WorldWideScience

Sample records for genetic diagnosis pgd

  1. Attitudes Toward Pre-implantation Genetic Diagnosis (PGD) for Genetic Disorders Among Potential Users in Malaysia.

    Science.gov (United States)

    Olesen, Angelina Patrick; Nor, Siti Nurani Mohd; Amin, Latifah

    2016-02-01

    While pre-implantation genetic diagnosis (PGD) is available and legal in Malaysia, there is an ongoing controversy debate about its use. There are few studies available on individuals' attitudes toward PGD, particularly among those who have a genetic disease, or whose children have a genetic disease. To the best of our knowledge, this is, in fact, the first study of its kind in Malaysia. We conducted in-depth interviews, using semi-structured questionnaires, with seven selected potential PGD users regarding their knowledge, attitudes and decisions relating to the use PGD. The criteria for selecting potential PGD users were that they or their children had a genetic disease, and they desired to have another child who would be free of genetic disease. All participants had heard of PGD and five of them were considering its use. The participants' attitudes toward PGD were based on several different considerations that were influenced by various factors. These included: the benefit-risk balance of PGD, personal experiences of having a genetic disease, religious beliefs, personal values and cost. The study's findings suggest that the selected Malaysian participants, as potential PGD users, were supportive but cautious regarding the use of PGD for medical purposes, particularly in relation to others whose experiences were similar. More broadly, the paper highlights the link between the participants' personal experiences and their beliefs regarding the appropriateness, for others, of individual decision-making on PGD, which has not been revealed by previous studies.

  2. Knowledge and Educational Needs about Pre-Implantation Genetic Diagnosis (PGD among Oncology Nurses

    Directory of Open Access Journals (Sweden)

    Gwendolyn P. Quinn

    2014-06-01

    Full Text Available Preimplantation genetic diagnosis (PGD, a form of assisted reproductive technology, is a new technology with limited awareness among health care professionals and hereditary cancer families. Nurses play a key role in the care of patients and are often in an ideal position to discuss and refer patients on sensitive quality of life issues, such as PGD. Two hundred and one nurses at Moffitt Cancer Center (MCC responded to an online survey assessing knowledge and educational needs regarding PGD and families with hereditary cancer. The majority of respondents were female (n = 188, white (n = 175, had an RN/BSN degree (n = 83, and provided outpatient care at the cancer center (n = 102. More than half of respondents (78% were unfamiliar with PGD prior to the survey and respondents who had heard of PGD had limited knowledge. More than half of the participants reported PGD was an acceptable option for families with hereditary cancer syndromes and thought individuals with a strong family or personal history should be provided with information about PGD. This study indicates that oncology nurses may benefit from and desire education about PGD. With advances in reproductive technology and options, further PGD education is needed among healthcare professionals. An examination of current oncology nursing curriculum and competencies regarding genetic education may identify need for future revisions and updates.

  3. Preimplantation genetic diagnosis (PGD) for HLA typing: bases for setting up an open international collaboration when PGD is not available.

    Science.gov (United States)

    Bellavia, Marina; Von Der Weid, Nicolas; Peddes, Christina; Jacquemont, Sebastien; Liebaers, Inge; Hohlfeld, Patrick; Wunder-Galié, Dorothea; de Ziegler, Dominique

    2010-08-01

    In severe forms of Diamond-Blackfan anemia, preimplantation genetic diagnosis (PGD) of histocompatibility leukocyte antigen-compatible embryos for enabling the next sibling in the family to be a stem-cell transplantation donor constitutes the sole lasting cure capable of terminating the enduring need for iterative transfusions. We report here an open collaboration between two renowned institutions to provide a family desiring this treatment even though they resided where the preimplantation genetic diagnosis procedure is banned. Copyright (c) 2010 American Society for Reproductive Medicine. All rights reserved.

  4. ESHRE PGD Consortium/Embryology Special Interest Group--best practice guidelines for polar body and embryo biopsy for preimplantation genetic diagnosis/screening (PGD/PGS)

    DEFF Research Database (Denmark)

    Harton, G L; Magli, M C; Lundin, K

    2011-01-01

    In 2005, the European Society for Human Reproduction and Embryology (ESHRE) Preimplantation Genetic Diagnosis (PGD) Consortium published a set of Guidelines for Best Practice to give information, support and guidance to potential, existing and fledgling PGD programmes (Thornhill AR, De Die...... have seen the introduction of a number of new technologies as well as the evolution of current techniques. Additionally, in light of ESHRE's recent advice on how practice guidelines should be written and formulated, the Consortium believed it was timely to revise and update the PGD guidelines. Rather...

  5. Accuracy of preimplantation genetic diagnosis (PGD) of single gene and chromosomal disorders

    Energy Technology Data Exchange (ETDEWEB)

    Verlinsky, Y.; Strom, C.; Rechitsky, S. [Reproductive Genetics Institute, Chicage, IL (United States)] [and others

    1994-09-01

    We have developed a polar body inferred approach for preconception diagnosis of single gene and chromosomal disorders. Preconception PCR or FISH analysis was performed in a total of 310 first polar bodies for the following genetic conditions: cystic fibrosis, hemophilia A, alpha-1-antitrypsin deficiency, Tay Sachs disease, retinitis pigmentosa and common chromosomal trisomies. An important advantage of this approach is the avoidance of sperm (DNA) contamination, which is the major problem of PGD. We are currently applying FISH analysis of biopsied blastomeres, in combination with PCR or separately, and have demonstrated a significant improvement of the accuracy of PGD of X-linked disorders at this stage. Our data have also demonstrated feasibility of the application of FISH technique for PGD of chromosomal disorders. It was possible to detect chromosomal non-disjunctions and chromatid malsegregations in the first meiotic division, as well as to evaluate chromosomal mutations originating from the second meiotic nondisjunction.

  6. Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic diseases: a collaborative ESHRE PGD consortium study

    Science.gov (United States)

    Dreesen, Jos; Destouni, Aspasia; Kourlaba, Georgia; Degn, Birte; Mette, Wulf Christensen; Carvalho, Filipa; Moutou, Celine; Sengupta, Sioban; Dhanjal, Seema; Renwick, Pamela; Davies, Steven; Kanavakis, Emmanouel; Harton, Gary; Traeger-Synodinos, Joanne

    2014-01-01

    Preimplantation genetic diagnosis (PGD) for monogenic disorders currently involves polymerase chain reaction (PCR)-based methods, which must be robust, sensitive and highly accurate, precluding misdiagnosis. Twelve adverse misdiagnoses reported to the ESHRE PGD-Consortium are likely an underestimate. This retrospective study, involving six PGD centres, assessed the validity of PCR-based PGD through reanalysis of untransferred embryos from monogenic-PGD cycles. Data were collected on the genotype concordance at PGD and follow-up from 940 untransferred embryos, including details on the parameters of PGD cycles: category of monogenic disease, embryo morphology, embryo biopsy and genotype assay strategy. To determine the validity of PCR-based PGD, the sensitivity (Se), specificity (Sp) and diagnostic accuracy were calculated. Stratified analyses were also conducted to assess the influence of the parameters above on the validity of PCR-based PGD. The analysis of overall data showed that 93.7% of embryos had been correctly classified at the time of PGD, with Se of 99.2% and Sp of 80.9%. The stratified analyses found that diagnostic accuracy is statistically significantly higher when PGD is performed on two cells versus one cell (P=0.001). Se was significantly higher when multiplex protocols versus singleplex protocols were applied (P=0.005), as well as for PGD applied on cells from good compared with poor morphology embryos (P=0.032). Morphology, however, did not affect diagnostic accuracy. Multiplex PCR-based methods on one cell, are as robust as those on two cells regarding false negative rate, which is the most important criteria for clinical PGD applications. Overall, this study demonstrates the validity, robustness and high diagnostic value of PCR-based PGD. PMID:24301057

  7. Public Perceptions of Ethical, Legal and Social Implications of Pre-implantation Genetic Diagnosis (PGD) in Malaysia.

    Science.gov (United States)

    Olesen, Angelina P; Mohd Nor, Siti Nurani; Amin, Latifah; Che Ngah, Anisah

    2017-12-01

    Pre-implantation genetic diagnosis (PGD) became well known in Malaysia after the birth of the first Malaysian 'designer baby', Yau Tak in 2004. Two years later, the Malaysian Medical Council implemented the first and only regulation on the use of Pre-implantation Genetic Diagnosis in this country. The birth of Yau Tak triggered a public outcry because PGD was used for non-medical sex selection thus, raising concerns about PGD and its implications for the society. This study aims to explore participants' perceptions of the future implications of PGD for the Malaysian society. We conducted in-depth interviews with 21 participants over a period of one year, using a semi-structured questionnaire. Findings reveal that responses varied substantially among the participants; there was a broad acceptance as well as rejection of PGD. Contentious ethical, legal and social issues of PGD were raised during the discussions, including intolerance to and discrimination against people with genetic disabilities; societal pressure and the 'slippery slope' of PGD were raised during the discussions. This study also highlights participants' legal standpoint, and major issues regarding PGD in relation to the accuracy of diagnosis. At the social policy level, considerations are given to access as well as the impact of this technology on families, women and physicians. Given these different perceptions of the use of PGD, and its implications and conflicts, policies and regulations of the use of PGD have to be dealt with on a case-by-case basis while taking into consideration of the risk-benefit balance, since its application will impact the lives of so many people in the society.

  8. Gonadotropin Releasing Hormone Agonists or Antagonists for Preimplantation Genetic Diagnosis (PGD)? A Prospective Randomised Trial.

    Science.gov (United States)

    Verpoest, Willem; De Vos, Anick; De Rycke, Martine; Parikh, Shruti; Staessen, Catherine; Tournaye, Herman; De Vos, Michel; Vloeberghs, Veerle; Blockeel, Christophe

    2017-11-10

    The use of GnRH analogue medication is essential in reproductive medicine to avoid premature ovulation by pituitary suppression for the duration of ovarian stimulation by gonadotrophins. The type of pituitary suppression by either GnRH agonist analogues versus GnRH antagonist analogues may result in different embryological hence clinical results. Preimplantation genetic diagnosis is a subtype of IVF in which embryos are created for genetic diagnosis of hereditary disorders in order to avoid genetically affected children. Embryological quality hence ovarian stimulation in preimplantation genetic diagnosis is crucial as genetic selection will reduce the number of available embryos to a fraction of the total. The aim of this study was to assess the efficiency of GnRH antagonist versus GnRH agonist treatment for pituitary suppression in ovarian stimulation for PGD, by proxy of number and quality of embryos at cleavage stage available for biopsy. We conducted a prospective randomised controlled trial comparing pituitary suppression by GnRH antagonist versus GnRH agonist in ovarian stimulation for PGD. The primary outcome measure was the number of embryos of sufficient quality for biopsy at cleavage stage. Secondary outcome parameters were the number of blastocysts available of top quality, and clinical pregnancy rate. There was no difference in number of oocytes retrieved, embryos at cleavage stage available for biopsy or embryo quality. The clinical pregnancy rate was higher in the GnRH agonist group; however the sample size was insufficient to allow conclusions. The use of GnRH agonist versus antagonist treatment does not result in differences in a number of oocytes, embryos or embryo quality in ovarian stimulation for preimplantation genetic diagnosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. Religious Scholars' Attitudes and Views on Ethical Issues Pertaining to Pre-Implantation Genetic Diagnosis (PGD) in Malaysia.

    Science.gov (United States)

    Olesen, A; Nor, S N; Amin, L

    2016-09-01

    Pre-Implantation Genetic Diagnosis (PGD) represents the first fusion of genomics and assisted reproduction and the first reproductive technology that allows prospective parents to screen and select the genetic characteristics of their potential offspring. However, for some, the idea that we can intervene in the mechanisms of human existence at such a fundamental level can be, at a minimum, worrying and, at most, repugnant. Religious doctrines particularly are likely to collide with the rapidly advancing capability for science to make such interventions. This paper focuses on opinions and arguments of selected religious scholars regarding ethical issues pertaining to PGD. In-depth interviews were conducted with religious scholars from three different religious organizations in the Klang Valley, Malaysia. Findings showed that Christian scholars are very sceptical of the long-term use of PGD because of its possible effect on the value of humanity and the parent-children relationship. This differs from Islamic scholars, who view PGD as God-given knowledge in medical science to further help humans understand medical genetics. For Buddhist scholars, PGD is considered to be new medical technology that can be used to save lives, avoid suffering, and bring happiness to those who need it. Our results suggest that it is important to include the opinions and views of religious scholars when it comes to new medical technologies such as PGD, as their opinions will have a significant impact on people from various faiths, particularly in a multi-religious country like Malaysia where society places high value on marital relationships and on the traditional concepts of family.

  10. Reproductive Endocrinologists' Utilization of Genetic Counselors for Oncofertility and Preimplantation Genetic Diagnosis (PGD) Treatment of BRCA1/2 Mutation Carriers.

    Science.gov (United States)

    Goetsch, Allison L; Wicklund, Catherine; Clayman, Marla L; Woodruff, Teresa K

    2016-06-01

    Genetic counselors believe fertility preservation and preimplantation genetic diagnosis (PGD) discussions to be a part of their role when counseling BRCA1/2 mutation-positive patients. This study is the first to explore reproductive endocrinologists' (REI) practices and attitudes regarding involvement of genetic counselors in the care of BRCA1/2 mutation carriers seeking fertility preservation and PGD. A survey was mailed to 1000 REIs from Reproductive Endocrinology & Infertility (SREI), an American Society for Reproductive Medicine (ASRM) affiliate group. A 14.5 % response rate was achieved; data was analyzed using SPSS software. The majority of participating REIs were found to recommend genetic counseling to cancer patients considering fertility preservation (82 %) and consult with a genetic counselor regarding PGD for hereditary cancer syndromes (92 %). Additionally, REIs consult genetic counselors regarding PGD patient counseling (88 %), genetic testing (78 %), and general genetics questions (66 %). Two areas genetic counselors may further aid REIs are: elicitation of family history, which is useful to determine fertility preservation and PGD intervention timing (32 % of REIs utilize a cancer family history to determine intervention timing); and, interpretation of variants of uncertain significance (VOUS) as cancer panel genetic testing becomes more common (36 % of REIs are unfamiliar with VOUS). Given our findings, the Oncofertility Consortium® created an online resource for genetic counselors focused on fertility preservation education and communication strategies.

  11. Reproductive Endocrinologists’ Utilization of Genetic Counselors for Oncofertility and Preimplantation Genetic Diagnosis (PGD) Treatment of BRCA1/2 Mutation Carriers

    Science.gov (United States)

    Goetsch, Allison L.; Wicklund, Catherine; Clayman, Marla L.; Woodruff, Teresa K.

    2016-01-01

    Genetic counselors believe fertility preservation and preimplantation genetic diagnosis (PGD) discussions to be a part of their role when counseling BRCA1/2 mutation-positive patients. This study is the first to explore reproductive endocrinologists’ (REI) practices and attitudes regarding involvement of genetic counselors in the care of BRCA1/2 mutation carriers seeking fertility preservation and PGD. A survey was mailed to 1000 REIs from Reproductive Endocrinology & Infertility (SREI), an American Society for Reproductive Medicine (ASRM) affiliate group. A 14.5 % response rate was achieved; data was analyzed using SPSS software. The majority of participating REIs were found to recommend genetic counseling to cancer patients considering fertility preservation (82 %) and consult with a genetic counselor regarding PGD for hereditary cancer syndromes (92 %). Additionally, REIs consult genetic counselors regarding PGD patient counseling (88 %), genetic testing (78 %), and general genetics questions (66 %). Two areas genetic counselors may further aid REIs are: elicitation of family history, which is useful to determine fertility preservation and PGD intervention timing (32 % of REIs utilize a cancer family history to determine intervention timing); and, interpretation of variants of uncertain significance (VOUS) as cancer panel genetic testing becomes more common (36 % of REIs are unfamiliar with VOUS). Given our findings, the Oncofertility Consortium® created an online resource for genetic counselors focused on fertility preservation education and communication strategies. PMID:26567039

  12. Media debates and 'ethical publicity' on social sex selection through preimplantation genetic diagnosis (PGD) technology in Australia.

    Science.gov (United States)

    Whittaker, Andrea

    2015-01-01

    This paper offers a critical discourse analysis of media debate over social sex selection in the Australian media from 2008 to 2014. This period coincides with a review of the National Health and Medical Research Council's Ethical Guidelines on the Use of Assisted Reproductive Technology in Clinical Practice and Research (2007), which underlie the regulation of assisted reproductive clinics and practice in Australia. I examine the discussion of the ethics of pre-implatation genetic diagnosis (PGD) within the media as 'ethical publicity' to the lay public. Sex selection through PGD is both exemplary of and interconnected with a range of debates in Australia about the legitimacy of certain reproductive choices and the extent to which procreative liberties should be restricted. Major themes emerging from media reports on PGD sex selection in Australia are described. These include: the spectre of science out of control; ramifications for the contestation over the public funding of abortion in Australia; private choices versus public authorities regulating reproduction; and the ethics of travelling overseas for the technology. It is concluded that within Australia, the issue of PGD sex selection is framed in terms of questions of individual freedom against the principle of sex discrimination - a principle enshrined in legislation - and a commitment to publically-funded medical care.

  13. The clinical effectiveness of preimplantation genetic diagnosis for aneuploidy in all 24 chromosomes (PGD-A): systematic review.

    Science.gov (United States)

    Lee, Evelyn; Illingworth, Peter; Wilton, Leeanda; Chambers, Georgina Mary

    2015-02-01

    Is preimplantation genetic diagnosis for aneuploidy (PGD-A) with analysis of all chromosomes during assisted reproductive technology (ART) clinically and cost effective? The majority of published studies comparing a strategy of PGD-A with morphologically assessed embryos have reported a higher implantation rate per embryo using PGD-A, but insufficient data has been presented to evaluate the clinical and cost-effectiveness of PGD-A in the clinical setting. Aneuploidy is a leading cause of implantation failure, miscarriage and congenital abnormalities in humans, and a significant cause of ART failure. Preclinical evidence of PGD-A indicates that the selection and transfer of euploid embryos during ART should improve clinical outcomes. A systematic review of the literature was performed for full text English language articles using MEDLINE, EMBASE, SCOPUS, Cochrane Library databases, NHS Economic Evaluation Database and EconLit. The Downs and Black scoring checklist was used to assess the quality of studies. Clinical effectiveness was measured in terms of pregnancy, live birth and miscarriage rates. Nineteen articles meeting the inclusion criteria, comprising three RCTs in young and good prognosis patients and 16 observation studies were identified. Five of the observational studies included a control group of patients where embryos were selected based on morphological criteria (matched cohort studies). Of the five studies that included a control group and reported implantation rates, four studies (including two RCTs) demonstrated improved implantation rates in the PGD-A group. Of the eight studies that included a control group, six studies (including two RCTs) reported significantly higher pregnancy rates in the PGD-A group, and in the remaining two studies, equivalent pregnancies rates were reported despite fewer embryos being transferred in the PGD-A group. The three RCTs demonstrated benefit in young and good prognosis patients in terms of clinical pregnancy rates

  14. Improving preimplantation genetic diagnosis (PGD) reliability by selection of sperm donor with the most informative haplotype.

    Science.gov (United States)

    Malcov, Mira; Gold, Veronica; Peleg, Sagit; Frumkin, Tsvia; Azem, Foad; Amit, Ami; Ben-Yosef, Dalit; Yaron, Yuval; Reches, Adi; Barda, Shimi; Kleiman, Sandra E; Yogev, Leah; Hauser, Ron

    2017-04-26

    The study is aimed to describe a novel strategy that increases the accuracy and reliability of PGD in patients using sperm donation by pre-selecting the donor whose haplotype does not overlap the carrier's one. A panel of 4-9 informative polymorphic markers, flanking the mutation in carriers of autosomal dominant/X-linked disorders, was tested in DNA of sperm donors before PGD. Whenever the lengths of donors' repeats overlapped those of the women, additional donors' DNA samples were analyzed. The donor that demonstrated the minimal overlapping with the patient was selected for IVF. In 8 out of 17 carriers the markers of the initially chosen donors overlapped the patients' alleles and 2-8 additional sperm donors for each patient were haplotyped. The selection of additional sperm donors increased the number of informative markers and reduced misdiagnosis risk from 6.00% ± 7.48 to 0.48% ±0.68. The PGD results were confirmed and no misdiagnosis was detected. Our study demonstrates that pre-selecting a sperm donor whose haplotype has minimal overlapping with the female's haplotype, is critical for reducing the misdiagnosis risk and ensuring a reliable PGD. This strategy may contribute to prevent the transmission of affected IVF-PGD embryos using a simple and economical procedure. All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. DNA testing of donors was approved by the institutional Helsinki committee (registration number 319-08TLV, 2008). The present study was approved by the institutional Helsinki committee (registration number 0385-13TLV, 2013).

  15. Derivation of HVR1, HVR2 and HVR3 human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis (PGD for monogenic disorder

    Directory of Open Access Journals (Sweden)

    Abdelkrim Hmadcha

    2016-05-01

    Full Text Available From 106 human blastocyts donate for research after in vitro fertilization (IVF and preimplantation genetic diagnosis (PGD for monogenetic disorder, 3 human embryonic stem cells (hESCs HVR1, HVR2 and HVR3 were successfully derived. HVR1 was assumed to be genetically normal, HVR2 carrying Becker muscular dystrophy and HVR3 Hemophilia B. Despite the translocation t(9;15(q34.3;q14 detected in HVR2, all the 3 cell lines were characterised in vitro and in vivo as normal hESCs lines and were registered in the Spanish Stem Cell Bank.

  16. Derivation of HVR1, HVR2 and HVR3 human embryonic stem cell lines from IVF embryos after preimplantation genetic diagnosis (PGD) for monogenic disorder

    OpenAIRE

    Abdelkrim Hmadcha; Yolanda Aguilera; Maria Dolores Lozano-Arana; Nuria Mellado; Javier Sánchez; Cristina Moya; Luis Sánchez-Palazón; Jose Palacios; Guillermo Antiñolo; Bernat Soria

    2016-01-01

    From 106 human blastocyts donate for research after in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD) for monogenetic disorder, 3 human embryonic stem cells (hESCs) HVR1, HVR2 and HVR3 were successfully derived. HVR1 was assumed to be genetically normal, HVR2 carrying Becker muscular dystrophy and HVR3 Hemophilia B. Despite the translocation t(9;15)(q34.3;q14) detected in HVR2, all the 3 cell lines were characterised in vitro and in vivo as normal hESCs lines and were r...

  17. [The physician's role in various clinical contexts. Physician counseling on in vitro fertilization (IVF) and preimplantation genetic diagnosis (PGD)].

    Science.gov (United States)

    Kentenich, H; Tandler-Schneider, A

    2012-09-01

    The role of the physician in the context of in vitro fertilization and preimplantation genetic diagnosis has certain distinct characteristics. Involuntary childlessness by definition of the WHO is a disease with good treatment options. As it is not considered a medical emergency, the focus lies more on intensive information giving, education, and counseling. Because the diagnosis and treatment can be a medical and psychological strain for the couple, counseling should address both medical and psychological aspects. The physician needs to have detailed medical knowledge as well as good communication skills to be able to meet the specific needs of the couple. Moreover, the physician should point out the realistic success rates of treatment and should refer to alternatives, such as remaining childless, adoption, and sperm or egg donation. The concurrent inclusion of biological, psychological, social, and ethical aspects in terms of psychosomatic basic care (Psychosomatische Grundversorgung) seems to be useful. There is potential for conflicts, for example, due to the economic interests of the physician. On the other hand, the treatment can be a financial burden for the couple. Of importance are the physician's and the patient's moral concepts, especially concerning some aspects of therapy (sperm and egg donation, surrogacy). The expected welfare of the intended child should also be respected (e.g., higher risk of preterm birth in multiple pregnancies). Further possible conflicts in reproductive medicine arise because of the crossing of moral boundaries (oocyte donation for postmenopausal women, surrogacy, cloning of human beings). The framework of counseling is based on the guidelines of the German Medical Association (Bundesärztekammer) for assisted reproduction (2006). Preimplantation genetic diagnosis has special requirements from a medical and psychosocial point of view.

  18. Pre-term birth and low birth weight following preimplantation genetic diagnosis: analysis of 88 010 singleton live births following PGD and IVF cycles.

    Science.gov (United States)

    Sunkara, Sesh Kamal; Antonisamy, Belavendra; Selliah, Hepsy Y; Kamath, Mohan S

    2017-02-01

    Is PGD associated with the risk of adverse perinatal outcomes such as pre-term birth (PTB) and low birth weight (LBW)? There was no increase in the risk of adverse perinatal outcomes of PTB, and LBW following PGD compared with autologous IVF. Pregnancies resulting from ART are associated with a higher risk of pregnancy complications compared with spontaneously conceived pregnancies. The possible reason of adverse obstetric outcomes following ART has been attributed to the underlying infertility itself and embryo specific epigenetic modifications due to the IVF techniques. It is of interest whether interventions such as embryo biopsy as performed in PGD affect perinatal outcomes. Anonymous data were obtained from the Human Fertilization and Embryology Authority (HFEA), the statutory regulator of ART in the UK. The HFEA has collected data prospectively on all ART performed in the UK since 1991. Data from 1996 to 2011 involving a total of 88 010 singleton live births were analysed including 87 571 following autologous stimulated IVF ± ICSI and 439 following PGD cycles. Data on all women undergoing either a stimulated fresh IVF ± ICSI treatment cycle or a PGD cycle during the period from 1996 to 2011 were analysed to compare perinatal outcomes of PTB and LBW among singleton live births. Logistic regression analysis was performed adjusting for female age category, year of treatment, previous IVF cycles, infertility diagnosis, number of oocytes retrieved, whether IVF or ICSI was used and day of embryo transfer. There was no increase in the risk of PTB and LBW following PGD versus autologous stimulated IVF ± ICSI treatment, unadjusted odds of PTB (odds ratio (OR) 0.68, 95% CI: 0.46-0.99) and LBW (OR 0.56, 95% CI: 0.37-0.85). After adjusting for the potential confounders, there was again no increase in the risk of the adverse perinatal outcomes following PGD: PTB (adjusted odds ratio (aOR) 0.66, 95% CI: 0.45-0.98) and LBW (aOR 0.58, 95% CI: 0.38-0.88). Although the

  19. Psychosocial development of full term singletons, born after preimplantation genetic diagnosis (PGD) at preschool age and family functioning: a prospective case-controlled study and multi-informant approach.

    Science.gov (United States)

    Winter, C; Van Acker, F; Bonduelle, M; Desmyttere, S; Nekkebroeck, J

    2015-05-01

    Do full term singletons born after preimplantation genetic diagnosis (PGD) differ in their psychosocial functioning from children born after intracytoplasmic sperm injection (ICSI) and spontaneous conceived controls (SC)? The psychosocial maturation process of 5-6-year-old PGD children is comparable between the three conception groups (PGD, ICSI and SC). In general, a lot of research has been published regarding follow-up of children born after artificial reproductive technologies (ART), which mainly is reassuring. But the ART population itself is marked by broad diversity [IVF, ICSI, gamete donation, preimplantation genetic screening (PGS) or PGD] which complicates comparisons. Some literature concerning the socio-emotional development of PGD/PGS children is available and it suggests a normal maturation process. However, the complex reality of PGD families (e.g. safety of the technique and psychological burden of genetic histories) asks for an exclusive PGD sample with matched control groups and a multi-informant approach. Between April 2011 and May 2013, the psychosocial wellbeing of preschoolers and their families born after PGD was assessed in a prospective case-controlled, matched follow-up study, with a multi-informant approach. A group of 47 PGD, 50 ICSI and 55 SC 5-6-year-old children participated in a follow-up study performed at the Centre for Medical Genetics of the Universitair Ziekenhuis Brussel (UZ Brussel). Assessments took place in the hospital and in kindergartens. Children performed the Bene-Anthony family relations test (FRT), yielding their perceptions upon family relationships. Parents and teachers completed the child behaviour checklist (CBCL) and Caregiver Teacher Report Form (C-/TRF), respectively. Parental and family functioning were measured by the NEO-FFi, the parenting stress index (PSI), the Greenberger Work-Parenting Investment Questionnaire and the Marlowe-Crowne Social Desirability Scale (MCSDS). Statistical analysis was performed by

  20. Preimplantation genetic diagnosis

    DEFF Research Database (Denmark)

    Bay, Bjorn; Ingerslev, Hans Jakob; Lemmen, Josephine Gabriela

    2016-01-01

    OBJECTIVE: To study whether women conceiving after preimplantation genetic diagnosis (PGD) and their children have greater risks of adverse pregnancy and birth outcomes compared with children conceived spontaneously or after IVF with or without intracytoplasmic sperm injection (ICSI). DESIGN...

  1. Strange bedfellows: the Bundestag’s free vote on pre-implantation genetic diagnosis (PGD reveals how Germany’s restrictive bioethics legislation is shaped by a Christian Democratic/New Left issue-coalition

    Directory of Open Access Journals (Sweden)

    Kai Arzheimer

    2015-08-01

    Full Text Available Germany’s bioethical legislation presents a puzzle: given structural factors, the country should be at the forefront of reproductive medicine, but its embryology regime remains one of the strictest in Western Europe. Past research has linked this fact to an unusual coalition of Christian and New Left groups, which both draw a connection from modern embryology to eugenics under the Nazis. In this article, the workings of this alleged alliance are demonstrated at the micro-level for the first time. The behaviour of individual MPs in a crucial free vote on pre-implantation genetic diagnosis (PGD is modelled using data on their political, sectoral and religious affiliations. Identifying as a Catholic and membership in Christian organisations are strong predictors of resistance to PGD. Even more importantly, net of religious and professional ties, affiliation with either the Christian Democrats or the left-libertarian Green party is closely linked to restrictive bioethical preferences. The modest liberalisation in 2011 was contingent on external factors and the overwhelming support of the historically unusually large FDP delegation. With the FDP no longer represented in parliament and the Christian Democratic/New Left issue coalition even stronger than before, further liberalisation is unlikely.

  2. PGD-ens paradokser

    Directory of Open Access Journals (Sweden)

    Bjørn Hofmann

    2011-10-01

    Full Text Available Bakgrunn: Preimplantasjonsgenetisk diagnostikk (PGD er en genetisk undersøkelse av befruktede egg før de settes inn i livmoren i forbindelse med assistert reproduksjon. Hensikten med PGD er å unngå at det fremtidige barnet får en alvorlig arvelig sykdom, og at par som på grunn av arvelig sykdom har vansker med å få barn, kan få avkom. PGD er kontroversielt og et sentralt tema for den pågående vurderingen og revisjonen av bioteknologiloven.Metode: Paradoksteori anvendes for å identifisere og analysere noen av kontroversene ved PGD. Det skilles mellom tilsynelatende paradokser, antinomier og aporier. Materialet er offentlige dokumenter, debattinnlegg og faglitteratur.Resultater: Det finnes en rekke tilsynelatende paradokser på PGD-ens område, slik som at PGD gjøres selv om det er svært liten sannsynlighet for at det blir født et alvorlig sykt barn, og at det gjøres PGD for mindre alvorlige sykdommer når forutsetningen for PGD er alvorlig arvelig sykdom. Samtidig finnes det også antinomier: At PGD gir rett til helsehjelp uten at det eksisterer noen pasient, og at PGD gjennomføres selv ved høye kostnader og lav suksessrate. Om embryoet og fosteret har moralsk status og rett på beskyttelse, synes å utgjøre en apori.Konklusjon: Å formulere moralske utfordringer som paradokser kan være en fruktbar måte å tydeliggjøre utfordringer og motsetninger på. Dessuten kan det styre innsatsen: Vi bør bestrebe oss på å rydde opp i tilsynelatende paradokser, jobbe hardere med grunnlagsutfordringene ved antinomier og til en viss grad akseptere motsetningene ved aporiene.Nøkkelord: Preimplantasjonsgenetisk diagnostikk, paradoks, antinomi, aporiEnglish summary: PGD's ParadoxesBackground: Pre-implantation genetic diagnosis (PGD is a genetic test of embryos before implantation as part of in vitro fertilization. The purpose of using PGD is to help people avoid having children with serious genetic disease and to help those with

  3. Advances in preimplantation genetic diagnosis/screening.

    Science.gov (United States)

    Yan, LiYing; Wei, Yuan; Huang, Jin; Zhu, XiaoHui; Shi, XiaoDan; Xia, Xi; Yan, Jie; Lu, CuiLing; Lian, Ying; Li, Rong; Liu, Ping; Qiao, Jie

    2014-07-01

    Preimplantation genetic diagnosis (PGD) gives couples who have a high risk of transmitting genetic disorders to their baby the chance to have a healthy offspring through embryo genetic analysis and selection. Preimplantation genetic screening (PGS) is an effective method to select euploid embryos that may prevent repeated implantation failure or miscarriage. However, how and to whom PGS should be provided is a controversial topic. The first successful case of PGD of a human being was reported in 1990, and there have been tremendous improvements in this technology since then. Both embryo biopsy and genetic technologies have been improved dramatically, which increase the accuracy and expand the indications of PGD/PGS.

  4. Preimplantation Genetic Screening and Preimplantation Genetic Diagnosis.

    Science.gov (United States)

    Sullivan-Pyke, Chantae; Dokras, Anuja

    2018-03-01

    Preimplantation genetic testing encompasses preimplantation genetic screening (PGS) and preimplantation genetic diagnosis (PGD). PGS improves success rates of in vitro fertilization by ensuring the transfer of euploid embryos that have a higher chance of implantation and resulting in a live birth. PGD enables the identification of embryos with specific disease-causing mutations and transfer of unaffected embryos. The development of whole genome amplification and genomic tools, including single nucleotide polymorphism microarrays, comparative genomic hybridization microarrays, and next-generation sequencing, has led to faster, more accurate diagnoses that translate to improved pregnancy and live birth rates. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Preimplantation genetic diagnosis for Down syndrome pregnancy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu; XU Chen-ming; ZHU Yi-min; DONG Min-yue; QIAN Yu-li; JIN Fan; HUANG He-feng

    2007-01-01

    Objective: To evaluate the effect of preimplantation genetic diagnosis (PGD) conducted for women who had Down syndrome pregnancy previously. Methods: Trisomy 21 was diagnosed by using fluorescence in site hybridization (FISH) before embryo transfer in two women who had Down syndrome pregnancies. Each received one or two PGD cycles respectively. Results:Case 1: one PGD cycle was conducted, two oocytes were fertilized and biopsied. One embryo is of trisomy 21 and the other of monosomy 21. No embryo was transferred. Case 2: two PGD cycles were conducted, in total, sixteen oocytes were fertilized and biopsied. Four embryos were tested to be normal, six of trisomy 21, and one of monosomy 21. Five had no signal. Four normal embryos were transferred but no pregnancy resulted. Conclusion: For couples who had pregnancies with Down syndrome previously, PGD can be considered, and has been shown to be an effective strategy.

  6. [Advance in the methods of preimplantation genetic diagnosis for single gene diseases].

    Science.gov (United States)

    Ren, Yixin; Qiao, Jie; Yan, Liying

    2017-06-10

    More than 7000 single gene diseases have been identified and most of them lack effective treatment. As an early form of prenatal diagnosis, preimplantation genetic diagnosis (PGD) is a combination of in vitro fertilization and genetic diagnosis. PGD has been applied in clinics for more than 20 years to avoid the transmission of genetic defects through analysis of embryos at early stages of development. In this paper, a review for the recent advances in PGD for single gene diseases is provided.

  7. Attitude towards pre-implantation genetic diagnosis for hereditary cancer

    NARCIS (Netherlands)

    Lammens, Chantal; Bleiker, Eveline; Aaronson, Neil; Vriends, Annette; Ausems, Margreet; Jansweijer, Maaike; Wagner, Anja; Sijmons, Rolf; van den Ouweland, Ans; van der Luijt, Rob; Spruijt, Liesbeth; Gómez García, Encarna; Ruijs, Mariëlle; Verhoef, Senno

    2009-01-01

    The use of pre-implantation genetic diagnosis (PGD) for hereditary cancer is subject to on-going debate, particularly among professionals. This study evaluates the attitude towards PGD and attitude-associated characteristics of those concerned: family members with a hereditary cancer predisposition.

  8. Recent advances in preimplantation genetic diagnosis

    Directory of Open Access Journals (Sweden)

    Kahraman S

    2015-04-01

    Full Text Available Semra Kahraman, Çağri Beyazyürek, Hüseyin Avni Taç, Caroline Pirkevi, Murat Cetinkaya, Neşe Gülüm IVF and Reproductive Genetics Center, Istanbul Memorial Hospital, Istanbul, Turkey Abstract: Preimplantation genetic diagnosis (PGD is an important method for the identification chromosomal abnormalities and genes responsible for genetic defects in embryos that are created through in vitro fertilization before pregnancy. As the list of conditions and indications for PGD testing is continuing to extend enormously, novel in vitro fertilization techniques and newly established genetic analysis techniques have been implemented in clinical settings in the recent years. Blastocyst-stage biopsy, vitrification techniques, time-lapse imaging, whole-genome amplification, array-based diagnostic techniques, and next-generation sequencing techniques are promising techniques for the accurate diagnosis of diverse genetic conditions and also for the selection of the best embryo that has the highest implantation capacity. The timing and technique used for biopsy, the amplification techniques, the genetic diagnosis techniques, and appropriate genetic counseling play important roles in establishing a successful PGD. In this review, those key points of PGD will be reviewed in detail. Keywords: preimplantation genetic diagnosis, array comparative genomic hybridization, single-nucleotide polymorphism arrays, next-generation sequencing, monogenic disorders, aneuploidy testing 

  9. Ethical issues in new uses of preimplantation genetic diagnosis: should parents be allowed to use preimplantation genetic diagnosis to choose the sexual orientation of their children?

    Science.gov (United States)

    Dahl, Edgar

    2003-07-01

    Extending the application of preimplantation genetic diagnosis (PGD) to screen embryos for non-medical traits such as gender, height and intelligence, raises serious moral, legal, and social issues. In this paper I consider the possibility of using PGD to select the sexual orientation of offspring. After considering five potential objections, I conclude that parents should be permitted to use PGD to choose the sexual orientation of their children.

  10. Is preimplantation genetic diagnosis the ideal embryo selection method in aneuploidy screening?

    Directory of Open Access Journals (Sweden)

    Levent Sahin

    2014-10-01

    Full Text Available To select cytogenetically normal embryos, preimplantation genetic diagnosis (PGD aneuploidy screening (AS is used in numerous centers around the world. Chromosomal abnormalities lead to developmental problems, implantation failure, and early abortion of embryos. The usefulness of PGD in identifying single-gene diseases, human leukocyte antigen typing, X-linked diseases, and specific genetic diseases is well-known. In this review, preimplantation embryo genetics, PGD research studies, and the European Society of Human Reproduction and Embryology PGD Consortium studies and reports are examined. In addition, criteria for embryo selection, technical aspects of PGD-AS, and potential noninvasive embryo selection methods are described. Indications for PGD and possible causes of discordant PGD results between the centers are discussed. The limitations of fluorescence in situ hybridization, and the advantages of the array comparative genomic hybridization are included in this review. Although PGD-AS for patients of advanced maternal age has been shown to improve in vitro fertilization outcomes in some studies, to our knowledge, there is not sufficient evidence to use advanced maternal age as the sole indication for PGD-AS. PGD-AS might be harmful and may not increase the success rates of in vitro fertilization. At the same time PGD, is not recommended for recurrent implantation failure and unexplained recurrent pregnancy loss.

  11. Implementing PGD/PGD-A in IVF clinics: considerations for the best laboratory approach and management.

    Science.gov (United States)

    Capalbo, Antonio; Romanelli, Valeria; Cimadomo, Danilo; Girardi, Laura; Stoppa, Marta; Dovere, Lisa; Dell'Edera, Domenico; Ubaldi, Filippo Maria; Rienzi, Laura

    2016-10-01

    For an IVF clinic that wishes to implement preimplantation genetic diagnosis for monogenic diseases (PGD) and for aneuploidy testing (PGD-A), a global improvement is required through all the steps of an IVF treatment and patient care. At present, CCS (Comprehensive Chromosome Screening)-based trophectoderm (TE) biopsy has been demonstrated as a safe, accurate and reproducible approach to conduct PGD-A and possibly also PGD from the same biopsy. Key challenges in PGD/PGD-A implementation cover genetic and reproductive counselling, selection of the most efficient approach for blastocyst biopsy as well as of the best performing molecular technique to conduct CCS and monogenic disease analysis. Three different approaches for TE biopsy can be compared. However, among them, the application of TE biopsy approaches, entailing the zona opening when the expanded blastocyst stage is reached, represent the only biopsy methods suited with a totally undisturbed embryo culture strategy (time lapse-based incubation in a single media). Moreover, contemporary CCS technologies show a different spectrum of capabilities and limits that potentially impact the clinical outcomes, the management and the applicability of the PGD-A itself. In general, CCS approaches that avoid the use of whole genome amplification (WGA) can provide higher reliability of results with lower costs and turnaround time of analysis. The future perspectives are focused on the scrupulous and rigorous clinical validations of novel CCS methods based on targeted approaches that avoid the use of WGA, such as targeted next-generation sequencing technology, to further improve the throughput of analysis and the overall cost-effectiveness of PGD/PGD-A.

  12. Vitrified/warmed single blastocyst transfer in preimplantation genetic diagnosis/preimplantation genetic screening cycles.

    Science.gov (United States)

    Huang, Jin; Li, Rong; Lian, Ying; Chen, Lixue; Shi, Xiaodan; Qiao, Jie; Liu, Ping

    2015-01-01

    To investigate the single blastocyst transfer in preimplantation genetic diagnosis (PGD)/preimplantation genetic screening (PGS) cycles. 80 PGD/PGS cycles undergoing blastocyst biopsy were studied. There were 88 warming cycles during the study period. Only one warmed blastocyst was transferred per cycle. The outcomes were followed up to the infants were born. The embryo implantation rate was 54.55% (48/88). The clinical pregnancy rate was 54.55% (48/88) per transfer cycle and 60% (48/80) per initial PGD/PGS cycle. There was no multi-pregnant in this study. The live birth rate was 42.05% (37/88) per transfer cycle and 46.25% (37/80) per initial PGD/PGS cycle. In PGD/PGS cycles, single blastocyst transfer reduces the multiple pregnancy rate without affecting the clinical outcomes.

  13. Comparison of Attitudes Regarding Preimplantation Genetic Diagnosis Among Patients with Hereditary Cancer Syndromes

    Science.gov (United States)

    Rich, Thereasa A.; Liu, Mei; Etzel, Carol J.; Bannon, Sarah A.; Mork, Maureen E.; Ready, Kaylene; Saraiya, Devki S.; Grubbs, Elizabeth G.; Perrier, Nancy D.; Lu, Karen H.; Arun, Banu K.; Woodard, Terri L.; Schover, Leslie R.; Litton, Jennifer K.

    2014-01-01

    Introduction Preimplantation Genetic Diagnosis (PGD) allows couples to avoid having a child with an inherited condition, potentially reducing cancer burden in families with a hereditary cancer predisposition. This study investigated awareness and acceptance of PGD among patients with hereditary cancer syndromes. Methods Questionnaires were mailed to 984 adults with hereditary breast and ovarian cancer, Lynch syndrome, familial adenomatous polyposis, or multiple endocrine neoplasia type 1 or 2. Associations between clinical, demographic, and psychosocial factors and awareness and acceptance of PGD were examined. Results Of 370 respondents (38% return rate), 28% felt their syndrome impacted family planning, 24% were aware of PGD, 72% felt that PGD should be offered, 43% would consider using PGD, and 29% were uncertain. Family experience and syndrome-specific characteristics, such as disease severity, quality of life and availability of medical interventions as well as gender, family planning stage, and religiosity impact perceptions of the acceptability of PGD, though a high level of uncertainty exists. Conclusion Hereditary cancer patients' opinions about the acceptability of PGD are similar to those of genetics and ethical experts. Patients should be told about PGD given that most had not heard of PGD, but feel that PGD should be offered. PMID:24072553

  14. Preimplantation genetic diagnosis and screening: Current status and future challenges

    Directory of Open Access Journals (Sweden)

    Hsin-Fu Chen

    2018-02-01

    Full Text Available Preimplantation genetic diagnosis (PGD is a clinically feasible technology to prevent the transmission of monogenic inherited disorders in families afflicted the diseases to the future offsprings. The major technical hurdle is it does not have a general formula for all mutations, thus different gene locus needs individualized, customized design to make the diagnosis accurate enough to be applied on PGD, in which the quantity of DNA is scarce, whereas timely result is sometimes requested if fresh embryo transfer is desired. On the other hand, preimplantation genetic screening (PGS screens embryo with aneuploidy and was also known as PGD-A (A denotes aneuploidy in order to enhance the implantation rates as well as livebirth rates. In contrasts to PGD, PGS is still under ferocious debate, especially recent reports found that euploid babies were born after transferring the aneuploid embryos diagnosed by PGS back to the womb and only very few randomized trials of PGS are available in the literature. We have been doing PGD and/or PGS for more than 10 years as one of the core PGD/PGS laboratories in Taiwan. Here we provide a concise review of PGD/PGS regarding its current status, both domestically and globally, as well as its future challenges.

  15. Whole genome amplification in preimplantation genetic diagnosis*

    Science.gov (United States)

    Zheng, Ying-ming; Wang, Ning; Li, Lei; Jin, Fan

    2011-01-01

    Preimplantation genetic diagnosis (PGD) refers to a procedure for genetically analyzing embryos prior to implantation, improving the chance of conception for patients at high risk of transmitting specific inherited disorders. This method has been widely used for a large number of genetic disorders since the first successful application in the early 1990s. Polymerase chain reaction (PCR) and fluorescent in situ hybridization (FISH) are the two main methods in PGD, but there are some inevitable shortcomings limiting the scope of genetic diagnosis. Fortunately, different whole genome amplification (WGA) techniques have been developed to overcome these problems. Sufficient DNA can be amplified and multiple tasks which need abundant DNA can be performed. Moreover, WGA products can be analyzed as a template for multi-loci and multi-gene during the subsequent DNA analysis. In this review, we will focus on the currently available WGA techniques and their applications, as well as the new technical trends from WGA products. PMID:21194180

  16. Neonatal outcome after preimplantation genetic diagnosis.

    Science.gov (United States)

    Eldar-Geva, Talia; Srebnik, Naama; Altarescu, Gheona; Varshaver, Irit; Brooks, Baruch; Levy-Lahad, Ephrat; Bromiker, Ruben; Schimmel, Michael S

    2014-10-01

    To examine whether embryo biopsy for preimplantation genetic diagnosis (PGD) influences neonatal outcomes. Prospective follow-up cohort. Tertiary university-affiliated medical center. 242 children born after PGD, 242 children born after intracytoplasmic sperm injection (ICSI) (158 singletons and 42 twins pairs in each group), and 733 children born after a spontaneous conception (SC) (493 singletons, 120 twins pairs), matched for maternal age, parity, and body mass index. None. Gestational age, birth weight, prematurity (<37 and <34 weeks), low birth weight (<2,500 g, very low birth weight, <1,500 g), and intrauterine growth restriction (<10th percentile for gestational age). For singletons, the mean birth weight was higher after SC compared with ICSI but not compared with PGD. Mean gestational ages were lower after PGD and ICSI compared with SC. The low birth weight and intrauterine growth restriction rates were 4.4%, 12.0%, and 5.7% and 5.1%, 9.5%, and 5.5% for PGD, ICSI, and SC, respectively. Similar results were found when controlled for the number of embryos transferred and cryopreservation. The results for twins exhibited similar but less statistically significant trends. Polar body and blastomere biopsies provided similar outcomes. Embryo biopsy itself did not cause intrauterine growth restriction or low birth weight compared with SC, despite lower gestational ages with PGD. The worsened outcomes in ICSI compared with PGD pregnancies may be due to the infertility itself. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  17. High risk men's perceptions of pre-implantation genetic diagnosis for hereditary breast and ovarian cancer.

    Science.gov (United States)

    Quinn, Gwendolyn P; Vadaparampil, Susan T; Miree, Cheryl A; Lee, Ji-Hyun; Zhao, Xiuhua; Friedman, Susan; Yi, Susan; Mayer, James

    2010-10-01

    Pre-implantation genetic diagnosis (PGD) is an assisted reproductive technology procedure which provides parents with the option of conducting genetic analyses to determine if a mutation is present in an embryo. Though studies have discussed perceptions of PGD from a general population, couples or high-risk women, no studies to date have specifically examined PGD usage among men. This study sought to explore perceptions and attitudes towards PGD among males who either carry a BRCA mutation or have a partner or first degree relative with a BRCA mutation. A cross-sectional survey was conducted among 228 men visiting the Facing Our Risk of Cancer Empowered or Craigslist website. Eligibility criteria included men who self-reported they had been tested for a BRCA mutation or had a partner or first degree relative tested for a BRCA mutation. A 41-item survey assessed socio-demographic, clinical characteristics, PGD knowledge and attitudinal factors and consideration of the use of PGD. Differences in proportions of subgroups were tested using the Monte Carlo exact test for categorical data. A multiple logistic regression model was then built through a backward elimination procedure. Although 80% of men reported being previously unfamiliar with PGD, after learning the definition of PGD, 34% of the 228 respondents then said they would 'ever consider the use of PGD'. Respondents who thought of PGD only in terms of 'health and safety' were almost three times more likely (OR = 2.82; 95% 1.19-6.71) to 'ever consider the use of PGD' compared with respondents who thought of PGD in terms of both 'health and safety', and 'religion and morality'. As with other anonymous web-based surveys, we cannot verify clinical characteristics that may impact consideration of PGD use. Our findings indicate high-risk men need more information about PGD and may benefit from educational materials to assist them in reproductive decision-making.

  18. Preimplantation genetic diagnosis

    Directory of Open Access Journals (Sweden)

    Karin Writzl

    2013-02-01

    Conclusions: Over the last two decades, PGD has been shown to be a reliable and safe genetic test for couples who are at risk of a specific inher - ited disorder. For PGS, the results from several ongoing randomized controlled trials performed at different cell biopsy stage, using array-CGH and SNP array will provide the data needed to evaluate the clinical efficacy.

  19. [Preimplantation genetic diagnosis and monogenic inherited eye diseases].

    Science.gov (United States)

    Hlavatá, L; Ďuďáková, Ľ; Trková, M; Soldátová, I; Skalická, P; Kousal, B; Lišková, P

    Preimplantation genetic diagnosis (PGD) is an established application of genetic testing in the context of in vitro fertilization. PGD is an alternative method to prenatal diagnosis which aims to prevent the transmission of an inherited disorder to the progeny by implanting only embryos that do not carry genetic predisposition for a particular disease. The aim of this study is to provide an overview of eye disorders for which PGD has been carried out. The European literature search focused on best practices, ethical issues, risks and results of PGD for inherited eye disorders. PGD is performed for a number of ocular disorders; a prerequisite for its application is however, the knowledge of a disease-causing mutation(s). The main advantage of this method is that the couple is not exposed to a decision of whether or not to undergo an abortion. Qualified counselling must be provided prior to the PGD in order to completely understand the risk of disability in any child conceived, consequences of disease manifestation, and advantages as well as limitations of this method. In the group of non-syndromic eye diseases and diseases in which ocular findings dominate, PGD has been performed in European countries for aniridia, choroideremia, congenital fibrosis of extraocular muscles, Leber congenital amaurosis, ocular albinism, retinitis pigmentosa, X-linked retinoschisis, Stargardt disease, blepharophimosis-ptosis-inverse epicanthus syndrome and retinoblastoma. Sexing for X-linked or mitochondrial diseases has been carried out for blue cone monochromatism, choroideremia, familial exudative vitreoretinopathy, Leber hereditary optic neuropathy, macular dystrophy (not further specified), Norrie disease, X-linked congenital stationary night blindness, X-linked retinoschisis and nystagmus (not further specified). In recent years, there has been an increase in potential to use PGD. The spectrum of diseases for this method has widened to include severe inherited eye diseases

  20. Preimplantation genetic diagnosis: a systematic review of litigation in the face of new technology.

    Science.gov (United States)

    Amagwula, Tochi; Chang, Peter L; Hossain, Amjad; Tyner, Joey; Rivers, Aimée L; Phelps, John Y

    2012-11-01

    To study legal cases against IVF facilities pertaining to preimplantation genetic diagnosis (PGD) misdiagnosis. Systematic case law review. University medical center using US legal databases. The IVF recipients using PGD services. Lawsuits pertaining to PGD against IVF facilities. Lawsuits, court rulings, damage awards, and settlements pertaining to PGD after the birth of a child with a genetic defect. Causes of action pertaining to PGD arise from negligence in performing the procedure as well as failure to properly inform patients of key information, such as inherent errors associated with the PGD process, a facility's minimal experience in performing PGD, and the option of obtaining PGD. Courts have sympathized with the financial burden involved in caring for children with disabilities. Monetary damage awards are based on the costs of caring for children with debilitating defects, including lifetime medical and custodial care. Facilities offering PGD services expose themselves to a new realm of liability in which damage awards can easily exceed the limits of a facility's insurance policy. Competent laboratory personnel and proper informed consent--with particular care to inform patients of the inherent inaccuracies of PGD--are crucial in helping deter liability. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Recent advances in preimplantation genetic diagnosis and screening.

    Science.gov (United States)

    Lu, Lina; Lv, Bo; Huang, Kevin; Xue, Zhigang; Zhu, Xianmin; Fan, Guoping

    2016-09-01

    Preimplantation genetic diagnosis/screening (PGD/PGS) aims to help couples lower the risks of transmitting genetic defects to their offspring, implantation failure, and/or miscarriage during in vitro fertilization (IVF) cycles. However, it is still being debated with regard to the practicality and diagnostic accuracy of PGD/PGS due to the concern of invasive biopsy and the potential mosaicism of embryos. Recently, several non-invasive and high-throughput assays have been developed to help overcome the challenges encountered in the conventional invasive biopsy and low-throughput analysis in PGD/PGS. In this mini-review, we will summarize the recent progresses of these new methods for PGD/PGS and discuss their potential applications in IVF clinics.

  2. Preimplantation genetic diagnosis guided by single-cell genomics

    Science.gov (United States)

    2013-01-01

    Preimplantation genetic diagnosis (PGD) aims to help couples with heritable genetic disorders to avoid the birth of diseased offspring or the recurrence of loss of conception. Following in vitro fertilization, one or a few cells are biopsied from each human preimplantation embryo for genetic testing, allowing diagnosis and selection of healthy embryos for uterine transfer. Although classical methods, including single-cell PCR and fluorescent in situ hybridization, enable PGD for many genetic disorders, they have limitations. They often require family-specific designs and can be labor intensive, resulting in long waiting lists. Furthermore, certain types of genetic anomalies are not easy to diagnose using these classical approaches, and healthy offspring carrying the parental mutant allele(s) can result. Recently, state-of-the-art methods for single-cell genomics have flourished, which may overcome the limitations associated with classical PGD, and these underpin the development of generic assays for PGD that enable selection of embryos not only for the familial genetic disorder in question, but also for various other genetic aberrations and traits at once. Here, we discuss the latest single-cell genomics methodologies based on DNA microarrays, single-nucleotide polymorphism arrays or next-generation sequence analysis. We focus on their strengths, their validation status, their weaknesses and the challenges for implementing them in PGD. PMID:23998893

  3. Genetic diagnosis in Hemophilia A from southern China: five novel mutations and one preimplantation genetic analysis.

    Science.gov (United States)

    Chen, J; Wang, J; Lin, X Y; Xu, Y W; He, Z H; Li, H Y; Chen, S Q; Jiang, W Y

    2017-04-01

    As there is currently no complete cure for hemophilia A (HA), the identification of pathogenic mutations in factor VIII (FVIII) gene from HA patients and carriers, which can contribute to genetic counseling prenatal diagnosis, and preimplantation genetic diagnosis (PGD), is an important step to prevent HA. A total of 14 unrelated Chinese HA subjects (FVIII activity C, c.304_305insA, c.1594T>A, c.6045G>A, and c.2645_2646insG) were found. The real-time PCR showed that the expression of FVIII mRNAs was lower in HA patients than in normal subjects. Prenatal diagnosis and PGD were successfully performed: Two of three fetuses and four of eight blastomeres were confirmed to be normal. In conclusion, genetic diagnosis of 14 unrelated HA subjects, 20 carrier subjects, three fetuses, and one PGD was successfully performed in our study. © 2016 John Wiley & Sons Ltd.

  4. Gender eugenics? The ethics of PGD for intersex conditions.

    Science.gov (United States)

    Sparrow, Robert

    2013-01-01

    This article discusses the ethics of the use of preimplantation genetic diagnosis (PGD) to prevent the birth of children with intersex conditions/disorders of sex development (DSDs), such as congenital adrenal hyperplasia (CAH) and androgen insensitivity syndrome (AIS). While pediatric surgeries performed on children with ambiguous genitalia have been the topic of intense bioethical controversy, there has been almost no discussion to date of the ethics of the use of PGD to reduce the prevalence of these conditions. I suggest that PGD for those conditions that involve serious medical risks for those born with them is morally permissible and that PGD for other "cosmetic" variations in sexual anatomy is more defensible than might first appear. However, importantly, the arguments that establish the latter claim have radical and disturbing implications for our attitude toward diversity more generally.

  5. Preimplantation Genetic Diagnosis in Marfan Syndrome

    Directory of Open Access Journals (Sweden)

    N. F. Vlahos

    2013-01-01

    Full Text Available Marfan syndrome (MFS is a systemic hereditable disorder of the connective tissue with mainly cardiovascular manifestations, such as aortic dilatation and dissection. We describe a case of a 32-year-old Caucasian woman, clinically asymptomatic with MFS who presented for genetic consultation to prevent the transmission of disease to her offspring. She underwent controlled ovarian stimulation (COH, in vitro fertilization (IVF combined with preimplantation genetic diagnosis (PGD, and a singleton pregnancy with positive fetal heart rate was revealed. At 34 weeks’ gestation she delivered vaginally a healthy premature male infant weighting 2440 gr. The patient remained asymptomatic during pregnancy, delivery, and 3 months postpartum. It is has to be mentioned that the availability of PGD is essential to prevent the transmission of disease to the next generation.

  6. Preimplantation genetic diagnosis with HLA matching.

    Science.gov (United States)

    Rechitsky, Svetlana; Kuliev, Anver; Tur-Kaspa, Illan; Morris, Randy; Verlinsky, Yury

    2004-08-01

    Preimplantation genetic diagnosis (PGD) has recently been offered in combination with HLA typing, which allowed a successful haematopoietic reconstitution in affected siblings with Fanconi anaemia by transplantation of stem cells obtained from the HLA-matched offspring resulting from PGD. This study presents the results of the first PGD practical experience performed in a group of couples at risk for producing children with genetic disorders. These parents also requested preimplantation HLA typing for treating the affected children in the family, who required HLA-matched stem cell transplantation. Using a standard IVF procedure, oocytes or embryos were tested for causative gene mutations simultaneously with HLA alleles, selecting and transferring only those unaffected embryos, which were HLA matched to the affected siblings. The procedure was performed for patients with children affected by Fanconi anaemia (FANC) A and C, different thalassaemia mutations, Wiscott-Aldrich syndrome, X-linked adrenoleukodystrophy, X-linked hyperimmunoglobulin M syndrome and X-linked hypohidrotic ectodermal displasia with immune deficiency. Overall, 46 PGD cycles were performed for 26 couples, resulting in selection and transfer of 50 unaffected HLA-matched embryos in 33 cycles, yielding six HLA-matched clinical pregnancies and the birth of five unaffected HLA-matched children. Despite the controversy of PGD use for HLA typing, the data demonstrate the usefulness of this approach for at-risk couples, not only to avoid the birth of affected children with an inherited disease, but also for having unaffected children who may also be potential HLA-matched donors of stem cells for treatment of affected siblings.

  7. Anticipating issues related to increasing preimplantation genetic diagnosis use: a research agenda.

    Science.gov (United States)

    Klitzman, Robert; Appelbaum, Paul S; Chung, Wendy; Sauer, Mark

    2008-01-01

    Increasing use of preimplantation genetic diagnosis (PGD) poses numerous clinical, social, psychological, ethical, legal and policy dilemmas, many of which have received little attention. Patients and providers are now considering and using PGD for a widening array of genetic disorders, and patients may increasingly seek 'designer babies.' In the USA, although governmental oversight policies have been discussed, few specific guidelines exist. Hence, increasingly, patients and providers will face challenging ethical and policy questions of when and for whom to use PGD, and how it should be financed. These issues should be better clarified and addressed through collection of data concerning the current use of PGD in the USA, including factors involved in decision making about PGD use, as well as the education of the various communities that are, and should be, involved in its implementation. Improved understanding of these issues will ultimately enhance the development and implementation of future clinical guidelines and policies.

  8. Attitudes in Patients with Autosomal Dominant Polycystic Kidney Disease Toward Prenatal Diagnosis and Preimplantation Genetic Diagnosis.

    Science.gov (United States)

    Swift, Oscar; Vilar, Enric; Rahman, Belinda; Side, Lucy; Gale, Daniel P

    2016-12-01

    No recommendations currently exist regarding implementation of both prenatal diagnosis and preimplantation genetic diagnosis (PGD) for autosomal dominant polycystic kidney disease (ADPKD). This study evaluated attitudes in ADPKD patients with either chronic kidney disease (CKD) stages I-IV or end-stage renal failure (ESRF) toward prenatal diagnosis and PGD. Ninety-six ADPKD patients were recruited from an outpatient clinic, wards, and dialysis units. Thirty-eight patients had ESRF and 58 had CKD stages I-IV. Participants were given an information sheet on prenatal diagnosis and PGD and subsequently completed a questionnaire. The median age of participants was 51.5 years. Seventeen percent of ADPKD patients with CKD and 18% of ADPKD patients with ESRF would consider prenatal diagnosis and termination of pregnancy for ADPKD. Fifty percent with CKD would have opted for PGD (or might consider it in the future) were it available and funded by the UK National Health Service, compared to 63% in the ESRF group (p = 0.33). Sixty-nine percent in the CKD group and 68% in the ESRF group believed that PGD should be offered to other patients. There was a spectrum of attitudes among this cohort. A proportion of patients believe that PGD should be made available to prospective parents with this disease. The discrepancy between the low proportion (17% CKD, 18% ESRF) who would consider prenatal diagnosis and termination of pregnancy and the higher number who hypothetically express an intention or wish to access PGD (50% CKD and 63% ESRF) indicates far greater acceptability for diagnostic methods that occur before embryo implantation. It is not known how the development of methods to identify patients whose renal function is likely to decline rapidly and treatments altering the natural history of ADPKD will affect these attitudes.

  9. Practices and ethical concerns regarding preimplantation diagnosis. Who regulates preimplantation genetic diagnosis in Brazil?

    Directory of Open Access Journals (Sweden)

    B.B. Damian

    2015-01-01

    Full Text Available Preimplantation genetic diagnosis (PGD was originally developed to diagnose embryo-related genetic abnormalities for couples who present a high risk of a specific inherited disorder. Because this technology involves embryo selection, the medical, bioethical, and legal implications of the technique have been debated, particularly when it is used to select features that are not related to serious diseases. Although several initiatives have attempted to achieve regulatory harmonization, the diversity of healthcare services available and the presence of cultural differences have hampered attempts to achieve this goal. Thus, in different countries, the provision of PGD and regulatory frameworks reflect the perceptions of scientific groups, legislators, and society regarding this technology. In Brazil, several texts have been analyzed by the National Congress to regulate the use of assisted reproduction technologies. Legislative debates, however, are not conclusive, and limited information has been published on how PGD is specifically regulated. The country requires the development of new regulatory standards to ensure adequate access to this technology and to guarantee its safe practice. This study examined official documents published on PGD regulation in Brazil and demonstrated how little direct oversight of PGD currently exists. It provides relevant information to encourage reflection on a particular regulation model in a Brazilian context, and should serve as part of the basis to enable further reform of the clinical practice of PGD in the country.

  10. Comparative preimplantation genetic diagnosis policy in Europe and the USA and its implications for reproductive tourism.

    Science.gov (United States)

    Bayefsky, Michelle J

    2016-12-01

    Unlike many European nations, the USA has no regulations concerning the use of preimplantation genetic diagnosis (PGD), a technique employed during some fertility treatments to select embryos based on their genes. As such, PGD can and is used for a variety of controversial purposes, including sex selection, selection for children with disabilities such as deafness, and selection for 'saviour siblings' who can serve as tissue donors for sick relatives. The lack of regulation, which is due to particular features of the US political and economic landscape, has ethical and practical implications for patients seeking PGD around the world. This paper contrasts the absence of PGD oversight in the USA with existing PGD policies in Switzerland, Italy, France and the UK. The primary reasons why PGD is not regulated in the USA are addressed, with consideration of factors such as funding for assisted reproductive technology treatmemt and the proximity of PGD to the contentious abortion debate. The obstacles that would need to be overcome in the USA for PGD to be regulated in the future are outlined. Then, the significance of the current divergence in PGD policy for patients around the world are discussed. Regulatory differences create opportunities for reproductive tourism, which result in legal, health and moral challenges. The paper concludes with comments on the need for policymakers around the world to balance respect for the characters and constitutions of their individual countries with appreciation of the needs of infertile patients across the globe.

  11. Comparative preimplantation genetic diagnosis policy in Europe and the USA and its implications for reproductive tourism

    Directory of Open Access Journals (Sweden)

    Michelle J Bayefsky

    2016-12-01

    Full Text Available Unlike many European nations, the USA has no regulations concerning the use of preimplantation genetic diagnosis (PGD, a technique employed during some fertility treatments to select embryos based on their genes. As such, PGD can and is used for a variety of controversial purposes, including sex selection, selection for children with disabilities such as deafness, and selection for ‘saviour siblings’ who can serve as tissue donors for sick relatives. The lack of regulation, which is due to particular features of the US political and economic landscape, has ethical and practical implications for patients seeking PGD around the world. This paper contrasts the absence of PGD oversight in the USA with existing PGD policies in Switzerland, Italy, France and the UK. The primary reasons why PGD is not regulated in the USA are addressed, with consideration of factors such as funding for assisted reproductive technology treatmemt and the proximity of PGD to the contentious abortion debate. The obstacles that would need to be overcome in the USA for PGD to be regulated in the future are outlined. Then, the significance of the current divergence in PGD policy for patients around the world are discussed. Regulatory differences create opportunities for reproductive tourism, which result in legal, health and moral challenges. The paper concludes with comments on the need for policymakers around the world to balance respect for the characters and constitutions of their individual countries with appreciation of the needs of infertile patients across the globe.

  12. The Preimplantation Genetic Diagnosis: Legal Aspects in the Spanish Law

    Directory of Open Access Journals (Sweden)

    Marina Moya González

    2018-03-01

    Full Text Available This paper analyses the preimplantation genetic diagnosis (PGD in Spain, and the legal aspects. It exposes the technical characteristics, as well as the ethical and social consequences. It compares the different rules of law about assisted human reproduction techniques in Spain, and those in some European countries.

  13. Novel technologies emerging for preimplantation genetic diagnosis and preimplantation genetic testing for aneuploidy.

    Science.gov (United States)

    Sermon, Karen

    2017-01-01

    Preimplantation genetic diagnosis (PGD) was introduced as an alternative to prenatal diagnosis: embryos cultured in vitro were analysed for a monogenic disease and only disease-free embryos were transferred to the mother, to avoid the termination of pregnancy with an affected foetus. It soon transpired that human embryos show a great deal of acquired chromosomal abnormalities, thought to explain the low success rate of IVF - hence preimplantation genetic testing for aneuploidy (PGT-A) was developed to select euploid embryos for transfer. Areas covered: PGD has followed the tremendous evolution in genetic analysis, with only a slight delay due to adaptations for diagnosis on small samples. Currently, next generation sequencing combining chromosome with single-base pair analysis is on the verge of becoming the golden standard in PGD and PGT-A. Papers highlighting the different steps in the evolution of PGD/PGT-A were selected. Expert commentary: Different methodologies used in PGD/PGT-A with their pros and cons are discussed.

  14. Choosing between possible lives: legal and ethical issues in preimplantation genetic diagnosis.

    Science.gov (United States)

    Scott, Rosamund

    2006-01-01

    This article critically appraises the current legal scope of the principal applications of preimplantation genetic diagnosis (PGD). This relatively new technique, which is available to some parents undergoing in vitro fertilization (IVF) treatment, aims to ensure that a child is not born with a seemingly undesirable genetic condition. The question addressed here is whether there should be serious reasons to test for genetic conditions in embryos in order to be able to select between them. The Human Fertilisation and Embryology Authority and the Human Genetics Commission have decided that there should be such reasons by broadly aligning the criteria for PGD with those for selective abortion. This stance is critically explored, as are its implications for the possible use of PGD to select either against or for marginal features or for significant traits. The government is currently reviewing the legal scope and regulation of PGD.

  15. Comparative preimplantation genetic diagnosis policy in Europe and the USA and its implications for reproductive tourism

    OpenAIRE

    Bayefsky, Michelle J

    2017-01-01

    Unlike many European nations, the USA has no regulations concerning the use of preimplantation genetic diagnosis (PGD), a technique employed during some fertility treatments to select embryos based on their genes. As such, PGD can and is used for a variety of controversial purposes, including sex selection, selection for children with disabilities such as deafness, and selection for ‘saviour siblings’ who can serve as tissue donors for sick relatives. The lack of regulation, which is due to p...

  16. Review of patient decision-making factors and attitudes regarding preimplantation genetic diagnosis.

    Science.gov (United States)

    Genoff Garzon, M C; Rubin, L R; Lobel, M; Stelling, J; Pastore, L M

    2017-11-09

    The increasing technical complexity and evolving options for repro-genetic testing have direct implications for information processing and decision making, yet the research among patients considering preimplantation genetic diagnosis (PGD) is narrowly focused. This review synthesizes the literature regarding patient PGD decision-making factors, and illuminates gaps for future research and clinical translation. Twenty-five articles met the inclusion criteria for evaluating experiences and attitudes of patients directly involved in PGD as an intervention or considering using PGD. Thirteen reports were focused exclusively on a specific disease or condition. Five themes emerged: (1) patients motivated by prospects of a healthy, genetic-variant-free child, (2) PGD requires a commitment of time, money, energy and emotions, (3) patients concerned about logistics and ethics of discarding embryos, (4) some patients feel sense of responsibility to use available technologies, and (5) PGD decisions are complex for individuals and couples. Patient research on PGD decision-making processes has very infrequently used validated instruments, and the data collected through both quantitative and qualitative designs have been inconsistent. Future research for improving clinical counseling is needed to fill many gaps remaining in the literature regarding this decision-making process, and suggestions are offered. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Preimplantation genetic diagnosis and rational choice under risk or uncertainty.

    Science.gov (United States)

    Zuradzki, Tomasz

    2014-11-01

    In this paper I present an argument in favour of a parental duty to use preimplantation genetic diagnosis (PGD). I argue that if embryos created in vitro were able to decide for themselves in a rational manner, they would sometimes choose PGD as a method of selection. Couples, therefore, should respect their hypothetical choices on a principle similar to that of patient autonomy. My thesis shows that no matter which moral doctrine couples subscribe to, they ought to conduct the PGD procedure in the situations when it is impossible to implant all of the created embryos and if there is a significant risk for giving birth to a child with a serious condition. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Preimplantation genetic diagnosis: development and regulation.

    Science.gov (United States)

    Thomas, C

    2006-06-01

    Pre-implantation genetic diagnosis (PGD) is used to biopsy and analyse embryos created through in vitro fertilisation (IVF) to avoid implanting an embryo affected by a mutation or chromosomal abnormality associated with serious illness. It reduces the chance that the parents will be faced with a difficult decision of whether to terminate the pregnancy, if the disorder is detected during the course of gestation. PGD is widely accepted for this purpose although there have been suggestions that such procedures have the effect of de-valuing persons in the community with disabilities. PGD potentially has other more controversial purposes, including the selection of the sex of the baby for personal preferences such as balancing the family, rather than to avoid a sex-linked disorder. Recently PGD has become available to create a donor child who is Human Leukocyte Antigen (HLA) matched with a sibling in need of stem cell transplant. In most cases the intention is to utilise the cord blood. However, an HLA-matched child could potentially be required to be a donor of tissues and organs throughout life. This may arise should the initial cord blood donation fail for any one of several reasons, such as inadequate cord blood cell dose, graft failure after cord blood transplant, or the recipient child experiencing a recurrence of the original illness after transplant. However, such on-going demands could also arise if a HLA-matched child was fortuitously conceived by natural means. As such, the issue is not PGD, but rather whether to harvest bone marrow or a solid organ from a child. This raises the question of whether there should be limits and procedures to protect such children from exploitation until they achieve sufficient competence to be able to make mature and autonomous decisions about whether to donate, even if the consequence may in some cases be that it is too late to save the sibling. Additionally, the parents may not be able to make a dispassionate decision, when

  19. Outcomes of in vitro fertilization with preimplantation genetic diagnosis: an analysis of the United States Assisted Reproductive Technology Surveillance Data, 2011–2012

    Science.gov (United States)

    Chang, Jeani; Boulet, Sheree L.; Jeng, Gary; Flowers, Lisa; Kissin, Dmitry M.

    2016-01-01

    Objective To assess the characteristics of IVF cycles for which preimplantation genetic diagnosis (PGD) was used and to evaluate indications for PGD and treatment outcomes associated with this procedure as compared with cycles without PGD with the data from the U.S. National ART Surveillance System. Design Retrospective cohort study. Setting None. Patient(s) Fresh autologous cycles that involved transfer of at least one embryo at blastocyst when available. Intervention(s) None. Main Outcome Measure(s) PGD indications and age-specific reproductive outcomes. Result(s) There were a total of 97,069 non-PGD cycles and 9,833 PGD cycles: 55.6% were performed for aneuploidy screening (PGD Aneuploidy), 29.1% for other reasons (PGD Other), and 15.3% for genetic testing (PGD Genetic). In comparison to non-PGD cycles, PGD Aneuploidy cycles showed a decreased odds of miscarriage among women 35–37 years (adjusted odds ratio [aOR] 0.62; 95% CI, 0.45–0.87) and women >37 years (aOR 0.55; 95% CI, 0.43–0.70); and an increased odds of clinical pregnancy (aOR 1.18; 95% CI, 1.05–1.34), live-birth delivery (aOR 1.43; 95% CI, 1.26–1.62), and multiple-birth delivery (aOR 1.98; 95% CI, 1.52–2.57) among women >37 years. Conclusion(s) Aneuploidy screening was the most common indication for PGD. Use of PGD was not observed to be associated with an increased odds of clinical pregnancy or live birth for women 35 years, but an increased odds of a live-birth and a multiple live-birth delivery among women >37 years. PMID:26551441

  20. Outcomes of in vitro fertilization with preimplantation genetic diagnosis: an analysis of the United States Assisted Reproductive Technology Surveillance Data, 2011-2012.

