WorldWideScience

Sample records for genetic code change

  1. Genetic coding and gene expression - new Quadruplet genetic coding model

    Science.gov (United States)

    Shankar Singh, Rama

    2012-07-01

    Successful demonstration of human genome project has opened the door not only for developing personalized medicine and cure for genetic diseases, but it may also answer the complex and difficult question of the origin of life. It may lead to making 21st century, a century of Biological Sciences as well. Based on the central dogma of Biology, genetic codons in conjunction with tRNA play a key role in translating the RNA bases forming sequence of amino acids leading to a synthesized protein. This is the most critical step in synthesizing the right protein needed for personalized medicine and curing genetic diseases. So far, only triplet codons involving three bases of RNA, transcribed from DNA bases, have been used. Since this approach has several inconsistencies and limitations, even the promise of personalized medicine has not been realized. The new Quadruplet genetic coding model proposed and developed here involves all four RNA bases which in conjunction with tRNA will synthesize the right protein. The transcription and translation process used will be the same, but the Quadruplet codons will help overcome most of the inconsistencies and limitations of the triplet codes. Details of this new Quadruplet genetic coding model and its subsequent potential applications including relevance to the origin of life will be presented.

  2. What Froze the Genetic Code?

    Directory of Open Access Journals (Sweden)

    Lluís Ribas de Pouplana

    2017-04-01

    Full Text Available The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  3. What Froze the Genetic Code?

    Science.gov (United States)

    Ribas de Pouplana, Lluís; Torres, Adrian Gabriel; Rafels-Ybern, Àlbert

    2017-04-05

    The frozen accident theory of the Genetic Code was a proposal by Francis Crick that attempted to explain the universal nature of the Genetic Code and the fact that it only contains information for twenty amino acids. Fifty years later, it is clear that variations to the universal Genetic Code exist in nature and that translation is not limited to twenty amino acids. However, given the astonishing diversity of life on earth, and the extended evolutionary time that has taken place since the emergence of the extant Genetic Code, the idea that the translation apparatus is for the most part immobile remains true. Here, we will offer a potential explanation to the reason why the code has remained mostly stable for over three billion years, and discuss some of the mechanisms that allow species to overcome the intrinsic functional limitations of the protein synthesis machinery.

  4. Genetic Code Analysis Toolkit: A novel tool to explore the coding properties of the genetic code and DNA sequences

    Science.gov (United States)

    Kraljić, K.; Strüngmann, L.; Fimmel, E.; Gumbel, M.

    2018-01-01

    The genetic code is degenerated and it is assumed that redundancy provides error detection and correction mechanisms in the translation process. However, the biological meaning of the code's structure is still under current research. This paper presents a Genetic Code Analysis Toolkit (GCAT) which provides workflows and algorithms for the analysis of the structure of nucleotide sequences. In particular, sets or sequences of codons can be transformed and tested for circularity, comma-freeness, dichotomic partitions and others. GCAT comes with a fertile editor custom-built to work with the genetic code and a batch mode for multi-sequence processing. With the ability to read FASTA files or load sequences from GenBank, the tool can be used for the mathematical and statistical analysis of existing sequence data. GCAT is Java-based and provides a plug-in concept for extensibility. Availability: Open source Homepage:http://www.gcat.bio/

  5. A multiobjective approach to the genetic code adaptability problem.

    Science.gov (United States)

    de Oliveira, Lariza Laura; de Oliveira, Paulo S L; Tinós, Renato

    2015-02-19

    The organization of the canonical code has intrigued researches since it was first described. If we consider all codes mapping the 64 codes into 20 amino acids and one stop codon, there are more than 1.51×10(84) possible genetic codes. The main question related to the organization of the genetic code is why exactly the canonical code was selected among this huge number of possible genetic codes. Many researchers argue that the organization of the canonical code is a product of natural selection and that the code's robustness against mutations would support this hypothesis. In order to investigate the natural selection hypothesis, some researches employ optimization algorithms to identify regions of the genetic code space where best codes, according to a given evaluation function, can be found (engineering approach). The optimization process uses only one objective to evaluate the codes, generally based on the robustness for an amino acid property. Only one objective is also employed in the statistical approach for the comparison of the canonical code with random codes. We propose a multiobjective approach where two or more objectives are considered simultaneously to evaluate the genetic codes. In order to test our hypothesis that the multiobjective approach is useful for the analysis of the genetic code adaptability, we implemented a multiobjective optimization algorithm where two objectives are simultaneously optimized. Using as objectives the robustness against mutation with the amino acids properties polar requirement (objective 1) and robustness with respect to hydropathy index or molecular volume (objective 2), we found solutions closer to the canonical genetic code in terms of robustness, when compared with the results using only one objective reported by other authors. Using more objectives, more optimal solutions are obtained and, as a consequence, more information can be used to investigate the adaptability of the genetic code. The multiobjective approach

  6. Computation of the Genetic Code

    Science.gov (United States)

    Kozlov, Nicolay N.; Kozlova, Olga N.

    2018-03-01

    One of the problems in the development of mathematical theory of the genetic code (summary is presented in [1], the detailed -to [2]) is the problem of the calculation of the genetic code. Similar problems in the world is unknown and could be delivered only in the 21st century. One approach to solving this problem is devoted to this work. For the first time provides a detailed description of the method of calculation of the genetic code, the idea of which was first published earlier [3]), and the choice of one of the most important sets for the calculation was based on an article [4]. Such a set of amino acid corresponds to a complete set of representations of the plurality of overlapping triple gene belonging to the same DNA strand. A separate issue was the initial point, triggering an iterative search process all codes submitted by the initial data. Mathematical analysis has shown that the said set contains some ambiguities, which have been founded because of our proposed compressed representation of the set. As a result, the developed method of calculation was limited to the two main stages of research, where the first stage only the of the area were used in the calculations. The proposed approach will significantly reduce the amount of computations at each step in this complex discrete structure.

  7. National Society of Genetic Counselors Code of Ethics: Explication of 2017 Revisions.

    Science.gov (United States)

    Senter, Leigha; Bennett, Robin L; Madeo, Anne C; Noblin, Sarah; Ormond, Kelly E; Schneider, Kami Wolfe; Swan, Kelli; Virani, Alice

    2018-02-01

    The Code of Ethics (COE) of the National Society of Genetic Counselors (NSGC) was adopted in 1992 and was later revised and adopted in 2006. In 2016, the NSGC Code of Ethics Review Task Force (COERTF) was convened to review the COE. The COERTF reviewed ethical codes written by other professional organizations and suggested changes that would better reflect the current and evolving nature of the genetic counseling profession. The COERTF received input from the society's legal counsel, Board of Directors, and members-at-large. A revised COE was proposed to the membership and approved and adopted in April 2017. The revisions and rationale for each are presented.

  8. Decoding the non-coding genome: elucidating genetic risk outside the coding genome.

    Science.gov (United States)

    Barr, C L; Misener, V L

    2016-01-01

    Current evidence emerging from genome-wide association studies indicates that the genetic underpinnings of complex traits are likely attributable to genetic variation that changes gene expression, rather than (or in combination with) variation that changes protein-coding sequences. This is particularly compelling with respect to psychiatric disorders, as genetic changes in regulatory regions may result in differential transcriptional responses to developmental cues and environmental/psychosocial stressors. Until recently, however, the link between transcriptional regulation and psychiatric genetic risk has been understudied. Multiple obstacles have contributed to the paucity of research in this area, including challenges in identifying the positions of remote (distal from the promoter) regulatory elements (e.g. enhancers) and their target genes and the underrepresentation of neural cell types and brain tissues in epigenome projects - the availability of high-quality brain tissues for epigenetic and transcriptome profiling, particularly for the adolescent and developing brain, has been limited. Further challenges have arisen in the prediction and testing of the functional impact of DNA variation with respect to multiple aspects of transcriptional control, including regulatory-element interaction (e.g. between enhancers and promoters), transcription factor binding and DNA methylation. Further, the brain has uncommon DNA-methylation marks with unique genomic distributions not found in other tissues - current evidence suggests the involvement of non-CG methylation and 5-hydroxymethylation in neurodevelopmental processes but much remains unknown. We review here knowledge gaps as well as both technological and resource obstacles that will need to be overcome in order to elucidate the involvement of brain-relevant gene-regulatory variants in genetic risk for psychiatric disorders. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  9. Evolutionary implications of genetic code deviations

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1986-07-01

    By extending the standard genetic code into a temperature dependent regime, we propose a train of molecular events leading to alternative coding. The first few examples of these deviations have already been reported in some ciliated protozoans and Gram positive bacteria. A possible range of further alternative coding, still within the context of universality, is pointed out. (author)

  10. Flexibility of the genetic code with respect to DNA structure

    DEFF Research Database (Denmark)

    Baisnée, P. F.; Baldi, Pierre; Brunak, Søren

    2001-01-01

    Motivation. The primary function of DNA is to carry genetic information through the genetic code. DNA, however, contains a variety of other signals related, for instance, to reading frame, codon bias, pairwise codon bias, splice sites and transcription regulation, nucleosome positioning and DNA...... structure. Here we study the relationship between the genetic code and DNA structure and address two questions. First, to which degree does the degeneracy of the genetic code and the acceptable amino acid substitution patterns allow for the superimposition of DNA structural signals to protein coding...... sequences? Second, is the origin or evolution of the genetic code likely to have been constrained by DNA structure? Results. We develop an index for code flexibility with respect to DNA structure. Using five different di- or tri-nucleotide models of sequence-dependent DNA structure, we show...

  11. Deciphering the genetic regulatory code using an inverse error control coding framework.

    Energy Technology Data Exchange (ETDEWEB)

    Rintoul, Mark Daniel; May, Elebeoba Eni; Brown, William Michael; Johnston, Anna Marie; Watson, Jean-Paul

    2005-03-01

    We have found that developing a computational framework for reconstructing error control codes for engineered data and ultimately for deciphering genetic regulatory coding sequences is a challenging and uncharted area that will require advances in computational technology for exact solutions. Although exact solutions are desired, computational approaches that yield plausible solutions would be considered sufficient as a proof of concept to the feasibility of reverse engineering error control codes and the possibility of developing a quantitative model for understanding and engineering genetic regulation. Such evidence would help move the idea of reconstructing error control codes for engineered and biological systems from the high risk high payoff realm into the highly probable high payoff domain. Additionally this work will impact biological sensor development and the ability to model and ultimately develop defense mechanisms against bioagents that can be engineered to cause catastrophic damage. Understanding how biological organisms are able to communicate their genetic message efficiently in the presence of noise can improve our current communication protocols, a continuing research interest. Towards this end, project goals include: (1) Develop parameter estimation methods for n for block codes and for n, k, and m for convolutional codes. Use methods to determine error control (EC) code parameters for gene regulatory sequence. (2) Develop an evolutionary computing computational framework for near-optimal solutions to the algebraic code reconstruction problem. Method will be tested on engineered and biological sequences.

  12. CMCpy: Genetic Code-Message Coevolution Models in Python

    Science.gov (United States)

    Becich, Peter J.; Stark, Brian P.; Bhat, Harish S.; Ardell, David H.

    2013-01-01

    Code-message coevolution (CMC) models represent coevolution of a genetic code and a population of protein-coding genes (“messages”). Formally, CMC models are sets of quasispecies coupled together for fitness through a shared genetic code. Although CMC models display plausible explanations for the origin of multiple genetic code traits by natural selection, useful modern implementations of CMC models are not currently available. To meet this need we present CMCpy, an object-oriented Python API and command-line executable front-end that can reproduce all published results of CMC models. CMCpy implements multiple solvers for leading eigenpairs of quasispecies models. We also present novel analytical results that extend and generalize applications of perturbation theory to quasispecies models and pioneer the application of a homotopy method for quasispecies with non-unique maximally fit genotypes. Our results therefore facilitate the computational and analytical study of a variety of evolutionary systems. CMCpy is free open-source software available from http://pypi.python.org/pypi/CMCpy/. PMID:23532367

  13. Mathematical fundamentals for the noise immunity of the genetic code.

    Science.gov (United States)

    Fimmel, Elena; Strüngmann, Lutz

    2018-02-01

    Symmetry is one of the essential and most visible patterns that can be seen in nature. Starting from the left-right symmetry of the human body, all types of symmetry can be found in crystals, plants, animals and nature as a whole. Similarly, principals of symmetry are also some of the fundamental and most useful tools in modern mathematical natural science that play a major role in theory and applications. As a consequence, it is not surprising that the desire to understand the origin of life, based on the genetic code, forces us to involve symmetry as a mathematical concept. The genetic code can be seen as a key to biological self-organisation. All living organisms have the same molecular bases - an alphabet consisting of four letters (nitrogenous bases): adenine, cytosine, guanine, and thymine. Linearly ordered sequences of these bases contain the genetic information for synthesis of proteins in all forms of life. Thus, one of the most fascinating riddles of nature is to explain why the genetic code is as it is. Genetic coding possesses noise immunity which is the fundamental feature that allows to pass on the genetic information from parents to their descendants. Hence, since the time of the discovery of the genetic code, scientists have tried to explain the noise immunity of the genetic information. In this chapter we will discuss recent results in mathematical modelling of the genetic code with respect to noise immunity, in particular error-detection and error-correction. We will focus on two central properties: Degeneracy and frameshift correction. Different amino acids are encoded by different quantities of codons and a connection between this degeneracy and the noise immunity of genetic information is a long standing hypothesis. Biological implications of the degeneracy have been intensively studied and whether the natural code is a frozen accident or a highly optimised product of evolution is still controversially discussed. Symmetries in the structure of

  14. A search for symmetries in the genetic code

    International Nuclear Information System (INIS)

    Hornos, J.E.M.; Hornos, Y.M.M.

    1991-01-01

    A search for symmetries based on the classification theorem of Cartan for the compact simple Lie algebras is performed to verify to what extent the genetic code is a manifestation of some underlying symmetry. An exact continuous symmetry group cannot be found to reproduce the present, universal code. However a unique approximate symmetry group is compatible with codon assignment for the fundamental amino acids and the termination codon. In order to obtain the actual genetic code, the symmetry must be slightly broken. (author). 27 refs, 3 figs, 6 tabs

  15. The evolution of the mitochondrial genetic code in arthropods revisited.

    Science.gov (United States)

    Abascal, Federico; Posada, David; Zardoya, Rafael

    2012-04-01

    A variant of the invertebrate mitochondrial genetic code was previously identified in arthropods (Abascal et al. 2006a, PLoS Biol 4:e127) in which, instead of translating the AGG codon as serine, as in other invertebrates, some arthropods translate AGG as lysine. Here, we revisit the evolution of the genetic code in arthropods taking into account that (1) the number of arthropod mitochondrial genomes sequenced has triplicated since the original findings were published; (2) the phylogeny of arthropods has been recently resolved with confidence for many groups; and (3) sophisticated probabilistic methods can be applied to analyze the evolution of the genetic code in arthropod mitochondria. According to our analyses, evolutionary shifts in the genetic code have been more common than previously inferred, with many taxonomic groups displaying two alternative codes. Ancestral character-state reconstruction using probabilistic methods confirmed that the arthropod ancestor most likely translated AGG as lysine. Point mutations at tRNA-Lys and tRNA-Ser correlated with the meaning of the AGG codon. In addition, we identified three variables (GC content, number of AGG codons, and taxonomic information) that best explain the use of each of the two alternative genetic codes.

  16. A Realistic Model under which the Genetic Code is Optimal

    NARCIS (Netherlands)

    Buhrman, H.; van der Gulik, P.T.S.; Klau, G.W.; Schaffner, C.; Speijer, D.; Stougie, L.

    2013-01-01

    The genetic code has a high level of error robustness. Using values of hydrophobicity scales as a proxy for amino acid character, and the mean square measure as a function quantifying error robustness, a value can be obtained for a genetic code which reflects the error robustness of that code. By

  17. National Society of Genetic Counselors Code of Ethics.

    Science.gov (United States)

    2018-02-01

    This document is the revised Code of Ethics of the National Society of Genetic Counselors (NSGC) that was adopted in April 2017 after majority vote of the full membership of the NSGC. The explication of the revisions is published in this volume of the Journal of Genetic Counseling. This is the fourth revision to the Code of Ethics since its original adoption in 1992.

