. By contrast, PET has also demonstrated that brain MAO-A levels are increased in BPD and that they relate to symptoms of low mood and suicidality. Candidate gene studies have produced the most compelling evidence connecting MAO-A genetic variants to both ASPD and BPD. Still, conflicting results abound in the literature, making it highly unlikely that ASPD or BPD is related to a specific MAO-A genetic variant. Future research should strive to examine how MAO-A genotypes interact with broad-spectrum environmental influences to produce brain endophenotypes that may ultimately become tractable targets for novel treatment strategies.

  7. Searching for an environmental effect of parental alcoholism on offspring alcohol use disorder: A genetically-informed study of children of alcoholics

    Science.gov (United States)

    Slutske, Wendy S.; D’Onofrio, Brian M.; Turkheimer, Eric; Emery, Robert E.; Harden, K. Paige; Heath, Andrew C.; Martin, Nicholas G.

    2009-01-01

    The children-of-twins design was used to isolate a potentially causal environmental impact of having an alcoholic parent on offspring alcohol use disorder by examining whether the children of alcoholics were at a higher risk for alcohol use disorders than the children of non-alcoholic parents even after correlated familial factors were controlled. Participants were 1,224 male and female twins from 836 twin pairs selected from the Australian Twin Registry, 2,334 of their 18–39 year-old offspring, and 983 spouses of the twins. Lifetime histories of DSM-IV alcohol use disorders were obtained by structured psychiatric telephone interviews conducted individually with each of the family members. Comparisons of the offspring of twins discordant for alcoholism indicated that there was no longer a statistically significant difference between the children of alcoholics and the children of non-alcoholics after genetic and family environmental factors correlated with having an alcoholic parent were controlled. The results of this study suggest that the direct causal effect of being exposed to an alcoholic parent on offspring alcohol use disorder is modest at best. PMID:18729607

  8. Genetics Home Reference: piebaldism

    Science.gov (United States)

    ... be a feature of other conditions, such as Waardenburg syndrome ; these conditions have other genetic causes and additional ... 140S. Review. Citation on PubMed Spritz RA. Piebaldism, Waardenburg syndrome, and related disorders of melanocyte development. Semin Cutan ...

  9. Genetics Home Reference: rhabdoid tumor predisposition syndrome

    Science.gov (United States)

    ... rare type of ovarian cancer called small cell cancer of the ovary hypercalcemic type (SCCOHT). Related Information What does it mean if a disorder seems to run in my family? What is the prognosis of a genetic condition? Genetic ... Cancer Institute: Childhood Central Nervous System Atypical Teratoid/Rhabdoid ...

  10. A functionalist perspective on social anxiety and avoidant personality disorder.

    Science.gov (United States)

    Lafreniere, Peter

    2009-01-01

    A developmental-evolutionary perspective is used to synthesize basic research from the neurosciences, ethology, genetics, and developmental psychology into a unified framework for understanding the nature and origins of social anxiety and avoidant personality disorder. Evidence is presented that social anxiety disorder (social phobia) and avoidant personality disorder may be alternate conceptualizations of the same disorder because they have virtually the same symptoms and genetic basis, and respond to the same pharmacologic and psychotherapeutic interventions. A functionalist perspective on social anxiety is formulated to (a) explain the origins of normative states of anxiety, (b) outline developmental pathways in the transition from normative anxiety to social anxiety and avoidant personality disorders, and (c) account for the processes leading to gender-differentiated patterns of anxiety-related disorders after puberty.

  11. Genetics Home Reference: neutral lipid storage disease with myopathy

    Science.gov (United States)

    ... named? Additional Information & Resources MedlinePlus (6 links) Encyclopedia: Hypothyroidism Encyclopedia: Type 2 Diabetes Health Topic: Cardiomyopathy Health Topic: Lipid Metabolism Disorders Health Topic: Muscle Disorders Health Topic: Pancreatitis Genetic and Rare Diseases ...

  12. Combinations of Genetic Data Present in Bipolar Patients, but Absent in Control Persons

    DEFF Research Database (Denmark)

    Mellerup, E; Andreassen, OA; Bennike, B.

    2015-01-01

    The main objective of the study was to find combinations of genetic variants significantly associated with bipolar disorder. In a previous study of bipolar disorder, combinations of three single nucleotide polymorphism (SNP) genotypes taken from 803 SNPs were analyzed, and four clusters of combin......The main objective of the study was to find combinations of genetic variants significantly associated with bipolar disorder. In a previous study of bipolar disorder, combinations of three single nucleotide polymorphism (SNP) genotypes taken from 803 SNPs were analyzed, and four clusters...