    Science.gov (United States)

    Chang, Jeani; Boulet, Sheree L; Jeng, Gary; Flowers, Lisa; Kissin, Dmitry M

    2016-02-01

    To assess the characteristics of IVF cycles for which preimplantation genetic diagnosis (PGD) was used and to evaluate indications for PGD and treatment outcomes associated with this procedure as compared with cycles without PGD with the data from the U.S. National ART Surveillance System. Retrospective cohort study. None. Fresh autologous cycles that involved transfer of at least one embryo at blastocyst when available. None. PGD indications and age-specific reproductive outcomes. There were a total of 97,069 non-PGD cycles and 9,833 PGD cycles: 55.6% were performed for aneuploidy screening (PGD Aneuploidy), 29.1% for other reasons (PGD Other), and 15.3% for genetic testing (PGD Genetic). In comparison to non-PGD cycles, PGD Aneuploidy cycles showed a decreased odds of miscarriage among women 35-37 years (adjusted odds ratio [aOR] 0.62; 95% CI, 0.45-0.87) and women >37 years (aOR 0.55; 95% CI, 0.43-0.70); and an increased odds of clinical pregnancy (aOR 1.18; 95% CI, 1.05-1.34), live-birth delivery (aOR 1.43; 95% CI, 1.26-1.62), and multiple-birth delivery (aOR 1.98; 95% CI, 1.52-2.57) among women >37 years. Aneuploidy screening was the most common indication for PGD. Use of PGD was not observed to be associated with an increased odds of clinical pregnancy or live birth for women 35 years, but an increased odds of a live-birth and a multiple live-birth delivery among women >37 years. Published by Elsevier Inc.

  1. Hereditary breast and ovarian cancer and reproduction: an observational study on the suitability of preimplantation genetic diagnosis for both asymptomatic carriers and breast cancer survivors.

    Science.gov (United States)

    Derks-Smeets, Inge A P; de Die-Smulders, Christine E M; Mackens, Shari; van Golde, Ron; Paulussen, Aimee D; Dreesen, Jos; Tournaye, Herman; Verdyck, Pieter; Tjan-Heijnen, Vivianne C G; Meijer-Hoogeveen, Madelon; De Greve, Jacques; Geraedts, Joep; De Rycke, Martine; Bonduelle, Maryse; Verpoest, Willem M

    2014-06-01

    Preimplantation genetic diagnosis (PGD) is a reproductive option for BRCA1/2 mutation carriers wishing to avoid transmission of the predisposition for hereditary breast and ovarian cancer (HBOC) to their offspring. Embryos obtained by in vitro fertilisation (IVF/ICSI) are tested for the presence of the mutation. Only BRCA-negative embryos are transferred into the uterus. The suitability and outcome of PGD for HBOC are evaluated in an observational cohort study on treatments carried out in two of Western-Europe's largest PGD centres from 2006 until 2012. Male carriers, asymptomatic female carriers and breast cancer survivors were eligible. If available, PGD on embryos cryopreserved before chemotherapy was possible. Generic PGD-PCR tests were developed based on haplotyping, if necessary combined with mutation detection. 70 Couples underwent PGD for BRCA1/2. 42/71 carriers (59.2 %) were female, six (14.3 %) of whom have had breast cancer prior to PGD. In total, 145 PGD cycles were performed. 720 embryos were tested, identifying 294 (40.8 %) as BRCA-negative. Of fresh IVF/PGD cycles, 23.9 % resulted in a clinical pregnancy. Three cycles involved PGD on embryos cryopreserved before chemotherapy; two of these women delivered a healthy child. Overall, 38 children were liveborn. Two BRCA1 carriers were diagnosed with breast cancer shortly after PGD treatment, despite negative screening prior to PGD. PGD for HBOC proved to be suitable, yielding good pregnancy rates for asymptomatic carriers as well as breast cancer survivors. Because of two cases of breast cancer shortly after treatment, maternal safety of IVF(PGD) in female carriers needs further evaluation.

  2. Preimplantation Genetic Diagnosis Counseling in Autosomal Dominant Polycystic Kidney Disease.

    Science.gov (United States)

    Murphy, Erin L; Droher, Madeline L; DiMaio, Miriam S; Dahl, Neera K

    2018-03-30

    Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common hereditary forms of chronic kidney disease. Mutations within PKD1 or PKD2 lead to innumerable fluid-filled cysts in the kidneys and in some instances, end-stage renal disease (ESRD). Affected individuals have a 50% chance of passing the mutation to each of their offspring. Assisted reproductive technology using preimplantation genetic diagnosis (PGD) allows these individuals to reduce this risk to 1% to 2%. We assess the disease burden of 8 individuals with ADPKD who have undergone genetic testing in preparation for PGD. Clinical features that predict high risk for progression to ESRD in patients with ADPKD include genotype, early onset of hypertension, a urologic event before age 35 years, and a large height-adjusted total kidney volume. Patients may have a family history of intracranial aneurysms or complications involving hepatic cysts, which may further influence the decision to pursue PGD. We also explore the cost, risks, and benefits of using PGD. All patients with ADPKD of childbearing potential, regardless of risk for progression to ESRD or risk for a significant disease burden, will likely benefit from genetic counseling. Copyright © 2018 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  3. [BETWEEN USAGE AND POLEMIC, AN ARGUMENT IN FAVOUR OF CLARIFYING THE TERMINOLOGY FOR PREIMPLANTATION GENETIC DIAGNOSIS].

    Science.gov (United States)

    Côté, Stéphanie; Ravitsky, Vardit; Hamet, Pavel; Bouffard, Chantal

    2015-12-01

    Over 30 years ago, preimplantation genetic diagnosis (PGD) was developed to help couples at risk of transmitting a serious genetic disease to their offspring. Today, the range of medical and non-medical uses of PGD has expanded considerably and some raise much controversy. This is the case, for example, with In-Vitro Fertilization to select embryos as 'saviour siblings' or to screen for susceptibility and predisposition to late onset diseases or conditions of variable penetrance. The situation is even more problematic in the case of sex selection or selection of traits that are culturally valued or discredited (such as deafness, behavioral traits, or height). The debate surrounding PGD has been employing terms to describe these particular uses that have contributed to a focus on the negative effects, thus preventing a distinction between the abuses and the benefits of this reproductive technology. In this context, this paper proposes a terminological clarification that would allow distinguishing medical and non-medical use and, therefore, the issues relevant to each. A more accurate and less generic nomenclature could prevent a conflation of different levels of ethical, clinical and social issues under the single term 'PGD'. For the vast majority of medical uses, we propose to keep: 'preimplantation genetic diagnosis (PGD)', which emphasizes that it is a genetic diagnosis. For non-medical uses, we suggest: 'preimplantation genetic trait selection (PGTS)'.

  4. The future (r)evolution of preimplantation genetic diagnosis/human leukocyte antigen testing: ethical reflections.

    Science.gov (United States)

    de Wert, Guido; Liebaers, Inge; Van de Velde, Hilde

    2007-09-01

    There has been increasing support for combining preimplantation genetic diagnosis (PGD) for specific diseases with a test for human leukocyte antigens (HLA) because the generation of HLA-matched umbilical cord blood cells may save the life of a diseased sibling. To date, this procedure has taken place in the context of conceiving another child--PGD/HLA testing type 1. However, it may well become possible to perform PGD/HLA testing outside this context, that is, to select matched embryos from which embryonic stem cells could be derived and used in cell therapy--PGD/HLA testing type 2. A proactive ethical analysis is needed and is presented in this article. Although PGD/HLA testing type 1 can be morally justified, the risks, pitfalls, and practical limitations of this procedure make it necessary to develop alternative strategies. PGD/HLA testing type 2 may provide an alternative strategy. From an ethical point of view, the controversial issue is that this procedure creates embryos purely for instrumental use. However, given the dominant view that the preimplantation embryo has only limited moral value, this alternative may be as morally justified as PGD/HLA testing type 1.

  5. Selecting "saviour siblings": reconsidering the regulation in Australia of pre-implantation genetic diagnosis in conjunction with tissue typing.

    Science.gov (United States)

    Taylor-Sands, Michelle

    2007-05-01

    In recent years, pre-implantation genetic diagnosis (PGD) has been developed to enable the selection of a tissue type matched "saviour sibling" for a sick child. This article examines the current regulatory framework governing PGD in Australia. The availability of PGD in Australia to create a saviour sibling depends on the regulation of ART services by each State and Territory. The limitations on the use of PGD vary throughout Australia, according to the level of regulation of ART in each jurisdiction. This article considers the limitations on the use of PGD for tissue typing in Australia and argues that some of these should be removed for a more consistent national approach. In particular, the focus in ART legislation on the "paramount interests" of the child to be born is inappropriate for the application of tissue typing, which necessarily involves the interests of other family members.

  6. The status of preimplantation genetic diagnosis in Japan: a criticism.

    Science.gov (United States)

    Munné, Santiago; Cohen, Jacques

    2004-09-01

    Advances in preimplantation genetic diagnosis (PGD) are occurring worldwide. New clinics specializing in this approach to the control of disease genes or imbalanced chromosome numbers in human preimplantation embryos continue to increase. One exception is Japan, where the Japanese Society of Obstetrics and Gynecology disapproves of this practice because it discriminates against people with genetic abnormalities. Yet, some doctors there wish to introduce this method to help their couples to improved forms of IVF. This paper stresses the rights of patients to have a healthy baby, if necessary by the use of PGD. It argues against prohibition, since it complements the current nature of prenatal diagnosis and avoids the need for abortions in case of afflicted embryos. Consideration is also given to other attempts at restriction that have failed.

  7. [Extending preimplantation genetic diagnosis to HLA typing: the French exception].

    Science.gov (United States)

    Steffann, Julie; Frydman, Nelly; Burlet, Philippe; Gigarel, Nadine; Hesters, Laetitia; Kerbrat, Violaine; Lamazou, Frédéric; Munnich, Arnold; Frydman, René

    2011-01-01

    Umut-Talha, a "sibling savior", was born on 26 January 2011 at Beclère Hospital after embryo selection at the Paris preimplantation genetic diagnosis (PGD) center. His birth revived the controversy over "double PGD". This procedure, authorized in France since 2006, allows couples who already have a child with a serious, incurable genetic disease, to opt for PGD in order to select a healthy embryo that is HLA-matched to the affected sibling and who may thus serve as an ombilical cord blood donor. The procedure is particularly complex and the baby take-home rate is still very low. Double PGD is strictly regulated in France, and candidate couples must first receive individual authorization from the Biomedicine Agency. In our experience, these couples have a strong desire to have children, as reflected by the large number of prior spontaneous pregnancies (25% of couples). Likewise, most of these couples request embryo transfer even when there is no HLA-matched embryo, which accounts for more than half of embryo transfers. The controversy surrounding this practice has flared up again in recent weeks, over the concepts of "designer babies" and "double savior siblings" (the baby is selected to be free of the hereditary disease, and may also serve as a stem cell donor for the affected sibling).

  8. Preimplantation genetic diagnosis: does age of onset matter (anymore)?

    Science.gov (United States)

    Krahn, Timothy

    2009-06-01

    The identification and avoidance of disease susceptibility in embryos is the most common goal of preimplantation genetic diagnosis (PGD). Most jurisdictions that accept but regulate the availability of PGD restrict it to what are characterized as 'serious' conditions. Line-drawing around seriousness is not determined solely by the identification of a genetic mutation. Other factors seen to be relevant include: impact on health or severity of symptoms; degree of penetrance (probability of genotype being expressed as a genetic disorder); potential for therapy; rate of progression; heritability; and age of onset. In the original applications of PGD, most, if not all of these factors were seen as necessary but none was seen as sufficient for determining whether a genetic condition was labelled 'serious'. This, however, is changing as impact on health or severity of symptoms is coming to eclipse the other considerations. This paper investigates how age of onset (primarily in the context of the United Kingdom (UK)) has become considerably less significant as a criterion for determining ethically acceptable applications of PGD. Having moved off the threshold of permitting PGD testing for only fatal (or seriously debilitating), early-onset diseases, I will investigate reasons for why age of onset will not do any work to discriminate between which adult-onset diseases should be considered serious or not. First I will explain the rationale underpinning age of onset as a factor to be weighed in making determinations of seriousness. Next I will challenge the view that later-onset conditions are less serious for being later than earlier-onset conditions. The final section of the paper will discuss some of the broader disability concerns at stake in limiting access to PGD based upon determinations of the 'seriousness' of genetic conditions. Instead of advocating a return to limiting PGD to only early-onset conditions, I conclude that the whole enterprise of trying to draw lines

  9. Contested change: how Germany came to allow PGD

    Directory of Open Access Journals (Sweden)

    Bettina Bock von Wülfingen

    2016-12-01

    Full Text Available Until recently, German laws protecting the human embryo from the moment of conception were some of the strictest internationally. These laws had previously prevented any manipulation of the embryo, such as in preimplantation genetic diagnosis (PGD, and continue to affect stem cell research. In 2011, however, the German parliament voted in favour of allowing PGD in specific cases. While the modification in the law in earlier analysis was interpreted as being in keeping with the usual norms in Germany, this article argues instead that the reasoning behind the partial acceptance of PGD, rather than the legal decision itself, is indicative of a sociocultural change that needs to be accredited. Demonstrating that a significant change occurred, this article analyses the arguments that led to the amendment in law: not only has the identity of the embryo been redefined towards a pragmatic concept but the notions of parenting and pregnancy have also changed. The focus on the mother and the moment of birth has given way to a focus on conception and ‘genetic couplehood’. The professional discourse preceding the decision allowing PGD suggested that the rights of the not-yet-implanted embryo should be negotiated with those of the two parents-to-be, a concept that may be called ‘in-vitro pregnancy’.

  10. Preimplantation Genetic Diagnosis: The Situation in France and in Other European Countries.

    Science.gov (United States)

    Duguet, Anne-Marie; Boyer-Beviere, Bénédicte

    2017-04-01

    Preimplantation genetic diagnosis (PGD) relates exclusively to in vitro fertilisation techniques (IVF) that aim to prevent transmission of a serious genetic abnormality to the child. The genetic characteristics of the embryo created through IVF are analysed, and only the embryos free of the genetic abnormality are implanted in the womb. Performed worldwide since 1990, this technique has raised many legal and ethical debates due to the very wide variations of lawgiving between countries. This is shown by the report of the UNESCO IBC (2003), which described the techniques and the issues raised by preimplantation genetic diagnosis. In this article, the authors present the differences between prenatal diagnosis and preimplantation genetic diagnosis, the French legislation, then the range of legislation in Europe and finally the position of the European Court of Human Rights which sanctioned Italy and Latvia for refusing access to PGD.

  11. Decision-making on preimplantation genetic diagnosis and prenatal diagnosis: a challenge for couples with hereditary breast and ovarian cancer.

    Science.gov (United States)

    Derks-Smeets, I A P; Gietel-Habets, J J G; Tibben, A; Tjan-Heijnen, V C G; Meijer-Hoogeveen, M; Geraedts, J P M; van Golde, R; Gomez-Garcia, E; van den Bogaart, E; van Hooijdonk, M; de Die-Smulders, C E M; van Osch, L A D M

    2014-05-01

    How do couples with a BRCA1/2 mutation decide on preimplantation genetic diagnosis (PGD) and prenatal diagnosis (PND) for hereditary breast and ovarian cancer syndrome (HBOC)? BRCA couples primarily classify PGD and/or PND as reproductive options based on the perceived severity of HBOC and moral considerations, and consequently weigh the few important advantages of PGD against numerous smaller disadvantages. Awareness of PGD is generally low among persons at high risk for hereditary cancers. Most persons with HBOC are in favour of offering PGD for BRCA1/2 mutations, although only a minority would consider this option for themselves. Studies exploring the motivations for using or refraining from PGD among well-informed BRCA carriers of reproductive age are lacking. We studied the reproductive decision-making process by interviewing a group of well-informed, reproductive aged couples carrying a BRCA1/2 mutation, regarding their decisional motives and considerations. This exploratory, qualitative study investigated the motives and considerations taken into account by couples with a BRCA1/2 mutation and who have received extensive counselling on PGD and PND and have made a well-informed decision regarding this option. Eighteen couples took part in focus group and dyadic interviews between January and September 2012. Semi-structured focus groups were conducted containing two to four couples, assembled based on the reproductive method the couple had chosen: PGD (n = 6 couples) or conception without testing (n = 8 couples). Couples who had chosen PND for BRCA (n = 4) were interviewed dyadically. Two of the women, of whom one had chosen PND and the other had chosen no testing, had a history of breast cancer. None of the couples who opted for PGD or conception without testing found the use of PND, with possible pregnancy termination, acceptable. PND users chose this method because of decisive, mainly practical reasons (natural conception, high chance of favourable outcome

  12. [Clinical characteristics and preimplantation genetic diagnosis for male Robertsonian translocations].

    Science.gov (United States)

    Huang, Jin; Lian, Ying; Qiao, Jie; Liu, Ping

    2012-08-18

    To explore the clinical characteristics and the preimplantation genetic diagnosis (PGD) for male Robertsonian translocations. From Jan 2005 to Oct 2011, 96 PGD cycles of 80 male Robertsonian translocations were performed at the Center of Reproductive Medicine of Peking University Third Hospital, Beijing. All the couples were involved in assisted reproductive therapy because of oligozoospermia or repeated abortions. Pregnancy results and clinical characteristics were analyzed in this study. Of all the 80 Robertsonian translocation couples, 62 (77.50%, 62/80) couples suffered from primary infertility due to severe oligoospermia and 8 (10%, 8/80) couples suffered from secondary infertility due to oligoospermia. Moreover, 10 (12.50%, 10/80) couples had recurrent spontaneous abortion. Of all the 80 male Robertsonian translocations, 50 were (13; 14) translocations and 15 (14; 21) translocations. The study showed that 79 PGD cycles had the balanced embryos to transfer and 25 cycles resulted in clinical pregnancies. The clinical pregnancy rate per transfer cycle was 31.65% (25 of 79). Now, 18 couples had 21 viable infants and 3 were ongoing pregnant. Oligozoospermia is the main factor for the infertility of the male Robertsonian translocations. Artificial reproductive techniques can solve their reproductive problems. Moreover, PGD will decrease the risk of recurrent spontaneous abortion and the malformations.

  13. Preimplantation genetic diagnosis for a Chinese family with autosomal recessive Meckel-Gruber syndrome type 3 (MKS3.

    Directory of Open Access Journals (Sweden)

    Yanping Lu

    Full Text Available Meckel-Gruber syndrome type 3 is an autosomal recessive genetic defect caused by mutations in TMEM67 gene. In our previous study, we have identified a homozygous TMEM67 mutation in a Chinese family exhibiting clinical characteristics of MKS3, which provided a ground for further PGD procedure. Here we report the development and the first clinical application of the PGD for this MKS3 family. Molecular analysis protocol for clinical PGD procedure was established using 50 single cells in pre-clinical set-up. After whole genomic amplification by multiple displacement amplification with the DNA from single cells, three techniques were applied simultaneously to increase the accuracy and reliability of genetic diagnosis in single blastomere, including real-time PCR with Taq Man-MGB probe, haplotype analysis with polymorphic STR markers and Sanger sequencing. In the clinical PGD cycle, nine embryos at cleavage-stage were biopsied and subjected to genetic diagnosis. Two embryos diagnosed as free of TMEM67 mutation were transferred and one achieving normal pregnancy. Non-invasive prenatal assessment of trisomy 13, 18 and 21 by multiplex DNA sequencing at 18 weeks' gestation excluded the aneuploidy of the analyzed chromosomes. A healthy boy was delivered by cesarean section at 39 weeks' gestation. DNA sequencing from his cord blood confirmed the result of genetic analysis in the PGD cycle. The protocol developed in this study was proved to be rapid and safe for the detection of monogenic mutations in clinical PGD cycle.

  14. PGD for all cystic fibrosis carrier couples: novel strategy for preventive medicine and cost analysis.

    Science.gov (United States)

    Tur-Kaspa, I; Aljadeff, G; Rechitsky, S; Grotjan, H E; Verlinsky, Y

    2010-08-01

    Over 1000 children affected with cystic fibrosis (CF) are born annually in the USA. Since IVF with preimplantation genetic diagnosis (PGD) is an alternative to raising a sick child or to aborting an affected fetus, a cost-benefit analysis was performed for a national IVF-PGD program for preventing CF. The amount spent to deliver healthy children for all CF carrier-couples by IVF-PGD was compared with the average annual and lifetime direct medical costs per CF patient avoided. Treating annually about 4000 CF carrier-couples with IVF-PGD would result in 3715 deliveries of non-affected children at a cost of $57,467 per baby. Because the average annual direct medical cost per CF patient was $63,127 and life expectancy is 37 years, savings would be $2.3 million per patient and $2.2 billion for all new CF patients annually in lifetime treatment costs. Cumulated net saving of an IVF-PGD program for all carrier-couples for 37 years would be $33.3 billion. A total of 618,714 cumulative years of patients suffering because of CF and thousands of abortions could be prevented. A national IVF-PGD program is a highly cost-effective novel modality of preventive medicine and would avoid most births of individuals affected with debilitating genetic disease. 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  15. Application of preimplantation genetic diagnosis in equine blastocysts

    Directory of Open Access Journals (Sweden)

    Grady ST

    2016-08-01

    Full Text Available Pre-implantation genetic diagnosis (PGD is a procedure used to screen in vitroproduced embryos or embryos recovered after uterine flush to determine genetic traits by DNA testing prior to transfer into the uterus. Biopsy methods to obtain a sample of cells for genetic analysis before implantation have been successful in small embryos (morulae and blastocysts 300 µm diameter. The successful biopsy of expanded equine blastocysts via micromanipulation, with subsequent normal pregnancy rates, was first reported in 2010. Direct PCR may be performed when evaluating only one gene, such as for embryo sexing, while whole genome amplification is effective for subsequent multiplex PCR of multiple genes.

  16. Preimplantation genetic diagnosis of X-linked diseases examined by indirect linkage analysis.

    Science.gov (United States)

    Borgulova, I; Putzova, M; Soldatova, I; Krautova, L; Pecnova, L; Mika, J; Kren, R; Potuznikova, P; Stejskal, D

    2015-01-01

    Many centers of assisted reproduction in the Czech Republic offer preimplantation genetic diagnosis with fluorescent in situ hybridization (FISH) to couples requiring preimplantation genetic diagnosis (PGD) of X-linked diseases. However, this process results in discarding all male embryos and is not able to distinguish a carrier or healthy female embryo in X-linked recessive disorders. The main aim of this study was to summarize a six-year period of PGD of X-linked monogenic diseases using indirect linkage analysis. We wanted to accentuate the advantage indirect analysis of PGD using multiple displacement amplification (MDA) followed by short tandem repeat (STR) analysis. We present forty-six PGD cycles, including pre-case haplotyping (PGH) panel, for fifteen X-linked diseases. Embryo transfer was made thirty-eight times and gravidity was confirmed in thirteen female probands with a success rate of pregnancy calculated at 42 %. PGD procedure using MDA amplification followed by STR analysis provides help in identifying genetic defects within embryos prior to implantation. The reliability of the method was also supported by high pregnancy rate compared to other publications, which commonly achieved a 30-35 % success rate (Tab. 2, Fig. 1, Ref. 33).

  17. Factors Influencing the Decision-Making Process and Long-Term Interpersonal Outcomes for Parents Who Undergo Preimplantation Genetic Diagnosis for Fanconi Anemia: a Qualitative Investigation.

    Science.gov (United States)

    Haude, K; McCarthy Veach, P; LeRoy, B; Zierhut, H

    2017-06-01

    Fanconi anemia (FA) is characterized by congenital malformations, progressive bone marrow failure, and predisposition to malignancy. Hematopoietic stem cell transplantation is used to treat FA, and best results are attained with sibling donors who are human leukocyte antigen (HLA) identical matches. Preimplantation genetic diagnosis (PGD) offers parents of an affected child the opportunity to have an unaffected child who is an HLA match. While some research has investigated parents' experiences during the PGD process, no published studies specifically address factors influencing their decision-making process and long-term interpersonal outcomes. The aims of this study are to: (1) examine parents' expectations and the influence of media, bioethics, and religion on their decision to undergo PGD; (2) examine parents' social support and emotional experiences during their PGD process; and (3) characterize long-term effects of PGD on relationship dynamics (partner, family, friends), others' attitudes, and parental regret. Nine parents participated in semi-structured interviews. Thematic analysis revealed their decision to use PGD was variously influenced by media, bioethics, and religion, in particular, affecting parents' initial confidence levels. Moreover, the PGD process was emotionally complex, with parents desiring varying amounts and types of support from different sources at different times. Parents reported others' attitudes towards them were similar or no different than before PGD. Parental regret regarding PGD was negligible. Results of this study will promote optimization of long-term care for FA families.

  18. PREIMPLANTATION GENETIC DIAGNOSIS – 4 YEARS’ EXPERIENCE AT THE DEPARTMENT OF GYNECOLOGY, UNIVERSITY MEDICAL CENTRE LJUBLJANA

    Directory of Open Access Journals (Sweden)

    Karin Writzl

    2018-02-01

    Full Text Available Background. Preimplantation genetic diagnosis offers early investigation of embryos in couples with a high risk for offspring affected by a genetic disease. We report indications and results associated with the PGD program conducted at Gynecology Clinic Ljubljana from June 2004 to December 2008. Methods. The retrospective analysis includes sixty cycles performed in 34 couples enrolled in the PGD programe. Embryos were biopsied on the third day and the genetic analysis was performed using the FISH and PCR methods. Embryo transfers were carried out on the fifth day. Results. The main indications were chromosomal abnormalities (67 %, followed by recurrent miscarriages (16 %, autosomal dominant and recessive diseases (9 %, and X-linked diseases (6 %. Sixty cycles were performed and 48 embryo transfer procedures. There were 15 clinical pregnancies resulting in clinical pregnancy rate 25 % per cycle and 37.5 % per embryo transfer. A total of eight unaffected children were born, and two pregnancies are still ongoing. Conclusions. PGD is technically a very challenging procedure. Superior knowledge and communication between geneticists and reproductive medicine scientists is mandatory for successful PGD procedures. PGD has gained a place among the choices offered at Gynecology Clinic Ljubljana to couples at risk of transmission of genetic disease.

  19. A cost-benefit analysis of preimplantation genetic diagnosis for carrier couples of cystic fibrosis.

    Science.gov (United States)

    Davis, Lynn B; Champion, Sara J; Fair, Steve O; Baker, Valerie L; Garber, Alan M

    2010-04-01

    To perform a cost-benefit analysis of preimplantation genetic diagnosis (PGD) for carrier couples of cystic fibrosis (CF) compared with the alternative of natural conception (NC) followed by prenatal testing and termination of affected pregnancies. Cost-benefit analysis using a decision analytic model. Outpatient reproductive health practices. A simulated cohort of 1,000 female patients. We calculated the net benefit of giving birth to a child as the present value of lifetime earnings minus lifetime medical costs. Net benefits in dollars. When used for women younger than 35 years of age, the net benefit of PGD over NC was $182,000 ($715,000 vs. $532,000, respectively). For women aged 35-40 years, the net benefit of PGD over NC was $114,000 ($634,000 vs. $520,000, respectively). For women older than 40 years, however, the net benefit of PGD over NC was -$148,000 ($302,000 vs. $450,000, respectively). Preimplantation genetic diagnosis provides net economic benefits when used by carrier couples of CF. Although there is an upper limit of maternal age at which economic benefit can be demonstrated, carrier couples of CF should be offered PGD for prevention of an affected child. Copyright 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  20. [The Cagliari (Italy) Court authorizes the preimplantation genetic diagnosis].

    Science.gov (United States)

    Jorqui Azofra, María

    2007-01-01

    Today, preimplantation genetic diagnosis (PGD) has been greatly accepted within the framework of positive law of many European countries. Nevertheless, in other countries, such as Italy, it is forbidden by law. The ruling of the Civil Court of Cagliari which has authorized its use to a Sardinian couple, has opened, in this way, a small crack to be able to asses possible modifications to the Italian regulation on this matter. This article analyses the ruling of the Civil Court of Cagliari (Italy) from an ethical and legal perspective. The criteria which is used to analyse the legitimacy or illegitimacy of the practice of PGD is analysed. That is, on reasons which could justify or not the transfer of embryos in vitro to the woman. With this objective in mind, the Italian and Spanish normative models which regulates this controversial subject are looked at. As a conclusion, a critical evaluation of the arguments presented is made.

  1. Obstetric and neonatal outcomes of pregnancies conceived after preimplantation genetic diagnosis: cohort study and meta-analysis.

    Science.gov (United States)

    Hasson, Joseph; Limoni, Dana; Malcov, Mira; Frumkin, Tsvia; Amir, Hadar; Shavit, Tal; Bay, BjØrn; Many, Ariel; Almog, Benjamin

    2017-08-01

    Preimplantation genetic diagnosis (PGD) may pose risks to pregnancy outcome owing to the invasiveness of the biopsy procedure. This study compares outcome of singleton and twin clinical pregnancies conceived after fresh embryo transfers of PGD (n = 89) and matched intracytoplasmic sperm injection (ICSI) pregnancies (n = 166). The study was carried out in a single university affiliated centre. Because of the paucity of available data, a literature-based meta-analysis of studies comparing neonatal outcome of PGD and ICSI pregnancies was also conducted. In the retrospective cohort study, obstetric and neonatal outcome were available in 67 PGD and 118 ICSI pregnancies. Perinatal outcomes were comparable between PGD and ICSI pregnancies. Meta-analysis revealed similar outcomes, except for higher rate of low birth weight (<2500 g) neonates in ICSI twin pregnancies (RR 0.86, 95% CI 0.74 to 1.0). Mean birth weight, gestational age at birth, pre-term deliveries (<37 weeks) and malformations were all comparable. In this cohort study and subsequent meta-analysis, no association was found between PGD conceived pregnancies and risks of adverse neonatal or obstetrical outcomes compared with ICSI pregnancies. Hence, blastomere biopsy for PGD does not seem to increase the risk for adverse perinatal outcome compared with ICSI pregnancies. Copyright © 2017 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  2. Preimplantation genetic diagnosis for Duchenne muscular dystrophy by multiple displacement amplification.

    Science.gov (United States)

    Ren, Zi; Zeng, Hai-tao; Xu, Yan-wen; Zhuang, Guang-lun; Deng, Jie; Zhang, Cheng; Zhou, Can-quan

    2009-02-01

    To evaluate the use of multiple displacement amplification (MDA) in preimplantation genetic diagnosis (PGD) for female carriers with Duchenne muscular dystrophy (DMD). MDA was used to amplify a whole genome of single cells. Following the setup on single cells, the test was applied in two clinical cases of PGD. One mutant exon, six short tandem repeats (STR) markers within the dystrophin gene, and amelogenin were incorporated into singleplex polymerase chain reaction (PCR) assays on MDA products of single blastomeres. Center for reproductive medicine in First Affiliated Hospital, Sun Yat-sen University, China. Two female carriers with a duplication of exons 3-11 and a deletion of exons 47-50, respectively. The MDA of single cells and fluorescent PCR assays for PGD. The ability to analyze single blastomeres for DMD using MDA. The protocol setup previously allowed for the accurate diagnosis of each embryo. Two clinical cases resulted in a healthy girl, which was the first successful clinical application of MDA in PGD for DMD. We suggest that this protocol is reliable to increase the accuracy of the PGD for DMD.

  3. Simultaneous preimplantation genetic diagnosis for Tay-Sachs and Gaucher disease.

    Science.gov (United States)

    Altarescu, Gheona; Brooks, Barry; Margalioth, Ehud; Eldar Geva, Talia; Levy-Lahad, Ephrat; Renbaum, Paul

    2007-07-01

    Preimplantation genetic diagnosis (PGD) for single gene defects is described for a family in which each parent is a carrier of both Tay-Sachs (TS) and Gaucher disease (GD). A multiplex fluorescent polymerase chain reaction protocol was developed that simultaneously amplified all four familial mutations and 10 informative microsatellite markers. In one PGD cycle, seven blastomeres were analysed, reaching a conclusive diagnosis in six out of seven embryos for TS and in five out of seven embryos for GD. Of the six diagnosed embryos, one was wild type for both TS and GD, and three were wild type for GD and carriers of TS. Two remaining embryos were compound heterozygotes for TS. Two transferable embryos developed into blastocysts (wt/wt and wt GD/carrier TS) and both were transferred on day 5. This single cycle of PGD resulted in a healthy live child. Allele drop-out (ADO) was observed in three of 34 reactions, yielding an 8% ADO rate. The occurrence of ADO in single cell analysis and undetected recombination events are primary causes of misdiagnosis in PGD and emphasize the need to use multiple polymorphic markers. So far as is known, this is the first report of concomitant PGD for two frequent Ashkenazi Jewish recessive disorders.

  4. Pregnancy outcomes following 24-chromosome preimplantation genetic diagnosis in couples with balanced reciprocal or Robertsonian translocations.

    Science.gov (United States)

    Idowu, Dennis; Merrion, Katrina; Wemmer, Nina; Mash, Janine Gessner; Pettersen, Barbara; Kijacic, Dusan; Lathi, Ruth B

    2015-04-01

    To report live birth rates (LBR) and total aneuploidy rates in a series of patients with balanced translocations who pursued in vitro fertilization (IVF)-preimplantation genetic diagnosis (PGD) cycles. Retrospective cohort analysis. Genetic testing reference laboratory. Seventy-four couples who underwent IVF-PGD due to a parental translocation. IVF cycles and embryo biopsies were performed by referring clinics. Biopsy samples were sent to a single reference lab for PGD for the translocation plus 24-chromosome aneuploidy screening with the use of a single-nucleotide polymorphism (SNP) microarray. LBR per biopsy cycle, aneuploidy rate, embryo transfer (ET) rate, miscarriage rate. The LBR per IVF biopsy cycle was 38%. LBR for patients reaching ET was 52%. Clinical miscarriage rate was 10%. Despite a mean age of 33.8 years and mean of 7 embryos biopsied, there was a 30% chance for no chromosomally normal embryos. Maternal age >35 years, day 3 biopsy, and having fewer than five embryos available for biopsy increased the risk of no ET. IVF-PGD for translocation and aneuploidy screening had good clinical outcomes. Patients carrying a balanced translocation who are considering IVF-PGD should be aware of the high risk of no ET, particularly in women ≥35 years old. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Parental mosaicism is a pitfall in preimplantation genetic diagnosis of dominant disorders.

    Science.gov (United States)

    Steffann, Julie; Michot, Caroline; Borghese, Roxana; Baptista-Fernandes, Marcia; Monnot, Sophie; Bonnefont, Jean-Paul; Munnich, Arnold

    2014-05-01

    PCR amplification on single cells is prone to allele drop-out (PCR failure of one allele), a cause of misdiagnosis in preimplantation genetic diagnosis (PGD). Owing to this error risk, PGD usually relies on both direct and indirect genetic analyses. When the affected partner is the sporadic case of a dominant disorder, building haplotypes require spermatozoon or polar body testing prior to PGD, but these procedures are cost and time-consuming. A couple requested PGD because the male partner suffered from a dominant Cowden syndrome (CS). He was a sporadic case, but the couple had a first unaffected child and the non-mutated paternal haplotype was tentatively deduced. The couple had a second spontaneous pregnancy and the fetus was found to carry the at-risk haplotype but not the PTEN mutation. The mutation was present in blood from the affected father, but at low level, confirming the somatic mosaicism. Ignoring the possibility of mosaicism in the CS patient would have potentially led to selection of affected embryos. This observation emphasizes the risk of PGD in families at risk to transmit autosomal-dominant disorder when the affected partner is a sporadic case.

  6. Preimplantation genetic diagnosis as a strategy to prevent having a child born with an heritable eye disease.

    Science.gov (United States)

    Yahalom, Claudia; Macarov, Michal; Lazer-Derbeko, Galit; Altarescu, Gheona; Imbar, Tal; Hyman, Jordana H; Eldar-Geva, Talia; Blumenfeld, Anat

    2018-05-21

    In developed countries, genetically inherited eye diseases are responsible for a high percentage of childhood visual impairment. We aim to report our experience using preimplantation genetic diagnostics (PGD) in order to avoid transmitting a genetic form of eye disease associated with childhood visual impairment and ocular cancer. Retrospective case series of women who underwent in vitro fertilization (IVF) and PGD due to a familial history of inherited eye disease and/or ocular cancer, in order to avoid having a child affected with the known familial disease. Each family underwent genetic testing in order to identify the underlying disease-causing mutation. IVF and PGD treatment were performed; unaffected embryos were implanted in their respective mothers. Thirty-five unrelated mothers underwent PGD, and the following hereditary conditions were identified in their families: albinism (10 families); retinitis pigmentosa (7 families); retinoblastoma (4 families); blue cone monochromatism, achromatopsia, and aniridia (2 families each); and Hermansky-Pudlak syndrome, Leber congenital amaurosis, Norrie disease, papillorenal syndrome, primary congenital cataract, congenital glaucoma, Usher syndrome type 1F, and microphthalmia with coloboma (1 family each). Following a total of 88 PGD cycles, 18 healthy (i.e., unaffected) children were born. Our findings underscore the importance an ophthalmologist plays in informing patients regarding the options now available for using prenatal and preimplantation genetic diagnosis to avoid having a child with a potentially devastating genetic form of eye disease or ocular cancer. This strategy is highly relevant, particularly given the limited options currently available for treating these conditions.

  7. Novel One-Step Multiplex PCR-Based Method for HLA Typing and Preimplantational Genetic Diagnosis of -Thalassemia

    Directory of Open Access Journals (Sweden)

    Raquel M. Fernández

    2013-01-01

    Full Text Available Preimplantation genetic diagnosis (PGD of single gene disorders, combined with HLA matching (PGD-HLA, has emerged as a tool for couples at risk of transmitting a genetic disease to select unaffected embryos of an HLA tissue type compatible with that of an existing affected child. Here, we present a novel one-step multiplex PCR to genotype a spectrum of STRs to simultaneously perform HLA typing and PGD for -thalassemia. This method is being routinely used for PGD-HLA cycles in our department, with a genotyping success rate of 100%. As an example, we present the first successful PGD-HLA typing in Spain, which resulted in the birth of a boy and subsequent successful HSC transplantation to his affected brother, who is doing well 4 years following transplantation. The advantage of our method is that it involves only a round of single PCR for multiple markers amplification (up to 10 markers within the HLA and 6 markers at the -globin loci. This strategy has allowed us to considerably reduce the optimization of the PCR method for each specific PGD-HLA family as well as the time to obtain molecular results in each cycle.

  8. The clinical application of single-sperm-based SNP haplotyping for PGD of osteogenesis imperfecta.

    Science.gov (United States)

    Chen, Linjun; Diao, Zhenyu; Xu, Zhipeng; Zhou, Jianjun; Yan, Guijun; Sun, Haixiang

    2018-05-15

    Osteogenesis imperfecta (OI) is a genetically heterogeneous disorder, presenting either autosomal dominant, autosomal recessive or X-linked inheritance patterns. The majority of OI cases are autosomal dominant and are caused by heterozygous mutations in either the COL1A1 or COL1A2 gene. In these dominant disorders, allele dropout (ADO) can lead to misdiagnosis in preimplantation genetic diagnosis (PGD). Polymorphic markers linked to the mutated genes have been used to establish haplotypes for identifying ADO and ensuring the accuracy of PGD. However, the haplotype of male patients cannot be determined without data from affected relatives. Here, we developed a method for single-sperm-based single-nucleotide polymorphism (SNP) haplotyping via next-generation sequencing (NGS) for the PGD of OI. After NGS, 10 informative polymorphic SNP markers located upstream and downstream of the COL1A1 gene and its pathogenic mutation site were linked to individual alleles in a single sperm from an affected male. After haplotyping, a normal blastocyst was transferred to the uterus for a subsequent frozen embryo transfer cycle. The accuracy of PGD was confirmed by amniocentesis at 19 weeks of gestation. A healthy infant weighing 4,250 g was born via vaginal delivery at the 40th week of gestation. Single-sperm-based SNP haplotyping can be applied for PGD of any monogenic disorders or de novo mutations in males in whom the haplotype of paternal mutations cannot be determined due to a lack of affected relatives. ADO: allele dropout; DI: dentinogenesis imperfect; ESHRE: European Society of Human Reproduction and Embryology; FET: frozen embryo transfer; gDNA: genomic DNA; ICSI: intracytoplasmic sperm injection; IVF: in vitro fertilization; MDA: multiple displacement amplification; NGS: next-generation sequencing; OI: osteogenesis imperfect; PBS: phosphate buffer saline; PCR: polymerase chain reaction; PGD: preimplantation genetic diagnosis; SNP: single-nucleotide polymorphism; STR

  9. Saviour embryos? Preimplantation genetic diagnosis as a therapeutic technology.

    Science.gov (United States)

    Sparrow, Robert; Cram, David

    2010-05-01

    The creation of 'saviour siblings' is one of the most controversial uses of preimplantation genetic diagnosis (PGD). This paper outlines and invites ethical discussion of an extension of this technology, namely, the creation of 'saviour embryos' to serve as a source of stem cells to be used in potentially life-saving therapy for an existing child. A number of analogies between this hypothetical use of PGD and existing uses of IVF are offered and, in addition, between saviour embryos and proposed therapeutic applications of stem cell technology. The ethical significance of a number of disanalogies between these cases are explored and investigated. While the creation of saviour embryos would involve a significant shift in the rationale for IVF and PGD, it is suggested here that the urgent need of an existing individual should be prioritised over any obligations that might exist in relation to the creation or destruction of human embryos. Copyright (c) 2009 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  10. Technical Update: Preimplantation Genetic Diagnosis and Screening.

    Science.gov (United States)

    Dahdouh, Elias M; Balayla, Jacques; Audibert, François; Wilson, R Douglas; Audibert, François; Brock, Jo-Ann; Campagnolo, Carla; Carroll, June; Chong, Karen; Gagnon, Alain; Johnson, Jo-Ann; MacDonald, William; Okun, Nanette; Pastuck, Melanie; Vallée-Pouliot, Karine

    2015-05-01

    To update and review the techniques and indications of preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS). Discussion about the genetic and technical aspects of preimplantation reproductive techniques, particularly those using new cytogenetic technologies and embryo-stage biopsy. Clinical outcomes of reproductive techniques following the use of PGD and PGS are included. This update does not discuss in detail the adverse outcomes that have been recorded in association with assisted reproductive technologies. Published literature was retrieved through searches of The Cochrane Library and Medline in April 2014 using appropriate controlled vocabulary (aneuploidy, blastocyst/physiology, genetic diseases, preimplantation diagnosis/methods, fertilization in vitro) and key words (e.g., preimplantation genetic diagnosis, preimplantation genetic screening, comprehensive chromosome screening, aCGH, SNP microarray, qPCR, and embryo selection). Results were restricted to systematic reviews, randomized controlled trials/controlled clinical trials, and observational studies published from 1990 to April 2014. There were no language restrictions. Searches were updated on a regular basis and incorporated in the update to January 2015. Additional publications were identified from the bibliographies of retrieved articles. Grey (unpublished) literature was identified through searching the websites of health technology assessment and health technology-related agencies, clinical practice guideline collections, clinical trial registries, and national and international medical specialty societies. The quality of evidence in this document was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care. (Table 1) BENEFITS, HARMS, AND COSTS: This update will educate readers about new preimplantation genetic concepts, directions, and technologies. The major harms and costs identified are those of assisted reproductive

  11. Review:Whole genome amplification in preimplantation genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    Ying-ming ZHENG; Ning WANG; Lei LI; Fan JIN

    2011-01-01

    Preimplantation genetic diagnosis(PGD)refers to a procedure for genetically analyzing embryos prior to implantation,improving the chance of conception for patients at high risk of transmitting specific inherited disorders.This method has been widely used for a large number of genetic disorders since the first successful application in the early 1990s.Polymerase chain reaction(PCR)and fluorescent in situ hybridization(FISH)are the two main methods in PGD,but there are some inevitable shortcomings limiting the scope of genetic diagnosis.Fortunately,different whole genome amplification(WGA)techniques have been developed to overcome these problems.Sufficient DNA can be amplified and multiple tasks which need abundant DNA can be performed.Moreover,WGA products can be analyzed as a template for multi-loci and multi-gene during the subsequent DNA analysis.In this review,we will focus on the currently available WGA techniques and their applications,as well as the new technical trends from WGA products.

  12. The impact of preimplantation genetic diagnosis on human embryos

    Directory of Open Access Journals (Sweden)

    García-Ferreyra J.

    2016-12-01

    Full Text Available Chromosome abnormalities are extremely common in human oocytes and embryos and are associated with a variety of negative outcomes for both natural cycles and those using assisted reproduction techniques. Aneuploidies embryos may fail to implant in the uterus, miscarry, or lead to children with serious medical problems (e.g., Down syndrome. Preimplantation genetic diagnosis (PGD is a technique that allows the detection of aneuploidy in embryos and seeks to improve the clinical outcomes od assisted reproduction treatments, by ensuring that the embryos chosen for the transfer are chromosomally normal.

  13. Resolving a genetic paradox throughout preimplantation genetic diagnosis for autosomal dominant severe congenital neutropenia.

    Science.gov (United States)

    Malcov, Mira; Reches, Adi; Ben-Yosef, Dalit; Cohen, Tania; Amit, Ami; Dgany, Orly; Tamary, Hannah; Yaron, Yuval

    2010-03-01

    Severe congenital neutropenia is an inherited disease characterized by low peripheral blood neutrophils, amenable to bone marrow transplantation. Genetic analysis in the family here described detected a ELA2 splice-site mutation in the affected child and also in his asymptomatic father. The parents requested preimplantation genetic diagnosis (PGD), coupled with HLA matching, to obtain a suitable bone marrow donor for the affected child. A PGD protocol was developed, based on multiplex nested PCR for direct analysis of the ELA2 mutation, flanking polymorphic markers and HLA typing. The amplification efficiency of the mutation was > 90% in single leukocytes from the affected child but only 67% in the father. Analysis of single haploid sperm cells from the father demonstrated three different sperm-cell populations: (1) sperm cells harboring the ELA2 mutation on the 'affected' haplotype, (2) sperm cells without the ELA2 mutation on the 'normal' haplotype, and (3) sperm cells without the ELA2 mutation on the 'affected' haplotype. These data demonstrate that the ELA2 mutation in the father occurred de novo during his embryonic development, resulting in somatic as well as germ-line mosaicism. This conclusion was also taken into consideration when PGD was performed. Copyright (c) 2010 John Wiley & Sons, Ltd.

  14. Preimplantation Genetic Diagnosis and Natural Conception: A Comparison of Live Birth Rates in Patients with Recurrent Pregnancy Loss Associated with Translocation.

    Directory of Open Access Journals (Sweden)

    Shinichiro Ikuma

    Full Text Available Established causes of recurrent pregnancy loss (RPL include antiphospholipid syndrome, uterine anomalies, parental chromosomal abnormalities, particularly translocations, and abnormal embryonic karyotypes. The number of centers performing preimplantation genetic diagnosis (PGD for patients with translocations has steadily increased worldwide. The live birth rate with PGD was reported to be 27-54%. The live birth rate with natural conception was reported to be 37-63% on the first trial and 65-83% cumulatively. To date, however, there has been no cohort study comparing age and the number of previous miscarriages in matched patients undergoing or not undergoing PGD. Thus, we compared the live birth rate of patients with RPL associated with a translocation undergoing PGD with that of patients who chose natural conception.After genetic counseling, 52 patients who desired natural conception and 37 patients who chose PGD were matched for age and number of previous miscarriages and these comprised the subjects of our study. PGD was performed by means of fluorescence in situ hybridization analysis. The live birth rates on the first PGD trial and the first natural pregnancy after ascertainment of the carrier status were 37.8% and 53.8%, respectively (odds ratio 0.52, 95% confidence interval 0.22-1.23. Cumulative live birth rates were 67.6% and 65.4%, respectively, in the groups undergoing and not undergoing PGD. The time required to become pregnancy was similar in both groups. PGD was found to reduce the miscarriage rate significantly. The prevalence of twin pregnancies was significantly higher in the PGD group. The cost of PGD was $7,956 U.S. per patient.While PGD significantly prevented further miscarriages, there was no difference in the live birth rate. Couples should be fully informed of the similarity in the live birth rate, the similarity in time to become pregnancy, the advantages of PGD, such as the reduction in the miscarriage rate, as well as

  15. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study.

    Science.gov (United States)

    Rubio, Carmen; Bellver, José; Rodrigo, Lorena; Castillón, Gema; Guillén, Alfredo; Vidal, Carmina; Giles, Juan; Ferrando, Marcos; Cabanillas, Sergio; Remohí, José; Pellicer, Antonio; Simón, Carlos

    2017-05-01

    To determine the clinical value of preimplantation genetic diagnosis for aneuploidy screening (PGD-A) in women of advanced maternal age (AMA; between 38 and 41 years). This was a multicenter, randomized trial with two arms: a PGD-A group with blastocyst transfer, and a control group with blastocyst transfer without PGD-A. Private reproductive centers. A total of 326 recruited patients fit the inclusion criteria, and 205 completed the study (100 in the PGD-A group and 105 in the control group). Day-3 embryo biopsy, array comparative genomic hybridization, blastocyst transfer, and vitrification. Primary outcomes were delivery and live birth rates in the first transfer and cumulative outcome rates. The PGD-A group exhibited significantly fewer ETs (68.0% vs. 90.5% for control) and lower miscarriage rates (2.7% vs. 39.0% for control). Delivery rate after the first transfer attempt was significantly higher in the PGD-A group per transfer (52.9% vs 24.2%) and per patient (36.0% vs. 21.9%). No significant differences were observed in the cumulative delivery rates per patient 6 months after closing the study. However, the mean number of ETs needed per live birth was lower in the PGD-A group compared with the control group (1.8 vs. 3.7), as was the time to pregnancy (7.7 vs. 14.9 weeks). Preimplantation genetic diagnosis for aneuploidy screening is superior compared with controls not only in clinical outcome at the first ET but also in dramatically decreasing miscarriage rates and shortening the time to pregnancy. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. The improvement of the best practice guidelines for preimplantation genetic diagnosis of cystic fibrosis: toward an international consensus.

    Science.gov (United States)

    Girardet, Anne; Viart, Victoria; Plaza, Stéphanie; Daina, Gemma; De Rycke, Martine; Des Georges, Marie; Fiorentino, Francesco; Harton, Gary; Ishmukhametova, Aliya; Navarro, Joaquima; Raynal, Caroline; Renwick, Pamela; Saguet, Florielle; Schwarz, Martin; SenGupta, Sioban; Tzetis, Maria; Roux, Anne-Françoise; Claustres, Mireille

    2016-04-01

    Cystic fibrosis (CF) is one of the most common indications for preimplantation genetic diagnosis (PGD) for single gene disorders, giving couples the opportunity to conceive unaffected children without having to consider termination of pregnancy. However, there are no available standardized protocols, so that each center has to develop its own diagnostic strategies and procedures. Furthermore, reproductive decisions are complicated by the diversity of disease-causing variants in the CFTR (cystic fibrosis transmembrane conductance regulator) gene and the complexity of correlations between genotypes and associated phenotypes, so that attitudes and practices toward the risks for future offspring can vary greatly between countries. On behalf of the EuroGentest Network, eighteen experts in PGD and/or molecular diagnosis of CF from seven countries attended a workshop held in Montpellier, France, on 14 December 2011. Building on the best practice guidelines for amplification-based PGD established by ESHRE (European Society of Human Reproduction and Embryology), the goal of this meeting was to formulate specific guidelines for CF-PGD in order to contribute to a better harmonization of practices across Europe. Different topics were covered including variant nomenclature, inclusion criteria, genetic counseling, PGD strategy and reporting of results. The recommendations are summarized here, and updated information on the clinical significance of CFTR variants and associated phenotypes is presented.

  17. [Analysis of clinical outcomes of different embryo stage biopsy in array comparative genomic hybridization based preimplantation genetic diagnosis and screening].

    Science.gov (United States)

    Shen, J D; Wu, W; Shu, L; Cai, L L; Xie, J Z; Ma, L; Sun, X P; Cui, Y G; Liu, J Y

    2017-12-25

    Objective: To evaluate the efficiency of the application of array comparative genomic hybridization (array-CGH) in preimplantation genetic diagnosis or screening (PGD/PGS), and compare the clinical outcomes of different stage embryo biopsy. Methods: The outcomes of 381 PGD/PGS cycles referred in the First Affiliated Hospital of Nanjing Medical University from July 2011 to August 2015 were retrospectively analyzed. There were 320 PGD cycles with 156 cleavage-stage-biopsy cycles and 164 trophectoderm-biopsy cycles, 61 PGS cycles with 23 cleavage-stage-biopsy cycles and 38 trophectoderm-biopsy cycles. Chromosomal analysis was performed by array-CGH technology combined with whole genome amplification. Single embryo transfer was performed in all transfer cycles. Live birth rate was calculated as the main clinical outcomes. Results: The embryo diagnosis rate of PGD/PGS by array-CGH were 96.9%-99.1%. In PGD biopsy cycles, the live birth rate per embryo transfer cycle and live birth rate per embryo biopsy cycle were 50.0%(58/116) and 37.2%(58/156) in cleavage-stage-biopsy group, 67.5%(85/126) and 51.8%(85/164) in trophectoderm-biopsy group (both P 0.05). Conclusions: High diagnosis rate and idea live birth rate are achieved in PGD/PGS cycles based on array-CGH technology. The live birth rate of trophectoderm-biopsy group is significantly higher than that of cleavage-stage-biopsy group in PGD cycles; the efficiency of trophectoderm-biopsy is better.

  18. Clinical applications of MARSALA for preimplantation genetic diagnosis of spinal muscular atrophy.

    Science.gov (United States)

    Ren, Yixin; Zhi, Xu; Zhu, Xiaohui; Huang, Jin; Lian, Ying; Li, Rong; Jin, Hongyan; Zhang, Yan; Zhang, Wenxin; Nie, Yanli; Wei, Yuan; Liu, Zhaohui; Song, Donghong; Liu, Ping; Qiao, Jie; Yan, Liying

    2016-09-20

    Conventional PCR methods combined with linkage analysis based on short tandem repeats (STRs) or Karyomapping with single nucleotide polymorphism (SNP) arrays, have been applied to preimplantation genetic diagnosis (PGD) for spinal muscular atrophy (SMA), an autosome recessive disorder. However, it has limitations in SMA diagnosis by Karyomapping, and these methods are unable to distinguish wild-type embryos with carriers effectively. Mutated allele revealed by sequencing with aneuploidy and linkage analyses (MARSALA) is a new method allowing embryo selection by a one-step next-generation sequencing (NGS) procedure, which has been applied in PGD for both autosome dominant and X-linked diseases in our group previously. In this study, we carried out PGD based on MARSALA for two carrier families with SMA affected children. As a result, one of the couples has given birth to a healthy baby free of mutations in SMA-causing gene. It is the first time that MARSALA was applied to PGD for SMA, and we can distinguish the embryos with heterozygous deletion (carriers) from the wild-type (normal) ones accurately through this NGS-based method. In addition, direct mutation detection allows us to identify the affected embryos (homozygous deletion), which can be regarded as probands for linkage analysis, in case that the affected family member is absent. In the future, the NGS-based MARSALA method is expected to be used in PGD for all monogenetic disorders with known pathogenic gene mutation. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  19. Prevention of Lysosomal Storage Diseases and Derivation of Mutant Stem Cell Lines by Preimplantation Genetic Diagnosis

    Science.gov (United States)

    Altarescu, Gheona; Beeri, Rachel; Eiges, Rachel; Epsztejn-Litman, Silvina; Eldar-Geva, Talia; Elstein, Deborah; Zimran, Ari; Margalioth, Ehud J.; Levy-Lahad, Ephrat; Renbaum, Paul

    2012-01-01

    Preimplantation genetic diagnosis (PGD) allows birth of unaffected children for couples at risk for a genetic disorder. We present the strategy and outcome of PGD for four lysosomal storage disorders (LSD): Tay-Sachs disease (TSD), Gaucher disease (GD), Fabry disease (FD), and Hunter syndrome (HS), and subsequent development of stem cell lines. For each disease, we developed a family-specific fluorescent multiplex single-cell PCR protocol that included the familial mutation and informative markers surrounding the mutation. Embryo biopsy and PGD analysis were performed on either oocytes (polar bodies one and two) or on single blastomeres from a six-cell embryo. We treated twenty families carrying mutations in these lysosomal storage disorders, including 3 couples requiring simultaneous analysis for two disorders (TSD/GD, TSD/balanced Robertsonian translocation 45XYder(21;14), and HS/oculocutaneus albinism). These analyses led to an overall pregnancy rate/embryo transfer of 38% and the birth of 20 unaffected children from 17 families. We have found that PGD for lysosomal disorders is a safe and effective method to prevent birth of affected children. In addition, by using mutant embryos for the derivation of stem cell lines, we have successfully established GD and HS hESC lines for use as valuable models in LSD research. PMID:23320174

  20. Preimplantation genetic diagnosis: a national multicenter obstetric and neonatal follow-up study.

    Science.gov (United States)

    Bay, Bjorn; Ingerslev, Hans Jakob; Lemmen, Josephine Gabriela; Degn, Birte; Rasmussen, Iben Anne; Kesmodel, Ulrik Schiøler

    2016-11-01

    To study whether women conceiving after preimplantation genetic diagnosis (PGD) and their children have greater risks of adverse pregnancy and birth outcomes compared with children conceived spontaneously or after IVF with or without intracytoplasmic sperm injection (ICSI). Historical cohort study. Not applicable. All deliveries following PGD treatment for single gene and sex-linked disorders or structural chromosomal aberrations (n = 126 deliveries/149 children), IVF/ICSI treatment (n = 30,418 deliveries/36,115 children), and spontaneous conception (n = 896,448 deliveries/909,624 children). None. Adverse obstetric and neonatal outcomes, such as pre-eclampsia, preterm primary rupture of membranes, placenta previa, abruption of placenta, preterm birth, low birth weight, malformations, and neonatal admission. Compared with spontaneously conceived pregnancies, PGD pregnancies were at significantly increased risk of placenta previa (adjusted odds ratio [ORa] 9.1; 95% confidence interval [95% CI] 3.4, 24.9), cesarean section (ORa 2.0; 95% CI 1.3, 2.9), preterm birth (ORa 1.6; 95% CI 1.0, 2.7), shorter gestation (mean difference -3.4 days; 95% CI -5.7, -1.1 days), and longer neonatal admission (mean difference 21 days; 95% CI 15, 28 days). The risks were comparable to that of pregnancies following IVF/ICSI. In subanalyses, adverse outcomes were only present in children conceived by PGD owing to parental monogenetic disorder and comparable to those of children born to parents with monogenic disorders conceiving without PGD, except for a higher risk of placenta previa. In this cohort study, the risk of adverse obstetric and neonatal outcomes was mainly related to the underlying parental condition rather than the PGD procedure. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Preimplantation genetic diagnosis, reproductive freedom, and deliberative democracy.

    Science.gov (United States)

    Farrelly, Colin

    2009-04-01

    In this paper I argue that the account of deliberative democracy advanced by Amy Gutmann and Dennis Thompson (1996, 2004) is a useful normative theory that can help enhance our deliberations about public policy in morally pluralistic societies. More specifically, I illustrate how the prescriptions of deliberative democracy can be applied to the issue of regulating non-medical uses of pre-implantation genetic diagnosis (PGD), such as gender selection. Deliberative democracy does not aim to win a philosophical debate among rival first-order theories, such as libertarianism, egalitarianism or feminism. Rather, it advances a second-order analysis that strives to help us determine what would constitute a reasonable balance between the conflicting fundamental values that arise in the context of regulating PGD. I outline a theoretical model (called the Reasonable Genetic Intervention Model) that brings these issues to the fore. Such a model incorporates the concern for both procedural and substantive principles; and it does so in way that takes provisionality seriously.

  2. FMR1 CGG repeat expansion mutation detection and linked haplotype analysis for reliable and accurate preimplantation genetic diagnosis of fragile X syndrome.

    Science.gov (United States)

    Rajan-Babu, Indhu-Shree; Lian, Mulias; Cheah, Felicia S H; Chen, Min; Tan, Arnold S C; Prasath, Ethiraj B; Loh, Seong Feei; Chong, Samuel S

    2017-07-19

    Fragile X mental retardation 1 (FMR1) full-mutation expansion causes fragile X syndrome. Trans-generational fragile X syndrome transmission can be avoided by preimplantation genetic diagnosis (PGD). We describe a robust PGD strategy that can be applied to virtually any couple at risk of transmitting fragile X syndrome. This novel strategy utilises whole-genome amplification, followed by triplet-primed polymerase chain reaction (TP-PCR) for robust detection of expanded FMR1 alleles, in parallel with linked multi-marker haplotype analysis of 13 highly polymorphic microsatellite markers located within 1 Mb of the FMR1 CGG repeat, and the AMELX/Y dimorphism for gender identification. The assay was optimised and validated on single lymphoblasts isolated from fragile X reference cell lines, and applied to a simulated PGD case and a clinical in vitro fertilisation (IVF)-PGD case. In the simulated PGD case, definitive diagnosis of the expected results was achieved for all 'embryos'. In the clinical IVF-PGD case, delivery of a healthy baby girl was achieved after transfer of an expansion-negative blastocyst. FMR1 TP-PCR reliably detects presence of expansion mutations and obviates reliance on informative normal alleles for determining expansion status in female embryos. Together with multi-marker haplotyping and gender determination, misdiagnosis and diagnostic ambiguity due to allele dropout is minimised, and couple-specific assay customisation can be avoided.

  3. Identification of embryonic chromosomal abnormality using FISH-based preimplantaion genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    叶英辉; 徐晨明; 金帆; 钱羽力

    2004-01-01

    Objective: Embryonic chromosomal abnormality is one of the main reasons for in vitro fertilization (IVF) failure. This study aimed at evaluating the value of Fluorescence in-situ Hybridization (FISH)-based Preimplantation Genetic Diagnosis (PGD) in screening for embryonic chromosomal abnormality to increase the successful rate of IVF. Method: Ten couples, four with high risk of chromosomal abnormality and six infertile couples, underwent FISH-based PGD during IVF procedure. At day 3, one or two blastomeres were aspirated from each embryo. Biopsied blastomeres were examined using FISH analysis to screen out embryos with chromosomal abnormalities. At day 4, embryos without detectable chromosomal abnormality were transferred to the mother bodies as in regular IVF. Results: Among 54 embryos screened using FISH-based PGD, 30 embryos were detected to have chromosomal abnormalities. The 24 healthy embryos were implanted, resulting in four clinical pregnancies, two of which led to successful normal birth of two healthy babies; one to ongoing pregnancy during the writing of this article; and one to ectopic pregnancy. Conclusion: FISH-based PGD is an effective method for detecting embryonic chromosomal abnormality, which is one of the common causes of spontaneous miscarriages and chromosomally unbalanced offsprings.

  4. Identification of embryonic chromosomal abnormality using FISH-based preimplantaion genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    叶英辉; 徐晨明; 金帆; 钱羽力

    2004-01-01

    Objective: Embryonic chromosomal abnormality is one of the main reasons for in vitro fertilization (IVF)failure. This study aimed at evaluating the value of Fluorescence in-situ Hybridization (FISH)-based Preimplantation Genetic Diagnosis (PGD) in screening for embryonic chromosomal abnormality to increase the successful rate of IVF. Method:Ten couples, four with high risk of chromosomal abnormality and six infertile couples, underwent FISH-based PGD during IVF procedure. At day 3, one or two blastomeres were aspirated from each embryo. Biopsied blastomeres were examined using FISH analysis to screen out embryos with chromosomal abnormalities. At day 4, embryos without detectable chromosomal abnormality were transferred to the mother bodies as in regular IVF. Results: Among 54 embryos screened using FISH-based PGD, 30 embryos were detected to have chromosomal abnormalities. The 24 healthy embryos were implanted,resulting in four clinical pregnancies, two of which led to successful normal birth of two healthy babies; one to ongoing pregnancy during the writing of this article; and one to ectopic pregnancy. Conclusion: FISH-based PGD is an effective method for detecting embryonic chromosomal abnormality, which is one of the common causes of spontaneous miscarriages and chromosomally unbalanced offsprings.

  5. The first successful live birth following preimplantation genetic diagnosis using PCR for type 1 citrullinemia

    Science.gov (United States)

    Cho, Jae-Hyun; Lee, Kyung-Hee; Jeon, Il-Kyung; Kim, Jae-Min; Kang, Byung-Moon

    2014-01-01

    Type 1 citrullinemia (CTLN1) is an autosomal recessive inherited metabolic disorder caused by anargininosuccinicnate synthetase deficiency. The patient was a 38-year-old Korean woman who is a carrier for CTLN1 and her first baby was diagnosed with CTLN1. Preimplantation genetic diagnosis (PGD) for CTLN1 in day 3 embryos using polymerase chain reaction was performed for live birth of healthy baby who is no affected with CTLN1. One unaffected blastocyst was transferred. This resulted in a clinical pregnancy and the live birth of healthy male twin. They were confirmed to be unaffected with CTNL1 by post natal diagnosis. This is the first case report of the use of PGD for CTNL1. PMID:24883299

  6. Preimplantation genetic diagnosis for cystic fibrosis: the Montpellier center's 10-year experience.

    Science.gov (United States)

    Girardet, A; Ishmukhametova, A; Willems, M; Coubes, C; Hamamah, S; Anahory, T; Des Georges, M; Claustres, M

    2015-02-01

    This study provides an overview of 10 years of experience of preimplantation genetic diagnosis (PGD) for cystic fibrosis (CF) in our center. Owing to the high allelic heterogeneity of CF transmembrane conductance regulator (CFTR) mutations in south of France, we have set up a powerful universal test based on haplotyping eight short tandem repeats (STR) markers together with the major mutation p.Phe508del. Of 142 couples requesting PGD for CF, 76 have been so far enrolled in the genetic work-up, and 53 had 114 PGD cycles performed. Twenty-nine cycles were canceled upon in vitro fertilization (IVF) treatment because of hyper- or hypostimulation. Of the remaining 85 cycles, a total of 493 embryos were biopsied and a genetic diagnosis was obtained in 463 (93.9%), of which 262 (without or with a single CF-causing mutation) were transferable. Twenty-eight clinical pregnancies were established, yielding a pregnancy rate per transfer of 30.8% in the group of seven couples with one member affected with CF, and 38.3% in the group of couples whose both members are carriers of a CF-causing mutation [including six couples with congenital bilateral absence of the vas deferens (CBAVD)]. So far, 25 children were born free of CF and no misdiagnosis was recorded. Our test is applicable to 98% of couples at risk of transmitting CF. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Preimplantation genetic diagnosis for a patient with multiple endocrine neoplasia type 1: case report.

    Science.gov (United States)

    Lima, Aline Dt; Alves, Vanessa R; Rocha, Andressa R; Martinhago, Ana C; Martinhago, Ciro; Donadio, Nilka; Dzik, Artur; Cavagna, Mario; Gebrim, Luiz H

    2018-03-01

    Preimplantation genetic diagnosis was carried out for embryonic analysis in a patient with multiple endocrine neoplasia type 1 (MEN1). This is a rare autosomal-dominant cancer syndrome and the patients with MEN1 are characterized by the occurrence of tumors in multiple endocrine tissues, associated with germline and somatic inactivating mutations in the MEN1 gene. This case report documents a successful preimplantation genetic diagnosis (PGD) involving a couple at-risk for MEN1 syndrome, with a birth of a healthy infant. The couple underwent a cycle of controlled ovarian stimulation and intracytoplasmic sperm injection (ICSI). Embryos were biopsied at the blastocyst stage and cryopreserved; we used PCR-based DNA analysis for PGD testing. Only one of the five embryos analyzed for MEN1 syndrome was unaffected. This embryo was thawed and transferred following endometrial preparation. After positive βHCG test; clinical pregnancy was confirmed by ultrasound, and a healthy infant was born. PGD for single gene disorders has been an emerging therapeutic tool for couples who are at risk of passing a genetic disease on to their offspring.

  8. Preferential selection and transfer of euploid noncarrier embryos in preimplantation genetic diagnosis cycles for reciprocal translocations.

    Science.gov (United States)

    Wang, Li; Shen, Jiandong; Cram, David S; Ma, Minyue; Wang, Hui; Zhang, Wenke; Fan, Junmei; Gao, Zhiying; Zhang, Liwen; Li, Zhifeng; Xu, Mengnan; Leigh, Don A; Trounson, Alan O; Liu, Jiayin; Yao, Yuanqing

    2017-10-01

    To develop and validate a new strategy to distinguish between balanced/euploid carrier and noncarrier embryos in preimplantation genetic diagnosis (PGD) cycles for reciprocal translocations and to successfully achieve a live birth after selective transfer of a noncarrier embryo. Retrospective and prospective study. In vitro fertilization (IVF) units. Eleven patients undergoing mate pair sequencing for identification of translocation breakpoints, followed by clinical PGD cycles. Embryo biopsy with 24-chromosome testing to determine carrier status of balanced/euploid embryos. Definition of translocation breakpoints and polymerase chain reaction (PCR) diagnostic primers, correct diagnosis of euploid embryos for carrier status, and a live birth with a normal karyotype after transfer of a noncarrier embryo. In 9 of 11 patients (82%), translocation breakpoints were successfully identified. In four patients with a term PGD pregnancy established with a balanced/euploid embryo of unknown carrier status, the correct carrier status was retrospectively determined, matching with the cytogenetic karyotype of the resulting newborns. In a prospective PGD cycle undertaken by a patient with a 46,XY,t(7;14)(q22;q24.3) translocation, the four balanced/euploid embryos identified comprised three carriers and one noncarrier. Transfer of the noncarrier embryo resulted in birth of a healthy girl who was subsequently confirmed with a normal 46,XX karyotype. The combination of mate pair sequencing and PCR breakpoint analysis of balanced reciprocal translocation derivatives is a novel, reliable, and accurate strategy for distinguishing between carrier and noncarrier balanced/euploid embryos. The method has potential application in clinical PGD cycles for patients with reciprocal translocations or other structural rearrangements. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Clinical and Technical Overview of Preimplantation Genetic Diagnosis for Fragile X Syndrome: Experience at the University Hospital Virgen del Rocio in Spain

    Directory of Open Access Journals (Sweden)

    Raquel M. Fernández

    2015-01-01

    Full Text Available Fragile X syndrome (FXS accounts for about one-half of cases of X-linked intellectual disability and is the most common monogenic cause of mental impairment. Reproductive options for the FXS carriers include preimplantation genetic diagnosis (PGD. However, this strategy is considered by some centers as wasteful owing to the high prevalence of premature ovarian failure in FXS carriers and the difficulties in genetic diagnosis of the embryos. Here we present the results of our PGD Program applied to FXS, at the Department of Genetics, Reproduction and Fetal Medicine of the University Hospital Virgen del Rocío in Seville. A total of 11 couples have participated in our PGD Program for FXS since 2010. Overall, 15 cycles were performed, providing a total of 43 embryos. The overall percentage of transfers per cycle was 46.67% and the live birth rate per cycle was 13.33%. As expected, these percentages are considerably lower than the ones obtained in PGD for other pathologies. Our program resulted in the birth of 3 unaffected babies of FXS for 2 of the 11 couples (18.2% supporting that, despite the important drawbacks of PGD for FXS, efforts should be devoted in offering this reproductive option to the affected families.

  10. The Decision-Making Process of Genetically At-Risk Couples Considering Preimplantation Genetic Diagnosis: Initial Findings from a Grounded Theory Study

    Science.gov (United States)

    Hershberger, Patricia E.; Gallo, Agatha M.; Kavanaugh, Karen; Olshansky, Ellen; Schwartz, Alan; Tur-Kaspa, Ilan

    2012-01-01

    Exponential growth in genomics has led to public and private initiatives worldwide that have dramatically increased the number of procreative couples who are aware of their ability to transmit genetic disorders to their future children. Understanding how couples process the meaning of being genetically at risk for their procreative life lags far behind the advances in genomic and reproductive sciences. Moreover, society, policy makers, and clinicians are not aware of the experiences and nuances involved when modern couples are faced with using Preimplantation Genetic Diagnosis (PGD). The purpose of this study was to discover the decision-making process of genetically at-risk couples as they decide whether to use PGD to prevent the transmission of known single-gene or sex-linked genetic disorders to their children. A qualitative, grounded theory design guided the study in which 22 couples (44 individual partners) from the USA, who were actively considering PGD, participated. Couples were recruited from June 2009 to May 2010 from the Internet and from a large PGD center and a patient newsletter. In-depth semi-structured interviews were completed with each individual partner within the couple dyad, separate from their respective partner. We discovered that couples move through four phases (Identify, Contemplate, Resolve, Engage) of a complex, dynamic, and iterative decision-making process where multiple, sequential decisions are made. In the Identify phase, couples acknowledge the meaning of their at-risk status. Parenthood and reproductive options are explored in the Contemplate phase, where 41% of couples remained for up to 36 months before moving into the Resolve phase. In Resolve, one of three decisions about PGD use is reached, including: Accepting, Declining, or Oscillating. Actualizing decisions occur in the Engage phase. Awareness of the decision-making process among genetically at-risk couples provides foundational work for understanding critical processes

  11. The experience of 3 years of external quality assessment of preimplantation genetic diagnosis for cystic fibrosis

    Science.gov (United States)

    Deans, Zandra; Fiorentino, Francesco; Biricik, Anil; Traeger-Synodinos, Joanne; Moutou, Céline; De Rycke, Martine; Renwick, Pamela; SenGupta, Sioban; Goossens, Veerle; Harton, Gary

    2013-01-01

    Preimplantation genetic diagnosis (PGD) was first performed over 20 years ago and has become an accepted part of genetic testing and assisted reproduction worldwide. The techniques and protocols necessary to carry out genetic testing at the single-cell level can be difficult to master and have been developed independently by the laboratories worldwide offering preimplantation testing. These factors indicated the need for an external quality assessment (EQA) scheme for monogenic disease PGD. Toward this end, the European Society for Human Reproduction and Embryology came together with United Kingdom National External Quality Assessment Services for Molecular Genetics, to create a pilot EQA scheme followed by practical EQA schemes for all interested parties. Here, we detail the development of the pilot scheme as well as development and findings from the practical (clinical) schemes that have followed. Results were generally acceptable and there was marked improvement in results and laboratory scores for those labs that participated in multiple schemes. Data from the first three schemes indicate that the EQA scheme is working as planned and has helped laboratories improve their techniques and result reporting. The EQA scheme for monogenic PGD will continue to be developed to offer assessment for other monogenic disorders. PMID:23150080

  12. Preimplantation genetic diagnosis for gender selection in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Colls, P.; Silver, L.; Olivera, G.; Weier, J.; Escudero, T.; Goodall, N.; Tomkin, G.; Munne, S.