  18. Codon size reduction as the origin of the triplet genetic code.

    Directory of Open Access Journals (Sweden)

    Pavel V Baranov

    Full Text Available The genetic code appears to be optimized in its robustness to missense errors and frameshift errors. In addition, the genetic code is near-optimal in terms of its ability to carry information in addition to the sequences of encoded proteins. As evolution has no foresight, optimality of the modern genetic code suggests that it evolved from less optimal code variants. The length of codons in the genetic code is also optimal, as three is the minimal nucleotide combination that can encode the twenty standard amino acids. The apparent impossibility of transitions between codon sizes in a discontinuous manner during evolution has resulted in an unbending view that the genetic code was always triplet. Yet, recent experimental evidence on quadruplet decoding, as well as the discovery of organisms with ambiguous and dual decoding, suggest that the possibility of the evolution of triplet decoding from living systems with non-triplet decoding merits reconsideration and further exploration. To explore this possibility we designed a mathematical model of the evolution of primitive digital coding systems which can decode nucleotide sequences into protein sequences. These coding systems can evolve their nucleotide sequences via genetic events of Darwinian evolution, such as point-mutations. The replication rates of such coding systems depend on the accuracy of the generated protein sequences. Computer simulations based on our model show that decoding systems with codons of length greater than three spontaneously evolve into predominantly triplet decoding systems. Our findings suggest a plausible scenario for the evolution of the triplet genetic code in a continuous manner. This scenario suggests an explanation of how protein synthesis could be accomplished by means of long RNA-RNA interactions prior to the emergence of the complex decoding machinery, such as the ribosome, that is required for stabilization and discrimination of otherwise weak triplet codon

  19. Arbitrariness is not enough: towards a functional approach to the genetic code.

    Science.gov (United States)

    Lacková, Ľudmila; Matlach, Vladimír; Faltýnek, Dan

    2017-12-01

    Arbitrariness in the genetic code is one of the main reasons for a linguistic approach to molecular biology: the genetic code is usually understood as an arbitrary relation between amino acids and nucleobases. However, from a semiotic point of view, arbitrariness should not be the only condition for definition of a code, consequently it is not completely correct to talk about "code" in this case. Yet we suppose that there exist a code in the process of protein synthesis, but on a higher level than the nucleic bases chains. Semiotically, a code should be always associated with a function and we propose to define the genetic code not only relationally (in basis of relation between nucleobases and amino acids) but also in terms of function (function of a protein as meaning of the code). Even if the functional definition of meaning in the genetic code has been discussed in the field of biosemiotics, its further implications have not been considered. In fact, if the function of a protein represents the meaning of the genetic code (the sign's object), then it is crucial to reconsider the notion of its expression (the sign) as well. In our contribution, we will show that the actual model of the genetic code is not the only possible and we will propose a more appropriate model from a semiotic point of view.

  20. Visualizing code and coverage changes for code review

    NARCIS (Netherlands)

    Oosterwaal, Sebastiaan; van Deursen, A.; De Souza Coelho, R.; Sawant, A.A.; Bacchelli, A.

    2016-01-01

    One of the tasks of reviewers is to verify that code modifications are well tested. However, current tools offer little support in understanding precisely how changes to the code relate to changes to the tests. In particular, it is hard to see whether (modified) test code covers the changed code.

  1. How American Nurses Association Code of Ethics informs genetic/genomic nursing.

    Science.gov (United States)

    Tluczek, Audrey; Twal, Marie E; Beamer, Laura Curr; Burton, Candace W; Darmofal, Leslie; Kracun, Mary; Zanni, Karen L; Turner, Martha

    2018-01-01

    Members of the Ethics and Public Policy Committee of the International Society of Nurses in Genetics prepared this article to assist nurses in interpreting the American Nurses Association (2015) Code of Ethics for Nurses with Interpretive Statements (Code) within the context of genetics/genomics. The Code explicates the nursing profession's norms and responsibilities in managing ethical issues. The nearly ubiquitous application of genetic/genomic technologies in healthcare poses unique ethical challenges for nursing. Therefore, authors conducted literature searches that drew from various professional resources to elucidate implications of the code in genetic/genomic nursing practice, education, research, and public policy. We contend that the revised Code coupled with the application of genomic technologies to healthcare creates moral obligations for nurses to continually refresh their knowledge and capacities to translate genetic/genomic research into evidence-based practice, assure the ethical conduct of scientific inquiry, and continually develop or revise national/international guidelines that protect the rights of individuals and populations within the context of genetics/genomics. Thus, nurses have an ethical responsibility to remain knowledgeable about advances in genetics/genomics and incorporate emergent evidence into their work.

  2. On coding genotypes for genetic markers with multiple alleles in genetic association study of quantitative traits

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2011-09-01

    Full Text Available Abstract Background In genetic association study of quantitative traits using F∞ models, how to code the marker genotypes and interpret the model parameters appropriately is important for constructing hypothesis tests and making statistical inferences. Currently, the coding of marker genotypes in building F∞ models has mainly focused on the biallelic case. A thorough work on the coding of marker genotypes and interpretation of model parameters for F∞ models is needed especially for genetic markers with multiple alleles. Results In this study, we will formulate F∞ genetic models under various regression model frameworks and introduce three genotype coding schemes for genetic markers with multiple alleles. Starting from an allele-based modeling strategy, we first describe a regression framework to model the expected genotypic values at given markers. Then, as extension from the biallelic case, we introduce three coding schemes for constructing fully parameterized one-locus F∞ models and discuss the relationships between the model parameters and the expected genotypic values. Next, under a simplified modeling framework for the expected genotypic values, we consider several reduced one-locus F∞ models from the three coding schemes on the estimability and interpretation of their model parameters. Finally, we explore some extensions of the one-locus F∞ models to two loci. Several fully parameterized as well as reduced two-locus F∞ models are addressed. Conclusions The genotype coding schemes provide different ways to construct F∞ models for association testing of multi-allele genetic markers with quantitative traits. Which coding scheme should be applied depends on how convenient it can provide the statistical inferences on the parameters of our research interests. Based on these F∞ models, the standard regression model fitting tools can be used to estimate and test for various genetic effects through statistical contrasts with the

  3. On the Organizational Dynamics of the Genetic Code

    KAUST Repository

    Zhang, Zhang

    2011-06-07

    The organization of the canonical genetic code needs to be thoroughly illuminated. Here we reorder the four nucleotides—adenine, thymine, guanine and cytosine—according to their emergence in evolution, and apply the organizational rules to devising an algebraic representation for the canonical genetic code. Under a framework of the devised code, we quantify codon and amino acid usages from a large collection of 917 prokaryotic genome sequences, and associate the usages with its intrinsic structure and classification schemes as well as amino acid physicochemical properties. Our results show that the algebraic representation of the code is structurally equivalent to a content-centric organization of the code and that codon and amino acid usages under different classification schemes were correlated closely with GC content, implying a set of rules governing composition dynamics across a wide variety of prokaryotic genome sequences. These results also indicate that codons and amino acids are not randomly allocated in the code, where the six-fold degenerate codons and their amino acids have important balancing roles for error minimization. Therefore, the content-centric code is of great usefulness in deciphering its hitherto unknown regularities as well as the dynamics of nucleotide, codon, and amino acid compositions.

  4. On the Organizational Dynamics of the Genetic Code

    KAUST Repository

    Zhang, Zhang; Yu, Jun

    2011-01-01

    The organization of the canonical genetic code needs to be thoroughly illuminated. Here we reorder the four nucleotides—adenine, thymine, guanine and cytosine—according to their emergence in evolution, and apply the organizational rules to devising an algebraic representation for the canonical genetic code. Under a framework of the devised code, we quantify codon and amino acid usages from a large collection of 917 prokaryotic genome sequences, and associate the usages with its intrinsic structure and classification schemes as well as amino acid physicochemical properties. Our results show that the algebraic representation of the code is structurally equivalent to a content-centric organization of the code and that codon and amino acid usages under different classification schemes were correlated closely with GC content, implying a set of rules governing composition dynamics across a wide variety of prokaryotic genome sequences. These results also indicate that codons and amino acids are not randomly allocated in the code, where the six-fold degenerate codons and their amino acids have important balancing roles for error minimization. Therefore, the content-centric code is of great usefulness in deciphering its hitherto unknown regularities as well as the dynamics of nucleotide, codon, and amino acid compositions.

  5. Genetic hotels for the standard genetic code: evolutionary analysis based upon novel three-dimensional algebraic models.

    Science.gov (United States)

    José, Marco V; Morgado, Eberto R; Govezensky, Tzipe

    2011-07-01

    Herein, we rigorously develop novel 3-dimensional algebraic models called Genetic Hotels of the Standard Genetic Code (SGC). We start by considering the primeval RNA genetic code which consists of the 16 codons of type RNY (purine-any base-pyrimidine). Using simple algebraic operations, we show how the RNA code could have evolved toward the current SGC via two different intermediate evolutionary stages called Extended RNA code type I and II. By rotations or translations of the subset RNY, we arrive at the SGC via the former (type I) or via the latter (type II), respectively. Biologically, the Extended RNA code type I, consists of all codons of the type RNY plus codons obtained by considering the RNA code but in the second (NYR type) and third (YRN type) reading frames. The Extended RNA code type II, comprises all codons of the type RNY plus codons that arise from transversions of the RNA code in the first (YNY type) and third (RNR) nucleotide bases. Since the dimensions of remarkable subsets of the Genetic Hotels are not necessarily integer numbers, we also introduce the concept of algebraic fractal dimension. A general decoding function which maps each codon to its corresponding amino acid or the stop signals is also derived. The Phenotypic Hotel of amino acids is also illustrated. The proposed evolutionary paths are discussed in terms of the existing theories of the evolution of the SGC. The adoption of 3-dimensional models of the Genetic and Phenotypic Hotels will facilitate the understanding of the biological properties of the SGC.

  6. The coevolution of genes and genetic codes: Crick's frozen accident revisited.

    Science.gov (United States)

    Sella, Guy; Ardell, David H

    2006-09-01

    The standard genetic code is the nearly universal system for the translation of genes into proteins. The code exhibits two salient structural characteristics: it possesses a distinct organization that makes it extremely robust to errors in replication and translation, and it is highly redundant. The origin of these properties has intrigued researchers since the code was first discovered. One suggestion, which is the subject of this review, is that the code's organization is the outcome of the coevolution of genes and genetic codes. In 1968, Francis Crick explored the possible implications of coevolution at different stages of code evolution. Although he argues that coevolution was likely to influence the evolution of the code, he concludes that it falls short of explaining the organization of the code we see today. The recent application of mathematical modeling to study the effects of errors on the course of coevolution, suggests a different conclusion. It shows that coevolution readily generates genetic codes that are highly redundant and similar in their error-correcting organization to the standard code. We review this recent work and suggest that further affirmation of the role of coevolution can be attained by investigating the extent to which the outcome of coevolution is robust to other influences that were present during the evolution of the code.

  7. Dynamics of genetic variation at gliadin-coding loci in bread wheat cultivars developed in small grains research center (Kragujevac during last 35 years

    Directory of Open Access Journals (Sweden)

    Novosljska-Dragovič Aleksandra

    2005-01-01

    Full Text Available Multiple alleles of gliadin-coding loci are well-known genetic markers of common wheat genotypes. Based on analysis of gliadin patterns in common wheat cultivars developed at the Small Grains Research Center in Kragujevac dynamics of genetic variability at gliadin-coding loci has been surveyed for the period of 35 years. It was shown that long-term breeding of the wheat cultivars involved gradual replacement of ancient alleles for those widely spread in some regions in the world, which belong to well-known cultivars-donor of some important traits. Developing cultivars whose pedigree involved much new foreign genetic material has increased genetic diversity as well as has changed frequency of alleles of gliadin-coding loci. So we can conclude that the genetic profile of modern Serbian cultivars has changed considerably. Genetic formula of gliadin was made for each the cultivar studied. The most frequent alleles of gliadin-coding loci among modern cultivars should be of great interest of breeders because these alleles are probably linked with genes that confer advantage to their carriers at present.

  8. Critical roles for a genetic code alteration in the evolution of the genus Candida.

    Science.gov (United States)

    Silva, Raquel M; Paredes, João A; Moura, Gabriela R; Manadas, Bruno; Lima-Costa, Tatiana; Rocha, Rita; Miranda, Isabel; Gomes, Ana C; Koerkamp, Marian J G; Perrot, Michel; Holstege, Frank C P; Boucherie, Hélian; Santos, Manuel A S

    2007-10-31

    During the last 30 years, several alterations to the standard genetic code have been discovered in various bacterial and eukaryotic species. Sense and nonsense codons have been reassigned or reprogrammed to expand the genetic code to selenocysteine and pyrrolysine. These discoveries highlight unexpected flexibility in the genetic code, but do not elucidate how the organisms survived the proteome chaos generated by codon identity redefinition. In order to shed new light on this question, we have reconstructed a Candida genetic code alteration in Saccharomyces cerevisiae and used a combination of DNA microarrays, proteomics and genetics approaches to evaluate its impact on gene expression, adaptation and sexual reproduction. This genetic manipulation blocked mating, locked yeast in a diploid state, remodelled gene expression and created stress cross-protection that generated adaptive advantages under environmental challenging conditions. This study highlights unanticipated roles for codon identity redefinition during the evolution of the genus Candida, and strongly suggests that genetic code alterations create genetic barriers that speed up speciation.

  9. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments.

    Science.gov (United States)

    Santos, José; Monteagudo, Angel

    2011-02-21

    As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the fact that the best possible codes show the patterns of the

  10. Simulated evolution applied to study the genetic code optimality using a model of codon reassignments

    Directory of Open Access Journals (Sweden)

    Monteagudo Ángel

    2011-02-01

    Full Text Available Abstract Background As the canonical code is not universal, different theories about its origin and organization have appeared. The optimization or level of adaptation of the canonical genetic code was measured taking into account the harmful consequences resulting from point mutations leading to the replacement of one amino acid for another. There are two basic theories to measure the level of optimization: the statistical approach, which compares the canonical genetic code with many randomly generated alternative ones, and the engineering approach, which compares the canonical code with the best possible alternative. Results Here we used a genetic algorithm to search for better adapted hypothetical codes and as a method to guess the difficulty in finding such alternative codes, allowing to clearly situate the canonical code in the fitness landscape. This novel proposal of the use of evolutionary computing provides a new perspective in the open debate between the use of the statistical approach, which postulates that the genetic code conserves amino acid properties far better than expected from a random code, and the engineering approach, which tends to indicate that the canonical genetic code is still far from optimal. We used two models of hypothetical codes: one that reflects the known examples of codon reassignment and the model most used in the two approaches which reflects the current genetic code translation table. Although the standard code is far from a possible optimum considering both models, when the more realistic model of the codon reassignments was used, the evolutionary algorithm had more difficulty to overcome the efficiency of the canonical genetic code. Conclusions Simulated evolution clearly reveals that the canonical genetic code is far from optimal regarding its optimization. Nevertheless, the efficiency of the canonical code increases when mistranslations are taken into account with the two models, as indicated by the

  11. Towards A Genetic Business Code For Growth in the South African Transport Industry

    Directory of Open Access Journals (Sweden)

    J.H. Vermeulen

    2003-11-01

    Full Text Available As with each living organism, it is proposed that an organisation possesses a genetic code. In the fast-changing business environment it would be invaluable to know what constitutes organisational growth and success in terms of such a code. To identify this genetic code a quantitative methodological framework, supplemented by a qualitative approach, was used and the views of top management in the Transport Industry were solicited. The Repertory Grid was used as the primary data-collection method. Through a phased data-analysis process an integrated profile of first- and second-order constructs, and opposite poles, was compiled. By utilising deductive and inductive strategies three strands of a Genetic Business Growth Code were identified, namely a Leadership Strand, Organisational Architecture Strand and Internal Orientation Strand. The study confirmed the value of a Genetic Business Code for growth in the Transport Industry. Opsomming Daar word voorgestel dat ’n organisasie, soos elke lewende organisme, oor ’n genetiese kode beskik. In die snelveranderende sake-omgewing sal dit onskatbaar wees om te weet wat organisasiegroei en –sukses veroorsaak. ’n Kwantitatiewe metodologie-raamwerk, aangevul deur ’n kwalitatiewe benadering is gebruik om hierdie genetiese kode te identifiseer, en die menings van topbestuur in die Vervoerbedryf is ingewin met behulp van die “Repertory Grid" as die vernaamste metode van data-insameling. ’n Geïntegreerde profiel van eerste- en tweedeordekonstrukte, met hulle teenoorgestelde pole, is opgestel. Drie stringe van ’n Genetiese Sakegroeikode, nl. ’n Leierskapstring, die Organisasieargitektuur-string en die Innerlike-ingesteldheidstring is geïdentifiseer deur deduktiewe en induktiewe strategieë te gebruik. Die studie bevestig die waarde van ’n Genetiese Sakekode vir groei in die Vervoerbedryf.