  13. Genetic variants associated with sleep disorders.

    Science.gov (United States)

    Kripke, Daniel F; Kline, Lawrence E; Nievergelt, Caroline M; Murray, Sarah S; Shadan, Farhad F; Dawson, Arthur; Poceta, J Steven; Cronin, John; Jamil, Shazia M; Tranah, Gregory J; Loving, Richard T; Grizas, Alexandra P; Hahn, Elizabeth K

    2015-02-01

    The diagnostic boundaries of sleep disorders are under considerable debate. The main sleep disorders are partly heritable; therefore, defining heritable pathophysiologic mechanisms could delineate diagnoses and suggest treatment. We collected clinical data and DNA from consenting patients scheduled to undergo clinical polysomnograms, to expand our understanding of the polymorphisms associated with the phenotypes of particular sleep disorders. Patients at least 21 years of age were recruited to contribute research questionnaires, and to provide access to their medical records, saliva for deoxyribonucleic acid (DNA), and polysomnographic data. From these complex data, 38 partly overlapping phenotypes were derived indicating complaints, subjective and objective sleep timing, and polysomnographic disturbances. A custom chip was used to genotype 768 single-nucleotide polymorphisms (SNPs). Additional assays derived ancestry-informative markers (eg, 751 participants of European ancestry). Linear regressions controlling for age, gender, and ancestry were used to assess the associations of each phenotype with each of the SNPs, highlighting those with Bonferroni-corrected significance. In peroxisome proliferator-activated receptor gamma, coactivator 1 beta (PPARGC1B), rs6888451 was associated with several markers of obstructive sleep apnea. In aryl hydrocarbon receptor nuclear translocator-like (ARNTL), rs10766071 was associated with decreased polysomnographic sleep duration. The association of rs3923809 in BTBD9 with periodic limb movements in sleep was confirmed. SNPs in casein kinase 1 delta (CSNK1D rs11552085), cryptochrome 1 (CRY1 rs4964515), and retinoic acid receptor-related orphan receptor A (RORA rs11071547) were less persuasively associated with sleep latency and time of falling asleep. SNPs associated with several sleep phenotypes were suggested, but due to risks of false discovery, independent replications are needed before the importance of these associations

  14. Genetic basis of autism: is there a way forward?

    Science.gov (United States)

    Eapen, Valsamma

    2011-05-01

    This paper outlines some of the key findings from genetic research carried out in the last 12-18 months, which indicate that autism spectrum disorder (ASD) is a complex disorder involving interactions between genetic, epigenetic and environmental factors. The current literature highlights the presence of genetic and phenotypic heterogeneity in ASD with a number of underlying pathogenetic mechanisms. In this regard, there are at least three phenotypic presentations with distinct genetic underpinnings: autism plus phenotype characterized by syndromic ASD caused by rare, single-gene disorders; broad autism phenotype caused by genetic variations in single or multiple genes, each of these variations being common and distributed continually in the general population, but resulting in varying clinical phenotypes when it reaches a certain threshold through complex gene-gene and gene-environment interactions; and severe and specific phenotype caused by 'de-novo' mutations in the patient or transmitted through asymptomatic carriers of such mutation. Understanding the neurobiological processes by which genotypes become phenotypes, along with the advances in developmental neuroscience and neuronal networks at the cellular and molecular level, is paving the way for translational research involving targeted interventions of affected molecular pathways and early intervention programs that promote normal brain responses to stimuli and alter the developmental trajectory.

  15. Childhood socioeconomic status and longitudinal patterns of alcohol problems: Variation across etiological pathways in genetic risk.

    Science.gov (United States)

    Barr, Peter B; Silberg, Judy; Dick, Danielle M; Maes, Hermine H

    2018-05-14

    Childhood socioeconomic status (SES) is an important aspect of early life environment associated with later life health/health behaviors, including alcohol misuse. However, alcohol misuse is modestly heritable and involves differing etiological pathways. Externalizing disorders show significant genetic overlap with substance use, suggesting an impulsivity pathway to alcohol misuse. Alcohol misuse also overlaps with internalizing disorders, suggesting alcohol is used to cope. These differing pathways could lead to different patterns over time and/or differential susceptibility to environmental conditions, such as childhood SES. We examine whether: 1) genetic risk for externalizing and internalizing disorders influence trajectories of alcohol problems across adolescence to adulthood, 2) childhood SES alters genetic risk these disorders on trajectories of alcohol problems, and 3) these patterns are consistent across sex. We find modest evidence of gene-environment interaction. Higher childhood SES increases the risk of alcohol problems in late adolescence/early adulthood, while lower childhood SES increases the risk of alcohol problems in later adulthood, but only among males at greater genetic risk of externalizing disorders. Females from lower SES families with higher genetic risk of internalizing or externalizing disorders have greater risk of developing alcohol problems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Biomarkers of brain function in psychosis and their genetic basis

    OpenAIRE

    Ranlund, S. M.