    2009-08-20

    Preimplantation genetic diagnosis (PGD) of gender selection for non medical reasons has been considered an unethical procedure by several authors and agencies in the Western society on the basis of disrupting the sex ratio, being discriminatory againsts women and disposal of normal embryos of the non desired gender. In this study, the analysis of a large series of PGD procedures for gender selection from a wide geographical area in the United States, shows that in general there is no deviation in preference towards any specific gender except for a preference of males in some ethnic populations of Chinese, Indian and Middle Eastern origin that represent a small percentage of the US population. In cases where only normal embryos of the non-desired gender are available, 45.5% of the couples elect to cancel the transfer, while 54.5% of them are open to have transferred embryos of the non-desired gender, this fact being strongly linked to cultural and ethnical background of the parents. In addition this study adds some evidence to the proposition that in couples with previous children of a given gender there is no biological predisposition towards producing embryos of that same gender. Based on these facts, it seems that objections to gender selection formulated by ethics committees and scientific societies are not well-founded.

  13. First successful trial of preimplantation genetic diagnosis for pantothenate kinase-associated neurodegeneration.

    Science.gov (United States)

    Trachoo, Objoon; Satirapod, Chonthicha; Panthan, Bhakbhoom; Sukprasert, Matchuporn; Charoenyingwattana, Angkana; Chantratita, Wasun; Choktanasiri, Wicharn; Hongeng, Suradej

    2017-01-01

    We aim to present a case of a healthy infant born after intracytoplasmic sperm injection-in vitro fertilization (ICSI-IVF) with a preimplantation genetic diagnosis (PGD) for pantothenate kinase-associated neurodegeneration (PKAN) due to PANK2 mutation. ICSI-IVF was performed on a Thai couple, 34-year-old female and 33-year-old male, with a family history of PKAN in their first child. Following fertilization, each of the embryos were biopsied in the cleavage stage and subsequently processed for whole-genome amplification. Genetic status of the embryos was diagnosed by linkage analysis and direct mutation testing using primer extension-based mini-sequencing. Comprehensive chromosomal aneuploidy screening was performed using a next-generation sequencing-based strategy. Only a single cycle of ICSI-IVF was processed. There were seven embryos from this couple-two were likely affected, three were likely carriers, one was likely unaffected, and one failed in target genome amplification. Aneuploidy screening was performed before making a decision on embryo transfer, and only one unaffected embryo passed the screening. That embryo was transferred in a frozen thawed cycle, and the pregnancy was successful. The diagnosis was confirmed by amniocentesis, which presented with a result consistent with PGD. At 38 weeks of gestational age, a healthy male baby was born. Postnatal genetic confirmation was also consistent with PGD and the prenatal results. At the age of 24 months, the baby presented with normal growth and development lacking any neurological symptoms. We report the first successful trial of PGD for PKAN in a developing country using linkage analysis and mini-sequencing in cleavage stage embryos.

  14. Successful application of preimplantation genetic diagnosis for beta-thalassaemia and sickle cell anaemia in Italy.

    Science.gov (United States)

    Chamayou, S; Alecci, C; Ragolia, C; Giambona, A; Siciliano, S; Maggio, A; Fichera, M; Guglielmino, A

    2002-05-01

    In Italy, the autosomal recessive diseases beta-thalassaemia and sickle cell anaemia are so widespread that in some regions they can be defined as 'social diseases'. In this study, nine clinical applications of preimplantation genetic diagnosis (PGD) were performed for beta-thalassaemia and sickle cell anaemia on seven Sicilian couples and carriers of beta-globin gene mutations. The studied mutations were: Cd39, HbS, IVS1 nt1, IVS1 nt6 and IVS1 nt110. ICSI was performed with partner's sperm on 131 out of 147 retrieved oocytes, and this resulted in 72 zygotes; 32 embryos were successfully biopsied on day 3. The biopsied blastomeres were lysed and the beta-globin alleles amplified by nested PCR. The mutation diagnosis was performed by restriction enzyme digestion and reverse dot-blot. The amplification efficacy was 97.2%. The genotype study of non-transferred and surplus embryos showed that the allele drop-out rate was 8.6%. Seventeen embryos were transferred in utero on day 4. All couples received an embryo transfer; of the four pregnancies obtained, three resulted in live births and one miscarried at 11 weeks. Prenatal diagnosis at the 11th week and miscarriage material analysis confirmed the PGD results. These studies represent the first successful application of PGD for beta-thalassaemia and sickle cell anaemia in Italy.

  15. First systematic experience of preimplantation genetic diagnosis for single-gene disorders, and/or preimplantation human leukocyte antigen typing, combined with 24-chromosome aneuploidy testing.

    Science.gov (United States)

    Rechitsky, Svetlana; Pakhalchuk, Tatiana; San Ramos, Geraldine; Goodman, Adam; Zlatopolsky, Zev; Kuliev, Anver

    2015-02-01

    To study the feasibility, accuracy, and reproductive outcome of 24-chromosome aneuploidy testing (24-AT), combined with preimplantation genetic diagnosis (PGD) for single-gene disorders (SGDs) or human leukocyte antigen (HLA) typing in the same biopsy sample. Retrospective study. Preimplantation genetic diagnosis center. A total of 238 PGD patients, average age 36.8 years, for whom 317 combined PGD cycles were performed, involving 105 different conditions, with or without HLA typing. Whole-genome amplification product, obtained in 24-AT, was used for PGD and/or HLA typing in the same blastomere or blastocyst biopsy samples. Proportion of the embryos suitable for transfer detected in these blastomere or blastocyst samples, and the resulting pregnancy and spontaneous abortion rates. Embryos suitable for transfer were detected in 42% blastocyst and 25.1% blastomere samples, with a total of 280 unaffected, HLA-matched euploid embryos detected for transfer in 212 cycles (1.3 embryos per transfer), resulting in 145 (68.4%) unaffected pregnancies and birth of 149 healthy, HLA-matched children. This outcome is significantly different from that of our 2,064 PGD cycle series without concomitant 24-AT, including improved pregnancy (68.4% vs. 45.4%) and 3-fold spontaneous abortion reduction (5.5% vs. 15%) rates. The introduced combined approach is a potential universal PGD test, which in addition to achieving extremely high diagnostic accuracy, significantly improves reproductive outcomes of PGD for SGDs and HLA typing in patients of advanced reproductive age. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  16. Is there an ethical difference between preimplantation genetic diagnosis and abortion?

    Science.gov (United States)

    Cameron, C; Williamson, R

    2003-04-01

    When a person at risk of having a child with a genetic illness or disease wishes to have an unaffected child, this can involve difficult choices. If the pregnancy is established by sexual intercourse, the fetus can be tested early in pregnancy, and if affected a decision can be made to abort in the hope that a future pregnancy with an unaffected fetus ensures. Alternatively, preimplantation genetic diagnosis (PGD) can be used after in vitro fertilisation (IVF) to select and implant an unaffected embryo that hopefully will proceed to term and produce a healthy baby. We are aware that many individuals at risk regard the latter as ethically more acceptable than the former, and examine whether there is an ethical difference between these options. We conclude that PGD and implantation of an unaffected embryo is a more acceptable choice ethically than prenatal diagnosis (PND) followed by abortion for the following reasons: Choice after PGD is seen as ethically neutral because a positive result ("a healthy pregnancy") balances a negative result ("the destruction of the affected embryo") simultaneously (assuming the pregnancy proceeds to full term and a healthy baby is born). While there is usually the intention to establish a healthy pregnancy after an abortion, this is not simultaneous; A woman sees abortion as a personal physical violation of her integrity, and as the pregnancy proceeds she increasingly identifies with and gives ethical status to the embryo/fetus as it develops in utero and not in the laboratory; Many people see aborting a fetus as "killing", whereas in the case of PGD the spare embryos are "allowed to die". We argue that this difference of opinion gives further weight to our conclusion, but note that this has been addressed and debated at length by others.

  17. Attitudes toward genetic testing in childhood and reproductive decision-making for familial adenomatous polyposis

    NARCIS (Netherlands)

    Douma, K.F.L.; Aaronson, N.K.; Vasen, H.F.A.; Verhoef, S.; Gundy, C.M.; Bleiker, E.M.A.

    2010-01-01

    Childhood DNA testing, prenatal diagnosis (PND) and preimplantation genetic diagnosis (PGD) are available for familial adenomatous polyposis (FAP). However, the use of PND and PGD is controversial. The purpose of this study was to investigate attitudes toward, and experiences with, childhood DNA

  18. Depression, pregnancy-related anxiety and parental-antenatal attachment in couples using preimplantation genetic diagnosis.

    Science.gov (United States)

    Winter, C; Van Acker, F; Bonduelle, M; Van Berkel, K; Belva, F; Liebaers, I; Nekkebroeck, J

    2016-06-01

    Do preimplantation genetic diagnosis (PGD) couples experience higher levels of stress during pregnancy and the perinatal period compared with couples who conceive spontaneously (SC) or with ICSI? PGD couples did not experience more psychological stress during pregnancy and beyond than ICSI or SC couples. Previous studies have shown that assisted reproduction technology (ART) couples are more prone to pregnancy-related anxieties than SC couples, but display depressed feelings to an equal or lesser extent. However, only one study has focused on a female PGD sample, which may be a more vulnerable group than other ART groups, due to the potentially complex hereditary background, adverse childhood experiences and losses. In that study, PGD women experienced a reduction in state anxiety, and maternal-antenatal attachment did not differ from normative data. Unfortunately, no data exist on pregnancy-related anxiety, depression and parental-antenatal attachment. Valuable information from both parents (e.g.: couples) is also lacking. For this longitudinal prospective study questionnaire, data from 185 women and 157 men (157 couples) were collected between February 2012 until April 2014. Data were analysed using multilevel analysis. The couples conceiving after PGD, ICSI or SC were followed from the first trimester of the pregnancy until the third month post-partum. A total of 60 PGD, 58 ICSI and 69 SC couples were initially recruited by various departments of Universitair Ziekenhuis Brussel (UZ Brussel). At each trimester (T1: 12-14 weeks, T2: 20-22 weeks, T3: 30-32 weeks) of pregnancy, depression (EPDS), pregnancy-related anxieties (PRAQ) and parental-antenatal attachment (M/PAAS) were recorded. At T4 (3 months post-partum), depression (EPDS) was assessed again. In the first trimester (T1) broad socio-demographic data and at T4 perinatal health data of both mother and child were recorded. Differences between conception groups over time were analysed using multilevel

  19. Preimplantation Genetic Diagnosis: Prenatal Testing for Embryos Finally Achieving Its Potential

    Directory of Open Access Journals (Sweden)

    Harvey J. Stern

    2014-03-01

    Full Text Available Preimplantation genetic diagnosis was developed nearly a quarter-century ago as an alternative form of prenatal diagnosis that is carried out on embryos. Initially offered for diagnosis in couples at-risk for single gene genetic disorders, such as cystic fibrosis, spinal muscular atrophy and Huntington disease, preimplantation genetic diagnosis (PGD has most frequently been employed in assisted reproduction for detection of chromosome aneuploidy from advancing maternal age or structural chromosome rearrangements. Major improvements have been seen in PGD analysis with movement away from older, less effective technologies, such as fluorescence in situ hybridization (FISH, to newer molecular tools, such as DNA microarrays and next generation sequencing. Improved results have also started to be seen with decreasing use of Day 3 blastomere biopsy in favor of polar body or Day 5 trophectoderm biopsy. Discussions regarding the scientific, ethical, legal and social issues surrounding the use of sequence data from embryo biopsy have begun and must continue to avoid concern regarding eugenic or inappropriate use of this technology.

  20. Preimplantation Genetic Diagnosis: Prenatal Testing for Embryos Finally Achieving Its Potential

    Science.gov (United States)

    Stern, Harvey J.

    2014-01-01

    Preimplantation genetic diagnosis was developed nearly a quarter-century ago as an alternative form of prenatal diagnosis that is carried out on embryos. Initially offered for diagnosis in couples at-risk for single gene genetic disorders, such as cystic fibrosis, spinal muscular atrophy and Huntington disease, preimplantation genetic diagnosis (PGD) has most frequently been employed in assisted reproduction for detection of chromosome aneuploidy from advancing maternal age or structural chromosome rearrangements. Major improvements have been seen in PGD analysis with movement away from older, less effective technologies, such as fluorescence in situ hybridization (FISH), to newer molecular tools, such as DNA microarrays and next generation sequencing. Improved results have also started to be seen with decreasing use of Day 3 blastomere biopsy in favor of polar body or Day 5 trophectoderm biopsy. Discussions regarding the scientific, ethical, legal and social issues surrounding the use of sequence data from embryo biopsy have begun and must continue to avoid concern regarding eugenic or inappropriate use of this technology. PMID:26237262

  1. Complex preimplantation genetic diagnosis for beta-thalassaemia, sideroblastic anaemia, and human leukocyte antigen (HLA)-typing.

    Science.gov (United States)

    Kakourou, Georgia; Vrettou, Christina; Kattamis, Antonis; Destouni, Aspasia; Poulou, Myrto; Moutafi, Maria; Kokkali, Georgia; Pantos, Konstantinos; Davies, Stephen; Kitsiou-Tzeli, Sophia; Kanavakis, Emmanuel; Traeger-Synodinos, Joanne

    2016-01-01

    Preimplantation genetic diagnosis (PGD) to select histocompatible siblings to facilitate curative haematopoeitic stem-cell transplantation (HSCT) is now an acceptable option in the absence of an available human leukocyte antigen (HLA) compatible donor. We describe a case where the couple who requested HLA-PGD, were both carriers of two serious haematological diseases, beta-thalassaemia and sideroblastic anaemia. Their daughter, affected with sideroblastic anaemia, was programmed to have HSCT. A multiplex-fluorescent-touchdown-PCR protocol was optimized for the simultaneous amplification of: the two HBB-gene mutated regions (c.118C> T, c.25-26delAA), four short tandem repeats (STRs) in chr11p15.5 linked to the HBB gene, the SLC25A38 gene mutation (c.726C > T), two STRs in chr3p22.1 linked to the SLC25A38 gene, plus eleven informative STRs for HLA-haplotyping (chr6p22.1-21.3). This was followed by real-time nested PCR and high-resolution melting analysis (HRMA) for the detection of HBB and SLC25A38 gene mutations, as well as the analysis of all STRs on an automatic genetic analyzer (sequencer). The couple completed four clinical in vitro fertilization (IVF)/PGD cycles. At least one matched unaffected embryo was identified and transferred in each cycle. A twin pregnancy was established in the fourth PGD cycle and genotyping results at all loci were confirmed by prenatal diagnosis. Two healthy baby girls were delivered at week 38 of pregnancy. The need to exclude two familial disorders for HLA-PGD is rarely encountered. The methodological approach described here is fast, accurate, clinically-validated, and of relatively low cost.

  2. PRENATAL DIAGNOSIS OF β-THALASSEMIAS AND HEMOGLOBINOPATHIES

    Directory of Open Access Journals (Sweden)

    Maria Cristina Rosatelli

    2009-11-01

    Moreover, in order to reduce the choice of   interrupting  the pregnancy in case of affected fetus, Preimplantation or Preconceptional Genetic Diagnosis (PGD has been setting up for several diseases including thalassemias.

  3. Preimplantation diagnosis of genetic diseases

    Directory of Open Access Journals (Sweden)

    Adiga S

    2010-01-01

    Full Text Available One of the landmarks in clinical genetics is prenatal diagnosis of genetic disorders. The recent advances in the field have made it possible to diagnose the genetic conditions in the embryos before implantation in a setting of in vitro fertilization. Polymerase chain reaction and fluorescence in situ hybridization are the two common techniques employed on a single or two cells obtained via embryo biopsy. The couple who seek in vitro fertilization may screen their embryos for aneuploidy and the couple at risk for a monogenic disorder but averse to abortion of the affected fetuses after prenatal diagnosis, are likely to be the best candidates to undergo this procedure. This article reviews the technique, indications, benefits, and limitations of pre-implantation genetic testing in clinical practice.

  4. Ethics of PGD: thoughts on the consequences of typing HLA in embryos.

    Science.gov (United States)

    Edwards, R G

    2004-08-01

    As with so many fields of study associated with assisted human reproduction, many ethical issues are raised by the practice of preimplantation diagnosis of inherited disease (PGD). Some are part and parcel of assisted conception, e.g.the rights of human embryos in vitro and of embryologists to establish them, carry out research and discard them. Others unique to clinical PGD were discussed at an earlier meeting on PGD (Edwards et al., 2003). Recent developments in PGD are discussed briefly in this Commentary, especially the ethics of designer babies.

  5. Establishment of a Simple and Useful Way for Preimplantation Genetic Diagnosis of Chromosomal Diseases

    Institute of Scientific and Technical Information of China (English)

    LUO Haining; ZHU Guijin; LIU Qun; CHEN Wen; LI Zhou

    2007-01-01

    In order to establish a simple and useful way for preimplantation genetic diagnosis (PGD)of chromosomal diseases in general IVF laboratory, the methods that are most commonly used in the embryo biopsy, fixation of blastomere and fluorescence in situ hybridization were compared. The three aspects of PGD were analyzed respectively. There was no significant difference in further development capacity of embryos between mechanical (79.7%) and chemical biopsy group (78.6%)(P>0.05). In this study, more cells were successfully fixed with the Tween/HCL method (93.8%) than with the methanol/acetic acid method (80.5%, P<0.05). There was no significant difference in cytoplasm remains between methanol/acetic acid method and Tween/HCL method (P>0.05). The hybridization efficiency of fluorescence in situ hybridization was 89.5% in successive denaturation method and 90.9% in codenaturation method with the difference being not significant (P>0.05). In conclusion, the mechanical or chemical method, Tween/HCL fixation method and codenaturation fluorescence in situ hybridization method can constitute a simple and useful way for PGD of chromosomal diseases.

  6. Preimplantation genetic haplotyping a new application for diagnosis of translocation carrier's embryos- preliminary observations of two robertsonian translocation carrier families.

    Science.gov (United States)

    Shamash, Jana; Rienstein, Shlomit; Wolf-Reznik, Haike; Pras, Elon; Dekel, Michal; Litmanovitch, Talia; Brengauz, Masha; Goldman, Boleslav; Yonath, Hagith; Dor, Jehoshua; Levron, Jacob; Aviram-Goldring, Ayala

    2011-01-01

    Preimplantation genetic diagnosis using fluorescence in-situ hybridization (PGD-FISH) is currently the most common reproductive solution for translocation carriers. However, this technique usually does not differentiate between embryos carrying the balanced form of the translocation and those carrying the homologous normal chromosomes. We developed a new application of preimplantation genetic haplotyping (PGH) that can identify and distinguish between all forms of the translocation status in cleavage stage embryos prior to implantation. Polymorphic markers were used to identify and differentiate between the alleles that carry the translocation and those that are the normal homologous chromosomes. Embryos from two families of robertsonian translocation carriers were successfully analyzed using polymorphic markers haplotyping. Our preliminary results indicate that the PGH is capable of distinguishing between normal, balanced and unbalanced translocation carrier embryos. This method will improve PGD and will enable translocation carriers to avoid transmission of the translocation and the associated medical complications to offspring.

  7. Anesthetic management for oocyte retrieval: An exploratory analysis comparing outcome in in vitro fertilization cycles with and without pre-implantation genetic diagnosis

    Directory of Open Access Journals (Sweden)

    Alexander Ioscovich

    2013-01-01

    Full Text Available Purpose: To date, there has been no comparison of outcomes in women undergoing anesthesia for in vitro fertilization (IVF oocyte retrieval for the purpose of pre-implantation genetic diagnosis (PGD because of their or their partner′s genetic disease relative to the outcome in women requiring IVF because of fertility issues. Materials and Methods: A prospective observational study, wherein all demographic and anesthetic management data were collected from IVF and PGD units′ records for a 6-month period. Descriptive analyses and parametric tests were employed. Results: There were 307 cases IVF and 76 cases PGD: most (97.4% and 99.7%, respectively received general anesthesia with propofol and fentanyl ± dipyrone (90.5% and 93.3%, respectively with no adverse effects. The only statistically significant difference between IVF and PGD groups that was potentially clinically significant was post-procedure recovery time (23.0 ± 20.4 vs. 29.4 ± 35.8 min, respectively; P < 0.0001, but is explainable as greater caution by Anesthesiologists for higher-risk PGD cases having autosomal dominant diseases that may impact anesthesia management (myotonic dystrophy, neurofibromatosis, Marfan′s; two of these cases also recovered in the general post-anesthesia care unit, as a precaution for early diagnosis and treatment of potential post-procedural complication. Conclusions: Results of this first-ever survey of anesthesia for PGD compared with IVF cases imply that propofol-and-fentanyl-based anesthesia is safe and can be recommended, bearing in mind that with patients who have autosomal dominant diseases impacting anesthetic management it is prudent to be more cautious post-recovery.

  8. Can Characteristics of Reciprocal Translocations Predict the Chance of Transferable Embryos in PGD Cycles?

    Directory of Open Access Journals (Sweden)

    Elsbeth Dul

    2014-04-01

    Full Text Available Translocation carriers have an increased risk of miscarriage or the birth of a child with congenital anomalies. Preimplantation genetic diagnosis (PGD is performed in translocation carriers to select for balanced embryos and, thus, increase the chance of an ongoing pregnancy. However, a common experience is that reciprocal translocation carriers produce a high percentage of unbalanced embryos, which cannot be transferred. Therefore, the pregnancy rates in PGD in this patient group are low. In a cohort of 85 reciprocal translocation carriers undergoing PGD we have searched for cytogenetic characteristics of the translocations that can predict the percentage of balanced embryos. Using shape algorithms, the most likely segregation mode per translocation was determined. Shape algorithm, breakpoint location, and relative chromosome segment sizes proved not to be independent predictors of the percentage of balanced embryos. The ratio of the relative sizes of the translocated segments of both translocation chromosomes can give some insight into the chance of transferable embryos: Very asymmetrical translocations have a higher risk of unbalanced products (p = 0.048. Counseling of the couples on the pros and cons of all their reproductive options remains very important.

  9. Experience of Preimplantation Genetic Diagnosis for Hemophilia at the University Hospital Virgen Del Rocío in Spain: Technical and Clinical Overview

    Directory of Open Access Journals (Sweden)

    Raquel M. Fernández

    2015-01-01

    Full Text Available Hemophilia A and B are the most common hereditary hemorrhagic disorders, with an X-linked mode of inheritance. Reproductive options for the families affected with hemophilia, aiming at the prevention of the birth of children with severe coagulation disorders, include preimplantation genetic diagnosis (PGD. Here we present the results of our PGD Program applied to hemophilia, at the Department of Genetics, Reproduction and Fetal Medicine of the University Hospital Virgen del Rocío in Seville. A total of 34 couples have been included in our program since 2005 (30 for hemophilia A and 4 for hemophilia B. Overall, 60 cycles were performed, providing a total of 508 embryos. The overall percentage of transfers per cycle was 81.7% and the live birth rate per cycle ranged from 10.3 to 24.1% depending on the methodological approach applied. Although PGD for hemophilia can be focused on gender selection of female embryos, our results demonstrate that methodological approaches that allow the diagnosis of the hemophilia status of every embryo have notorious advantages. Our PGD Program resulted in the birth of 12 healthy babies for 10 out of the 34 couples (29.4%, constituting a relevant achievement for the Spanish Public Health System within the field of haematological disorders.

  10. Experience of Preimplantation Genetic Diagnosis for Hemophilia at the University Hospital Virgen Del Rocío in Spain: Technical and Clinical Overview

    Science.gov (United States)

    Fernández, Raquel M.; Peciña, Ana; Sánchez, Beatriz; Lozano-Arana, Maria Dolores; García-Lozano, Juan Carlos; Pérez-Garrido, Rosario; Núñez, Ramiro; Antiñolo, Guillermo

    2015-01-01

    Hemophilia A and B are the most common hereditary hemorrhagic disorders, with an X-linked mode of inheritance. Reproductive options for the families affected with hemophilia, aiming at the prevention of the birth of children with severe coagulation disorders, include preimplantation genetic diagnosis (PGD). Here we present the results of our PGD Program applied to hemophilia, at the Department of Genetics, Reproduction and Fetal Medicine of the University Hospital Virgen del Rocío in Seville. A total of 34 couples have been included in our program since 2005 (30 for hemophilia A and 4 for hemophilia B). Overall, 60 cycles were performed, providing a total of 508 embryos. The overall percentage of transfers per cycle was 81.7% and the live birth rate per cycle ranged from 10.3 to 24.1% depending on the methodological approach applied. Although PGD for hemophilia can be focused on gender selection of female embryos, our results demonstrate that methodological approaches that allow the diagnosis of the hemophilia status of every embryo have notorious advantages. Our PGD Program resulted in the birth of 12 healthy babies for 10 out of the 34 couples (29.4%), constituting a relevant achievement for the Spanish Public Health System within the field of haematological disorders. PMID:26258137

  11. 单基因遗传病的胚胎植入前遗传学诊断方法研究进展%Advance in the methods of preimplantation genetic diagnosis for single gene diseases

    Institute of Scientific and Technical Information of China (English)

    任一昕; 乔杰; 闫丽盈

    2017-01-01

    More than 7000 single gene diseases have been identified and most of them lack effective treatment.As an early form of prenatal diagnosis,preimplantation genetic diagnosis (PGD) is a combination of in vitro fertilization and genetic diagnosis.PGD has been applied in clinics for more than 20 years to avoid the transmission of genetic defects through analysis of embryos at early stages of development.In this paper,a review for the recent advances in PGD for single gene diseases is provided.%目前已知的单基因遗传病超过7000余种,大多数尚缺乏有效的治疗手段.胚胎植入前遗传学诊断(preimplantation genetic diagnosis,PGD)是辅助生殖与遗传诊断相结合的一项技术,是产前诊断的一种早期形式.它通过对植入前胚胎的遗传分析,挑选正常的胚胎移植,可以避免单基因疾病遗传给后代.目前PGD技术已在临床上成功应用20余年.本文针对单基因遗传病的PGD方法进行综述.

  12. Is the resulting phenotype of an embryo with balanced X-autosome translocation, obtained by means of preimplantation genetic diagnosis, linked to the X inactivation pattern?

    Science.gov (United States)

    Ferfouri, Fatma; Bernicot, Izabel; Schneider, Anouck; Haquet, Emmanuelle; Hédon, Bernard; Anahory, Tal

    2016-04-01

    To examine if a balanced female embryo with X-autosome translocation could, during its subsequent development, express an abnormal phenotype. Preimplantation genetic diagnosis (PGD) analysis on two female carriers with maternal inherited X-autosome translocations. Infertility center and genetic laboratory in a public hospital. Two female patients carriers undergoing PGD for a balanced X-autosome translocations: patient 1 with 46,X,t(X;2)(q27;p15) and patient 2 with 46,X,t(X;22)(q28;q12.3). PGD for balanced X-autosome translocations. PGD outcomes, fluorescence in situ hybridization in biopsied embryos and meiotic segregation patterns analysis of embryos providing from X-autosome translocation carriers. Controlled ovarian stimulation facilitated retrieval of a correct number of oocytes. One balanced embryo per patient was transferred and one developed, but the patient miscarried after 6 weeks of amenorrhea. In X-autosome translocation carriers, balanced Y-bearing embryos are most often phenotypically normal and viable. An ambiguous phenotype exists in balanced X-bearing embryos owing to the X inactivation mechanism. In 46,XX embryos issued from an alternate segregation, der(X) may be inactivated and partially spread transcriptional silencing into a translocated autosomal segment. Thus, the structural unbalanced genotype could be turned into a viable functional balanced one. It is relevant that a discontinuous silencing is observed with a partial and unpredictable inactivation of autosomal regions. Consequently, the resulting phenotype remains a mystery and is considered to be at risk of being an abnormal phenotype in the field of PGD. It is necessary to be cautious regarding to PGD management for this type of translocation, particularly in transferred female embryos. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  13. Preventing the transmission of mitochondrial DNA disorders using prenatal or preimplantation genetic diagnosis.

    Science.gov (United States)

    Smeets, Hubert J M; Sallevelt, Suzanne C E H; Dreesen, Jos C F M; de Die-Smulders, Christine E M; de Coo, Irenaeus F M

    2015-09-01

    Mitochondrial disorders are among the most common inborn errors of metabolism; at least 15% are caused by mitochondrial DNA (mtDNA) mutations, which occur de novo or are maternally inherited. For familial heteroplasmic mtDNA mutations, the mitochondrial bottleneck defines the mtDNA mutation load in offspring, with an often high or unpredictable recurrence risk. Oocyte donation is a safe option to prevent the transmission of mtDNA disease, but the offspring resulting from oocyte donation are genetically related only to the father. Prenatal diagnosis (PND) is technically possible but usually not applicable because of limitations in predicting the phenotype. For de novo mtDNA point mutations, recurrence risks are low and PND can be offered to provide reassurance regarding fetal health. PND is also the best option for female carriers with low-level mutations demonstrating skewing to 0% or 100%. A fairly new option for preventing the transmission of mtDNA diseases is preimplantation genetic diagnosis (PGD), in which embryos with a mutant load below a mutation-specific or general expression threshold of 18% can be transferred. PGD is currently the best reproductive option for familial heteroplasmic mtDNA point mutations. Nuclear genome transfer and genome editing techniques are currently being investigated and might offer additional reproductive options for specific mtDNA disease cases. © 2015 New York Academy of Sciences.

  14. Development and validation of concurrent preimplantation genetic diagnosis for single gene disorders and comprehensive chromosomal aneuploidy screening without whole genome amplification.

    Science.gov (United States)

    Zimmerman, Rebekah S; Jalas, Chaim; Tao, Xin; Fedick, Anastasia M; Kim, Julia G; Pepe, Russell J; Northrop, Lesley E; Scott, Richard T; Treff, Nathan R

    2016-02-01

    To develop a novel and robust protocol for multifactorial preimplantation genetic testing of trophectoderm biopsies using quantitative polymerase chain reaction (qPCR). Prospective and blinded. Not applicable. Couples indicated for preimplantation genetic diagnosis (PGD). None. Allele dropout (ADO) and failed amplification rate, genotyping consistency, chromosome screening success rate, and clinical outcomes of qPCR-based screening. The ADO frequency on a single cell from a fibroblast cell line was 1.64% (18/1,096). When two or more cells were tested, the ADO frequency dropped to 0.02% (1/4,426). The rate of amplification failure was 1.38% (55/4,000) overall, with 2.5% (20/800) for single cells and 1.09% (35/3,200) for samples that had two or more cells. Among 152 embryos tested in 17 cases by qPCR-based PGD and CCS, 100% were successfully given a diagnosis, with 0% ADO or amplification failure. Genotyping consistency with reference laboratory results was >99%. Another 304 embryos from 43 cases were included in the clinical application of qPCR-based PGD and CCS, for which 99.7% (303/304) of the embryos were given a definitive diagnosis, with only 0.3% (1/304) having an inconclusive result owing to recombination. In patients receiving a transfer with follow-up, the pregnancy rate was 82% (27/33). This study demonstrates that the use of qPCR for PGD testing delivers consistent and more reliable results than existing methods and that single gene disorder PGD can be run concurrently with CCS without the need for additional embryo biopsy or whole genome amplification. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  15. Preimplantation genetic diagnosis of Von Hippel-Lindau disease cancer syndrome by combined mutation and segregation analysis

    Directory of Open Access Journals (Sweden)

    Denilce R. Sumita

    2007-03-01

    Full Text Available Von Hippel-Lindau (VHL disease is an autosomal dominant cancer syndrome, associated with the development of tumors and cysts in multiple organ systems, whose expression and age of onset are highly variable. The VHL disease tumor suppressor gene (VHL maps to 3p25-p26 and mutations ranging from a single base change to large deletions have been detected in patients with VHL disease. We developed a single cell PCR protocol for preimplantation genetic diagnosis (PGD of VHL disease to select unaffected embryos on the basis of the detection of the specific mutation and segregation analysis of polymorphic linked markers. Multiplex-nested PCR using single buccal cells of an affected individual were performed in order to test the accuracy and reliability of this single-cell protocol. For each locus tested, amplification efficiency was 83% to 87% and allelic drop-out rates ranged from 12% to 8%. Three VHL disease PGD cycles were performed on cells from a couple with paternal transmission of a 436delC mutation in exon 2 of the VHL gene, leading to the identification of three unaffected embryos. Independent of the mutation present, this general PGD protocol for the diagnosis of VHL disease can be used in families informative for either the D3S1038 or D3S1317 microsatellite markers.

  16. Study on preimplantation genetic diagnosis and follow-up for Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Juan YANG

    2015-07-01

    Full Text Available Objective  To carry out preimplantation genetic diagnosis (PGD for Duchenne muscular dystrophy (DMD carrier, so as to prevent the birth of affected infants with DMD.  Methods  One DMD gene carrier with a deletion of exon 10-30 received fertilization with intracytoplasmic sperm injection (ICSI. DMD gene and haplotype were tested after amplification of genome DNA in multiple displacement amplification (MDA, then healthy embryos were transferred to uterus according to the genetic results. Genetic testing was made in second trimester and after delivery, and also periodic follow-up was made for over 3 years.  Results  The second cycle of PGD was successful, and a total of 14 single blastomeres obtained from 7 embryos were used for genetic analysis. The success rate of MDA was 13/14, and the allele dropout rate was 18.75% (18/96. Three unaffected embryos were transferred, resulting in twin pregnancy. One healthy boy and one healthy girl were born in cesarean section at the pregnant week of 35. Genetic results on DNA from both amniotic fluid at 16 weeks of gestation and peripheral blood after birth were normal. During the 3-year follow-up, both 2 infants were normal in growth and development, motor function and dynamic monitor of serum creatine kinase (CK.  Conclusions  Preimplantation genetic diagnosis can help DMD gene carrier give birth to healthy infants, and these infants have normal development. DOI: 10.3969/j.issn.1672-6731.2015.06.008

  17. Live birth following serial vitrification of embryos and PGD for fragile X syndrome in a patient with the premutation and decreased ovarian reserve.

    Science.gov (United States)

    Nayot, Dan; Chung, Jin Tae; Son, Weon-Young; Ao, Assangla; Hughes, Mark; Dahan, Michael H

    2013-11-01

    To present a live birth resulting from serial vitrification of embryos and pre-implantation genetic diagnosis (PGD). A 31-year-old with primary infertility, fragile-X premutation, and decreased ovarian reserve (DOR) (baseline FSH level 33 IU/L), presented after failing to stimulate to follicle diameters >10 mm with three cycles of invitro fertilization (IVF). After counseling, the couple opted for serial in-vitro maturation (IVM), embryo vitrification, and genetic testing using array comparative genomic hybridization (aCGH) and PGD. Embryos were vitrified 2 days after intra-cytoplasmic sperm injection (ICSI). Thawed embryos were biopsied on day-three and transferred on day-five. The couple underwent 20 cycles of assisted reproductive technology. A total of 23 in-vivo mature and five immature oocytes were retrieved, of which one matured in-vitro. Of 24 embryos, 17/24 (71 %) developed to day two and 11/24 (46 %) survived to blastocyst stage with a biopsy result available. Four blastocysts had normal PGD and aCGH results. Both single embryo transfers resulted in a successful implantation, one a blighted ovum and the other in a live birth. Young patients with DOR have potential for live birth as long as oocytes can be obtained and embryos created. Serial vitrification may be the mechanism of choice in these patients when PGD is needed.

  18. From Prenatal to Preimplantation Genetic Diagnosis of β-Thalassemia. Prevention Model in 8748 Cases: 40 Years of Single Center Experience

    Directory of Open Access Journals (Sweden)

    Giovanni Monni

    2018-02-01

    Full Text Available The incidence of β-thalassemia in Sardinia is high and β-39 is the most common mutation. The prevention campaign started in 1977 and was performed in a single center (Microcitemico Hospital, Cagliari, Sardinia, Italy. It was based on educational programs, population screening by hematological and molecular identification of the carriers. Prenatal and pre-implantation diagnosis was offered to couples at risk. 8564 fetal diagnosis procedures using different invasive approaches and analysis techniques were performed in the last 40 years. Trans-abdominal chorionic villous sampling was preferred due to lower complication risks and early diagnosis. Chorionic villous DNA was analyzed by PCR technique. 2138 fetuses affected by β-thalassemia were diagnosed. Women opted for termination of the pregnancy (TOP in 98.2% of these cases. Pre-implantation genetic diagnosis (PGD was proposed to couples at risk to avoid TOP. A total of 184 PGD were performed. Initially, the procedure was exclusively offered to infertile couples, according to the law in force. The success rate of pregnancies increased from 11.1% to 30.8% when, crucial law changes were enacted, and PGD was offered to fertile women as well. Forty years of β-thalassemia prevention programs in Sardinia have demonstrated the important decrease of this severe genetic disorder.

  19. From Prenatal to Preimplantation Genetic Diagnosis of β-Thalassemia. Prevention Model in 8748 Cases: 40 Years of Single Center Experience.

    Science.gov (United States)

    Monni, Giovanni; Peddes, Cristina; Iuculano, Ambra; Ibba, Rosa Maria

    2018-02-20

    The incidence of β-thalassemia in Sardinia is high and β-39 is the most common mutation. The prevention campaign started in 1977 and was performed in a single center (Microcitemico Hospital, Cagliari, Sardinia, Italy). It was based on educational programs, population screening by hematological and molecular identification of the carriers. Prenatal and pre-implantation diagnosis was offered to couples at risk. 8564 fetal diagnosis procedures using different invasive approaches and analysis techniques were performed in the last 40 years. Trans-abdominal chorionic villous sampling was preferred due to lower complication risks and early diagnosis. Chorionic villous DNA was analyzed by PCR technique. 2138 fetuses affected by β-thalassemia were diagnosed. Women opted for termination of the pregnancy (TOP) in 98.2% of these cases. Pre-implantation genetic diagnosis (PGD) was proposed to couples at risk to avoid TOP. A total of 184 PGD were performed. Initially, the procedure was exclusively offered to infertile couples, according to the law in force. The success rate of pregnancies increased from 11.1% to 30.8% when, crucial law changes were enacted, and PGD was offered to fertile women as well. Forty years of β-thalassemia prevention programs in Sardinia have demonstrated the important decrease of this severe genetic disorder.

  20. Simple and Easy to Perform Preimplantation Genetic Diagnosis for β-thalassemia Major Using Combination of Conventional and Fluorescent Polymerase Chain Reaction

    Directory of Open Access Journals (Sweden)

    Rasoul Salehi

    2017-01-01

    Full Text Available Background: Thalassemias are the most common monogenic disorders in many countries throughout the world. The best practice to control the prevalence of the disease is prenatal diagnosis (PND services. Extensive practicing of PND proved effective in reducing new cases but on the other side of this success high abortion rate is hided, which ethically unfair and for many couples, especially with a previous experience of a therapeutic abortion, or moral concerns, is not a suitable choice. Preimplantation genetic diagnosis (PGD is a strong alternative to conventional PND. At present PGD is the only abortion free fetal diagnostic process. Considering the fact that there are more than 6000 single gene disorders affecting approximately 1 in 300 live-births, the medical need for PGD services is significant. Materials and Methods: In the present study development of a PGD protocol for a thalassemia trait couple using nested multiplex fluorescent polymerase chain reaction (PCR for the combination of polymorphic linked short tandem repeat (STR markers and thalassemia mutations is described. Restriction fragment length polymorphism used to discriminate between wild and mutated alleles. Results: In PGD clinical cycle, paternal and maternal alleles for D11S988 and D11S1338 STR markers were segregated as it was expected. PCR product for IVSII-1 mutation was subsequently digested with BtscI restriction enzyme to differentiate normal allele from the mutant allele. The mother's mutation, being a comparatively large deletion, was detectable through size differences on agarose gel. Conclusion: The optimized single cell protocol developed and evaluated in this study is a feasible approach for preimplantation diagnosis of β-thalassemia in our patients.

  1. Routine use of next-generation sequencing for preimplantation genetic diagnosis of blastomeres obtained from embryos on day 3 in fresh in vitro fertilization cycles.

    Science.gov (United States)

    Łukaszuk, Krzysztof; Pukszta, Sebastian; Wells, Dagan; Cybulska, Celina; Liss, Joanna; Płóciennik, Łukasz; Kuczyński, Waldemar; Zabielska, Judyta

    2015-04-01

    To determine the usefulness of semiconductor-based next-generation sequencing (NGS) for cleavage-stage preimplantation genetic diagnosis (PGD) of aneuploidy. Prospective case-control study. A private center for reproductive medicine. A total of 45 patients underwent day-3 embryo biopsy with PGD and fresh cycle transfer. Additionally, 53 patients, matched according to age, anti-Müllerian hormone levels, antral follicles count, and infertility duration were selected as controls. Choice of embryos for transfer was based on the PGD NGS results. Clinical pregnancy rate (PR) per embryo transfer (ET) was the primary outcome. Secondary outcomes were implantation and miscarriage rates. The PR per transfer was higher in the NGS group (84.4% vs. 41.5%). The implantation rate (61.5% vs. 34.8%) was higher in the NGS group. The miscarriage rate was similar in the 2 groups (2.8% vs. 4.6%). We demonstrate the technical feasibility of NGS-based PGD involving cleavage-stage biopsy and fresh ETs. Encouraging data were obtained from a prospective trial using this approach, arguing that cleavage-stage NGS may represent a valuable addition to current aneuploidy screening methods. These findings require further validation in a well-designed randomized controlled trial. ACTRN12614001035617. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Comparative study of single-nucleotide polymorphism array and next generation sequencing based strategies on triploid identification in preimplantation genetic diagnosis and screen.

    Science.gov (United States)

    Xu, Jiawei; Niu, Wenbin; Peng, Zhaofeng; Bao, Xiao; Zhang, Meixiang; Wang, Linlin; Du, Linqing; Zhang, Nan; Sun, Yingpu

    2016-12-06

    Triploidy occurred about 2-3% in human pregnancies and contributed to approximately 15% of chromosomally caused human early miscarriage. It is essential for preimplantation genetic diagnosis and screen to distinct triploidy sensitively. Here, we performed comparative investigations between MALBAC-NGS and MDA-SNP array sensitivity on triploidy detection. Self-correction and reference-correction algorism were used to analyze the NGS data. We identified 5 triploid embryos in 1198 embryos of 218 PGD and PGS cycles using MDA-SNP array, the rate of tripoidy was 4.17‰ in PGS and PGD patients. Our results indicated that the MDA-SNP array was sensitive to digyny and diandry triploidy, MALBAC-NGS combined with self and reference genome correction strategies analyze were not sensitive to detect triploidy. Our study demonstrated that triploidy occurred at 4.17‰ in PGD and PGS, MDA-SNP array could successfully identify triploidy in PGD and PGS and genomic DNA. MALBAC-NGS combined with self and reference genome correction strategies were not sensitive to triploidy.

  3. Identification of novel microsatellite markers preimplantation genetic diagnosis of beta-thalassemia.

    Science.gov (United States)

    Chen, Min; Tan, Arnold S C; Cheah, Felicia S H; Saw, Eugene E L; Chong, Samuel S

    2015-12-01

    Beta (β)-thalassemia is one of the most common monogenic diseases worldwide. Affected pregnancies can be avoided through preimplantation genetic diagnosis (PGD), which commonly involves customized assays to detect the different combinations of β-globin (HBB) gene mutations present in couples, in conjunction with linkage analysis of flanking microsatellite markers. Currently, the limited number of reported closely linked markers hampers their utility in indirect linkage-based PGD for this disorder. To increase the available markers closely flanking the HBB gene, an in silico search was performed to identify all markers within 1 Mb flanking the HBB gene. Fifteen markers with potentially high polymorphism information content (PIC) and heterozygosity values were selected and optimized into a single-tube pentadecaplex PCR panel. Allele frequencies and polymorphism and heterozygosity indices of each marker were assessed in five populations. A total of 238 alleles were observed from the 15 markers. PIC was >0.7 for all markers, with expected heterozygosity and observed heterozygosity values ranging from 0.74 to 0.90 and 0.72 to 0.88, respectively. Greater than 99% of individuals were heterozygous for at least seven markers, with at least two heterozygous markers on either side of the HBB gene. The pentadecaplex marker assay also performed reliably on single cells either directly or after whole genome amplification, thus validating its use in standalone linkage-based β-thalassemia PGD or in conjunction with HBB mutation detection. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Opposing roles of PGD2 in GBM.

    Science.gov (United States)

    Ferreira, Matthew Thomas; Gomes, Renata Nascimento; Panagopoulos, Alexandros Theodoros; de Almeida, Fernando Gonçalves; Veiga, José Carlos Esteves; Colquhoun, Alison

    2018-01-01

    The World Health Organization classifies glioblastoma (GBM) as a grade IV astrocytoma. Despite the advances in chemotherapy, surgery, and radiation treatments that improve a patient's length of survival, the overall trajectory of the disease remains unchanged. GBM cells produce significant levels of various types of bioactive lipids. Prostaglandin D 2 (PGD 2 ) influences both pro- and anti-tumorigenic activities in the cell; however, its role in GBM is unclear. Therefore, this study aimed to identify the impact of PGD 2 on GBM cell activities in vitro. First we looked to identify the presence of the PGD 2 synthesis pathway through RT-PCR, immunohistochemistry, and HPLC-MS/MS in three GBM cell lines. Then, to observe PGD 2 's effects on cell count and apoptosis/mitosis (Hoechst 33342 stain), and migration (Transwell Assay), the cells were treated in vitro with physiological (1μM) concentrations of PGD 2 over 72h. HPLC-MS/MS was used to identify the lipid composition of patients with either Grade II/III gliomas or GBM. We identified the presence of endogenous PGD 2 with its corresponding enzymes and receptors. Exogenous PGD 2 both increased cell count (GBM. Our study demonstrates that prostaglandin D 2 possesses a dynamic, concentration-dependent effect in GBM cell activities. The increase of PGD 2 production in GBM patients suggests a pro-tumorigenic role of PGD 2 in glioma growth and invasion. Therefore, prostaglandin signaling in GBM requires further investigation to identify new targets for more effective therapies. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience.

    Science.gov (United States)

    Ubaldi, Filippo Maria; Cimadomo, Danilo; Capalbo, Antonio; Vaiarelli, Alberto; Buffo, Laura; Trabucco, Elisabetta; Ferrero, Susanna; Albani, Elena; Rienzi, Laura; Levi Setti, Paolo E

    2017-05-01

    To report laboratory and clinical outcomes in preimplantation genetic diagnosis for aneuploidies (PGD-A) cycles for women 44 to 47 years old. Multicenter, longitudinal, observational study. In vitro fertilization (IVF) centers. One hundred and thirty-seven women aged 44.7 ± 0.7 years (range: 44.0-46.7) undergoing 150 PGD-A cycles during April 2013 to January 2016. Quantitative polymerase chain reaction-based PGD-A on trophectoderm biopsies and cryopreserved euploid single-embryo transfer (SET). Primary outcome measure: delivery rate per cycle; secondary outcome measures: miscarriage rate, and the rate and reasons for cycle cancelation with subanalyses for female age and number of metaphase 2 oocytes retrieved. In 102 (68.0%) of 150 cycles blastocyst development was obtained, but only 21 (14.0%) were euploid blastocysts. The overall euploidy rate was 11.8% (22 of 187). Twenty-one SET procedures were performed, resulting in 13 clinical pregnancies, of which 1 miscarried and 12 delivered. The delivery rate was 57.1% per transfer, 8.0% per cycle, and 8.8% per patient. The logistic regression analysis found that only female age (odds ratio 0.78) and number of metaphase 2 oocytes retrieved (odds ratio 1.25) statistically significantly correlated with the likelihood of delivery. The delivery rate per cycle was 10.6% (11 of 104) in patients aged 44.0 to 44.9 years and 2.6% in patients aged 45.0 to 45.9 years (n = 1 of 38). No euploid blastocysts were found for patients older than 45.0 years. Extensive counseling based on biological and clinical data should be provided to women older than 43 years who are requesting IVF because of their very low odds of success and high risk for embryonic aneuploidies. Nevertheless, the low miscarriage and good delivery rates reported in this study in women with good ovarian reserve aged 44 should encourage the use of PGD-A in this population. Copyright © 2017 American Society for Reproductive Medicine. Published by Elsevier Inc

  6. The evidence base regarding the experiences of and attitudes to preimplantation genetic diagnosis in prospective parents.

    Science.gov (United States)

    Cunningham, Jenny; Goldsmith, Lesley; Skirton, Heather

    2015-02-01

    Preimplantation genetic diagnosis was developed as an alternative to prenatal diagnosis for couples with a family history of genetic disease. After in vitro fertilization, the embryos can be analysed to ensure that only healthy embryos are transferred to the uterus. Past studies have suggested that couples who wish to avoid having a child with an inherited genetic condition look favourably on preimplantation genetic diagnosis as it prevents the need for termination of pregnancy following prenatal diagnosis of an affected fetus. However, it is important to understand the experiences of couples who have used or consider using this technique. To ascertain the current evidence base on this topic, we conducted a mixed methods systematic review. Four databases were searched for relevant peer-reviewed papers published between 2000 and 2013. Of 453 papers, nine satisfied the inclusion criteria and were assessed for quality. Results of nine papers were analysed and synthesised using a narrative approach. Three main themes emerged: (1) motivating factors; (2) emotional labour; (3) choices and uncertainty. The review has identified an emotional and difficult journey for couples pursuing preimplantation genetic diagnosis. While use of the technique gives hope to families who wish to prevent transmission of a genetic disease this is not without hard decision-making and periods of uncertainty. Lack of information was perceived as a barrier to access this reproductive option. Recommendations include: training and education in genetics for midwives who are the first point of contact for pregnant women; clinics to use a decision-making tool to emphasise the uncertainty involved in PGD and improved communication and psychological support to couples. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Use of preimplantation genetic diagnosis and preimplantation genetic screening in the United States: a Society for Assisted Reproductive Technology Writing Group paper.

    Science.gov (United States)

    Ginsburg, Elizabeth S; Baker, Valerie L; Racowsky, Catherine; Wantman, Ethan; Goldfarb, James; Stern, Judy E

    2011-10-01

    To comprehensively report Society for Assisted Reproductive Technology (SART) member program usage of preimplantation genetic testing (PGT), preimplantation genetic diagnosis (PGD) for diagnosis of specific conditions, and preimplantation genetic screening for aneuploidy (PGS). Retrospective study. United States SART cohort data. Women undergoing a PGT cycle in which at least one embryo underwent biopsy. PGT. PGT use, indications, and delivery rates. Of 190,260 fresh, nondonor assisted reproductive technology (ART) cycles reported to SART CORS in 2007-2008, 8,337 included PGT. Of 6,971 cycles with a defined indication, 1,382 cycles were for genetic diagnosis, 3,645 for aneuploidy screening (PGS), 527 for translocation, and 1,417 for elective sex election. Although the total number of fresh, autologous cycles increased by 3.6% from 2007 to 2008, the percentage of cycles with PGT decreased by 5.8% (4,293 in 2007 and 4,044 in 2008). As a percentage of fresh, nondonor ART cycles, use dropped from 4.6% (4,293/93,433) in 2007 to 4.2% (4,044/96,827) in 2008. The primary indication for PGT was PGS: cycles performed for this indication decreased (-8.0%). PGD use for single-gene defects (+3.2%), elective sex selection (+5.3%), and translocation analysis (+0.5%) increased. PGT usage varied significantly by geographical region. PGT usage in the United States decreased between 2007 and 2008 owing to a decrease in PGS. Use of elective sex selection increased. High transfer cancellation rates correlated with reduced live-birth rates for some PGT indications. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Preimplantation genetic diagnosis for chromosomal rearrangements with the use of array comparative genomic hybridization at the blastocyst stage.

    Science.gov (United States)

    Christodoulou, Christodoulos; Dheedene, Annelies; Heindryckx, Björn; van Nieuwerburgh, Filip; Deforce, Dieter; De Sutter, Petra; Menten, Björn; Van den Abbeel, Etienne

    2017-01-01

    To establish the value of array comparative genomic hybridization (CGH) for preimplantation genetic diagnosis (PGD) in embryos of translocation carriers in combination with vitrification and frozen embryo transfer in nonstimulated cycles. Retrospective data analysis study. Academic centers for reproductive medicine and genetics. Thirty-four couples undergoing PGD for chromosomal rearrangements from October 2013 to December 2015. Trophectoderm biopsy at day 5 or day 6 of embryo development and subsequently whole genome amplification and array CGH were performed. This approach revealed a high occurrence of aneuploidies and structural rearrangements unrelated to the parental rearrangement. Nevertheless, we observed a benefit in pregnancy rates of these couples. We detected chromosomal abnormalities in 133/207 embryos (64.2% of successfully amplified), and 74 showed a normal microarray profile (35.7%). In 48 of the 133 abnormal embryos (36.1%), an unbalanced rearrangement originating from the parental translocation was identified. Interestingly, 34.6% of the abnormal embryos (46/133) harbored chromosome rearrangements that were not directly linked to the parental translocation in question. We also detected a combination of unbalanced parental-derived rearrangements and aneuploidies in 27 of the 133 abnormal embryos (20.3%). The use of trophectoderm biopsy at the blastocyst stage is less detrimental to the survival of the embryo and leads to a more reliable estimate of the genomic content of the embryo than cleavage-stage biopsy. In this small cohort PGD study, we describe the successful implementation of array CGH analysis of blastocysts in patients with a chromosomal rearrangement to identify euploid embryos for transfer. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  9. Birth of a healthy infant after preimplantation genetic diagnosis by sequential blastomere and trophectoderm biopsy for β-thalassemia and HLA genotyping.

    Science.gov (United States)

    Milachich, Tanya; Timeva, Tanya; Ekmekci, Cumhur; Beyazyurek, Cagri; Tac, Huseyin Avni; Shterev, Atanas; Kahraman, Semra

    2013-07-01

    Preimplantation genetic diagnosis (PGD) is a widely used technique for couples at genetic risk and involves the diagnosis and transfer of unaffected embryos generated through in vitro fertilization (IVF) techniques. For those couples who are at risk of transmitting a genetic disease to their offspring, preimplantation embryos can be selected according to their genetic status as well as human leukocyte antigen (HLA) compatibility with the affected child. Stem cells from the resulting baby's umbilical cord blood can be used for transplantation to the affected sibling without graft rejection. Here we report successful hematopoietic stem cell transplantation (HSCT) after the birth of a healthy infant, who was born after successful PGD testing with both cleavage stage and blastocyst stage biopsy for the purpose of diagnosis of β-thalassemia and HLA compatibility. The specific feature of this work is not only to have the first successful HSCT achieved in Bulgaria after using preimplantation HLA typing technique, it also demonstrates how to accomplish this success via cross-border collaboration of different units, which makes the application of these sophisticated methods possible in hospitals not having the necessary equipments and expertise. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Preimplantation genetic diagnosis for mitochondrial DNA mutations: analysis of one blastomere suffices.

    Science.gov (United States)

    Sallevelt, Suzanne C E H; Dreesen, Joseph C F M; Coonen, Edith; Paulussen, Aimee D C; Hellebrekers, Debby M E I; de Die-Smulders, Christine E M; Smeets, Hubert J M; Lindsey, Patrick

    2017-10-01

    Preimplantation genetic diagnosis (PGD) is a reproductive strategy for mitochondrial DNA (mtDNA) mutation carriers, strongly reducing their risk of affected offspring. Embryos either without the mutation or with mutation load below the phenotypic threshold are transferred to the uterus. Because of incidental heteroplasmy deviations in single blastomere and the relatively limited data available, we so far preferred relying on two blastomeres rather than one. Considering the negative effect of a two-blastomere biopsy protocol compared with a single-blastomere biopsy protocol on live birth delivery rate, we re-evaluated the error rate in our current dataset. For the m.3243A>G mutation, sufficient embryos/blastomeres were available for a powerful analysis. The diagnostic error rate, defined as a potential false-negative result, based on a threshold of 15%, was determined in 294 single blastomeres analysed in 73 embryos of 9 female m.3243A>G mutation carriers. Only one out of 294 single blastomeres (0.34%) would have resulted in a false-negative diagnosis. False-positive diagnoses were not detected. Our findings support a single-blastomere biopsy PGD protocol for the m.3243A>G mutation as the diagnostic error rate is very low. As in the early preimplantation embryo no mtDNA replication seems to occur and the mtDNA is divided randomly among the daughter cells, we conclude this result to be independent of the specific mutation and therefore applicable to all mtDNA mutations. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Successful preimplantation genetic diagnosis by targeted next-generation sequencing on an ion torrent personal genome machine platform.

    Science.gov (United States)

    Hao, Yan; Chen, Dawei; Zhang, Zhiguo; Zhou, Ping; Cao, Yunxia; Wei, Zhaolian; Xu, Xiaofeng; Chen, Beili; Zou, Weiwei; Lv, Mingrong; Ji, Dongmei; He, Xiaojin

    2018-04-01

    Hearing loss may place a heavy burden on the patient and patient's family. Given the high incidence of hearing loss among newborns and the huge cost of treatment and care (including cochlear implantation), prenatal diagnosis is strongly recommended. Termination of the fetus may be considered as an extreme outcome to the discovery of a potential deaf fetus, and therefore preimplantation genetic diagnosis has become an important option for avoiding the birth of affected children without facing the risk of abortion following prenatal diagnosis. In one case, a couple had a 7-year-old daughter affected by non-syndromic sensorineural hearing loss. The affected fetus carried a causative compound heterozygous mutation c.919-2 A>G (IVS7-2 A>G) and c.1707+5 G>A (IVS15+5 G>A) of the solute carrier family 26 member 4 gene inherited from maternal and paternal sides, respectively. The present study applied multiple displacement amplification for whole genome amplification of biopsied trophectoderm cells and next-generation sequencing (NGS)-based single nucleotide polymorphism haplotyping on an Ion Torrent Personal Genome Machine. One unaffected embryo was transferred in a frozen-thawed embryo transfer cycle and the patient was impregnated. To conclude, to the best of our knowledge, this may be the first report of NGS-based preimplantation genetic diagnosis (PGD) for non-syndromic hearing loss caused by a compound heterozygous mutation using an Ion Torrent Personal Genome Machine. NGS provides unprecedented high-throughput, highly parallel and base-pair resolution data for genetic analysis. The method meets the requirements of medium-sized diagnostics laboratories. With decreased costs compared with previous techniques (such as Sanger sequencing), this technique may have potential widespread clinical application in PGD of other types of monogenic disease.

  12. Clinical Considerations of Preimplantation Genetic Diagnosis for Monogenic Diseases.

    Directory of Open Access Journals (Sweden)

    Xiaokun Hu

    Full Text Available The aim of this study was to explore factors contribute to the success of PGD cycles for monogenic diseases.During a 3-year period (January 2009 to December 2012, 184 consecutive ICSI-PGD cycles for monogenic diseases reaching the ovum pick-up and fresh embryo-transfer stage performed at the Reproductive Medicine Center of The First Affiliated Hospital Of Sun Yat-sen University were evaluated.ICSI was performed on 2206 metaphase II oocytes, and normal fertilization and cleavage rates were 83.4% (1840/2206 and 96.2% (1770/1840, respectively. In the present study, 60.5% (181/299 of day 3 good-quality embryos developed into good-quality embryos on day 4 after biopsy. Collectively, 42.9% clinical pregnancy rate (79/184 and 28.5% implantation rate (111/389 were presented. In the adjusted linear regression model, the only two significant factors affecting the number of genetically unaffected embryos were the number of biopsied embryos (coefficient: 0.390, 95%CI 0.317-0.463, P = 0.000 and basal FSH level (coefficient: 0.198, 95%CI 0.031-0.365, P = 0.021. In the adjusted binary logistic regression model, the only two significant factors affecting pregnancy outcome were the number of genetically available transferable embryos after PGD (adjusted OR 1.345, 95% CI 1.148-1.575, P = 0.000 and number of oocyte retrieved (adjusted OR 0.934, 95% CI 0.877-0.994, P = 0.031.There should be at least four biopsied embryos to obtain at least one unaffected embryos in a PGD system for patients with single gene disorder and under the condition of basal FSH level smaller than 8.0mmol/L. Moreover, if only a low number (< 4 of biopsied embryos are available on day 3, the chance of unaffected embryos for transfer was small, with poor outcome.

  13. ORIGINAL ARTICLE Prenatal diagnosis of aneuploidy among a ...

    African Journals Online (AJOL)

    salah

    terphase cells. Patients and Methods: Prenatal diagnosis was performed on 40 high risk ... Prenatal diagnosis of aneuploidy among a sample of Egyptian high risk pregnancies ..... of medical genetics. 9th ed.: Churchill. Livingstone; 1995. p. 23-45. Edwards and Beard: FISH studies of. 2. pre-implantation embryos and PGD.

  14. Meiotic and mitotic behaviour of a ring/deleted chromosome 22 in human embryos determined by preimplantation genetic diagnosis for a maternal carrier

    Directory of Open Access Journals (Sweden)

    Laver Sarah

    2009-01-01

    Full Text Available Abstract Background Ring chromosomes are normally associated with developmental anomalies and are rarely inherited. An exception to this rule is provided by deletion/ring cases. We were provided with a unique opportunity to investigate the meiotic segregation at oogenesis in a woman who is a carrier of a deleted/ring 22 chromosome. The couple requested preimplantation genetic diagnosis (PGD following the birth of a son with a mosaic karyotype. The couple underwent two cycles of PGD. Studies were performed on lymphocytes, single embryonic cells removed from 3 day-old embryos and un-transferred embryos. Analysis was carried out using fluorescence in situ hybridisation (FISH with specific probe sets in two rounds of hybridization. Results In total, 12 embryos were biopsied, and follow up information was obtained for 10 embryos. No embryos were completely normal or balanced for chromosome 22 by day 5. There was only one embryo diagnosed as balanced of 12 biopsied but that accumulated postzygotic errors by day 5. Three oocytes apparently had a balanced chromosome 22 complement but all had the deleted and the ring 22 and not the intact chromosome 22. After fertilisation all the embryos accumulated postzygotic errors for chromosome 22. Conclusion The study of the preimplantation embryos in this case provided a rare and significant chance to study and understand the phenomena associated with this unusual type of anomaly during meiosis and in the earliest stages of development. It is the first reported PGD attempt for a ring chromosome abnormality.

  15. Reproductive outcomes following preimplantation genetic diagnosis using fluorescence in situ hybridization for 52 translocation carrier couples with a history of recurrent pregnancy loss.

    Science.gov (United States)

    Kato, Keiichi; Aoyama, Naoki; Kawasaki, Nami; Hayashi, Hiroko; Xiaohui, Tang; Abe, Takashi; Kuroda, Tomoko

    2016-08-01

    Forty-six reciprocal and six Robertsonian translocation carrier couples who experienced recurrent pregnancy loss underwent fluorescence in situ hybridization-based preimplantation genetic diagnosis (PGD) for the presence of the two translocated chromosomes. Out of 52 couples, 17 (33%) were undergoing infertility treatment. In total, 239 PGD cycles as oocyte retrieval (OR) were applied. The transferrable rate of negatively diagnosed embryos at the cleavage stage was 26.3%; 71 embryos were transferred as single blastocysts. The clinical pregnancy rate per transfer was 60.6%. We obtained 41 healthy live births with 3 incidences of miscarriage (7.0%). The average cumulative live birth rate was 76.9% during 4.6 OR cycles using a mild ovarian stimulation strategy. The outcomes were classified into four groups based on carrier gender and maternal age (young (<38 years) or advanced). PGD was performed for 52 couples of which the average number of OR cycles was 4.1, 2.1, 6.7 and 4.5 in young female and male carriers and female and male carriers of advanced age; the live birth rate for a primiparity was 77.8, 72.7, 66.7 and 50.0% in those groups. These results suggest that the final live birth rate might be influenced by maternal age regardless of the gender of the carrier.

  16. Establishing the role of pre-implantation genetic diagnosis with human leucocyte antigen typing: what place do "saviour siblings" have in paediatric transplantation?

    Science.gov (United States)

    Samuel, G N; Strong, K A; Kerridge, I; Jordens, C F C; Ankeny, R A; Shaw, P J

    2009-04-01

    Not all children in need of a haematopoietic stem cell transplant have a suitable relative or unrelated donor available. Recently, in vitro fertilisation (IVF) with pre-implantation genetic diagnosis (PGD) for human leucocyte antigen (HLA) tissue typing has been used to selectively transfer an IVF embryo in order to produce a child who may provide umbilical cord blood for transplantation to an ill sibling. Such children are sometimes called "saviour siblings". To examine the published clinical and epidemiological evidence relevant to the use of this technology, with the aim of clarifying those situations where IVF and PGD for HLA typing should be discussed with parents of an ill child. A critical analysis of published literature on comparative studies of umbilical cord blood versus other sources of stem cells for transplantation; comparative studies of matched unrelated donor versus matched related donor transplantation; and the likelihood of finding an unrelated stem cell donor. IVF and PGD for HLA typing is only applicable when transplantation is non-urgent and parents are of reproductive age. Discussions regarding this technology may be appropriate where no suitable related or unrelated donor is available for a child requiring a transplant, or where no suitable related donor is available and transplantation is only likely to be entertained with a matched sibling donor. Discussion may also be considered in the management of any child lacking a matched related donor who requires a non-urgent transplant or may require a transplant in the future.

  17. Research progression on preimplantation genetic diagnosis and screening%胚胎植入前遗传学诊断和筛查的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘茜桐; 田莉; 师娟子

    2016-01-01

    胚胎植入前遗传学诊断( PGD)和筛查( PGS)是近年来发展的植入前遗传学检测( PGT)方法。 PGD主要适用于父母携带基因突变或染色体平衡易位,通过体外受精,在胚胎移植前检测特定的突变以及非平衡染色体异常是否传递到卵子或胚胎。 PGS是运用相同的检测方法检测胚胎染色体非整倍性,通过移植正常的胚胎从而提高妊娠率。 PGD/PGS相关检测技术发展日新月异,传统FISH技术逐渐被取代,更多的新技术也在研发中。但是,PGD/PGS仍存在费用昂贵,无法检测所有胚胎异常等不足之处。该文综述PGD/PGS相关进展和PGD/PGS所存在的问题。%Preimplantation genetic diagnosis ( PGD) and preimplantation genetic screening ( PGS) are recently developed preimplantation genetic testing ( PGT) .PGD is applied when one or both genetic parents carry a gene mutation or a balanced chromosomal rearrangement and testing is performed to determine whether that specific mutation or an unbalanced chromosomal complement has been transmitted to the oocyte or embryo .PGS uses the same method for detecting embryo chromosomal aneuploidy in order to improve pregnancy rate .With the development of new technology related with PGD /PGS, FISH is gradually being replaced and new methods are under research .However , PGD/PGS is expensive and can not detect all abnormalities of the embryo .This article reviewed the advancement and shortcomings of PGD/PGS.

  18. Inner cell mass incarceration in 8-shaped blastocysts does not increase monozygotic twinning in preimplantation genetic diagnosis and screening patients

    Science.gov (United States)

    Zhou, Qin-Wei; Zhang, Shuo-Ping; Lu, Chang-Fu; Gong, Fei; Tan, Yue-Qiu; Lu, Guang-Xiu; Lin, Ge

    2018-01-01

    Background The use of assisted reproductive technology (ART) has been reported to increase the incidence of monozygotic twinning (MZT) compared with the incidence following natural conception. It has been hypothesized that splitting of the inner cell mass (ICM) through a small zona hole may result in MZT. In this study, using a cohort of patients undergoing preimplantation genetic diagnosis/screening (PGD/PGS), we compared the clinical and neonatal outcomes of human 8-shaped blastocysts hatching with ICM incarceration with partially or fully hatched blastocysts, and attempted to verify whether this phenomenon increases the incidence of MZT pregnancy or negatively impact newborns. Methods This retrospective study included 2059 patients undergoing PGD/PGS between March 1, 2013, and December 31, 2015. Clinical and neonatal outcomes were only collected from patients who received a single blastocyst transfer after PGD/PGS (n = 992). A 25- to 30-μm hole was made in the zona of day 3 embryos by laser. The blastocysts were biopsied and vitrified on day 6. The biopsied trophectoderm (TE) cells were analyzed using different genetic methods. One tested blastocyst was thawed and transferred to each patient in the subsequent frozen embryo transfer cycle. All the biopsied blastocysts were divided into three types: 8-shaped with ICM incarceration (type I), partially hatched without ICM incarceration (type II), and fully hatched (type III). ICM/TE grading, clinical and neonatal outcomes were compared between the groups. Results The percentage of grade A ICMs in type I blastocysts (22.2%) was comparable to that in type III blastocysts (20.1%) but higher than that in type II blastocysts (4.5%). The percentage of grade A TEs in type I blastocysts (4.2%) was comparable to that in type II (3.6%) but lower than that in type III (13.5%). There were no significant differences in clinical pregnancy, MZT pregnancy, miscarriage, live birth, MZT births, and neonatal outcomes between the

  19. Male and female meiotic behaviour of an intrachromosomal insertion determined by preimplantation genetic diagnosis

    Directory of Open Access Journals (Sweden)

    Doshi Alpesh

    2010-02-01

    Full Text Available Abstract Background Two related family members, a female and a male balanced carrier of an intrachromosomal insertion on chromosome 7 were referred to our centre for preimplantation genetic diagnosis. This presented a rare opportunity to investigate the behaviour of the insertion chromosome during meiosis in two related carriers. The aim of this study was to carry out a detailed genetic analysis of the preimplantation embryos that were generated from the three treatment cycles for the male and two for the female carrier. Patients underwent in vitro fertilization and on day 3, 22 embryos from the female carrier and 19 embryos from the male carrier were biopsied and cells analysed by fluorescent in situ hybridization. Follow up analysis of 29 untransferred embryos was also performed for confirmation of the diagnosis and to obtain information on meiotic and mitotic outcome. Results In this study, the female carrier produced more than twice as many chromosomally balanced embryos as the male (76.5% vs. 36%, and two pregnancies were achieved for her. Follow up analysis showed that the male carrier had produced more highly abnormal embryos than the female (25% and 15% respectively and no pregnancies occurred for the male carrier and his partner. Conclusion This study compares how an intrachromosomal insertion has behaved in the meiotic and preimplantation stages of development in sibling male and female carriers. It confirms that PGD is an appropriate treatment in such cases. Reasons for the differing outcome for the two carriers are discussed.

  20. Preimplantation Genetic Diagnosis for Stargardt Disease

    Science.gov (United States)

    Sohrab, Mahsa A.; Allikmets, Rando; Guarnaccia, Michael M.; Smith, R. Theodore

    2010-01-01

    Purpose To report the first use of in vitro fertilization (IVF) and preimplantation genetic diagnosis to achieve an unaffected pregnancy in an autosomal-recessive retinal dystrophy. Design Case report. Methods An affected male with Stargardt disease and his carrier wife underwent IVF. Embryos obtained by intracytoplasmic sperm injection underwent single-cell DNA testing via polymerase chain reaction and restriction enzyme analysis to detect the presence of ABCA4 mutant alleles. Embryos were diagnosed as being either affected by or carriers for Stargardt disease. A single carrier embryo was implanted. Results Chorionic villus sampling performed during the first trimester verified that the fetus possessed only one mutant paternal allele and one normal maternal allele, thus making her an unaffected carrier of the disease. A healthy, live-born female was delivered. Conclusion IVF and preimplantation genetic diagnosis can assist couples with an affected spouse and a carrier spouse with recessive retinal dystrophies to have an unaffected child. PMID:20149343

  1. A systematic analysis of the suitability of preimplantation genetic diagnosis for mitochondrial diseases in a heteroplasmic mitochondrial mouse model.

    Science.gov (United States)

    Neupane, Jitesh; Vandewoestyne, Mado; Heindryckx, Björn; Ghimire, Sabitri; Lu, Yuechao; Qian, Chen; Lierman, Sylvie; Van Coster, Rudy; Gerris, Jan; Deroo, Tom; Deforce, Dieter; De Sutter, Petra

    2014-04-01

    What is the reliability of preimplantation genetic diagnosis (PGD) based on polar body (PB), blastomere or trophectoderm (TE) analysis in a heteroplasmic mitochondrial mouse model? The reliability of PGD to determine the level of mitochondrial DNA (mtDNA) heteroplasmy is questionable based on either the first or second PB analysis; however, PGD based on blastomere or TE analysis seems more reliable. PGD has been suggested as a technique to determine the level of mtDNA heteroplasmy in oocytes and embryos to avoid the transmission of heritable mtDNA disorders. A strong correlation between first PBs and oocytes and between second PBs and zygotes was reported in mice but is controversial in humans. So far, the levels of mtDNA heteroplasmy in first PBs, second PBs and their corresponding oocytes, zygotes and blastomeres, TE and blastocysts have not been analysed within the same embryo. We explored the suitability of PGD by comparing the level of mtDNA heteroplasmy between first PBs and metaphase II (MII) oocytes (n = 33), between first PBs, second PBs and zygotes (n = 30), and between first PBs, second PBs and their corresponding blastomeres of 2- (n = 10), 4- (n = 10) and 8-cell embryos (n = 11). Levels of mtDNA heteroplasmy in second PBs (n = 20), single blastomeres from 8-cell embryos (n = 20), TE (n = 20) and blastocysts (n = 20) were also compared. Heteroplasmic mice (BALB/cOlaHsd), containing mtDNA mixtures of BALB/cByJ and NZB/OlaHsd, were used in this study. The first PBs were biopsied from in vivo matured MII oocytes. The ooplasm was then subjected to ICSI. After fertilization, second PBs were biopsied and zygotes were cultured to recover individual blastomeres from 2-, 4- and 8-cell embryos. Similarly, second PBs were biopsied from in vivo fertilized zygotes and single blastomeres were biopsied from 8-cell stage embryos. The remaining embryo was cultured until the blastocyst stage to isolate TE cells. Polymerase chain reaction followed by restriction fragment

  2. Successful application of the strategy of blastocyst biopsy, vitrification, whole genome amplification, and thawed embryo transfer for preimplantation genetic diagnosis of neurofibromatosis type 1

    Directory of Open Access Journals (Sweden)

    Yi-Lin Chen

    2011-03-01

    Conclusion: We first demonstrate successful application of blastocyst biopsy, vitrification, WGA, and thawed embryo transfer for PGD of a monogenic disease. Vitrification of blastocysts after biopsy permits sufficient time for shipment of samples and operation of molecular diagnosis.

  3. First report on an X-linked hypohidrotic ectodermal dysplasia family with X chromosome inversion: Breakpoint mapping reveals the pathogenic mechanism and preimplantation genetics diagnosis achieves an unaffected birth.