  12. Symmetries in Genetic Systems and the Concept of Geno-Logical Coding

    Directory of Open Access Journals (Sweden)

    Sergey V. Petoukhov

    2016-12-01

    Full Text Available The genetic code of amino acid sequences in proteins does not allow understanding and modeling of inherited processes such as inborn coordinated motions of living bodies, innate principles of sensory information processing, quasi-holographic properties, etc. To be able to model these phenomena, the concept of geno-logical coding, which is connected with logical functions and Boolean algebra, is put forward. The article describes basic pieces of evidence in favor of the existence of the geno-logical code, which exists in p­arallel with the known genetic code of amino acid sequences but which serves for transferring inherited processes along chains of generations. These pieces of evidence have been received due to the analysis of symmetries in structures of molecular-genetic systems. The analysis has revealed a close connection of the genetic system with dyadic groups of binary numbers and with other mathematical objects, which are related with dyadic groups: Walsh functions (which are algebraic characters of dyadic groups, bit-reversal permutations, logical holography, etc. These results provide a new approach for mathematical modeling of genetic structures, which uses known mathematical formalisms from technological fields of noise-immunity coding of information, binary analysis, logical holography, and digital devices of artificial intellect. Some opportunities for a development of algebraic-logical biology are opened.

  13. Real coded genetic algorithm for fuzzy time series prediction

    Science.gov (United States)

    Jain, Shilpa; Bisht, Dinesh C. S.; Singh, Phool; Mathpal, Prakash C.

    2017-10-01

    Genetic Algorithm (GA) forms a subset of evolutionary computing, rapidly growing area of Artificial Intelligence (A.I.). Some variants of GA are binary GA, real GA, messy GA, micro GA, saw tooth GA, differential evolution GA. This research article presents a real coded GA for predicting enrollments of University of Alabama. Data of Alabama University is a fuzzy time series. Here, fuzzy logic is used to predict enrollments of Alabama University and genetic algorithm optimizes fuzzy intervals. Results are compared to other eminent author works and found satisfactory, and states that real coded GA are fast and accurate.

  14. The Genetic Code: Yesterday, Today and Tomorrow

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 17; Issue 12. The Genetic Code: Yesterday, Today and Tomorrow. Jiqiang Ling Dieter Söll. General Article Volume 17 Issue 12 December 2012 pp 1136-1142. Fulltext. Click here to view fulltext PDF. Permanent link:

  15. The "Wow! signal" of the terrestrial genetic code

    Science.gov (United States)

    shCherbak, Vladimir I.; Makukov, Maxim A.

    2013-05-01

    It has been repeatedly proposed to expand the scope for SETI, and one of the suggested alternatives to radio is the biological media. Genomic DNA is already used on Earth to store non-biological information. Though smaller in capacity, but stronger in noise immunity is the genetic code. The code is a flexible mapping between codons and amino acids, and this flexibility allows modifying the code artificially. But once fixed, the code might stay unchanged over cosmological timescales; in fact, it is the most durable construct known. Therefore it represents an exceptionally reliable storage for an intelligent signature, if that conforms to biological and thermodynamic requirements. As the actual scenario for the origin of terrestrial life is far from being settled, the proposal that it might have been seeded intentionally cannot be ruled out. A statistically strong intelligent-like "signal" in the genetic code is then a testable consequence of such scenario. Here we show that the terrestrial code displays a thorough precision-type orderliness matching the criteria to be considered an informational signal. Simple arrangements of the code reveal an ensemble of arithmetical and ideographical patterns of the same symbolic language. Accurate and systematic, these underlying patterns appear as a product of precision logic and nontrivial computing rather than of stochastic processes (the null hypothesis that they are due to chance coupled with presumable evolutionary pathways is rejected with P-value < 10-13). The patterns are profound to the extent that the code mapping itself is uniquely deduced from their algebraic representation. The signal displays readily recognizable hallmarks of artificiality, among which are the symbol of zero, the privileged decimal syntax and semantical symmetries. Besides, extraction of the signal involves logically straightforward but abstract operations, making the patterns essentially irreducible to any natural origin. Plausible ways of

  16. Representation mutations from standard genetic codes

    Science.gov (United States)

    Aisah, I.; Suyudi, M.; Carnia, E.; Suhendi; Supriatna, A. K.

    2018-03-01

    Graph is widely used in everyday life especially to describe model problem and describe it concretely and clearly. In addition graph is also used to facilitate solve various kinds of problems that are difficult to be solved by calculation. In Biology, graph can be used to describe the process of protein synthesis in DNA. Protein has an important role for DNA (deoxyribonucleic acid) or RNA (ribonucleic acid). Proteins are composed of amino acids. In this study, amino acids are related to genetics, especially the genetic code. The genetic code is also known as the triplet or codon code which is a three-letter arrangement of DNA nitrogen base. The bases are adenine (A), thymine (T), guanine (G) and cytosine (C). While on RNA thymine (T) is replaced with Urasil (U). The set of all Nitrogen bases in RNA is denoted by N = {C U, A, G}. This codon works at the time of protein synthesis inside the cell. This codon also encodes the stop signal as a sign of the stop of protein synthesis process. This paper will examine the process of protein synthesis through mathematical studies and present it in three-dimensional space or graph. The study begins by analysing the set of all codons denoted by NNN such that to obtain geometric representations. At this stage there is a matching between the sets of all nitrogen bases N with Z 2 × Z 2; C=(\\overline{0},\\overline{0}),{{U}}=(\\overline{0},\\overline{1}),{{A}}=(\\overline{1},\\overline{0}),{{G}}=(\\overline{1},\\overline{1}). By matching the algebraic structure will be obtained such as group, group Klein-4,Quotien group etc. With the help of Geogebra software, the set of all codons denoted by NNN can be presented in a three-dimensional space as a multicube NNN and also can be represented as a graph, so that can easily see relationship between the codon.

  17. Efficient Dual Domain Decoding of Linear Block Codes Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Ahmed Azouaoui

    2012-01-01

    Full Text Available A computationally efficient algorithm for decoding block codes is developed using a genetic algorithm (GA. The proposed algorithm uses the dual code in contrast to the existing genetic decoders in the literature that use the code itself. Hence, this new approach reduces the complexity of decoding the codes of high rates. We simulated our algorithm in various transmission channels. The performance of this algorithm is investigated and compared with competitor decoding algorithms including Maini and Shakeel ones. The results show that the proposed algorithm gives large gains over the Chase-2 decoding algorithm and reach the performance of the OSD-3 for some quadratic residue (QR codes. Further, we define a new crossover operator that exploits the domain specific information and compare it with uniform and two point crossover. The complexity of this algorithm is also discussed and compared to other algorithms.

  18. A genetic code alteration is a phenotype diversity generator in the human pathogen Candida albicans.

    Directory of Open Access Journals (Sweden)

    Isabel Miranda

    Full Text Available BACKGROUND: The discovery of genetic code alterations and expansions in both prokaryotes and eukaryotes abolished the hypothesis of a frozen and universal genetic code and exposed unanticipated flexibility in codon and amino acid assignments. It is now clear that codon identity alterations involve sense and non-sense codons and can occur in organisms with complex genomes and proteomes. However, the biological functions, the molecular mechanisms of evolution and the diversity of genetic code alterations remain largely unknown. In various species of the genus Candida, the leucine CUG codon is decoded as serine by a unique serine tRNA that contains a leucine 5'-CAG-3'anticodon (tRNA(CAG(Ser. We are using this codon identity redefinition as a model system to elucidate the evolution of genetic code alterations. METHODOLOGY/PRINCIPAL FINDINGS: We have reconstructed the early stages of the Candida genetic code alteration by engineering tRNAs that partially reverted the identity of serine CUG codons back to their standard leucine meaning. Such genetic code manipulation had profound cellular consequences as it exposed important morphological variation, altered gene expression, re-arranged the karyotype, increased cell-cell adhesion and secretion of hydrolytic enzymes. CONCLUSION/SIGNIFICANCE: Our study provides the first experimental evidence for an important role of genetic code alterations as generators of phenotypic diversity of high selective potential and supports the hypothesis that they speed up evolution of new phenotypes.

  19. HOW TO REPRESENT THE GENETIC CODE?

    Directory of Open Access Journals (Sweden)

    N.S. Santos-Magalhães

    2004-05-01

    Full Text Available The advent of molecular genetic comprises a true revolution of far-reaching consequences for human-kind, which evolved into a specialized branch of the modern-day Biochemistry. The analysis of specicgenomic information are gaining wide-ranging interest because of their signicance to the early diag-nosis of disease, and the discovery of modern drugs. In order to take advantage of a wide assortmentof signal processing (SP algorithms, the primary step of modern genomic SP involves convertingsymbolic-DNA sequences into complex-valued signals. How to represent the genetic code? Despitebeing extensively known, the DNA mapping into proteins is one of the relevant discoveries of genetics.The genetic code (GC is revisited in this work, addressing other descriptions for it, which can beworthy for genomic SP. Three original representations are discussed. The inner-to-outer map buildson the unbalanced role of nucleotides of a codon. A two-dimensional-Gray genetic representationis oered as a structured map that can help interpreting DNA spectrograms or scalograms. Theseare among the powerful visual tools for genome analysis, which depends on the choice of the geneticmapping. Finally, the world-chart for the GC is investigated. Evoking the cyclic structure of thegenetic mapping, it can be folded joining the left-right borders, and the top-bottom frontiers. As aresult, the GC can be drawn on the surface of a sphere resembling a world-map. Eight parallels oflatitude are required (four in each hemisphere as well as four meridians of longitude associated tofour corresponding anti-meridians. The tropic circles have 11.25o, 33.75o, 56.25o, and 78.5o (Northand South. Starting from an arbitrary Greenwich meridian, the meridians of longitude can be plottedat 22.5o, 67.5o, 112.5o, and 157.5o (East and West. Each triplet is assigned to a single point on thesurface that we named Nirenberg-Kohamas Earth. Despite being valuable, usual representations forthe GC can be

  20. Synthetic alienation of microbial organisms by using genetic code engineering: Why and how?

    Science.gov (United States)

    Kubyshkin, Vladimir; Budisa, Nediljko

    2017-08-01

    The main goal of synthetic biology (SB) is the creation of biodiversity applicable for biotechnological needs, while xenobiology (XB) aims to expand the framework of natural chemistries with the non-natural building blocks in living cells to accomplish artificial biodiversity. Protein and proteome engineering, which overcome limitation of the canonical amino acid repertoire of 20 (+2) prescribed by the genetic code by using non-canonic amino acids (ncAAs), is one of the main focuses of XB research. Ideally, estranging the genetic code from its current form via systematic introduction of ncAAs should enable the development of bio-containment mechanisms in synthetic cells potentially endowing them with a "genetic firewall" i.e. orthogonality which prevents genetic information transfer to natural systems. Despite rapid progress over the past two decades, it is not yet possible to completely alienate an organism that would use and maintain different genetic code associations permanently. In order to engineer robust bio-contained life forms, the chemical logic behind the amino acid repertoire establishment should be considered. Starting from recent proposal of Hartman and Smith about the genetic code establishment in the RNA world, here the authors mapped possible biotechnological invasion points for engineering of bio-contained synthetic cells equipped with non-canonical functionalities. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  2. Programming peptidomimetic syntheses by translating genetic codes designed de novo.

    Science.gov (United States)

    Forster, Anthony C; Tan, Zhongping; Nalam, Madhavi N L; Lin, Hening; Qu, Hui; Cornish, Virginia W; Blacklow, Stephen C

    2003-05-27

    Although the universal genetic code exhibits only minor variations in nature, Francis Crick proposed in 1955 that "the adaptor hypothesis allows one to construct, in theory, codes of bewildering variety." The existing code has been expanded to enable incorporation of a variety of unnatural amino acids at one or two nonadjacent sites within a protein by using nonsense or frameshift suppressor aminoacyl-tRNAs (aa-tRNAs) as adaptors. However, the suppressor strategy is inherently limited by compatibility with only a small subset of codons, by the ways such codons can be combined, and by variation in the efficiency of incorporation. Here, by preventing competing reactions with aa-tRNA synthetases, aa-tRNAs, and release factors during translation and by using nonsuppressor aa-tRNA substrates, we realize a potentially generalizable approach for template-encoded polymer synthesis that unmasks the substantially broader versatility of the core translation apparatus as a catalyst. We show that several adjacent, arbitrarily chosen sense codons can be completely reassigned to various unnatural amino acids according to de novo genetic codes by translating mRNAs into specific peptide analog polymers (peptidomimetics). Unnatural aa-tRNA substrates do not uniformly function as well as natural substrates, revealing important recognition elements for the translation apparatus. Genetic programming of peptidomimetic synthesis should facilitate mechanistic studies of translation and may ultimately enable the directed evolution of small molecules with desirable catalytic or pharmacological properties.

  3. The "periodic table" of the genetic code: A new way to look at the code and the decoding process.

    Science.gov (United States)

    Komar, Anton A

    2016-01-01

    Henri Grosjean and Eric Westhof recently presented an information-rich, alternative view of the genetic code, which takes into account current knowledge of the decoding process, including the complex nature of interactions between mRNA, tRNA and rRNA that take place during protein synthesis on the ribosome, and it also better reflects the evolution of the code. The new asymmetrical circular genetic code has a number of advantages over the traditional codon table and the previous circular diagrams (with a symmetrical/clockwise arrangement of the U, C, A, G bases). Most importantly, all sequence co-variances can be visualized and explained based on the internal logic of the thermodynamics of codon-anticodon interactions.

  4. Origins of gene, genetic code, protein and life

    Indian Academy of Sciences (India)

    Unknown

    have concluded that newly-born genes are products of nonstop frames (NSF) ... research to determine tertiary structures of proteins such ... the present earth, is favourable for new genes to arise, if ..... NGG) in the universal genetic code table, cannot satisfy ..... which has been proposed to explain the development of life on.

  5. A symbiotic liaison between the genetic and epigenetic code

    Directory of Open Access Journals (Sweden)

    Holger eHeyn

    2014-05-01

    Full Text Available With rapid advances in sequencing technologies, we are undergoing a paradigm shift from hypothesis- to data-driven research. Genome-wide profiling efforts gave informative insights into biological processes; however, considering the wealth of variation, the major challenge remains their meaningful interpretation. In particular sequence variation in non-coding contexts is often challenging to interpret. Here, data integration approaches for the identification of functional genetic variability represent a likely solution. Exemplary, functional linkage analysis integrating genotype and expression data determined regulatory quantitative trait loci (QTL and proposed causal relationships. In addition to gene expression, epigenetic regulation and specifically DNA methylation was established as highly valuable surrogate mark for functional variance of the genetic code. Epigenetic modification served as powerful mediator trait to elucidate mechanisms forming phenotypes in health and disease. Particularly, integrative studies of genetic and DNA methylation data yet guided interpretation strategies of risk genotypes, but also proved their value for physiological traits, such as natural human variation and aging. This Perspective seeks to illustrate the power of data integration in the genomic era exemplified by DNA methylation quantitative trait loci (meQTLs. However, the model is further extendable to virtually all traceable molecular traits.