    2016-01-01

    Psychotic disorders, including schizophrenia and bipolar disorder, are amongst the most severe and enduring mental illnesses. Recent research has identified several genetic variants associated with an increased risk of developing psychosis; however, it remains largely unknown how these lead to the illness. This is where endophenotypes – heritable traits associated with the illness and observed in unaffected family members of patients – could be valuable. Endophenotypes are linked to the genet...

  17. Shared heritability of attention-deficit/hyperactivity disorder and autism spectrum disorder.

    Science.gov (United States)

    Rommelse, Nanda N J; Franke, Barbara; Geurts, Hilde M; Hartman, Catharina A; Buitelaar, Jan K

    2010-03-01

    Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are both highly heritable neurodevelopmental disorders. Evidence indicates both disorders co-occur with a high frequency, in 20-50% of children with ADHD meeting criteria for ASD and in 30-80% of ASD children meeting criteria for ADHD. This review will provide an overview on all available studies [family based, twin, candidate gene, linkage, and genome wide association (GWA) studies] shedding light on the role of shared genetic underpinnings of ADHD and ASD. It is concluded that family and twin studies do provide support for the hypothesis that ADHD and ASD originate from partly similar familial/genetic factors. Only a few candidate gene studies, linkage studies and GWA studies have specifically addressed this co-occurrence, pinpointing to some promising pleiotropic genes, loci and single nucleotide polymorphisms (SNPs), but the research field is in urgent need for better designed and powered studies to tackle this complex issue. We propose that future studies examining shared familial etiological factors for ADHD and ASD use a family-based design in which the same phenotypic (ADHD and ASD), candidate endophenotypic, and environmental measurements are obtained from all family members. Multivariate multi-level models are probably best suited for the statistical analysis.

  18. Genetics Home Reference: carbamoyl phosphate synthetase I deficiency

    Science.gov (United States)

    ... belongs to a class of genetic diseases called urea cycle disorders. In this condition, the carbamoyl phosphate synthetase I ... Management Resources (4 links) Baby's First Test GeneReview: Urea Cycle Disorders Overview MedlinePlus Encyclopedia: Hereditary Urea Cycle Abnormality National ...

  19. Multivariate imaging-genetics study of MRI gray matter volume and SNPs reveals biological pathways correlated with brain structural differences in Attention Deficit Hyperactivity Disorder

    Directory of Open Access Journals (Sweden)

    Sabin Khadka

    2016-07-01

    Full Text Available Background: Attention Deficit Hyperactivity Disorder (ADHD is a prevalent neurodevelopmental disorder affecting children, adolescents, and adults. Its etiology is not well-understood, but it is increasingly believed to result from diverse pathophysiologies that affect the structure and function of specific brain circuits. Although one of the best-studied neurobiological abnormalities in ADHD is reduced fronto-striatal-cerebellar gray matter volume, its specific genetic correlates are largely unknown. Methods: In this study, T1-weighted MR images of brain structure were collected from 198 adolescents (63 ADHD-diagnosed. A multivariate parallel independent component analysis technique (Para-ICA identified imaging-genetic relationships between regional gray matter volume and single nucleotide polymorphism data. Results: Para-ICA analyses extracted 14 components from genetic data and 9 from MR data. An iterative cross-validation using randomly-chosen sub-samples indicated acceptable stability of these ICA solutions. A series of partial correlation analyses controlling for age, sex, and ethnicity revealed two genotype-phenotype component pairs significantly differed between ADHD and non-ADHD groups, after a Bonferroni correction for multiple comparisons. The brain phenotype component not only included structures frequently found to have abnormally low volume in previous ADHD studies, but was also significantly associated with ADHD differences in symptom severity and performance on cognitive tests frequently found to be impaired in patients diagnosed with the disorder. Pathway analysis of the genotype component identified several different biological pathways linked to these structural abnormalities in ADHD. Conclusions: Some of these pathways implicate well-known dopaminergic neurotransmission and neurodevelopment hypothesized to be abnormal in ADHD. Other more recently implicated pathways included glutamatergic and GABA-eric physiological systems

  20. Tests for genetic interactions in type 1 diabetes

    DEFF Research Database (Denmark)

    Morahan, Grant; Mehta, Munish; James, Ian

    2011-01-01

    Interactions between genetic and environmental factors lead to immune dysregulation causing type 1 diabetes and other autoimmune disorders. Recently, many common genetic variants have been associated with type 1 diabetes risk, but each has modest individual effects. Familial clustering of type 1...... diabetes has not been explained fully and could arise from many factors, including undetected genetic variation and gene interactions....