    Science.gov (United States)

    Wu, Tonghua; Yin, Biao; Zhu, Yuanchang; Li, Guangui; Ye, Lijun; Liang, Desheng; Zeng, Yong

    2017-12-01

    To investigate the etiology of X-linked hypohidrotic ectodermal dysplasia (XLHED) in a family with an inversion of the X chromosome [inv(X)(p21q13)] and to achieve a healthy birth following preimplantation genetic diagnosis (PGD). Next generation sequencing (NGS) and Sanger sequencing analysis were carried out to define the inversion breakpoint. Multiple displacement amplification, amplification of breakpoint junction fragments, Sanger sequencing of exon 1 of ED1, haplotyping of informative short tandem repeat markers and gender determination were performed for PGD. NGS data of the proband sample revealed that the size of the possible inverted fragment was over 42Mb, spanning from position 26, 814, 206 to position 69, 231, 915 on the X chromosome. The breakpoints were confirmed by Sanger sequencing. A total of 5 blastocyst embryos underwent trophectoderm biopsy. Two embryos were diagnosed as carriers and three were unaffected. Two unaffected blastocysts were transferred and a singleton pregnancy was achieved. Following confirmation by prenatal diagnosis, a healthy baby was delivered. This is the first report of an XLHED family with inv(X). ED1 is disrupted by the X chromosome inversion in this XLHED family and embryos with the X chromosomal abnormality can be accurately identified by means of PGD. Copyright © 2017. Published by Elsevier B.V.

  4. Pheochromocytoma-paraganglioma: Biochemical and genetic diagnosis.

    Science.gov (United States)

    Cano Megías, Marta; Rodriguez Puyol, Diego; Fernández Rodríguez, Loreto; Sención Martinez, Gloria Lisette; Martínez Miguel, Patricia

    Pheochromocytomas and paragangliomas are tumours derived from neural crest cells, which can be diagnosed by biochemical measurement of metanephrine and methoxytyramine. Advances in genetic research have identified many genes involved in the pathogenesis of these tumours, suggesting that up to 35-45% may have an underlying germline mutation. These genes have a singular transcriptional signature and can be grouped into 2 clusters (or groups): cluster 1 (VHL and SHDx), involved in angiogenesis and hypoxia pathways; and cluster 2 (MEN2 and NF1), linked to the kinase signalling pathway. In turn, these genes are associated with a characteristic biochemical phenotype (noradrenergic and adrenergic), and clinical features (location, biological behaviour, age of presentation, etc.) in a large number of cases. Early diagnosis of these tumours, accompanied by a correct genetic diagnosis, should eventually become a priority to enable better treatment, early detection of complications, proper screening of family members and related tumours, as well as an improvement in the overall prognosis of these patients. Copyright © 2016 Sociedad Española de Nefrología. Published by Elsevier España, S.L.U. All rights reserved.

  5. Genetic diagnosis for congenital hemolytic anemia.

    Science.gov (United States)

    Ohga, Shouichi

    2016-01-01

    Congenital hemolytic anemia is a group of monogenic diseases presenting with anemia due to increased destruction of circulating erythrocytes. The etiology of inherited anemia accounts for germline mutations of the responsible genes coding for the structural components of erythrocytes and extra-erythrocytes. The erythrocyte abnormalities are classified into three major disorders of red cell membrane defects, hemoglobinopathies, and red cell enzymopathies. The extra-erythrocyte abnormalities, typified by consumption coagulopathy and intravascular hemolysis, include Upshaw-Schulman syndrome and atypical hemolytic uremic syndrome. The clinical manifestations of congenital hemolytic anemia are anemia, jaundice, cholelithiasis and splenomegaly, while the onset mode and severity are both variable. Genetic overlapping of red cell membrane protein disorders, and distinct frequency and mutation spectra differing among races make it difficult to understand this disease entity. On the other hand, genetic modifiers for the phenotype of β-globin diseases provide useful information for selecting the optimal treatment and for long-term management. Recently, next generation sequencing techniques have enabled us to determine the novel causative genes in patients with undiagnosed hemolytic anemias. We herein review the concept and strategy for genetic diagnosis of inherited hemolytic anemias.

  6. New perspectives on preimplantation genetic diagnosis and preimplantation genetic screening.

    Science.gov (United States)

    Chen, Chun-Kai; Yu, Hsing-Tse; Soong, Yung-Kuei; Lee, Chyi-Long

    2014-06-01

    Preimplantation genetic diagnosis is a procedure that involves the removal of one or more nuclei from oocytes (a polar body) or embryos (blastomeres or trophectoderm cells) in order to test for problems in genome sequence or chromosomes of the embryo prior to implantation. It provides new hope of having unaffected children, as well as avoiding the necessity of terminating an affected pregnancy for genetic parents who carry an affected gene or have balanced chromosomal status. Polymerase chain reaction-based molecular techniques are the methods used to detect gene defects with a known sequence and X-linked diseases. The indication for using this approach has expanded for couples who are prevented from having babies because they carry a serious genetic disorder to couples with conditions that are not immediately life threatening, such as cancer predisposition genes and Huntington disease. In addition, fluorescent in situ hybridization (FISH) has been widely applied for the detection of chromosome abnormalities. FISH allows the evaluation of many chromosomes at the same time, up to 15 chromosome pairs in a single cell. Preimplantation genetic screening, defined as a test that screens for aneuploidy, has been most commonly used in situations of advanced maternal age, a history of recurrent miscarriage, a history of repeated implantation failure, or a severe male factor. Unfortunately, randomized controlled trials have as yet shown no benefit with respect to preimplantation genetic screening using cleavage stage biopsy, which is probably attributable to the high levels of mosaicism at early cleavage stages and the limitations of FISH. Recently, two main types of array-based technology combined with whole genome amplification have been developed for use in preimplantation genetic diagnosis; these are comparative genomic hybridization and single nucleotide polymorphism-based arrays. Both allow the analysis of all chromosomes, and the latter also allows the haplotype of

  7. New perspectives on preimplantation genetic diagnosis and preimplantation genetic screening

    Directory of Open Access Journals (Sweden)

    Chun-Kai Chen

    2014-06-01

    Full Text Available Preimplantation genetic diagnosis is a procedure that involves the removal of one or more nuclei from oocytes (a polar body or embryos (blastomeres or trophectoderm cells in order to test for problems in genome sequence or chromosomes of the embryo prior to implantation. It provides new hope of having unaffected children, as well as avoiding the necessity of terminating an affected pregnancy for genetic parents who carry an affected gene or have balanced chromosomal status. Polymerase chain reaction-based molecular techniques are the methods used to detect gene defects with a known sequence and X-linked diseases. The indication for using this approach has expanded for couples who are prevented from having babies because they carry a serious genetic disorder to couples with conditions that are not immediately life threatening, such as cancer predisposition genes and Huntington disease. In addition, fluorescent in situ hybridization (FISH has been widely applied for the detection of chromosome abnormalities. FISH allows the evaluation of many chromosomes at the same time, up to 15 chromosome pairs in a single cell. Preimplantation genetic screening, defined as a test that screens for aneuploidy, has been most commonly used in situations of advanced maternal age, a history of recurrent miscarriage, a history of repeated implantation failure, or a severe male factor. Unfortunately, randomized controlled trials have as yet shown no benefit with respect to preimplantation genetic screening using cleavage stage biopsy, which is probably attributable to the high levels of mosaicism at early cleavage stages and the limitations of FISH. Recently, two main types of array-based technology combined with whole genome amplification have been developed for use in preimplantation genetic diagnosis; these are comparative genomic hybridization and single nucleotide polymorphism-based arrays. Both allow the analysis of all chromosomes, and the latter also allows

  8. The Impact of Biopsy on Human Embryo Developmental Potential during Preimplantation Genetic Diagnosis

    Directory of Open Access Journals (Sweden)

    Danilo Cimadomo

    2016-01-01

    Full Text Available Preimplantation Genetic Diagnosis and Screening (PGD/PGS for monogenic diseases and/or numerical/structural chromosomal abnormalities is a tool for embryo testing aimed at identifying nonaffected and/or euploid embryos in a cohort produced during an IVF cycle. A critical aspect of this technology is the potential detrimental effect that the biopsy itself can have upon the embryo. Different embryo biopsy strategies have been proposed. Cleavage stage blastomere biopsy still represents the most commonly used method in Europe nowadays, although this approach has been shown to have a negative impact on embryo viability and implantation potential. Polar body biopsy has been proposed as an alternative to embryo biopsy especially for aneuploidy testing. However, to date no sufficiently powered study has clarified the impact of this procedure on embryo reproductive competence. Blastocyst stage biopsy represents nowadays the safest approach not to impact embryo implantation potential. For this reason, as well as for the evidences of a higher consistency of the molecular analysis when performed on trophectoderm cells, blastocyst biopsy implementation is gradually increasing worldwide. The aim of this review is to present the evidences published to date on the impact of the biopsy at different stages of preimplantation development upon human embryos reproductive potential.

  9. Progress of Preimplantation Genetic Diagnosis%胚胎植入前遗传学诊断的新进展

    Institute of Scientific and Technical Information of China (English)

    李娜; 范俊梅; 刘忠宇; 尉春华

    2014-01-01

    胚胎植入前的遗传学检测包括植入前遗传学诊断(preimplantation genetic diagnosis,PGD)和植入前遗传学筛查(preimplantation genetic screening,PGS).PGD已在临床辅助生殖中应用20余年,其主要适应证为单基因疾病和遗传性染色体异常.PGS则是应用与PGD相同的技术,对植入前的胚胎进行染色体非整倍性的检测,选择最佳的胚胎予以移植,其适用于高龄(>35岁)、既往非整倍体妊娠、反复体外受精(IVF)失败、反复流产、严重的男性不育等因素导致的不孕不育.PGD有关的分析技术正日新月异地发展,微阵列比较基因组杂交技术、单核苷酸多态性微阵列技术等微阵列技术以及新一代测序技术已用于临床,卵裂球全基因组测序也即将成为可能.综述该领域的进展以及PGD/PGS的争议问题.

  10. The ethics of using genetic engineering for sex selection.

    Science.gov (United States)

    Liao, S Matthew

    2005-02-01

    It is quite likely that parents will soon be able to use genetic engineering to select the sex of their child by directly manipulating the sex of an embryo. Some might think that this method would be a more ethical method of sex selection than present technologies such as preimplantation genetic diagnosis (PGD) because, unlike PGD, it does not need to create and destroy "wrong gendered" embryos. This paper argues that those who object to present technologies on the grounds that the embryo is a person are unlikely to be persuaded by this proposal, though for different reasons.

  11. Preimplantation genetic diagnosis to improve pregnancy outcomes in subfertility.

    Science.gov (United States)

    Simpson, Joe Leigh

    2012-12-01

    Pre-implantation genetic diagnosis provides prenatal genetic diagnosis before implantation, thus allowing detection of chromosomal abnormalities and their exclusion from embryo transfer in assisted reproductive technologies. Polar body, blastomere or trophectoderm can each be used to obtain requisite genetic or embryonic DNA. Pre-implantation genetic diagnosis for excluding unbalanced translocations is well accepted, and pre-implantation genetic diagnosis aneuploidy testing to avoid repeated pregnancy losses in couples having recurrent aneuploidy is efficacious in reducing miscarriages. Controversy remains about whether pre-implantation genetic diagnosis aneuploidy testing improves take home pregnancy rates, for which reason adherence to specific indications is recommended while the issue is being adjudicated. Current recommendations are for obligatory 24 chromosome testing, most readily using array comparative genome hybridisation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Application of the micro-array comparative genomic hybridization technology in preimplantation genetic diagnosis%Array-CGH技术在胚胎植入前遗传学诊断中的应用进展

    Institute of Scientific and Technical Information of China (English)

    韩丹; 陈大蔚; 曹云霞; 周平

    2015-01-01

    As a new kind high-throughput genomics technology, micro array-based comparative genomic hybridization (aCGH) has brought the huge change for molecular biology and medical research. Because of the detection range covers the whole genome, high efficiency, easy operation etc, aCGH has been widely used in many areas of human genetic disease diagnosis, tumor genomics, systems biology and prenatal diagnosis. Human preimplantation genetic diagnosis (PGD) is an important part of assisted reproductive technology, with the development of molecular genetics technology, its application range is continuously widening. Based on aCGH technology in PGD for embryonic whole genome screening for aneuploidy and structural abnormalities, human PGD/human preimplantation genetic screening (PGS) implantation rate and clinical pregnancy rate have improved significantly. In this article, we discussed the advantages, disadvantages and prospects of aCGH in prenatal diagnosis.%微阵列比较基因组杂交(aCGH)作为一种新兴的高通量检测技术,给分子生物学及医学研究带来了巨大变化,因其检测范围覆盖全基因组、高效率、操作简便等特点,在人类遗传疾病诊断,肿瘤基因组学,系统生物学研究及产前诊断中已有了广泛应用。植入前遗传学诊断(PGD)是辅助生殖技术的重要组成部分,随着分子遗传学技术的发展,其应用范围也不断拓宽。基于aCGH技术在PGD中对胚胎全染色体组非整倍体及结构异常的筛查,PGD/植入前遗传学筛查(PGS)胚胎植入率和临床妊娠率均有显著提高,本文就aCGH技术在胚胎植入前遗传学诊断中的应用进行综述。

  13. Prenatal screening for chromosomal abnormalities in IVF patients that opted for preimplantation genetic screening/diagnosis (PGS/D): a need for revised algorithms in the era of personalized medicine.

    Science.gov (United States)

    Takyi, Afua; Santolaya-Forgas, Joaquin

    2017-06-01

    Obstetricians offer prenatal screening for most common chromosomal abnormalities to all pregnant women including those that had in vitro fertilization (IVF) and preimplantation genetic screening/diagnosis (PGS/D). We propose that free fetal DNA in maternal circulation together with the second trimester maternal serum alfa feto protein (MSAFP) and ultrasound imaging is the best prenatal screening test for chromosomal abnormalities and congenital anomalies in IVF-PGD/S patients because risk estimations from all other prenatal screening algorithms for chromosomal abnormalities depend heavily on maternal age which is irrelevant in PGS/D patients.

  14. HIVThe influence of HIV status on prenatal genetic diagnosis choices

    African Journals Online (AJOL)

    HIVThe influence of HIV status on prenatal genetic diagnosis choices. JS Bee, M Glass, JGR Kromberg. Abstract. Background. At-risk women of advanced maternal age (AMA) can choose to have second-trimester invasive testing for a prenatal genetic diagnosis on the fetus. Being HIV-positive can complicate the ...

  15. A feasible strategy of preimplantation genetic diagnosis for carriers with chromosomal translocation: Using blastocyst biopsy and array comparative genomic hybridization

    Directory of Open Access Journals (Sweden)

    Chu-Chun Huang

    2013-09-01

    Conclusion: Our study demonstrates an effective PGD strategy with promising outcomes. Blastocyst biopsy can retrieve more genetic material and may provide more reliable results, and aCGH offers not only detection of chromosomal translocation but also more comprehensive analysis of 24 chromosomes than traditional FISH. More cases are needed to verify our results and this strategy might be considered in general clinical practice.

  16. Hypopituitarism in Children. Modern Laboratory and Genetic Diagnosis

    Directory of Open Access Journals (Sweden)

    Ye.V. Hloba

    2016-04-01

    Full Text Available The lecture presents the current international guidelines on the diagnosis of hypopituitarism in children, in particular the rules of stimulation tests for the diagnosis of growth hormone deficiency, secondary hypogonadism and hypocorticism. It is recommended to use the anti-Müllerian hormone and inhibin B to diagnose different forms of hypogonadism. Genetic methods are also recommended to make a correct diagnosis, to prescribe a proper treatment and to provide a medical and genetic counseling of family members.

  17. Opportunities and challenges in prenatal diagnosis : towards personalized fetal genetics

    NARCIS (Netherlands)

    Lichtenbelt, K.D.

    2013-01-01

    In this thesis we studied the efficacy and utilization of prenatal screening and prenatal diagnosis in the Netherlands and the increasing options for prenatal genetic diagnosis in general. In chapter 1 background information on prenatal screening and diagnosis in pregnancies conceived through

  18. Retinoblastoma: genetics, diagnosis, treatment and sequelae

    International Nuclear Information System (INIS)

    Halperin, Edward C.

    1995-01-01

    There has been a conceptual breakthrough in our understanding of the molecular and genetic basis of the origins of human neoplasia. Mutations in three broad categories of genes have been shown to contribute to the origins and progression of neoplasia in humans: the oncogenes, the tumor suppressor genes, and the mutator genes. The retinoblastoma gene (RB1) is the best characterized tumor suppressor gene. It was first localized by Knudson and coworkers who observed an association between a deletion on the long arm of chromosome 13 and an inherited predisposition to retinoblastoma. The RB1 gene is composed of 27 exons encompassing more than 200 kilobases of genomic DNA. The product of the RB1 gene is a 105-107 kDa nuclear phosphoprotein which plays a part in regulating cellular DNA synthesis. Tumors arise, as predicted by Knudson's 'two-hit' hypothesis, as a result of bi-allelic mutation of the RB1 gene. Inactivating mutations of the RB1 gene have been identified in various tumors, showing the RB1 gene product has an important role in regulating cell proliferation beyond its effect on retinoblasts. The RB1 gene was cloned and identified in 1986. Returning the RB1 gene to a retinoblastoma cell in culture reduces its tumorgenic potential. Retinoblastoma is the most common malignant intraocular tumor of childhood. The tumor consists of undifferentiated small anaplastic cells which may be round or polygonal. Both Flexner and Wintersteiner described the arrangement of the more differentiated malignant retinoblastoma cells in neuroepithelial rosettes which appear to represent an attempt to differentiate into photoreceptor cells. The tumor commonly presents with a white pupillary light reflex. The diagnosis is generally made based on physical examination, confirmatory photographs and diagnostic imaging studies and, in many cases, a supportive family history. The most widely used grouping system was proposed by Algernon Reese and Robert Ellsworth. The primary goal of

  19. Retinoblastoma: Genetics, diagnosis, treatment and sequelae

    International Nuclear Information System (INIS)

    Halperin, Edward C.

    1996-01-01

    There has been a conceptual breakthrough in our understanding of the molecular and genetic basis of the origins of human neoplasia. Mutations in three broad categories of genes have been shown to contribute to the origins and progression of neoplasia in humans: the oncogenes, the tumor suppressor genes, and the mutator genes. The retinoblastoma gene (RB1) is the best characterized tumor suppressor gene. It was first localized by Knudson and coworkers who observed an association between a deletion on the long arm of chromosome 13 and an inherited predisposition to retinoblastoma. The RB1 gene is composed of 27 exons encompassing more than 200 kilobases of genomic DNA. The product of the RB1 gene is a 105-107 kDa nuclear phosphoprotein which plays a part in regulating cellular DNA synthesis. Tumors arise, as predicted by Knudson's 'two-hit' hypothesis, as a result of biallelic mutation of the RB1 gene. Inactivating mutations of the RB1 gene have been identified in various tumors, showing the RB1 gene product has an important role in regulating cell proliferation beyond its effect on retinoblasts. The RB1 gene was cloned and identified in 1986. Returning the RB1 gene to a retinoblastoma cell in culture reduces its tumorgenic potential. Retinoblastoma is the most common malignant intraocular tumor of childhood. The tumor consists of undifferentiated small anaplastic cells which may be round or polygonal. Both Flexner and Wintersteiner described the arrangement of the more differentiated malignant retinoblastoma cells in neuroepithelial rosettes which appear to represent an attempt to differentiate into photoreceptor cells. The tumor commonly presents with a white pupillary light reflex. The diagnosis is generally made based on physical examination, confirmatory photographs and diagnostic imaging studies and, in many cases, a supportive family history. The most widely used grouping system was proposed by Algernon Reese and Robert Ellsworth. The primary goal of

  20. 高通量检测技术在植入前胚胎遗传学诊断中的应用%Application of the High-throughput Technologies in Preimplantation Genetic Diagnosis

    Institute of Scientific and Technical Information of China (English)

    徐晨明

    2013-01-01

    基因芯片和深度测序是两大最重要的高通量检测技术,给生物学和医学研究带来巨大的变化,在功能基因组、系统生物学、药物基因组的研究和遗传疾病诊断中得到了广泛的应用。随着全基因组扩增技术的不断改良,高通量技术在辅助生殖植入前遗传学诊断(PGD)中的应用有了巨大的进展。基于微阵列技术的胚胎全染色体组非整倍体筛查及结构异常的PGD已经开始临床应用,PGD /植入前遗传学筛查(PGS)后的临床妊娠率和胚胎植入率显著提高;基于单细胞高通量测序技术的染色体非整倍体及单基因病诊断的临床试验也已见报道,并有希望在不久的将来走向临床应用。%Gene chips and deep sequencing,as two most important high-throughput genomics technologies, have been widely used in many areas of biomedical research,including functional genomics,systems biology, pharmacogenomics and diagnostics. With the advent of modified whole genome amplification technologies ,it has been promoted to apply the high-throughput technologies in preimplantation genetic diagnosis (PGD). Based on the microarray technology, two technologies, the whole chromosomes set screening and the PGD with chromosomal structural analysis, have been introduced into clinical practice. The clinical pregnancy and embryo implantation rate after preimplantation genetic screening (PGS) or PGD have been significantly improved. Furthermore,two new technologies based on the single cell high-throughput sequencing, the chromosomal aneuploidy detecting and the single gene disease PGD,have been reported. It is hopeful that these new technologies be applied to the clinic in the near future.

  1. 植入前遗传学诊断的伦理思考%Ethical Speculation on Pre-implantation Genetic Diagnosis

    Institute of Scientific and Technical Information of China (English)

    吴青; 冯云

    2009-01-01

    植入前遗传学诊断(Preimplantation Genetic Diagnosis PGD)是以体外受精-胚胎移植技术为基础,结合多学科技术,特别是单细胞DNA分析技术的研究而发展起来的先进技术.在胚胎植入子宫前淘汰遗传异常的胚胎,以达到优生的目的.随着该技术的发展,PGD的应用范围变得更广,相伴而来的是伦理问题,深入思考PGD应用的伦理困境,以期切实地造福人类.

  2. Use of Contemporary Genetics in Cardiovascular Diagnosis

    OpenAIRE

    George, Alfred L.

    2014-01-01

    An explosion of knowledge regarding the genetic and genomic basis for rare and common diseases has provided a framework for revolutionizing the practice of medicine. Achieving the reality of a genomic medicine era requires that basic discoveries are effectively translated into clinical practice through implementation of genetic and genomic testing. Clinical genetic tests have become routine for many inherited disorders and can be regarded as the standard-of-care in many circumstances includin...

  3. Preimplantation genetic diagnosis outcomes and meiotic segregation analysis of robertsonian translocation carriers.

    Science.gov (United States)

    Ko, Duck Sung; Cho, Jae Won; Lee, Hyoung-Song; Kim, Jin Yeong; Kang, Inn Soo; Yang, Kwang Moon; Lim, Chun Kyu

    2013-04-01

    To investigate the meiotic segregation patterns of cleavage-stage embryos from robertsonian translocation carriers and aneuploidy of chromosome 18 according to meiotic segregation patterns. Retrospective study. Infertility center and laboratory of reproductive biology and infertility. Sixty-two couples with robertsonian translocation carriers. One blastomere was biopsied from embryos and diagnosed with the use of fluorescence in situ hybridization (FISH). Translocation chromosomes were analyzed with the use of locus-specific and subtelomeric FISH probes. Aneuploidy of chromosome 18 was assessed simultaneously with translocation chromosomes. Preimplantation genetic diagnosis (PGD) outcomes, meiotic segregation patterns of robertsonian translocation, and aneuploidy of chromosome 18 depending on meiotic segregation patterns. Two hundred seventy embryos of 332 transferrable embryos were transferred in 113 cycles, and 27 healthy babies were born. The alternate segregation was significantly higher in male carriers than in female carriers (43.9% vs. 29.9%, respectively), and adjacent segregation was higher in female carriers than in male carriers (44.7% vs. 38.7%, respectively). Aneuploidy of chromosome 18 was significantly increased in 3:0-segregated or chaotic embryos. Forty-seven alternate embryos were excluded from embryo replacement owing to aneuploidy of chromosome 18. In carriers of robertsonian translocation, meiotic segregation showed differences between men and women. Frequent meiotic errors caused by premature predivision or nondisjunction and less stringent checkpoint in women might cause such differences between sexes. Aneuploidy of chromosome 18 might be influenced by meiotic segregation of translocation chromosomes. Factors that cause malsegregation, such as 3:0 or chaotic segregation, seem to play a role in aneuploidy of chromosome 18. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. NEW MOLECULAR TECHNOLOGIES IN GENETIC DIAGNOSIS OF MALE INFERTILITY

    Directory of Open Access Journals (Sweden)

    V. B. Chernykh

    2017-01-01

    Full Text Available In recent years, the accelerated development of technologies in the field of molecular genetics and cytogenetics has led to significant opportunities of the research and diagnosis of mutations and variations of the genome. This article provides a brief review of new molecular technology, also as the results of their use in reproductive medicine and their perspectives in the genetic diagnosis of male infertility. 

  5. Use of Contemporary Genetics in Cardiovascular Diagnosis

    Science.gov (United States)

    George, Alfred L.

    2015-01-01

    An explosion of knowledge regarding the genetic and genomic basis for rare and common diseases has provided a framework for revolutionizing the practice of medicine. Achieving the reality of a genomic medicine era requires that basic discoveries are effectively translated into clinical practice through implementation of genetic and genomic testing. Clinical genetic tests have become routine for many inherited disorders and can be regarded as the standard-of-care in many circumstances including disorders affecting the cardiovascular system. New, high-throughput methods for determining the DNA sequence of all coding exons or complete genomes are being adopted for clinical use to expand the speed and breadth of genetic testing. Along with these extraordinary advances have emerged new challenges to practicing physicians for understanding when and how to use genetic testing along with how to appropriately interpret test results. This review will acquaint readers with general principles of genetic testing including newer technologies, test interpretation and pitfalls. The focus will be on testing genes responsible for monogenic disorders and on other emerging applications such as pharmacogenomic profiling. The discussion will be extended to the new paradigm of direct-to-consumer genetic testing and the value of assessing genomic risk for common diseases. PMID:25421045

  6. Preliminary analysis of numerical chromosome abnormalities in reciprocal and Robertsonian translocation preimplantation genetic diagnosis cases with 24-chromosomal analysis with an aCGH/SNP microarray.

    Science.gov (United States)

    Xie, Yanxin; Xu, Yanwen; Wang, Jing; Miao, Benyu; Zeng, Yanhong; Ding, Chenhui; Gao, Jun; Zhou, Canquan

    2018-01-01

    The aim of this study was to determine whether an interchromosomal effect (ICE) occurred in embryos obtained from reciprocal translocation (rcp) and Robertsonian translocation (RT) carriers who were following a preimplantation genetic diagnosis (PGD) with whole chromosome screening with an aCGH and SNP microarray. We also analyzed the chromosomal numerical abnormalities in embryos with aneuploidy in parental chromosomes that were not involved with a translocation and balanced in involved parental translocation chromosomes. This retrospective study included 832 embryos obtained from rcp carriers and 382 embryos from RT carriers that were biopsied in 139 PGD cycles. The control group involved embryos obtained from age-matched patient karyotypes who were undergoing preimplantation genetic screening (PGS) with non-translocation, and 579 embryos were analyzed in the control group. A single blastomere at the cleavage stage or trophectoderm from a blastocyst was biopsied, and 24-chromosomal analysis with an aCGH/SNP microarray was conducted using the PGD/PGS protocols. Statistical analyses were implemented on the incidences of cumulative aneuploidy rates between the translocation carriers and the control group. Reliable results were obtained from 138 couples, among whom only one patient was a balanced rcp or RT translocation carrier, undergoing PGD testing in our center from January 2012 to June 2014. For day 3 embryos, the aneuploidy rates were 50.7% for rcp carriers and 49.1% for RT carriers, compared with the control group, with 44.8% at a maternal age < 36 years. When the maternal age was ≥ 36 years, the aneuploidy rates were increased to 61.1% for rcp carriers, 56.7% for RT carriers, and 60.3% for the control group. There were no significant differences. In day 5 embryos, the aneuploidy rates were 24.5% for rcp carriers and 34.9% for RT carriers, compared with the control group with 53.6% at a maternal age < 36 years. When the maternal age was ≥ 36

  7. 植入前遗传学诊断的安全性和可靠性探讨%Evaluation of the safety and reliability of preimplantation genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    郑英明; 金帆

    2011-01-01

    植入前遗传学诊断(preimplantation genetic diagnosis,PGD)是在胚胎植入前对配子或体外受精胚胎进行遗传学分析的一项诊断技术,目的在于从源头预防遗传性疾病的发生,从而改善有遗传性疾病高风险夫妇的妊娠结局.近年来,随着分子生物学技术的进步,越来越多遗传性疾病的发生机制被阐明,PGD的诊断范围逐渐扩展,其应用周期数也日益增多.新技术的开展如比较基因组杂交及其微阵列提高了PGD诊断的准确性.然而,这项技术的安全性问题也引起了人们高度重视.作者从透明带开孔技术、不同时期胚胎活检、胚胎活检细胞数目以及遗传分析技术的可靠性等方面对PGD的安全性进行了探讨.%Preimplantation genetic diagnosis (PGD) refers to a procedure to genetically analyze embryos prior to implantation, in order to prevent the occurrence of specific inherited disorders before conception and improve the outcome of high-risk pregnancy with genetic disorders. In recent years, with the advance of molecular biology techniques, more and more genetic diseases have been elucidated, and PGD has been gradually expanding its scope and applications. New technologies, such as microarray comparative genomic hybridization (array CGH), are developed to improve the accuracy of diagnosis. However, the safety of this procedure has aroused great attention. In this article, authors will review the safety of zona opening procedures, different biopsy procedures at different stages, and removal of one or two cells from cleavage-stage embryos. The reliability of genetic analysis technologies will be discussed as well.

  8. Lactose intolerance: diagnosis, genetic, and clinical factors

    Science.gov (United States)

    Mattar, Rejane; de Campos Mazo, Daniel Ferraz; Carrilho, Flair José

    2012-01-01

    Most people are born with the ability to digest lactose, the major carbohydrate in milk and the main source of nutrition until weaning. Approximately 75% of the world’s population loses this ability at some point, while others can digest lactose into adulthood. This review discusses the lactase-persistence alleles that have arisen in different populations around the world, diagnosis of lactose intolerance, and its symptomatology and management. PMID:22826639

  9. Prenatal diagnosis--principles of diagnostic procedures and genetic counseling.

    Directory of Open Access Journals (Sweden)

    Ryszard Slezak

    2008-04-01

    Full Text Available The frequency of inherited malformations as well as genetic disorders in newborns account for around 3-5%. These frequency is much higher in early stages of pregnancy, because serious malformations and genetic disorders usually lead to spontaneous abortion. Prenatal diagnosis allowed identification of malformations and/or some genetic syndromes in fetuses during the first trimester of pregnancy. Thereafter, taking into account the severity of the disorders the decision should be taken in regard of subsequent course of the pregnancy taking into account a possibilities of treatment, parent's acceptation of a handicapped child but also, in some cases the possibility of termination of the pregnancy. In prenatal testing, both screening and diagnostic procedures are included. Screening procedures such as first and second trimester biochemical and/or ultrasound screening, first trimester combined ultrasound/biochemical screening and integrated screening should be widely offered to pregnant women. However, interpretation of screening results requires awareness of both sensitivity and predictive value of these procedures. In prenatal diagnosis ultrasound/MRI searching as well as genetic procedures are offered to pregnant women. A variety of approaches for genetic prenatal analyses are now available, including preimplantation diagnosis, chorion villi sampling, amniocentesis, fetal blood sampling as well as promising experimental procedures (e.g. fetal cell and DNA isolation from maternal blood. An incredible progress in genetic methods opened new possibilities for valuable genetic diagnosis. Although karyotyping is widely accepted as golden standard, the discussion is ongoing throughout Europe concerning shifting to new genetic techniques which allow obtaining rapid results in prenatal diagnosis of aneuploidy (e.g. RAPID-FISH, MLPA, quantitative PCR.

  10. Obstetric and neonatal outcomes in blastocyst-stage biopsy with frozen embryo transfer and cleavage-stage biopsy with fresh embryo transfer after preimplantation genetic diagnosis/screening.

    Science.gov (United States)

    Jing, Shuang; Luo, Keli; He, Hui; Lu, Changfu; Zhang, Shuoping; Tan, Yueqiu; Gong, Fei; Lu, Guangxiu; Lin, Ge

    2016-07-01

    To study whether embryo biopsy for preimplantation genetic diagnosis/preimplantation genetic screening (PGD/PGS) can influence pregnancy complications and neonatal outcomes. Retrospective analysis. University-affiliated center. This study included data from women and their neonates born after PGD/PGS (n = 317). Questionnaires were designed to obtain information relating to pregnancy complications and neonatal outcomes. Two major strategies for PGD/PGS were evaluated. Blastocyst-stage biopsy and frozen embryo transfer (BB-FET) was carried out in 166 patients, and cleavage-stage biopsy and fresh embryo transfer (CB-ET) was carried out in 129 patients. The incidence of gestational hypertension was significantly higher in BB-FET compared with in CB-ET (9.0% vs. 2.3%, adjusted odds ratio [OR] and 95% confidence interval [CI], 4.85 [1.34, 17.56]). In twins, the birthweight (median [range], 2.70 kg [1.55-3.60 kg] vs. 2.50 kg [1.23-3.75 kg]) was higher in BB-FET than in CB-ET and the gestational age was longer in BB-FET than in CB-ET (median [range], 36.71 weeks [31.14-39.29 weeks] vs. 35.57 weeks [30.57-38.43 weeks]). There was no difference in the incidence of singleton births between the two groups except in the incidence of preterm births (28-37 weeks; 5.3% vs. 16.5% in CB-ET and BB-FET). No significant differences were detected in the incidence of perinatal deaths, birth defects, gender of neonates, and large for gestational age in both singletons and twins, although the numbers of some events were small. BB-FET is associated with a higher incidence of gestational hypertension but better neonatal outcomes compared with CB-ET, especially in twins. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  11. Preimplantation diagnosis to create 'saviour siblings': a critical discussion of the current and future legal frameworks in South Africa.

    Science.gov (United States)

    Strode, Ann; Soni, Sheetal

    2011-12-14

    Pre-implantation genetic diagnosis (PGD) is a technology used in conjunction with in vitro fertilisation to screen embryos for genetic conditions prior to transfer. It was initially developed to screen mutations for severe, irreversible, genetic conditions. Currently, PGD makes it possible to select against more than 100 different genetic conditions. It has been proposed as a method for creating a tissue-matched child who can in turn serve as a compatible stem cell donor to save a sick sibling in need of a stem cell transplant. The advantage of this method is that it provides genetic information before implantation of an embryo into the womb, making it possible to ensure that only tissue-matched embryos are transferred to the uterus. A couple can therefore avoid the difficult choice of either terminating the pregnancy at a later point if the fetus is not a match, or extending their family again in the hope that their next child will be tissue compatible. Many people have expressed disapproval of the use of PGD for this purpose, and it is associated with many conflicting interests including religion, ethics as well as legal regulation. In order to manage these issues some jurisdictions have created legal frameworks to regulate the use of this technology. Many of these are modelled on the UK's Human Fertilisation and Embryology Authority and its guardian legislation. This paper critiques the current and future South African legal framework to establish whether it is able to adequately regulate the use of PGD as well as guard against misuse of the technology. It concludes that changes are required to the future framework in order to ensure that it regulates the circumstances in which PGD may occur and that the Minister of Health should act expediently in finalising draft regulations which will regulate PGD in the future.

  12. Preimplantation genetic diagnosis associated to Duchenne muscular dystrophy.

    Science.gov (United States)

    Bianco, Bianca; Christofolini, Denise Maria; Conceição, Gabriel Seixas; Barbosa, Caio Parente

    2017-01-01

    Duchenne muscular dystrophy is the most common muscle disease found in male children. Currently, there is no effective therapy available for Duchenne muscular dystrophy patients. Therefore, it is essential to make a prenatal diagnosis and provide genetic counseling to reduce the birth of such boys. We report a case of preimplantation genetic diagnosis associated with Duchenne muscular dystrophy. The couple E.P.R., 38-year-old, symptomatic patient heterozygous for a 2 to 47 exon deletion mutation in DMD gene and G.T.S., 39-year-old, sought genetic counseling about preimplantation genetic diagnosis process. They have had a 6-year-old son who died due to Duchenne muscular dystrophy complications. The couple underwent four cycles of intracytoplasmic sperm injection (ICSI) and eight embryos biopsies were analyzed by polymerase chain reaction (PCR) for specific mutation analysis, followed by microarray-based comparative genomic hybridisation (array CGH) for aneuploidy analysis. Preimplantation genetic diagnosis revealed that two embryos had inherited the maternal DMD gene mutation, one embryo had a chromosomal alteration and five embryos were normal. One blastocyst was transferred and resulted in successful pregnancy. The other embryos remain vitrified. We concluded that embryo analysis using associated techniques of PCR and array CGH seems to be safe for embryo selection in cases of X-linked disorders, such as Duchenne muscular dystrophy.

  13. Lactose intolerance: diagnosis, genetic, and clinical factors

    Directory of Open Access Journals (Sweden)

    Mattar R

    2012-07-01

    Full Text Available Rejane Mattar, Daniel Ferraz de Campos Mazo, Flair José CarrilhoDepartment of Gastroenterology, University of São Paulo School of Medicine, São Paulo, BrazilAbstract: Most people are born with the ability to digest lactose, the major carbohydrate in milk and the main source of nutrition until weaning. Approximately 75% of the world's population loses this ability at some point, while others can digest lactose into adulthood. This review discusses the lactase-persistence alleles that have arisen in different populations around the world, diagnosis of lactose intolerance, and its symptomatology and management.Keywords: hypolactasia, lactase persistence, lactase non-persistence, lactose, LCT gene, MCM6 gene

  14. Conversion and non-conversion approach to preimplantation diagnosis for chromosomal rearrangements in 475 cycles.

    Science.gov (United States)

    Kuliev, Anver; Janzen, Jeanine Cieslak; Zlatopolsky, Zev; Kirillova, Irina; Ilkevitch, Yury; Verlinsky, Yury

    2010-07-01

    Due to the limitations of preimplantation genetic diagnosis (PGD) for chromosomal rearrangements by interphase fluorescent in-situ hybridization (FISH) analysis, a method for obtaining chromosomes from single blastomeres was introduced by their fusion with enucleated or intact mouse zygotes, followed by FISH analysis of the resulting heterokaryons. Although this allowed a significant improvement in the accuracy of testing of both maternally and paternally derived translocations, it is still labour intensive and requires the availability of fertilized mouse oocytes, also creating ethical issues related to the formation of interspecies heterokaryons. This method was modified with a chemical conversion procedure that has now been clinically applied for the first time on 877 embryos from PGD cycles for chromosomal rearrangements and has become the method of choice for performing PGD for structural rearrangements. This is presented within the context of overall experience of 475 PGD cycles for translocations with pre-selection and transfer of balanced or normal embryos in 342 (72%) of these cycles, which resulted in 131 clinical pregnancies (38%), with healthy deliveries of 113 unaffected children. The spontaneous abortion rate in these cycles was as low as 17%, which confirms an almost five-fold reduction of spontaneous abortion rate following PGD for chromosomal rearrangements. 2010 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  15. Birth of healthy children after preimplantation diagnosis of β-thalassemia

    Institute of Scientific and Technical Information of China (English)

    焦泽旭; 庄广伦; 周灿权; 舒益民; 李洁; 梁晓燕

    2004-01-01

    Background Clinical programs for preventing β-thalassemia are presently based on prospective carrier screening and prenatal diagnosis. This paper report an achievement of a pregnancy with unaffected embryos using in vitro fertilization and embryo transfer (IVF-ET), in combination with preimplantation genetic diagnosis (PGD), for a couple at risk of having children with β-thalassemia.Methods A couple carrying different thalassemia mutations, both a codon 41-42 mutation and the IVS Ⅱ 654 mutation, received standard IVF treatment, with intracytoplasmic sperm injection, embryo biopsiy, single cell polymerase chain reaction (PCR) and DNA analysis. Only unaffected or carrier embryos were transferred to the uterine cavity. After confirmation of pregnancy, a prenatal diagnosis was performed.Results Of a total of 13 embryos analyzed for β-globin mutations, PGD indicated that 2 were normal,3 were affected, and 6 were carriers. Diagnosis could not be made in the other 2 embryos. Three embryos were transferred to the uterus on the third day after oocyte retrieval. Ultrasonography revealed a twin pregnancy with one blighted ovum. The prenatal genetic diagnosis revealed that both fetuses were unaffected, and two healthy boys were born, confirming the results of PGD.Conclusions We developed a single-cell based primer extension preamplification (PEP)-PCR assay for the detection of β-thalassemia mutations. The assays were efficient and accurate at all stages of the procedure, and resulted in the birth of PGD-confirmed β-thalassemia free children in China. PEP was used here in PGD for β-thalassemia.

  16. Improving diagnosis for congenital cataract by introducing NGS genetic testing.

    Science.gov (United States)

    Musleh, Mohammud; Ashworth, Jane; Black, Graeme; Hall, Georgina

    2016-01-01

    Childhood cataract (CC) has an incidence of 3.5 per 10,000 by age 15 years. Diagnosis of any underlying cause is important to ensure effective and prompt management of multisystem complications, to facilitate accurate genetic counselling and to streamline multidisciplinary care. Next generation sequencing (NGS) has been shown to be effective in providing an underlying diagnosis in 70% of patients with CC in a research setting. This project aimed to integrate NGS testing in CC within six months of presentation and increase the rate of diagnosis. A retrospective case note review was undertaken to define the baseline efficacy of current care in providing a precise diagnosis. Quality improvement methods were used to integrate and optimize NGS testing in clinical care and measure the improvements made. The percentage of children receiving an NGS result within six months increased from 26% to 71% during the project period. The mean time to NGS testing and receiving a report decreased and there was a reduction in variation over the study period. Several patients and families had a change in management or genetic counselling as a direct result of the diagnosis given by the NGS test. The current recommended investigation of patients with bilateral CC is ineffective in identifying a diagnosis. Quality Improvement methods have facilitated successful integration of NGS testing into clinical care, improving time to diagnosis and leading to development of a new care pathway.

  17. [Preimplantation genetic diagnosis in order to choose a saviour sibling].

    Science.gov (United States)

    Shenfield, F

    2005-10-01

    Preimplantation genetic diagnosis with HLA matching in order to bring about the birth of a saviour sibling is not mere instrumentalisation of the future child, as long as the post natal test is used and the future child will be looked after with the same love and care as if he/she had not been selected as well for the purpose.

  18. Partial status epilepticus - rapid genetic diagnosis of Alpers' disease.

    LENUS (Irish Health Repository)

    McCoy, Bláthnaid

    2011-11-01

    We describe four children with a devastating encephalopathy characterised by refractory focal seizures and variable liver dysfunction. We describe their electroencephalographic, radiologic, genetic and pathologic findings. The correct diagnosis was established by rapid gene sequencing. POLG1 based Alpers\\' disease should be considered in any child presenting with partial status epilepticus.

  19. [Unaffected child born following preimplantation genetic diagnosis with karyomapping].

    Science.gov (United States)

    Nánássy, László; Téglás, Gyöngyvér; Csenki, Marianna; Vereczkey, Attila

    2016-12-01

    Preimplantation genetic diagnosis for single gene defects is a well established method in assisted reproductive technologies. Karyomapping is a genome wide parental haplotyping using a high density single nucleotide polymorphism array that allows the diagnosis of any single gene defects. A couple with an affected child with primary congenital glaucoma attended at our clinic. Six oocyte-cumulus-complex was retrieved and all three mature oocytes were inseminated. One zygote showed the signs of normal fertilization and was cultured for five days. Trophectoderm biopsy and karyomapping analysis were carried out. Result showed a heterozygous carrier for primary congenital glaucoma. Embryo was thawed and transferred and a healthy girl was delivered at term. Here we report the first live birth following in vitro fertilization combined with preimplantation genetic diagnosis using karyomapping in Hungary. Karyomapping is able to accurately detect single gene disorders from a limited amount of samples without a significant preclinical workup. Orv. Hetil., 2016, 157(51), 2048-2050.

  20. Preimplantation genetic diagnosis for cystic fibrosis: a case report

    Science.gov (United States)

    Biazotti, Maria Cristina Santoro; Pinto, Walter; de Albuquerque, Maria Cecília Romano Maciel; Fujihara, Litsuko Shimabukuro; Suganuma, Cláudia Haru; Reigota, Renata Bednar; Bertuzzo, Carmen Sílvia

    2015-01-01

    Cystic fibrosis is an autosomal recessive disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator gene. This disorder produces a variable phenotype including lung disease, pancreatic insufficiency, and meconium ileus plus bilateral agenesis of the vas deferens causing obstructive azoospermia and male infertility. Preimplantation genetic diagnosis is an alternative that allows identification of embryos affected by this or other genetic diseases. We report a case of couple with cystic fibrosis; the woman had the I148 T mutation and the man had the Delta F508 gene mutation. The couple underwent in vitro fertilization, associated with preimplantation genetic diagnosis, and with subsequent selection of healthy embryos for uterine transfer. The result was an uneventful pregnancy and delivery of a healthy male baby. PMID:25993078

  1. Meckel Syndrome: Genetics, Perinatal Findings, and Differential Diagnosis

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2007-03-01

    Full Text Available Meckel syndrome (MKS is a lethal, autosomal recessive disorder characterized by occipital encephalocele, bilateral renal cystic dysplasia, hepatic ductal proliferation, fibrosis and cysts, and polydactyly. Genetic heterogeneity of MKS has been established by three reported MKS loci, i.e., MKS1 on 17q23, MKS2 on 11q13, and MKS3 on 8q21.13-q22.1. MKS1 encodes a component of flagellar apparatus basal body proteome, which is associated with ciliary function. MKS3 encodes a seven-transmembrane receptor protein, meckelin. The identification of the MKS3 gene as well as the MKS1 gene enables molecular genetic testing for at-risk families, and allows accurate genetic counseling, carrier testing, and prenatal diagnosis. Pregnancies with MKS fetuses may be associated with an elevated maternal serum α-fetoprotein level and an abnormal screening result in the second-trimester maternal serum screening test. The classic MKS triad of occipital encephalocele, postaxial polydactyly, and bilateral enlarged multicystic kidneys can be diagnosed before the 14th gestational weeks by ultrasonography. However, later in pregnancy, severe oligohydramnios may make the diagnosis of polydactyly and encephalocele difficult. Differential diagnosis for MKS includes autosomal recessive polycystic kidney disease, trisomy 13, Smith-Lemli-Opitz syndrome, hydrolethalus syndrome, Senior-Loken syndrome, Joubert syndrome, Bardet-Biedl syndrome, and oral-facial-digital syndrome type 1. This article provides an overview of genetics, perinatal findings, and differential diagnosis of MKS. The ciliopathy underlies the pathogenesis of MKS. Prenatal diagnosis of bilateral enlarged multicystic kidneys should alert MKS and prompt a thorough investigation of central nervous system malformations and polydactyly.

  2. Clinical analysis of preimplantation genetic diagnosis with fluorescence in situ hybridization%应用荧光原位杂交技术进行胚胎种植前遗传学诊断的临床分析

    Institute of Scientific and Technical Information of China (English)

    刘琨; 张学红; 任育宏; 赵丽辉; 石馨; 薛石龙; 马晓玲; 贾学玲

    2010-01-01

    目的:探讨应用荧光原位杂交(fluorescence in situ hybridisation,FISH)技术对染色体异常携带者进行种植前胚胎遗传学诊断(preimplantation genetic diagnosis,PGD)的临床意义.方法:根据携带者染色体异常种类,分别选择相应的亚端粒探针和着丝粒探针或性染色体探针,进行1次或者2次杂交,对7例染色体异常携带者进行了胚胎种植前遗传学诊断.结果:7例染色体异常携带者进行了7个周期的PGD,获卵131枚,活检77枚胚胎,检出卵裂球87枚,移植20枚胚胎,4例临床妊娠,其中2例已分娩健康婴儿.结论:应用荧光原位杂交技术对染色体异常携带者的胚胎进行种植前遗传学诊断是一种有效方法.

  3. Fast model updating coupling Bayesian inference and PGD model reduction

    Science.gov (United States)

    Rubio, Paul-Baptiste; Louf, François; Chamoin, Ludovic

    2018-04-01

    The paper focuses on a coupled Bayesian-Proper Generalized Decomposition (PGD) approach for the real-time identification and updating of numerical models. The purpose is to use the most general case of Bayesian inference theory in order to address inverse problems and to deal with different sources of uncertainties (measurement and model errors, stochastic parameters). In order to do so with a reasonable CPU cost, the idea is to replace the direct model called for Monte-Carlo sampling by a PGD reduced model, and in some cases directly compute the probability density functions from the obtained analytical formulation. This procedure is first applied to a welding control example with the updating of a deterministic parameter. In the second application, the identification of a stochastic parameter is studied through a glued assembly example.

  4. Attitudes toward genetic testing in childhood and reproductive decision-making for familial adenomatous polyposis.

    Science.gov (United States)

    Douma, Kirsten F L; Aaronson, Neil K; Vasen, Hans F A; Verhoef, Senno; Gundy, Chad M; Bleiker, Eveline M A

    2010-02-01

    Childhood DNA testing, prenatal diagnosis (PND) and preimplantation genetic diagnosis (PGD) are available for familial adenomatous polyposis (FAP). However, the use of PND and PGD is controversial. The purpose of this study was to investigate attitudes toward, and experiences with, childhood DNA testing, PND and PGD among members of families at high risk for FAP. In this nationwide, cross-sectional study, questionnaires were sent to individuals from families at high risk for FAP assessing attitudes toward and experiences with childhood testing, PND and PGD, as well as several sociodemographic, clinical and psychosocial variables. Of the individuals from FAP families invited to participate in the study, 525 members participated (response rate=64%). Most parents who had children who were minors (n=93) (82%) were satisfied with the DNA testing procedure. One-third of all individuals wanted DNA testing for their children before age 12. Forty percent of FAP patients indicated that the disease influenced their desire to have children. Only 15% considered termination of pregnancy for FAP acceptable. Approximately 30% of individuals with a FAP diagnosis and their partners considered PND and PGD as acceptable for themselves. A positive attitude was associated with higher levels of guilt and a positive attitude toward termination of pregnancy. Importantly, of those with FAP at childbearing age, 84% had had no previous information at all about either PND or PGD. Future efforts should be aimed at educating FAP family members about reproductive options, allowing them to make an informed choice about family planning. Routine discussion of all reproductive options with a medical specialist should be encouraged.

  5. Prenatal Diagnosis and Genetic Counseling for Mosaic Trisomy 13

    Directory of Open Access Journals (Sweden)

    Chih-Ping Chen

    2010-03-01

    Full Text Available Counseling parents of a fetus with trisomy 13 mosaicism remains difficult because of the phenotypic variability associated with the condition; some patients exhibit the typical phenotype of complete trisomy 13 with neonatal death, while others have few dysmorphic features and prolonged survival. This article provides a comprehensive review of the prenatal diagnosis and genetic counseling for mosaic trisomy 13, including confined placental mosaicism 13, mosaic trisomy 13 diagnosed at amniocentesis, and phylloid hypomelanosis in association with mosaic trisomy 13.

  6. Prediction value of anti-Mullerian hormone (AMH) serum levels and antral follicle count (AFC) in hormonal contraceptive (HC) users and non-HC users undergoing IVF-PGD treatment.

    Science.gov (United States)

    Bas-Lando, Maayan; Rabinowitz, Ron; Farkash, Rivka; Algur, Nurit; Rubinstein, Esther; Schonberger, Oshrat; Eldar-Geva, Talia

    2017-10-01

    Use of hormone contraceptives (HC) is very popular in the reproductive age and, therefore, evaluation of ovarian reserve would be a useful tool to accurately evaluate the reproductive potential in HC users. We conducted a retrospective cohort study of 41 HC users compared to 57 non-HC users undergoing IVF-preimplantation genetic diagnosis (PGD) aiming to evaluate the effect of HC on the levels of anti-Mullerian hormone (AMH), small (2-5 mm), large (6-10 mm) and total antral follicle count (AFC) and the ability of these markers to predict IVF outcome. Significant differences in large AFC (p = 0.04) and ovarian volume (p users (p users these correlations were weaker. In HC users, the significant predictors of achieving 18 oocytes were AFC (ROC-AUC; 0.958, p = 0.001 and 0.883, p = 0.001) and AMH (ROC-AUC-0.858, p = 0.01 and 0.878, p = 0.001), respectively. The predictive values were less significant in non-HC users. These findings are important in women treated for PGD, in ovum donors and for assessing the fertility prognosis in women using HC and wishing to postpone pregnancy.

  7. The first family with Tay-Sachs disease in Cyprus: Genetic analysis reveals a nonsense (c.78G>A) and a silent (c.1305C>T) mutation and allows preimplantation genetic diagnosis.

    Science.gov (United States)

    Georgiou, Theodoros; Christopoulos, George; Anastasiadou, Violetta; Hadjiloizou, Stavros; Cregeen, David; Jackson, Marie; Mavrikiou, Gavriella; Kleanthous, Marina; Drousiotou, Anthi

    2014-12-01

    Tay-Sachs disease (TSD) is a recessively inherited neurodegenerative disorder caused by mutations in the HEXA gene resulting in β-hexosaminidase A (HEX A) deficiency and neuronal accumulation of GM2 ganglioside. We describe the first patient with Tay-Sachs disease in the Cypriot population, a juvenile case which presented with developmental regression at the age of five. The diagnosis was confirmed by measurement of HEXA activity in plasma, peripheral leucocytes and fibroblasts. Sequencing the HEXA gene resulted in the identification of two previously described mutations: the nonsense mutation c.78G>A (p.Trp26X) and the silent mutation c.1305C>T (p.=). The silent mutation was reported once before in a juvenile TSD patient of West Indian origin with an unusually mild phenotype. The presence of this mutation in another juvenile TSD patient provides further evidence that it is a disease-causing mutation. Successful preimplantation genetic diagnosis (PGD) and prenatal follow-up were provided to the couple.

  8. Chronic pancreatitis: diagnosis, classification, and new genetic developments.

    Science.gov (United States)

    Etemad, B; Whitcomb, D C

    2001-02-01

    The utilization of recent advances in molecular and genomic technologies and progress in pancreatic imaging techniques provided remarkable insight into genetic, environmental, immunologic, and pathobiological factors leading to chronic pancreatitis. Translation of these advances into clinical practice demands a reassessment of current approaches to diagnosis, classification, and staging. We conclude that an adequate pancreatic biopsy must be the gold standard against which all diagnostic approaches are judged. Although computed tomography remains the initial test of choice for the diagnosis of chronic pancreatitis, the roles of endoscopic retrograde pancreatography, endoscopic ultrasonography, and magnetic resonance imaging are considered. Once chronic pancreatitis is diagnosed, proper classification becomes important. Major predisposing risk factors to chronic pancreatitis may be categorized as either (1) toxic-metabolic, (2) idiopathic, (3) genetic, (4) autoimmune, (5) recurrent and severe acute pancreatitis, or (6) obstructive (TIGAR-O system). After classification, staging of pancreatic function, injury, and fibrosis becomes the next major concern. Further research is needed to determine the clinical and natural history of chronic pancreatitis developing in the context of various risk factors. New methods are needed for early diagnosis of chronic pancreatitis, and new therapies are needed to determine whether interventions will delay or prevent the progression of the irreversible damage characterizing end-stage chronic pancreatitis.

  9. Closely linked polymorphic marker: successful application in preimplantation genetic diagnosis for beta-thalassemia%紧密连锁的多态性位点在β地中海贫血植入前遗传学诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    邓捷; 庄广伦; 彭文林; 周灿权; 李洁; 方丛; 李穗萍; 陈勇; 童大跃

    2005-01-01

    目的探讨与β珠蛋白基因紧密连锁的多态性位点 HumTH01在β地中海贫血(β地贫)植入前遗传学诊断(preimplantation genetic diagnosis,PGD)中的作用.方法对4例已出生重型β地贫患儿的、双方均为β地贫基因携带者的夫妇进行了6个周期的PGD治疗,应用多重巢式PCR同时检测β珠蛋白基因及 HumTH01基因,选择健康的胚胎移植入子宫.结果 6个周期共活检44个胚胎,获得44个卵裂球,其中41个卵裂球扩增成功,35个胚胎经PCR分析后获得明确诊断,移植了14个胚胎,获得1例临床妊娠.孕17周时经脐带血穿刺,证实为完全正常胚胎,现已出生一正常女婴.单个卵裂球平均扩增效率为89.7%,等位基因脱扣(allele drop-out, ADO)率为14.4%. HumTH01基因可以帮助检测出ADO及污染的发生.结论本研究为国内首次报道应用多重巢式PCR同时检测β珠蛋白基因及 HumTH01基因对β地贫进行植入前遗传学诊断并成功获得临床妊娠.在PGD中同时检测与β珠蛋白基因紧密连锁的多态性位点可以降低PGD中由于ADO及污染造成的误诊的风险.%Objective To evaluate the applicability of the polymorphic marker closely linked with beta-globin gene for the preimplantati on genetic diagnosis (PGD) in couples at risk of having child with beta-thalassemia. Methods Single cell multiplex nested PCR which coamplifies the beta-globin gene and the closely linked polymorphic marker, HumTHO1 gene, was applied in six clinical PGD cycles for four couples with beta-thalassemia. Results In six clinical PGD cycles, a total of 44 embryos were biopsied and 44 blastomeres were obtained. Forty-one blastomeres were amplified and thirty-five embryos were given definite diagnoses. Fourteen embryos were transferred back to the uterus of the patients and one pregnancy went on well and ended with one live healthy birth, which confirmed the results of PGD. The average amplification efficiency of single blastomere was 89.7% and

  10. Genetic testing facilitates prepubertal diagnosis of congenital hypogonadotropic hypogonadism.

    Science.gov (United States)

    Xu, C; Lang-Muritano, M; Phan-Hug, F; Dwyer, A A; Sykiotis, G P; Cassatella, D; Acierno, J; Mohammadi, M; Pitteloud, N

    2017-08-01

    Neonatal micropenis and cryptorchidism raise the suspicion of congenital hypogonadotropic hypogonadism (CHH), a rare genetic disorder caused by gonadotropin-releasing hormone deficiency. Low plasma testosterone levels and low gonadotropins during minipuberty provide a clinical diagnostic clue, yet these tests are seldomly performed in general practice. We report a male neonate with no family history of reproductive disorders who was born with micropenis and cryptorchidism. Hormonal testing at age 2.5 months showed low testosterone (0.3 nmol/L) and undetectable gonadotropins (luteinizing hormone and follicle-stimulating hormone both <0.5 U/L), suggestive of CHH. Genetic testing identified a de novo, heterozygous mutation in fibroblast growth factor receptor 1 (FGFR1 p.L630P). L630 resides on the ATP binding cleft of the FGFR1 tyrosine kinase domain, and L630P is predicted to cause a complete loss of receptor function. Cell-based assays confirmed that L630P abolishes FGF8 signaling activity. Identification of a loss-of-function de novo FGFR1 mutation in this patient confirms the diagnosis of CHH, allowing for a timely hormonal treatment to induce pubertal development. Therefore, genetic testing can complement clinical and hormonal assessment for a timely diagnosis of CHH in childhood. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Rare genetic diseases: update on diagnosis, treatment and online resources.

    Science.gov (United States)

    Pogue, Robert E; Cavalcanti, Denise P; Shanker, Shreya; Andrade, Rosangela V; Aguiar, Lana R; de Carvalho, Juliana L; Costa, Fabrício F

    2018-01-01

    Rare genetic diseases collectively impact a significant portion of the world's population. For many diseases there is limited information available, and clinicians can find difficulty in differentiating between clinically similar conditions. This leads to problems in genetic counseling and patient treatment. The biomedical market is affected because pharmaceutical and biotechnology industries do not see advantages in addressing rare disease treatments, or because the cost of the treatments is too high. By contrast, technological advances including DNA sequencing and analysis, together with computer-aided tools and online resources, are allowing a more thorough understanding of rare disorders. Here, we discuss how the collection of various types of information together with the use of new technologies is facilitating diagnosis and, consequently, treatment of rare diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. PGD-based modeling of materials, structures and processes

    CERN Document Server

    Chinesta, Francisco

    2014-01-01

    This book focuses on the development of a new simulation paradigm allowing for the solution of models that up to now have never been resolved and which result in spectacular CPU time savings (in the order of millions) that, combined with supercomputing, could revolutionize future ICT (information and communication technologies) at the heart of science and technology. The authors have recently proposed a new paradigm for simulation-based engineering sciences called Proper Generalized Decomposition, PGD, which has proved a tremendous potential in many aspects of forming process simulation. In this book a review of the basics of the technique is made, together with different examples of application.

  13. ESHRE PGD Consortium data collection XIV-XV: cycles from January 2011 to December 2012 with pregnancy follow-up to October 2013.

    Science.gov (United States)

    De Rycke, M; Goossens, V; Kokkali, G; Meijer-Hoogeveen, M; Coonen, E; Moutou, C

    2017-10-01

    How does the data collection XIV-XV of the European Society of Human Reproduction and Embryology (ESHRE) PGD Consortium compare with the cumulative data for data collections I-XIII? The 14th and 15th retrospective collection represents valuable data on PGD/PGS cycles, pregnancies and children: the main trend observed is the increased application of array technology at the cost of FISH testing in PGS cycles and in PGD cycles for chromosomal abnormalities. Since 1999, the PGD Consortium has collected, analysed and published 13 previous data sets and an overview of the first 10 years of data collections. Data were collected from each participating centre using a FileMaker Pro database (versions 5-12). Separate predesigned FileMaker Pro files were used for the cycles, pregnancies and baby records. The study documented cycles performed during the calendar years 2011 and 2012 and follow-up of the pregnancies and babies born which resulted from these cycles (until October 2013). Data were submitted by 71 centres (full PGD Consortium members). Records with incomplete or inconsistent data were excluded from the calculations. Corrections, calculations and tables were made by expert co-authors. For data collection XIV-XV, 71 centres reported data for 11 637 cycles with oocyte retrieval (OR), along with details of the follow-up on 2147 pregnancies and 1755 babies born. A total of 1953 cycles to OR were reported for chromosomal abnormalities, 144 cycles to OR for sexing for X-linked diseases, 3445 cycles to OR for monogenic diseases, 6095 cycles to OR for PGS and 38 cycles to OR for social sexing. From 2010 until 2012, the use of arrays for genetic testing increased from 4% to 20% in PGS and from 6% to 13% in PGD cycles for chromosomal abnormalities; the uptake of biopsy at the blastocyst stage (from cycles for structural chromosomal abnormalities, alongside the application of array comparative genomic hybridization. The findings apply to the 71 participating centres and may

  14. The value of blastocyst culture on preimplantation genetic diagnosis%囊胚培养在植入前遗传学诊断中的价值

    Institute of Scientific and Technical Information of China (English)

    偶健; 王玮; 马燕琳; 周知; 丁洁; 王馥新; 段程颖; 李林江; 郑爱燕

    2015-01-01

    Objective To estimate the value of blastocyst culture for preimplantation genetic diagnosis (PGD).Methods Day 3 embryos were biopsied and analyzed with fluorescence in situ hybridization (FISH) technique.Embryos with normal FISH results were cultured into blastocysts,and the ones with better morphology scores were transferred.Fourteen embryos with abnormal FISH results were cultured into blastocysts.Part of the cells taken from the blastocysts were amplified by whole genomic amplification (WGA) and assessed by array-based comparative genomic hybridization (array-CGH) analysis.Results Six blastocysts with normal FISH results were transferred in 5 cycles.Four healthy babies of 3 cycles were delivered.Another one was a singleton pregnancy but with embryo growth arrest,whose villus karyotype was normal.Fourteen embryos with abnormal FISH results were cultured into blastocysts and analyzed by array-CGH.Six blastocysts were normal by array-CGH.Conclusion FISH combined with blastocyst culture may further ensure the accuracy of PGD result.Detection at the blastocyst stage can avoid false positive results and mosaic interferences on Day 3 stage and are therefore more authentic.%目的 探讨囊胚培养在植入前遗传学诊断(preimplantation genetic diagnosis,PGD)中的应用价值.方法 受精后第3天(Day 3)行胚胎活检,进行荧光原位杂交(fluorescent in situ hybridization,FISH).对于诊断为正常的胚胎,培养到囊胚阶段后选择形态评分优良的囊胚进行移植;对于诊断为异常的胚胎,有14个培养到囊胚阶段,各取其一部分细胞用于全基因组扩增(whole genomic amplification,WGA),将扩增后的DNA用微阵列比较基因组杂交(array-based comparative genomic hybridization,arrayCGH)进行再次检测.结果 FISH诊断为正常的6个囊胚进行了5个周期的胚胎移植,3个周期成功生育了4个健康婴儿,1个周期单胎妊娠见胚囊后流产,绒毛染色体检测为正常核型.FISH诊断为异常的14

  15. PRENATAL DIAGNOSIS AND SCREENING OF GENETIC ABNORMALITIES IN EARLY PREGNANCY

    Directory of Open Access Journals (Sweden)

    Jyothi Kiran Kohli

    2016-11-01

    Full Text Available BACKGROUND Genetic diseases are one of the major causes of hospital admissions due to disability and mortality particularly among children (1:5 children of hospital admission either partially/completely as distribution of genetic diseases is not related to socioeconomic background, which implies that developing world has a large number of genetic diseases largely left uncared for, i.e. overall incidence of foetal/neonatal loss due to genetic/genetic environmental causes are as follows: 1:50 newborns have major congenital abnormality, 1:100 have a unifactorial disorder, 1:200 have a major chromosomal abnormality before birth. Diagnosis of chromosomal anomalies in foetus is one of the most important challenges in modern perinatology as invasive or noninvasive methods. The aim of the study is to review on cytogenetic evaluation of CVS obtained (transcervically during first trimester of pregnancy by direct karyotyping of tissue. MATERIALS AND METHODS This study was conducted in 2001 in Department of Anatomy along with Obstetrics and Gynaecology Department, LNJP Hospital. 37 healthy cases with 6-12 weeks of gestational age coming for medical termination of pregnancy were included in the study. After written informed consent for procedure, ultrasound-guided transcervical chorionic villus sampling was done (Brambati’s method. Tissue procured was then processed for direct karyotyping and studied. Metaphase spreads were photographed and karyotypes prepared and studied. RESULTS Out of 37 pregnant females, 30 samples were successfully prepared and processed by Direct method out of which 23 were normal female (46, XX and 7 were normal male (46, XY. No normal anomaly was detected. Best biopsies were obtained with 8-12 weeks gestation. G Banding could not be performed as chromosome obtained were found to be resistant to banding. CONCLUSIONS To summarise chromosome preparations obtained from CVS by Direct method has advantage of providing sufficient number

  16. Chromosome translocations: the dynamics of embryos preimplantation genetic diagnosis%染色体易位-胚胎植入前诊断的研究进展

    Institute of Scientific and Technical Information of China (English)

    范俊梅; Cram David; 刘忠宇; 李娜; 姚元庆

    2015-01-01

    染色体易位携带者有较高的发生不良妊娠结局的风险,主要源自高概率的非均衡配子.对于染色体易位的携带者,进行胚胎植入前遗传学诊断(preimplantation genetic diagnosis,PGD)可以改善妊娠结局.目前,临床应用的非平衡易位诊断的方法主要有比较基因组杂交微阵列(comparative genomic hybridization array,array CGH)、单核苷酸多态性微阵列(single nucleotide polymorphism array,SNP array)和二代测序(next generation sequencing,NGS);荧光原位杂交(fluorescence in situ hybridization,FISH),能够区分平衡易位和正常胚胎,可能实现的技术有NGS.此外,平衡易位的诊断是否有必要开展尚存在争议.

  17. Number of blastocysts biopsied as a predictive indicator to obtain at least one normal/balanced embryo following preimplantation genetic diagnosis with single nucleotide polymorphism microarray in translocation cases.

    Science.gov (United States)

    Wang, Yi-Zi; Ding, Chen-Hui; Wang, Jing; Zeng, Yan-Hong; Zhou, Wen; Li, Rong; Zhou, Can-Quan; Deng, Ming-Fen; Xu, Yan-Wen

    2017-01-01

    The aim of this study is to investigate the minimum number of blastocysts for biopsy to increase the likelihood of obtaining at least one normal/balanced embryo in preimplantation genetic diagnosis (PGD) for translocation carriers. This blinded retrospective study included 55 PGD cycles for Robertsonian translocation (RT) and 181 cycles for reciprocal translocation (rcp) to indicate when only one of the couples carried a translocation. Single-nucleotide polymorphism microarray after trophectoderm biopsy was performed. Reliable results were obtained for 355/379 (93.7 %) biopsied blastocysts in RT group and 986/1053 (93.6 %) in rcp group. Mean numbers of biopsied embryos per patient, normal/balanced embryos per patient, and mean normal/balanced embryo rate per patient were 7.4, 3.1, and 40.7 % in RT group and 8.0, 2.1, and 27.3 %, respectively, in rcp group. In a regression model, three factors significantly affected the number of genetically transferrable embryos: number of biopsied embryos (P = 0.001), basal FSH level (P = 0.040), and maternal age (P = 0.027). ROC analysis with a cutoff of 1.5 was calculated for the number of biopsied embryos required to obtain at least one normal/balanced embryo for RT carriers. For rcp carriers, the cutoff was 3.5. The clinical pregnancy rate per embryo transfer was 44.2 and 42.6 % in RT and rcp groups (P = 0.836). The minimum numbers of blastocysts to obtain at least one normal/balanced embryo for RT and rcp were 2 and 4 under the conditions of female age < 37 years with a basal FSH level < 11.4 IU/L.

  18. 植入前遗传学诊断/筛查技术指征进展%Advances in indications of preimplantation genetic diagnosis/screening

    Institute of Scientific and Technical Information of China (English)

    雷彩霞; 张月萍; 孙晓溪

    2017-01-01

    植入前遗传学诊断/筛查(PGD/PGS)技术发展多年,其指征始终存在争议.PGD指征较为明确,单基因遗传病、染色体异常人群、人类白细胞抗原(HLA)配型为其适用人群.PGS的指征争议较多,主要面向反复流产、反复植入失败、高龄人群,目的是提高妊娠率及活产率.然而第一代PGS技术[PGS#1,卵裂球活检及荧光原位杂交(FISH)-PGS]技术未显示明显效果,甚至降低了妊娠率及活产率.第二代PGS技术(PGS2.0)增加了严重男性因素不育为指征,其核心为囊胚活检及全染色体筛查(CCS),对上述人群的临床效果较为明显,降低了流产风险并提高了成功率及活产率.PGS2.0已极大地改变了辅助生殖技术(ART)面貌,可能成为未来生殖中心对所有患者的一个常规项目.目前仍然需要多中心前瞻性随机病例对照研究重新评估PGS.%Controversies in indications of preimplantation genetic diagnosis (PGD)/preimplantation genetic screening (PGS) are developing with the rapid improvement of the technology for years.PGD is clearly indicated for monogenetic diseases,chromosome abnormalities and HLA typing,while PGS is ambiguous in indications,with the purpose to improve fertility rate and take-home baby rate for patients suffered from recurrent spontaneous abortion (RSA),recurrent implantation failure and advanced maternal age.However,the first generation PGS technology [PGS#1,biopsy of blastomere plus fluorescent in situ hybridization (FISH)-PGS] has failed to provide promising clinical effect,and to the contrary decreased the fertility and take-home baby rate.The second generation PGS technology (PGS2.0),which is focused on biopsy ofblastocyst plus comprehensive chromosome screening (CCS) and adds severe male infertility factor as an indicator,has shown promising clinical effect of decreased abortion rate and increased fertility and take-home baby rate.PGS2.0 has dramatically changed features of assisted reproductive

  19. The importance of genetics in the diagnosis of animal diseases - A ...

    African Journals Online (AJOL)

    The use of recombinant DNA techniques in conjunction with conventional genetic methods have led to a rapid increase in knowledge of the genetic map. Many animal genes have been mapped to chromosomes. A detailed genetic map has become of great value in the diagnosis of genetic diseases and in the development ...

  20. Discussing options between patients and health care professionals in genetic diagnosis: ethical and legal criteria

    Directory of Open Access Journals (Sweden)

    Nicolás Pilar

    2007-09-01

    Full Text Available Abstract The specific characteristics of genetic data lead to ethical-legal conflicts in the framework of genetic diagnosis. Several international organisations, including UNESCO and the Council of Europe, have enacted rules referring to the use of genetic information. This paper discusses possible legal and ethical criteria that could be used in genetic testing.

  1. Genetic diagnosis of Mendelian disorders via RNA sequencing.

    Science.gov (United States)

    Kremer, Laura S; Bader, Daniel M; Mertes, Christian; Kopajtich, Robert; Pichler, Garwin; Iuso, Arcangela; Haack, Tobias B; Graf, Elisabeth; Schwarzmayr, Thomas; Terrile, Caterina; Koňaříková, Eliška; Repp, Birgit; Kastenmüller, Gabi; Adamski, Jerzy; Lichtner, Peter; Leonhardt, Christoph; Funalot, Benoit; Donati, Alice; Tiranti, Valeria; Lombes, Anne; Jardel, Claude; Gläser, Dieter; Taylor, Robert W; Ghezzi, Daniele; Mayr, Johannes A; Rötig, Agnes; Freisinger, Peter; Distelmaier, Felix; Strom, Tim M; Meitinger, Thomas; Gagneur, Julien; Prokisch, Holger

    2017-06-12

    Across a variety of Mendelian disorders, ∼50-75% of patients do not receive a genetic diagnosis by exome sequencing indicating disease-causing variants in non-coding regions. Although genome sequencing in principle reveals all genetic variants, their sizeable number and poorer annotation make prioritization challenging. Here, we demonstrate the power of transcriptome sequencing to molecularly diagnose 10% (5 of 48) of mitochondriopathy patients and identify candidate genes for the remainder. We find a median of one aberrantly expressed gene, five aberrant splicing events and six mono-allelically expressed rare variants in patient-derived fibroblasts and establish disease-causing roles for each kind. Private exons often arise from cryptic splice sites providing an important clue for variant prioritization. One such event is found in the complex I assembly factor TIMMDC1 establishing a novel disease-associated gene. In conclusion, our study expands the diagnostic tools for detecting non-exonic variants and provides examples of intronic loss-of-function variants with pathological relevance.

  2. Preimplantation genetic diagnosis: an ambiguous legal status for an ambiguous medical and social practice.

    Science.gov (United States)

    Byk, Christian

    2008-09-01

    The controversy about to which extend PGD may be applies is particularly interesting because it stresses on a paradoxical point concerning PGD. Although this technique is strictly regulated in most European countries where it is regularly practised, the legal status of PGD may appear to some as unethical because it may be viewed as a facilitator for those who would like to select children for reason other than medical. The need to test human embryos before birth and the consequences that may occur to those detected with some abnormalities also revives the issue of the respect due to the human embryo.