  6. Interdependence, Reflexivity, Fidelity, Impedance Matching, and the Evolution of Genetic Coding

    Science.gov (United States)

    Carter, Charles W; Wills, Peter R

    2018-01-01

    Abstract Genetic coding is generally thought to have required ribozymes whose functions were taken over by polypeptide aminoacyl-tRNA synthetases (aaRS). Two discoveries about aaRS and their interactions with tRNA substrates now furnish a unifying rationale for the opposite conclusion: that the key processes of the Central Dogma of molecular biology emerged simultaneously and naturally from simple origins in a peptide•RNA partnership, eliminating the epistemological utility of a prior RNA world. First, the two aaRS classes likely arose from opposite strands of the same ancestral gene, implying a simple genetic alphabet. The resulting inversion symmetries in aaRS structural biology would have stabilized the initial and subsequent differentiation of coding specificities, rapidly promoting diversity in the proteome. Second, amino acid physical chemistry maps onto tRNA identity elements, establishing reflexive, nanoenvironmental sensing in protein aaRS. Bootstrapping of increasingly detailed coding is thus intrinsic to polypeptide aaRS, but impossible in an RNA world. These notions underline the following concepts that contradict gradual replacement of ribozymal aaRS by polypeptide aaRS: 1) aaRS enzymes must be interdependent; 2) reflexivity intrinsic to polypeptide aaRS production dynamics promotes bootstrapping; 3) takeover of RNA-catalyzed aminoacylation by enzymes will necessarily degrade specificity; and 4) the Central Dogma’s emergence is most probable when replication and translation error rates remain comparable. These characteristics are necessary and sufficient for the essentially de novo emergence of a coupled gene–replicase–translatase system of genetic coding that would have continuously preserved the functional meaning of genetically encoded protein genes whose phylogenetic relationships match those observed today. PMID:29077934

  7. The genetic code as a periodic table: algebraic aspects.

    Science.gov (United States)

    Bashford, J D; Jarvis, P D

    2000-01-01

    The systematics of indices of physico-chemical properties of codons and amino acids across the genetic code are examined. Using a simple numerical labelling scheme for nucleic acid bases, A=(-1,0), C=(0,-1), G=(0,1), U=(1,0), data can be fitted as low order polynomials of the six coordinates in the 64-dimensional codon weight space. The work confirms and extends the recent studies by Siemion et al. (1995. BioSystems 36, 231-238) of the conformational parameters. Fundamental patterns in the data such as codon periodicities, and related harmonics and reflection symmetries, are here associated with the structure of the set of basis monomials chosen for fitting. Results are plotted using the Siemion one-step mutation ring scheme, and variants thereof. The connections between the present work, and recent studies of the genetic code structure using dynamical symmetry algebras, are pointed out.

  8. The Search for Symmetries in the Genetic Code:

    Science.gov (United States)

    Antoneli, Fernando; Forger, Michael; Hornos, José Eduardo M.

    We give a full classification of the possible schemes for obtaining the distribution of multiplets observed in the standard genetic code by symmetry breaking in the context of finite groups, based on an extended notion of partial symmetry breaking that incorporates the intuitive idea of "freezing" first proposed by Francis Crick, which is given a precise mathematical meaning.

  9. A novel nuclear genetic code alteration in yeasts and the evolution of codon reassignment in eukaryotes.

    Science.gov (United States)

    Mühlhausen, Stefanie; Findeisen, Peggy; Plessmann, Uwe; Urlaub, Henning; Kollmar, Martin

    2016-07-01

    The genetic code is the cellular translation table for the conversion of nucleotide sequences into amino acid sequences. Changes to the meaning of sense codons would introduce errors into almost every translated message and are expected to be highly detrimental. However, reassignment of single or multiple codons in mitochondria and nuclear genomes, although extremely rare, demonstrates that the code can evolve. Several models for the mechanism of alteration of nuclear genetic codes have been proposed (including "codon capture," "genome streamlining," and "ambiguous intermediate" theories), but with little resolution. Here, we report a novel sense codon reassignment in Pachysolen tannophilus, a yeast related to the Pichiaceae. By generating proteomics data and using tRNA sequence comparisons, we show that Pachysolen translates CUG codons as alanine and not as the more usual leucine. The Pachysolen tRNACAG is an anticodon-mutated tRNA(Ala) containing all major alanine tRNA recognition sites. The polyphyly of the CUG-decoding tRNAs in yeasts is best explained by a tRNA loss driven codon reassignment mechanism. Loss of the CUG-tRNA in the ancient yeast is followed by gradual decrease of respective codons and subsequent codon capture by tRNAs whose anticodon is not part of the aminoacyl-tRNA synthetase recognition region. Our hypothesis applies to all nuclear genetic code alterations and provides several testable predictions. We anticipate more codon reassignments to be uncovered in existing and upcoming genome projects. © 2016 Mühlhausen et al.; Published by Cold Spring Harbor Laboratory Press.

  10. Phenotypic Graphs and Evolution Unfold the Standard Genetic Code as the Optimal

    Science.gov (United States)

    Zamudio, Gabriel S.; José, Marco V.

    2018-03-01

    In this work, we explicitly consider the evolution of the Standard Genetic Code (SGC) by assuming two evolutionary stages, to wit, the primeval RNY code and two intermediate codes in between. We used network theory and graph theory to measure the connectivity of each phenotypic graph. The connectivity values are compared to the values of the codes under different randomization scenarios. An error-correcting optimal code is one in which the algebraic connectivity is minimized. We show that the SGC is optimal in regard to its robustness and error-tolerance when compared to all random codes under different assumptions.

  11. The Graph, Geometry and Symmetries of the Genetic Code with Hamming Metric

    Directory of Open Access Journals (Sweden)

    Reijer Lenstra

    2015-07-01

    Full Text Available The similarity patterns of the genetic code result from similar codons encoding similar messages. We develop a new mathematical model to analyze these patterns. The physicochemical characteristics of amino acids objectively quantify their differences and similarities; the Hamming metric does the same for the 64 codons of the codon set. (Hamming distances equal the number of different codon positions: AAA and AAC are at 1-distance; codons are maximally at 3-distance. The CodonPolytope, a 9-dimensional geometric object, is spanned by 64 vertices that represent the codons and the Euclidian distances between these vertices correspond one-to-one with intercodon Hamming distances. The CodonGraph represents the vertices and edges of the polytope; each edge equals a Hamming 1-distance. The mirror reflection symmetry group of the polytope is isomorphic to the largest permutation symmetry group of the codon set that preserves Hamming distances. These groups contain 82,944 symmetries. Many polytope symmetries coincide with the degeneracy and similarity patterns of the genetic code. These code symmetries are strongly related with the face structure of the polytope with smaller faces displaying stronger code symmetries. Splitting the polytope stepwise into smaller faces models an early evolution of the code that generates this hierarchy of code symmetries. The canonical code represents a class of 41,472 codes with equivalent symmetries; a single class among an astronomical number of symmetry classes comprising all possible codes.

  12. Analysis of genetic code ambiguity arising from nematode-specific misacylated tRNAs.

    Directory of Open Access Journals (Sweden)

    Kiyofumi Hamashima

    Full Text Available The faithful translation of the genetic code requires the highly accurate aminoacylation of transfer RNAs (tRNAs. However, it has been shown that nematode-specific V-arm-containing tRNAs (nev-tRNAs are misacylated with leucine in vitro in a manner that transgresses the genetic code. nev-tRNA(Gly (CCC and nev-tRNA(Ile (UAU, which are the major nev-tRNA isotypes, could theoretically decode the glycine (GGG codon and isoleucine (AUA codon as leucine, causing GGG and AUA codon ambiguity in nematode cells. To test this hypothesis, we investigated the functionality of nev-tRNAs and their impact on the proteome of Caenorhabditis elegans. Analysis of the nucleotide sequences in the 3' end regions of the nev-tRNAs showed that they had matured correctly, with the addition of CCA, which is a crucial posttranscriptional modification required for tRNA aminoacylation. The nuclear export of nev-tRNAs was confirmed with an analysis of their subcellular localization. These results show that nev-tRNAs are processed to their mature forms like common tRNAs and are available for translation. However, a whole-cell proteome analysis found no detectable level of nev-tRNA-induced mistranslation in C. elegans cells, suggesting that the genetic code is not ambiguous, at least under normal growth conditions. Our findings indicate that the translational fidelity of the nematode genetic code is strictly maintained, contrary to our expectations, although deviant tRNAs with misacylation properties are highly conserved in the nematode genome.

  13. Changes in the Coding and Non-coding Transcriptome and DNA Methylome that Define the Schwann Cell Repair Phenotype after Nerve Injury.

    Science.gov (United States)

    Arthur-Farraj, Peter J; Morgan, Claire C; Adamowicz, Martyna; Gomez-Sanchez, Jose A; Fazal, Shaline V; Beucher, Anthony; Razzaghi, Bonnie; Mirsky, Rhona; Jessen, Kristjan R; Aitman, Timothy J

    2017-09-12

    Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells. We demonstrate that the AP-1 transcription factor C-JUN regulates the expression of certain micro RNAs in repair Schwann cells, in particular miR-21 and miR-34. Surprisingly, unlike during development, changes in CpG methylation are limited in injury, restricted to specific locations, such as enhancer regions of Schwann cell-specific genes (e.g., Nedd4l), and close to local enrichment of AP-1 motifs. These genetic and epigenomic changes broaden our mechanistic understanding of the formation of repair Schwann cell during peripheral nervous system tissue repair. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Chromatin remodeling: the interface between extrinsic cues and the genetic code?

    Science.gov (United States)

    Ezzat, Shereen

    2008-10-01

    The successful completion of the human genome project ushered a new era of hope and skepticism. However, the promise of finding the fundamental basis of human traits and diseases appears less than fulfilled. The original premise was that the DNA sequence of every gene would allow precise characterization of critical differences responsible for altered cellular functions. The characterization of intragenic mutations in cancers paved the way for early screening and the design of targeted therapies. However, it has also become evident that unmasking genetic codes alone cannot explain the diversity of disease phenotypes within a population. Further, classic genetics has not been able to explain the differences that have been observed among identical twins or even cloned animals. This new reality has re-ignited interest in the field of epigenetics. While traditionally defined as heritable changes that can alter gene expression without affecting the corresponding DNA sequence, this definition has come into question. The extent to which epigenetic change can also be acquired in response to chemical stimuli represents an exciting dimension in the "nature vs nurture" debate. In this review I will describe a series of studies in my laboratory that illustrate the significance of epigenetics and its potential clinical implications.

  15. Junk DNA and the long non-coding RNA twist in cancer genetics

    NARCIS (Netherlands)

    H. Ling (Hui); K. Vincent; M. Pichler; R. Fodde (Riccardo); I. Berindan-Neagoe (Ioana); F.J. Slack (Frank); G.A. Calin (George)

    2015-01-01

    textabstractThe central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs

  16. Probable relationship between partitions of the set of codons and the origin of the genetic code.

    Science.gov (United States)

    Salinas, Dino G; Gallardo, Mauricio O; Osorio, Manuel I

    2014-03-01

    Here we study the distribution of randomly generated partitions of the set of amino acid-coding codons. Some results are an application from a previous work, about the Stirling numbers of the second kind and triplet codes, both to the cases of triplet codes having four stop codons, as in mammalian mitochondrial genetic code, and hypothetical doublet codes. Extending previous results, in this work it is found that the most probable number of blocks of synonymous codons, in a genetic code, is similar to the number of amino acids when there are four stop codons, as well as it could be for a primigenious doublet code. Also it is studied the integer partitions associated to patterns of synonymous codons and it is shown, for the canonical code, that the standard deviation inside an integer partition is one of the most probable. We think that, in some early epoch, the genetic code might have had a maximum of the disorder or entropy, independent of the assignment between codons and amino acids, reaching a state similar to "code freeze" proposed by Francis Crick. In later stages, maybe deterministic rules have reassigned codons to amino acids, forming the natural codes, such as the canonical code, but keeping the numerical features describing the set partitions and the integer partitions, like a "fossil numbers"; both kinds of partitions about the set of amino acid-coding codons. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. [Direct genetic manipulation and criminal code in Venezuela: absolute criminal law void?].

    Science.gov (United States)

    Cermeño Zambrano, Fernando G De J

    2002-01-01

    The judicial regulation of genetic biotechnology applied to the human genome is of big relevance currently in Venezuela due to the drafting of an innovative bioethical law in the country's parliament. This article will highlight the constitutional normative of Venezuela's 1999 Constitution regarding this subject, as it establishes the framework from which this matter will be legally regulated. The approach this article makes towards the genetic biotechnology applied to the human genome is made taking into account the Venezuelan penal law and by highlighting the violent genetic manipulations that have criminal relevance. The genetic biotechnology applied to the human genome has another important relevance as a consequence of the reformulation of the Venezuelan Penal Code discussed by the country's National Assembly. Therefore, a concise study of the country's penal code will be made in this article to better understand what judicial-penal properties have been protected by the Venezuelan penal legislation. This last step will enable us to identify the penal tools Venezuela counts on to face direct genetic manipulations. We will equally indicate the existing punitive loophole and that should be covered by the penal legislator. In conclusion, this essay concerns criminal policy, referred to the direct genetic manipulations on the human genome that haven't been typified in Venezuelan law, thus discovering a genetic biotechnology paradise.

  18. Frozen Accident Pushing 50: Stereochemistry, Expansion, and Chance in the Evolution of the Genetic Code.

    Science.gov (United States)

    Koonin, Eugene V

    2017-05-23

    Nearly 50 years ago, Francis Crick propounded the frozen accident scenario for the evolution of the genetic code along with the hypothesis that the early translation system consisted primarily of RNA. Under the frozen accident perspective, the code is universal among modern life forms because any change in codon assignment would be highly deleterious. The frozen accident can be considered the default theory of code evolution because it does not imply any specific interactions between amino acids and the cognate codons or anticodons, or any particular properties of the code. The subsequent 49 years of code studies have elucidated notable features of the standard code, such as high robustness to errors, but failed to develop a compelling explanation for codon assignments. In particular, stereochemical affinity between amino acids and the cognate codons or anticodons does not seem to account for the origin and evolution of the code. Here, I expand Crick's hypothesis on RNA-only translation system by presenting evidence that this early translation already attained high fidelity that allowed protein evolution. I outline an experimentally testable scenario for the evolution of the code that combines a distinct version of the stereochemical hypothesis, in which amino acids are recognized via unique sites in the tertiary structure of proto-tRNAs, rather than by anticodons, expansion of the code via proto-tRNA duplication, and the frozen accident.

  19. The role of crossover operator in evolutionary-based approach to the problem of genetic code optimization.

    Science.gov (United States)

    Błażej, Paweł; Wnȩtrzak, Małgorzata; Mackiewicz, Paweł

    2016-12-01

    One of theories explaining the present structure of canonical genetic code assumes that it was optimized to minimize harmful effects of amino acid replacements resulting from nucleotide substitutions and translational errors. A way to testify this concept is to find the optimal code under given criteria and compare it with the canonical genetic code. Unfortunately, the huge number of possible alternatives makes it impossible to find the optimal code using exhaustive methods in sensible time. Therefore, heuristic methods should be applied to search the space of possible solutions. Evolutionary algorithms (EA) seem to be ones of such promising approaches. This class of methods is founded both on mutation and crossover operators, which are responsible for creating and maintaining the diversity of candidate solutions. These operators possess dissimilar characteristics and consequently play different roles in the process of finding the best solutions under given criteria. Therefore, the effective searching for the potential solutions can be improved by applying both of them, especially when these operators are devised specifically for a given problem. To study this subject, we analyze the effectiveness of algorithms for various combinations of mutation and crossover probabilities under three models of the genetic code assuming different restrictions on its structure. To achieve that, we adapt the position based crossover operator for the most restricted model and develop a new type of crossover operator for the more general models. The applied fitness function describes costs of amino acid replacement regarding their polarity. Our results indicate that the usage of crossover operators can significantly improve the quality of the solutions. Moreover, the simulations with the crossover operator optimize the fitness function in the smaller number of generations than simulations without this operator. The optimal genetic codes without restrictions on their structure

  20. A Novel Real-coded Quantum-inspired Genetic Algorithm and Its Application in Data Reconciliation

    Directory of Open Access Journals (Sweden)

    Gao Lin

    2012-06-01

    Full Text Available Traditional quantum-inspired genetic algorithm (QGA has drawbacks such as premature convergence, heavy computational cost, complicated coding and decoding process etc. In this paper, a novel real-coded quantum-inspired genetic algorithm is proposed based on interval division thinking. Detailed comparisons with some similar approaches for some standard benchmark functions test validity of the proposed algorithm. Besides, the proposed algorithm is used in two typical nonlinear data reconciliation problems (distilling process and extraction process and simulation results show its efficiency in nonlinear data reconciliation problems.