  3. 外周血性染色体异常患者精子染色体分析及植入前遗传学诊断%Sperm sex chromosome analysis and preimplantation genetic diagnosis of patients with sex chromosome anomalies

    Institute of Scientific and Technical Information of China (English)

    徐艳文; 任秀莲; 周灿权; 李穗萍; 刘颖; 张敏芳; 庄广伦

    2006-01-01

    目的 探讨外周血性染色体异常患者的精子染色体组成,评估其胚胎性染色体异常的风险,为胚胎植入前遗传学诊断(preimplantation genetic diagnosis,PGD)的应用提供客观依据.方法 应用三色荧光原位杂交技术(fluorescence in situ hybridization,FISH)对3例性染色体异常的患者(例1为46,XY/47,XXY,例2为45,XO/46,X,Yqh-,例3为47,XYY)进行精子X、Y和18号染色体分析,并对例2进行PGD.结果 例2的X18:Y18精子的比例为2.05:1,总异常精子比例达29.71%,其中XY18、O18和XO均明显高于其它组.例3总异常精子比例占4.91%,XY18占1.87%.对例2进行PGD,移植1个XX1818胚胎.结论 通过FISH检测性染色体异常患者的精子,有助于评估其胚胎性染色体异常的风险,从而选择性应用胚胎植入前遗传学诊断.

  4. Accumulation of oocytes and/or embryos by vitrification: a new strategy for managing poor responder patients undergoing pre implantation diagnosis [v2; ref status: indexed, http://f1000r.es/321

    Directory of Open Access Journals (Sweden)

    Alexia Chatziparasidou

    2014-03-01

    Full Text Available Background: Low (or poor responder patients are women who require large doses of stimulation medications and produce less than an optimal number of oocytes during IVF cycles. Low responder patients produce few oocytes and embryos, which significantly reduces their chances for success in a preimplantation genetic diagnosis (PGD cycle. Accumulation of vitrified oocytes or embryos before the actual PGD cycle is a possible strategy that might increase patient’s chances for a healthy pregnancy. Aim of the study: This retrospective study evaluates the efficacy of a PGD program in low responder patients after repeated ovarian stimulation cycles with cumulative vitrification of oocytes and embryos. Methods: Over a period of 30 months, 13 patients entering the PGD program were identified as poor responders after their first ovarian stimulation. These patients started a PGD cycle for one of the following indications: history of recurrent implantation failure (n=1, cystic fibrosis (n=1, X-linked microtubular myopathy (n=1, recurrent miscarriages (n=5, Duchene muscular dystrophy (n=1, chromosomal translocation (n=1 and high sperm aneuploidy (n=1.  After multiple ovarian hormonal stimulations patients had either all mature oocytes (Group A; 3 patients or all of their day 2 embryos vitrified (group B; 10 patients. Mean total number of oocyte collections per patient was 2.3 (range: 2 - 5 cycles. Results: In the actual PGD cycle, all vitrified oocytes from group A patients were warmed and underwent intra cytoplasmic sperm injection (ICSI followed by culture up to day 3. For group B patients all vitrified day 2 embryos were warmed and cultured overnight. On day 3 of culture, all embryos from Group A and B had blastomere biopsy followed by genetic analysis. In group A, 20 embryos were found suitable for biopsy and genetic analysis; at least one healthy embryo was available for transfer for each patient.  For group B, 72 embryos in total were available for

  5. From brute luck to option luck? On genetics, justice, and moral responsibility in reproduction.

    Science.gov (United States)

    Denier, Yvonne

    2010-04-01

    The structure of our ethical experience depends, crucially, on a fundamental distinction between what we are responsible for doing or deciding and what is given to us. As such, the boundary between chance and choice is the spine of our conventional morality, and any serious shift in that boundary is thoroughly dislocating. Against this background, I analyze the way in which techniques of prenatal genetic diagnosis (PGD) pose such a fundamental challenge to our conventional ideas of justice and moral responsibility. After a short description of the situation, I first examine the influential luck egalitarian theory of justice, which is based on the distinction between choice and luck or, more specifically, between option luck and brute luck, and the way in which it would approach PGD (section II), followed by an analysis of the conceptual incoherencies (in section III) and moral problems (in section IV) that come with such an approach. Put shortly, the case of PGD shows that the luck egalitarian approach fails to express equal respect for the individual choices of people. The paradox of the matter is that by overemphasizing the fact of choice as such, without regard for the social framework in which they are being made, or for the fundamental and existential nature of particular choices-like choosing to have children and not to undergo PGD or not to abort a handicapped fetus-such choices actually become impossible.

  6. Research on fault diagnosis of nuclear power plants based on genetic algorithms and fuzzy logic

    International Nuclear Information System (INIS)

    Zhou Yangping; Zhao Bingquan

    2001-01-01

    Based on genetic algorithms and fuzzy logic and using expert knowledge, mini-knowledge tree model and standard signals from simulator, a new fuzzy-genetic method is developed to fault diagnosis in nuclear power plants. A new replacement method of genetic algorithms is adopted. Fuzzy logic is used to calculate the fitness of the strings in genetic algorithms. Experiments on the simulator show it can deal with the uncertainty and the fuzzy factor

  7. Diagnosis of Lynch Syndrome: Genetic Testing Identifies a Potentially Deadly Hereditary Disease

    Science.gov (United States)

    ... of Lynch Syndrome Follow us A Diagnosis of Lynch Syndrome Genetic testing identifies a potentially deadly hereditary disease ... helped Jack learn what was wrong. Jack had Lynch Syndrome—an inherited disorder. Lynch Syndrome increases the risk ...

  8. The importance of genetics in the diagnosis of animal diseases - A ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-01-25

    Jan 25, 2010 ... Veterinary and genetic research has been successfully used in diagnosis and ... pathogen sequencing programmes in which scientists are ..... Selectively nonselective drugs for mood disorders and schizophrenia. Nature Rev ...

  9. 下一代测序技术在胚胎植入前遗传学检测中的应用%Application of the next generation sequencing technology in preimplantation genetic detection

    Institute of Scientific and Technical Information of China (English)

    谢美娟; 杨学习; 李明

    2017-01-01

    以下一代测序技术(next-generation sequencing,NGS)为代表的基因组学技术的迅猛发展给全面深度的染色体筛查和基因诊断提供了机会.NGS也迅速应用于胚胎植入前遗传学诊断(preimplantation genetic diagnosis,PGD)和胚胎植入前遗传学筛查(preimplantation genetic screening,PGS)临床检测中,成为常规检测技术,经济与可靠使其具有更广阔的应用前景.单细胞全基因组扩增(whole genome amplification,WGA)技术的进步使得NGS在PGD和PGS的临床应用中能够更加全面了解植入前胚胎的遗传学信息,可以检测到更加细微的差异;基于NGS技术的PGS和PGD将给移植成功率和试管婴儿(in-vitro fertilization,IVF)出生率带来明显提升.本文主要介绍PGD/PGS的定义、传统的PGD/PGS检测技术,单细胞全基因组扩增技术以及NGS在PGD/PGS中的应用.

  10. Niacin and biosynthesis of PGD2 by platelet COX-1 in mice and humans

    Science.gov (United States)

    Song, Wen-Liang; Stubbe, Jane; Ricciotti, Emanuela; Alamuddin, Naji; Ibrahim, Salam; Crichton, Irene; Prempeh, Maxwell; Lawson, John A.; Wilensky, Robert L.; Rasmussen, Lars Melholt; Puré, Ellen; FitzGerald, Garret A.

    2012-01-01

    The clinical use of niacin to treat dyslipidemic conditions is limited by noxious side effects, most commonly facial flushing. In mice, niacin-induced flushing results from COX-1–dependent formation of PGD2 and PGE2 followed by COX-2–dependent production of PGE2. Consistent with this, niacin-induced flushing in humans is attenuated when niacin is combined with an antagonist of the PGD2 receptor DP1. NSAID-mediated suppression of COX-2–derived PGI2 has negative cardiovascular consequences, yet little is known about the cardiovascular biology of PGD2. Here, we show that PGD2 biosynthesis is augmented during platelet activation in humans and, although vascular expression of DP1 is conserved between humans and mice, platelet DP1 is not present in mice. Despite this, DP1 deletion in mice augmented aneurysm formation and the hypertensive response to Ang II and accelerated atherogenesis and thrombogenesis. Furthermore, COX inhibitors in humans, as well as platelet depletion, COX-1 knockdown, and COX-2 deletion in mice, revealed that niacin evoked platelet COX-1–derived PGD2 biosynthesis. Finally, ADP-induced spreading on fibrinogen was augmented by niacin in washed human platelets, coincident with increased thromboxane (Tx) formation. However, in platelet-rich plasma, where formation of both Tx and PGD2 was increased, spreading was not as pronounced and was inhibited by DP1 activation. Thus, PGD2, like PGI2, may function as a homeostatic response to thrombogenic and hypertensive stimuli and may have particular relevance as a constraint on platelets during niacin therapy. PMID:22406532

  11. Sperm chromosome analysis and preimplantation genetic diagnosis in an infertile male with mosaic trisomy 18%一例嵌合型18三体少精子症患者精染色体分析及植入前遗传学诊断

    Institute of Scientific and Technical Information of China (English)

    罗玉琴; 钱羽力; 朱瑞建; 叶英辉; 朱宇宁; 金帆

    2010-01-01

    Objective To analyze the numerical aberration rate of X, Y and chromosome 18 in sperms from an oligozoospermic male with mosaic trisomy 18 and to perform preimplantation genetic diagnosis (PGD) for the couple. Methods G-banding and fluorescence in situ hybridization (FISH) were performed on metaphase chromosome. Sperm was analyzed in three-color FISH with a probe mixture containing CEP18, CEPY and Tel Xq/Yq. A healthy man with normal semen parameters was used as control. Results Significant difference in the rates of disomy for chromosome 18 (0. 63% vs. 0. 16%) and the gonosomes (0. 94% vs. 0. 35%) and diploidy (0. 87% vs. 0. 31%) was found in the spermatozoa between the patient and the control. After four embryos were biopsied in one PGD cycle, two embryos with XY1818 and XX1818 were selected for implanting and clinical pregnancy was ongoing. Conclusion SpermFISH allows further understanding of aneuploidy rate and accurate genetic counseling. FISH-PGD was effective for patient with mosaic trisomy 18.%目的 分析1例嵌合型18三体少精子患者精子18、X、Y染色体数目畸变并进行植入前遗传学诊断(preimplantation genetic djagnosis,PGD).方法 采用G带及荧光原位杂交(fluorescence in situ hybridjzation,FISH)对中期分裂相进行分析,应用三色探针CEP18、CEPY、Tel Xq/Yq对患者精子进行FISH分析,同时以1名染色体正常男性的正常精液作为对照,并对嵌合型18三体患者进行PGD.结果 患者精子18二体率、性染色体二体率和二倍体率分别为0.63%、0.94%和0.87%,与对照组相比(0.16%、0.35%、0.31%)差异有统计学意义.患者进行1个PGD周期的治疗、活检4个胚胎,移植正常的XY1818、XX1818各1胚胎后获得临床妊娠.结论 精子FISH分析可为其提供更准确的遗传咨询及指导植入前遗传学诊断,FISH-PGD可有效地应用于嵌合型18三体的植入前遗传学诊断.

  12. Differential diagnosis of genetic disease by DNA restriction fragment length polymorphisms

    NARCIS (Netherlands)

    Bolhuis, P. A.; Defesche, J. C.; van der Helm, H. J.

    1987-01-01

    DNA restriction fragment length polymorphisms (RFLPs) are used for diagnosis of genetic disease in families known to be affected by specific disorders, but RFLPs can be also useful for the differential diagnosis of hereditary disease. An RFLP pattern represents the inheritance of chromosomal markers

  13. PGD2 induces eotaxin-3 via PPARγ from sebocytes: a possible pathogenesis of eosinophilic pustular folliculitis.

    Science.gov (United States)

    Nakahigashi, Kyoko; Doi, Hiromi; Otsuka, Atsushi; Hirabayashi, Tetsuya; Murakami, Makoto; Urade, Yoshihiro; Zouboulis, Christos C; Tanizaki, Hideaki; Egawa, Gyohei; Miyachi, Yoshiki; Kabashima, Kenji

    2012-02-01

    Eosinophilic pustular folliculitis (EPF) is a chronic intractable pruritic dermatosis characterized by massive eosinophil infiltrates involving the pilosebaceous units. Recently, EPF has been regarded as an important clinical marker of HIV infection, and its prevalence is increasing in number. The precise mechanism by which eosinophils infiltrate into the pilosebaceous units remains largely unknown. Given that indomethacin, a COX inhibitor, can be successfully used to treat patients with EPF, we can assume that COX metabolites such as prostaglandins (PGs) are involved in the etiology of EPF. To determine the involvement of PGs in the pathogenesis of EPF. We performed immunostaining for PG synthases in EPF skin lesions. We examined the effect of PGD(2) on induction of eotaxin, a chemoattractant for eosinophils, in human keratinocytes, fibroblasts, and sebocytes and sought to identify its responsible receptor. Hematopoietic PGD synthase was detected mainly in infiltrating inflammatory cells in EPF lesions, implying that PGD(2) was produced in the lesions. In addition, PGD(2) and its immediate metabolite 15-deoxy-Δ 12,14-PGJ(2) (15d-PGJ(2)) induced sebocytes to produce eotaxin-3 via peroxisome proliferator-activated receptor gamma. Consistent with the above findings, eotaxin-3 expression was immunohistochemically intensified in sebaceous glands of the EPF lesions. The PGD(2)/PGJ(2)-peroxisome proliferator-activated receptor gamma pathway induces eotaxin production from sebocytes, which may explain the massive eosinophil infiltrates observed around pilosebaceous units in EPF. Copyright © 2011 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  14. Genetic and epigenetic risks of assisted reproduction.

    Science.gov (United States)

    Jiang, Ziru; Wang, Yinyu; Lin, Jing; Xu, Jingjing; Ding, Guolian; Huang, Hefeng

    2017-10-01

    Assisted reproductive technology (ART) is used primarily for infertility treatments to achieve pregnancy and involves procedures such as in vitro fertilization (IVF), intracytoplasmic sperm injection (ICSI), and cryopreservation. Moreover, preimplantation genetic diagnosis (PGD) of ART is used in couples for genetic reasons. In ART treatments, gametes and zygotes are exposed to a series of non-physiological processes and culture media. Although the majority of children born with this treatment are healthy, some concerns remain regarding the safety of this technology. Animal studies and follow-up studies of ART-borne children suggested that ART was associated with an increased incidence of genetic, physical, or developmental abnormalities, although there are also observations that contradict these findings. As IVF, ICSI, frozen-thawed embryo transfer, and PGD manipulate gametes and embryo at a time that is important for reprogramming, they may affect epigenetic stability, leading to gamete/embryo origins of adult diseases. In fact, ART offspring have been reported to have an increased risk of gamete/embryo origins of adult diseases, such as early-onset diabetes, cardiovascular disease, and so on. In this review, we will discuss evidence related to genetic, especially epigenetic, risks of assisted reproduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A case report of Fanconi anemia diagnosed by genetic testing followed by prenatal diagnosis.

    Science.gov (United States)

    Lee, Hwa Jeen; Park, Seungman; Kang, Hyoung Jin; Jun, Jong Kwan; Lee, Jung Ae; Lee, Dong Soon; Park, Sung Sup; Seong, Moon-Woo

    2012-09-01

    Fanconi anemia (FA) is a rare genetic disorder affecting multiple body systems. Genetic testing, including prenatal testing, is a prerequisite for the diagnosis of many clinical conditions. However, genetic testing is complicated for FA because there are often many genes that are associated with its development, and large deletions, duplications, or sequence variations are frequently found in some of these genes. This study describes successful genetic testing for molecular diagnosis, and subsequent prenatal diagnosis, of FA in a patient and his family in Korea. We analyzed all exons and flanking regions of the FANCA, FANCC, and FANCG genes for mutation identification and subsequent prenatal diagnosis. Multiplex ligation-dependent probe amplification analysis was performed to detect large deletions or duplications in the FANCA gene. Molecular analysis revealed two mutations in the FANCA gene: a frameshift mutation c.2546delC and a novel splice-site mutation c.3627-1G>A. The FANCA mutations were separately inherited from each parent, c.2546delC was derived from the father, whereas c.3627-1G>A originated from the mother. The amniotic fluid cells were c.3627-1G>A heterozygotes, suggesting that the fetus was unaffected. This is the first report of genetic testing that was successfully applied to molecular diagnosis of a patient and subsequent prenatal diagnosis of FA in a family in Korea.

  16. The latest development in preimplantation genetic diagnosis%植入前遗传学诊断技术研究的新进展

    Institute of Scientific and Technical Information of China (English)

    徐艳文; 庄广伦

    2004-01-01

    近二十余年来人类对自身生殖过程的认识有了巨大的进步。而同期发展起来的辅助生殖技术与分子遗传学技术的有机结合,使人们能够在种植之前的早期胚胎中取出部分细胞检测疾病,从而筛选出正常胚胎进行宫腔内移植,即植入前遗传学诊断(preimplantation genetic diagllosis,PGD)。

  17. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    Science.gov (United States)

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  18. Clinical application of antenatal genetic diagnosis of osteogenesis imperfecta type IV.

    Science.gov (United States)

    Yuan, Jing; Li, Song; Xu, YeYe; Cong, Lin

    2015-04-02

    Clinical analysis and genetic testing of a family with osteogenesis imperfecta type IV were conducted, aiming to discuss antenatal genetic diagnosis of osteogenesis imperfecta type IV. Preliminary genotyping was performed based on clinical characteristics of the family members and then high-throughput sequencing was applied to rapidly and accurately detect the changes in candidate genes. Genetic testing of the III5 fetus and other family members revealed missense mutation in c.2746G>A, pGly916Arg in COL1A2 gene coding region and missense and synonymous mutation in COL1A1 gene coding region. Application of antenatal genetic diagnosis provides fast and accurate genetic counseling and eugenics suggestions for patients with osteogenesis imperfecta type IV and their families.

  19. Genetic diagnosis of a Chinese multiple endocrine neoplasia type ...

    Indian Academy of Sciences (India)

    However, different families with MEN 2A due to the same RET mutation often have significant variability inthe clinical exhibition of disease and aggressiveness of the MTC, which implies additional genetic loci exsit beyondRET coding region. Whole genome sequencing (WGS) greatly expands the breadth of screening from ...

  20. Biochemical and genetic diagnosis of Smith-Lemli- Opitz syndrome ...

    African Journals Online (AJOL)

    The clinical spectrum of manifestations is broad, ... delay as well as selfinjurious behaviour and autism are reported. ... recessive disorder that is more common than other defects in cholesterol biosynthesis. ... To perform biochemical and genetic workups in four South African families of European ancestry with suspected ...

  1. Usher syndrome: an effective sequencing approach to establish a genetic and clinical diagnosis.

    Science.gov (United States)

    Lenarduzzi, S; Vozzi, D; Morgan, A; Rubinato, E; D'Eustacchio, A; Osland, T M; Rossi, C; Graziano, C; Castorina, P; Ambrosetti, U; Morgutti, M; Girotto, G

    2015-02-01

    Usher syndrome is an autosomal recessive disorder characterized by retinitis pigmentosa, sensorineural hearing loss and, in some cases, vestibular dysfunction. The disorder is clinically and genetically heterogeneous and, to date, mutations in 11 genes have been described. This finding makes difficult to get a precise molecular diagnosis and offer patients accurate genetic counselling. To overcome this problem and to increase our knowledge of the molecular basis of Usher syndrome, we designed a targeted resequencing custom panel. In a first validation step a series of 16 Italian patients with known molecular diagnosis were analysed and 31 out of 32 alleles were detected (97% of accuracy). After this step, 31 patients without a molecular diagnosis were enrolled in the study. Three out of them with an uncertain Usher diagnosis were excluded. One causative allele was detected in 24 out 28 patients (86%) while the presence of both causative alleles characterized 19 patients out 28 (68%). Sixteen novel and 27 known alleles were found in the following genes: USH2A (50%), MYO7A (7%), CDH23 (11%), PCDH15 (7%) and USH1G (2%). Overall, on the 44 patients the protocol was able to characterize 74 alleles out of 88 (84%). These results suggest that our panel is an effective approach for the genetic diagnosis of Usher syndrome leading to: 1) an accurate molecular diagnosis, 2) better genetic counselling, 3) more precise molecular epidemiology data fundamental for future interventional plans. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. 植入前遗传学诊断"知情同意"的影响因素与对策%Influential Factors And Strategies of Preimplantation Genetic Diagnosis Informed Consent

    Institute of Scientific and Technical Information of China (English)

    涂玲; 卢光琇

    2006-01-01

    植入前遗传学诊断(Preimplantation Genetic Diagnosis PGD)是辅助生育技术与分子生物学技术相结合而发展的孕前遗传学诊断技术,在植入子宫前淘汰了遗传异常的胚胎,是产前诊断技术的重大进展.但是,由于技术本身存在着一定局限性和不确定性,同时,受到病人认知能力等因素的影响,由此引发了系列伦理学争议.在进行PGD前,一个明了、详尽的患者知情同意过程是必须的.包括通俗全面告知PGD有关信息、手术和检测的局限性和可能结果;充分告知通过PGD所获得的利益和风险.在此基础上针对不同的遗传病检测签署详细的书面知情同意书.

  3. Application of Single Nucleotide Polymorphism in Preimplantation Genetic Diagnosis%单核苷酸多态性微阵列在胚胎植入前遗传学诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    李刚; 刘艳; 孙莹璞

    2012-01-01

    胚胎植入前遗传学诊断(preimplantation genetic diagnosis,PGD)是在体外受精过程中,对具有遗传风险患者的卵裂期胚胎或囊胚进行细胞活检和遗传学诊断,以选择移植正常的胚胎,从而获得健康的婴儿,是辅助生殖技术的重要组成部分.随着检测技术的发展,更多的方法被用于PGD的单细胞诊断.单核苷酸多态性微阵列(single nucleotide polymorphism array,SNP array)是近年来用于PGD诊断的一种新的分子细胞遗传学技术,具有诊断快、可同时诊断46条染色体、分辨率高、可检测单亲二倍体、不受异常染色体类型限制、可追溯种植胚胎来源及异常胚胎额外染色体的来源等优势,同时也在辅助生殖的其他方面有着广泛的应用.

  4. Clinical characteristics and preimplantation genetic diagnosis for male Robertsonian translocations%男性罗氏易位的临床特点及其胚胎着床前遗传学诊断

    Institute of Scientific and Technical Information of China (English)

    黄锦; 廉颖; 乔杰; 刘平

    2012-01-01

    Objective:To explore the clinical characteristics and the preimplantation genetic diagnosis (PGD) for male Robertsonian translocations. Methods: From Jan 2005 to Oct 2011 , 96 PGD cycles of 80 male Robertsonian translocations were performed at the Center of Reproductive Medicine of Peking University Third Hospital, Beijing. All the couples were involved in assisted reproductive therapy because of oligozoospermia or repeated abortions. Pregnancy results and clinical characteristics were analyzed in this study. Results:Of all the 80 Robertsonian translocation couples, 62 (77.50% , 62/80) couples suffered from primary infertility due to severe oligoospermia and 8 (10% , 8/80) couples suffered from secondary infertility due to oligoospermia. Moreover, 10 ( 12.50% , 10/80) couples had recurrent spontaneous abortion. Of all the 80 male Robertsonian translocations, 50 were (13; 14) translocations and 15 (14; 21) translocations. The study showed that 79 PGD cycles had the balanced embryos to transfer and 25 cycles resulted in clinical pregnancies. The clinical pregnancy rate per transfer cycle was 31. 65% (25 of 79). Now, 18 couples had 21 viable infants and 3 were ongoing pregnant. Conclusion: Oligozoospermia is the main factor for the infertility of the male Robertsonian translocations. Artificial reproductive techniques can solve their reproductive problems. Moreover, PGD will decrease the risk of recurrent spontaneous abortion and the malformations.%目的:分析男性罗氏易位的生育期临床特点,探讨胚胎着床前遗传学诊断(preimplantation genetic diagnosis,PGD)技术在男性罗氏易位携带者中的临床应用.方法:2005年1月至2011年10月,共对80例男性罗氏易位携带者进行了96个PGD周期,选择正常或罗氏易位核型的胚胎移植.分析男性罗氏易位携带者的临床特点及其PGD周期的临床特点.结果:80对男性罗氏易位者夫妇中,62对夫妇因男方严重少、弱精症而致原发不孕,占77.50% (62

  5. Fault Diagnosis of Power System Based on Improved Genetic Optimized BP-NN

    Directory of Open Access Journals (Sweden)

    Yuan Pu

    2015-01-01

    Full Text Available BP neural network (Back-Propagation Neural Network, BP-NN is one of the most widely neural network models and is applied to fault diagnosis of power system currently. BP neural network has good self-learning and adaptive ability and generalization ability, but the operation process is easy to fall into local minima. Genetic algorithm has global optimization features, and crossover is the most important operation of the Genetic Algorithm. In this paper, we can modify the crossover of traditional Genetic Algorithm, using improved genetic algorithm optimized BP neural network training initial weights and thresholds, to avoid the problem of BP neural network fall into local minima. The results of analysis by an example, the method can efficiently diagnose network fault location, and improve fault-tolerance and grid fault diagnosis effect.

  6. BLOCKADE OF PGE2, PGD2 RECEPTORS CONFERS PROTECTION AGAINST PREPATENT SCHISTOSOMIASIS MANSONI IN MICE.

    Science.gov (United States)

    Abdel-Ghany, Rasha; Rabia, Ibrahim; El-Ahwany, Eman; Saber, Sameh; Gamal, Rasha; Nagy, Faten; Mahmoud, Olaa; Hamad, Rabab Salem; Barakat, Walled

    2015-12-01

    Schistosomiasis is a chronic disease with considerable social impact. Despite the availability of affordable chemotherapy, drug treatment has not significantly reduced the overall number of disease cases. Among other mechanisms, the parasite produces PGE2 and PGD2 to evade host immune defenses. To investigate the role of PGE2 and PGD2 in schistosomiasis, we evaluated the effects of L-161,982, Ah6809 (PGE2 receptor antagonists alone of combined with each other) and MK-0524 (PGD2 receptor antagonist) during prepatent Schistosoma mansoni infection. Drugs were administered intraperitoneally an hour before and 24 hours after infection of C57BL/6 mice with 100 Schistosoma mansoni cercariae. L-161,982, Ah6809, their combination and MK-0524 caused partial protection against pre-patent S. mansoni infection which was mediated by biasing the immune response towards Th1 phenotype. These results showed that blockade of PGE2 and PGD2 receptors confers partial protection against pre-patent S. mansoni infection in mice and that they may be useful as adjunctive therapy to current anti-schistosomal drugs or vaccines.

  7. Method of fault diagnosis in nuclear power plant base on genetic algorithm and knowledge base

    International Nuclear Information System (INIS)

    Zhou Yangping; Zhao Bingquan

    2000-01-01

    Via using the knowledge base, combining Genetic Algorithm and classical probability and contraposing the characteristic of the fault diagnosis of NPP. The authors put forward a method of fault diagnosis. In the process of fault diagnosis, this method contact the state of NPP with the colony in GA and transform the colony to get the individual that adapts to the condition. On the 950MW full size simulator in Beijing NPP simulation training center, experimentation shows it has comparative adaptability to the imperfection of expert knowledge, illusive signal and other instance

  8. A Genetic-Neuro-Fuzzy inferential model for diagnosis of tuberculosis

    Directory of Open Access Journals (Sweden)

    Mumini Olatunji Omisore

    2017-01-01

    Full Text Available Tuberculosis is a social, re-emerging infectious disease with medical implications throughout the globe. Despite efforts, the coverage of tuberculosis disease (with HIV prevalence in Nigeria rose from 2.2% in 1991 to 22% in 2013 and the orthodox diagnosis methods available for Tuberculosis diagnosis were been faced with a number of challenges which can, if measure not taken, increase the spread rate; hence, there is a need for aid in diagnosis of the disease. This study proposes a technique for intelligent diagnosis of TB using Genetic-Neuro-Fuzzy Inferential method to provide a decision support platform that can assist medical practitioners in administering accurate, timely, and cost effective diagnosis of Tuberculosis. Performance evaluation observed, using a case study of 10 patients from St. Francis Catholic Hospital Okpara-In-Land (Delta State, Nigeria, shows sensitivity and accuracy results of 60% and 70% respectively which are within the acceptable range of predefined by domain experts.

  9. A Baseline Algorithm for Molecular Diagnosis of Genetic Eye Diseases: Ophthalmologist’s Perspective

    Directory of Open Access Journals (Sweden)

    Hande Taylan Şekeroğlu

    2016-12-01

    Full Text Available To the Editor: Genetic eye diseases constitute a large and heterogeneous group. Individual diseases may cause multiple structural/functional anomalies and developmental features. Family history may be suggestive; however, it may also be challenging, particularly in late-onset conditions or in cases of variable expression. In the current era of genetic advances, diagnosis of a genetic eye disease is facilitated by well-established collaboration between ophthalmologists and geneticists, as increasingly more patients will be asking for genetic counseling and prenatal diagnosis in addition to ophthalmologic management. Molecular investigation of a genetic eye disease requires customized analysis and advanced technology in addition to the requisite detailed family history and accurate ophthalmological diagnosis. A common indication for genetic testing is the validation of a preliminary diagnosis made in clinical practice. The need to determine the prognostic implications of the genotype, assessment of the recurrence risk and in particular, the possibility of specific gene therapy in the near future encourages clinicians to pursue genetic research. We present here a baseline algorithm covering common genetic mechanisms in order to outline a basic molecular approach for ophthalmologists. The first step of the flow chart, a prudent clinical examination with complete description of the phenotype, is indispensible for making a precise and accurate preliminary diagnosis (Figure 1. If the phenotype is pathognomonic, Sanger sequencing is preferred for confirmation.1 A previously established genotype-phenotype correlation may add to the value, either by providing accurate prognostic information or by indicating which particular mutation to look for. One such example may be electroretinographic supranormal rod response, indicating KCNV2 mutation type cone dystrophy, which can be precisely detected by Sanger sequencing or qPCR.2 Conventional karyotyping reveals

  10. A clinical approach to the diagnosis of patients with leukodystrophies and genetic leukoencephelopathies

    NARCIS (Netherlands)

    Parikh, Sumit; Bernard, Geneviève; Leventer, Richard J.; van der Knaap, Marjo S.; van Hove, Johan; Pizzino, Amy; McNeill, Nathan H.; Helman, Guy; Simons, Cas; Schmidt, Johanna L.; Rizzo, William B.; Patterson, Marc C.; Taft, Ryan J.; Vanderver, Adeline

    2015-01-01

    Leukodystrophies (LD) and genetic leukoencephalopathies (gLE) are disorders that result in white matter abnormalities in the central nervous system (CNS). Magnetic resonance (MR) imaging (MRI) has dramatically improved and systematized the diagnosis of LDs and gLEs, and in combination with specific

  11. Ethical challenges in assisted reproduction: the place of preimplantation genetic diagnosis in a just society.

    Science.gov (United States)

    Whetstine, Leslie M

    2015-04-01

    The purpose of this article is to provide an overview of preimplantation genetic diagnosis and identify the relevant moral questions it raises. In the course of this discussion, the scope of parental rights and the inherent difficulty in defining disease/disability will be considered. © The Author(s) 2013.

  12. Automated Test Assembly for Cognitive Diagnosis Models Using a Genetic Algorithm

    Science.gov (United States)

    Finkelman, Matthew; Kim, Wonsuk; Roussos, Louis A.

    2009-01-01

    Much recent psychometric literature has focused on cognitive diagnosis models (CDMs), a promising class of instruments used to measure the strengths and weaknesses of examinees. This article introduces a genetic algorithm to perform automated test assembly alongside CDMs. The algorithm is flexible in that it can be applied whether the goal is to…

  13. Compliance between clinical and genetic diagnosis of choroidal hypoplasia in 103 Norwegian Border Collie puppies.

    Science.gov (United States)

    Grosås, Siv; Lingaas, Frode; Prestrud, Kristin Wear; Ropstad, Ernst-Otto

    2017-11-07

    To describe the frequency of the nonhomologous end-joining factor 1 (NHEJ1) mutation and the compliance between clinical and genetic diagnosis of choroidal hypoplasia (CH) in a group of Norwegian Border Collies. Border collie puppies in the age from 5 to 8 weeks. Puppies included in the study had a complete ophthalmological examination. All findings were recorded, and an ECVO scheme form was issued for each puppy. DNA samples were achieved from buccal swabs. Genetic typing was performed for the 7.8-kb deletion in the gene encoding NHEJ1. Dogs with none, one, or two copies of the mutated allele were classified as free, carriers, and affected, respectively. 103 Border Collie puppies from 16 litters, 52 females and 51 males, were included in the study. Ages ranged from 5.1 to 8.9 weeks. One puppy had clinical findings consistent with CH and optic nerve coloboma compatible with the diagnosis Collie Eye Anomaly (CEA). Findings on ophthalmological examination of the remaining puppies were within normal limits. On genetic testing, 85 puppies were clear of the mutation in the NHEJ1 gene, 17 puppies were carriers, and one puppy was genetically affected. A good compliance between the clinical diagnosis and the genetic test results was found in all of the puppies examined. The allele frequency of the mutation was 6.3%. © 2017 American College of Veterinary Ophthalmologists.

  14. [Application of next-generation semiconductor sequencing technologies in genetic diagnosis of inherited cardiomyopathies].

    Science.gov (United States)

    Zhao, Yue; Zhang, Hong; Xia, Xue-shan

    2015-07-01

    Inherited cardiomyopathy is the most common hereditary cardiac disease. It also causes a significant proportion of sudden cardiac deaths in young adults and athletes. So far, approximately one hundred genes have been reported to be involved in cardiomyopathies through different mechanisms. Therefore, the identification of the genetic basis and disease mechanisms of cardiomyopathies are important for establishing a clinical diagnosis and genetic testing. Next-generation semiconductor sequencing (NGSS) technology platform is a high-throughput sequencer capable of analyzing clinically derived genomes with high productivity, sensitivity and specificity. It was launched in 2010 by Life Technologies of USA, and it is based on a high density semiconductor chip, which was covered with tens of thousands of wells. NGSS has been successfully used in candidate gene mutation screening to identify hereditary disease. In this review, we summarize these genetic variations, challenge and application of NGSS in inherited cardiomyopathy, and its value in disease diagnosis, prevention and treatment.

  15. 全染色体涂抹探针在女性罗伯逊易位携带者植入前遗传学诊断中的临床应用%The clinical application of whole chromosome painting probes in preimplantation genetic diagnosis for translocation carriers

    Institute of Scientific and Technical Information of China (English)

    任秀莲; 徐艳文; 庄广伦; 周灿权; 刘颖; 欧建平; 李穗萍

    2007-01-01

    目的 应用全染色体涂抹探针(whole chromosome painting probe,WCP)对女性罗伯逊易位携带者进行卵母细胞第一极体的植入前遗传学诊断(preimplantation genetic diagnosis, PGD).方法 应用全染色体涂抹探针进行第一极体荧光原位杂交,对4例女方罗伯逊易位携带者进行了4个周期的PGD.患者染色体核型均为45,XX, der(13;14),(q10;q10).所有周期取卵后6 h内通过活检取出第一极体,采用WCP探针进行荧光原位杂交,受精后第3天选择染色体组成正常或平衡的胚胎进行宫腔内移植.结果 4个周期共获卵61个,其中54个成熟可进行活检,活检成功率92.6%(50/54),固定成功率90.0%(45/50).40个获得明确诊断,总体诊断率为74.1%(40/54).卵胞浆内单精子注射后受精率64.8%(35/54),优质胚胎率为65.7%(23/35).获得2例临床妊娠.其中1例于孕9周胚胎停止发育,绒毛染色体分析核型为45, X;另1例产前诊断证实核型为46,XX.2006年6月足月分娩一正常活女婴.结论 全染色体涂抹探针可准确区分正常、平衡以及异常卵子,从而可有效应用于女性染色体易位携带者的PGD.

  16. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. European Society of Human Genetics and European Society of Human Reproduction and Embryology.

    Science.gov (United States)

    Harper, Joyce C; Geraedts, Joep; Borry, Pascal; Cornel, Martina C; Dondorp, Wybo; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather; Soini, Sirpa; Spits, Claudia; Veiga, Anna; Vermeesch, Joris Robert; Viville, Stéphane; de Wert, Guido; Macek, Milan

    2013-11-01

    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation - ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and provide

  17. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy

    Science.gov (United States)

    Harper, Joyce C; Geraedts, Joep; Borry, Pascal; Cornel, Martina C; Dondorp, Wybo; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather; Soini, Sirpa; Spits, Claudia; Veiga, Anna; Vermeesch, Joris Robert; Viville, Stéphane; de Wert, Guido; Macek, Milan

    2013-01-01

    In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and assisted reproductive technology (ART), and published an extended background paper, recommendations and two Editorials. Seven years later, in March 2012, a follow-up interdisciplinary workshop was held, involving representatives of both professional societies, including experts from the European Union Eurogentest2 Coordination Action Project. The main goal of this meeting was to discuss developments at the interface between clinical genetics and ARTs. As more genetic causes of reproductive failure are now recognised and an increasing number of patients undergo testing of their genome before conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and preimplantation genetic diagnosis (PGD) may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from randomised clinical trials to substantiate that the technique is both effective and efficient. Whole-genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (International Standards Organisation – ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving but still remains very heterogeneous and often contradictory. The lack of legal harmonisation and uneven access to infertility treatment and PGD/PGS fosters considerable cross-border reproductive care in Europe and beyond. The aim of this paper is to complement previous publications and

  18. Fault Diagnosis of Hydraulic Servo Valve Based on Genetic Optimization RBF-BP Neural Network

    Directory of Open Access Journals (Sweden)

    Li-Ping FAN

    2014-04-01

    Full Text Available Electro-hydraulic servo valves are core components of the hydraulic servo system of rolling mills. It is necessary to adopt an effective fault diagnosis method to keep the hydraulic servo valve in a good work state. In this paper, RBF and BP neural network are integrated effectively to build a double hidden layers RBF-BP neural network for fault diagnosis. In the process of training the neural network, genetic algorithm (GA is used to initialize and optimize the connection weights and thresholds of the network. Several typical fault states are detected by the constructed GA-optimized fault diagnosis scheme. Simulation results shown that the proposed fault diagnosis scheme can give satisfactory effect.

  19. International Cooperation to Enable the Diagnosis of All Rare Genetic Diseases.

    Science.gov (United States)

    Boycott, Kym M; Rath, Ana; Chong, Jessica X; Hartley, Taila; Alkuraya, Fowzan S; Baynam, Gareth; Brookes, Anthony J; Brudno, Michael; Carracedo, Angel; den Dunnen, Johan T; Dyke, Stephanie O M; Estivill, Xavier; Goldblatt, Jack; Gonthier, Catherine; Groft, Stephen C; Gut, Ivo; Hamosh, Ada; Hieter, Philip; Höhn, Sophie; Hurles, Matthew E; Kaufmann, Petra; Knoppers, Bartha M; Krischer, Jeffrey P; Macek, Milan; Matthijs, Gert; Olry, Annie; Parker, Samantha; Paschall, Justin; Philippakis, Anthony A; Rehm, Heidi L; Robinson, Peter N; Sham, Pak-Chung; Stefanov, Rumen; Taruscio, Domenica; Unni, Divya; Vanstone, Megan R; Zhang, Feng; Brunner, Han; Bamshad, Michael J; Lochmüller, Hanns

    2017-05-04

    Provision of a molecularly confirmed diagnosis in a timely manner for children and adults with rare genetic diseases shortens their "diagnostic odyssey," improves disease management, and fosters genetic counseling with respect to recurrence risks while assuring reproductive choices. In a general clinical genetics setting, the current diagnostic rate is approximately 50%, but for those who do not receive a molecular diagnosis after the initial genetics evaluation, that rate is much lower. Diagnostic success for these more challenging affected individuals depends to a large extent on progress in the discovery of genes associated with, and mechanisms underlying, rare diseases. Thus, continued research is required for moving toward a more complete catalog of disease-related genes and variants. The International Rare Diseases Research Consortium (IRDiRC) was established in 2011 to bring together researchers and organizations invested in rare disease research to develop a means of achieving molecular diagnosis for all rare diseases. Here, we review the current and future bottlenecks to gene discovery and suggest strategies for enabling progress in this regard. Each successful discovery will define potential diagnostic, preventive, and therapeutic opportunities for the corresponding rare disease, enabling precision medicine for this patient population. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Genetic analysis of PAX3 for diagnosis of Waardenburg syndrome type I.

    Science.gov (United States)

    Matsunaga, Tatsuo; Mutai, Hideki; Namba, Kazunori; Morita, Noriko; Masuda, Sawako

    2013-04-01

    PAX3 genetic analysis increased the diagnostic accuracy for Waardenburg syndrome type I (WS1). Analysis of the three-dimensional (3D) structure of PAX3 helped verify the pathogenicity of a missense mutation, and multiple ligation-dependent probe amplification (MLPA) analysis of PAX3 increased the sensitivity of genetic diagnosis in patients with WS1. Clinical diagnosis of WS1 is often difficult in individual patients with isolated, mild, or non-specific symptoms. The objective of the present study was to facilitate the accurate diagnosis of WS1 through genetic analysis of PAX3 and to expand the spectrum of known PAX3 mutations. In two Japanese families with WS1, we conducted a clinical evaluation of symptoms and genetic analysis, which involved direct sequencing, MLPA analysis, quantitative PCR of PAX3, and analysis of the predicted 3D structure of PAX3. The normal-hearing control group comprised 92 subjects who had normal hearing according to pure tone audiometry. In one family, direct sequencing of PAX3 identified a heterozygous mutation, p.I59F. Analysis of PAX3 3D structures indicated that this mutation distorted the DNA-binding site of PAX3. In the other family, MLPA analysis and subsequent quantitative PCR detected a large, heterozygous deletion spanning 1759-2554 kb that eliminated 12-18 genes including a whole PAX3 gene.

  1. EMQN best practice guidelines for the molecular genetic diagnosis of hereditary hemochromatosis (HH)

    Science.gov (United States)

    Porto, Graça; Brissot, Pierre; Swinkels, Dorine W; Zoller, Heinz; Kamarainen, Outi; Patton, Simon; Alonso, Isabel; Morris, Michael; Keeney, Steve

    2016-01-01

    Molecular genetic testing for hereditary hemochromatosis (HH) is recognized as a reference test to confirm the diagnosis of suspected HH or to predict its risk. The vast majority (typically >90%) of patients with clinically characterized HH are homozygous for the p.C282Y variant in the HFE gene, referred to as HFE-related HH. Since 1996, HFE genotyping was implemented in diagnostic algorithms for suspected HH, allowing its early diagnosis and prevention. However, the penetrance of disease in p.C282Y homozygotes is incomplete. Hence, homozygosity for p.C282Y is not sufficient to diagnose HH. Neither is p.C282Y homozygosity required for diagnosis as other rare forms of HH exist, generally referred to as non-HFE-related HH. These pose significant challenges when defining criteria for referral, testing protocols, interpretation of test results and reporting practices. We present best practice guidelines for the molecular genetic diagnosis of HH where recommendations are classified, as far as possible, according to the level and strength of evidence. For clarification, the guidelines' recommendations are preceded by a detailed description of the methodology and results obtained with a series of actions taken in order to achieve a wide expert consensus, namely: (i) a survey on the current practices followed by laboratories offering molecular diagnosis of HH; (ii) a systematic literature search focused on some identified controversial topics; (iii) an expert Best Practice Workshop convened to achieve consensus on the practical recommendations included in the guidelines. PMID:26153218

  2. [Prenatal genetic diagnosis for two Chinese families affected with oculocutaneous albinism type Ⅱ].

    Science.gov (United States)

    Hu, Hao; Wang, Hua; Jia, Zhengjun; Xie, Qiong

    2014-08-01

    To perform genotyping analysis and subsequent prenatal genetic diagnosis for two families affected with oculocutaneous albinism (OCA). Direct sequencing of TYR and P genes was performed in two albino probands. Family members were screened for corresponding mutant alleles. Prenatal genetic diagnoses were performed at early pregnancy by chorionic villus sampling (CVS) at mid-pregnancy through amniocentesis. No mutations were detected in the TYR gene in either probands, whereas 4 heterozygous mutations of the P gene were found, namely c.406C>T, c.535A>G, c.808-2A>G and c.2180T>C, among which c.535A>G and c.808-2A>G were novel. In the first round prenatal genetic testing, both fetuses were found to have the same genotypes as the probands. Both families had decided to terminate the pregnancy after genetic counseling. In the second round testing, neither of the fetuses was found to be affected by genotyping. The pregnancies continued and two healthy fetuses were born. OCA can be classified by genotyping, with which reliable prenatal diagnosis and feasible genetic counseling may be provided.

  3. [Prevalence of use of preimplantation genetic diagnosis in Unidade Clínica de Paramiloidose from Centro Hospitalar do Porto].

    Science.gov (United States)

    Valdrez, Kátia; Alves, Elisabete; Coelho, Teresa; Silva, Susana

    2014-01-01

    The Familial Amyloid Polyneuropathy, with the world's largest focus in Portugal, is recognized by the National Board of Assisted Reproductive Technologies as a serious disease eligible for Preimplantation Genetic Diagnosis. This study aims to determine the prevalence of the use of Preimplantation Genetic Diagnosis in FAP carriers followed in Unidade Clínica de Paramiloidose, Centro Hospitalar do Porto, and to identify the associated factors. Between January and May 2013, a representative sample of Portuguese Familial Amyloid Polyneuropathy carriers, aged between 18 and 55 years, was systematically recruited. The analysis is based on 111 carriers with previous familial diagnosis, who reported having ever tried to get pregnant after 2001. Data on sociodemographic characteristics and use of Preimplantation Genetic Diagnosis were collected through a self-administered questionnaire. Proportions were compared using the chi-square test. Crude and adjusted odds ratios (OR) and the respective confidence intervals of 95% (95% CI) were estimated using multivariatelogistic regression. The prevalence of use of Preimplantation Genetic Diagnosis was 20.7% (95% CI: 13.6-29.5). After adjustment, a household income above 1000 '¬/month (OR = 11.87; 95% CI 2.87-49.15) was directly associated with the use of Preimplantation Genetic Diagnosis, while carriers with an individual diagnosis (OR = 0.15; 95% CI 0.04-0.57) and children born after 2001 (OR = 0.07; 95% CI 0.02-0.32) revealed a prevalence of use significantly lower than those with a individual diagnosis and children born before 2001. The low prevalence of use of Preimplantation Genetic Diagnosis, as well as the less frequent use of the technique by those with a lower household income, shows the importance of improving access to Preimplantation Genetic Diagnosis in the case of Familial Amyloid Polyneuropathy. This work contributes to increase the sensitivity of health professionals around the use and accessibility to

  4. New Advances of Preimplantation and Prenatal Genetic Screening and Noninvasive Testing as a Potential Predictor of Health Status of Babies

    Directory of Open Access Journals (Sweden)

    Tanya Milachich

    2014-01-01

    Full Text Available The current morphologically based selection of human embryos for transfer cannot detect chromosome aneuploidies. So far, only biopsy techniques have been able to screen for chromosomal aneuploidies in the in vitro fertilization (IVF embryos. Preimplantation genetic diagnosis (PGD or screening (PGS involves the biopsy of oocyte polar bodies or embryonic cells and has become a routine clinical procedure in many IVF clinics worldwide, including recent development of comprehensive chromosome screening of all 23 pairs of chromosomes by microarrays for aneuploidy screening. The routine preimplantation and prenatal genetic diagnosis (PND require testing in an aggressive manner. These procedures may be invasive to the growing embryo and fetus and potentially could compromise the clinical outcome. Therefore the aim of this review is to summarize not only the new knowledge on preimplantation and prenatal genetic diagnosis in humans, but also on the development of potential noninvasive embryo and fetal testing that might play an important role in the future.

  5. New Advances of Preimplantation and Prenatal Genetic Screening and Noninvasive Testing as a Potential Predictor of Health Status of Babies

    Science.gov (United States)

    2014-01-01

    The current morphologically based selection of human embryos for transfer cannot detect chromosome aneuploidies. So far, only biopsy techniques have been able to screen for chromosomal aneuploidies in the in vitro fertilization (IVF) embryos. Preimplantation genetic diagnosis (PGD) or screening (PGS) involves the biopsy of oocyte polar bodies or embryonic cells and has become a routine clinical procedure in many IVF clinics worldwide, including recent development of comprehensive chromosome screening of all 23 pairs of chromosomes by microarrays for aneuploidy screening. The routine preimplantation and prenatal genetic diagnosis (PND) require testing in an aggressive manner. These procedures may be invasive to the growing embryo and fetus and potentially could compromise the clinical outcome. Therefore the aim of this review is to summarize not only the new knowledge on preimplantation and prenatal genetic diagnosis in humans, but also on the development of potential noninvasive embryo and fetal testing that might play an important role in the future. PMID:24783200

  6. Preimplantation genetic diagnosis and screening by array comparative genomic hybridisation: experience of more than 100 cases in a single centre.

    Science.gov (United States)

    Chow, J Fc; Yeung, W Sb; Lee, V Cy; Lau, E Yl; Ho, P C; Ng, E Hy

    2017-04-01

    Preimplantation genetic screening has been proposed to improve the in-vitro fertilisation outcome by screening for aneuploid embryos or blastocysts. This study aimed to report the outcome of 133 cycles of preimplantation genetic diagnosis and screening by array comparative genomic hybridisation. This study of case series was conducted in a tertiary assisted reproductive centre in Hong Kong. Patients who underwent preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening between 1 April 2012 and 30 June 2015 were included. They underwent in-vitro fertilisation and intracytoplasmic sperm injection. An embryo biopsy was performed on day-3 embryos and the blastomere was subject to array comparative genomic hybridisation. Embryos with normal copy numbers were replaced. The ongoing pregnancy rate, implantation rate, and miscarriage rate were studied. During the study period, 133 cycles of preimplantation genetic diagnosis for chromosomal abnormalities or preimplantation genetic screening were initiated in 94 patients. Overall, 112 cycles proceeded to embryo biopsy and 65 cycles had embryo transfer. The ongoing pregnancy rate per transfer cycle after preimplantation genetic screening was 50.0% and that after preimplantation genetic diagnosis was 34.9%. The implantation rates after preimplantation genetic screening and diagnosis were 45.7% and 41.1%, respectively and the miscarriage rates were 8.3% and 28.6%, respectively. There were 26 frozen-thawed embryo transfer cycles, in which vitrified and biopsied genetically transferrable embryos were replaced, resulting in an ongoing pregnancy rate of 36.4% in the screening group and 60.0% in the diagnosis group. The clinical outcomes of preimplantation genetic diagnosis and screening using comparative genomic hybridisation in our unit were comparable to those reported internationally. Genetically transferrable embryos replaced in a natural cycle may improve the ongoing pregnancy rate

  7. High resolution melting: improvements in the genetic diagnosis of hypertrophic cardiomyopathy in a Portuguese cohort

    Directory of Open Access Journals (Sweden)

    Santos Susana

    2012-03-01

    Full Text Available Abstract Background Hypertrophic Cardiomyopathy (HCM is a complex myocardial disorder with a recognized genetic heterogeneity. The elevated number of genes and mutations involved in HCM limits a gene-based diagnosis that should be considered of most importance for basic research and clinical medicine. Methodology In this report, we evaluated High Resolution Melting (HRM robustness, regarding HCM genetic testing, by means of analyzing 28 HCM-associated genes, including the most frequent 4 HCM-associated sarcomere genes, as well as 24 genes with lower reported HCM-phenotype association. We analyzed 80 Portuguese individuals with clinical phenotype of HCM allowing simultaneously a better characterization of this disease in the Portuguese population. Results HRM technology allowed us to identify 60 mutated alleles in 72 HCM patients: 49 missense mutations, 3 nonsense mutations, one 1-bp deletion, one 5-bp deletion, one in frame 3-bp deletion, one insertion/deletion, 3 splice mutations, one 5'UTR mutation in MYH7, MYBPC3, TNNT2, TNNI3, CSRP3, MYH6 and MYL2 genes. Significantly 22 are novel gene mutations. Conclusions HRM was proven to be a technique with high sensitivity and a low false positive ratio allowing a rapid, innovative and low cost genotyping of HCM. In a short return, HRM as a gene scanning technique could be a cost-effective gene-based diagnosis for an accurate HCM genetic diagnosis and hopefully providing new insights into genotype/phenotype correlations.

  8. Advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp.

    Science.gov (United States)

    Chen, Jia; Zhou, Dong-Hui; Nisbet, Alasdair J; Xu, Min-Jun; Huang, Si-Yang; Li, Ming-Wei; Wang, Chun-Ren; Zhu, Xing-Quan

    2012-10-01

    The genus Toxocara contains parasitic nematodes of human and animal health significance, such as Toxocara canis, Toxocara cati and Toxocara vitulorum. T. canis and T. cati are among the most prevalent parasites of dogs and cats with a worldwide distribution. Human infection with T. canis and T. cati, which can cause a number of clinical manifestations such as visceral larva migrans (VLMs), ocular larva migrans (OLMs), eosinophilic meningoencephalitis (EME), covert toxocariasis (CT) and neurotoxocariasis, is considered the most prevalent neglected helminthiasis in industrialized countries. The accurate identification Toxocara spp. and their unequivocal differentiation from each other and from other ascaridoid nematodes causing VLMs and OLMs has important implications for studying their taxonomy, epidemiology, population genetics, diagnosis and control. Due to the limitations of traditional (morphological) approaches for identification and diagnosis of Toxocara spp., PCR-based techniques utilizing a range of genetic markers in the nuclear and mitochondrial genomes have been developed as useful alternative approaches because of their high sensitivity, specificity, rapidity and utility. In this article, we summarize the current state of knowledge and advances in molecular identification, taxonomy, genetic variation and diagnosis of Toxocara spp. with prospects for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Obtaining a genetic diagnosis in a child with disability: impact on parental quality of life.

    Science.gov (United States)

    Lingen, M; Albers, L; Borchers, M; Haass, S; Gärtner, J; Schröder, S; Goldbeck, L; von Kries, R; Brockmann, K; Zirn, B

    2016-02-01

    Recent progress in genetic testing has facilitated obtaining an etiologic diagnosis in children with developmental delay/intellectual disability (DD/ID) or multiple congenital anomalies (MCA) or both. Little is known about the benefits of diagnostic elucidation for affected families. We studied the impact of a genetic diagnosis on parental quality of life (QoL) using a validated semiquantitative questionnaire in families with a disabled child investigated by array-based comparative genomic hybridization (aCGH). We received completed questionnaires from 95 mothers and 76 fathers of 99 families. We used multivariate analysis for adjustment of potential confounders. Taken all 99 families together, maternal QoL score (percentile rank scale 51.05) was significantly lower than fathers' QoL (61.83, p = 0.01). Maternal QoL score was 20.17 [95% CI (5.49; 34.82)] percentile rank scales higher in mothers of children with diagnostic (n = 34) aCGH as opposed to mothers of children with inconclusive (n = 65) aCGH (Hedges' g = 0.71). Comparison of these QoL scores with retrospectively recalled QoL before aCGH revealed an increase of maternal QoL after diagnostic clarification. Our results indicate a benefit for maternal QoL if a genetic test, here aCGH, succeeds to clarify the etiologic diagnosis in a disabled child. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Best practice guidelines for the molecular genetic diagnosis of Type 1 (HFE-related hereditary haemochromatosis

    Directory of Open Access Journals (Sweden)

    Barton David E

    2006-11-01

    Full Text Available Abstract Background Hereditary haemochromatosis (HH is a recessively-inherited disorder of iron over-absorption prevalent in Caucasian populations. Affected individuals for Type 1 HH are usually either homozygous for a cysteine to tyrosine amino acid substitution at position 282 (C282Y of the HFE gene, or compound heterozygotes for C282Y and for a histidine to aspartic acid change at position 63 (H63D. Molecular genetic testing for these two mutations has become widespread in recent years. With diverse testing methods and reporting practices in use, there was a clear need for agreed guidelines for haemochromatosis genetic testing. The UK Clinical Molecular Genetics Society has elaborated a consensus process for the development of disease-specific best practice guidelines for genetic testing. Methods A survey of current practice in the molecular diagnosis of haemochromatosis was conducted. Based on the results of this survey, draft guidelines were prepared using the template developed by UK Clinical Molecular Genetics Society. A workshop was held to develop the draft into a consensus document. The consensus document was then posted on the Clinical Molecular Genetics Society website for broader consultation and amendment. Results Consensus or near-consensus was achieved on all points in the draft guidelines. The consensus and consultation processes worked well, and outstanding issues were documented in an appendix to the guidelines. Conclusion An agreed set of best practice guidelines were developed for diagnostic, predictive and carrier testing for hereditary haemochromatosis and for reporting the results of such testing.

  11. [Assisted Reproduction and Preimplantation Genetic Diagnosis in Patients Susceptible to Breast Cancer].

    Science.gov (United States)

    Veselá, K; Kocur, T; Horák, J; Horňák, M; Oráčová, E; Hromadová, L; Veselý, J; Trávník, P

    2016-01-01

    Assisted reproduction, as well as pregnancy itself, in patients with breast cancer or other hereditary type of cancer, is a widely discussed topic. In the past, patients treated for breast cancer were rarely involved in the discussion about reproductive possibilities or infertility treatment. However, current knowledge suggests, that breast cancer is neither a contraindication to pregnancy, nor to assisted reproduction techniques. On the contrary, assisted reproduction and preimplantation genetic diagnosis methods might prevent the transmission of genetic risks to the fetus. In this review we summarize data concerning pregnancy risks in patients with increased risk of breast cancer. In addition, we introduce current possibilities and approaches to fertility preservation prior to assisted reproduction treatment as well as novel methods improving the safety of fertility treatment. In the second part of this review, we focus on karyomapping--an advanced molecular genetic tool for elimination of germinal mutations in patients with predisposition to cancer. Moreover, the rapid development of preimplantation genetic diagnosis methods contributes to detection of both chromosomal aneuploidy and causal mutations in a relatively short time-span.

  12. Preimplantation genetic diagnosis: International standards and the law of the republic of Serbia

    Directory of Open Access Journals (Sweden)

    Rajić Nataša

    2014-01-01

    Full Text Available The process of biomedical assisted reproduction, in addition to the treatment of infertility, also can be implemented for the purpose of prevention of transmission of serious hereditary disease to offspring. This is possible thanks to the preimplantation genetic diagnosis, which involves genetic testing of a few cells of the embryo in the early stage of development before implantation in a woman's body, and its elimination in the case of determining the genetic anomaly. The process of the preimplantation genetic diagnosis faces several constitutional values and raises a series of questions. Some of them were answered by European Court of Human Rights in the case Costa and Pavan v. Italiy. The subject of the paper is the analysis of this decision, which is important from a constitutional point of view, because it establishes guidelines for the interpretation of rules of domestic law. The second task of the paper is the analysis of normative solutions of our legal system in this area, in order to test their compliance with the standards set in this Court's decision.

  13. Prenatal diagnosis and genetic counseling for Waardenburg syndrome type I and II in Chinese families

    Science.gov (United States)

    Wang, Li; Qin, Litao; Li, Tao; Liu, Hongjian; Ma, Lingcao; Li, Wan; Wu, Dong; Wang, Hongdan; Guo, Qiannan; Guo, Liangjie; Liao, Shixiu

    2018-01-01

    Waardenburg syndrome (WS) is an auditory-pigmentary disorder with varying combinations of sensorineural hearing loss and abnormal pigmentation. The present study aimed to investigate the underlying molecular pathology and provide a method of prenatal diagnosis of WS in Chinese families. A total of 11 patients with WS from five unrelated Chinese families were enrolled. A thorough clinical examination was performed on all participants. Furthermore, patients with WS underwent screening for mutations in the following genes: Paired box 3 (PAX3), melanogenesis associated transcription factor (MITF), SRY-box 10, snail family transcriptional repressor 2 and endothelin receptor type B using polymerase chain reaction sequencing. Array-based comparative genomic hybridization was used for specific patients whose sequence results were normal. Following identification of the genotype of the probands and their parents, prenatal genetic diagnosis was performed for family 01 and 05. According to the diagnostic criteria for WS, five cases were diagnosed as WS1, while the other six cases were WS2. Genetic analysis revealed three mutations, including a nonsense mutation PAX3 c.583C>T in family 01, a splice-site mutation MITF c.909G>A in family 03 and an in-frame deletion MITF c.649_651delGAA in family 05. To the best of the authors' knowledge the mutations (c.583C>T in PAX3 and c.909G>A in MITF) were reported for the first time in Chinese people. Mutations in the gene of interest were not identified in family 02 and 04. The prenatal genetic testing of the two fetuses was carried out and demonstrated that the two babies were normal. The results of the present study expanded the range of known genetic mutations in China. Identification of genetic mutations in these families provided an efficient way to understand the causes of WS and improved genetic counseling. PMID:29115496

  14. Does the diagnosis of breast or ovarian cancer trigger referral to genetic counseling?

    Science.gov (United States)

    Powell, C Bethan; Littell, Ramey; Hoodfar, Elizabeth; Sinclair, Fiona; Pressman, Alice

    2013-03-01

    Kaiser Permanente Northern California is a large integrated health care delivery system in the United States that has guidelines for referring women with newly diagnosed BRCA1-and BRCA2-associated cancers for genetic counseling. This study assesses adherence to genetic counseling referral guidelines within this health system. Chart review was performed to identify patients with cancer who met the following pathology-based Kaiser Permanente Northern California guidelines for referral for genetic counseling: invasive breast cancer, younger than age 40; nonmucinous epithelial ovarian, fallopian tube, or peritoneal cancer, younger than age 60; women with synchronous or metachronous primary cancers of the breast and ovaries; and male breast cancer. We assessed compliance with referral guidelines. An electronic notice was sent to the managing physician of patients with newly diagnosed cancer to assess the feasibility of this intervention. A total of 340 patients were identified with breast cancer at younger than age 40 or with ovarian, peritoneal, or tubal cancer between January and June, 2008. Upon chart review, 105 of these patients met pathology-based criteria for referral to genetic counseling, of whom 47 (45%) were referred within the 2-year study period. Of the 67 subjects with breast cancer, 40 subjects (60%) were referred. In contrast, only 7 (21%) of 33 patients with ovarian cancer were referred (P < 0.001). A pilot study was performed to test the feasibility of notifying managing oncologists with an electronic letter alerting them of eligibility for genetic referral of patients with new diagnosis (n = 21). In the 3 to 6 months after this notification, 12 of these 21 patients were referred for counseling including 5 of 7 patients with a diagnosis of ovarian cancer. There is a missed opportunity for referring patients to genetic counseling, especially among patients with ovarian cancer. A pilot study suggests that alerting treating physicians is a feasible

  15. 植入前遗传学诊断的结局和安全性%Outcome and Safety of Preimplantation Genetic Diagnosis

    Institute of Scientific and Technical Information of China (English)

    李百加; 陆秀娥; 金帆

    2009-01-01

    植入前遗传学诊断(PGD)是目前辅助生殖技术的重要组成部分,主要用于遗传高风险夫妇植入前胚胎的选择.自1990年第1个PGD婴儿诞生以来,PGD技术对临床结局及子代安全性的影响已成为目前众多学者所关心的问题.本文从不同活检时期、植入前遗传学筛查以及活检后胚胎冷冻等几个方面,详述了PGD的临床结局及后代安全性等问题.%antation genetic screening (PGS) and cryopreservation of biopsied embryos.

  16. Role of genetic counselling in prenatal diagnosis of beta-thalassaemia in pakistan

    International Nuclear Information System (INIS)

    Bozdar, M.; Hanif, T.B.

    2013-01-01

    To compare the response towards prenatal diagnosis (PND) of b-thalassaemia, in individuals who had not received genetic counselling and a genetically counselled population. Study Design: Cross-sectional survey. Place and Duration of Study: Department of Haematology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from March 2009 to December 2010. Methodology: Using non-probability consecutive sampling, a total of 176 individuals having thalassaemic children, were interviewed regarding PND of thalassaemia, by using a structured questionnaire. Forty two individuals were taken as controls as they had received genetic counselling for PND, whereas the remaining 134 were taken as cases. Responses towards PND were compared using chi-square test. Odds ratio was also calculated for subsequent PND utilization. Results: Seventy (52.2%) cases and 42 (100%) controls were aware of the availability of PND in Pakistan. This difference in awareness was statistically significant (p < 0.001). In the controls, 40 (95.3%) individuals were aware of the appropriate timing of the test, in contrast to 52 (39%) cases (p < 0.001). PND was used in subsequent pregnancies by 50 (37.3%) cases and 32 (80%) controls (p < 0.001). The calculated odds ratio for subsequent PND utilization was 5.37. Conclusion: The study reflects a very positive attitude of genetically counselled thalassaemia affected families towards PND. For better utilization of PND, genetic counselling services should be available at all health strata. (author)

  17. Application of massively parallel sequencing to genetic diagnosis in multiplex families with idiopathic sensorineural hearing impairment.

    Directory of Open Access Journals (Sweden)

    Chen-Chi Wu

    Full Text Available Despite the clinical utility of genetic diagnosis to address idiopathic sensorineural hearing impairment (SNHI, the current strategy for screening mutations via Sanger sequencing suffers from the limitation that only a limited number of DNA fragments associated with common deafness mutations can be genotyped. Consequently, a definitive genetic diagnosis cannot be achieved in many families with discernible family history. To investigate the diagnostic utility of massively parallel sequencing (MPS, we applied the MPS technique to 12 multiplex families with idiopathic SNHI in which common deafness mutations had previously been ruled out. NimbleGen sequence capture array was designed to target all protein coding sequences (CDSs and 100 bp of the flanking sequence of 80 common deafness genes. We performed MPS on the Illumina HiSeq2000, and applied BWA, SAMtools, Picard, GATK, Variant Tools, ANNOVAR, and IGV for bioinformatics analyses. Initial data filtering with allele frequencies (0.95 prioritized 5 indels (insertions/deletions and 36 missense variants in the 12 multiplex families. After further validation by Sanger sequencing, segregation pattern, and evolutionary conservation of amino acid residues, we identified 4 variants in 4 different genes, which might lead to SNHI in 4 families compatible with autosomal dominant inheritance. These included GJB2 p.R75Q, MYO7A p.T381M, KCNQ4 p.S680F, and MYH9 p.E1256K. Among them, KCNQ4 p.S680F and MYH9 p.E1256K were novel. In conclusion, MPS allows genetic diagnosis in multiplex families with idiopathic SNHI by detecting mutations in relatively uncommon deafness genes.

  18. Preimplantation genetic diagnosis by fluorescence in situ hybridization of reciprocal and Robertsonian translocations.

    Science.gov (United States)

    Chen, Chun-Kai; Wu, Dennis; Yu, Hsing-Tse; Lin, Chieh-Yu; Wang, Mei-Li; Yeh, Hsin-Yi; Huang, Hong-Yuan; Wang, Hsin-Shin; Soong, Yung-Kuei; Lee, Chyi-Long

    2014-03-01

    The presence of reciprocal and Robertsonian chromosomal rearrangement is often related to recurrent miscarriage. Using preimplantation genetic diagnosis, the abortion rate can be decreased. Cases treated at our center were reviewed. A retrospective analysis for either Robertsonian or reciprocal translocations was performed on all completed cycles of preimplantation genetic diagnosis at our center since the first reported case in 2004 until the end of 2010. Day 3 embryo biopsies were carried out, and the biopsied cell was checked by fluorescent in situ hybridization using relevant informative probes. Embryos with a normal or balanced translocation karyotype were transferred on Day 4. Thirty-eight preimplantation genetic diagnosis cycles involving 17 couples were completed. A total of 450 (82.6%) of the total oocytes were MII oocytes, and 158 (60.0%) of the two-pronuclei embryos were biopsied. In 41.4% of the fluorescent in situ hybridization analyses, the results were either normal or balanced. Embryos were transferred back after 21 cycles. Three babies were born from Robertsonian translocation carriers and another two from reciprocal translocation carriers. The miscarriage rate was 0%. Among the reciprocal translocation group, the live delivery rate was 8.3% per ovum pick-up cycle and 18.2% per embryo transfer cycle. Among the Robertsonian translocation group, the live delivery rate was 14.3% per ovum pick-up cycle and 20.0% per embryo transfer cycle. There is a trend whereby the outcome for Robertsonian translocation group carriers is better than that for reciprocal translocation group carriers. Aneuploidy screening may possibly be added in order to improve the outcome, especially for individuals with an advanced maternal age. The emergence of an array-based technology should help improve this type of analysis. Copyright © 2014. Published by Elsevier B.V.

  19. Whole-exome sequencing identified a variant in EFTUD2 gene in establishing a genetic diagnosis.

    Science.gov (United States)

    Rengasamy Venugopalan, S; Farrow, E G; Lypka, M

    2017-06-01

    Craniofacial anomalies are complex and have an overlapping phenotype. Mandibulofacial Dysostosis and Oculo-Auriculo-Vertebral Spectrum are conditions that share common craniofacial phenotype and present a challenge in arriving at a diagnosis. In this report, we present a case of female proband who was given a differential diagnosis of Treacher Collins syndrome or Hemifacial Microsomia without certainty. Prior genetic testing reported negative for 22q deletion and FGFR screenings. The objective of this study was to demonstrate the critical role of whole-exome sequencing in establishing a genetic diagnosis of the proband. The participants were 14½-year-old affected female proband/parent trio. Proband/parent trio were enrolled in the study. Surgical tissue sample from the proband and parental blood samples were collected and prepared for whole-exome sequencing. Illumina HiSeq 2500 instrument was used for sequencing (125 nucleotide reads/84X coverage). Analyses of variants were performed using custom-developed software, RUNES and VIKING. Variant analyses following whole-exome sequencing identified a heterozygous de novo pathogenic variant, c.259C>T (p.Gln87*), in EFTUD2 (NM_004247.3) gene in the proband. Previous studies have reported that the variants in EFTUD2 gene were associated with Mandibulofacial Dysostosis with Microcephaly. Patients with facial asymmetry, micrognathia, choanal atresia and microcephaly should be analyzed for variants in EFTUD2 gene. Next-generation sequencing techniques, such as whole-exome sequencing offer great promise to improve the understanding of etiologies of sporadic genetic diseases. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Comorbidity of intellectual disability confounds ascertainment of autism: implications for genetic diagnosis.

    Science.gov (United States)

    Polyak, Andrew; Kubina, Richard M; Girirajan, Santhosh

    2015-10-01

    While recent studies suggest a converging role for genetic factors towards risk for nosologically distinct disorders including autism, intellectual disability (ID), and epilepsy, current estimates of autism prevalence fail to take into account the impact of comorbidity of these disorders on autism diagnosis. We aimed to assess the effect of comorbidity on the diagnosis and prevalence of autism by analyzing 11 years (2000-2010) of special education enrollment data on approximately 6.2 million children per year. We found a 331% increase in the prevalence of autism from 2000 to 2010 within special education, potentially due to a diagnostic recategorization from frequently comorbid features such as ID. The decrease in ID prevalence equaled an average of 64.2% of the increase of autism prevalence for children aged 3-18 years. The proportion of ID cases potentially undergoing recategorization to autism was higher (P = 0.007) among older children (75%) than younger children (48%). Some US states showed significant negative correlations between the prevalence of autism compared to that of ID while others did not, suggesting state-specific health policy to be a major factor in categorizing autism. Further, a high frequency of autistic features was observed when individuals with classically defined genetic syndromes were evaluated for autism using standardized instruments. Our results suggest that current ascertainment practices are based on a single facet of autism-specific clinical features and do not consider associated comorbidities that may confound diagnosis. Longitudinal studies with detailed phenotyping and deep molecular genetic analyses are necessary to completely understand the cause of this complex disorder. © 2015 Wiley Periodicals, Inc.

  1. [Hereditary colorectal cancer : An update on genetics and entities in terms of differential diagnosis].

    Science.gov (United States)

    Rau, T T; Dawson, H; Hartmann, A; Rüschoff, J

    2017-05-01

    The pathologist can contribute to recognizing hereditary causes of colorectal cancer via morphology. By identifying so-called index patients, it is possible to take preventive measures in affected families. The precise definition of the clinical presentation and the histopathological phenotype help to narrow the spectrum of expected genetic alterations. Novelties within Lynch syndrome include the recognition of EPCAM as a fifth gene locus, as well as the newly defined Lynch-like syndrome with evidence of somatic mismatch repair (MMR) mutations. With regard to polyposis-associated syndromes, the spectrum of polyps, whether serrated, hamartomatous or classic adenoma, is of crucial importance. The resulting differential diagnosis includes (attenuated) familial adenomatous polyposis ([a]FAP), MUTYH-associated polyposis (MAP), polymerase proofreading-associated polyposis (PPAP), phosphatase and tensin homolog (PTEN) hamartoma tumor syndrome (PHTS), Peutz-Jeghers syndrome and juvenile polyposis, each with a specific genetic background.

  2. Successful pregnancy with preimplantation genetic diagnosis in a woman with mosaic Turner syndrome.

    Science.gov (United States)

    Onalan, Gogsen; Yilmaz, Zerrin; Durak, Tulay; Sahin, Feride Iffet; Zeyneloglu, Hulusi Bulent

    2011-04-01

    To determine the efficacy of the preimplantation cytogenetic analysis of the embryos obtained from patient with mosaic Turner syndrome before an IVF program. Prospective cytogenetic analysis. University-based tertiary medical center. A 29 year-old female, a partner in a couple with male factor infertility, was diagnosed with mosaic Turner syndrome with a 45,X [17]/46,XX [13] karyotype. Preimplantation genetic diagnosis was performed on four blastomeres obtained from four different embryos by fluorescence in situ hybridization probes specific to chromosomes X, Y, 13, 18, 21 in an intracytoplasmic sperm injection cycle. Blastomeres with normal signals. Two blastomeres detected as normal were transferred and pregnancy was achieved. Preimplantation Genetic Diagnose should be considered in the infertility treatment of the patient with mosaic Turner Syndrome. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Clinical, genetic, and neuroimaging features of Early Onset Alzheimer Disease: the challenges of diagnosis and treatment.

    Science.gov (United States)

    Alberici, Antonella; Benussi, Alberto; Premi, Enrico; Borroni, Barbara; Padovani, Alessandro

    2014-01-01

    Early Onset Alzheimer Disease (EOAD) is a rare condition, frequently associated with genetic causes. The dissemination of genetic testing along with biomarker determinations have prompted a wider recognition of EOAD in experienced clinical settings. However, despite the great efforts in establishing the contribution of causative genes to EOAD, atypical disease presentation and clinical features still makes its diagnosis and treatment a challenge for the clinicians. This review aims to provide an extensive evaluation of literature data on EOAD, in order to improve understanding and knowledge of EOAD, underscore its significant impact on patients and their caregivers and influence public policies. This would be crucial to define the urgency of evidence-based treatment approaches.

  4. HNPCC (Lynch Syndrome: Differential Diagnosis, Molecular Genetics and Management - a Review

    Directory of Open Access Journals (Sweden)

    Lynch Henry T

    2003-12-01

    Full Text Available Abstract HNPCC (Lynch syndrome is the most common form of hereditary colorectal cancer (CRC, wherein it accounts for between 2-7 percent of the total CRC burden. When considering the large number of extracolonic cancers integral to the syndrome, namely carcinoma of the endometrium, ovary, stomach, hepatobiliary system, pancreas, small bowel, brain tumors, and upper uroepithelial tract, these estimates of its frequency are likely to be conservative. The diagnosis is based upon its natural history in concert with a comprehensive cancer family history inclusive of all anatomic sites. In order for surveillance and management to be effective and, indeed, lifesaving, among these high-risk patients, the linchpin to cancer control would be the physician, who must be knowledgeable about hereditary cancer syndromes, their molecular and medical genetics, genetic counseling, and, most importantly, the natural history of the disorders, so that the entirety of this knowledge can be melded to highly-targeted management.

  5. HNPCC (Lynch Syndrome): Differential Diagnosis, Molecular Genetics and Management - a Review

    Science.gov (United States)

    2003-01-01

    HNPCC (Lynch syndrome) is the most common form of hereditary colorectal cancer (CRC), wherein it accounts for between 2-7 percent of the total CRC burden. When considering the large number of extracolonic cancers integral to the syndrome, namely carcinoma of the endometrium, ovary, stomach, hepatobiliary system, pancreas, small bowel, brain tumors, and upper uroepithelial tract, these estimates of its frequency are likely to be conservative. The diagnosis is based upon its natural history in concert with a comprehensive cancer family history inclusive of all anatomic sites. In order for surveillance and management to be effective and, indeed, lifesaving, among these high-risk patients, the linchpin to cancer control would be the physician, who must be knowledgeable about hereditary cancer syndromes, their molecular and medical genetics, genetic counseling, and, most importantly, the natural history of the disorders, so that the entirety of this knowledge can be melded to highly-targeted management.

  6. GENETIC HETEROGENEITY OF BETA GLOBIN MUTATIONS AMONG ASIAN-INDIANS AND IMPORTANCE IN GENETIC COUNSELLING AND DIAGNOSIS

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar

    2013-01-01

    Full Text Available There are an estimated 45 million carriers of β-thalassemia trait and about 12,000-15,000 infants with β-thalassemia major are born every year in India. The consanguinity rates are higher in India, and thalassemia major constitutes a significant burden on the health care system. In present study, β-thalassemia mutations were characterized in 300 thalassemia cases from 2007 to 2010 using ARMS-PCR and DNA sequencing. The five most common mutations accounted 79.3% of the studied chromosomes that includes IVS1-5(G>C, Cod 41-42(-TCTT, Cod8-9(+G, Cod16(-C and 619bp del. Though IVS1-5(G>C is most common mutation when all the communities were included, the percentage prevalence were calculated on sub caste basis and found that IVS1-5(G>C percentage prevalence varied from 25 to 60 in Aroras & Khatris and Thakur respectively. Interestingly Cod41-42(-TCTT mutation which is the second commonest among the mutations reported was totally absent in Kayasthas and Muslim community. These findings have implications for providing molecular diagnosis, genetic counseling and prenatal diagnosis to high risk couples of β-thalassemia.

  7. Use of Whole Genome Sequencing for Diagnosis and Discovery in the Cancer Genetics Clinic

    Directory of Open Access Journals (Sweden)

    Samantha B. Foley

    2015-01-01

    Full Text Available Despite the potential of whole-genome sequencing (WGS to improve patient diagnosis and care, the empirical value of WGS in the cancer genetics clinic is unknown. We performed WGS on members of two cohorts of cancer genetics patients: those with BRCA1/2 mutations (n = 176 and those without (n = 82. Initial analysis of potentially pathogenic variants (PPVs, defined as nonsynonymous variants with allele frequency < 1% in ESP6500 in 163 clinically-relevant genes suggested that WGS will provide useful clinical results. This is despite the fact that a majority of PPVs were novel missense variants likely to be classified as variants of unknown significance (VUS. Furthermore, previously reported pathogenic missense variants did not always associate with their predicted diseases in our patients. This suggests that the clinical use of WGS will require large-scale efforts to consolidate WGS and patient data to improve accuracy of interpretation of rare variants. While loss-of-function (LoF variants represented only a small fraction of PPVs, WGS identified additional cancer risk LoF PPVs in patients with known BRCA1/2 mutations and led to cancer risk diagnoses in 21% of non-BRCA cancer genetics patients after expanding our analysis to 3209 ClinVar genes. These data illustrate how WGS can be used to improve our ability to discover patients' cancer genetic risks.

  8. 荧光原位杂交技术在胚胎植入前遗传学诊断中的应用%The application of fluorescent in situ hybridization in preimplantation genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    陆小激; 冯云

    2004-01-01

    胚胎植入前遗传学诊断(preimplantation genetic diagnosis,PGD)是在胚胎着床前即对其遗传物质进行分析,检查胚胎是否有遗传物质异常的诊断方法,需要结合显微操作技术、胚胎学、遗传学和分子生物学技术,其分子生物学检测方法主要为荧光原位杂交技术(fluorescent in situ hybridization,

  9. Fault diagnosis in spur gears based on genetic algorithm and random forest

    Science.gov (United States)

    Cerrada, Mariela; Zurita, Grover; Cabrera, Diego; Sánchez, René-Vinicio; Artés, Mariano; Li, Chuan

    2016-03-01

    There are growing demands for condition-based monitoring of gearboxes, and therefore new methods to improve the reliability, effectiveness, accuracy of the gear fault detection ought to be evaluated. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance of the diagnostic models. On the other hand, random forest classifiers are suitable models in industrial environments where large data-samples are not usually available for training such diagnostic models. The main aim of this research is to build up a robust system for the multi-class fault diagnosis in spur gears, by selecting the best set of condition parameters on time, frequency and time-frequency domains, which are extracted from vibration signals. The diagnostic system is performed by using genetic algorithms and a classifier based on random forest, in a supervised environment. The original set of condition parameters is reduced around 66% regarding the initial size by using genetic algorithms, and still get an acceptable classification precision over 97%. The approach is tested on real vibration signals by considering several fault classes, one of them being an incipient fault, under different running conditions of load and velocity.

  10. Collaborative Crowdsourcing for the Diagnosis of Rare Genetic Syndromes: The DYSCERNE Experience.

    Science.gov (United States)

    Douzgou, Sofia; Pollalis, Yiannis A; Vozikis, Athanassios; Patrinos, George P; Clayton-Smith, Jill

    2016-01-01

    The big-data revolution is creating a challenge for the provision of services in the health sector to keep pace with the expectations of the general population. Utilization of crowdsourcing can impact positively on the quality, cost and speed of healthcare by involving large sections of professionals and the public and creating novel science within an ethical framework. In 2007, the DYSCERNE project was funded by the European Commission Public Health Executive Agency (EU DG Sanco) aimed at setting up a network of expertise for rare dysmorphic disorders. As part of DYSCERNE, a Dysmorphology Diagnostic System was set up to enable clinicians throughout the EU to submit cases electronically for diagnosis using a secure, web-based interface, hosted at specified access points (submitting nodes), in 26 different European countries. DYSCERNE utilized the process of crowdsourcing international expertise for the clinical diagnosis of very rare genetic syndromes of multiple congenital anomalies. This is the first reported account of collaborative crowd sourcing in dysmorphology, as part of a clinical genetics service. © 2015 S. Karger AG, Basel.

  11. Clinical outcomes for couples containing a reciprocal chromosome translocation carrier without preimplantation genetic diagnosis.

    Science.gov (United States)

    Yin, Biao; Zhu, Yuanchang; Wu, Tonghua; Shen, Shuqiu; Zeng, Yong; Liang, Desheng

    2017-03-01

    To evaluate the pregnancy outcomes of couples containing a carrier of a reciprocal chromosome translocation (RCT) after assisted reproductive technology without preimplantation genetic diagnosis. A retrospective study was performed using data for couples with an RCT carrier and control couples with a normal karyotype (1:4 ratio) who underwent assisted reproductive technology cycles at a Chinese fertility center in 2010-2011. The embryos were fertilized via in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI). Only the first pick-up cycles were used for analysis. Clinical variables were compared. Compared with the control group (n=164), the RCT group (n=41) had a marginally lower clinical pregnancy rate (46.3% [19/41] vs 54.3% [89/164]), implantation rate (21.7% [23/106] vs 26.9% [118/438]), multiple-gestation pregnancy rate (21.1% [4/19] vs 32.6% [29/89]), and delivery rate (36.6% [15/41] vs 47.6% [78/164]), whereas the spontaneous abortion rate was slightly higher (21.1% [4/19] vs 12.4% [11/89]). However, none of these differences were significant. The clinical outcomes for RCT carriers were acceptable after IVF/ICSI without performing preimplantation genetic diagnosis, indicating that this approach might comprise a feasible alternative fertility treatment for RCT carriers. © 2016 International Federation of Gynecology and Obstetrics.

  12. Genetic analysis of Tunisian families with Usher syndrome type 1: toward improving early molecular diagnosis.

    Science.gov (United States)

    Ben-Rebeh, Imen; Grati, Mhamed; Bonnet, Crystel; Bouassida, Walid; Hadjamor, Imen; Ayadi, Hammadi; Ghorbel, Abdelmonem; Petit, Christine; Masmoudi, Saber

    2016-01-01

    Usher syndrome accounts for about 50% of all hereditary deaf-blindness cases. The most severe form of this syndrome, Usher syndrome type I (USH1), is characterized by profound congenital sensorineural deafness, vestibular dysfunction, and retinitis pigmentosa. Six USH1 genes have been identified, MYO7A, CDH23, PCDH15, USH1C, SANS, and CIB2, encoding myosin VIIA, cadherin-23, protocadherin-15, harmonin, scaffold protein containing ankyrin repeats and a sterile alpha motif (SAM) domain, and calcium- and integrin-binding member 2, respectively. In the present study, we recruited four Tunisian families with a diagnosis of USH1, together with healthy unrelated controls. Affected members underwent detailed audiologic and ocular examinations. We used the North African Deafness (NADf) chip to search for known North African mutations associated with USH. Then, we selected microsatellite markers covering USH1 known loci to genotype the DNA samples. Finally, we performed DNA sequencing of three known USH1 genes: MYO7A, PCDH15, and USH1C. Four biallelic mutations, all single base changes, were found in the MYO7A, USH1C, and PCDH15 genes. These mutations consist of a previously reported splicing defect c.470+1G>A in MYO7A, three novel variants, including two nonsense (p.Arg3X and p.Arg134X) in USH1C and PCDH15, respectively, and one frameshift (p.Lys615Asnfs*6) in MYO7A. We found a remarkable genetic heterogeneity in the studied families with USH1 with a variety of mutations, among which three were novel. These novel mutations will be included in the NADf mutation screening chip that will allow a higher diagnosis efficiency of this extremely genetically heterogeneous disease. Ultimately, efficient molecular diagnosis of USH in a patient's early childhood is of utmost importance, allowing better educational and therapeutic management.

  13. [Rapid prenatal genetic diagnosis of a fetus with a high risk for Morquio A syndrome].

    Science.gov (United States)

    Guo, Yi-bin; Ai, Yang; Zhao, Yan; Tang, Jia; Jiang, Wei-ying; Du, Min-lian; Ma, Hua-mei; Zhong, Yan-fang

    2012-04-01

    To provide rapid and accurate prenatal genetic diagnosis for a fetus with high risk of Morquio A syndrome. Based on ascertained etiology of the proband and genotypes of the parents, particular mutations of the GALNS gene were screened at 10th gestational week with amplification refractory mutation system (ARMS), denaturing high performance liquid chromatography (DHPLC), and direct DNA sequencing. DHPLC screening has identified abnormal double peaks in the PCR products of exons 1 and 10, whilst only a single peak was detected in normal controls. Amplification of ARMS specific primers derived a specific product for the fetus's gene, whilst no similar product was detected in normal controls. Sequencing of PCR products confirmed that exons 1 and 10 of the GALNS gene from the fetus contained a heterozygous paternal c.106-111 del (p.L36-L37 del) deletion and a heterozygous maternal c.1097 T>C (p.L366P) missense mutation, which resulted in a compound heterozygote status. The fetus was diagnosed with Morquio A syndrome and a genotype similar to the proband. Termination of the pregnancy was recommended. Combined ARMS, DHPLC and DNA sequencing are effective for rapid and accurate prenatal diagnosis for fetus with a high risk for Morquio A syndrome. Such methods are particularly suitable for early diagnosis when pathogenesis is clear. Furthermore, combined ARMS and DHPLC are suitable for rapid processing of large numbers of samples for the identification of new mutations.

  14. Comparing targeted exome and whole exome approaches for genetic diagnosis of neuromuscular disorders

    Directory of Open Access Journals (Sweden)

    Svetlana Gorokhova

    2015-12-01

    Full Text Available Massively parallel sequencing is rapidly becoming a widely used method in genetic diagnostics. However, there is still no clear consensus as to which approach can most efficiently identify the pathogenic mutations carried by a given patient, while avoiding false negative and false positive results. We developed a targeted exome approach (MyoPanel2 in order to optimize genetic diagnosis of neuromuscular disorders. Using this approach, we were able to analyse 306 genes known to be mutated in myopathies as well as in related disorders, obtaining 98.8% target sequence coverage at 20×. Moreover, MyoPanel2 was able to detect 99.7% of 11,467 known mutations responsible for neuromuscular disorders. We have then used several quality control parameters to compare performance of the targeted exome approach with that of whole exome sequencing. The results of this pilot study of 140 DNA samples suggest that targeted exome sequencing approach is an efficient genetic diagnostic test for most neuromuscular diseases.

  15. Permanent neonatal diabetes mellitus: prevalence and genetic diagnosis in the SEARCH for Diabetes in Youth Study.

    Science.gov (United States)

    Kanakatti Shankar, Roopa; Pihoker, Catherine; Dolan, Lawrence M; Standiford, Debra; Badaru, Angela; Dabelea, Dana; Rodriguez, Beatriz; Black, Mary Helen; Imperatore, Giuseppina; Hattersley, Andrew; Ellard, Sian; Gilliam, Lisa K

    2013-05-01

    Neonatal diabetes mellitus (NDM) is defined as diabetes with onset before 6 months of age. Nearly half of individuals with NDM are affected by permanent neonatal diabetes mellitus (PNDM). Mutations in KATP channel genes (KCNJ11, ABCC8) and the insulin gene (INS) are the most common causes of PNDM. To estimate the prevalence of PNDM among SEARCH for Diabetes in Youth (SEARCH) study participants (2001-2008) and to identify the genetic mutations causing PNDM. SEARCH is a multicenter population-based study of diabetes in youth diabetes before 6 months of age were invited for genetic testing for mutations in the KCNJ11, ABCC8, and INS genes. Of the 15,829 SEARCH participants with diabetes, 39 were diagnosed before 6 months of age. Thirty-five of them had PNDM (0.22% of all diabetes cases in SEARCH), 3 had transient neonatal diabetes that had remitted by 18 months and 1 was unknown. The majority of them (66.7%) had a clinical diagnosis of type1 diabetes by their health care provider. Population prevalence of PNDM in youth US based on the frequency of PNDM in SEARCH. Patients with NDM are often misclassified as having type1 diabetes. Widespread education is essential to encourage appropriate genetic testing and treatment of NDM. © 2012 John Wiley & Sons A/S.

  16. Comparison between fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis in translocation carriers.

    Science.gov (United States)

    Lee, Vivian C Y; Chow, Judy F C; Lau, Estella Y L; Yeung, William S B; Ho, P C; Ng, Ernest H Y

    2015-02-01

    To compare the pregnancy outcome of the fluorescent in-situ hybridisation and array comparative genomic hybridisation in preimplantation genetic diagnosis of translocation carriers. Historical cohort. A teaching hospital in Hong Kong. All preimplantation genetic diagnosis treatment cycles performed for translocation carriers from 2001 to 2013. Overall, 101 treatment cycles for preimplantation genetic diagnosis in translocation were included: 77 cycles for reciprocal translocation and 24 cycles for Robertsonian translocation. Fluorescent in-situ hybridisation and array comparative genomic hybridisation were used in 78 and 11 cycles, respectively. The ongoing pregnancy rate per initiated cycle after array comparative genomic hybridisation was significantly higher than that after fluorescent in-situ hybridisation in all translocation carriers (36.4% vs 9.0%; P=0.010). The miscarriage rate was comparable with both techniques. The testing method (array comparative genomic hybridisation or fluorescent in-situ hybridisation) was the only significant factor affecting the ongoing pregnancy rate after controlling for the women's age, type of translocation, and clinical information of the preimplantation genetic diagnosis cycles by logistic regression (odds ratio=1.875; P=0.023; 95% confidence interval, 1.090-3.226). This local retrospective study confirmed that comparative genomic hybridisation is associated with significantly higher pregnancy rates versus fluorescent in-situ hybridisation in translocation carriers. Array comparative genomic hybridisation should be the technique of choice in preimplantation genetic diagnosis cycles in translocation carriers.

  17. Do parental perceptions and motivations towards genetic testing and prenatal diagnosis for deafness vary in different cultures?

    Science.gov (United States)

    Nahar, Risha; Puri, Ratna D; Saxena, Renu; Verma, Ishwar C

    2013-01-01

    Surveys of attitudes of individuals with deafness and their families towards genetic testing or prenatal diagnosis have mostly been carried out in the West. It is expected that the perceptions and attitudes would vary amongst persons of different cultures and economic background. There is little information on the prevailing attitudes for genetic testing and prenatal diagnosis for deafness in developing countries. Therefore, this study evaluates the motivations of Indian people with inherited hearing loss towards such testing. Twenty-eight families with history of congenital hearing loss (23 hearing parents with child/family member with deafness, 4 couples with both partners having deafness and 1 parent and child with deafness) participated in a semi-structured survey investigating their interest, attitudes, and intentions for using genetic and prenatal testing for deafness. Participants opinioned that proper management and care of individuals with deafness were handicapped by limited rehabilitation facilities with significant financial and social burden. Nineteen (68%) opted for genetic testing. Twenty-six (93%) expressed high interest in prenatal diagnosis, while 19 (73%) would consider termination of an affected fetus. Three hearing couples, in whom the causative mutations were identified, opted for prenatal diagnosis. On testing, all the three fetuses were affected and the hearing parents elected to terminate the pregnancies. This study provides an insight into the contrasting perceptions towards hearing disability in India and its influence on the desirability of genetic testing and prenatal diagnosis. Copyright © 2012 Wiley Periodicals, Inc.

  18. Access to medical-assisted reproduction and pgd in Italian law: a deadly blow to an illiberal statute? commentary to the European Court on Human Rights's decision Costa and Pavan v Italy (ECtHR, 28 August 2012, App. 54270/2010).

    Science.gov (United States)

    Biondi, Stefano

    2013-01-01

    This article provides an account of the European Court on Human Rights' Second Section decision in the case Costa and Pavan v Italy. The judgment found that the Italian Statute on Assisted Reproduction (Law 40/2004), and particularly its prohibition to use in vitro fertilisation and pre-implantation genetic diagnosis (PGD) to prevent the birth of children affected by genetically transmissible conditions, breached Article 8 of the European Convention on Human Rights (ECHR). In fact, the statute in question permits only infertile people to access medically assisted reproduction techniques and forbids PGD and embryo selection. The Court regarded that the rationale of these prohibitions-identified by the Italian Government with the need to prevent eugenic practices as well as to protect the health of the unborn and of the woman-was at odds with the fact that Italian law allows pre-natal screening and therapeutic abortions in case foetal abnormalities are diagnosed. In order to clarify the decision's significance, the paper goes on to analyse the rationale of Law 40/2004 in the Italian legal and political context. Emphasis is placed on the fact that this statute is extremely controversial at domestic level, because many of its provisions-including those considered by the Strasbourg Court-are inherently contradictory and contrast with the settled constitutional principles on abortion, as many domestic authorities highlighted. In this context, should the commented decision be confirmed by the Grand Chamber, it may provide a basis to bring consistency back to the Italian regulation of assisted reproduction. Finally, the paper considers the appeal lodged by the Italian Government to the Grand Chamber, and in particular the contention that the European Court had failed to respect Italy's margin of appreciation. In this regard, it is argued that, under Law 40/2004, individuals face illogical and discriminatory restrictions to their right to private and family life and that

  19. Experience of more than 100 preimplantation genetic diagnosis cycles for monogenetic diseases using whole genome amplification and linkage analysis in a single centre.

    Science.gov (United States)

    Chow, Judy F C; Yeung, William S B; Lee, Vivian C Y; Lau, Estella Y L; Ho, P C; Ng, Ernest H Y

    2015-08-01

    To report the outcomes of more than 100 cycles of preimplantation genetic diagnosis for monogenetic diseases. Case series. Tertiary assisted reproductive centre in Hong Kong, where patients needed to pay for the cost of preimplantation genetic diagnosis on top of standard in-vitro fertilisation charges. Patients undergoing preimplantation genetic diagnosis for monogenetic diseases at the Centre of Assisted Reproduction and Embryology, Queen Mary Hospital-The University of Hong Kong between 1 August 2007 and 30 April 2014 were included. In-vitro fertilisation, intracytoplasmic sperm injection, embryo biopsy, and preimplantation genetic diagnosis. Ongoing pregnancy rate and implantation rate. Overall, 124 cycles of preimplantation genetic diagnosis were initiated in 76 patients, 101 cycles proceeded to preimplantation genetic diagnosis, and 92 cycles had embryo transfer. The ongoing pregnancy rate was 28.2% per initiated cycle and 38.0% per embryo transfer, giving an implantation rate of 35.2%. There were 16 frozen-thawed embryo transfer cycles in which, following preimplantation genetic diagnosis, cryopreserved embryos were replaced resulting in an ongoing pregnancy rate of 37.5% and implantation rate of 30.0%. The cumulative ongoing pregnancy rate was 33.1%. The most frequent indication for preimplantation genetic diagnosis was thalassaemia, followed by neurodegenerative disorder and cancer predisposition. There was no misdiagnosis. Preimplantation genetic diagnosis is a reliable method to prevent couples conceiving fetuses severely affected by known genetic disorders, with ongoing pregnancy and implantation rates similar to those for in-vitro fertilisation for routine infertility treatment.

  20. Effect of PGD2 on middle meningeal artery and mRNA expression profile of L-PGD2 synthase and DP receptors in trigeminovascular system and other pain processing structures in rat brain

    DEFF Research Database (Denmark)

    Sekeroglu, Aysegül; Jacobsen, Julie Mie; Jansen-Olesen, Inger

    2017-01-01

    Background Prostaglandins (PGs), particularly prostaglandin D2 (PGD2), E2 (PGE2), and I2 (PGI2), are considered to play a role in migraine pain. In humans, infusion of PGD2 causes lesser headache as compared to infusion of PGE2 and PGI2. Follow-up studies in rats have shown that infusion of PGE2...... and PGI2 dilate the middle meningeal artery (MMA), and mRNA for PGE2 and PGI2 receptors is present in rat trigeminovascular system (TVS) and in the brain structures associated with pain. In the present study, we have characterized the dilatory effect of PGD2 on rat MMA and studied the relative m...... tested tissues. DP1 receptor mRNA was expressed maximally in trigeminal ganglion (TG) and in cervical dorsal root ganglion (DRG). Conclusions High expression of DP1 mRNA in the TG and DRG suggest that PGD2 might play a role in migraine pathophysiology. Activation of the DP1 receptor in MMA was mainly...

  1. Genetic algorithm-based neural network for accidents diagnosis of research reactors on FPGA

    International Nuclear Information System (INIS)

    Ghuname, A.A.A.

    2012-01-01

    The Nuclear Research Reactors plants are expected to be operated with high levels of reliability, availability and safety. In order to achieve and maintain system stability and assure satisfactory and safe operation, there is increasing demand for automated systems to detect and diagnose such failures. Artificial Neural Networks (ANNs) are one of the most popular solutions because of their parallel structure, high speed, and their ability to give easy solution to complicated problems. The genetic algorithms (GAs) which are search algorithms (optimization techniques), in recent years, have been used to find the optimum construction of a neural network for definite application, as one of the advantages of its usage. Nowadays, Field Programmable Gate Arrays (FPGAs) are being an important implementation method of neural networks due to their high performance and they can easily be made parallel. The VHDL, which stands for VHSIC (Very High Speed Integrated Circuits) Hardware Description Language, have been used to describe the design behaviorally in addition to schematic and other description languages. The description of designs in synthesizable language such as VHDL make them reusable and be implemented in upgradeable systems like the Nuclear Research Reactors plants. In this thesis, the work was carried out through three main parts.In the first part, the Nuclear Research Reactors accident's pattern recognition is tackled within the artificial neural network approach. Such patterns are introduced initially without noise. And, to increase the reliability of such neural network, the noise ratio up to 50% was added for training in order to ensure the recognition of these patterns if it introduced with noise.The second part is concerned with the construction of Artificial Neural Networks (ANNs) using Genetic algorithms (GAs) for the nuclear accidents diagnosis. MATLAB ANNs toolbox and GAs toolbox are employed to optimize an ANN for this purpose. The results obtained show

  2. Molecular genetic mutation analysis in Menkes-disease with prenatal diagnosis

    DEFF Research Database (Denmark)

    László, Aranka; Endreffy, Emoke; Tümer, Zeynep

    2010-01-01

    Menkes disease (MD) is an X-linked recessive multisystemic lethal, heredodegenerative disorder. Progressive neurodegeneration and connective tissue disturbances with microscopically kinky hair are the main symptoms. Molecular genetic mutation analysis was made at a Hungarian male infant suffering...... from MD and prenatal diagnosis was done in this MD loaded family. METHOD: The 12th exon of ATP7A gene has been analyzed by dideoxy-finger printing (DDF), polymerase chain reaction (PCR), direct sequencing of exon 12. The specific mutation was screened from chorionic villi of the maternal aunt at the 14......th gestational week. RESULTS: In the exon 12th a basic pair substitution with Arg 844 His change was detected leading to very severe fatal missense mutation....

  3. On the use of PGD for optimal control applied to automated fibre placement

    Science.gov (United States)

    Bur, N.; Joyot, P.

    2017-10-01

    Automated Fibre Placement (AFP) is an incipient manufacturing process for composite structures. Despite its concep-tual simplicity it involves many complexities related to the necessity of melting the thermoplastic at the interface tape-substrate, ensuring the consolidation that needs the diffusion of molecules and control the residual stresses installation responsible of the residual deformations of the formed parts. The optimisation of the process and the determination of the process window cannot be achieved in a traditional way since it requires a plethora of trials/errors or numerical simulations, because there are many parameters involved in the characterisation of the material and the process. Using reduced order modelling such as the so called Proper Generalised Decomposition method, allows the construction of multi-parametric solution taking into account many parameters. This leads to virtual charts that can be explored on-line in real time in order to perform process optimisation or on-line simulation-based control. Thus, for a given set of parameters, determining the power leading to an optimal temperature becomes easy. However, instead of controlling the power knowing the temperature field by particularizing an abacus, we propose here an approach based on optimal control: we solve by PGD a dual problem from heat equation and optimality criteria. To circumvent numerical issue due to ill-conditioned system, we propose an algorithm based on Uzawa's method. That way, we are able to solve the dual problem, setting the desired state as an extra-coordinate in the PGD framework. In a single computation, we get both the temperature field and the required heat flux to reach a parametric optimal temperature on a given zone.

  4. [Cytogenetic and molecular genetic diagnosis of a neonate with partial 13q trisomy and partial 5p monosomy].

    Science.gov (United States)

    Xiao, Wenjun; Gao, Zhenkui; Meng, Qian; Zhang, Man

    2014-12-01

    To diagnose a neonate presenting with multiple dysmorphic features, Cri-du-chat signs and hypoglycemia and to correlate the phenotype with the genotype. The patient was diagnosed with conventional cytogenetics and real-time fluorescence quantitative PCR (QF-PCR). The phenotype was then correlated with the genotype through a review of literature. The neonate was diagnosed with a partial 13q trisomy (q12 → qter) and partial 5p monosomy (p15 →pter). A rare diagnosis has been established with combined cytogenetic and molecular genetic techniques. QF-PCR has a broad application in genetic diagnosis.

  5. Pros and cons of HaloPlex enrichment in cancer predisposition genetic diagnosis

    Directory of Open Access Journals (Sweden)

    Agnès Collet

    2015-12-01

    Full Text Available Panel sequencing is a practical option in genetic diagnosis. Enrichment and library preparation steps are critical in the diagnostic setting. In order to test the value of HaloPlex technology in diagnosis, we designed a custom oncogenetic panel including 62 genes. The procedure was tested on a training set of 71 controls and then blindly validated on 48 consecutive hereditary breast/ovarian cancer (HBOC patients tested negative for BRCA1/2 mutation. Libraries were sequenced on HiSeq2500 and data were analysed with our academic bioinformatics pipeline. Point mutations were detected using Varscan2, median size indels were detected using Pindel and large genomic rearrangements (LGR were detected by DESeq. Proper coverage was obtained. However, highly variable read depth was observed within genes. Excluding pseudogene analysis, all point mutations were detected on the training set. All indels were also detected using Pindel. On the other hand, DESeq allowed LGR detection but with poor specificity, preventing its use in diagnostics. Mutations were detected in 8% of BRCA1/2-negative HBOC cases. HaloPlex technology appears to be an efficient and promising solution for gene panel diagnostics. Data analysis remains a major challenge and geneticists should enhance their bioinformatics knowledge in order to ensure good quality diagnostic results.

  6. Genetic point-of-care diagnosis of Mycoplasma pneumoniae infection using LAMP assay.

    Science.gov (United States)

    Kakuya, Fujio; Kinebuchi, Takahiro; Fujiyasu, Hiroaki; Tanaka, Ryosuke; Kano, Hiroki

    2014-08-01

    Mycoplasma pneumoniae (MP) is a major pathogen of lower respiratory tract infection (LRTI) in children. A rapid diagnostic method during the acute phase is required for the prescription of effective antibiotics. A prospective, single-centered study was conducted on community-acquired LRTI in children. We regarded the day of fever onset as the first day of illness. In part 1, we studied 191 patients with signs of LRTI. We compared diagnostic reliability using loop-mediated isothermal amplification (LAMP) assay and serological testing at the first visit. In part 2, we evaluated the clinical characteristics of 117 patients with positive LAMP assay. In part 1, 31 patients met the definite MP infection criteria. LAMP assay had a sensitivity of 96.8% and specificity of 100%, whereas enzyme immunoassay had a sensitivity of 38.7% and specificity of 76.9%, and particle agglutination test had a sensitivity of 19.4% and specificity of 93.1%. In part 2, of 106 patients with fever, 100 patients were diagnosed by the day 7 of illness. The diagnosis was made a mean of 3.5 ± 2.1 days after the onset of fever. LAMP assay had excellent sensitivity and specificity for the detection of acute MP infection at the first visit. This assay can diagnose MP infection during the very acute phase. LAMP assay is appropriate for genetic point-of-care diagnosis of MP infection in hospital laboratories. © 2014 Japan Pediatric Society.

  7. Diabetes Mellitus in Neonates and Infants: Genetic Heterogeneity, Clinical Approach to Diagnosis, and Therapeutic Options

    Science.gov (United States)

    Rubio-Cabezas, Oscar; Ellard, Sian

    2013-01-01

    Over the last decade, we have witnessed major advances in the understanding of the molecular basis of neonatal and infancy-onset diabetes. It is now widely accepted that diabetes presenting before 6 months of age is unlikely to be autoimmune type 1 diabetes. The vast majority of such patients will have a monogenic disorder responsible for the disease and, in some of them, also for a number of other associated extrapancreatic clinical features. Reaching a molecular diagnosis will have immediate clinical consequences for about half of affected patients, as identification of a mutation in either of the two genes encoding the ATP-sensitive potassium channel allows switching from insulin injections to oral sulphonylureas. It also facilitates genetic counselling within the affected families and predicts clinical prognosis. Importantly, monogenic diabetes seems not to be limited to the first 6 months but extends to some extent into the second half of the first year of life, when type 1 diabetes is the more common cause of diabetes. From a scientific perspective, the identification of novel genetic aetiologies has provided important new knowledge regarding the development and function of the human pancreas. PMID:24051999

  8. [Rapid first-tier genetic diagnosis in patients with Prader-Willi syndrome].

    Science.gov (United States)

    Ács, Orsolya Dóra; Péterfia, Bálint; Hollósi, Péter; Haltrich, Irén; Sallai, Ágnes; Luczay, Andrea; Buiting, Karin; Horsthemke, Bernhard; Török, Dóra; Szabó, András; Fekete, György

    2018-01-01

    According to the international literature, DNA methylation analysis of the promoter region of SNRPN locus is the most efficient way to start genetic investigation in patients with suspected Prader-Willi syndrome. Our aim was to develop a simple, reliable first-tier diagnosis to confirm Prader-Willi syndrome, therefore to compare our self-designed simple, cost-efficient high-resolution melting analysis and the most commonly used methylation-specific multiplex ligation-dependent probe amplification to confirm Prader-Willi syndrome. We studied 17 clinically suspected Prader-Willi syndrome children and their DNA samples. With self-designed primers, bisulfite-sensitive polymerase chain reaction, high-resolution melting analysis and, as a control, methylation-specific multiplex ligation-dependent probe amplification were performed. Prader-Willi syndrome was genetically confirmed in 6 out of 17 clinically suspected Prader-Willi syndrome patients. The results of high-resolution melting analysis and methylation-specific multiplex ligation-dependent probe amplification were equivalent in each case. Using our self-designed primers and altered bisulfite-specific PCR conditions, high-resolution melting analysis appears to be a simple, fast, reliable and effective method for primarily proving or excluding clinically suspected Prade-Willi syndrome cases. Orv Hetil. 2018; 159(2): 64-69.

  9. Cost-sensitive case-based reasoning using a genetic algorithm: application to medical diagnosis.

    Science.gov (United States)

    Park, Yoon-Joo; Chun, Se-Hak; Kim, Byung-Chun

    2011-02-01

    The paper studies the new learning technique called cost-sensitive case-based reasoning (CSCBR) incorporating unequal misclassification cost into CBR model. Conventional CBR is now considered as a suitable technique for diagnosis, prognosis and prescription in medicine. However it lacks the ability to reflect asymmetric misclassification and often assumes that the cost of a positive diagnosis (an illness) as a negative one (no illness) is the same with that of the opposite situation. Thus, the objective of this research is to overcome the limitation of conventional CBR and encourage applying CBR to many real world medical cases associated with costs of asymmetric misclassification errors. The main idea involves adjusting the optimal cut-off classification point for classifying the absence or presence of diseases and the cut-off distance point for selecting optimal neighbors within search spaces based on similarity distribution. These steps are dynamically adapted to new target cases using a genetic algorithm. We apply this proposed method to five real medical datasets and compare the results with two other cost-sensitive learning methods-C5.0 and CART. Our finding shows that the total misclassification cost of CSCBR is lower than other cost-sensitive methods in many cases. Even though the genetic algorithm has limitations in terms of unstable results and over-fitting training data, CSCBR results with GA are better overall than those of other methods. Also the paired t-test results indicate that the total misclassification cost of CSCBR is significantly less than C5.0 and CART for several datasets. We have proposed a new CBR method called cost-sensitive case-based reasoning (CSCBR) that can incorporate unequal misclassification costs into CBR and optimize the number of neighbors dynamically using a genetic algorithm. It is meaningful not only for introducing the concept of cost-sensitive learning to CBR, but also for encouraging the use of CBR in the medical area

  10. A genetic diagnosis of maturity-onset diabetes of the young (MODY): experiences of patients and family members

    NARCIS (Netherlands)

    Bosma, A.R.; Rigter, T.; Weinreich, S.S.; Cornel, M.C.; Henneman, L.

    2015-01-01

    Aims: Genetic testing for maturity-onset diabetes of the young (MODY) facilitates a correct diagnosis, enabling treatment optimization and allowing monitoring of asymptomatic family members. To date, the majority of people with MODY remain undiagnosed. To identify patients' needs and areas for

  11. Preimplantation genetic testing for aneuploidy: what technology should you use and what are the differences?

    Science.gov (United States)

    Brezina, Paul R; Anchan, Raymond; Kearns, William G

    2016-07-01

    The purpose of the review was to define the various diagnostic platforms currently available to perform preimplantation genetic testing for aneuploidy and describe in a clear and balanced manner the various strengths and weaknesses of these technologies. A systematic literature review was conducted. We used the terms "preimplantation genetic testing," "preimplantation genetic diagnosis," "preimplantation genetic screening," "preimplantation genetic diagnosis for aneuploidy," "PGD," "PGS," and "PGD-A" to search through PubMed, ScienceDirect, and Google Scholar from the year 2000 to April 2016. Bibliographies of articles were also searched for relevant studies. When possible, larger randomized controlled trials were used. However, for some emerging data, only data from meeting abstracts were available. PGS is emerging as one of the most valuable tools to enhance pregnancy success with assisted reproductive technologies. While all of the current diagnostic platforms currently available have various advantages and disadvantages, some platforms, such as next-generation sequencing (NGS), are capable of evaluating far more data points than has been previously possible. The emerging complexity of different technologies, especially with the utilization of more sophisticated tools such as NGS, requires an understanding by clinicians in order to request the best test for their patients.. Ultimately, the choice of which diagnostic platform is utilized should be individualized to the needs of both the clinic and the patient. Such a decision must incorporate the risk tolerance of both the patient and provider, fiscal considerations, and other factors such as the ability to counsel patients on their testing results and how these may or may not impact clinical outcomes.

  12. Diagnosis of eight groups of xeroderma pigmentosum by genetic complementation using recombinant adenovirus vectors.

    Science.gov (United States)

    Yamashita, Toshiharu; Okura, Masae; Ishii-Osai, Yasue; Hida, Tokimasa

    2016-10-01

    Because patients with xeroderma pigmentosum (XP) must avoid ultraviolet (UV) light from an early age, an early diagnosis of this disorder is essential. XP is composed of seven genetic complementation groups, XP-A to -G, and a variant type (XP-V). To establish an easy and accurate diagnosis of the eight disease groups, we constructed recombinant adenoviruses that expressed one of the XP cDNA. When fibroblasts derived from patients with XP-A, -B, -C, -D, -F or -G were infected with the adenovirus expressing XPA, XPB, XPC, XPD, XPF or XPG, respectively, and UV-C at 5-20 J/m 2 was irradiated, cell viability was clearly recovered by the corresponding recombinant adenoviruses. In contrast, XP-E and XP-V cells were not significantly sensitive to UV irradiation and were barely complemented by the matched recombinant adenoviruses. However, co-infection of Ad-XPA with Ad-XPE increased survival rate of XP-E cells after UV-C exposure. When XP-V cell strains, including one derived from a Japanese patient, were infected with Ad-XPV, exposed to UV-B and cultured with 1 mmol/L of caffeine, flow cytometry detected a characteristic decrease in the S phase in all the XP-V cell strains. From these results, the eight groups of XP could be differentiated by utilizing a set of recombinant adenoviruses, indicating that our procedure provides a convenient and correct diagnostic method for all the XP groups including XP-E and XP-V. © 2016 Japanese Dermatological Association.

  13. Assisted procreation and its relationship to genetics and eugenics.

    Science.gov (United States)

    Ricci, Mariella Lombardi

    2009-01-01

    The article below is intended to reflect on whether or not a eugenic tendency constitutes an intrinsic element of human fertilization in vitro. The author outlines ideas and circumstances which characterized the foundation and propagation of eugenics between the eighteenth and nineteenth centuries. A brief discussion follows on some of the standard procedures of in vitro fertilization, and in particular, those which manifest a trace or hint of eugenics--heterologous fertilization and sperm banking, preimplantation genetic diagnosis (PGD) and embryo selection--practices which, nonetheless, are used on a large scale and shed light on both the essence of procreative medicine and on the current cultural environment. The objective of the article is to explore whether it is possible to eliminate the eugenic connotations without foregoing the benefits of technical and scientific progress.

  14. Peutz-Jeghers syndrome and family planning: the attitude towards prenatal diagnosis and pre-implantation genetic diagnosis

    NARCIS (Netherlands)

    M.G.F. van Lier (Margot); S.E. Korsse (Susanne); E.M.H. Mathus-Vliegen (Elisabeth); E.J. Kuipers (Ernst); A.M.W. van den Ouweland (Ans); K. Vanheusden (Kathleen); M.E. van Leerdam (Monique); A. Wagner (Anja)

    2012-01-01

    textabstractPeutz-Jeghers syndrome (PJS) is a hereditary disorder caused by LKB1 gene mutations, and is associated with considerable morbidity and decreased life expectancy. This study was conducted to assess the attitude of PJS patients towards family planning, prenatal diagnosis (PND) and

  15. Peutz-Jeghers syndrome and family planning: the attitude towards prenatal diagnosis and pre-implantation genetic diagnosis

    NARCIS (Netherlands)

    van Lier, Margot G. F.; Korsse, Susanne E.; Mathus-Vliegen, Elisabeth M. H.; Kuipers, Ernst J.; van den Ouweland, Ans M. W.; Vanheusden, Kathleen; van Leerdam, Monique E.; Wagner, Anja

    2012-01-01

    Peutz-Jeghers syndrome (PJS) is a hereditary disorder caused by LKB1 gene mutations, and is associated with considerable morbidity and decreased life expectancy. This study was conducted to assess the attitude of PJS patients towards family planning, prenatal diagnosis (PND) and pregnancy

  16. Examining applying high performance genetic data feature selection and classification algorithms for colon cancer diagnosis.

    Science.gov (United States)

    Al-Rajab, Murad; Lu, Joan; Xu, Qiang

    2017-07-01

    This paper examines the accuracy and efficiency (time complexity) of high performance genetic data feature selection and classification algorithms for colon cancer diagnosis. The need for this research derives from the urgent and increasing need for accurate and efficient algorithms. Colon cancer is a leading cause of death worldwide, hence it is vitally important for the cancer tissues to be expertly identified and classified in a rapid and timely manner, to assure both a fast detection of the disease and to expedite the drug discovery process. In this research, a three-phase approach was proposed and implemented: Phases One and Two examined the feature selection algorithms and classification algorithms employed separately, and Phase Three examined the performance of the combination of these. It was found from Phase One that the Particle Swarm Optimization (PSO) algorithm performed best with the colon dataset as a feature selection (29 genes selected) and from Phase Two that the Support Vector Machine (SVM) algorithm outperformed other classifications, with an accuracy of almost 86%. It was also found from Phase Three that the combined use of PSO and SVM surpassed other algorithms in accuracy and performance, and was faster in terms of time analysis (94%). It is concluded that applying feature selection algorithms prior to classification algorithms results in better accuracy than when the latter are applied alone. This conclusion is important and significant to industry and society. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Preimplantation diagnosis: efficient tool for human leukocyte antigen matched bone marrow transplantation for thalassemia

    Directory of Open Access Journals (Sweden)

    Anver Kuliev

    2011-08-01

    Full Text Available Thalassemia is among the most frequent indications for preimplantation genetic diagnosis (PGD to allow at risk couples reproducing without fear of having an affected child. In addition, those already having the affected child, have also the option to produce an unaffected offspring that may be also a complete human leukocyte antigen (HLA match to affected child to ensure successful bone marrow transplantation. We present here the results of retrospective analysis of 293 PGD cycles for thalassemia, including 144cases of simultaneous HLA typing, resulting in birth of 70 thalassemia-free children and 12 unaffected HLA matched ones, providing their cord blood and/or bone marrow for transplantation treatment of their affected siblings. The present overall experience includes successful cord blood or bone marrow transplantation in more than three dozens of cases with HLA matched stem cells obtained from children born after PGD, demonstrating that PGD is an efficient approach for improving success of bone marrow transplantation treatment for thalassemia.   植入前遗传学诊断(PGD)是地中海贫血(地贫)最常用的疗法,该病患者夫妇无须担心孕儿受到感染。此外,如果已经怀上受到感染的宝宝,他们也可有选择性再生育一个未受感染的后代,提供完全匹配的HLA,来确保骨髓成功移植。本文将提供293个地贫病例的PGD周期诊断结果,包括144例HLA同时配型,有70例宝宝无地贫出生和12例未受感染的HLA配型宝宝出生。将这些健康宝宝的脐带血和/或骨髓取出以完成对他们同胞的移植手术,通过使用经诊断后的,出生宝宝身上取出的HLA配型干细胞,成功完成36例宝宝的脐带或骨髓移植手术。结果表明PGD能有效提高地贫患儿骨髓移植手术的成功率。

  18. Preimplantation genetic diagnosis for a patient with Robertsonian translocation%一例罗伯逊易位携带者的胚胎植入前遗传学诊断

    Institute of Scientific and Technical Information of China (English)

    李春华; 章晓梅; 李永刚; 朱宝生; 孟昱时; 冯怀英; 武泽; 高梦莹; 唐新华; 吴剑云

    2004-01-01

    目的探讨植入前遗传学诊断(preimplantation genetic diagnosis, PGD)用于筛选罗伯逊易位携带者无遗传缺陷后代的可行性及风险.方法 1对因男方携带易位(13;14)染色体并伴少、弱精的原发不孕夫妇,经激素超促排卵和单精子卵胞浆内注射(intracytoplasmic sperm injection,ICSI)进行体外受精(in vitro fertilization,IVF),当胚胎发育到6~8细胞阶段(受精后第3天)时,用酸化法活检,从每个胚胎中取出单个分裂球,用LSI 13q和Tel 14q探针进行荧光原位杂交(fluorescence in situ hybridization,FISH)检测,继续培养活检后的胚胎到第2天,并选择正常胚胎移植,获临床妊娠后,于妊娠中期行羊水细胞染色体检查. 结果活检10个胚胎,获得8个FISH诊断结果:50%(4/8)正常或平衡的胚胎,37.5%(3/8)不平衡的胚胎,12.5%(1/8)不确定.将诊断正常或平衡的胚胎3枚于活检第2天移植入母体宫腔,获临床单胎妊娠,产前诊断证实胎儿核型为46,XY,完全正常,现分娩一正常男婴.结论需行辅助生殖技术治疗的患者,当携带有罗伯逊易位时,PGD用于筛除异常胚胎,解决患者的生育障碍、预防严重遗传病胎儿的产生具有重要价值.

  19. 植入前遗传学诊断的方法及应用%Methods and application of preimplantation genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    任秀莲; 陈贵安

    2009-01-01

    植入前遗传学诊断(preimplantation genetic diagnosis,PGD)是指对体外受精胚胎的遗传物质进行分析,诊断胚胎是否有某些遗传异常,确定该胚胎是否适合移植,选择不致造成遗传学疾患的胚胎植入宫腔,从而获得正常胎儿的诊断方法。PGD的步骤包括激素诱导超促排卵,获得卯母细胞,用常规体外受精(in vitro fertilization,IVF)或卵母细胞单精子显微注射(intracytoplasmic sperm injection,ICSI)受精,体外培养至6~8个细胞期或囊胚期,在此期间通过显微操作对胚胎或卵母细胞进行活检,

  20. The challenge of preimplantation genetic diagnosis technology%胚胎植入前遗传学诊断技术的挑战

    Institute of Scientific and Technical Information of China (English)

    徐艳文

    2010-01-01

    如何安全有效地获得胚胎的遗传物质,如何克服极低样本量对诊断的的准确性和有效性的影响,以及如何开发适用范围更广的诊断方法是植入前遗传学诊断(preimplantation genetic diagno-sis,PGD)技术层面面临的主要挑战.多个随机对照前瞻性研究证实非整倍体筛查显著降低了高龄妇女的临床妊娠率和活产率,其原因可能是由于卵裂期胚胎的染色体不稳定性影响结果的准确性.通过极体活检进行非整倍体筛查的临床应用价值尚须进一步研究.

  1. Genetic variation in IL-16 miRNA target site and time to prostate cancer diagnosis in African American men

    Science.gov (United States)

    Hughes, Lucinda; Ruth, Karen; Rebbeck, Timothy R.; Giri, Veda N.

    2013-01-01

    Background Men with a family history of prostate cancer and African American men are at high risk for prostate cancer and in need of personalized risk estimates to inform screening decisions. This study evaluated genetic variants in genes encoding microRNA (miRNA) binding sites for informing of time to prostate cancer diagnosis among ethnically-diverse, high-risk men undergoing prostate cancer screening. Methods The Prostate Cancer Risk Assessment Program (PRAP) is a longitudinal screening program for high-risk men. Eligibility includes men ages 35-69 with a family history of prostate cancer or African descent. Participants with ≥ 1 follow-up visit were included in the analyses (n=477). Genetic variants in regions encoding miRNA binding sites in four target genes (ALOX15, IL-16, IL-18, and RAF1) previously implicated in prostate cancer development were evaluated. Genotyping methods included Taqman® SNP Genotyping Assay (Applied Biosystems) or pyrosequencing. Cox models were used to assess time to prostate cancer diagnosis by risk genotype. Results Among 256 African Americans with ≥ one follow-up visit, the TT genotype at rs1131445 in IL-16 was significantly associated with earlier time to prostate cancer diagnosis vs. the CC/CT genotypes (p=0.013), with a suggestive association after correction for false-discovery (p=0.065). Hazard ratio after controlling for age and PSA for TT vs. CC/CT among African Americans was 3.0 (95% CI 1.26-7.12). No association to time to diagnosis was detected among Caucasians by IL-16 genotype. No association to time to prostate cancer diagnosis was found for the other miRNA target genotypes. Conclusions Genetic variation in IL-16 encoding miRNA target site may be informative of time to prostate cancer diagnosis among African American men enrolled in prostate cancer risk assessment, which may inform individualized prostate cancer screening strategies in the future. PMID:24061634

  2. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Mariela Cerrada

    2015-09-01

    Full Text Available There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  3. Prenatal diagnosis as a tool and support for eugenics: myth or reality in contemporary French society?

    Science.gov (United States)

    Gaille, Marie; Viot, Géraldine

    2013-02-01

    Today, French public debate and bioethics research reflect an ongoing controversy about eugenics. The field of reproductive medicine is often targeted as pre-implantation genetic diagnosis (PGD), prenatal diagnosis, and prenatal detection are accused of drifting towards eugenics or being driven by eugenics considerations. This article aims at understanding why the charge against eugenics came at the forefront of the ethical debate. Above all, it aims at showing that the charge against prenatal diagnosis is groundless. The point of view presented in this article has been elaborated jointly by a geneticist and a philosopher. Besides a survey of the medical, bioethical, philosophical and social sciences literature on the topic, the methodology is founded on a joint analysis of geneticist's various consults. Evidence from office visits demonstrated that prenatal diagnosis leads to case-by-case decisions. As we have suggested, this conclusion does not mean that prenatal diagnosis is devoid of ethical issues, and we have identified at least two. The first is related to the evaluation of a decision to abort. The second line of ethical questions arises from the fact that the claim for "normality" hardly hides normative and ambiguous views about disability. As a conclusion, ethical dilemmas keep being noticeable in the field of reproductive medicine and genetic counselling, but an enquiry about eugenic tendencies probably does not allow us to understand them in the proper way.

  4. "I do not want my baby to suffer as I did"; prenatal and preimplantation genetic diagnosis for BRCA1/2 mutations: a case report and genetic counseling considerations.

    Science.gov (United States)

    Dagan, Efrat; Gershoni-Baruch, Ruth; Kurolap, Alina; Goldberg, Yael; Fried, Georgeta

    2014-07-01

    This article presents the complexity of prenatal genetic diagnosis and preimplantation genetic diagnosis for hereditary breast-ovarian cancer syndrome. These issues are discussed using a case report to highlight the genetic counseling process, together with decision-making considerations, in light of the clinical, psychological, and ethical perspectives, of both the mutation carriers and health professionals; and the health policy regarding these procedures in Israel compared to several European countries.

  5. Embryo genome profiling by single-cell sequencing for preimplantation genetic diagnosis in a β-thalassemia family

    DEFF Research Database (Denmark)

    Xu, Yanwen; Chen, Shengpei; Yin, Xuyang

    2015-01-01

    for a β-thalassemia-carrier couple to have a healthy second baby. We carried out sequencing for single blastomere cells and the family trio and further developed the analysis pipeline, including recovery of the missing alleles, removal of the majority of errors, and phasing of the embryonic genome...... leukocyte antigen matching tests. CONCLUSIONS: This retrospective study in a β-thalassemia family demonstrates a method for embryo genome recovery through single-cell sequencing, which permits detection of genetic variations in preimplantation genetic diagnosis. It shows the potential of single...

  6. Evaluation of Salivary Cytokines for Diagnosis of both Trauma-Induced and Genetic Heterotopic Ossification

    Directory of Open Access Journals (Sweden)

    Benjamin Levi

    2017-04-01

    Full Text Available PurposeHeterotopic ossification (HO occurs in the setting of persistent systemic inflammation. The identification of reliable biomarkers can serve as an early diagnostic tool for HO, especially given the current lack of effective treatment strategies. Although serum biomarkers have great utility, they can be inappropriate or ineffective in traumatic acute injuries and in patients with fibrodysplasia ossificans progressiva (FOP. Therefore, the goal of this study is to profile the cytokines associated with HO using a different non-invasive source of biomarkers.MethodsSerum and saliva were collected from a model of trauma-induced HO (tHO with hind limb Achilles’ tenotomy and dorsal burn injury at indicated time points (pre-injury, 48 h, 1 week, and 3 weeks post-injury and a genetic non-trauma HO model (Nfatc1-Cre/caAcvr1fl/wt. Samples were analyzed for 27 cytokines using the Bio-Plex assay. Histologic evaluation was performed in Nfatc1-Cre/caAcvr1fl/wt mice and at 48 h and 1 week post-injury in burn tenotomy mice. The mRNA expression levels of these cytokines at the tenotomy site were also quantified with quantitative real-time PCR. Pearson correlation coefficient was assessed between saliva and serum.ResultsLevels of TNF-α and IL-1β peaked at 48 h and 1 week post-injury in the burn/tenotomy cohort, and these values were significantly higher when compared with both uninjured (p < 0.01, p < 0.03 and burn-only mice (p < 0.01, p < 0.01. Immunofluorescence staining confirmed enhanced expression of IL-1β, TNF-α, and MCP-1 at the tenotomy site 48 h after injury. Monocyte chemoattractant protein-1 (MCP-1 and VEGF was detected in saliva showing elevated levels at 1 week post-injury in our tHO model when compared with both uninjured (p < 0.001, p < 0.01 and burn-only mice (p < 0.005, p < 0.01. The Pearson correlation between serum MCP-1 and salivary MCP-1 was statistically significant (r = 0

  7. Prenatal diagnosis and genetic counseling in a case of spina bifida in a family with Waardenburg syndrome type I.

    Science.gov (United States)

    Kujat, Annegret; Veith, Veit-Peter; Faber, Renaldo; Froster, Ursula G

    2007-01-01

    Waardenburg syndrome type I (WS I) is an autosomal dominant inherited disorder with an incidence of 1:45,000 in Europe. Mutations within the PAX3 gene are responsible for the clinical phenotype ranging from mild facial features to severe malformations detectable in prenatal diagnosis. Here, we report a four-generation family with several affected members showing various symptoms of WS I. We diagnosed the syndrome first in a pregnant young woman; she was referred because of a spina bifida in prenatal diagnosis. We performed clinical genetic investigations and molecular genetic analysis in all available family members. The phenotype displays a wide intra-familial clinical variability of pigmentary disturbances, facial anomalies and developmental defects. Molecular studies identified a novel splice site mutation within the PAX3 gene in intron 5 in all affected family members, but in none of the unaffected relatives. This case demonstrates the prenatal diagnosis of spina bifida in a fetus which leads to the initial diagnosis of WS I. Further studies could identify a private splice site mutation within the PAX3 gene responsible for the phenotype in this family.

  8. Genetic diagnosis of Duchenne and Becker muscular dystrophy using multiplex ligation-dependent probe amplification in Rwandan patients.

    Science.gov (United States)

    Uwineza, Annette; Hitayezu, Janvier; Murorunkwere, Seraphine; Ndinkabandi, Janvier; Kalala Malu, Celestin Kaputu; Caberg, Jean Hubert; Dideberg, Vinciane; Bours, Vincent; Mutesa, Leon

    2014-04-01

    Duchenne and Becker muscular dystrophies are the most common clinical forms of muscular dystrophies. They are genetically X-linked diseases caused by a mutation in the dystrophin (DMD) gene. A genetic diagnosis was carried out in six Rwandan patients presenting a phenotype of Duchenne and Becker muscular dystrophies and six asymptomatic female carrier relatives using multiplex ligation-dependent probe amplification (MLPA). Our results revealed deletion of the exons 48-51 in one patient, an inherited deletion of the exons 8-21 in two brothers and a de novo deletion of the exons 46-50 in the fourth patient. No copy number variation was found in two patients. Only one female carrier presented exon deletion in the DMD gene. This is the first cohort of genetic analysis in Rwandan patients affected by Duchenne and Becker muscular dystrophies. This report confirmed that MLPA assay can be easily implemented in low-income countries.

  9. Protein and genetic diagnosis of limb girdle muscular dystrophy type 2A: The yield and the pitfalls.

    Science.gov (United States)

    Fanin, Marina; Angelini, Corrado

    2015-08-01

    Limb girdle muscular dystrophy type 2A (LGMD2A) is the most frequent form of LGMD worldwide. Comprehensive clinical assessment and laboratory testing is essential for diagnosis of LGMD2A. Muscle immunoblot analysis of calpain-3 is the most useful tool to direct genetic testing, as detection of calpain-3 deficiency has high diagnostic value. However, calpain-3 immunoblot testing lacks sensitivity in about 30% of cases due to gene mutations that inactivate the enzyme. The best diagnostic strategy should be determined on a case-by-case basis, depending on which tissues are available, and which molecular and/or genetic methods are adopted. In this work we survey the current knowledge, advantages, limitations, and pitfalls of protein testing and mutation detection in LGMD2A and provide an update of genetic epidemiology. © 2015 Wiley Periodicals, Inc.

  10. A genetic diagnosis of maturity-onset diabetes of the young (MODY): experiences of patients and family members.

    Science.gov (United States)

    Bosma, A R; Rigter, T; Weinreich, S S; Cornel, M C; Henneman, L

    2015-10-01

    Genetic testing for maturity-onset diabetes of the young (MODY) facilitates a correct diagnosis, enabling treatment optimization and allowing monitoring of asymptomatic family members. To date, the majority of people with MODY remain undiagnosed. To identify patients' needs and areas for improving care, this study explores the experiences of patients and family members who have been genetically tested for MODY. Fourteen semi-structured interviews with patients and the parents of patients, and symptomatic and asymptomatic family members were conducted. Atlas.ti was used for thematic analysis. Most people with MODY were initially misdiagnosed with Type 1 or Type 2 diabetes; they had been seeking for the correct diagnosis for a long time. Reasons for having a genetic test included reassurance, removing the uncertainty of developing diabetes (in asymptomatic family members) and informing relatives. Reasons against testing were the fear of genetic discrimination and not having symptoms. Often a positive genetic test result did not come as a surprise. Both patients and family members were satisfied with the decision to get tested because it enabled them to adjust their lifestyle and treatment accordingly. All participants experienced a lack of knowledge of MODY among healthcare professionals, in their social environment and in patient organizations. Additionally, problems with the reimbursement of medical expenses were reported. Patients and family members are generally positive about genetic testing for MODY. More education of healthcare professionals and attention on the part of diabetes organizations is needed to increase awareness and optimize care and support for people with MODY. © 2015 The Authors. Diabetic Medicine © 2015 Diabetes UK.

  11. Prenatal diagnosis and genetic counseling for Waardenburg syndrome type I and II in Chinese families.

    Science.gov (United States)

    Wang, Li; Qin, Litao; Li, Tao; Liu, Hongjian; Ma, Lingcao; Li, Wan; Wu, Dong; Wang, Hongdan; Guo, Qiannan; Guo, Liangjie; Liao, Shixiu

    2018-01-01

    Waardenburg syndrome (WS) is an auditory‑pigmentary disorder with varying combinations of sensorineural hearing loss and abnormal pigmentation. The present study aimed to investigate the underlying molecular pathology and provide a method of prenatal diagnosis of WS in Chinese families. A total of 11 patients with WS from five unrelated Chinese families were enrolled. A thorough clinical examination was performed on all participants. Furthermore, patients with WS underwent screening for mutations in the following genes: Paired box 3 (PAX3), melanogenesis associated transcription factor (MITF), SRY‑box 10, snail family transcriptional repressor 2 and endothelin receptor type B using polymerase chain reaction sequencing. Array‑based comparative genomic hybridization was used for specific patients whose sequence results were normal. Following identification of the genotype of the probands and their parents, prenatal genetic diagnosis was performed for family 01 and 05. According to the diagnostic criteria for WS, five cases were diagnosed as WS1, while the other six cases were WS2. Genetic analysis revealed three mutations, including a nonsense mutation PAX3 c.583C>T in family 01, a splice‑site mutation MITF c.909G>A in family 03 and an in‑frame deletion MITF c.649_651delGAA in family 05. To the best of the authors' knowledge the mutations (c.583C>T in PAX3 and c.909G>A in MITF) were reported for the first time in Chinese people. Mutations in the gene of interest were not identified in family 02 and 04. The prenatal genetic testing of the two fetuses was carried out and demonstrated that the two babies were normal. The results of the present study expanded the range of known genetic mutations in China. Identification of genetic mutations in these families provided an efficient way to understand the causes of WS and improved genetic counseling.

  12. Genetic variation of cowslip (Primula veris L. populations (West Poland

    Directory of Open Access Journals (Sweden)

    Maria Morozowska

    2011-01-01

    Full Text Available Genetic variation of twelve Polish populations of Primula veris L. from western Poland was investigated in respect of six enzyme systems: 6-phosphogluconate dehydrogenase (6PGD, diaphorase (DIA, menadione reductase (MNR, formate dehydrogenase (FDH, isocitrate dehydrogenase (IDH and glutamate oxaloacetate transaminase (GOT. Only two of them (6PGD and DIA were polymorphic and all populations were compared according to four loci and eight alleles. For 6PGD only one out of the two detected loci (locus 6PGD-2 was polymorphic and consisted of three alleles a, b and c. For DIA each of two detected loci had two alleles. For 6PGD-2 one population was monomorphic and four populations were monomorphic for DIA-1 and DIA-2. The rest of the populations were polymorphic with low frequency of heterozygotes. The low heterozygosity level, found in the examined populations, was confirmed by high values of the fixation index (F. The level of genetic differentiation among GST populations specified for each polymorphic loci, was equal to 0.045 for 6PGD-2 and had the value of 0.078 for DIA-2 and 0.186 for DIA-1. Nm value for polymorphic loci was 1.10 for DIA-1 and 2.94 for DIA-2, and for 6PGD-2 was 5.33, what indicates some gene flow between the examined populations. The dendrogram constructed on the basis of genotype frequencies showed that the populations were divided into two groups, however the most southern population No. 2 was clearly similar to the northern population No. 8.

  13. [The significance of pedigree genetic screening and rapid immunological parameters in the diagnosis of primary hemophagocytic lymphohistiocytosis].

    Science.gov (United States)

    Zhang, J; Wang, Y N; Wang, J S; Wu, L; Wei, N; Fu, L; Gao, Z; Chen, J H; Pei, R J; Wang, Z

    2016-07-01

    To investigate the significance of pedigree genetic screening and rapid immunological parameters in the diagnosis of primary hemophagocytic lymphohistiocytosis (HLH). Four cases of primary HLH patients with PRF1, UNC13D and SH2D1A gene mutations were conducted pedigree investigation, including family genetic screening and detections of immunological parameters (NK cell activity, CD107a degranulation and expression of HLH related defective protein), to evaluate the significance of these different indicators in the diagnosis of primary HLH and explore their correlations. The DNA mutations of the four families included missense mutation c.T172C (p.S58P) and non- frameshift deletions c.1083_1094del (p.361_365del), missense mutation c.C1349T (p.T450M) and frameshift mutation c.1090_1091delCT (p.T364fsX93) in PRF1 gene, missense mutation c.G2588A (p.G863D) in UNC13D gene and hemizygous mutation c.32T>G (p.I11S) in SH2D1A gene. The patients and their family members presented decreased NK cell activities. Individuals who carried mutations of PRF1 gene and SH2D1A gene showed low expression of perforin (PRF1) and signaling lymphocytic activation molecule associated protein (SAP). And the patient with UNC13D gene mutation and his family member with identical mutation showed significant reducing cytotoxic degranulation function (expression of CD107a). Pedigree genetic screening and rapid detection of immunological parameters might play an important role in the diagnosis of primary HLH, and both of them had good consistency. As an efficient detection means, the rapid immunological detection indicators would provide reliable basis for the early diagnosis of the primary HLH.

  14. 在β地中海贫血着床前遗传学诊断中应用多重置换扩增进行预处理的临床分析%Clinical analysis of pretreatment by multiple displacement amplification in preimplantation genetic diagnosis for β-thalassemia

    Institute of Scientific and Technical Information of China (English)

    王静; 徐艳文; 曾艳红; 丁晨晖; 徐建; 周灿权

    2014-01-01

    目的 分析应用多重置换扩增技术(multiple displacement amplification,MDA)进行全基因组扩增的预处理是否影响β地中海贫血着床前遗传学诊断(preimplantation genetic diagnosis,PGD)的准确效能. 方法 回顾性地分析2009年1月至2013年6月,因双方均为β地中海贫血携带者而行PGD治疗的周期资料,其中34个周期采用多重巢式聚合酶链反应(PCR)结合反向斑点杂交技术对单细胞进行诊断,另有38个周期行MDA进行全基因组扩增的预处理后,再结合反向斑点杂交技术进行诊断. 结果 两组患者在年龄、获卵数等实验室指标上无统计学差异.MDA组未检出(扩增失败)率为9.79%,低于行巢式PCR组的15.24%,而杂合子率46.33%则略高,但两种方法在诊断结果上并无统计学差异. 结论 应用MDA技术进行全基因组的预扩增可有效增加检测模板,实现多位点及多种疾病的诊断,而且不影响β地中海贫血地贫基因的诊断效能.

  15. A decision tree for the genetic diagnosis of deficiency of adenosine deaminase 2 (DADA2): a French reference centres experience.

    Science.gov (United States)

    Rama, Mélanie; Duflos, Claire; Melki, Isabelle; Bessis, Didier; Bonhomme, Axelle; Martin, Hélène; Doummar, Diane; Valence, Stéphanie; Rodriguez, Diana; Carme, Emilie; Genevieve, David; Heimdal, Ketil; Insalaco, Antonella; Franck, Nathalie; Queyrel-Moranne, Viviane; Tieulie, Nathalie; London, Jonathan; Uettwiller, Florence; Georgin-Lavialle, Sophie; Belot, Alexandre; Koné-Paut, Isabelle; Hentgen, Véronique; Boursier, Guilaine; Touitou, Isabelle; Sarrabay, Guillaume

    2018-04-23

    Deficiency of adenosine deaminase 2 (DADA2) is a recently described autoinflammatory disorder. Genetic analysis is required to confirm the diagnosis. We aimed to describe the identifying symptoms and genotypes of patients referred to our reference centres and to improve the indications for genetic testing. DNA from 66 patients with clinically suspected DADA2 were sequenced by Sanger or next-generation sequencing. Detailed epidemiological, clinical and biological features were collected by use of a questionnaire and were compared between patients with and without genetic confirmation of DADA2. We identified 13 patients (19.6%) carrying recessively inherited mutations in ADA2 that were predicted to be deleterious. Eight patients were compound heterozygous for mutations. Seven mutations were novel (4 missense variants, 2 predicted to affect mRNA splicing and 1 frameshift). The mean age of the 13 patients with genetic confirmation was 12.7 years at disease onset and 20.8 years at diagnosis. Phenotypic manifestations included fever (85%), vasculitis (85%) and neurological disorders (54%). Features best associated with a confirmatory genotype included fever with neurologic or cutaneous attacks (odds ratio [OR] 10.71, p = 0.003 and OR 10.9, p < 0.001), fever alone (OR 8.1, p = 0.01), and elevated C-reactive protein (CRP) level with neurologic involvement (OR 6.63, p = 0.017). Our proposed decision tree may help improve obtaining genetic confirmation of DADA2 in the context of autoinflammatory symptoms. Prerequisites for quick and low-cost Sanger analysis include one typical cutaneous or neurological sign, one marker of inflammation (fever or elevated CRP level), and recurrent or chronic attacks in adults.

  16. Avoiding Pitfalls in Molecular Genetic Testing: Case Studies of High-Resolution Array Comparative Genomic Hybridization Testing in the Definitive Diagnosis of Mowat-Wilson Syndrome

    OpenAIRE

    Kluk, Michael Joseph; An, Yu; James, Philip; Coulter, David; Harris, David; Wu, Bai-Lin; Shen, Yiping

    2011-01-01

    The molecular testing options available for the diagnosis of genetic disorders are numerous and include a variety of different assay platforms. The consultative input of molecular pathologists and cytogeneticists, working closely with the ordering clinicians, is often important for definitive diagnosis. Herein, we describe two patients who had long histories of unexplained signs and symptoms with a high clinical suspicion of an underlying genetic etiology. Initial molecular testing in both ca...

  17. Genetic Testing Confirmed the Early Diagnosis of X-Linked Hypophosphatemic Rickets in a 7-Month-Old Infant

    Directory of Open Access Journals (Sweden)

    Kok Siong Poon BSc

    2015-08-01

    Full Text Available Loss-of-function mutations in the p hosphate regulating gene with h omologies to e ndopeptidases on the X -chromosome ( PHEX have been causally associated with X-linked hypophosphatemic rickets (XLHR. The early diagnosis of XLHR in infants is challenging when it is based solely on clinical features and biochemical findings. We report a 7-month-old boy with a family history of hypophosphatemic rickets., who demonstrated early clinical evidence of rickets, although serial biochemical findings could not definitively confirm rickets. A sequencing assay targeting the PHEX gene was first performed on the mother’s DNA to screen for mutations in the 5′UTR, 22 coding exons, and the exon-intron junctions. Targeted mutation analysis and mRNA studies were subsequently performed on the boys’ DNA to investigate the pathogenicity of the identified mutation. Genetic screening of the PHEX gene revealed a novel mutation, c.1080-2A>C, at the splice acceptor site in intron 9. The detection of an aberrant mRNA transcript with skipped (loss of exon 10 establishes its pathogenicity and confirms the diagnosis of XLHR in this infant. Genetic testing of the PHEX gene resulted in early diagnosis of XLHR, thus enabling initiation of therapy and prevention of progressive rachitic changes in the infant.

  18. Delayed diagnosis of a patient with Usher syndrome 1C in a Louisiana Acadian family highlights the necessity of timely genetic testing for the diagnosis and management of congenital hearing loss.

    Science.gov (United States)

    Umrigar, Ayesha; Musso, Amanda; Mercer, Danielle; Hurley, Annette; Glausier, Cassondra; Bakeer, Mona; Marble, Michael; Hicks, Chindo; Tsien, Fern

    2017-01-01

    Advances in sequencing technologies and increased understanding of the contribution of genetics to congenital sensorineural hearing loss have led to vastly improved outcomes for patients and their families. Next-generation sequencing and diagnostic panels have become increasingly reliable and less expensive for clinical use. Despite these developments, the diagnosis of genetic sensorineural hearing loss still presents challenges for healthcare providers. Inherited sensorineural hearing loss has high levels of genetic heterogeneity and variable expressivity. Additionally, syndromic hearing loss (hearing loss and additional clinical abnormalities) should be distinguished from non-syndromic (hearing loss is the only clinical symptom). Although the diagnosis of genetic sensorineural hearing loss can be challenging, the patient's family history and ethnicity may provide critical information, as certain genetic mutations are more common in specific ethnic populations. The early identification of the cause of deafness can benefit patients and their families by estimating recurrence risks for future family planning and offering the proper interventions to improve their quality of life. Collaboration between pediatricians, audiologists, otolaryngologists, geneticists, and other specialists are essential in the diagnosis and management of patients with hearing disorders. An early diagnosis is vital for proper management and care, as some clinical manifestations of syndromic sensorineural hearing loss are not apparent at birth and have a delayed age of onset. We present a case of Usher syndrome (congenital deafness and childhood-onset blindness) illustrating the challenges encountered in the diagnosis and management of children presenting with congenital genetic sensorineural hearing loss, along with helpful resources for clinicians and families.

  19. Fault Diagnosis System of Induction Motors Based on Neural Network and Genetic Algorithm Using Stator Current Signals

    Directory of Open Access Journals (Sweden)

    Tian Han

    2006-01-01

    Full Text Available This paper proposes an online fault diagnosis system for induction motors through the combination of discrete wavelet transform (DWT, feature extraction, genetic algorithm (GA, and neural network (ANN techniques. The wavelet transform improves the signal-to-noise ratio during a preprocessing. Features are extracted from motor stator current, while reducing data transfers and making online application available. GA is used to select the most significant features from the whole feature database and optimize the ANN structure parameter. Optimized ANN is trained and tested by the selected features of the measurement data of stator current. The combination of advanced techniques reduces the learning time and increases the diagnosis accuracy. The efficiency of the proposed system is demonstrated through motor faults of electrical and mechanical origins on the induction motors. The results of the test indicate that the proposed system is promising for the real-time application.

  20. Motion-Genetic Testing is Useful in the Diagnosis of Nonhereditary Pancreatic Conditions: Arguments for the Motion

    Directory of Open Access Journals (Sweden)

    David C Whitcomb

    2003-01-01

    Full Text Available Mutations of three major genes are associated with an increased risk of acute and chronic pancreatitis: the cationic trypsinogen (PRSS1 gene, the cystic fibrosis transmembrane conductance regulator (CFTR gene, and the pancreatic secretory trypsin inhibitor (PSTI or serine protease inhibitor, Kazal type 1 (SPINK1 gene. Some autosomal dominant forms of hereditary pancreatitis are associated with mutations of the PRSS1 gene, which can be readily identified by genetic testing. Mutations of the CFTR gene can lead either to cystic fibrosis or to idiopathic chronic pancreatitis, and to a variety of cystic fibrosis-associated disorders, including congenital bilateral absence of the vas deferens and sinusitis. These mutations, as with those of the SPINK1 (or PSTI gene, are prevalent in North America; thus, the presence of such a mutation in an asymptomatic person does not confer a high risk of developing pancreatitis. Combinations of mutations of the PRSS1 and SPINK1 genes lead to more severe disease, as indicated by an earlier onset of symptoms, which suggests that SPINK1 is a disease modifier. The major fear expressed by potential candidates for genetic testing is that the results could lead to insurance discrimination. Studies of the positive predictive value of genetic tests are hampered by recruitment bias and lack of knowledge of family history of pancreatitis. Genetic testing is most useful for persons for whom family members have already been found to exhibit a particular pancreatitis-associated mutation. In the future, increased knowledge of the myriad genetic causes of pancreatitis, as well as advances in the diagnosis and treatment of early chronic pancreatitis, should enhance the utility of genetic testing.