  1. The Impact of Diagnostic Code Misclassification on Optimizing the Experimental Design of Genetic Association Studies

    Directory of Open Access Journals (Sweden)

    Steven J. Schrodi

    2017-01-01

    Full Text Available Diagnostic codes within electronic health record systems can vary widely in accuracy. It has been noted that the number of instances of a particular diagnostic code monotonically increases with the accuracy of disease phenotype classification. As a growing number of health system databases become linked with genomic data, it is critically important to understand the effect of this misclassification on the power of genetic association studies. Here, I investigate the impact of this diagnostic code misclassification on the power of genetic association studies with the aim to better inform experimental designs using health informatics data. The trade-off between (i reduced misclassification rates from utilizing additional instances of a diagnostic code per individual and (ii the resulting smaller sample size is explored, and general rules are presented to improve experimental designs.

  2. Crucial steps to life: From chemical reactions to code using agents.

    Science.gov (United States)

    Witzany, Guenther

    2016-02-01

    The concepts of the origin of the genetic code and the definitions of life changed dramatically after the RNA world hypothesis. Main narratives in molecular biology and genetics such as the "central dogma," "one gene one protein" and "non-coding DNA is junk" were falsified meanwhile. RNA moved from the transition intermediate molecule into centre stage. Additionally the abundance of empirical data concerning non-random genetic change operators such as the variety of mobile genetic elements, persistent viruses and defectives do not fit with the dominant narrative of error replication events (mutations) as being the main driving forces creating genetic novelty and diversity. The reductionistic and mechanistic views on physico-chemical properties of the genetic code are no longer convincing as appropriate descriptions of the abundance of non-random genetic content operators which are active in natural genetic engineering and natural genome editing. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Automation of RELAP5 input calibration and code validation using genetic algorithm

    International Nuclear Information System (INIS)

    Phung, Viet-Anh; Kööp, Kaspar; Grishchenko, Dmitry; Vorobyev, Yury; Kudinov, Pavel

    2016-01-01

    Highlights: • Automated input calibration and code validation using genetic algorithm is presented. • Predictions generally overlap experiments for individual system response quantities (SRQs). • It was not possible to predict simultaneously experimental maximum flow rate and oscillation period. • Simultaneous consideration of multiple SRQs is important for code validation. - Abstract: Validation of system thermal-hydraulic codes is an important step in application of the codes to reactor safety analysis. The goal of the validation process is to determine how well a code can represent physical reality. This is achieved by comparing predicted and experimental system response quantities (SRQs) taking into account experimental and modelling uncertainties. Parameters which are required for the code input but not measured directly in the experiment can become an important source of uncertainty in the code validation process. Quantification of such parameters is often called input calibration. Calibration and uncertainty quantification may become challenging tasks when the number of calibrated input parameters and SRQs is large and dependencies between them are complex. If only engineering judgment is employed in the process, the outcome can be prone to so called “user effects”. The goal of this work is to develop an automated approach to input calibration and RELAP5 code validation against data on two-phase natural circulation flow instability. Multiple SRQs are used in both calibration and validation. In the input calibration, we used genetic algorithm (GA), a heuristic global optimization method, in order to minimize the discrepancy between experimental and simulation data by identifying optimal combinations of uncertain input parameters in the calibration process. We demonstrate the importance of the proper selection of SRQs and respective normalization and weighting factors in the fitness function. In the code validation, we used maximum flow rate as the

  4. Automation of RELAP5 input calibration and code validation using genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Viet-Anh, E-mail: vaphung@kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Kööp, Kaspar, E-mail: kaspar@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden); Vorobyev, Yury, E-mail: yura3510@gmail.com [National Research Center “Kurchatov Institute”, Kurchatov square 1, Moscow 123182 (Russian Federation); Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se [Division of Nuclear Power Safety, Royal Institute of Technology, Roslagstullsbacken 21, 10691 Stockholm (Sweden)

    2016-04-15

    Highlights: • Automated input calibration and code validation using genetic algorithm is presented. • Predictions generally overlap experiments for individual system response quantities (SRQs). • It was not possible to predict simultaneously experimental maximum flow rate and oscillation period. • Simultaneous consideration of multiple SRQs is important for code validation. - Abstract: Validation of system thermal-hydraulic codes is an important step in application of the codes to reactor safety analysis. The goal of the validation process is to determine how well a code can represent physical reality. This is achieved by comparing predicted and experimental system response quantities (SRQs) taking into account experimental and modelling uncertainties. Parameters which are required for the code input but not measured directly in the experiment can become an important source of uncertainty in the code validation process. Quantification of such parameters is often called input calibration. Calibration and uncertainty quantification may become challenging tasks when the number of calibrated input parameters and SRQs is large and dependencies between them are complex. If only engineering judgment is employed in the process, the outcome can be prone to so called “user effects”. The goal of this work is to develop an automated approach to input calibration and RELAP5 code validation against data on two-phase natural circulation flow instability. Multiple SRQs are used in both calibration and validation. In the input calibration, we used genetic algorithm (GA), a heuristic global optimization method, in order to minimize the discrepancy between experimental and simulation data by identifying optimal combinations of uncertain input parameters in the calibration process. We demonstrate the importance of the proper selection of SRQs and respective normalization and weighting factors in the fitness function. In the code validation, we used maximum flow rate as the

  5. On Francis Crick, the genetic code, and a clever kid.

    Science.gov (United States)

    Goldstein, Bob

    2018-04-02

    A few years ago, Francis Crick's son told me a story that I can't get out of my mind. I had contacted Michael Crick by email while digging through the background of the researchers who had cracked the genetic code in the 1960s. Francis had died in 2004, and I was contacting some of the people who knew him when he was struggling to decipher the code. Francis didn't appear to struggle often - he is known mostly for his successes - and, as it turns out, this one well-known struggle may have had a clue sitting just barely out of sight. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Global change and genetic diversity

    International Nuclear Information System (INIS)

    Kremer, Antoine

    2000-01-01

    Are there grounds for concern as to the impact of global change on the future of European forests? This question is approached from the genetic angle, considering the modifications produced by climate change on the diversity and adaptive potential of forest species. In the absence of experimental data, the answers are derived from a set of arguments based on knowledge of evolutionary mechanisms involved in genetic diversity, the post-glacial history of European forests and lessons drawn from recent introductions of foreign wood species. These arguments entail less pessimistic conclusions than those generally reached for consequences attributed to global change. Even if major changes in composition could occur, past events show that genetic erosion capable of challenging the adaptive potential of species is unlikely. (author)

  7. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability.

    Science.gov (United States)

    Santos, José; Monteagudo, Ángel

    2017-03-27

    The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.

  8. Building climate change into infrastructure codes and standards

    International Nuclear Information System (INIS)

    Auld, H.; Klaasen, J.; Morris, R.; Fernandez, S.; MacIver, D.; Bernstein, D.

    2009-01-01

    'Full text:' Building codes and standards and the climatic design values embedded within these legal to semi-legal documents have profound safety, health and economic implications for Canada's infrastructure systems. The climatic design values that have been used for the design of almost all of today's more than $5.5 Trillion in infrastructure are based on historical climate data and assume that the extremes of the past will represent future conditions. Since new infrastructure based on codes and standards will be built to survive for decades to come, it is critically important that existing climatic design information be as accurate and up-to-date as possible, that the changing climate be monitored to detect and highlight vulnerabilities of existing infrastructure, that forensic studies of climate-related failures be undertaken and that codes and standards processes incorporate future climates and extremes as much as possible. Uncertainties in the current climate change models and their scenarios currently challenge our ability to project future extremes regionally and locally. Improvements to the spatial and temporal resolution of these climate change scenarios, along with improved methodologies to treat model biases and localize results, will allow future codes and standards to better reflect the extremes and weathering conditions expected over the lifespan of structures. In the meantime, other information and code processes can be used to incorporate changing climate conditions into upcoming infrastructure codes and standards, to “bridge” the model uncertainty gap and to complement the state of existing projections. This presentation will outline some of the varied information and processes that will be used to incorporate climate change adaptation into the next development cycle of the National Building Code of Canada and numerous other national CSA infrastructure standards. (author)

  9. The standard genetic code and its relation to mutational pressure: robustness and equilibrium criteria

    International Nuclear Information System (INIS)

    Hernandez Caceres, Jose Luis; Hong, Rolando; Martinez Ortiz, Carlos; Sautie Castellanos, Miguel; Valdes, Kiria; Guevara Erra, Ramon

    2004-10-01

    Under the assumption of even point mutation pressure on the DNA strand, rates for transitions from one amino acid into another were assessed. Nearly 25% of all mutations were silent. About 48% of the mutations from a given amino acid stream either into the same amino acid or into an amino acid of the same class. These results suggest a great stability of the Standard Genetic Code respect to mutation load. Concepts from chemical equilibrium theory are applicable into this case provided that mutation rate constants are given. It was obtained that unequal synonymic codon usage may lead to changes in the equilibrium concentrations. Data from real biological species showed that several amino acids are close to the respective equilibrium concentration. However in all the cases the concentration of leucine nearly doubled its equilibrium concentration, whereas for the stop command (Term) it was about 10 times lower. The overall distance from equilibrium for a set of species suggests that eukaryotes are closer to equilibrium than prokaryotes, and the HIV virus was closest to equilibrium among 15 species. We obtained that contemporary species are closer to the equilibrium than the Last Universal Common Ancestor (LUCA) was. Similarly, nonpreserved regions in proteins are closer to equilibrium than the preserved ones. We suggest that this approach can be useful for exploring some aspects of biological evolution in the framework of Standard Genetic Code properties. (author)

  10. The aminoacyl-tRNA synthetases had only a marginal role in the origin of the organization of the genetic code: Evidence in favor of the coevolution theory.

    Science.gov (United States)

    Di Giulio, Massimo

    2017-11-07

    The coevolution theory of the origin of the genetic code suggests that the organization of the genetic code coevolved with the biosynthetic relationships between amino acids. The mechanism that allowed this coevolution was based on tRNA-like molecules on which-this theory-would postulate the biosynthetic transformations between amino acids to have occurred. This mechanism makes a prediction on how the role conducted by the aminoacyl-tRNA synthetases (ARSs), in the origin of the genetic code, should have been. Indeed, if the biosynthetic transformations between amino acids occurred on tRNA-like molecules, then there was no need to link amino acids to these molecules because amino acids were already charged on tRNA-like molecules, as the coevolution theory suggests. In spite of the fact that ARSs make the genetic code responsible for the first interaction between a component of nucleic acids and that of proteins, for the coevolution theory the role of ARSs should have been entirely marginal in the genetic code origin. Therefore, I have conducted a further analysis of the distribution of the two classes of ARSs and of their subclasses-in the genetic code table-in order to perform a falsification test of the coevolution theory. Indeed, in the case in which the distribution of ARSs within the genetic code would have been highly significant, then the coevolution theory would be falsified since the mechanism on which it is based would not predict a fundamental role of ARSs in the origin of the genetic code. I found that the statistical significance of the distribution of the two classes of ARSs in the table of the genetic code is low or marginal, whereas that of the subclasses of ARSs statistically significant. However, this is in perfect agreement with the postulates of the coevolution theory. Indeed, the only case of statistical significance-regarding the classes of ARSs-is appreciable for the CAG code, whereas for its complement-the UNN/NUN code-only a marginal

  11. Expansion Under Climate Change: The Genetic Consequences.

    Science.gov (United States)

    Garnier, Jimmy; Lewis, Mark A

    2016-11-01

    Range expansion and range shifts are crucial population responses to climate change. Genetic consequences are not well understood but are clearly coupled to ecological dynamics that, in turn, are driven by shifting climate conditions. We model a population with a deterministic reaction-diffusion model coupled to a heterogeneous environment that develops in time due to climate change. We decompose the resulting travelling wave solution into neutral genetic components to analyse the spatio-temporal dynamics of its genetic structure. Our analysis shows that range expansions and range shifts under slow climate change preserve genetic diversity. This is because slow climate change creates range boundaries that promote spatial mixing of genetic components. Mathematically, the mixing leads to so-called pushed travelling wave solutions. This mixing phenomenon is not seen in spatially homogeneous environments, where range expansion reduces genetic diversity through gene surfing arising from pulled travelling wave solutions. However, the preservation of diversity is diminished when climate change occurs too quickly. Using diversity indices, we show that fast expansions and range shifts erode genetic diversity more than slow range expansions and range shifts. Our study provides analytical insight into the dynamics of travelling wave solutions in heterogeneous environments.

  12. Use of fluorescent proteins and color-coded imaging to visualize cancer cells with different genetic properties.

    Science.gov (United States)

    Hoffman, Robert M

    2016-03-01

    Fluorescent proteins are very bright and available in spectrally-distinct colors, enable the imaging of color-coded cancer cells growing in vivo and therefore the distinction of cancer cells with different genetic properties. Non-invasive and intravital imaging of cancer cells with fluorescent proteins allows the visualization of distinct genetic variants of cancer cells down to the cellular level in vivo. Cancer cells with increased or decreased ability to metastasize can be distinguished in vivo. Gene exchange in vivo which enables low metastatic cancer cells to convert to high metastatic can be color-coded imaged in vivo. Cancer stem-like and non-stem cells can be distinguished in vivo by color-coded imaging. These properties also demonstrate the vast superiority of imaging cancer cells in vivo with fluorescent proteins over photon counting of luciferase-labeled cancer cells.

  13. Amino acid fermentation at the origin of the genetic code.

    Science.gov (United States)

    de Vladar, Harold P

    2012-02-10

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  14. Mapping the Plasticity of the E. coli Genetic Code with Orthogonal Pair Directed Sense Codon Reassignment.

    Science.gov (United States)

    Schmitt, Margaret A; Biddle, Wil; Fisk, John Domenic

    2018-04-18

    The relative quantitative importance of the factors that determine the fidelity of translation is largely unknown, which makes predicting the extent to which the degeneracy of the genetic code can be broken challenging. Our strategy of using orthogonal tRNA/aminoacyl tRNA synthetase pairs to precisely direct the incorporation of a single amino acid in response to individual sense and nonsense codons provides a suite of related data with which to examine the plasticity of the code. Each directed sense codon reassignment measurement is an in vivo competition experiment between the introduced orthogonal translation machinery and the natural machinery in E. coli. This report discusses 20 new, related genetic codes, in which a targeted E. coli wobble codon is reassigned to tyrosine utilizing the orthogonal tyrosine tRNA/aminoacyl tRNA synthetase pair from Methanocaldococcus jannaschii. One at a time, reassignment of each targeted sense codon to tyrosine is quantified in cells by measuring the fluorescence of GFP variants in which the essential tyrosine residue is encoded by a non-tyrosine codon. Significantly, every wobble codon analyzed may be partially reassigned with efficiencies ranging from 0.8% to 41%. The accumulation of the suite of data enables a qualitative dissection of the relative importance of the factors affecting the fidelity of translation. While some correlation was observed between sense codon reassignment and either competing endogenous tRNA abundance or changes in aminoacylation efficiency of the altered orthogonal system, no single factor appears to predominately drive translational fidelity. Evaluation of relative cellular fitness in each of the 20 quantitatively-characterized proteome-wide tyrosine substitution systems suggests that at a systems level, E. coli is robust to missense mutations.