  1. A targeted next-generation sequencing assay for the molecular diagnosis of genetic disorders with orodental involvement

    Science.gov (United States)

    Prasad, Megana K; Geoffroy, Véronique; Vicaire, Serge; Jost, Bernard; Dumas, Michael; Le Gras, Stéphanie; Switala, Marzena; Gasse, Barbara; Laugel-Haushalter, Virginie; Paschaki, Marie; Leheup, Bruno; Droz, Dominique; Dalstein, Amelie; Loing, Adeline; Grollemund, Bruno; Muller-Bolla, Michèle; Lopez-Cazaux, Séréna; Minoux, Maryline; Jung, Sophie; Obry, Frédéric; Vogt, Vincent; Davideau, Jean-Luc; Davit-Beal, Tiphaine; Kaiser, Anne-Sophie; Moog, Ute; Richard, Béatrice; Morrier, Jean-Jacques; Duprez, Jean-Pierre; Odent, Sylvie; Bailleul-Forestier, Isabelle; Rousset, Monique Marie; Merametdijan, Laure; Toutain, Annick; Joseph, Clara; Giuliano, Fabienne; Dahlet, Jean-Christophe; Courval, Aymeric; El Alloussi, Mustapha; Laouina, Samir; Soskin, Sylvie; Guffon, Nathalie; Dieux, Anne; Doray, Bérénice; Feierabend, Stephanie; Ginglinger, Emmanuelle; Fournier, Benjamin; de la Dure Molla, Muriel; Alembik, Yves; Tardieu, Corinne; Clauss, François; Berdal, Ariane; Stoetzel, Corinne; Manière, Marie Cécile; Dollfus, Hélène; Bloch-Zupan, Agnès

    2016-01-01

    Background Orodental diseases include several clinically and genetically heterogeneous disorders that can present in isolation or as part of a genetic syndrome. Due to the vast number of genes implicated in these disorders, establishing a molecular diagnosis can be challenging. We aimed to develop a targeted next-generation sequencing (NGS) assay to diagnose mutations and potentially identify novel genes mutated in this group of disorders. Methods We designed an NGS gene panel that targets 585 known and candidate genes in orodental disease. We screened a cohort of 101 unrelated patients without a molecular diagnosis referred to the Reference Centre for Oro-Dental Manifestations of Rare Diseases, Strasbourg, France, for a variety of orodental disorders including isolated and syndromic amelogenesis imperfecta (AI), isolated and syndromic selective tooth agenesis (STHAG), isolated and syndromic dentinogenesis imperfecta, isolated dentin dysplasia, otodental dysplasia and primary failure of tooth eruption. Results We discovered 21 novel pathogenic variants and identified the causative mutation in 39 unrelated patients in known genes (overall diagnostic rate: 39%). Among the largest subcohorts of patients with isolated AI (50 unrelated patients) and isolated STHAG (21 unrelated patients), we had a definitive diagnosis in 14 (27%) and 15 cases (71%), respectively. Surprisingly, COL17A1 mutations accounted for the majority of autosomal-dominant AI cases. Conclusions We have developed a novel targeted NGS assay for the efficient molecular diagnosis of a wide variety of orodental diseases. Furthermore, our panel will contribute to better understanding the contribution of these genes to orodental disease. Trial registration numbers NCT01746121 and NCT02397824. PMID:26502894

  2. Prenatal diagnosis of spinal muscular atrophy in Chinese by genetic analysis of fetal cells

    Institute of Scientific and Technical Information of China (English)

    WU Ting; DING Xin-sheng; LI Wen-lei; YAO Juan; DENG Xiao-xuan

    2005-01-01

    Background Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by degeneration of anterior horn cells of the spinal cord.The survival motor neuron gene is SMA-determining gene deleted in approximately 95% of SMA patients.This study was undertaken to predict prenatal SMA efficiently and rapidly in families with previously affected child.Methods Prenatal diagnosis was made in 8 fetuses with a family history of SMA.Polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) were used for the detection of the survival motor neuron gene.Results The survival motor neuron gene was not found in 6 fetuses, ruling out the diagnosis of SMA.Two fetuses were detected positive and the pregnancies were terminated.Conclusion Our method is effective and convenient in prenatal diagnosis of SMA.

  3. Advanced Genetic Testing Comes to the Pain Clinic to Make a Diagnosis of Paroxysmal Extreme Pain Disorder

    Directory of Open Access Journals (Sweden)

    Ashley Cannon

    2016-01-01

    Full Text Available Objective. To describe the use of an advanced genetic testing technique, whole exome sequencing, to diagnose a patient and their family with a SCN9A channelopathy. Setting. Academic tertiary care center. Design. Case report. Case Report. A 61-year-old female with a history of acute facial pain, chronic pain, fibromyalgia, and constipation was found to have a gain of function SCN9A mutation by whole exome sequencing. This mutation resulted in an SCN9A channelopathy that is most consistent with a diagnosis of paroxysmal extreme pain disorder. In addition to the patient being diagnosed, four siblings have a clinical diagnosis of SCN9A channelopathy as they have consistent symptoms and a sister with a known mutation. For treatment, gabapentin was ineffective and carbamazepine was not tolerated. Nontraditional therapies improved symptoms and constipation resolved with pelvic floor retraining with biofeedback. Conclusion. Patients with a personal and family history of chronic pain may benefit from a referral to Medical Genetics. Pelvic floor retraining with biofeedback should be considered for patients with a SCN9A channelopathy and constipation.

  4. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis.

    Science.gov (United States)

    Donker, Albertine E; Raymakers, Reinier A P; Vlasveld, L Thom; van Barneveld, Teus; Terink, Rieneke; Dors, Natasja; Brons, Paul P T; Knoers, Nine V A M; Swinkels, Dorine W

    2014-06-19

    During recent years, our understanding of the pathogenesis of inherited microcytic anemias has gained from the identification of several genes and proteins involved in systemic and cellular iron metabolism and heme syntheses. Numerous case reports illustrate that the implementation of these novel molecular discoveries in clinical practice has increased our understanding of the presentation, diagnosis, and management of these diseases. Integration of these insights into daily clinical practice will reduce delays in establishing a proper diagnosis, invasive and/or costly diagnostic tests, and unnecessary or even detrimental treatments. To assist the clinician, we developed evidence-based multidisciplinary guidelines on the management of rare microcytic anemias due to genetic disorders of iron metabolism and heme synthesis. These genetic disorders may present at all ages, and therefore these guidelines are relevant for pediatricians as well as clinicians who treat adults. This article summarizes these clinical practice guidelines and includes background on pathogenesis, conclusions, and recommendations and a diagnostic flowchart to facilitate using these guidelines in the clinical setting. © 2014 by The American Society of Hematology.

  5. Situation of embryo preimplantation genetic diagnosis%胚胎着床前遗传学诊断概况

    Institute of Scientific and Technical Information of China (English)

    李宏军; 李志强

    2002-01-01

    本综述系统介绍了着床前遗传学诊断(PGD)的研究现状,包括常用方法,如多聚酶链反应、荧光原位杂交及其派生技术;适用范围,如选择极体细胞、早期胚胎细胞、囊胚期细胞;临床应用,如临床筛检遗传异常胚胎来指导试管婴儿工作、研究生殖细胞和早期胚胎的发育过程;以及相关的几个问题,如性别选择、移植胚胎数的选择和诊断的准确性.

  6. Genetic Bases of Bicuspid Aortic Valve: The Contribution of Traditional and High-Throughput Sequencing Approaches on Research and Diagnosis.

    Science.gov (United States)

    Giusti, Betti; Sticchi, Elena; De Cario, Rosina; Magi, Alberto; Nistri, Stefano; Pepe, Guglielmina

    2017-01-01

    development of "BigData" analysis methods improving their interpretation and integration with clinical data represents a promising opportunity to increase the disease knowledge and diagnosis in monogenic and multifactorial complex traits. This review summarized the main knowledge on the BAV genetic bases, the role of genetic diagnosis in BAV patient managements and the crucial challenges for the comprehension of genetics of BAV in research and diagnosis.

  7. Genetic Bases of Bicuspid Aortic Valve: The Contribution of Traditional and High-Throughput Sequencing Approaches on Research and Diagnosis

    Directory of Open Access Journals (Sweden)

    Betti Giusti

    2017-08-01

    the development of “BigData” analysis methods improving their interpretation and integration with clinical data represents a promising opportunity to increase the disease knowledge and diagnosis in monogenic and multifactorial complex traits. This review summarized the main knowledge on the BAV genetic bases, the role of genetic diagnosis in BAV patient managements and the crucial challenges for the comprehension of genetics of BAV in research and diagnosis.

  8. A Hybrid Computational Intelligence Approach Combining Genetic Programming And Heuristic Classification for Pap-Smear Diagnosis

    DEFF Research Database (Denmark)

    Tsakonas, Athanasios; Dounias, Georgios; Jantzen, Jan

    2001-01-01

    The paper suggests the combined use of different computational intelligence (CI) techniques in a hybrid scheme, as an effective approach to medical diagnosis. Getting to know the advantages and disadvantages of each computational intelligence technique in the recent years, the time has come...

  9. Feature selection using genetic algorithm for breast cancer diagnosis: experiment on three different datasets

    NARCIS (Netherlands)

    Aalaei, Shokoufeh; Shahraki, Hadi; Rowhanimanesh, Alireza; Eslami, Saeid

    2016-01-01

    This study addresses feature selection for breast cancer diagnosis. The present process uses a wrapper approach using GA-based on feature selection and PS-classifier. The results of experiment show that the proposed model is comparable to the other models on Wisconsin breast cancer datasets. To

  10. Addressing challenges in the diagnosis and treatment of rare genetic diseases.

    Science.gov (United States)

    Boycott, Kym M; Ardigó, Diego

    2018-03-01

    The past 5 years have seen an unprecedented rate of discovery of genes that cause rare diseases and with it a commensurate increase in the number of diagnosable but nevertheless untreatable disorders. Here, we discuss the increasing opportunity for diagnosis and therapy of rare diseases and how to tackle the associated challenges.

  11. Diagnosis of Fanconi Anemia: Mutation Analysis by Multiplex Ligation-Dependent Probe Amplification and PCR-Based Sanger Sequencing

    Science.gov (United States)

    Gille, Johan J. P.; Floor, Karijn; Kerkhoven, Lianne; Ameziane, Najim; Joenje, Hans; de Winter, Johan P.

    2012-01-01

    Fanconi anemia (FA) is a rare inherited disease characterized by developmental defects, short stature, bone marrow failure, and a high risk of malignancies. FA is heterogeneous: 15 genetic subtypes have been distinguished so far. A clinical diagnosis of FA needs to be confirmed by testing cells for sensitivity to cross-linking agents in a chromosomal breakage test. As a second step, DNA testing can be employed to elucidate the genetic subtype of the patient and to identify the familial mutations. This knowledge allows preimplantation genetic diagnosis (PGD) and enables prenatal DNA testing in future pregnancies. Although simultaneous testing of all FA genes by next generation sequencing will be possible in the near future, this technique will not be available immediately for all laboratories. In addition, in populations with strong founder mutations, a limited test using Sanger sequencing and MLPA will be a cost-effective alternative. We describe a strategy and optimized conditions for the screening of FANCA, FANCB, FANCC, FANCE, FANCF, and FANCG and present the results obtained in a cohort of 54 patients referred to our diagnostic service since 2008. In addition, the follow up with respect to genetic counseling and carrier screening in the families is discussed. PMID:22778927

  12. Diagnosis of Fanconi Anemia: Mutation Analysis by Multiplex Ligation-Dependent Probe Amplification and PCR-Based Sanger Sequencing

    Directory of Open Access Journals (Sweden)

    Johan J. P. Gille

    2012-01-01

    Full Text Available Fanconi anemia (FA is a rare inherited disease characterized by developmental defects, short stature, bone marrow failure, and a high risk of malignancies. FA is heterogeneous: 15 genetic subtypes have been distinguished so far. A clinical diagnosis of FA needs to be confirmed by testing cells for sensitivity to cross-linking agents in a chromosomal breakage test. As a second step, DNA testing can be employed to elucidate the genetic subtype of the patient and to identify the familial mutations. This knowledge allows preimplantation genetic diagnosis (PGD and enables prenatal DNA testing in future pregnancies. Although simultaneous testing of all FA genes by next generation sequencing will be possible in the near future, this technique will not be available immediately for all laboratories. In addition, in populations with strong founder mutations, a limited test using Sanger sequencing and MLPA will be a cost-effective alternative. We describe a strategy and optimized conditions for the screening of FANCA, FANCB, FANCC, FANCE, FANCF, and FANCG and present the results obtained in a cohort of 54 patients referred to our diagnostic service since 2008. In addition, the follow up with respect to genetic counseling and carrier screening in the families is discussed.

  13. Molecular marker studies in riverine buffaloes, for characterization and diagnosis of genetic defects

    International Nuclear Information System (INIS)

    Yadav, B.R.

    2005-01-01

    The buffalo is probably the last livestock species to have been domesticated, with many genetic, physiological and behavioural traits not yet well understood. Molecular markers have been used for characterizing animals and breeds, diagnosing diseases and identifying anatomical and physiological anomalies. RFLP studies showed low heterozygosity, but genomic and oligonucleotide probes showed species-specific bands useful for identification of carcass or other unknown samples. Use of RAPD revealed band frequencies, band sharing frequencies, genetic distances, and genetic and identity indexes in different breeds. Bovine microsatellite primers indicate that 70.9% of bovine loci were conserved in buffalo. Allele numbers, sizes, frequencies, heterozygosity and polymorphism information content showed breed-specific patterns. Different marker types - genomic and oligonucleotide probes, RAPD and microsatellites - are useful in parent identification. Individual specific DNA fingerprinting techniques were applied with twin-born animal (XX/XY) chimerism, sex identification, anatomically defective and XO individuals. Molecular markers are a potential tool for geneticists and breeders to evaluate existing germplasm and to manipulate it to develop character-specific strains and to provide the basis for effective genetic conservation. (author)

  14. Abdomen disease diagnosis in CT images using flexiscale curvelet transform and improved genetic algorithm.

    Science.gov (United States)

    Sethi, Gaurav; Saini, B S

    2015-12-01

    This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.

  15. Genetic diagnosis of familial hypercholesterolemia using a DNA-array based platform

    NARCIS (Netherlands)

    Alonso, Rodrigo; Defesche, Joep C.; Tejedor, Diego; Castillo, Sergio; Stef, Marianne; Mata, Nelva; Gomez-Enterria, Pilar; Martinez-Faedo, Ceferino; Forga, Lluis; Mata, Pedro

    2009-01-01

    The aim of this study was to validate the Lipochip genetic diagnostic platform by assessing effectiveness, sensitivity, specificity and costs for the identification of patients with familial hypercholesterolemia (FH) in Spain. This platform includes the use of a DNA micro array, the detection of

  16. Genetic Syndromes Associated with Congenital Cardiac Defects and Ophthalmologic Changes - Systematization for Diagnosis in the Clinical Practice.

    Science.gov (United States)

    Oliveira, Priscila H A; Souza, Beatriz S; Pacheco, Eimi N; Menegazzo, Michele S; Corrêa, Ivan S; Zen, Paulo R G; Rosa, Rafael F M; Cesa, Claudia C; Pellanda, Lucia C; Vilela, Manuel A P

    2018-01-01

    Numerous genetic syndromes associated with heart disease and ocular manifestations have been described. However, a compilation and a summarization of these syndromes for better consultation and comparison have not been performed yet. The objective of this work is to systematize available evidence in the literature on different syndromes that may cause congenital heart diseases associated with ocular changes, focusing on the types of anatomical and functional changes. A systematic search was performed on Medline electronic databases (PubMed, Embase, Cochrane, Lilacs) of articles published until January 2016. Eligibility criteria were case reports or review articles that evaluated the association of ophthalmic and cardiac abnormalities in genetic syndrome patients younger than 18 years. The most frequent genetic syndromes were: Down Syndrome, Velo-cardio-facial / DiGeorge Syndrome, Charge Syndrome and Noonan Syndrome. The most associated cardiac malformations with ocular findings were interatrial communication (77.4%), interventricular communication (51.6%), patent ductus arteriosus (35.4%), pulmonary artery stenosis (25.8%) and tetralogy of Fallot (22.5%). Due to their clinical variability, congenital cardiac malformations may progress asymptomatically to heart defects associated with high morbidity and mortality. For this reason, the identification of extra-cardiac characteristics that may somehow contribute to the diagnosis of the disease or reveal its severity is of great relevance.

  17. Genetic Syndromes Associated with Congenital Cardiac Defects and Ophthalmologic Changes - Systematization for Diagnosis in the Clinical Practice

    Directory of Open Access Journals (Sweden)

    Priscila H. A. Oliveira

    Full Text Available Abstract Background: Numerous genetic syndromes associated with heart disease and ocular manifestations have been described. However, a compilation and a summarization of these syndromes for better consultation and comparison have not been performed yet. Objective: The objective of this work is to systematize available evidence in the literature on different syndromes that may cause congenital heart diseases associated with ocular changes, focusing on the types of anatomical and functional changes. Method: A systematic search was performed on Medline electronic databases (PubMed, Embase, Cochrane, Lilacs of articles published until January 2016. Eligibility criteria were case reports or review articles that evaluated the association of ophthalmic and cardiac abnormalities in genetic syndrome patients younger than 18 years. Results: The most frequent genetic syndromes were: Down Syndrome, Velo-cardio-facial / DiGeorge Syndrome, Charge Syndrome and Noonan Syndrome. The most associated cardiac malformations with ocular findings were interatrial communication (77.4%, interventricular communication (51.6%, patent ductus arteriosus (35.4%, pulmonary artery stenosis (25.8% and tetralogy of Fallot (22.5%. Conclusion: Due to their clinical variability, congenital cardiac malformations may progress asymptomatically to heart defects associated with high morbidity and mortality. For this reason, the identification of extra-cardiac characteristics that may somehow contribute to the diagnosis of the disease or reveal its severity is of great relevance.

  18. Screening Out Controversy: Human Genetics, Emerging Techniques of Diagnosis, and the Origins of the Social Issues Committee of the American Society of Human Genetics, 1964-1973.

    Science.gov (United States)

    Mitchell, M X

    2017-05-01

    In the years following World War II, and increasingly during the 1960s and 1970s, professional scientific societies developed internal sub-committees to address the social implications of their scientific expertise (Moore, Disrupting Science: Social Movements, American Scientists, and the Politics of the Military, 1945-1975. Princeton: Princeton University Press, 2008). This article explores the early years of one such committee, the American Society of Human Genetics' "Social Issues Committee," founded in 1967. Although the committee's name might suggest it was founded to increase the ASHG's public and policy engagement, exploration of the committee's early years reveals a more complicated reality. Affronted by legislators' recent unwillingness to seek the expert advice of human geneticists before adopting widespread neonatal screening programs for phenylketonuria (PKU), and feeling pressed to establish their relevance in an increasingly resource-scarce funding environment, committee members sought to increase the discipline's expert authority. Painfully aware of controversy over abortion rights and haunted by the taint of the discipline's eugenic past, however, the committee proceeded with great caution. Seeking to harness interest in and assert professional control over emerging techniques of genetic diagnosis, the committee strove to protect the society's image by relegating ethical and policy questions about their use to the individual consciences of member scientists. It was not until 1973, after the committee's modest success in organizing support for a retrospective public health study of PKU screening and following the legalization of abortion on demand, that the committee decided to take a more publicly engaged stance.

  19. Problems of genetic diagnosis: serological markers in the prognosis of the development of human speed abilities

    Directory of Open Access Journals (Sweden)

    Serhiyenko Leonid Prokopovich

    2011-10-01

    Full Text Available The article deals with the study of correlation between blood groups system AB0 and Rh with the peculiarities of the development of human speed abilities. Complex of genetic markers is defined. It is possible to use this complex in the individual prognosis of the development of human motor abilities. With 0(I and A(II blood groups and Rh+ have a high inclination to the physical development. Better identify trends in the phenotypic expression of high-speed abilities in people with 0(I and A(II blood groups in comparison with people with the AB(IV and B(III blood group. The pattern of decreasing susceptibility to the development of high-speed abilities as follows: 0(I>A(II>B(III>AB (IV. It is established that a complex system of genetic markers AB0 and Rh blood has no gender differences.

  20. Fabry disease mimicking hypertrophic cardiomyopathy: genetic screening needed for establishing the diagnosis in women

    DEFF Research Database (Denmark)

    Havndrup, Ole; Christiansen, Michael; Stoevring, Birgitte

    2010-01-01

    AIMS: Fabry disease, an X-linked storage disorder caused by defective lysosomal enzyme alpha-galactosidase A activity, may resemble sarcomere-gene-associated hypertrophic cardiomyopathy (HCM). The 'cardiac variant' of Fabry disease which only affects the heart may be missed unless specifically te...... therapy, supports systematic testing for Fabry disease. Enzyme measurements are sufficient in men, but genetic testing is needed in women....

  1. The importance of biochemical and genetic findings in the diagnosis of atypical Norrie disease.

    Science.gov (United States)

    Rodríguez-Muñoz, Ana; García-García, Gema; Menor, Francisco; Millán, José M; Tomás-Vila, Miguel; Jaijo, Teresa

    2018-01-26

    Norrie disease (ND) is a rare X-linked disorder characterized by bilateral congenital blindness. ND is caused by a mutation in the Norrie disease pseudoglioma (NDP) gene, which encodes a 133-amino acid protein called norrin. Intragenic deletions including NDP and adjacent genes have been identified in ND patients with a more severe neurologic phenotype. We report the biochemical, molecular, clinical and radiological features of two unrelated affected males with a deletion including NDP and MAO genes. Biochemical and genetic analyses were performed to understand the atypical phenotype and radiological findings. Biogenic amines in cerebrospinal fluid (CSF) were measured by high-performance liquid chromatography. The coding exons of NDP gene were amplified by polymerase chain reaction. Multiplex ligation-dependent probe amplification and chromosomal microarray were carried out on both affected males. Computed tomography and magnetic resonance imaging were performed on the two patients. In one patient, the serotonin and catecholamine metabolite levels in CSF were virtually undetectable. In both patients, genetic studies revealed microdeletions in the Xp11.3 region, involving the NDP, MAOA and MAOB genes. Radiological examination demonstrated brain and cerebellar atrophy. We suggest that alterations caused by MAO deficit may remain during the first years of life. Clinical phenotype, biochemical findings and neuroimaging can guide the genetic study in patients with atypical ND and help us to a better understanding of this disease.

  2. Pituitary Tumors in Childhood: an update in their diagnosis, treatment and molecular genetics

    Science.gov (United States)

    Keil, Margaret F.; Stratakis, Constantine A.

    2009-01-01

    Pituitary tumors are rare in childhood and adolescence, with a reported prevalence of up to 1 per million children. Only 2 - 6% of surgically treated pituitary tumors occur in children. Although pituitary tumors in children are almost never malignant and hormonal secretion is rare, these tumors may result in significant morbidity. Tumors within the pituitary fossa are of two types mainly, craniopharyngiomas and adenomas; craniopharyngiomas cause symptoms by compressing normal pituitary, causing hormonal deficiencies and producing mass effects on surrounding tissues and the brain; adenomas produce a variety of hormonal conditions such as hyperprolactinemia, Cushing disease and acromegaly or gigantism. Little is known about the genetic causes of sporadic lesions, which comprise the majority of pituitary tumors, but in children, more frequently than in adults, pituitary tumors may be a manifestation of genetic conditions such as multiple endocrine neoplasia type 1 (MEN 1), Carney complex, familial isolated pituitary adenoma (FIPA), and McCune-Albright syndrome. The study of pituitary tumorigenesis in the context of these genetic syndromes has advanced our knowledge of the molecular basis of pituitary tumors and may lead to new therapeutic developments. PMID:18416659

  3. [Dilated cardiomyopathy (DCM) in dogs--pathological, clinical, diagnosis and genetic aspects].

    Science.gov (United States)

    Broschk, C; Distl, O

    2005-10-01

    Dilated cardiomyopathy (DCM) is a heart disease which is often found in humans and animals. The age of onset of this progressive disease varies between 3 and 7 years of age. A juvenile form of DCM has been found in Portuguese Water Dogs and Doberman Pinscher Dogs. Some breeds such as Doberman pinscher, Newfoundland, Portuguese Water dog, Boxer, Great Dane, Cocker Spaniel and Irish Wolfhound exhibit a higher prevalence to DCM. There also seems to be a sex predisposition as male dogs are affected more often than female dogs and in Great Danes an X-linked recessive inheritance is likely. In Newfoundland and Boxer an autosomal dominant inheritance was found whereas an autosomal recessive inheritance was described in Portuguese Water Dogs. Atrial fibrillation as a cause or consequence of DCM is assumed for certain breeds. The causes of DCM are widely unknown in dogs. A genetic basis for this heart disease seems to exist. Apart from a few exceptions the mode of inheritance and the possible underlying gene mutations are not known for DCM in dogs. In humans mutations in several genes responsible for DCM have been identified. Comparative genetic analyses in dogs using genes causing DCM in men and a genome-wide scan with anonymus markers were not able to detect causative mutations or genomic regions harboring gene loci linked to DCM. The investigation of the genetic basis of canine DCM may lead to new insights into the pathogenesis of DCM and may result in new therapeutic approaches and breeding strategies.

  4. Ethical dilemmas in genetic testing: examples from the Cuban program for predictive diagnosis of hereditary ataxias.

    Science.gov (United States)

    Mariño, Tania Cruz; Armiñán, Rubén Reynaldo; Cedeño, Humberto Jorge; Mesa, José Miguel Laffita; Zaldivar, Yanetza González; Rodríguez, Raúl Aguilera; Santos, Miguel Velázquez; Mederos, Luis Enrique Almaguer; Herrera, Milena Paneque; Pérez, Luis Velázquez

    2011-06-01

    Predictive testing protocols are intended to help patients affected with hereditary conditions understand their condition and make informed reproductive choices. However, predictive protocols may expose clinicians and patients to ethical dilemmas that interfere with genetic counseling and the decision making process. This paper describes ethical dilemmas in a series of five cases involving predictive testing for hereditary ataxias in Cuba. The examples herein present evidence of the deeply controversial situations faced by both individuals at risk and professionals in charge of these predictive studies, suggesting a need for expanded guidelines to address such complexities.

  5. Radiological Diagnosis of a Rare Premature Aging Genetic Disorder: Progeria (Hutchinson-Gilford Syndrome

    Directory of Open Access Journals (Sweden)

    Haji Mohammed Nazir

    2017-01-01

    Full Text Available Hutchinson-Gilford Progeria Syndrome (HGPS is a rare disease with a combination of short stature, bone abnormalities, premature ageing, and skin changes. Though the physical appearance of these patients is characteristic, there is little emphasis on the characteristic radiological features. In this paper, we report a 16-year-old boy with clinical and radiological features of this rare genetic disorder. He had a characteristic facial appearance with a large head, large eyes, thin nose with beaked tip, small chin, protruding ears, prominent scalp veins, and absence of hair.

  6. Laboratory diagnosis of creatine deficiency syndromes: a technical standard and guideline of the American College of Medical Genetics and Genomics.

    Science.gov (United States)

    Sharer, J Daniel; Bodamer, Olaf; Longo, Nicola; Tortorelli, Silvia; Wamelink, Mirjam M C; Young, Sarah

    2017-02-01

    Disclaimer: These ACMG Standards and Guidelines are intended as an educational resource for clinical laboratory geneticists to help them provide quality clinical laboratory genetic services. Adherence to these standards and guidelines is voluntary and does not necessarily assure a successful medical outcome. These Standards and Guidelines should not be considered inclusive of all proper procedures and tests or exclusive of others that are reasonably directed to obtaining the same results. In determining the propriety of any specific procedure or test, clinical laboratory geneticists should apply their professional judgment to the specific circumstances presented by the patient or specimen. Clinical laboratory geneticists are encouraged to document in the patient's record the rationale for the use of a particular procedure or test, whether or not it is in conformance with these Standards and Guidelines. They also are advised to take notice of the date any particular guideline was adopted, and to consider other relevant medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.Cerebral creatine deficiency syndromes are neurometabolic conditions characterized by intellectual disability, seizures, speech delay, and behavioral abnormalities. Several laboratory methods are available for preliminary and confirmatory diagnosis of these conditions, including measurement of creatine and related metabolites in biofluids using liquid chromatography-tandem mass spectrometry or gas chromatography-mass spectrometry, enzyme activity assays in cultured cells, and DNA sequence analysis. These guidelines are intended to standardize these procedures to help optimize the diagnosis of creatine deficiency syndromes. While biochemical methods are emphasized, considerations for confirmatory molecular testing are also discussed

  7. Screening and genetic diagnosis of Hemoglobinopathies in Southern and Northern Europe: Two examples

    Directory of Open Access Journals (Sweden)

    Antonio Amato

    2009-08-01

    Full Text Available Prevention of Hemoglobinopathies has developed around the world based upon the experience done in pioneering endemic countries and is now facing a new phase in non-endemic areas with a recent immigration history. We describe two situations, taking Latium (central Italy and The Netherlands as two models for endemic and non-endemic countries both confronted with a large multi-ethnic immigrant society. We present prevention results and discuss aspects such as local knowledge and organization. We illustrate the importance of issues like information, carrier diagnostics, screening, counseling and prenatal diagnosis in particular situation of contrasting interest an different ethical opinions. We conclude by underlining the importance of implementing primary prevention at the European level, based upon better information, diagnostics and counseling.

  8. Diagnosis and management of adult hereditary cardio-neuromuscular disorders: A model for the multidisciplinary care of complex genetic disorders.

    Science.gov (United States)

    Sommerville, R Brian; Vincenti, Margherita Guzzi; Winborn, Kathleen; Casey, Anne; Stitziel, Nathan O; Connolly, Anne M; Mann, Douglas L

    2017-01-01

    Genetic disorders that disrupt the structure and function of the cardiovascular system and the peripheral nervous system are common enough to be encountered in routine cardiovascular practice. Although often these patients are diagnosed in childhood and come to the cardiologist fully characterized, some patients with hereditary neuromuscular disease may not manifest until adulthood and will present initially to the adult cardiologist for an evaluation of an abnormal ECG, unexplained syncope, LV hypertrophy, and or a dilated cardiomyopathy of unknown cause. Cardiologists are often ill-equipped to manage these patients due to lack of training and exposure as well as the complete absence of practice guidelines to aid in the diagnosis and management of these disorders. Here, we review three key neuromuscular diseases that affect the cardiovascular system in adults (myotonic dystrophy type 1, Friedreich ataxia, and Emery-Dreifuss muscular dystrophy), with an emphasis on their clinical presentation, genetic and molecular pathogenesis, and recent important research on medical and interventional treatments. We also advocate the development of interdisciplinary cardio-neuromuscular clinics to optimize the care for these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Direct detection of common and rare inversion mutations in the genetic diagnosis of severe hemophilia A

    Energy Technology Data Exchange (ETDEWEB)

    Windsor, A.S.; Lillicrap, D.P.; Taylor, S.A.M. [Queen`s Univ., Ontario (Canada)

    1994-09-01

    Approximately 50% of the cases of severe hemophilia A (factor VIII:C < 0.01 units/ml) may be due to gross rearrangements of the factor VIII gene. The mutation involves homologous sequences upstream of the factor VIII locus and within intron 22 in an intrachromosomal recombination, inversion, event. The rearrangements can readily be detected on a Southern blot using a probe that is complementary to sequences from within intron 22. We describe here the analysis of this mutation in 71 severe hemophilia A patients. Thirty two of the patients (45%) showed evidence of a rearrangement. Five different patterns of rearrangements were seen, two of which have previously been described and account for the majority of cases (pattern 1, 70% and pattern 2, 16%). Three other abnormal patterns were observed. The inversion mechanism does not usually result in the loss or gain of any genetic material, but in one patient, in whom a unique rearrangement pattern was observed (pattern 3), we have previously documented a gross deletion which removes exons 1-22 of the factor VII gene as well as sequences 5{prime} to the gene. In another individual a fourth pattern in which an extra 19.0 kb band is present was detected. In this case it is unclear as to whether the rearrangement is responsible for the disease or is simply coincident normal variation. A fifth pattern, in which an extra 16.0 kb band was detected, was observed in a family with a new mutation causing hemophilia A. The affected individual and his mother inherited a de novo rearrangement of the factor VIII gene from his unaffected grandfather, implicating it as the cause of the disease. In conclusion, testing for the factor VIII inversion mutation was positive in approximately 45% of severe hemophiliacs, 72% of whom were isolated cases, and as such should constitute the initial stage in the genetic testing protocol for these patients` families.

  10. At the intersection of toxicology, psychiatry, and genetics: a diagnosis of ornithine transcarbamylase deficiency.

    Science.gov (United States)

    Sloas, Harold Andrew; Ence, Thomas C; Mendez, Donna R; Cruz, Andrea T

    2013-09-01

    Ornithine transcarbamylase (OTC) deficiency is a genetic disorder involving a mutation of the ornithine transcarbamylase gene, located on the short arm of the X chromosome (Xp21.1). This makes the expression of the gene most common in homozygous males, but heterozygous females can also be affected and may be more likely to suffer from serious morbidity. Most males present early in the neonatal period with more devastating outcomes than their female counterparts. Up to 34% will present in the first 30 days of life (J Pediatr 2001;138:S30). Females often have partially functioning mitochondria due to uneven distribution of the mutant gene secondary to lyonization (“X-chromosome Inactivation”. Genetics Home Reference, 2012). Occasionally, symptomatic females may not even present until they are placed under metabolic stress such as a severe illness, fasting, pregnancy, or new medication (Roth KS, Steiner RD. “Ornithine Transcarbamylase Deficiency”. EMedicine, 2012). The urea cycle is the body's primary tool for the disposal of excess nitrogen, which is generated by the routine metabolism of proteins and amino acids. Mitochondrial dysfunction impairs urea production and result in hyperammonemia (Semin Neonatol 2002;7:27). The sine qua non among all degrees of OTC deficiency at presentation is hyperammonemia. As in adults, children will have similar symptoms of encephalopathy, but this may be expressed differently depending on the child's developmental level. We present an unusual case of OTC deficiency in an older child with undifferentiated symptoms of an anticholinergic toxidrome, liver failure, iron overdose, and mushroom poisoning.

  11. Genetic Diagnosis before Surgery has an Impact on Surgical Decision in BRCA Mutation Carriers with Breast Cancer.

    Science.gov (United States)

    Park, Sungmin; Lee, Jeong Eon; Ryu, Jai Min; Kim, Issac; Bae, Soo Youn; Lee, Se Kyung; Yu, Jonghan; Kim, Seok Won; Nam, Seok Jin

    2018-05-01

    The first aim of our study was to evaluate surgical decision-making by BRCA mutation carriers with breast cancer based on the timing of knowledge of their BRCA mutation status. The second aim was to evaluate breast cancer outcome following surgical treatment. This was a retrospective study of 164 patients diagnosed with invasive breast cancer, tested for BRCA mutation, and treated with primary surgery between 2004 and 2015 at Samsung Medical Center in Seoul, Korea. We reviewed types of surgery and timing of the BRCA test result. We compared surgical decision- making of BRCA carriers with breast cancer based on the timing of knowledge of their BRCA mutation status. Only 15 (9.1%) patients knew their BRCA test results before their surgery, and 149 (90.9%) knew the results after surgery. In patients with unilateral cancer, there was a significant difference between groups whose BRCA mutation status known before surgery and groups whose BRCA status unknown before surgery regarding the choice of surgery (p = 0.017). No significant difference was observed across surgery types of risk of ipsilateral breast tumor recurrence (p = 0.765) and contralateral breast cancer (p = 0.69). Genetic diagnosis before surgery has an impact on surgical decision choosing unilateral mastectomy or bilateral mastectomy in BRCA mutation carriers with breast cancer. Knowledge about BRCA mutation status after initial surgery led to additional surgeries for patients with BCS. Thus, providing genetic counseling and genetic testing before surgical choice and developing treatment strategies for patients with a high risk of breast cancer are important.

  12. Histologic and Genetic Advances in Refining the Diagnosis of “Undifferentiated Pleomorphic Sarcoma”

    International Nuclear Information System (INIS)

    Kelleher, Fergal C.; Viterbo, Antonella

    2013-01-01

    Undifferentiated pleomorphic sarcoma (UPS) is an inclusive term used for sarcomas that defy formal sub-classification. The frequency with which this diagnosis is assigned has decreased in the last twenty years. This is because when implemented, careful histologic assessment, immunohistochemistry, and ultra-structural evaluation can often determine lineage of differentiation. Further attrition in the diagnostic frequency of UPS may arise by using array-comparative genomic hybridization. Gene expression arrays are also of potential use as they permit hierarchical gene clustering. Appraisal of the literature is difficult due to a historical perspective in which specific molecular diagnostic methods were previously unavailable. The American Joint Committee on Cancer (AJCC) classification has changed with different inclusion criteria. Taxonomy challenges also exist with the older term “malignant fibrous histiocytoma” being replaced by “UPS”. In 2010 an analysis of multiple sarcoma expression databases using a 170-gene predictor, re-classified most MFH and “not-otherwise-specified” (NOS) tumors as liposarcomas, leiomyosarcomas or fibrosarcomas. Interestingly, some of the classifier genes are potential molecular therapeutic targets including Insulin-like growth factor 1 (IGF-1), Peroxisome proliferator-activated receptor γ (PPARγ), Nerve growth factor β (NGF β) and Fibroblast growth factor receptor (FGFR)

  13. Histologic and Genetic Advances in Refining the Diagnosis of “Undifferentiated Pleomorphic Sarcoma”

    Energy Technology Data Exchange (ETDEWEB)

    Kelleher, Fergal C., E-mail: fergalkelleher@hotmail.com [Sarcoma Service, Department of Medical Oncology, Peter Mac Callum Cancer Centre, Melbourne, Victoria, VIC8006 (Australia); Department of Medical Oncology, St. Vincent’s University Hospital, Dublin 4 (Ireland); Viterbo, Antonella [Department of Medical Oncology, St. Vincent’s University Hospital, Dublin 4 (Ireland); St. Andrea University Hospital, Rome 000189 (Italy)

    2013-02-22

    Undifferentiated pleomorphic sarcoma (UPS) is an inclusive term used for sarcomas that defy formal sub-classification. The frequency with which this diagnosis is assigned has decreased in the last twenty years. This is because when implemented, careful histologic assessment, immunohistochemistry, and ultra-structural evaluation can often determine lineage of differentiation. Further attrition in the diagnostic frequency of UPS may arise by using array-comparative genomic hybridization. Gene expression arrays are also of potential use as they permit hierarchical gene clustering. Appraisal of the literature is difficult due to a historical perspective in which specific molecular diagnostic methods were previously unavailable. The American Joint Committee on Cancer (AJCC) classification has changed with different inclusion criteria. Taxonomy challenges also exist with the older term “malignant fibrous histiocytoma” being replaced by “UPS”. In 2010 an analysis of multiple sarcoma expression databases using a 170-gene predictor, re-classified most MFH and “not-otherwise-specified” (NOS) tumors as liposarcomas, leiomyosarcomas or fibrosarcomas. Interestingly, some of the classifier genes are potential molecular therapeutic targets including Insulin-like growth factor 1 (IGF-1), Peroxisome proliferator-activated receptor γ (PPARγ), Nerve growth factor β (NGF β) and Fibroblast growth factor receptor (FGFR)

  14. Diagnosis of genetic predisposition for lactose intolerance by high resolution melting analysis.

    Science.gov (United States)

    Delacour, Hervé; Leduc, Amandine; Louçano-Perdriat, Andréa; Plantamura, Julie; Ceppa, Franck

    2017-02-01

    Lactose, the principle sugar in milk, is a disaccharide hydrolyzed by intestinal lactase into glucose and galactose, which are absorbed directly by diffusion in the intestine. The decline of lactase expression (or hypolactasia) in intestinal microvilli after weaning is a normal phenomenon in mammals known as lactase deficiency. It is observed in nearly 75% of the world population and is an inherited autosomal recessive trait with incomplete penetrance. It is caused by SNPs in a regulatory element for lactase gene. In Indo-European, lactase deficiency is associated with rs4982235 SNP (or -13910C>T). The aim of this study is to describe a method based on high resolution melting for rapidly detecting genetic predisposition to lactose intolerance. Analytical performance of the assay was assessed by evaluating within and betwwen-run precision and by comparing the results (n = 50 patients) obtained with the HRM assay to those obtained with the gold standard (Sanger sequencing of the region of interest). In silico prediction of HRM curves was performed to evaluate the potential impact of the other SNPs described within the PCR product on the HRM analytical performances. The assay has good performance (CV lactose intolerance.

  15. In vivo diagnosis of cervical precancer using Raman spectroscopy and genetic algorithm techniques.

    Science.gov (United States)

    Duraipandian, Shiyamala; Zheng, Wei; Ng, Joseph; Low, Jeffrey J H; Ilancheran, A; Huang, Zhiwei

    2011-10-21

    This study aimed to evaluate the clinical utility of applying near-infrared (NIR) Raman spectroscopy and genetic algorithm-partial least squares-discriminant analysis (GA-PLS-DA) to identify biomolecular changes of cervical tissues associated with dysplastic transformation during colposcopic examination. A total of 105 in vivo Raman spectra were measured from 57 cervical sites (35 normal and 22 precancer sites) of 29 patients recruited, in which 65 spectra were from normal sites, while 40 spectra were from cervical precancerous lesions (i.e., 7 low-grade CIN and 33 high-grade CIN). The GA feature selection technique incorporated with PLS was utilized to study the significant biochemical Raman bands for differentiation between normal and precancer cervical tissues. The GA-PLS-DA algorithm with double cross-validation (dCV) identified seven diagnostically significant Raman bands in the ranges of 925-935, 979-999, 1080-1090, 1240-1260, 1320-1340, 1400-1420, and 1625-1645 cm(-1) related to proteins, nucleic acids and lipids in tissue, and yielded a diagnostic accuracy of 82.9% (sensitivity of 72.5% (29/40) and specificity of 89.2% (58/65)) for precancer detection. The results of this exploratory study suggest that Raman spectroscopy in conjunction with GA-PLS-DA and dCV methods has the potential to provide clinically significant discrimination between normal and precancer cervical tissues at the molecular level.

  16. Characterization and noninvasive diagnosis of bladder cancer with serum surface enhanced Raman spectroscopy and genetic algorithms

    Science.gov (United States)

    Li, Shaoxin; Li, Linfang; Zeng, Qiuyao; Zhang, Yanjiao; Guo, Zhouyi; Liu, Zhiming; Jin, Mei; Su, Chengkang; Lin, Lin; Xu, Junfa; Liu, Songhao

    2015-05-01

    This study aims to characterize and classify serum surface-enhanced Raman spectroscopy (SERS) spectra between bladder cancer patients and normal volunteers by genetic algorithms (GAs) combined with linear discriminate analysis (LDA). Two group serum SERS spectra excited with nanoparticles are collected from healthy volunteers (n = 36) and bladder cancer patients (n = 55). Six diagnostic Raman bands in the regions of 481-486, 682-687, 1018-1034, 1313-1323, 1450-1459 and 1582-1587 cm-1 related to proteins, nucleic acids and lipids are picked out with the GAs and LDA. By the diagnostic models built with the identified six Raman bands, the improved diagnostic sensitivity of 90.9% and specificity of 100% were acquired for classifying bladder cancer patients from normal serum SERS spectra. The results are superior to the sensitivity of 74.6% and specificity of 97.2% obtained with principal component analysis by the same serum SERS spectra dataset. Receiver operating characteristic (ROC) curves further confirmed the efficiency of diagnostic algorithm based on GA-LDA technique. This exploratory work demonstrates that the serum SERS associated with GA-LDA technique has enormous potential to characterize and non-invasively detect bladder cancer through peripheral blood.

  17. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications

    Science.gov (United States)

    Lynch, HT; Lynch, PM; Lanspa, SJ; Snyder, CL; Lynch, JF; Boland, CR

    2010-01-01

    More than one million patients will manifest colorectal cancer (CRC) this year of which, conservatively, approximately 3% (~30,700 cases) will have Lynch syndrome (LS), the most common hereditary CRC predisposing syndrome. Each case belongs to a family with clinical needs that require genetic counseling, DNA testing for mismatch repair genes (most frequently MLH1 or MSH2) and screening for CRC. Colonoscopy is mandated, given CRC’s proximal occurrence (70–80% proximal to the splenic flexure). Due to its early age of onset (average 45 years of age), colonoscopy needs to start by age 25, and because of its accelerated carcinogenesis, it should be repeated every 1 to 2 years through age 40 and then annually thereafter. Should CRC occur, subtotal colectomy may be necessary, given the marked frequency of synchronous and metachronous CRC. Because 40–60% of female patients will manifest endometrial cancer, tailored management is essential. Additional extracolonic cancers include ovary, stomach, small bowel, pancreas, hepatobiliary tract, upper uroepithelial tract, brain (Turcot variant) and sebaceous adenomas/carcinomas (Muir-Torre variant). LS explains only 10–25% of familial CRC. PMID:19659756

  18. Avoiding pitfalls in molecular genetic testing: case studies of high-resolution array comparative genomic hybridization testing in the definitive diagnosis of Mowat-Wilson syndrome.

    Science.gov (United States)

    Kluk, Michael Joseph; An, Yu; James, Philip; Coulter, David; Harris, David; Wu, Bai-Lin; Shen, Yiping

    2011-05-01

    The molecular testing options available for the diagnosis of genetic disorders are numerous and include a variety of different assay platforms. The consultative input of molecular pathologists and cytogeneticists, working closely with the ordering clinicians, is often important for definitive diagnosis. Herein, we describe two patients who had long histories of unexplained signs and symptoms with a high clinical suspicion of an underlying genetic etiology. Initial molecular testing in both cases was negative, but the application of high-resolution array comparative genomic hybridization technology lead to definitive diagnosis in both cases. We summarize the clinical findings and molecular testing in each case, discuss the differential diagnoses, and review the clinical and pathological findings of Mowat-Wilson syndrome. This report highlights the importance for those involved in molecular testing to know the nature of the underlying genetic abnormalities associated with the suspected diagnosis, to recognize the limitations of each testing platform, and to persistently pursue repeat testing using high-resolution technologies when indicated. This concept is applicable to both germline and somatic molecular genetic testing. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  19. Genomic DNA Methylation Signatures Enable Concurrent Diagnosis and Clinical Genetic Variant Classification in Neurodevelopmental Syndromes.

    Science.gov (United States)

    Aref-Eshghi, Erfan; Rodenhiser, David I; Schenkel, Laila C; Lin, Hanxin; Skinner, Cindy; Ainsworth, Peter; Paré, Guillaume; Hood, Rebecca L; Bulman, Dennis E; Kernohan, Kristin D; Boycott, Kym M; Campeau, Philippe M; Schwartz, Charles; Sadikovic, Bekim

    2018-01-04

    Pediatric developmental syndromes present with systemic, complex, and often overlapping clinical features that are not infrequently a consequence of Mendelian inheritance of mutations in genes involved in DNA methylation, establishment of histone modifications, and chromatin remodeling (the "epigenetic machinery"). The mechanistic cross-talk between histone modification and DNA methylation suggests that these syndromes might be expected to display specific DNA methylation signatures that are a reflection of those primary errors associated with chromatin dysregulation. Given the interrelated functions of these chromatin regulatory proteins, we sought to identify DNA methylation epi-signatures that could provide syndrome-specific biomarkers to complement standard clinical diagnostics. In the present study, we examined peripheral blood samples from a large cohort of individuals encompassing 14 Mendelian disorders displaying mutations in the genes encoding proteins of the epigenetic machinery. We demonstrated that specific but partially overlapping DNA methylation signatures are associated with many of these conditions. The degree of overlap among these epi-signatures is minimal, further suggesting that, consistent with the initial event, the downstream changes are unique to every syndrome. In addition, by combining these epi-signatures, we have demonstrated that a machine learning tool can be built to concurrently screen for multiple syndromes with high sensitivity and specificity, and we highlight the utility of this tool in solving ambiguous case subjects presenting with variants of unknown significance, along with its ability to generate accurate predictions for subjects presenting with the overlapping clinical and molecular features associated with the disruption of the epigenetic machinery. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  20. [Comparative genomic hybridisation as a first option in genetic diagnosis: 1,000 cases and a cost-benefit analysis].

    Science.gov (United States)

    Castells-Sarret, Neus; Cueto-González, Anna M; Borregan, Mar; López-Grondona, Fermina; Miró, Rosa; Tizzano, Eduardo; Plaja, Alberto

    2017-09-25

    Conventional cytogenetics diagnoses 3-5% of patients with unexplained developmental delay/intellectual disability and/or multiple congenital anomalies. The Multiplex Ligation-dependent Probe Amplification increases diagnostic rates from between 2.4 to 5.8%. Currently the comparative genomic hybridisation array or aCGH is the highest performing diagnostic tool in patients with developmental delay/intellectual disability, congenital anomalies and autism spectrum disorders. Our aim is to evaluate the efficiency of the use of aCGH as first-line test in these and other indications (epilepsy, short stature). A total of 1000 patients referred due to one or more of the abovementioned disorders were analysed by aCGH. Pathogenic genomic imbalances were detected in 14% of the cases, with a variable distribution of diagnosis according to the phenotypes: 18.9% of patients with developmental delay/intellectual disability; 13.7% of multiple congenital anomalies, 9.76% of psychiatric pathologies, 7.02% of patients with epilepsy, and 13.3% of patients with short stature. Within the multiple congenital anomalies, central nervous system abnormalities and congenital heart diseases accounted for 14.9% and 10.6% of diagnoses, respectively. Among the psychiatric disorders, patients with autism spectrum disorders accounted for 8.9% of the diagnoses. Our results demonstrate the effectiveness and efficiency of the use of aCGH as the first line test in genetic diagnosis of patients suspected of genomic imbalances, supporting its inclusion within the National Health System. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  1. SIGNIFICANCE OF TARGETED EXOME SEQUENCING AND METHODS OF DATA ANALYSIS IN THE DIAGNOSIS OF GENETIC DISORDERS LEADING TO THE DEVELOPMENT OF EPILEPTIC ENCEPHALOPATHY

    Directory of Open Access Journals (Sweden)

    Tatyana Victorovna Kozhanova

    2017-08-01

    Full Text Available Epilepsy is the most common serious neurological disorder, and there is a genetic basis in almost 50% of people with epilepsy. The diagnosis of genetic epilepsies makes to estimate reasons of seizures in the patient. Last decade has shown tremendous growth in gene sequencing technologies, which have made genetic tests available. The aim is to show significance of targeted exome sequencing and methods of data analysis in the diagnosis of hereditary syndromes leading to the development of epileptic encephalopathy. We examined 27 patients with с early EE (resistant to antiepileptic drugs, psychomotor and speech development delay in the psycho-neurological department. Targeted exome sequencing was performed for patients without a previously identified molecular diagnosis using 454 Sequencing GS Junior sequencer (Roche and IlluminaNextSeq 500 platform. As a result of the analysis, specific epilepsy genetic variants were diagnosed in 27 patients. The greatest number of cases was due to mutations in the SCN1A gene (7/27. The structure of mutations for other genes (mutations with a minor allele frequency of less than 0,5% are presented: ALDH7A1 (n=1, CACNA1C (n=1, CDKL5 (n=1, CNTNAP2 (n=2, DLGAP2 (n=2, DOCK7 (n=2, GRIN2B (n=2, HCN1 (n=1, NRXN1 (n=3, PCDH19 (n=1, RNASEH2B (n=2, SLC2A1 (n=1, UBE3A (n=1. The use of the exome sequencing in the genetic practice allows to significantly improve the effectiveness of medical genetic counseling, as it made possible to diagnose certain variants of genetically heterogeneous groups of diseases with similar of clinical manifestations.

  2. Genetic Fuzzy System (GFS based wavelet co-occurrence feature selection in mammogram classification for breast cancer diagnosis

    Directory of Open Access Journals (Sweden)

    Meenakshi M. Pawar

    2016-09-01

    Full Text Available Breast cancer is significant health problem diagnosed mostly in women worldwide. Therefore, early detection of breast cancer is performed with the help of digital mammography, which can reduce mortality rate. This paper presents wrapper based feature selection approach for wavelet co-occurrence feature (WCF using Genetic Fuzzy System (GFS in mammogram classification problem. The performance of GFS algorithm is explained using mini-MIAS database. WCF features are obtained from detail wavelet coefficients at each level of decomposition of mammogram image. At first level of decomposition, 18 features are applied to GFS algorithm, which selects 5 features with an average classification success rate of 39.64%. Subsequently, at second level it selects 9 features from 36 features and the classification success rate is improved to 56.75%. For third level, 16 features are selected from 54 features and average success rate is improved to 64.98%. Lastly, at fourth level 72 features are applied to GFS, which selects 16 features and thereby increasing average success rate to 89.47%. Hence, GFS algorithm is the effective way of obtaining optimal set of feature in breast cancer diagnosis.

  3. Experimental research on preimplantation genetic diagnosis for autosomal dominant polycys-tic kidney disease%常染色体显性多囊肾疾病行胚胎植入前遗传学诊断的实验研究

    Institute of Scientific and Technical Information of China (English)

    朱琴; 徐炳森; 黄学锋; 周颖

    2009-01-01

    目的:建立由PKD1突变所致常染色体显性多囊肾疾病(autosomal dominant polycystic kidney disease,ADPKD)的胚胎植入前遗传学诊断(preimplantation genetic diagnosis,PGD)方法.方法:①通过微卫星连锁分析确定2个多囊肾家系的ADPKD致病基因.检测的微卫星包括为与PKD1连锁的KG8、 SM6、CW4和CW2以及与PKD2连锁的D4S1534、D4S1563、D4S414和D4S423.②对18个淋巴细胞和1个PKD1 突变所致ADPKD成员行常规体外受精胚胎移植后的5个废弃胚胎15个卵裂球行多重巢式PCR和毛细管电泳检测与PKD1连锁的微卫星分型.结果:①KG8、CW4和CW2 可作为连锁微卫星分析外周血和单个细胞的PKD1突变;②2个家系的致病基因均为PKD1;③单个卵裂球扩增成功率为86.67%(13/15),单个淋巴细胞扩增成功率为88.89%(16/18),CW4等位基因脱扣率为25%(4/16),CW2未发现等位基因脱扣,均未发现污染,2个胚胎携带致病基因.结论:PKD1连锁的微卫星分型可作为PKD1突变所致ADPKD的PGD诊断方法.

  4. 荧光原位杂交在种植前遗传学诊断中的应用%Application on the genetic diagnosis of preimplantation with FISH technology (Review)

    Institute of Scientific and Technical Information of China (English)

    陈欣洁; 孙筱放

    2001-01-01

    @@ 种植前遗传学诊断(preimplantation genetic diagonosis,PGD)是辅助生育技术与分子生物学技术相结合而形成的一种产前诊断技术,与传统的诊断技术相比,它的优点是:1.为遗传病高危妇女提供尽可能大的选择范围;2.祛除和减轻高危妇女对生殖的疑虑与不安;3.在保证胎儿不患有某种遗传病情况下,使高危妇女继续妊娠.PGD为遗传病高危夫妇提供了一种既降低后代患遗传病的危险又没有其他产前诊断方法的缺点,它不必中止妊娠.4.为辅助生殖技术(ART)中,如ICSI未经自然淘汰的带有遗传病基因的胚胎进行诊断后中止妊娠,确保ART技术的进一步发展.

  5. Single-gene testing combined with single nucleotide polymorphism microarray preimplantation genetic diagnosis for aneuploidy: a novel approach in optimizing pregnancy outcome.

    Science.gov (United States)

    Brezina, Paul R; Benner, Andrew; Rechitsky, Svetlana; Kuliev, Anver; Pomerantseva, Ekaterina; Pauling, Dana; Kearns, William G

    2011-04-01

    To describe a method of amplifying DNA from blastocyst trophectoderm cells (two or three cells) and simultaneously performing 23-chromosome single nucleotide polymorphism microarrays and single-gene preimplantation genetic diagnosis. Case report. IVF clinic and preimplantation genetic diagnostic centers. A 36-year-old woman, gravida 2, para 1011, and her husband who both were carriers of GM(1) gangliosidosis. The couple wished to proceed with microarray analysis for aneuploidy detection coupled with DNA sequencing for GM(1) gangliosidosis. An IVF cycle was performed. Ten blastocyst-stage embryos underwent trophectoderm biopsy. Twenty-three-chromosome microarray analysis for aneuploidy and specific DNA sequencing for GM(1) gangliosidosis mutations were performed. Viable pregnancy. After testing, elective single embryo transfer was performed followed by an intrauterine pregnancy with documented fetal cardiac activity by ultrasound. Twenty-three-chromosome microarray analysis for aneuploidy detection and single-gene evaluation via specific DNA sequencing and linkage analysis are used for preimplantation diagnosis for single-gene disorders and aneuploidy. Because of the minimal amount of genetic material obtained from the day 3 to 5 embryos (up to 6 pg), these modalities have been used in isolation of each other. The use of preimplantation genetic diagnosis for aneuploidy coupled with testing for single-gene disorders via trophectoderm biopsy is a novel approach to maximize pregnancy outcomes. Although further investigation is warranted, preimplantation genetic diagnosis for aneuploidy and single-gene testing seem destined to be used increasingly to optimize ultimate pregnancy success. Copyright © 2011 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  6. [The progress and prospect of application of genetic testing technology-based gene detection technology in the diagnosis and treatment of hereditary cancer].

    Science.gov (United States)

    He, J X; Jiang, Y F

    2017-08-06

    Hereditary cancer is caused by specific pathogenic gene mutations. Early detection and early intervention are the most effective ways to prevent and control hereditary cancer. High-throughput sequencing based genetic testing technology (NGS) breaks through the restrictions of pedigree analysis, provide a convenient and efficient method to detect and diagnose hereditary cancer. Here, we introduce the mechanism of hereditary cancer, summarize, discuss and prospect the application of NGS and other genetic tests in the diagnosis of hereditary retinoblastoma, hereditary breast and ovarian cancer syndrome, hereditary colorectal cancer and other complex and rare hereditary tumors.

  7. Hematopoietic Stem Cell Transplantation Using Preimplantation Genetic Diagnosis and Human Leukocyte Antigen Typing for Human Leukocyte Antigen-Matched Sibling Donor: A Turkish Multicenter Study.

    Science.gov (United States)

    Kurekci, Emin; Küpesiz, Alphan; Anak, Sema; Öztürk, Gülyüz; Gürsel, Orhan; Aksoylar, Serap; Ileri, Talia; Kuşkonmaz, Barış; Eker, İbrahim; Cetin, Mualla; Tezcan Karasu, Gülsün; Kaya, Zühre; Fışgın, Tunç; Ertem, Mehmet; Kansoy, Savaş; Yeşilipek, Mehmet Akif

    2017-05-01

    Preimplantation genetic diagnosis involves the diagnosis of a genetic disorder in embryos obtained through in vitro fertilization, selection of healthy embryos, and transfer of the embryos to the mother's uterus. Preimplantation genetic diagnosis has been used not only to avoid the risk of having an affected child, but it also offers, using HLA matching, preselection of potential HLA-genoidentical healthy donor progeny for an affected sibling who requires bone marrow transplantation. Here, we share the hematopoietic stem cell transplantation results of 52 patients with different benign and malign hematological or metabolic diseases or immunodeficiencies whose donors were siblings born with this technique in Turkey since 2008. The median age of the patients' at the time of the transplantation was 8 years (range, 3 to 16 years) and the median age of the donors was 2 years (range, .5 to 6 years). The most common indication for HSCT was thalassemia major (42 of all patients, 80%). The stem cell source in all of the transplantations was bone marrow. In 37 of the transplantations, umbilical cord blood of the same donor was also used. In 50 of the 52 patients, full engraftment was achieved with a mean of 4.6 × 10 6 CD 34 + cells per kg of recipient weight. Ninety-six percent of the patients have been cured through hematopoietic stem cell transplantation without any complication. Primary engraftment failure was seen in only 2 patients with thalassemia major. All of the donors and the patients are alive with good health status. Preimplantation genetic diagnosis with HLA matching offers a life-saving chance for patients who need transplantation but lack an HLA genoidentical donor. Copyright © 2017 The American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.

  8. The Study of FISH Probe of t(1,6)(q42;p23)on Preimplantation Genetic Diagnosis%荧光原位杂交探针应用于平衡易位t(1,6)(q42;p23)胚胎植入前诊断的研究

    Institute of Scientific and Technical Information of China (English)

    李江超; 张仁礼; 张丽丽; 陈金娜; 石庆荣; 熊丽; 关新元; 王丽京

    2014-01-01

    nuclei after fluorescence in situ hybridiza-tion,the nuclei were clear and bright signals with two green and two red signal number respectively.The study provide the basis that individualized translocation FISH probe could be applied on preimplantation genetic diagnosis (PGD)in the future.

  9. Genetics

    International Nuclear Information System (INIS)

    Hubitschek, H.E.

    1975-01-01

    Progress is reported on the following research projects: genetic effects of high LET radiations; genetic regulation, alteration, and repair; chromosome replication and the division cycle of Escherichia coli; effects of radioisotope decay in the DNA of microorganisms; initiation and termination of DNA replication in Bacillus subtilis; mutagenesis in mouse myeloma cells; lethal and mutagenic effects of near-uv radiation; effect of 8-methoxypsoralen on photodynamic lethality and mutagenicity in Escherichia coli; DNA repair of the lethal effects of far-uv; and near uv irradiation of bacterial cells

  10. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  11. Preimplantation genetic diagnosis and clinical sampling techniques%胚胎植入前遗传学诊断与临床取材

    Institute of Scientific and Technical Information of China (English)

    易萍; 李力

    2002-01-01

    胚胎植入前遗传学诊断(PGD)是随着辅助生殖技术及分子生物学迅速发展而产生的一项新技术.PGD作为一种可行的产前诊断,是提高人口素质和优生优育的根本措施之一.临床取材与PGD诊断准确性及胚胎远期发育密切相关.目前, 极体及胚胎组织分析是PGD临床取材主要方式.

  12. Technique and standard of preimplantation genetic diagnosis and screening%植入前胚胎遗传学诊断及筛查技术与规范

    Institute of Scientific and Technical Information of China (English)

    黄锦; 马彩虹

    2015-01-01

    近年来,随着分子生物学和辅助生殖技术的进步,植入前胚胎遗传学诊断(PGD)和植入前胚胎遗传学筛查(PGS)技术以前所未有的速度在全球快速发展.文章从适应证、取材、遗传诊断技术以及伦理学等多方面对PGD和PGS进行阐述.

  13. Ethical Consideration of the Preimplantation Genetic Diagnosis%植入前遗传学诊断的伦理思考

    Institute of Scientific and Technical Information of China (English)

    罗海宁

    2012-01-01

    人胚胎植入前遗传学诊断技术(PGD)在很多国家已经成功开展,并应用于部分染色体疾病和单基因遗传病的检测,随着技术水平的发展,PGD的检测范围逐渐扩大,进而引起了诸多伦理学争议,因此应当权衡利弊,谨慎确定PGD的应用范围,建立适合我国国情的PGD技术及伦理操作指南.

  14. 胚胎种植前遗传学诊断研究进展%Research Advance of Preimplantation Genetic Diagnosis

    Institute of Scientific and Technical Information of China (English)

    张若鹏; 张丽蓉; 刀承兰; 朱任坚

    2005-01-01

    目的:综述胚胎种植前遗传学诊断(PGD)研究最新进展,以指导临床实践.方法:光盘检索相关文献并进行综合分析.结果:PGD是进行优生优育的重要方法,主要采用聚合酶链反应技术(PCR)与荧光原位杂交技术(FISH).结论:PGD具有广阔的应用前景.

  15. Design of a high-sensitivity classifier based on a genetic algorithm: application to computer-aided diagnosis

    International Nuclear Information System (INIS)

    Sahiner, Berkman; Chan, Heang-Ping; Petrick, Nicholas; Helvie, Mark A.; Goodsitt, Mitchell M.

    1998-01-01

    A genetic algorithm (GA) based feature selection method was developed for the design of high-sensitivity classifiers, which were tailored to yield high sensitivity with high specificity. The fitness function of the GA was based on the receiver operating characteristic (ROC) partial area index, which is defined as the average specificity above a given sensitivity threshold. The designed GA evolved towards the selection of feature combinations which yielded high specificity in the high-sensitivity region of the ROC curve, regardless of the performance at low sensitivity. This is a desirable quality of a classifier used for breast lesion characterization, since the focus in breast lesion characterization is to diagnose correctly as many benign lesions as possible without missing malignancies. The high-sensitivity classifier, formulated as the Fisher's linear discriminant using GA-selected feature variables, was employed to classify 255 biopsy-proven mammographic masses as malignant or benign. The mammograms were digitized at a pixel size of 0.1mmx0.1mm, and regions of interest (ROIs) containing the biopsied masses were extracted by an experienced radiologist. A recently developed image transformation technique, referred to as the rubber-band straightening transform, was applied to the ROIs. Texture features extracted from the spatial grey-level dependence and run-length statistics matrices of the transformed ROIs were used to distinguish malignant and benign masses. The classification accuracy of the high-sensitivity classifier was compared with that of linear discriminant analysis with stepwise feature selection (LDA sfs ). With proper GA training, the ROC partial area of the high-sensitivity classifier above a true-positive fraction of 0.95 was significantly larger than that of LDA sfs , although the latter provided a higher total area (A z ) under the ROC curve. By setting an appropriate decision threshold, the high-sensitivity classifier and LDA sfs correctly

  16. Genetics Home Reference: isolated growth hormone deficiency

    Science.gov (United States)

    ... can be inherited? More about Inheriting Genetic Conditions Diagnosis & Management Resources Genetic Testing (4 links) Genetic Testing Registry: Ateleiotic dwarfism Genetic Testing Registry: Autosomal dominant isolated somatotropin deficiency ...

  17. An aid to the diagnosis of genetic disorders underlying adult-onset renal failure : a literature review

    NARCIS (Netherlands)

    Joosten, H.; Strunk, A. L. M.; Meijer, S.; Boers, J. E.; Aries, M.J.H.; Abbes, A. P.; Engel, H.; Beukhof, J. R.

    Several genetic disorders can present in adult patients with renal insufficiency. Genetic renal disease other than ADPKD accounts for ESRD in 3% of the adult Dutch population. Because of this low prevalence and their clinical heterogeneity most adult nephrologists are less familiar with these

  18. Genetic Programming for the Generation of Crisp and Fuzzy Rule Bases in Classification and Diagnosis of Medical Data

    DEFF Research Database (Denmark)

    Dounias, George; Tsakonas, Athanasios; Jantzen, Jan

    2002-01-01

    This paper demonstrates two methodologies for the construction of rule-based systems in medical decision making. The first approach consists of a method combining genetic programming and heuristic hierarchical rule-base construction. The second model is composed by a strongly-typed genetic...

  19. Genetic variation in cultivars of diploid ryegrass,Lolium perenne andL. multiflorum, at five enzyme systems

    DEFF Research Database (Denmark)

    Østergaard, H.; Nielsen, Gretha; Johansen, H.

    1985-01-01

    was found since at 4 of the 6 loci, Pgi 2, Got 3, Pgm 1 and Pgd 1, the genotypic proportions were in correspondence with the Hardy-Weinberg expectations. This indicated, further, that the genetical interpretations of the banding patterns might be correct. Deviations from Hardy-Weinberg proportions for Acp 1...

  20. Genetics of Autosomal Recessive Polycystic Kidney Disease and Its Differential Diagnoses

    Directory of Open Access Journals (Sweden)

    Carsten Bergmann

    2018-02-01

    Full Text Available Autosomal recessive polycystic kidney disease (ARPKD is a hepatorenal fibrocystic disorder that is characterized by enlarged kidneys with progressive loss of renal function and biliary duct dilatation and congenital hepatic fibrosis that leads to portal hypertension in some patients. Mutations in the PKHD1 gene are the primary cause of ARPKD; however, the disease is genetically not as homogeneous as long thought and mutations in several other cystogenes can phenocopy ARPKD. The family history usually is negative, both for recessive, but also often for dominant disease genes due to de novo arisen mutations or recessive inheritance of variants in genes that usually follow dominant patterns such as the main ADPKD genes PKD1 and PKD2. Considerable progress has been made in the understanding of polycystic kidney disease (PKD. A reduced dosage of disease proteins leads to the disruption of signaling pathways underlying key mechanisms involved in cellular homeostasis, which may help to explain the accelerated and severe clinical progression of disease course in some PKD patients. A comprehensive knowledge of disease-causing genes is essential for counseling and to avoid genetic misdiagnosis, which is particularly important in the prenatal setting (e.g., preimplantation genetic diagnosis/PGD. For ARPKD, there is a strong demand for early and reliable prenatal diagnosis, which is only feasible by molecular genetic analysis. A clear genetic diagnosis is helpful for many families and improves the clinical management of patients. Unnecessary and invasive measures can be avoided and renal and extrarenal comorbidities early be detected in the clinical course. The increasing number of genes that have to be considered benefit from the advances of next-generation sequencing (NGS which allows simultaneous analysis of a large group of genes in a single test at relatively low cost and has become the mainstay for genetic diagnosis. The broad phenotypic and genetic

  1. Effectiveness of the combined evaluation of KLK3 genetics and free-to-total prostate specific antigen ratio for prostate cancer diagnosis.

    Science.gov (United States)

    Zambon, Carlo-Federico; Prayer-Galetti, Tommaso; Basso, Daniela; Padoan, Andrea; Rossi, Elisa; Secco, Silvia; Pelloso, Michela; Fogar, Paola; Navaglia, Filippo; Moz, Stefania; Zattoni, Filiberto; Plebani, Mario

    2012-10-01

    Of serum prostate specific antigen variability 40% depends on inherited factors. We ascertained whether the knowledge of KLK3 genetics would enhance prostate specific antigen diagnostic performance in patients with clinical suspicion of prostate cancer. We studied 1,058 men who consecutively underwent prostate biopsy for clinical suspicion of prostate cancer. At histology prostate cancer was present in 401 cases and absent in 657. Serum total prostate specific antigen and the free-to-total prostate specific antigen ratio were determined. Four polymorphisms of the KLK3 gene (rs2569733, rs2739448, rs925013 and rs2735839) and 1 polymorphism of the SRD5A2 gene (rs523349) were studied. The influence of genetics on prostate specific antigen variability was evaluated by multivariate linear regression analysis. The performance of total prostate specific antigen and the free-to-total prostate specific antigen ratio alone or combined with a genetically based patient classification were defined by ROC curve analyses. For prostate cancer diagnosis the free-to-total prostate specific antigen ratio index alone (cutoff 11%) was superior to total prostate specific antigen (cutoff 4 ng/ml) and to free-to-total prostate specific antigen ratio reflex testing (positive predictive value 61%, 43% and 54%, respectively). Prostate specific antigen correlated with KLK3 genetics (rs2735839 polymorphism p = 0.001, and rs2569733, rs2739448 and rs925013 haplotype combination p = 0.003). In patients with different KLK3 genetics 2 optimal free-to-total prostate specific antigen ratio cutoffs (11% and 14.5%) were found. For free-to-total prostate specific antigen ratio values between 11% and 14.5% the prostate cancer probability ranged from 30.0% to 47.4% according to patient genetics. The free-to-total prostate specific antigen ratio is superior to total prostate specific antigen for prostate cancer diagnosis, independent of total prostate specific antigen results. Free-to-total prostate

  2. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers.

    Science.gov (United States)

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.

  3. Oligonucleotide arrays vs. metaphase-comparative genomic hybridisation and BAC arrays for single-cell analysis: first applications to preimplantation genetic diagnosis for Robertsonian translocation carriers.

    Directory of Open Access Journals (Sweden)

    Laia Ramos

    Full Text Available Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈ 20 kb. Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14(q10;q10. Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers.

  4. Oligonucleotide Arrays vs. Metaphase-Comparative Genomic Hybridisation and BAC Arrays for Single-Cell Analysis: First Applications to Preimplantation Genetic Diagnosis for Robertsonian Translocation Carriers

    Science.gov (United States)

    Ramos, Laia; del Rey, Javier; Daina, Gemma; García-Aragonés, Manel; Armengol, Lluís; Fernandez-Encinas, Alba; Parriego, Mònica; Boada, Montserrat; Martinez-Passarell, Olga; Martorell, Maria Rosa; Casagran, Oriol; Benet, Jordi; Navarro, Joaquima

    2014-01-01

    Comprehensive chromosome analysis techniques such as metaphase-Comparative Genomic Hybridisation (CGH) and array-CGH are available for single-cell analysis. However, while metaphase-CGH and BAC array-CGH have been widely used for Preimplantation Genetic Diagnosis, oligonucleotide array-CGH has not been used in an extensive way. A comparison between oligonucleotide array-CGH and metaphase-CGH has been performed analysing 15 single fibroblasts from aneuploid cell-lines and 18 single blastomeres from human cleavage-stage embryos. Afterwards, oligonucleotide array-CGH and BAC array-CGH were also compared analysing 16 single blastomeres from human cleavage-stage embryos. All three comprehensive analysis techniques provided broadly similar cytogenetic profiles; however, non-identical profiles appeared when extensive aneuploidies were present in a cell. Both array techniques provided an optimised analysis procedure and a higher resolution than metaphase-CGH. Moreover, oligonucleotide array-CGH was able to define extra segmental imbalances in 14.7% of the blastomeres and it better determined the specific unbalanced chromosome regions due to a higher resolution of the technique (≈20 kb). Applicability of oligonucleotide array-CGH for Preimplantation Genetic Diagnosis has been demonstrated in two cases of Robertsonian translocation carriers 45,XY,der(13;14)(q10;q10). Transfer of euploid embryos was performed in both cases and pregnancy was achieved by one of the couples. This is the first time that an oligonucleotide array-CGH approach has been successfully applied to Preimplantation Genetic Diagnosis for balanced chromosome rearrangement carriers. PMID:25415307

  5. Prune-belly syndrome: case series and review of the literature regarding early prenatal diagnosis, epidemiology, genetic factors, treatment, and prognosis.

    Science.gov (United States)

    Tonni, Gabriele; Ida, Vito; Alessandro, Ventura; Bonasoni, Maria Paola

    2013-02-01

    Prune-belly syndrome (PBS) is a rare congenital syndrome characterized by deficient abdominal muscles, urinary tract malformation, and in males, cryptorchidism and has an estimated incidence of 1 in 35,000 to 1 in 50,000 live births. The syndrome might be due to severe bladder outlet obstruction or to abdominal muscle deficiency secondary to a migrational defect of the lateral mesoblast between weeks 6 and 7 of pregnancy. The current review of the medical record reports a special focus on epidemiology, genetic factors, early prenatal diagnosis clusters, treatment, and prognosis of PBS.