  15. Methodology for Evaluating Cost-effectiveness of Commercial Energy Code Changes

    Energy Technology Data Exchange (ETDEWEB)

    Hart, Philip R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Liu, Bing [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-31

    This document lays out the U.S. Department of Energy’s (DOE’s) method for evaluating the cost-effectiveness of energy code proposals and editions. The evaluation is applied to provisions or editions of the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) Standard 90.1 and the International Energy Conservation Code (IECC). The method follows standard life-cycle cost (LCC) economic analysis procedures. Cost-effectiveness evaluation requires three steps: 1) evaluating the energy and energy cost savings of code changes, 2) evaluating the incremental and replacement costs related to the changes, and 3) determining the cost-effectiveness of energy code changes based on those costs and savings over time.

  16. Quantum control using genetic algorithms in quantum communication: superdense coding

    International Nuclear Information System (INIS)

    Domínguez-Serna, Francisco; Rojas, Fernando

    2015-01-01

    We present a physical example model of how Quantum Control with genetic algorithms is applied to implement the quantum superdense code protocol. We studied a model consisting of two quantum dots with an electron with spin, including spin-orbit interaction. The electron and the spin get hybridized with the site acquiring two degrees of freedom, spin and charge. The system has tunneling and site energies as time dependent control parameters that are optimized by means of genetic algorithms to prepare a hybrid Bell-like state used as a transmission channel. This state is transformed to obtain any state of the four Bell basis as required by superdense protocol to transmit two bits of classical information. The control process protocol is equivalent to implement one of the quantum gates in the charge subsystem. Fidelities larger than 99.5% are achieved for the hybrid entangled state preparation and the superdense operations. (paper)

  17. Amino acid fermentation at the origin of the genetic code

    Science.gov (United States)

    2012-01-01

    There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP) yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can act and refine the assignments

  18. Amino acid fermentation at the origin of the genetic code

    Directory of Open Access Journals (Sweden)

    de Vladar Harold P

    2012-02-01

    Full Text Available Abstract There is evidence that the genetic code was established prior to the existence of proteins, when metabolism was powered by ribozymes. Also, early proto-organisms had to rely on simple anaerobic bioenergetic processes. In this work I propose that amino acid fermentation powered metabolism in the RNA world, and that this was facilitated by proto-adapters, the precursors of the tRNAs. Amino acids were used as carbon sources rather than as catalytic or structural elements. In modern bacteria, amino acid fermentation is known as the Stickland reaction. This pathway involves two amino acids: the first undergoes oxidative deamination, and the second acts as an electron acceptor through reductive deamination. This redox reaction results in two keto acids that are employed to synthesise ATP via substrate-level phosphorylation. The Stickland reaction is the basic bioenergetic pathway of some bacteria of the genus Clostridium. Two other facts support Stickland fermentation in the RNA world. First, several Stickland amino acid pairs are synthesised in abiotic amino acid synthesis. This suggests that amino acids that could be used as an energy substrate were freely available. Second, anticodons that have complementary sequences often correspond to amino acids that form Stickland pairs. The main hypothesis of this paper is that pairs of complementary proto-adapters were assigned to Stickland amino acids pairs. There are signatures of this hypothesis in the genetic code. Furthermore, it is argued that the proto-adapters formed double strands that brought amino acid pairs into proximity to facilitate their mutual redox reaction, structurally constraining the anticodon pairs that are assigned to these amino acid pairs. Significance tests which randomise the code are performed to study the extent of the variability of the energetic (ATP yield. Random assignments can lead to a substantial yield of ATP and maintain enough variability, thus selection can

  19. Unassigned Codons, Nonsense Suppression, and Anticodon Modifications in the Evolution of the Genetic Code

    NARCIS (Netherlands)

    P.T.S. van der Gulik (Peter); W.D. Hoff (Wouter)

    2011-01-01

    htmlabstractThe origin of the genetic code is a central open problem regarding the early evolution of life. Here, we consider two undeveloped but important aspects of possible scenarios for the evolutionary pathway of the translation machinery: the role of unassigned codons in early stages

  20. A Systematic Review of Genetic Testing and Lifestyle Behaviour Change: Are We Using High-Quality Genetic Interventions and Considering Behaviour Change Theory?

    Science.gov (United States)

    Horne, Justine; Madill, Janet; O'Connor, Colleen; Shelley, Jacob; Gilliland, Jason

    2018-04-10

    Studying the impact of genetic testing interventions on lifestyle behaviour change has been a priority area of research in recent years. Substantial heterogeneity exists in the results and conclusions of this literature, which has yet to be explained using validated behaviour change theory and an assessment of the quality of genetic interventions. The theory of planned behaviour (TPB) helps to explain key contributors to behaviour change. It has been hypothesized that personalization could be added to this theory to help predict changes in health behaviours. This systematic review provides a detailed, comprehensive identification, assessment, and summary of primary research articles pertaining to lifestyle behaviour change (nutrition, physical activity, sleep, and smoking) resulting from genetic testing interventions. The present review further aims to provide in-depth analyses of studies conducted to date within the context of the TPB and the quality of genetic interventions provided to participants while aiming to determine whether or not genetic testing facilitates changes in lifestyle habits. This review is timely in light of a recently published "call-to-action" paper, highlighting the need to incorporate the TPB into personalized healthcare behaviour change research. Three bibliographic databases, one key website, and article reference lists were searched for relevant primary research articles. The PRISMA Flow Diagram and PRISMA Checklist were used to guide the search strategy and manuscript preparation. Out of 32,783 titles retrieved, 26 studies met the inclusion criteria. Three quality assessments were conducted and included: (1) risk of bias, (2) quality of genetic interventions, and (3) consideration of theoretical underpinnings - primarily the TPB. Risk of bias in studies was overall rated to be "fair." Consideration of the TPB was "poor," with no study making reference to this validated theory. While some studies (n = 11; 42%) made reference to other

  1. Physicochemical basis for the origin of the genetic code - Lecture 3

    International Nuclear Information System (INIS)

    Ponnamperuma, C.

    1992-01-01

    A study of the association of homocodonic amino acids and selected heterocodonic amino acids with selected nucleotides in aqueous solution was undertaken to examine a possible physical basis for the origin of codon assignments. These interactions were studied using 1H nuclear magnetic resonance spectroscopy (NMR). Association constants for the various interactions were determined by fitting the changes in the chemical shifts of the anomeric and ring protons of the nucleoside moieties as a function of amino acid concentration to an isotherm which described the binding interaction. The strongest association of all homocodonic amino acids were with their respective anticodonic nucleotide sequences. The strength of association was seen to increase with increase in the chain length of the anticodonic nucleotide. The association of these amino acids with different phosphate esters of nucleotides suggests that a definite isomeric structure is required for association with a specified amino acid; the 5'-mononucleotides and (3'-5')-linked dinucleotides are the favored geometries for strong associations. Use of heterocodonic amino acids and nonprotein amino acids supports these findings. We conclude that there is at least a physicochemical, anticodonic contribution to the origin of the genetic code. (author)

  2. Human growth hormone-related latrogenic Creutzfeldt-Jakob disease: Search for a genetic susceptibility by analysis of the PRNP coding region

    Energy Technology Data Exchange (ETDEWEB)

    Jaegly, A.; Boussin, F.; Deslys, J.P. [CEA/CRSSA/DSV/DPTE, Fontenay-aux-Roses (France)] [and others

    1995-05-20

    The human PRNP gene encoding PrP is located on chromosome 20 and consists of two exons and a single intron. The open reading frame is entirely fitted into the second exon. Genetic studies indicate that all of the familial and several sporadic forms of TSSEs are associated with mutations in the PRNP 759-bp coding region. Moreover, homozygosity at codon 129, a locus harboring a polymorphism among the general population, was proposed as a genetic susceptibility marker for both sporadic and iatrogenic CJD. To assess whether additional genetic predisposition markers exist in the PRNP gene, the authors sequenced the PRNP coding region of 17 of the 32 French patients who developed a hGH-related CJD.

  3. Breathing (and Coding?) a Bit Easier: Changes to International Classification of Disease Coding for Pulmonary Hypertension.

    Science.gov (United States)

    Mathai, Stephen C; Mathew, Sherin

    2018-04-20

    International Classification of Disease (ICD) coding system is broadly utilized by healthcare providers, hospitals, healthcare payers, and governments to track health trends and statistics at the global, national, and local levels and to provide a reimbursement framework for medical care based upon diagnosis and severity of illness. The current iteration of the ICD system, ICD-10, was implemented in 2015. While many changes to the prior ICD-9 system were included in the ICD-10 system, the newer revision failed to adequately reflect advances in the clinical classification of certain diseases such as pulmonary hypertension (PH). Recently, a proposal to modify the ICD-10 codes for PH was considered and ultimately adopted for inclusion as updates to ICD-10 coding system. While these revisions better reflect the current clinical classification of PH, in the future, further changes should be considered to improve the accuracy and ease of coding for all forms of PH. Copyright © 2018. Published by Elsevier Inc.

  4. Intraspecific Genetic dynamics under Climate Change

    DEFF Research Database (Denmark)

    Florez Rodriguez, Alexander

    Climate change has a deep influence on the maintenance and generation of global biodiversity. Past contractions, expansions and shifts in species’ ranges drove to changes in species genetic diversity. Noteworthy, the interaction among: climate change, range, population size and extinction is often...

  5. ANT: Software for Generating and Evaluating Degenerate Codons for Natural and Expanded Genetic Codes.

    Science.gov (United States)

    Engqvist, Martin K M; Nielsen, Jens

    2015-08-21

    The Ambiguous Nucleotide Tool (ANT) is a desktop application that generates and evaluates degenerate codons. Degenerate codons are used to represent DNA positions that have multiple possible nucleotide alternatives. This is useful for protein engineering and directed evolution, where primers specified with degenerate codons are used as a basis for generating libraries of protein sequences. ANT is intuitive and can be used in a graphical user interface or by interacting with the code through a defined application programming interface. ANT comes with full support for nonstandard, user-defined, or expanded genetic codes (translation tables), which is important because synthetic biology is being applied to an ever widening range of natural and engineered organisms. The Python source code for ANT is freely distributed so that it may be used without restriction, modified, and incorporated in other software or custom data pipelines.

  6. Progressive changes in non-coding RNA profile in leucocytes with age

    Science.gov (United States)

    Muñoz-Culla, Maider; Irizar, Haritz; Gorostidi, Ana; Alberro, Ainhoa; Osorio-Querejeta, Iñaki; Ruiz-Martínez, Javier; Olascoaga, Javier; de Munain, Adolfo López; Otaegui, David

    2017-01-01

    It has been observed that immune cell deterioration occurs in the elderly, as well as a chronic low-grade inflammation called inflammaging. These cellular changes must be driven by numerous changes in gene expression and in fact, both protein-coding and non-coding RNA expression alterations have been observed in peripheral blood mononuclear cells from elder people. In the present work we have studied the expression of small non-coding RNA (microRNA and small nucleolar RNA -snoRNA-) from healthy individuals from 24 to 79 years old. We have observed that the expression of 69 non-coding RNAs (56 microRNAs and 13 snoRNAs) changes progressively with chronological age. According to our results, the age range from 47 to 54 is critical given that it is the period when the expression trend (increasing or decreasing) of age-related small non-coding RNAs is more pronounced. Furthermore, age-related miRNAs regulate genes that are involved in immune, cell cycle and cancer-related processes, which had already been associated to human aging. Therefore, human aging could be studied as a result of progressive molecular changes, and different age ranges should be analysed to cover the whole aging process. PMID:28448962

  7. FitSKIRT: genetic algorithms to automatically fit dusty galaxies with a Monte Carlo radiative transfer code

    Science.gov (United States)

    De Geyter, G.; Baes, M.; Fritz, J.; Camps, P.

    2013-02-01

    We present FitSKIRT, a method to efficiently fit radiative transfer models to UV/optical images of dusty galaxies. These images have the advantage that they have better spatial resolution compared to FIR/submm data. FitSKIRT uses the GAlib genetic algorithm library to optimize the output of the SKIRT Monte Carlo radiative transfer code. Genetic algorithms prove to be a valuable tool in handling the multi- dimensional search space as well as the noise induced by the random nature of the Monte Carlo radiative transfer code. FitSKIRT is tested on artificial images of a simulated edge-on spiral galaxy, where we gradually increase the number of fitted parameters. We find that we can recover all model parameters, even if all 11 model parameters are left unconstrained. Finally, we apply the FitSKIRT code to a V-band image of the edge-on spiral galaxy NGC 4013. This galaxy has been modeled previously by other authors using different combinations of radiative transfer codes and optimization methods. Given the different models and techniques and the complexity and degeneracies in the parameter space, we find reasonable agreement between the different models. We conclude that the FitSKIRT method allows comparison between different models and geometries in a quantitative manner and minimizes the need of human intervention and biasing. The high level of automation makes it an ideal tool to use on larger sets of observed data.

  8. Cracking the code of change.

    Science.gov (United States)

    Beer, M; Nohria, N

    2000-01-01

    Today's fast-paced economy demands that businesses change or die. But few companies manage corporate transformations as well as they would like. The brutal fact is that about 70% of all change initiatives fail. In this article, authors Michael Beer and Nitin Nohria describe two archetypes--or theories--of corporate transformation that may help executives crack the code of change. Theory E is change based on economic value: shareholder value is the only legitimate measure of success, and change often involves heavy use of economic incentives, layoffs, downsizing, and restructuring. Theory O is change based on organizational capability: the goal is to build and strengthen corporate culture. Most companies focus purely on one theory or the other, or haphazardly use a mix of both, the authors say. Combining E and O is directionally correct, they contend, but it requires a careful, conscious integration plan. Beer and Nohria present the examples of two companies, Scott Paper and Champion International, that used a purely E or purely O strategy to create change--and met with limited levels of success. They contrast those corporate transformations with that of UK-based retailer ASDA, which has successfully embraced the paradox between the opposing theories of change and integrated E and O. The lesson from ASDA? To thrive and adapt in the new economy, companies must make sure the E and O theories of business change are in sync at their own organizations.

  9. Coding conventions and principles for a National Land-Change Modeling Framework

    Science.gov (United States)

    Donato, David I.

    2017-07-14

    This report establishes specific rules for writing computer source code for use with the National Land-Change Modeling Framework (NLCMF). These specific rules consist of conventions and principles for writing code primarily in the C and C++ programming languages. Collectively, these coding conventions and coding principles create an NLCMF programming style. In addition to detailed naming conventions, this report provides general coding conventions and principles intended to facilitate the development of high-performance software implemented with code that is extensible, flexible, and interoperable. Conventions for developing modular code are explained in general terms and also enabled and demonstrated through the appended templates for C++ base source-code and header files. The NLCMF limited-extern approach to module structure, code inclusion, and cross-module access to data is both explained in the text and then illustrated through the module templates. Advice on the use of global variables is provided.

  10. Orion: Detecting regions of the human non-coding genome that are intolerant to variation using population genetics.

    Science.gov (United States)

    Gussow, Ayal B; Copeland, Brett R; Dhindsa, Ryan S; Wang, Quanli; Petrovski, Slavé; Majoros, William H; Allen, Andrew S; Goldstein, David B

    2017-01-01

    There is broad agreement that genetic mutations occurring outside of the protein-coding regions play a key role in human disease. Despite this consensus, we are not yet capable of discerning which portions of non-coding sequence are important in the context of human disease. Here, we present Orion, an approach that detects regions of the non-coding genome that are depleted of variation, suggesting that the regions are intolerant of mutations and subject to purifying selection in the human lineage. We show that Orion is highly correlated with known intolerant regions as well as regions that harbor putatively pathogenic variation. This approach provides a mechanism to identify pathogenic variation in the human non-coding genome and will have immediate utility in the diagnostic interpretation of patient genomes and in large case control studies using whole-genome sequences.

  11. Genetic Recombination Between Stromal and Cancer Cells Results in Highly Malignant Cells Identified by Color-Coded Imaging in a Mouse Lymphoma Model.

    Science.gov (United States)

    Nakamura, Miki; Suetsugu, Atsushi; Hasegawa, Kousuke; Matsumoto, Takuro; Aoki, Hitomi; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Hoffman, Robert M

    2017-12-01

    The tumor microenvironment (TME) promotes tumor growth and metastasis. We previously established the color-coded EL4 lymphoma TME model with red fluorescent protein (RFP) expressing EL4 implanted in transgenic C57BL/6 green fluorescent protein (GFP) mice. Color-coded imaging of the lymphoma TME suggested an important role of stromal cells in lymphoma progression and metastasis. In the present study, we used color-coded imaging of RFP-lymphoma cells and GFP stromal cells to identify yellow-fluorescent genetically recombinant cells appearing only during metastasis. The EL4-RFP lymphoma cells were injected subcutaneously in C57BL/6-GFP transgenic mice and formed subcutaneous tumors 14 days after cell transplantation. The subcutaneous tumors were harvested and transplanted to the abdominal cavity of nude mice. Metastases to the liver, perigastric lymph node, ascites, bone marrow, and primary tumor were imaged. In addition to EL4-RFP cells and GFP-host cells, genetically recombinant yellow-fluorescent cells, were observed only in the ascites and bone marrow. These results indicate genetic exchange between the stromal and cancer cells. Possible mechanisms of genetic exchange are discussed as well as its ramifications for metastasis. J. Cell. Biochem. 118: 4216-4221, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  12. Analysis of preservice inspection relief requests and recommendations for ASME code changes

    International Nuclear Information System (INIS)

    Cook, J.F.

    1985-05-01

    NRC regulations require that preservice inspection (PSI) of nuclear plants be performed in accordance with referenced editions and addenda of Division 1 rules of Section XI, ''Rules for Inservice Inspection of Nuclear Power Plant Components'', of the ASME Boiler and Pressure Vessel Code (ASME Code). The regulations permit applicants to request and obtain relief from the NRC from specific ASME Code requirements that are determined to be impractical. Applicant requests for relief from preservice inspection (PSI) requirements were compiled and analyzed. From this data, covering a total of 178 relief requests, common problems with examination requirements were identified. Changes to examination requirements to solve selected problems are proposed. By following later ASME Code requirements, 46 out of the 178 relief requests can be eliminated. Implementing proposed Code changes would eliminate another 25 relief requests, leaving 107 relief requests out of the original 178 relief requests covered by this survey

  13. Genetic classes and genetic categories : Protecting genetic groups through data protection law

    NARCIS (Netherlands)

    Hallinan, Dara; de Hert, Paul; Taylor, L.; Floridi, L.; van der Sloot, B.

    2017-01-01

    Each person shares genetic code with others. Thus, one individual’s genome can reveal information about other individuals. When multiple individuals share aspects of genetic architecture, they form a ‘genetic group’. From a social and legal perspective, two types of genetic group exist: Those which

  14. An overview of the major changes in the 2002 APA Ethics Code.

    Science.gov (United States)

    Knapp, Samuel; VandeCreek, Leon

    2003-06-01

    This article summarizes the major changes that were made to the 2002 Ethical Principles and Code of Conduct of the American Psychological Association. The 2002 Ethics Code retains the general format of the 1992 Ethics Code and does not radically alter the obligations of psychologists. One goal of the Ethics Committee Task Force was to reduce the potential of the Ethics Code to be used to unnecessarily punish psychologists. In addition, the revised Ethics Code expresses greater sensitivity to the needs of cultural and linguistic minorities and students. Shortcomings of the 2002 Ethics Code are discussed.

  15. Allele coding in genomic evaluation

    DEFF Research Database (Denmark)

    Standen, Ismo; Christensen, Ole Fredslund

    2011-01-01

    Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker...... effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous...... genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call...

  16. Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-14-1-0399 TITLE: Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy PRINCIPAL INVESTIGATOR: John F...Include area code) October 2015 Annual Report 30 Sep 2014 - 29 Sep 2015 Molecular & Genetic Investigation of Tau in Chronic Traumatic Encephalopathy John... encephalopathy (CTE), but the underlying molecular changes remain unclear. Here, biochemical and genetic studies that deepen our understanding of the

  17. Genetic coding and united-hypercomplex systems in the models of algebraic biology.

    Science.gov (United States)

    Petoukhov, Sergey V

    2017-08-01

    Structured alphabets of DNA and RNA in their matrix form of representations are connected with Walsh functions and a new type of systems of multidimensional numbers. This type generalizes systems of complex numbers and hypercomplex numbers, which serve as the basis of mathematical natural sciences and many technologies. The new systems of multi-dimensional numbers have interesting mathematical properties and are called in a general case as "systems of united-hypercomplex numbers" (or briefly "U-hypercomplex numbers"). They can be widely used in models of multi-parametrical systems in the field of algebraic biology, artificial life, devices of biological inspired artificial intelligence, etc. In particular, an application of U-hypercomplex numbers reveals hidden properties of genetic alphabets under cyclic permutations in their doublets and triplets. A special attention is devoted to the author's hypothesis about a multi-linguistic in DNA-sequences in a relation with an ensemble of U-numerical sub-alphabets. Genetic multi-linguistic is considered as an important factor to provide noise-immunity properties of the multi-channel genetic coding. Our results attest to the conformity of the algebraic properties of the U-numerical systems with phenomenological properties of the DNA-alphabets and with the complementary device of the double DNA-helix. It seems that in the modeling field of algebraic biology the genetic-informational organization of living bodies can be considered as a set of united-hypercomplex numbers in some association with the famous slogan of Pythagoras "the numbers rule the world". Copyright © 2017 Elsevier B.V. All rights reserved.

  18. From chemical metabolism to life: the origin of the genetic coding process

    Directory of Open Access Journals (Sweden)

    Antoine Danchin

    2017-06-01

    Full Text Available Looking for origins is so much rooted in ideology that most studies reflect opinions that fail to explore the first realistic scenarios. To be sure, trying to understand the origins of life should be based on what we know of current chemistry in the solar system and beyond. There, amino acids and very small compounds such as carbon dioxide, dihydrogen or dinitrogen and their immediate derivatives are ubiquitous. Surface-based chemical metabolism using these basic chemicals is the most likely beginning in which amino acids, coenzymes and phosphate-based small carbon molecules were built up. Nucleotides, and of course RNAs, must have come to being much later. As a consequence, the key question to account for life is to understand how chemical metabolism that began with amino acids progressively shaped into a coding process involving RNAs. Here I explore the role of building up complementarity rules as the first information-based process that allowed for the genetic code to emerge, after RNAs were substituted to surfaces to carry over the basic metabolic pathways that drive the pursuit of life.

  19. Clinical application of antenatal genetic diagnosis of osteogenesis imperfecta type IV.

    Science.gov (United States)

    Yuan, Jing; Li, Song; Xu, YeYe; Cong, Lin

    2015-04-02

    Clinical analysis and genetic testing of a family with osteogenesis imperfecta type IV were conducted, aiming to discuss antenatal genetic diagnosis of osteogenesis imperfecta type IV. Preliminary genotyping was performed based on clinical characteristics of the family members and then high-throughput sequencing was applied to rapidly and accurately detect the changes in candidate genes. Genetic testing of the III5 fetus and other family members revealed missense mutation in c.2746G>A, pGly916Arg in COL1A2 gene coding region and missense and synonymous mutation in COL1A1 gene coding region. Application of antenatal genetic diagnosis provides fast and accurate genetic counseling and eugenics suggestions for patients with osteogenesis imperfecta type IV and their families.

  20. PCR-free quantitative detection of genetically modified organism from raw materials. An electrochemiluminescence-based bio bar code method.

    Science.gov (United States)

    Zhu, Debin; Tang, Yabing; Xing, Da; Chen, Wei R

    2008-05-15

    A bio bar code assay based on oligonucleotide-modified gold nanoparticles (Au-NPs) provides a PCR-free method for quantitative detection of nucleic acid targets. However, the current bio bar code assay requires lengthy experimental procedures including the preparation and release of bar code DNA probes from the target-nanoparticle complex and immobilization and hybridization of the probes for quantification. Herein, we report a novel PCR-free electrochemiluminescence (ECL)-based bio bar code assay for the quantitative detection of genetically modified organism (GMO) from raw materials. It consists of tris-(2,2'-bipyridyl) ruthenium (TBR)-labeled bar code DNA, nucleic acid hybridization using Au-NPs and biotin-labeled probes, and selective capture of the hybridization complex by streptavidin-coated paramagnetic beads. The detection of target DNA is realized by direct measurement of ECL emission of TBR. It can quantitatively detect target nucleic acids with high speed and sensitivity. This method can be used to quantitatively detect GMO fragments from real GMO products.

  1. Photoactivatable Mussel-Based Underwater Adhesive Proteins by an Expanded Genetic Code.

    Science.gov (United States)

    Hauf, Matthias; Richter, Florian; Schneider, Tobias; Faidt, Thomas; Martins, Berta M; Baumann, Tobias; Durkin, Patrick; Dobbek, Holger; Jacobs, Karin; Möglich, Andreas; Budisa, Nediljko

    2017-09-19

    Marine mussels exhibit potent underwater adhesion abilities under hostile conditions by employing 3,4-dihydroxyphenylalanine (DOPA)-rich mussel adhesive proteins (MAPs). However, their recombinant production is a major biotechnological challenge. Herein, a novel strategy based on genetic code expansion has been developed by engineering efficient aminoacyl-transfer RNA synthetases (aaRSs) for the photocaged noncanonical amino acid ortho-nitrobenzyl DOPA (ONB-DOPA). The engineered ONB-DOPARS enables in vivo production of MAP type 5 site-specifically equipped with multiple instances of ONB-DOPA to yield photocaged, spatiotemporally controlled underwater adhesives. Upon exposure to UV light, these proteins feature elevated wet adhesion properties. This concept offers new perspectives for the production of recombinant bioadhesives. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Novel base-pairing interactions at the tRNA wobble position crucial for accurate reading of the genetic code

    Science.gov (United States)

    Rozov, Alexey; Demeshkina, Natalia; Khusainov, Iskander; Westhof, Eric; Yusupov, Marat; Yusupova, Gulnara

    2016-01-01

    Posttranscriptional modifications at the wobble position of transfer RNAs play a substantial role in deciphering the degenerate genetic code on the ribosome. The number and variety of modifications suggest different mechanisms of action during messenger RNA decoding, of which only a few were described so far. Here, on the basis of several 70S ribosome complex X-ray structures, we demonstrate how Escherichia coli tRNALysUUU with hypermodified 5-methylaminomethyl-2-thiouridine (mnm5s2U) at the wobble position discriminates between cognate codons AAA and AAG, and near-cognate stop codon UAA or isoleucine codon AUA, with which it forms pyrimidine-pyrimidine mismatches. We show that mnm5s2U forms an unusual pair with guanosine at the wobble position that expands general knowledge on the degeneracy of the genetic code and specifies a powerful role of tRNA modifications in translation. Our models consolidate the translational fidelity mechanism proposed previously where the steric complementarity and shape acceptance dominate the decoding mechanism.

  3. Environmental change, phenotypic plasticity, and genetic compensation.

    Science.gov (United States)

    Grether, Gregory F

    2005-10-01

    When a species encounters novel environmental conditions, some phenotypic characters may develop differently than in the ancestral environment. Most environmental perturbations of development are likely to reduce fitness, and thus selection would usually be expected to favor genetic changes that restore the ancestral phenotype. I propose the term "genetic compensation" to refer to this form of adaptive evolution. Genetic compensation is a subset of genetic accommodation and the reverse of genetic assimilation. When genetic compensation has occurred along a spatial environmental gradient, the mean trait values of populations in different environments may be more similar in the field than when representatives of the same populations are raised in a common environment (i.e., countergradient variation). If compensation is complete, genetic divergence between populations may be cryptic, that is, not detectable in the field. Here I apply the concept of genetic compensation to three examples involving carotenoid-based sexual coloration and then use these and other examples to discuss the concept in a broader context. I show that genetic compensation may lead to a cryptic form of reproductive isolation between populations evolving in different environments, may explain some puzzling cases in which heritable traits exposed to strong directional selection fail to show the expected evolutionary response, and may complicate efforts to monitor populations for signs of environmental deterioration.

  4. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    Energy Technology Data Exchange (ETDEWEB)

    Binh, Do Quang [University of Technical Education Ho Chi Minh City (Viet Nam); Huy, Ngo Quang [University of Industry Ho Chi Minh City (Viet Nam); Hai, Nguyen Hoang [Centre for Research and Development of Radiation Technology, Ho Chi Minh City (Viet Nam)

    2014-12-15

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  5. A binary mixed integer coded genetic algorithm for multi-objective optimization of nuclear research reactor fuel reloading

    International Nuclear Information System (INIS)

    Binh, Do Quang; Huy, Ngo Quang; Hai, Nguyen Hoang

    2014-01-01

    This paper presents a new approach based on a binary mixed integer coded genetic algorithm in conjunction with the weighted sum method for multi-objective optimization of fuel loading patterns for nuclear research reactors. The proposed genetic algorithm works with two types of chromosomes: binary and integer chromosomes, and consists of two types of genetic operators: one working on binary chromosomes and the other working on integer chromosomes. The algorithm automatically searches for the most suitable weighting factors of the weighting function and the optimal fuel loading patterns in the search process. Illustrative calculations are implemented for a research reactor type TRIGA MARK II loaded with the Russian VVR-M2 fuels. Results show that the proposed genetic algorithm can successfully search for both the best weighting factors and a set of approximate optimal loading patterns that maximize the effective multiplication factor and minimize the power peaking factor while satisfying operational and safety constraints for the research reactor.

  6. An enhancement of selection and crossover operations in real-coded genetic algorithm for large-dimensionality optimization

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Noh Sung; Lee, Jongsoo [Yonsei University, Seoul (Korea, Republic of)

    2016-01-15

    The present study aims to implement a new selection method and a novel crossover operation in a real-coded genetic algorithm. The proposed selection method facilitates the establishment of a successively evolved population by combining several subpopulations: an elitist subpopulation, an off-spring subpopulation and a mutated subpopulation. A probabilistic crossover is performed based on the measure of probabilistic distance between the individuals. The concept of ‘allowance’ is suggested to describe the level of variance in the crossover operation. A number of nonlinear/non-convex functions and engineering optimization problems are explored to verify the capacities of the proposed strategies. The results are compared with those obtained from other genetic and nature-inspired algorithms.

  7. Metformin-Induced Changes of the Coding Transcriptome and Non-Coding RNAs in the Livers of Non-Alcoholic Fatty Liver Disease Mice.

    Science.gov (United States)

    Guo, Jun; Zhou, Yuan; Cheng, Yafen; Fang, Weiwei; Hu, Gang; Wei, Jie; Lin, Yajun; Man, Yong; Guo, Lixin; Sun, Mingxiao; Cui, Qinghua; Li, Jian

    2018-01-01

    Recent studies have suggested that changes in non-coding mRNA play a key role in the progression of non-alcoholic fatty liver disease (NAFLD). Metformin is now recommended and effective for the treatment of NAFLD. We hope the current analyses of the non-coding mRNA transcriptome will provide a better presentation of the potential roles of mRNAs and long non-coding RNAs (lncRNAs) that underlie NAFLD and metformin intervention. The present study mainly analysed changes in the coding transcriptome and non-coding RNAs after the application of a five-week metformin intervention. Liver samples from three groups of mice were harvested for transcriptome profiling, which covered mRNA, lncRNA, microRNA (miRNA) and circular RNA (circRNA), using a microarray technique. A systematic alleviation of high-fat diet (HFD)-induced transcriptome alterations by metformin was observed. The metformin treatment largely reversed the correlations with diabetes-related pathways. Our analysis also suggested interaction networks between differentially expressed lncRNAs and known hepatic disease genes and interactions between circRNA and their disease-related miRNA partners. Eight HFD-responsive lncRNAs and three metformin-responsive lncRNAs were noted due to their widespread associations with disease genes. Moreover, seven miRNAs that interacted with multiple differentially expressed circRNAs were highlighted because they were likely to be associated with metabolic or liver diseases. The present study identified novel changes in the coding transcriptome and non-coding RNAs in the livers of NAFLD mice after metformin treatment that might shed light on the underlying mechanism by which metformin impedes the progression of NAFLD. © 2018 The Author(s). Published by S. Karger AG, Basel.