  6. Correlation of the sperm penetration assay (SPA and miscarriage after assisted reproduction: The potential use of spa as a new criterion for preimplantation genetic diagnosis

    Directory of Open Access Journals (Sweden)

    Gradistanac Jelena

    2011-01-01

    Full Text Available We analyzed 93 couples undergoing male screening with the Sperm Penetration Assay (SPA before in vitro fertilization and intracytoplasmic sperm injection (ICSI, to determine the accuracy of SPA for subsequent embryonic development, incidence of pregnancy and miscarriage rates (SAB. ICSI patients with the lowest SPA scores had significantly higher incidences of Sthan did patients in the other SPA groups. Sperm quality is higher with better SPA scores. Poor sperm quality has increased incidence of chromosomal abnormalities and is associated with early fetal loss. Couples with negative SPA are candidates for preimplantation genetic diagnosis, to reduce the incidence of SAB.

  7. Cystic Fibrosis: Prenatal Screening and Diagnosis

    Science.gov (United States)

    ... your own sperm and eggs, and then use preimplantation genetic diagnosis to see if the fertilized egg has CF ... that can be passed from parent to child. Preimplantation Genetic Diagnosis: A type of genetic testing that can be ...

  8. PRENATAL DIAGNOSIS OF β-THALASSEMIAS AND HEMOGLOBINOPATHIES

    Directory of Open Access Journals (Sweden)

    Luisella Saba

    2009-06-01

    Full Text Available

     

    Prenatal diagnosis of β-thalassemia was accomplished for the first time in the 1970s by globin chain synthesis analysis on fetal blood obtained by placental aspiration at 18-22 weeks gestation. Since then, the molecular definition of the β- globin gene pathology, the development of procedures of DNA analysis, and the introduction of chorionic villous sampling have dramatically improved prenatal diagnosis of this  disease and of related disorders.  Much information is now available about the molecular mechanisms of the diseases and the molecular testing is widespread.

    As prenatal diagnosis has to provide an accurate, safe and early result, an efficient screening of the population and a rapid molecular characterization of the couple at risk, are necessary prerequisites. In the last decades  earlier and less invasive approaches for prenatal diagnosis were developed . A overview of the most promising procedure will be done.

    Moreover, in order to reduce the choice of   interrupting  the pregnancy in case of affected fetus, Preimplantation or Preconceptional Genetic Diagnosis (PGD has been setting up for several diseases including thalassemias.

    植入前遗传学诊断及筛查咨询%Counseling of preimplantation genetic diagnosis and screening

    Institute of Scientific and Technical Information of China (English)

    曲文玉

    2016-01-01

    随着分子生物学技术的飞速发展及其在生殖领域的应用,植入前遗传学诊断(PGD)、植入前遗传学筛查(PGS)的遗传咨询变得更加复杂.在PGD、PGS的遗传咨询中,医生应充分告知患者PGD、PGS的应用现状、利弊、可能的预后、技术缺陷与安全性问题.同时,经PGD、PGS成功妊娠的孕妇,仍需进行常规的产前诊断,这一点对于PGD、PGS的安全性至关重要.

  9. INFORMATION TECHNOLOGIES IN THE ASSESSMENT OF THE PREIMPLANTATION GENETIC DIAGNOSIS EFFICIENCY IN THE FIELD OF ASSISTED REPRODUCTIVE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    S. V. Denysenko

    2012-11-01

    Full Text Available Application of the information technologies is becoming increasingly important in the practice of molecular and cytogenetic analysis of chromosomal abnormalities in particular on the preimplantation level. Capacity of preimplantation diagnosis is based on fluorescent in situ hybridization (FISH and comparative genomic hybridization (CGH. Interpretation of FISH/CGH results is performed with the help of Applied Cytovision System.

  10. Is it acceptable to approach colorectal cancer patients at diagnosis to discuss genetic testing? A pilot study

    OpenAIRE

    Porteous, M; Dunckley, M; Appleton, S; Catt, S; Dunlop, M; Campbell, H; Cull, A

    2003-01-01

    In this pilot study, the acceptability of approaching 111 newly diagnosed colorectal cancer patients with the offer of genetic testing for hereditary nonpolyposis colorectal cancer (HNPCC) was assessed. A total of 78% of participants found it highly acceptable to have the information about HNPCC brought to their attention at that time.

  11. An LMNB1 Duplication Caused Adult-Onset Autosomal Dominant Leukodystrophy in Chinese Family: Clinical Manifestations, Neuroradiology and Genetic Diagnosis

    Directory of Open Access Journals (Sweden)

    Yi Dai

    2017-07-01

    Full Text Available Autosomal dominant adult-onset demyelinating leukodystrophy (ADLD is a very rare neurological disorder featured with late onset, slowly progressive central nervous system demyelination. Duplication or over expression of the lamin B1 (LMNB1 gene causes ADLD. In this study, we undertook a comprehensive clinical evaluation and genetic detection for a Chinese family with ADLD. The proband is a 52-year old man manifested with autonomic abnormalities, pyramidal tract dysfunction. MRI brain scan identified bilateral symmetric white matter (WM hyper-intensities in periventricular and semi-oval WM, cerebral peduncles and middle cerebellar peduncles. The proband has a positive autosomal dominant family history with similar clinical manifestations with a trend of genetic anticipation. In order to understand the genetic cause of the disease in this family, target exome capture based next generation sequencing has been done, but no causative variants or possibly pathogenic variants has been identified. However, Multiplex ligand-dependent probe amplification (MLPA showed whole duplication of LMNB1 gene which is co-segregated with the disease phenotype in this family. This is the first genetically confirmed LMNB1 associated ADLD pedigree from China.

  12. Identification of A Novel Missense Mutation in The Norrie Disease Gene: The First Molecular Genetic Analysis and Prenatal Diagnosis of Norrie Disease in An Iranian Family.

    Science.gov (United States)

    Talebi, Farah; Ghanbari Mardasi, Farideh; Mohammadi Asl, Javad; Lashgari, Ali; Farhadi, Freidoon

    2018-07-01

    Norrie disease (ND) is a rare X-linked recessive disorder, which is characterized by congenital blindness and, in several cases, accompanied with mental retardation and deafness. ND is caused by mutations in NDP, located on the proximal short arm of the X chromosome (Xp11.3). The disease has been observed in many ethnic groups worldwide, however, no such case has been reported from Iran. In this study, we present the molecular analysis of two patients with ND and the subsequent prenatal diagnosis. Screening of NDP identified a hemizygous missense mutation (p.Ser133Cys) in the affected male siblings of the family. The mother was the carrier for the mutation (p.Ser133Cys). In a subsequent chorionic amniotic pregnancy, we carried out prenatal diagnosis by sequencing NDP in the chorionic villi sample at 11 weeks of gestation. The fetus was carrying the mutation and thus unaffected. This is the first mutation report and prenatal diagnosis of an Iranian family with ND, and highlights the importance of prenatal diagnostic screening of this congenital disorder and relevant genetic counseling. Copyright© by Royan Institute. All rights reserved.

  13. Genetic Syndromes Associated with Congenital Cardiac Defects and Ophthalmologic Changes - Systematization for Diagnosis in the Clinical Practice

    OpenAIRE

    Oliveira, Priscila H. A.; Souza, Beatriz S.; Pacheco, Eimi N.; Menegazzo, Michele S.; Corrêa, Ivan S.; Zen, Paulo R. G.; Rosa, Rafael F. M.; Cesa, Claudia C.; Pellanda, Lucia C.; Vilela, Manuel A. P.

    2018-01-01

    Abstract Background: Numerous genetic syndromes associated with heart disease and ocular manifestations have been described. However, a compilation and a summarization of these syndromes for better consultation and comparison have not been performed yet. Objective: The objective of this work is to systematize available evidence in the literature on different syndromes that may cause congenital heart diseases associated with ocular changes, focusing on the types of anatomical and functional ...

  14. Do recent US Supreme Court rulings on patenting of genes and genetic diagnostics affect the practice of genetic screening and diagnosis in prenatal and reproductive care?

    Science.gov (United States)

    Chandrasekharan, Subhashini; McGuire, Amy L.; Van den Veyver, Ignatia B.

    2015-01-01

    Thousands of patents have been awarded that claim human gene sequences and their uses, and some have been challenged in court. In a recent high-profile case, Association for Molecular Pathology, et al. vs. Myriad Genetics, Inc., et al., the United States Supreme Court ruled that genes are natural occurring substances and therefore not patentable through “composition of matter” claims. The consequences of this ruling will extend well beyond ending Myriad's monopoly over BRCA testing, and may affect similar monopolies of other commercial laboratories for tests involving other genes. It could also simplify intellectual property issues surrounding genome-wide clinical sequencing, which can generate results for genes covered by intellectual property. Non-invasive prenatal testing (NIPT) for common aneuploidies using cell-free fetal (cff) DNA in maternal blood is currently offered through commercial laboratories and is also the subject of ongoing patent litigation. The recent Supreme Court decision in the Myriad case has already been invoked by a lower district court in NIPT litigation and resulted in invalidation of primary claims in a patent on currently marketed cffDNA-based testing for chromosomal aneuploidies. PMID:24989832

  15. Do recent US Supreme Court rulings on patenting of genes and genetic diagnostics affect the practice of genetic screening and diagnosis in prenatal and reproductive care?

    Science.gov (United States)

    Chandrasekharan, Subhashini; McGuire, Amy L; Van den Veyver, Ignatia B

    2014-10-01

    Thousands of patents have been awarded that claim human gene sequences and their uses, and some have been challenged in court. In a recent high-profile case, Association for Molecular Pathology, et al. v. Myriad Genetics, Inc., et al., the US Supreme Court ruled that genes are natural occurring substances and therefore not patentable through 'composition of matter' claims. The consequences of this ruling will extend well beyond ending Myriad's monopoly over BRCA testing and may affect similar monopolies of other commercial laboratories for tests involving other genes. It could also simplify intellectual property issues surrounding genome-wide clinical sequencing, which can generate results for genes covered by intellectual property. Non-invasive prenatal testing (NIPT) for common aneuploidies using cell-free fetal (cff) DNA in maternal blood is currently offered through commercial laboratories and is also the subject of ongoing patent litigation. The recent Supreme Court decision in the Myriad case has already been invoked by a lower district court in NIPT litigation and resulted in invalidation of primary claims in a patent on currently marketed cffDNA-based testing for chromosomal aneuploidies. © 2014 John Wiley & Sons, Ltd.

  16. 植入前遗传学诊断方法的现状和进展%The presant and advances in the methods of preimplantation genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    田立霞; 纪亚忠; 惠宁

    2006-01-01

    植入前遗传学诊断(preimplantation genetic diagnosis, PGD) 是辅助生育技术与分子生物学技术相结合而形成的一种产前诊断技术,目的是减少携带遗传疾病的胚胎移植.同时减少孕妇反复流产或引产的痛苦.PGD常用的检测方法为:聚合酶链反应(PCR)和荧光原位杂交(FISH).本综述就这两种技术在PGD中应用及存在的问题做一总结.

  17. Genetic diagnosis of Duchenne and Becker muscular dystrophy using next-generation sequencing technology: comprehensive mutational search in a single platform.

    Science.gov (United States)

    Lim, Byung Chan; Lee, Seungbok; Shin, Jong-Yeon; Kim, Jong-Il; Hwang, Hee; Kim, Ki Joong; Hwang, Yong Seung; Seo, Jeong-Sun; Chae, Jong Hee

    2011-11-01

    Duchenne muscular dystrophy or Becker muscular dystrophy might be a suitable candidate disease for application of next-generation sequencing in the genetic diagnosis because the complex mutational spectrum and the large size of the dystrophin gene require two or more analytical methods and have a high cost. The authors tested whether large deletions/duplications or small mutations, such as point mutations or short insertions/deletions of the dystrophin gene, could be predicted accurately in a single platform using next-generation sequencing technology. A custom solution-based target enrichment kit was designed to capture whole genomic regions of the dystrophin gene and other muscular-dystrophy-related genes. A multiplexing strategy, wherein four differently bar-coded samples were captured and sequenced together in a single lane of the Illumina Genome Analyser, was applied. The study subjects were 25 16 with deficient dystrophin expression without a large deletion/duplication and 9 with a known large deletion/duplication. Nearly 100% of the exonic region of the dystrophin gene was covered by at least eight reads with a mean read depth of 107. Pathogenic small mutations were identified in 15 of the 16 patients without a large deletion/duplication. Using these 16 patients as the standard, the authors' method accurately predicted the deleted or duplicated exons in the 9 patients with known mutations. Inclusion of non-coding regions and paired-end sequence analysis enabled accurate identification by increasing the read depth and providing information about the breakpoint junction. The current method has an advantage for the genetic diagnosis of Duchenne muscular dystrophy and Becker muscular dystrophy wherein a comprehensive mutational search may be feasible using a single platform.

  18. Three cases of thyroid cancer following the diagnosis of testicular cancer: treatment-related complication or genetics?

    Science.gov (United States)

    Spiliopoulou, Pavlina; Bowers, Sarah Pauline; Gibson, Sarah; White, Jeff; Reed, Nick

    2016-05-01

    Large-scale epidemiological studies have shown that the incidence of second primary thyroid cancer in subjects diagnosed and treated for testicular cancer is raised. This finding is strongly associated to treatment with radiotherapy and/or chemotherapy and it is explained by their mutagenic effect. On the other hand, inherited cancer susceptibility syndromes inducing both testicular and thyroid cancers denote that these tumours might share common genomic aberrations. We herein present our experience with three cases of metachronous development of thyroid cancer after diagnosis and treatment of testicular cancer in our tertiary cancer centre. Our case report contributes to the limited available literature on such findings and aims to raise awareness of the cancer physicians treating these particular tumour types. © The Author(s) 2016.

  19. [Molecular-Genetic Diagnosis and Molecular-Targeted Therapy in Cancer: Challenges in the Era of Precision Medicine].

    Science.gov (United States)

    Miyachi, Hayato

    2015-10-01

    Elucidation of the molecular pathogenesis of neoplasms and application of emerging technologies for testing and therapy have resulted in a series of paradigm shifts in patient care, from conventional to personalized medicine. This has been promoted by companion diagnostics and molecular targeted therapy, tailoring the treatment to the individual characteristics of each patient. Precision oncology has been accelerated by integrating the enhanced resolution of molecular analysis, mechanism clarity, and therapeutic relevance through genomic knowledge. In its clinical implementation, there are laboratory challenges concerning accurate measurement using stored samples, differentiation between driver and passenger mutations as well as between germline and somatic mutations, bioinformatics availability, practical decision-making algorithms, and ethical issues regarding incidental findings. The medical laboratory has a new role in providing not only testing services but also an instructive approach to users to ensure the sample quality and privacy protection of personal genome information, supporting the quality of patient practice based on laboratory diagnosis.

  1. Systematic assessment of cervical cancer initiation and progression uncovers genetic panels for deep learning-based early diagnosis and proposes novel diagnostic and prognostic biomarkers.

    Science.gov (United States)

    Long, Nguyen Phuoc; Jung, Kyung Hee; Yoon, Sang Jun; Anh, Nguyen Hoang; Nghi, Tran Diem; Kang, Yun Pyo; Yan, Hong Hua; Min, Jung Eun; Hong, Soon-Sun; Kwon, Sung Won

    2017-12-12

    Although many outstanding achievements in the management of cervical cancer (CxCa) have obtained, it still imposes a major burden which has prompted scientists to discover and validate new CxCa biomarkers to improve the diagnostic and prognostic assessment of CxCa. In this study, eight different gene expression data sets containing 202 cancer, 115 cervical intraepithelial neoplasia (CIN), and 105 normal samples were utilized for an integrative systems biology assessment in a multi-stage carcinogenesis manner. Deep learning-based diagnostic models were established based on the genetic panels of intrinsic genes of cervical carcinogenesis as well as on the unbiased variable selection approach. Survival analysis was also conducted to explore the potential biomarker candidates for prognostic assessment. Our results showed that cell cycle, RNA transport, mRNA surveillance, and one carbon pool by folate were the key regulatory mechanisms involved in the initiation, progression, and metastasis of CxCa. Various genetic panels combined with machine learning algorithms successfully differentiated CxCa from CIN and normalcy in cross-study normalized data sets. In particular, the 168-gene deep learning model for the differentiation of cancer from normalcy achieved an externally validated accuracy of 97.96% (99.01% sensitivity and 95.65% specificity). Survival analysis revealed that ZNF281 and EPHB6 were the two most promising prognostic genetic markers for CxCa among others. Our findings open new opportunities to enhance current understanding of the characteristics of CxCa pathobiology. In addition, the combination of transcriptomics-based signatures and deep learning classification may become an important approach to improve CxCa diagnosis and management in clinical practice.

  2. Prenatal Diagnosis

    Directory of Open Access Journals (Sweden)

    Ozge Ozalp Yuregir

    2012-02-01

    Full Text Available Prenatal diagnosis is the process of determining the health or disease status of the fetus or embryo before birth. The purpose is early detection of diseases and early intervention when required. Prenatal genetic tests comprise of cytogenetic (chromosome assessment and molecular (DNA mutation analysis tests. Prenatal testing enables the early diagnosis of many diseases in risky pregnancies. Furthermore, in the event of a disease, diagnosing prenatally will facilitate the planning of necessary precautions and treatments, both before and after birth. Upon prenatal diagnosis of some diseases, termination of the pregnancy could be possible according to the family's wishes and within the legal frameworks. [Archives Medical Review Journal 2012; 21(1.000: 80-94

  3. Attitudes of palliative care clinical staff toward prolonged grief disorder diagnosis and grief interventions.

    Science.gov (United States)

    Davis, Esther L; Deane, Frank P; Barclay, Gregory D; Bourne, Joan; Connolly, Vivienne

    2017-07-03

    The provision of psychological support to caregivers is an important part of the role of the clinical staff working in palliative care. Staff knowledge and attitudes may determine their openness to referring caregivers to a psychological intervention. We recently developed a self-help intervention for grief and psychological distress among caregivers and were interested in exploring the extent to which staff knowledge and attitudes might affect future implementation. The aims of our study were to: (1) examine the acceptability of self-help psychological intervention for caregivers among palliative care clinical staff; (2) examine potential attitudinal barriers toward prolonged grief disorder (PGD) as a diagnosis and interventions for grief; and (3) bolster staff confidence in skills and knowledge in identifying and managing caregiver psychological distress. An anonymous survey was distributed among clinical staff at two inpatient units and two community health services that assessed the acceptability of self-help interventions for caregivers, attitudes about PGD diagnosis and grief intervention, and staff confidence in skills and knowledge in assessing caregiver psychological distress. Overall, clinical staff were positively oriented toward self-help for caregivers and intervention for grief. They were also basically confident in their skills and knowledge. While it was positive PGD attitudes that were associated with acceptability of self-help for caregivers, it was both positive and negative PGD attitudes that were associated more specifically with a willingness to refer caregivers to such an intervention. Our findings are useful in highlighting the issues to be considered in the implementation of a self-help intervention within the healthcare service. Clinical staff seemed positively oriented toward engaging with a psychological intervention for caregivers and likely to act as key allies in implementation.

  4. Clinical evaluation, biochemistry and genetic polymorphism analysis for the diagnosis of lactose intolerance in a population from northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Paulo Roberto Lins Ponte

    2016-02-01

    Full Text Available OBJECTIVE: This work aimed to evaluate and correlate symptoms, biochemical blood test results and single nucleotide polymorphisms for lactose intolerance diagnosis. METHOD: A cross-sectional study was conducted in Fortaleza, Ceará, Brazil, with a total of 119 patients, 54 of whom were lactose intolerant. Clinical evaluation and biochemical blood tests were conducted after lactose ingestion and blood samples were collected for genotyping evaluation. In particular, the single nucleotide polymorphisms C>T-13910 and G>A-22018 were analyzed by restriction fragment length polymorphism/polymerase chain reaction and validated by DNA sequencing. RESULTS: Lactose-intolerant patients presented with more symptoms of flatulence (81.4%, bloating (68.5%, borborygmus (59.3% and diarrhea (46.3% compared with non-lactose-intolerant patients (pT-13910 and G>A-22018 with lactose tolerance in this population and suggest clinical management for patients with lactose intolerance that considers single nucleotide polymorphism detection and a change in the biochemical blood test cutoff from <25 mg/dL to <15 mg/dL.

  5. Clinical evaluation, biochemistry and genetic polymorphism analysis for the diagnosis of lactose intolerance in a population from northeastern Brazil.

    Science.gov (United States)

    Ponte, Paulo Roberto Lins; de Medeiros, Pedro Henrique Quintela Soares; Havt, Alexandre; Caetano, Joselany Afio; Cid, David A C; Prata, Mara de Moura Gondim; Soares, Alberto Melo; Guerrant, Richard L; Mychaleckyj, Josyf; Lima, Aldo Ângelo Moreira

    2016-02-01

    This work aimed to evaluate and correlate symptoms, biochemical blood test results and single nucleotide polymorphisms for lactose intolerance diagnosis. A cross-sectional study was conducted in Fortaleza, Ceará, Brazil, with a total of 119 patients, 54 of whom were lactose intolerant. Clinical evaluation and biochemical blood tests were conducted after lactose ingestion and blood samples were collected for genotyping evaluation. In particular, the single nucleotide polymorphisms C>T-13910 and G>A-22018 were analyzed by restriction fragment length polymorphism/polymerase chain reaction and validated by DNA sequencing. Lactose-intolerant patients presented with more symptoms of flatulence (81.4%), bloating (68.5%), borborygmus (59.3%) and diarrhea (46.3%) compared with non-lactose-intolerant patients (plactose-tolerant phenotype (plactose, we found that the most effective cutoff for glucose levels obtained for lactose malabsorbers was T-13910 and G>A-22018) with lactose tolerance in this population and suggest clinical management for patients with lactose intolerance that considers single nucleotide polymorphism detection and a change in the biochemical blood test cutoff from <25 mg/dL to <15 mg/dL.

  6. Successful treatment of young infants presenting neonatal diabetes mellitus with continuous subcutaneous insulin infusion before genetic diagnosis.

    Science.gov (United States)

    Rabbone, Ivana; Barbetti, Fabrizio; Marigliano, Marco; Bonfanti, Riccardo; Piccinno, Elvira; Ortolani, Federica; Ignaccolo, Giovanna; Maffeis, Claudio; Confetto, Santino; Cerutti, Franco; Zanfardino, Angela; Iafusco, Dario

    2016-08-01

    Neonatal diabetes mellitus (NDM) is defined as hyperglycemia and impaired insulin secretion with onset within 6 months of birth. While rare, NDM presents complex challenges regarding the management of glycemic control. The availability of continuous subcutaneous insulin infusion pumps (CSII) in combination with continuous glucose monitoring systems (CGM) provides an opportunity to monitor glucose levels more closely and deliver insulin more safely. We report four cases of young infants with NDM successfully treated with CSII and CGM. Moreover, in two cases with Kir 6.2 mutation, we describe the use of CSII in switching therapy from insulin to sulfonylurea treatment. Insulin pump requirement for the 4 neonatal diabetes cases was the same regardless of disease pathogenesis and c-peptide levels. No dilution of insulin was needed. The use of an integrated CGM system helped in a more precise control of BG levels with the possibility of several modifications of insulin basal rates. Moreover, as showed in the first two case-reports, when the treatment was switched from insulin to glibenclamide, according to identification of Kir 6.2 mutation and diagnosis of NPDM, the CSII therapy demonstrated to be helpful in allowing gradual insulin suspension and progressive introduction of sulfonylurea. During the neonatal period, the use of CSII therapy is safe, more physiological, accurate and easier for the insulin administration management. Furthermore, CSII therapy is safe during the switch of therapy from insulin to glibenclamide for infants with permanent neonatal diabetes mellitus.

  7. Clinical evaluation, biochemistry and genetic polymorphism analysis for the diagnosis of lactose intolerance in a population from northeastern Brazil

    Science.gov (United States)

    Ponte, Paulo Roberto Lins; de Medeiros, Pedro Henrique Quintela Soares; Havt, Alexandre; Caetano, Joselany Afio; Cid, David A C; de Moura Gondim Prata, Mara; Soares, Alberto Melo; Guerrant, Richard L; Mychaleckyj, Josyf; Lima, Aldo Ângelo Moreira

    2016-01-01

    OBJECTIVE: This work aimed to evaluate and correlate symptoms, biochemical blood test results and single nucleotide polymorphisms for lactose intolerance diagnosis. METHOD: A cross-sectional study was conducted in Fortaleza, Ceará, Brazil, with a total of 119 patients, 54 of whom were lactose intolerant. Clinical evaluation and biochemical blood tests were conducted after lactose ingestion and blood samples were collected for genotyping evaluation. In particular, the single nucleotide polymorphisms C>T-13910 and G>A-22018 were analyzed by restriction fragment length polymorphism/polymerase chain reaction and validated by DNA sequencing. RESULTS: Lactose-intolerant patients presented with more symptoms of flatulence (81.4%), bloating (68.5%), borborygmus (59.3%) and diarrhea (46.3%) compared with non-lactose-intolerant patients (plactose-tolerant phenotype (plactose, we found that the most effective cutoff for glucose levels obtained for lactose malabsorbers was T-13910 and G>A-22018) with lactose tolerance in this population and suggest clinical management for patients with lactose intolerance that considers single nucleotide polymorphism detection and a change in the biochemical blood test cutoff from <25 mg/dL to <15 mg/dL. PMID:26934237

  8. Complex multi-block analysis identifies new immunologic and genetic disease progression patterns associated with the residual β-cell function 1 year after diagnosis of type 1 diabetes

    DEFF Research Database (Denmark)

    Andersen, Marie Louise Max; Rasmussen, Morten Arendt; Pörksen, Sven

    2013-01-01

    The purpose of the present study is to explore the progression of type 1 diabetes (T1D) in Danish children 12 months after diagnosis using Latent Factor Modelling. We include three data blocks of dynamic paraclinical biomarkers, baseline clinical characteristics and genetic profiles of diabetes r...

  9. La genética comunitaria en los programas de diagnóstico prenatal Community genetics in prenatal diagnosis programs

    Directory of Open Access Journals (Sweden)

    Yanet Hernández Triguero

    2013-06-01

    Full Text Available Introducción: la creación de centros para el desarrollo de la Genética comunitaria, en todos los municipios del país, ha hecho posible el incremento de la cobertura de atención de los servicios de genética médica en la atención primaria. Objetivo: evaluar los resultados obtenidos en el funcionamiento prenatal del Programa Cubano de Diagnóstico, Manejo y Prevención de Enfermedades Genéticas y Defectos Congénitos. Material y métodos: se realizó un estudio descriptivo, retrospectivo y de corte longitudinal que incluyó el total de gestantes captadas desde el 1ro. de enero de 2007 hasta el 31 de diciembre de 2011, en el municipio La Palma. Resultados: de 2016 gestantes, el 51.7% fueron clasificadas como riesgo genético incrementado. En este grupo, la adolescencia (29.4% y la edad materna avanzada (15.8% fueron los principales factores de riesgo genético encontrados. Se realizaron 1720 exámenes de ecografía, entre las 11 y 13.6 semanas, examen que logra una cobertura del 94.8%. Se detectaron 47 portadoras de hemoglobina AS o AC. Se determinó el valor de la alfafetoproteína en suero materno, el 7.1 % mostró cifras elevadas y la amenaza de aborto constituyó la primera causa de esta alteración. Se diagnosticaron prenatalmente, por ecografía del segundo trimestre, 20 gestantes que presentaron fetos con defectos congénitos, lográndose una cobertura de 99,5%. Conclusiones: el enfoque comunitario de la genética y el trabajo coordinado con la atención primaria de salud permiten confeccionar estrategias dirigidas al control y disminución de los riesgos de defectos congénitos y enfermedades comunes en la población.Introduction: the creation of centers to the development of community genetics all over the municipalities of the country has made possible an increased coverage of medical genetics services in Primary Health Care. Objective: to assess the results obtained in the establishment of Cuban Prenatal Diagnosis, Management and

  10. Genetic diagnosis of high-penetrance susceptibility for colorectal cancer (CRC) is achievable for a high proportion of familial CRC by exome sequencing.

    Science.gov (United States)

    Chubb, Daniel; Broderick, Peter; Frampton, Matthew; Kinnersley, Ben; Sherborne, Amy; Penegar, Steven; Lloyd, Amy; Ma, Yussanne P; Dobbins, Sara E; Houlston, Richard S

    2015-02-10

    Knowledge of the contribution of high-penetrance susceptibility to familial colorectal cancer (CRC) is relevant to the counseling, treatment, and surveillance of CRC patients and families. To quantify the impact of germline mutation to familial CRC, we sequenced the mismatch repair genes (MMR) APC, MUTYH, and SMAD4/BMPR1A in 626 early-onset familial CRC cases ascertained through a population-based United Kingdom national registry. In addition, we evaluated the contribution of mutations in the exonuclease domain (exodom) of POLE and POLD1 genes that have recently been reported to confer CRC risk. Overall mutations (pathogenic, likely pathogenic) in MMR genes make the highest contribution to familial CRC (10.9%). Mutations in the other established CRC genes account for 3.3% of cases. POLE/POLD1 exodom mutations were identified in three patients with family histories consistent with dominant transmission of CRC. Collectively, mutations in the known genes account for 14.2% of familial CRC (89 of 626 cases; 95% CI = 11.5, 17.2). A genetic diagnosis is feasible in a high proportion of familial CRC. Mainstreaming such analysis in clinical practice should enable the medical management of patients and their families to be optimized. Findings suggest CRC screening of POLE and POLD1 mutation carriers should be comparable to that afforded to those at risk of HNPCC. Although the risk of CRC associated with unexplained familial CRC is in general moderate, in some families the risk is substantive and likely to be the consequence of unidentified genes, as exemplified by POLE and POLD1. Our findings have utility in the design of genetic analyses to identify such novel CRC risk genes. © 2015 by American Society of Clinical Oncology.

  11. Absence of family history and phenotype-genotype correlation in pediatric Brugada syndrome: more burden to bear in clinical and genetic diagnosis.

    Science.gov (United States)

    Daimi, Houria; Khelil, Amel Haj; Ben Hamda, Khaldoun; Aranega, Amelia; Chibani, Jemni B E; Franco, Diego

    2015-06-01

    Brugada syndrome (BrS) is an autosomal-dominant genetic cardiac disorder caused in 18-30 % of the cases by SCN5A gene mutations and manifested by an atypical right bundle block pattern with ST segment elevation and T wave inversion in the right precordial leads. The syndrome is usually detected after puberty. The identification of BrS in pediatric patients is thus a rare occurrence, and most of the reported cases are unmasked after febrile episodes. Usually, having a family history of sudden death represents the first reason to perform an ECG in febrile children. However, this practice makes the sporadic cases of cardiac disease and specially the asymptomatic ones excluded from this diagnosis. Here, we report a sporadic case of a 2-month-old male patient presented with vaccination-related fever and ventricular tachycardia associated with short breathing, palpitation and cold sweating. ECG changes were consistent with type 1 BrS. SCN5A gene analysis of the proband and his family revealed a set of mutations and polymorphisms differentially distributed among family members, however, without any clear genotype-phenotype correlation. Based on our findings, we think that genetic testing should be pursued as a routine practice in symptomatic and asymptomatic pediatric cases of BrS, with or without family history of sudden cardiac death. Similarly, our study suggests that pediatrician should be encouraged to perform an ECG profiling in suspicious febrile children and quickly manage fever since it is the most important factor unmasking BrS in children.

  12. Dynamics and ethics of comprehensive preimplantation genetic testing: a review of the challenges.

    Science.gov (United States)

    Hens, Kristien; Dondorp, Wybo; Handyside, Alan H; Harper, Joyce; Newson, Ainsley J; Pennings, Guido; Rehmann-Sutter, Christoph; de Wert, Guido

    2013-01-01

    Genetic testing of preimplantation embryos has been used for preimplantation genetic diagnosis (PGD) and preimplantation genetic screening (PGS). Microarray technology is being introduced in both these contexts, and whole genome sequencing of blastomeres is also expeted to become possible soon. The amount of extra information such tests will yield may prove to be beneficial for embryo selection, will also raise various ethical issues. We present an overview of the developments and an agenda-setting exploration of the ethical issues. The paper is a joint endeavour by the presenters at an explorative 'campus meeting' organized by the European Society of Human Reproduction and Embryology in cooperation with the department of Health, Ethics & Society of the Maastricht University (The Netherlands). The increasing amount and detail of information that new screening techniques such as microarrays and whole genome sequencing offer does not automatically coincide with an increasing understanding of the prospects of an embryo. From a technical point of view, the future of comprehensive embryo testing may go together with developments in preconception carrier screening. From an ethical point of view, the increasing complexity and amount of information yielded by comprehensive testing techniques will lead to challenges to the principle of reproductive autonomy and the right of the child to an open future, and may imply a possible larger responsibility of the clinician towards the welfare of the future child. Combinations of preconception carrier testing and embryo testing may solve some of these ethical questions but could introduce others. As comprehensive testing techniques are entering the IVF clinic, there is a need for a thorough rethinking of traditional ethical paradigms regarding medically assisted reproduction.

  13. Roteiro diagnóstico e de conduta frente à perda auditiva sensorioneural genética Diagnosis routine and approach in genetic sensorineural hearing loss

    Directory of Open Access Journals (Sweden)

    Fatima Regina Abreu Alves

    2007-06-01

    Full Text Available OBJETIVO: Propor um roteiro para a investigação das PASN genéticas sindrômicas e não-sindrômicas mais comuns, considerando os dados epidemiológicos, as informações e o desenvolvimento de novas tecnologias, as implicações clínicas e os aspectos bioéticos. MATERIAL E MÉTODOS: Realizada uma revisão criteriosa, utilizando os descritores: perda auditiva, sensorioneural, genética e diagnóstico, para compor um roteiro de investigação e de conduta. CONCLUSÃO: Os dados epidemiológicos estimam que pelo menos 50% das perdas auditivas pré-linguais são determinadas por alterações genéticas. As histórias clínica e familiar são extremamente importantes na elaboração do diagnóstico das PASN genéticas e contribuem para a determinação do padrão de herança. Através de um alto índice de suspeita, causas sindrômicas podem ser diagnosticadas ou excluídas, com uma cuidadosa avaliação e a base molecular da PA pode ser determinada mais seguramente do que antes. Os testes genéticos e a herança mitocondrial devem ser considerados em famílias com múltiplos indivíduos afetados, estando esta última afastada se houver nítida transmissão através de um homem. Nas PASN não-sindrômicas a análise de mutação GJB2 deve ser proposta.AIM: To develop a screening in order to determine the more common syndromic and non-syndromic genetic SNHL, considering epidemiological data, information and the development of new technologies; clinical implications and bioethical issues. MATERIALS AND METHODS: We reviewed the literature in order to develop a screening that includes: history, patterns of inheritance, physical evaluation, laboratory tests, image studies, multidisciplinary approaches and genetic tests. CONCLUSION: The epidemiologic data estimates that at least 50% of prelingual HL can be determined by genetic alterations. Medical and family histories are extremely important to help one achieve a genetic-based SNHL diagnosis, and help

  14. Genetic algorithm based on optimization of neural network structure for fault diagnosis of the clutch retainer mechanism of MF 285 tractor

    Directory of Open Access Journals (Sweden)

    S. F Mousavi

    2016-09-01

    Full Text Available Introduction The diagnosis of agricultural machinery faults must be performed at an opportune time, in order to fulfill the agricultural operations in a timely manner and to optimize the accuracy and the integrity of a system, proper monitoring and fault diagnosis of the rotating parts is required. With development of fault diagnosis methods of rotating equipment, especially bearing failure, the security, performance and availability of machines has been increasing. In general, fault detection is conducted through a specific procedure which starts with data acquisition and continues with features extraction, and subsequently failure of the machine would be detected. Several practical methods have been introduced for fault detection in rotating parts of machineries. The review of the literature shows that both Artificial Neural Networks (ANN and Support Vector Machines (SVM have been used for this purpose. However, the results show that SVM is more effective than Artificial Neural Networks in fault detection of such machineries. In some smart detection systems, incorporating an optimized method such as Genetic Algorithm in the Neural Network model, could improve the fault detection procedure. Consequently, the fault detection performance of neural networks may also be improved by combining with the Genetic Algorithm and hence will be comparable with the performance of the Support Vector Machine. In this study, the so called Genetic Algorithm (GA method was used to optimize the structure of the Artificial Neural Networks (ANN for fault detection of the clutch retainer mechanism of Massey Ferguson 285 tractor. Materials and Methods The test rig consists of some electro mechanical parts including the clutch retainer mechanism of Massey Ferguson 285 tractor, a supporting shaft, a single-phase electric motor, a loading mechanism to model the load of the tractor clutch and the corresponding power train gears. The data acquisition section consists of a

  15. Genetics Home Reference: SADDAN

    Science.gov (United States)

    ... view the expand/collapse boxes. Description SADDAN (severe achondroplasia with developmental delay and acanthosis nigricans) is a ... Genetic Testing (1 link) Genetic Testing Registry: Severe achondroplasia with developmental delay and acanthosis nigricans Other Diagnosis ...

  16. Genetics Home Reference: Farber lipogranulomatosis

    Science.gov (United States)

    ... features. Type 1 is the most common, or classical, form of this condition and is associated with ... be inherited? More about Inheriting Genetic Conditions Diagnosis & Management Resources Genetic Testing (1 link) Genetic Testing Registry: ...

  17. Importance of genetic diversity assessment in crop plants and its recent advances: an overview of its analytical perspectives.

    Science.gov (United States)

    Govindaraj, M; Vetriventhan, M; Srinivasan, M

    2015-01-01

    The importance of plant genetic diversity (PGD) is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR) such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i) the significance of plant genetic diversity (PGD) and PGR especially on agriculturally important crops (mostly field crops); (ii) risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii) analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv) modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects) and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more sustainable

  18. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives

    Directory of Open Access Journals (Sweden)

    M. Govindaraj

    2015-01-01

    Full Text Available The importance of plant genetic diversity (PGD is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i the significance of plant genetic diversity (PGD and PGR especially on agriculturally important crops (mostly field crops; (ii risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more

  19. Application of sperm fluorescence in situ hybridization in preimplantation genetic diagnosis%精子荧光原位杂交技术在胚胎植入前遗传学诊断中的作用

    Institute of Scientific and Technical Information of China (English)

    李刚; 孙莹璞; 金海霞; 辛志敏; 戴善军

    2009-01-01

    genetic screening offered prior to preimplantation genetic diagnosis.%,1例克氏综合征患者正常胚胎比例为33.3%(4/12).(3)PGD中正常精子的比例与正常胚胎的比例呈正相关关系(r=0.75,P=0.02).结论 精子FISH分析对PGD前生殖遗传咨询有重要的临床意义.

  20. Radioimmunoassays in prenatal genetic diagnosis

    International Nuclear Information System (INIS)

    Santavy, J.; Janouskova, M.; Fingerova, H.; Krikal, Z.

    1981-01-01

    Prenatal medicine strives to reveal hereditary disorders and congenital malformations before delivery. The application of RIA significantly widened the spectrum of available diagnostic possibilities. We first focused our attention on determining alpha-1-fetoprotein in the amniotic fluid and the serum. We used the results of 33 examinations of the amniotic fluid and 100 samples of the blood serum to compile a graph of physiological values during pregnancy. The graph is used in assessing clinical samples in suspect congenital disorders of neural tube closure and other malformations. In the last two years we have tested testosterone determination in the amniotic fluid to ascertain prenatally the fetal sex in early pregnancy. The results were satisfactory and agreed in 70.6%. (author)

  1. Applications of Microarray Technology in the Field of Preimplantation Genetic Screening%微阵列技术在植入前遗传学筛查领域中的应用

    Institute of Scientific and Technical Information of China (English)

    冼业星; 何文茵; 王维华; 孙筱放

    2014-01-01

    胚胎植入前遗传学筛查(preimplantation genetic screening,PGS)是一种低风险的植入前遗传学诊断(preimplantation genetic diagnosis,PGD).如今各种技术方法的不断涌现并应用于临床PGD中,大大增加了诊断的准确性,降低了误诊风险.而近几年微阵列技术如阵列比较基因组杂交(aCGH)和单核苷酸多态性阵列(SNP)已应用于临床PGS研究中,该项技术突破了以往经典遗传学检测技术如FISH等的诸多限制,能够在全基因组范围内同时检测多种因染色体失衡导致的疾病、微重复、微缺失等,检测结果更加精确、敏感,并能检测到≥10%水平的嵌合体.基于其各种优点,可见微阵列技术在胚胎PGS中具有重要的应用前景.

  2. Clinical diagnostic exome evaluation for an infant with a lethal disorder: genetic diagnosis of TARP syndrome and expansion of the phenotype in a patient with a newly reported RBM10 alteration.

    Science.gov (United States)

    Powis, Zöe; Hart, Alexa; Cherny, Sara; Petrik, Igor; Palmaer, Erika; Tang, Sha; Jones, Carolyn

    2017-06-02

    Diagnostic Exome Sequencing (DES) has been shown to be an effective tool for diagnosis individuals with suspected genetic conditions. We report a male infant born with multiple anomalies including bilateral dysplastic kidneys, cleft palate, bilateral talipes, and bilateral absence of thumbs and first toes. Prenatal testing including chromosome analysis and microarray did not identify a cause for the multiple congenital anomalies. Postnatal diagnostic exome studies (DES) were utilized to find a molecular diagnosis for the patient. Exome sequencing of the proband, mother, and father showed a previously unreported maternally inherited RNA binding motif protein 10 (RBM10) c.1352_1353delAG (p.E451Vfs*66) alteration. Mutations in RBM10 are associated with TARP syndrome, an X-linked recessive disorder originally described with cardinal features of talipes equinovarus, atrial septal defect, Robin sequence, and persistent left superior vena cava. DES established a molecular genetic diagnosis of TARP syndrome for a neonatal patient with a poor prognosis in whom traditional testing methods were uninformative and allowed for efficient diagnosis and future reproductive options for the parents. Other reported cases of TARP syndrome demonstrate significant variability in clinical phenotype. The reported features in this infant including multiple hemivertebrae, imperforate anus, aplasia of thumbs and first toes have not been reported in previous patients, thus expanding the clinical phenotype for this rare disorder.

  3. Diagnóstico genético e clínico do autismo infantil Genetic and clinical diagnosis of infantile autism

    Directory of Open Access Journals (Sweden)

    MARIA IONE FERREIRA DA COSTA

    1998-03-01

    Full Text Available Os principais objetivos deste estudo foram caracterizar variáveis selecionadas para um melhor entendimento e diagnóstico do autismo infantil, tais como: achados clínicos e de imagem, critérios diagnósticos, frequência de distúrbios neuropsiquiátricos nos familiares dos propósitos, recorrência familiar e a ocorrência de consanguinidade entre os pais dos propósitos e entre outros casais da família. A amostra foi constituída de 36 propósitos, de ambos os sexos e na faixa etária de 1 a 20 anos, pertencentes a 35 famílias distintas, todos com diagnóstico clínico de autismo infantil. Os resultados foram os seguintes: a deficiência mental foi observada clinicamente em todos os pacientes da amostra e convulsão em 27,8%; distúrbios neuropsiquiátricos foram referidos em pelo menos um familiar dos propósitos (97,14 % das famílias, autismo recorrente em 11,42 % e consanguinidade nos pais (11,42 %, avós e bisavós (2,86 %; achados anormais de tomografia computadorizada de crânio foram verificados em três propósitos. O conjunto destes resultados reforça a sugestão do modelo de herança multifatorial com limiar diferencial para sexo no autismo infantil. A avaliação clínica de todo caso de autismo infantil deverá contemplar sempre os aspectos neurológicos, psiquiátricos e genéticos.The main objectives of this study were to characterize the selected variables for a better understanding and diagnosis of infantile autism such as clinical and image findings, diagnostic criteria, frequency of neuropsychiatric disorders in the subjects' families, familial recurrence and occurrence of consanguinity between the subjetcs' parents and between other couples in the family. The sample was composed of 36 subjects of both sexes, in the age group from 1 through 20 years old, members of 35 distinctive families, all of which presenting clinical diagnosis for infantile autism. Mental retardation was clinically observed in all subjects of the

  4. Diagnosis and Management of Gaucher Disease in India - Consensus Guidelines of the Gaucher Disease Task Force of the Society for Indian Academy of Medical Genetics and the Indian Academy of Pediatrics.

    Science.gov (United States)

    Puri, Ratna Dua; Kapoor, Seema; Kishnani, Priya S; Dalal, Ashwin; Gupta, Neerja; Muranjan, Mamta; Phadke, Shubha R; Sachdeva, Anupam; Verma, Ishwar C; Mistry, Pramod K

    2018-02-15

    Gaucher disease (GD) is amongst the most frequently occurring lysosomal storage disorder in all ethnicities. The clinical manifestations and natural history of GD is highly heterogeneous with extreme geographic and ethnic variations. The literature on GD has paucity of information and optimal management guidelines for Indian patients. Gaucher Disease Task Force was formed under the auspices of the Society for Indian Academy of Medical Genetics. Invited experts from various specialties formulated guidelines for the management of patients with GD. A writing committee was formed and the draft guidelines were circulated by email to all members for comments and inputs. The guidelines were finalized in December 2016 at the annual meeting of the Indian Academy of Medical Genetics. These guidelines are intended to serve as a standard framework for treating physicians and the health care systems for optimal management of Gaucher disease in India and to define unique needs of this patient population. Manifestations of GD are protean and a high index of suspicion is essential for timely diagnosis. Patients frequently experience diagnostic delays during which severe irreversible complications occur. Leucocyte acid b-glucosidase activity is mandatory for establishing the diagnosis of Gaucher disease; molecular testing can help identify patients at risk of neuronopathic disease. Enzyme replacement therapy for type 1 and type 3 Gaucher disease is the standard of care. Best outcomes are achieved by early initiation of therapy before onset of irreversible complications. However, in setting of progressive neurological symptoms such as seizures and or/ neuroregression, ERT is not recommended, as it cannot cross the blood brain barrier. The recommendations herein are for diagnosis, for initiation of therapy, therapeutic goals, monitoring and follow up of patients. We highlight that prevention of recurrence of the disease through genetic counseling and prenatal diagnosis is essential

  5. Genetic variants in telomerase-related genes are associated with an older age at diagnosis in glioma patients: evidence for distinct pathways of gliomagenesis.

    Science.gov (United States)

    Walsh, Kyle M; Rice, Terri; Decker, Paul A; Kosel, Matthew L; Kollmeyer, Thomas; Hansen, Helen M; Zheng, Shichun; McCoy, Lucie S; Bracci, Paige M; Anderson, Erik; Hsuang, George; Wiemels, Joe L; Pico, Alexander R; Smirnov, Ivan; Molinaro, Annette M; Tihan, Tarik; Berger, Mitchell S; Chang, Susan M; Prados, Michael D; Lachance, Daniel H; Sicotte, Hugues; Eckel-Passow, Jeanette E; Wiencke, John K; Jenkins, Robert B; Wrensch, Margaret R

    2013-08-01

    Genome-wide association studies have implicated single nucleotide polymorphisms (SNPs) in 7 genes as glioma risk factors, including 2 (TERT, RTEL1) involved in telomerase structure/function. We examined associations of these 7 established glioma risk loci with age at diagnosis among patients with glioma. SNP genotype data were available for 2286 Caucasian glioma patients from the University of California, San Francisco (n = 1434) and the Mayo Clinic (n = 852). Regression analyses were performed to test for associations between "number of risk alleles" and "age at diagnosis," adjusted for sex and study site and stratified by tumor grade/histology where appropriate. Four SNPs were significantly associated with age at diagnosis. Carrying a greater number of risk alleles at rs55705857 (CCDC26) and at rs498872 (PHLDB1) was associated with younger age at diagnosis (P = 1.4 × 10(-22) and P = 9.5 × 10(-7), respectively). These SNPs are stronger risk factors for oligodendroglial tumors, which tend to occur in younger patients, and their association with age at diagnosis varied across tumor subtypes. In contrast, carrying more risk alleles at rs2736100 (TERT) and at rs6010620 (RTEL1) was associated with older age at diagnosis (P = 6.2 × 10(-4) and P = 2.5 × 10(-4), respectively). These SNPs are risk factors for all glioma grades/histologies, and their association with age at diagnosis was consistent across tumor subgroups. Carrying a greater number of risk alleles might be expected to decrease age at diagnosis. However, glioma susceptibility conferred by variation in telomerase-related genes did not follow this pattern. This supports the hypothesis that telomerase-related mechanisms of telomere maintenance are more associated with gliomas that develop later in life than those utilizing telomerase-independent mechanisms (ie, alternative lengthening of telomeres).

  6. Genetic variants in 5-HTTLPR, BDNF, HTR1A, COMT, and FKBP5 and risk for treated depression after cancer diagnosis

    DEFF Research Database (Denmark)

    Suppli, Nis P; Bukh, Jens D; Moffitt, Terrie E

    2017-01-01

    BACKGROUND: The role of gene-environment interactions in the pathogenesis of depression is unclear. Previous studies addressed vulnerability for depression after childhood adversity and stressful life events among carriers of numerous specific genetic variants; however, the importance of individual...

  7. Pertinencia de las técnicas de laboratorio para el diagnóstico de enfermedades genéticas Pertinence of the lab techniques for the diagnosis of genetic diseases

    Directory of Open Access Journals (Sweden)

    Estela Morales Peralta

    2008-06-01

    Full Text Available Las pruebas genéticas son métodos de laboratorio que permiten identificar alteraciones de proteínas, ciertos metabolitos, cromosomas o ácidos nucleicos relacionados con enfermedades de causa genética. Constituyen técnicas de avanzada que llegan a revelar las bases moleculares de estas afecciones. Sin embargo, no son el método de referencia para el diagnóstico, pues no siempre presentan sensibilidad y especificidad total. Además, existe un grupo de enfermedades genéticas, cuyo diagnóstico se puede confirmar sobre la base de estudios complementarios que no son precisamente pruebas genéticas; mientras otras requieren solo los criterios clínicos tradicionales para ser verificadas. Las pruebas genéticas complementan el diagnóstico, pero no lo realizan. El proceso de diagnóstico es el método clínico, variante del científico experimental, actividad humana en la que el razonamiento médico es lo esencial.The genetic tests are lab methods that allow to identify protein alterations, certain metabolites, chromosomes or nucleic acids connected with diseases of genetic cause. They are advanced techniques that reveal the molecular bases of these affections. However, they are not the reference method for the diagnosis, since they do not always present total sensitivity and specificity. Moreover, there is a group of genetic diseases, whose diagnosis may be confirmed on the basis of complementary studies that are not precisely genetic tests; whereas other require only traditional clinical criteria to be confirmed. The diagnostic process is the clinical method, a variant of the scientific experimental method, a human activity in which medical reasoning is essential.

  8. Proband-only medical exome sequencing as a cost-effective first-tier genetic diagnostic test for patients without prior molecular tests and clinical diagnosis in a developing country: the China experience.

    Science.gov (United States)

    Hu, Xuyun; Li, Niu; Xu, Yufei; Li, Guoqiang; Yu, Tingting; Yao, Ru-En; Fu, Lijun; Wang, Jiwen; Yin, Lei; Yin, Yong; Wang, Ying; Jin, Xingming; Wang, Xiumin; Wang, Jian; Shen, Yiping

    2017-11-02

    PurposeTo evaluate the performance of proband-only medical exome sequencing (POMES) as a cost-effective first-tier diagnostic test for pediatric patients with unselected conditions.MethodsA total of 1,323 patients were tested by POMES, which targeted 2,742 known disease-causing genes. Clinical relevant variants were Sanger-confirmed in probands and parents. We assessed the diagnostic validity and clinical utility of POMES by means of a survey questionnaire.ResultsPOMES, ordered by 136 physicians, identified 512 pathogenic or likely pathogenic variants associated with over 200 conditions. The overall diagnostic rate was 28.8%, ranging from 10% in neonatal intensive care unit patients to over 35% in pediatric intensive care unit patients. The test results had an impact on the management of the 45.1% of patients for whom there were positive findings. The average turnaround time was 57 days; the cost was $360/case.ConclusionWe adopted a relatively efficient and cost-effective approach in China for the molecular diagnosis of pediatric patients with suspected genetic conditions. While training for clinical geneticists and other specialists is lagging behind in China POMES is serving as a diagnostic equalizer for patients who do not normally receive extensive clinical evaluation and clinical diagnosis prior to testing. This Chinese experience should be applicable to other developing countries that are lacking clinical, financial, and personnel resources.GENETICS in MEDICINE advance online publication, 2 November 2017; doi:10.1038/gim.2017.195.

  9. Multiple displacement amplification and its application in preimplantation genetic diagnosis of thalassemia%多重置换扩增在地中海贫血植入前遗传学诊断中的应用

    Institute of Scientific and Technical Information of China (English)

    王世凯; 黄莉(综述); 何冰(审校)

    2015-01-01

    As an entirely new genome amplification technology to provide sufficient and stable DNA for sub-sequent detection of single cell, multiple displacement amplification( MDA) has acquired a great progress in experi-mental research and clinical application in preimplantation genetic diagnosis of thalassemia.In this review, we intro-duce the principles of MDA, technical characteristics and research progress in preimplantation genetic diagnosis of thalassemia.%多重置换扩增( MDA)技术作为一种全新的全基因组扩增技术,为单细胞的后续检测提供了足够和稳定的DNA,在地中海贫血植入前遗传学诊断的实验研究和临床应用中取得了较大进展。该文就MDA的原理、技术特点及其在地中海贫血植入前遗传学诊断中的应用研究进展进行综述。

  10. Genetics Home Reference: osteoglophonic dysplasia

    Science.gov (United States)

    ... 1 link) Genetic Testing Registry: Osteoglophonic dysplasia Other Diagnosis and Management Resources (1 link) Seattle Children's Hospital: Dwarfism and Bone Dysplasias General Information from MedlinePlus (5 ...

  11. Genetics Home Reference: Meesmann corneal dystrophy

    Science.gov (United States)

    ... was first described in a large, multi-generational German family with more than 100 affected members. Since ... be inherited? More about Inheriting Genetic Conditions Diagnosis & Management Resources Genetic Testing (1 link) Genetic Testing Registry: ...

  12. 多重置换扩增技术在植入前遗传学诊断中的应用%Multiple Displacement Amplification and It's Application in Preimplantation Genetic Diagnosis

    Institute of Scientific and Technical Information of China (English)

    彭兆锋

    2010-01-01

    多重置换扩增技术(MDA)是基于环状滚动扩增的全基因组扩增技术,具有高扩增效率和高保真性等特点.尽管用于单细胞扩增时存在某些缺陷,但其在胚胎植入前遗传学诊断(PGD)实验研究和临床应用中仍取得巨大进展.MDA联合常规PCR技术已成功用于PGD的临床诊断,实现了单次胚胎活检、单个胚胎细胞的性别、部分单基因病的同步诊断.

  13. Ante-mortem diagnosis, diarrhea, oocyst shedding, treatment, isolation, and genetic typing of Toxoplasma gondii associated with clinical toxoplasmosis in a naturally infected cat.

    Science.gov (United States)

    Dubey, J P; Prowell, M

    2013-02-01

    Toxoplasma gondii infections are common in humans and other animals, but clinical disease is relatively rare. It is unknown whether the severity of toxoplasmosis in immunocompetent hosts is due to the parasite strain, host variability, or to other factors. Recently, attention has been focused on the genetic variability among T. gondii isolates from apparently healthy and sick hosts. Whether T. gondii genetic makeup plays a part in the pathogenesis of clinical feline toxoplasmosis is uncertain because little is known of genetic typing of strains associated with clinical feline toxoplasmosis. A 6-mo-old domestic male cat was hospitalized because of lethargy, anorexia, fever, and diarrhea. Numerous (6 million in 1 sample) T. gondii oocysts were found in feces of the cat and antibodies to T. gondii (titer 1:800) were found in its serum by the modified agglutination test. The cat was medicated orally with Clindamycin for 10 days; it became asymptomatic after 10 days and was discharged from the hospital. Viable T. gondii (designated TgCatUs9) was isolated from feces (oocysts) by bioassays in mice. Genetic typing using the DNA extracted from the brains of infected mice and 10 PCR-restriction fragment length polymorphism (RFLP) markers revealed Type II allele at the SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, and PK1 loci and Type I at the L358 and Apico loci; therefore, this isolate belongs to the ToxoDB PCR-RFLP genotype no. 4, which is grouped into the Type 12 lineage that is dominant in wildlife from North America. To our knowledge, this is the first T. gondii isolate characterized genetically from a sick cat in the USA.

  14. Towards multilocus sequence typing of the Leishmania donovani complex: Resolving genotypes and haplotypes for five polymorphic metabolic enzymes (ASAT, GPI, NH1, NH2, PGD)

    Czech Academy of Sciences Publication Activity Database

    Mauricio, I. L.; Yeo, M.; Baghaei, M.; Doto, D.; Pratlong, F.; Zemanová, Eva; Dedet, J.-P.; Lukeš, Julius; Miles, M. A.

    2006-01-01

    Roč. 36, č. 7 (2006), s. 757-769 ISSN 0020-7519 Grant - others:European Comission(EU) QLK2-CT-2001-01810 Institutional research plan: CEZ:AV0Z60220518 Keywords : Leishmania donovani * Leishmania infantum * multilocus sequence typing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.337, year: 2006

  15. 45,X product of conception after preimplantation genetic diagnosis and euploid embryo transfer: evidence of a spontaneous conception confirmed by DNA fingerprinting.

    Science.gov (United States)

    Bettio, Daniela; Capalbo, Antonio; Albani, Elena; Rienzi, Laura; Achille, Valentina; Venci, Anna; Ubaldi, Filippo Maria; Levi Setti, Paolo Emanuele

    2016-09-06

    Preimplantation genetic screening (PGS) provides an opportunity to eliminate a potential implantation failure due to aneuploidy in infertile couples. Some studies clearly show that twins following single embryo transfer (SET) can be the result of a concurrent natural conception and an incidence as high as 1 in 5 twins has been reported. In our case PGS was performed on trophectoderm (TE) biopsies by quantitative polymerase chain reaction (qPCR). The product of conception (POC) was cytogenetically investigated after selection of the placental villi by means of the direct method. Molecular cytogenetic characterization of the POC was performed by fluorescence in situ hybridization (FISH) and array-comparative genomic hybridization (a-CGH) analyses. To investigate the possibility of a spontaneous conception, a panel of 40 single nucleotide polymorphisms (SNPs) was used to compare genetic similarity between the DNA of the POC and the DNA leftover of the TE biopsy. We describe a 36-year old infertile woman undergoing PGS who had a spontaneous abortion after a single euploid embryo transfer on a spontaneous cycle. The POC showed a 45,X karyotype confirmed by FISH and a-CGH. DNA fingerprinting demonstrated a genetic similarity of 75 % between the DNA of the POC and TE biopsy, consistent with a sibling status. All supernumerary euploid embryos were also tested showing a non-self relationship with the POC, excluding a mix-up event at the time of fetal embryo transfer. DNA fingerprinting of the transferred blastocyst and POC, confirmed the occurrence of a spontaneous conception. This case challenges the assumption that a pregnancy after assisted reproductive technology (ART) is always a result of ART, and strengthens the importance to avoid intercourses during PGS and natural transfer cycles. Moreover, cytogenetic analysis of the POCs is strongly recommended along with fingerprinting children born after PGS to see what the concordance is between the embryo transferred and

  16. Autism: Diagnosis

    Science.gov (United States)

    ... Information Publications Awards Partners Contact Us ¿Qué es Autismo? Donate Home What is Autism? What is Autism? ... Information Publications Awards Partners Contact Us ¿Qué es Autismo? Diagnosis Home / What is Autism? / Diagnosis Expand Medical ...

  17. 多重置换扩增在植入前遗传学诊断中的应用及展望%Applications and prospect of multiple displacement amplification in preimplantation genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    张印峰; 罗海宁; 黎小佩; 张云山

    2012-01-01

    多重置换扩增是一种新兴的全基因组扩增技术,能对单个细胞进行全基因扩增,产生大量的优质DNA,具有高扩增效率和高保真性等特点.多重置换扩增联合常规PCR已被成功用于植入前遗传学诊断,进一步扩展了后者的应用范围.%Multiple displacement amplification (MDA) is a new technology for whole genome amplification (WGA),which can generate large amount of high-quality DNA and features high amplification efficiency and fidelity.MDA combined with conventional PCR techniques has been successfully applied for preimplantation genetic diagnosis,which has broaden latter's clinical applications.

  18. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy.

    Science.gov (United States)

    Harper, Joyce; Geraedts, Joep; Borry, Pascal; Cornel, Martina C; Dondorp, Wybo J; Gianaroli, Luca; Harton, Gary; Milachich, Tanya; Kääriäinen, Helena; Liebaers, Inge; Morris, Michael; Sequeiros, Jorge; Sermon, Karen; Shenfield, Françoise; Skirton, Heather; Soini, Sirpa; Spits, Claudia; Veiga, Anna; Vermeesch, Joris Robert; Viville, Stéphane; de Wert, Guido; Macek, Milan

    2014-08-01

    How has the interface between genetics and assisted reproduction technology (ART) evolved since 2005? The interface between ART and genetics has become more entwined as we increase our understanding about the genetics of infertility and we are able to perform more comprehensive genetic testing. In March 2005, a group of experts from the European Society of Human Genetics and European Society of Human Reproduction and Embryology met to discuss the interface between genetics and ART and published an extended background paper, recommendations and two Editorials. An interdisciplinary workshop was held, involving representatives of both professional societies and experts from the European Union Eurogentest2 Coordination Action Project. In March 2012, a group of experts from the European Society of Human Genetics, the European Society of Human Reproduction and Embryology and the EuroGentest2 Coordination Action Project met to discuss developments at the interface between clinical genetics and ART. As more genetic causes of reproductive failure are now recognized and an increasing number of patients undergo testing of their genome prior to conception, either in regular health care or in the context of direct-to-consumer testing, the need for genetic counselling and PGD may increase. Preimplantation genetic screening (PGS) thus far does not have evidence from RCTs to substantiate that the technique is both effective and efficient. Whole genome sequencing may create greater challenges both in the technological and interpretational domains, and requires further reflection about the ethics of genetic testing in ART and PGD/PGS. Diagnostic laboratories should be reporting their results according to internationally accepted accreditation standards (ISO 15189). Further studies are needed in order to address issues related to the impact of ART on epigenetic reprogramming of the early embryo. The legal landscape regarding assisted reproduction is evolving, but still remains very

  19. Microgeographic and temporal genetic variation in populations of the bluetongue virus vector Culicoides variipennis (Diptera: Ceratopogonidae).

    Science.gov (United States)

    Tabachnick, W J

    1992-05-01

    Seven Colorado populations of the bluetongue virus vector Culicoides varipennis (Coquillett) were analyzed for genetic variation at 19-21 isozyme loci. Permanent populations, which overwinter as larvae, showed little temporal genetic change at 19 loci. PGD and MDH showed seasonal changes in gene frequencies, attributable to selection at two permanent populations. Two temporary populations showed low heterozygosity compared with permanent populations. Independent estimates of gene flow, calculated using FST and the private allele method, were Nm* = 2.15 and 6.95, respectively. Colorado C. variipennis permanent populations showed high levels of gene flow which prevented significant genetic differentiation due to genetic drift. Temporary populations showed significant gene frequency differences from nearby permanent populations due to the "founder effect" associated with chance colonization.

  20. ISSR markers for gender identification and genetic diagnosis of Hippophae rhamnoides ssp. turkestanica growing at high altitudes in Ladakh region (Jammu and Kashmir).

    Science.gov (United States)

    Das, Kamal; Ganie, Showkat Hussain; Mangla, Yash; Dar, Tanvir-Ul-Hassan; Chaudhary, Manju; Thakur, Rakesh Kumar; Tandon, Rajesh; Raina, S N; Goel, Shailendra

    2017-03-01

    Hippophae rhamnoides L. ssp. turkestanica (Elaeagnaceae) is a predominantly dioecious and wind-pollinated medicinal plant species. The mature fruits of the species possess antioxidative, anti-inflammatory, antimicrobial, anticancerous, and antistimulatory properties that are believed to improve the immune system. The identification of male and female plants in H. rhamnoides ssp. turkestanica is quite difficult until flowering which usually takes 3-4 years or more. A sex-linked marker can be helpful in establishing the orchards through identification of genders at an early stage of development. Therefore, we studied the genetic diversity of populations in Ladakh with the aim to identify a gender-specific marker using ISSR markers. Fifty-eight ISSR primers were used to characterize the genome of H. rhamnoides ssp. turkestanica, of which eight primers generated 12 sex-specific fragments specific to one or more populations. The ISSR primer (P-45) produced a fragment which faithfully segregates all the males from the female plants across all the three valleys surveyed. This male-specific locus was converted into a SCAR. Forward and reverse primers designed from this fragment amplified a 750-bp sequence in males only, thus specifying it as an informative male-specific sex-linked marker. This SCAR marker was further validated for its capability to differentiate gender on an additional collection of plants, representing three geographically isolated valleys (Nubra, Suru, and Indus) from Ladakh region of India. The results confirmed sex-linked specificity of the marker suggesting that this conserved sequence at the Y chromosome is well preserved through the populations in Ladakh region. At present, there are no reliable markers which can differentiate male from female plants across all the three valleys of Ladakh region at an early stage of plant development. It is therefore envisaged that the developed SCAR marker shall provide a reliable molecular tool for early

  1. 胚胎植入前遗传学诊断的现在与未来%The present and future of preimplantation genetic diagnosis

    Institute of Scientific and Technical Information of China (English)

    陈子江; 李媛

    2005-01-01

    植入前遗传学诊断(preimplantation genetic diagnosis,PGD)是一种早期的产前诊断方法。主要是指对体外受精(in vitro fertilization,IVF)胚胎的遗传物质进行分析,诊断胚胎是否有某些遗传异常,选择无遗传学疾患的胚胎植入宫腔,从而获得正常胎儿的诊断方法。这种方法避免了选择性流产和多次流产可能造成的危害以及伦理道德观念的冲突。

  2. Value of transmission electron microscopy for primary ciliary dyskinesia diagnosis in the era of molecular medicine: Genetic defects with normal and non-diagnostic ciliary ultrastructure.

    Science.gov (United States)

    Shapiro, Adam J; Leigh, Margaret W

    2017-01-01

    Primary ciliary dyskinesia (PCD) is a genetic disorder causing chronic oto-sino-pulmonary disease. No single diagnostic test will detect all PCD cases. Transmission electron microscopy (TEM) of respiratory cilia was previously considered the gold standard diagnostic test for PCD, but 30% of all PCD cases have either normal ciliary ultrastructure or subtle changes which are non-diagnostic. These cases are identified through alternate diagnostic tests, including nasal nitric oxide measurement, high-speed videomicroscopy analysis, immunofluorescent staining of axonemal proteins, and/or mutation analysis of various PCD causing genes. Autosomal recessive mutations in DNAH11 and HYDIN produce normal TEM ciliary ultrastructure, while mutations in genes encoding for radial spoke head proteins result in some cross-sections with non-diagnostic alterations in the central apparatus interspersed with normal ciliary cross-sections. Mutations in nexin link and dynein regulatory complex genes lead to a collection of different ciliary ultrastructures; mutations in CCDC65, CCDC164, and GAS8 produce normal ciliary ultrastructure, while mutations in CCDC39 and CCDC40 cause absent inner dynein arms and microtubule disorganization in some ciliary cross-sections. Mutations in CCNO and MCIDAS cause near complete absence of respiratory cilia due to defects in generation of multiple cellular basal bodies; however, the scant cilia generated may have normal ultrastructure. Lastly, a syndromic form of PCD with retinal degeneration results in normal ciliary ultrastructure through mutations in the RPGR gene. Clinicians must be aware of these genetic causes of PCD resulting in non-diagnostic TEM ciliary ultrastructure and refrain from using TEM of respiratory cilia as a test to rule out PCD.

  3. Association between genetic variation in the oxytocin receptor gene and emotional withdrawal, but not between oxytocin pathway genes and diagnosis in psychotic disorders.

    Directory of Open Access Journals (Sweden)

    Marit eHaram

    2015-01-01

    Full Text Available Social dysfunction is common in patients with psychotic disorders. Oxytocin is a neuropeptide with a central role in social behaviour. This study aims to explore the relationship between oxytocin pathway genes and symptoms related to social dysfunction in patients with psychotic disorders. We performed association analyses between four oxytocin pathway genes (OXT, OXTR, AVP, CD38 and four areas of social behaviour-related psychopathology as measured by Positive and Negative Syndrome Scale (PANSS. For this purpose, we used both a polygenic risk score (PGRS and single OXTR candidate SNPs previously reported in the literature (rs53576, rs237902, rs2254298. A total of 734 subjects with DSM-IV psychotic spectrum disorders and 420 healthy controls were included. Oxytocin pathway PGRSs were calculated based on the independent Psychiatric Genomics Consortium study sample. There was a significant association between symptom of Emotional Withdrawal and the previously reported OXTR risk allele A in rs53576. No significant associations between oxytocin pathway gene variants and a diagnosis of psychotic disorder were found. Our findings indicate that while oxytocin pathway genes do not appear to contribute to the susceptibility to psychotic disorders, variations in the OXTR gene might play a role in the development of impaired social behaviour.

  4. Genetics Home Reference: activated PI3K-delta syndrome

    Science.gov (United States)

    ... Conditions Diagnosis & Management Resources Genetic Testing (1 link) Genetic Testing Registry: Immunodeficiency 14 Other Diagnosis and Management Resources (1 link) National Institute of Allergy and Infectious Diseases: Primary Immune Deficiency Diseases: Talking to Your Doctor ...

  5. [Prenatal diagnosis of sirenomelia].

    Science.gov (United States)

    Ladure, H; D'hervé, D; Loget, P; Poulain, P

    2006-04-01

    Sirenomelia sequence associates a fusion of inferior legs with renal anomalies until bilateral agenesis. It is a rare and lethal polymalformation. The purpose of the ultrasonographic study is to identify the sirenomelia as early as possible during pregnancy and to differentiate it from caudal regression syndrome. A case of sirenomelia diagnosed early is reported together with a review of the literature. The ultrasonographic diagnosis, associated defects, the interest of color Doppler study of abdominal vasculature are discussed. Antenatal ultrasonographic diagnosis should be obtained as early as possible, before 20th gestational week at the latest. Color Doppler is helpful to confirm the diagnosis in case of bilateral renal agenesis. The main differences between sirenomelia and caudal regression syndrome (which requires a very different genetic counselling) are summarized in a table.

  6. Application value of different transformation zone types and its genetic relationship with high-risk HPV type in diagnosis and therapy of cervical disease.

    Science.gov (United States)

    Chen, Yan; Zhou, Jia-De

    2015-01-01

    This study aims to discuss the influence of different types of transformation zone (TZ) on positive surgical margin of loop electrosurgical excision procedure (LEEP) and the significance of infection of different genetic high-risk HPV for cervical intraepithelial neoplasm. The clinical data of patients who had CIN2+ and received LEEP during January to December 2013 was investigated. The conditions of positive surgical margin of patients of different transformation zone (type I, II, III) were analyzed. The clinical high-risk types of HPV were divided into three groups, including A5/6, A7 and A9, compared with the pathological conditions of pre-operation and post-operation of the patients in respective group. The results indicated that type III transformation zone is more likely to cause positive cutting margin. For CIN2+ patients, sensitivity and specificity are 0.89% and 79.56% in group A5/6, and negative and positive predicted value (NPV, PPV) are 40% and 5%. The sensitivity, specificity, NPV, PPV in group A7 is 12.5%, 44.08%, 29.49% and 21.21%, respectively. The sensitivity, specificity, NPV, PPV in group A9 is 88.99%, 87.09%, 85.26%, 81.51%, respectively. Transformation zone type was correlated positively with positive cutting margin percentage (r = 0.8732, P zone is more likely to cause pathological upgrades. In conclusion, different types of transformation zone and high-risk HPV have clinical significance in causing positive cutting margin of surgery and disease extent.

  7. Genetic study of the PAH locus in the Iranian population: familial gene mutations and minihaplotypes.

    Science.gov (United States)

    Razipour, Masoumeh; Alavinejad, Elaheh; Sajedi, Seyede Zahra; Talebi, Saeed; Entezam, Mona; Mohajer, Neda; Kazemi-Sefat, Golnaz-Ensieh; Gharesouran, Jalal; Setoodeh, Aria; Mohaddes Ardebili, Seyyed Mojtaba; Keramatipour, Mohammad

    2017-10-01

    could be useful for prenatal diagnosis (PND) and preimplantation genetic diagnosis (PGD) in affected families.

  8. Embryo genome profiling by single-cell sequencing for successful preimplantation genetic diagnosis in a family harboring COL4A1 c.1537G>A; p.G513S mutation

    Directory of Open Access Journals (Sweden)

    Nayana H Patel

    2016-01-01

    Full Text Available CONTEXT: Genetic profiling of embryos (also known as preimplantation genetic diagnosis before implantation has dramatically enhanced the success quotient of in vitro fertilization (IVF in recent times. The technology helps in avoiding selective pregnancy termination since the baby is likely to be free of the disease under consideration. AIM: Screening of embryos free from c.1537G>A; p.G513S mutation within the COL4A1 gene for which the father was known in before be in heterozygous condition. SUBJECTS AND METHODS: Processing of trophectoderm biopsies was done from twelve embryos for c.1537G>A; p.G513S mutation within the COL4A1 gene. DNA extracted from isolated cells were subjected to whole genome amplification using an isothermal amplification and strand displacement technology. Oligonucleotide primers bracketing the mutation were synthesized and used to amplify 162 base pairs (bp polymerase chain reaction amplicons originating from each embryo which were subsequently sequenced to detect the presence or absence of the single base polymorphism. RESULTS: Three out of 12 embryos interrogated in this study were found to be normal while 9 were found to harbor the mutation in heterozygous condition. Implantation of one of the normal embryos following by chorionic villus sampling at 11 th week of pregnancy indicated that the baby was free from c.1537G>A; p.G513S mutation within the COL4A1 gene. CONCLUSIONS: Single-cell sequencing is a helpful tool for preimplantation embryo profiling. This is the first report from India describing the birth of a normal child through IVF procedure where a potential pathogenic COL4A1 allele was avoided using this technology.

  9. Prenatal Diagnosis of Congenital Adrenal Hyperplasia.

    Science.gov (United States)

    Yau, Mabel; Khattab, Ahmed; New, Maria I

    2016-06-01

    Congenital adrenal hyperplasia (CAH) owing to 21-hydroxylase deficiency is a monogenic disorder of adrenal steroidogenesis. To prevent genital ambiguity, in girls, prenatal dexamethasone treatment is administered early in the first trimester. Prenatal