  8. An Order Coding Genetic Algorithm to Optimize Fuel Reloads in a Nuclear Boiling Water Reactor

    International Nuclear Information System (INIS)

    Ortiz, Juan Jose; Requena, Ignacio

    2004-01-01

    A genetic algorithm is used to optimize the nuclear fuel reload for a boiling water reactor, and an order coding is proposed for the chromosomes and appropriate crossover and mutation operators. The fitness function was designed so that the genetic algorithm creates fuel reloads that, on one hand, satisfy the constrictions for the radial power peaking factor, the minimum critical power ratio, and the maximum linear heat generation rate while optimizing the effective multiplication factor at the beginning and end of the cycle. To find the values of these variables, a neural network trained with the behavior of a reactor simulator was used to predict them. The computation time is therefore greatly decreased in the search process. We validated this method with data from five cycles of the Laguna Verde Nuclear Power Plant in Mexico

  9. Monitoring adaptive genetic responses to environmental change

    DEFF Research Database (Denmark)

    Hansen, M.M.; Olivieri, I.; Waller, D.M.

    2012-01-01

    Widespread environmental changes including climate change, selective harvesting and landscape alterations now greatly affect selection regimes for most organisms. How animals and plants can adapt to these altered environments via contemporary evolution is thus of strong interest. We discuss how...... for selection and establishing clear links between genetic and environmental change. We then review a few exemplary studies that explore adaptive responses to climate change in Drosophila, selective responses to hunting and fishing, and contemporary evolution in Daphnia using resurrected resting eggs. We...

  10. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea.

    Science.gov (United States)

    Bajaj, Deepak; Saxena, Maneesha S; Kujur, Alice; Das, Shouvik; Badoni, Saurabh; Tripathi, Shailesh; Upadhyaya, Hari D; Gowda, C L L; Sharma, Shivali; Singh, Sube; Tyagi, Akhilesh K; Parida, Swarup K

    2015-03-01

    Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  11. CHANGES IN THE FISCAL CODE AND THEIR INFLUENCE ON THE ACTIVITY OF ROMANIAN COMPANIES

    Directory of Open Access Journals (Sweden)

    Gheorghe MOROŞAN

    2016-09-01

    Full Text Available Businesses, all over the world, want a stabile legislation. In the economic domain, all the companies need a clear fiscal code on a long period of time. Unfortunately, in the last ten years, the Romanian Fiscal Code has been amended several times. The old fiscal code is in force since 2003 and suffered throughout this period no less than 150 amendments. The unanimous opinion of the experts was that there was a clear need of a new code. The paper analyzes the changes brought by the Fiscal Code starting with 2016 and its implications on the activity of business operators and on the state budget for the next period of time. It seems that some of the changes will not have the desired effect on the state budget and, generally, on the economy.

  12. Design of a randomized trial of diabetes genetic risk testing to motivate behavior change: the Genetic Counseling/lifestyle Change (GC/LC) Study for Diabetes Prevention.

    Science.gov (United States)

    Grant, Richard W; Meigs, James B; Florez, Jose C; Park, Elyse R; Green, Robert C; Waxler, Jessica L; Delahanty, Linda M; O'Brien, Kelsey E

    2011-10-01

    The efficacy of diabetes genetic risk testing to motivate behavior change for diabetes prevention is currently unknown. This paper presents key issues in the design and implementation of one of the first randomized trials (The Genetic Counseling/Lifestyle Change (GC/LC) Study for Diabetes Prevention) to test whether knowledge of diabetes genetic risk can motivate patients to adopt healthier behaviors. Because individuals may react differently to receiving 'higher' vs 'lower' genetic risk results, we designed a 3-arm parallel group study to separately test the hypotheses that: (1) patients receiving 'higher' diabetes genetic risk results will increase healthy behaviors compared to untested controls, and (2) patients receiving 'lower' diabetes genetic risk results will decrease healthy behaviors compared to untested controls. In this paper we describe several challenges to implementing this study, including: (1) the application of a novel diabetes risk score derived from genetic epidemiology studies to a clinical population, (2) the use of the principle of Mendelian randomization to efficiently exclude 'average' diabetes genetic risk patients from the intervention, and (3) the development of a diabetes genetic risk counseling intervention that maintained the ethical need to motivate behavior change in both 'higher' and 'lower' diabetes genetic risk result recipients. Diabetes genetic risk scores were developed by aggregating the results of 36 diabetes-associated single nucleotide polymorphisms. Relative risk for type 2 diabetes was calculated using Framingham Offspring Study outcomes, grouped by quartiles into 'higher', 'average' (middle two quartiles) and 'lower' genetic risk. From these relative risks, revised absolute risks were estimated using the overall absolute risk for the study group. For study efficiency, we excluded all patients receiving 'average' diabetes risk results from the subsequent intervention. This post-randomization allocation strategy was

  13. [Assisted reproduction and artificial insemination and genetic manipulation in the Criminal Code of the Federal District, Mexico].

    Science.gov (United States)

    Brena Sesma, Ingrid

    2004-01-01

    The article that one presents has for purpose outline and comment on the recent modifications to the Penal Code for the Federal District of México which establish, for the first time, crimes related to the artificial procreation and to the genetic manipulation. Also one refers to the interaction of the new legal texts with the sanitary legislation of the country. Since it will be stated in some cases they present confrontations between the penal and the sanitary reglamentation and some points related to the legality or unlawfulness of a conduct that stayed without the enough development. These lacks will complicate the application of the new rules of the Penal Code of the Federal District.

  14. Proposal to change General Consideration 5 and Principle 2 of the International Code of Nomenclature of Prokaryotes.

    Science.gov (United States)

    Oren, Aharon; Garrity, George M

    2014-01-01

    A proposal is submitted to the ICSP to change the wording of General Consideration 5 of the International Code of Nomenclature of Prokaryotes (ICNP), deleting the words Schizophycetes, Cyanophyceae and Cyanobacteria from the groups of organisms whose nomenclature is covered by the Code. It is further proposed to change the terms Zoological Code and International Code of Botanical Nomenclature in General Consideration 5 and in Principle 2 to International Code of Zoological Nomenclature and International Code of Nomenclature for algae, fungi and plants, respectively.

  15. A nuclear reload optimization approach using a real coded genetic algorithm with random keys

    International Nuclear Information System (INIS)

    Lima, Alan M.M. de; Schirru, Roberto; Medeiros, Jose A.C.C.

    2009-01-01

    The fuel reload of a Pressurized Water Reactor is made whenever the burn up of the fuel assemblies in the nucleus of the reactor reaches a certain value such that it is not more possible to maintain a critical reactor producing energy at nominal power. The problem of fuel reload optimization consists on determining the positioning of the fuel assemblies within the nucleus of the reactor in an optimized way to minimize the cost benefit relationship of fuel assemblies cost per maximum burn up, and also satisfying symmetry and safety restrictions. The fuel reload optimization problem difficulty grows exponentially with the number of fuel assemblies in the nucleus of the reactor. During decades the fuel reload optimization problem was solved manually by experts that used their knowledge and experience to build configurations of the reactor nucleus, and testing them to verify if safety restrictions of the plant are satisfied. To reduce this burden, several optimization techniques have been used, included the binary code genetic algorithm. In this work we show the use of a real valued coded approach of the genetic algorithm, with different recombination methods, together with a transformation mechanism called random keys, to transform the real values of the genes of each chromosome in a combination of discrete fuel assemblies for evaluation of the reload optimization. Four different recombination methods were tested: discrete recombination, intermediate recombination, linear recombination and extended linear recombination. For each of the 4 recombination methods 10 different tests using different seeds for the random number generator were conducted 10 generating, totaling 40 tests. The results of the application of the genetic algorithm are shown with formulation of real numbers for the problem of the nuclear reload of the plant Angra 1 type PWR. Since the best results in the literature for this problem were found by the parallel PSO we will it use for comparison

  16. Administrative database code accuracy did not vary notably with changes in disease prevalence.

    Science.gov (United States)

    van Walraven, Carl; English, Shane; Austin, Peter C

    2016-11-01

    Previous mathematical analyses of diagnostic tests based on the categorization of a continuous measure have found that test sensitivity and specificity varies significantly by disease prevalence. This study determined if the accuracy of diagnostic codes varied by disease prevalence. We used data from two previous studies in which the true status of renal disease and primary subarachnoid hemorrhage, respectively, had been determined. In multiple stratified random samples from the two previous studies having varying disease prevalence, we measured the accuracy of diagnostic codes for each disease using sensitivity, specificity, and positive and negative predictive value. Diagnostic code sensitivity and specificity did not change notably within clinically sensible disease prevalence. In contrast, positive and negative predictive values changed significantly with disease prevalence. Disease prevalence had no important influence on the sensitivity and specificity of diagnostic codes in administrative databases. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Discovery of Proteomic Code with mRNA Assisted Protein Folding

    Directory of Open Access Journals (Sweden)

    Jan C. Biro

    2008-12-01

    Full Text Available The 3x redundancy of the Genetic Code is usually explained as a necessity to increase the mutation-resistance of the genetic information. However recent bioinformatical observations indicate that the redundant Genetic Code contains more biological information than previously known and which is additional to the 64/20 definition of amino acids. It might define the physico-chemical and structural properties of amino acids, the codon boundaries, the amino acid co-locations (interactions in the coded proteins and the free folding energy of mRNAs. This additional information, which seems to be necessary to determine the 3D structure of coding nucleic acids as well as the coded proteins, is known as the Proteomic Code and mRNA Assisted Protein Folding.

  18. Genetic plant improvement and climate changes

    Directory of Open Access Journals (Sweden)

    Magno Antonio Patto Ramalho

    2009-01-01

    Full Text Available The consequences of climate change for the agribusiness in Brazil have been widely debated. The issue isdiscussed in this publication to show the expected problems, particularly those associated with increases in temperature andwater stress. It is emphasized that the genetic improvement of plants, based on the experience in the past, has much tocontribute to mitigate these problems. To invest in the breeding of new cultivars, selected under stress conditions, is certainlythe best possible strategy for agriculture to cope with changes caused by climate alterations.

  19. Amino acid codes in mitochondria as possible clues to primitive codes

    Science.gov (United States)

    Jukes, T. H.

    1981-01-01

    Differences between mitochondrial codes and the universal code indicate that an evolutionary simplification has taken place, rather than a return to a more primitive code. However, these differences make it evident that the universal code is not the only code possible, and therefore earlier codes may have differed markedly from the previous code. The present universal code is probably a 'frozen accident.' The change in CUN codons from leucine to threonine (Neurospora vs. yeast mitochondria) indicates that neutral or near-neutral changes occurred in the corresponding proteins when this code change took place, caused presumably by a mutation in a tRNA gene.

  20. Genetic variants in long non-coding RNA MIAT contribute to risk of paranoid schizophrenia in a Chinese Han population.

    Science.gov (United States)

    Rao, Shu-Quan; Hu, Hui-Ling; Ye, Ning; Shen, Yan; Xu, Qi

    2015-08-01

    The heritability of schizophrenia has been reported to be as high as ~80%, but the contribution of genetic variants identified to this heritability remains to be estimated. Long non-coding RNAs (LncRNAs) are involved in multiple processes critical to normal cellular function and dysfunction of lncRNA MIAT may contribute to the pathophysiology of schizophrenia. However, the genetic evidence of lncRNAs involved in schizophrenia has not been documented. Here, we conducted a two-stage association analysis on 8 tag SNPs that cover the whole MIAT locus in two independent Han Chinese schizophrenia case-control cohorts (discovery sample from Shanxi Province: 1093 patients with paranoid schizophrenia and 1180 control subjects; replication cohort from Jilin Province: 1255 cases and 1209 healthy controls). In discovery stage, significant genetic association with paranoid schizophrenia was observed for rs1894720 (χ(2)=74.20, P=7.1E-18), of which minor allele (T) had an OR of 1.70 (95% CI=1.50-1.91). This association was confirmed in the replication cohort (χ(2)=22.66, P=1.9E-06, OR=1.32, 95%CI 1.18-1.49). Besides, a weak genotypic association was detected for rs4274 (χ(2)=4.96, df=2, P=0.03); the AA carriers showed increased disease risk (OR=1.30, 95%CI=1.03-1.64). No significant association was found between any haplotype and paranoid schizophrenia. The present studies showed that lncRNA MIAT was a novel susceptibility gene for paranoid schizophrenia in the Chinese Han population. Considering that most lncRNAs locate in non-coding regions, our result may explain why most susceptibility loci for schizophrenia identified by genome wide association studies were out of coding regions. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Guide to the Changes between the 2009 and 2012 International Energy Conservation Code

    Energy Technology Data Exchange (ETDEWEB)

    Mapes, Terry S.; Conover, David R.

    2012-05-31

    The International Code Council (ICC) published the 2012 International Energy Conservation Code{reg_sign} (IECC) in early 2012. The 2012 IECC is based on revisions, additions, and deletions to the 2009 IECC that were considered during the ICC code development process conducted in 2011. Solid vertical lines, arrows, or asterisks printed in the 2012 IECC indicate where revisions, deletions, or relocations of text respectively were made to 2009 IECC. Although these marginal markings indicate where changes have been made to the code, they do not provide any further guidance, leaving the reader to consult and compare the 2009 and 2012 IECC for more detail.

  2. Theory of epigenetic coding.

    Science.gov (United States)

    Elder, D

    1984-06-07

    The logic of genetic control of development may be based on a binary epigenetic code. This paper revises the author's previous scheme dealing with the numerology of annelid metamerism in these terms. Certain features of the code had been deduced to be combinatorial, others not. This paradoxical contrast is resolved here by the interpretation that these features relate to different operations of the code; the combinatiorial to coding identity of units, the non-combinatorial to coding production of units. Consideration of a second paradox in the theory of epigenetic coding leads to a new solution which further provides a basis for epimorphic regeneration, and may in particular throw light on the "regeneration-duplication" phenomenon. A possible test of the model is also put forward.

  3. Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change

    Science.gov (United States)

    Urban, Mark C; Richardson, Jonathan L; Freidenfelds, Nicole A

    2014-01-01

    Phenotypic plasticity and genetic adaptation are predicted to mitigate some of the negative biotic consequences of climate change. Here, we evaluate evidence for plastic and evolutionary responses to climate variation in amphibians and reptiles via a literature review and meta-analysis. We included studies that either document phenotypic changes through time or space. Plasticity had a clear and ubiquitous role in promoting phenotypic changes in response to climate variation. For adaptive evolution, we found no direct evidence for evolution of amphibians or reptiles in response to climate change over time. However, we found many studies that documented adaptive responses to climate along spatial gradients. Plasticity provided a mixture of adaptive and maladaptive responses to climate change, highlighting that plasticity frequently, but not always, could ameliorate climate change. Based on our review, we advocate for more experiments that survey genetic changes through time in response to climate change. Overall, plastic and genetic variation in amphibians and reptiles could buffer some of the formidable threats from climate change, but large uncertainties remain owing to limited data. PMID:24454550

  4. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes.

    Science.gov (United States)

    Brown, Jason L; Weber, Jennifer J; Alvarado-Serrano, Diego F; Hickerson, Michael J; Franks, Steven J; Carnaval, Ana C

    2016-01-01

    Climate change is a widely accepted threat to biodiversity. Species distribution models (SDMs) are used to forecast whether and how species distributions may track these changes. Yet, SDMs generally fail to account for genetic and demographic processes, limiting population-level inferences. We still do not understand how predicted environmental shifts will impact the spatial distribution of genetic diversity within taxa. We propose a novel method that predicts spatially explicit genetic and demographic landscapes of populations under future climatic conditions. We use carefully parameterized SDMs as estimates of the spatial distribution of suitable habitats and landscape dispersal permeability under present-day, past, and future conditions. We use empirical genetic data and approximate Bayesian computation to estimate unknown demographic parameters. Finally, we employ these parameters to simulate realistic and complex models of responses to future environmental shifts. We contrast parameterized models under current and future landscapes to quantify the expected magnitude of change. We implement this framework on neutral genetic data available from Penstemon deustus. Our results predict that future climate change will result in geographically widespread declines in genetic diversity in this species. The extent of reduction will heavily depend on the continuity of population networks and deme sizes. To our knowledge, this is the first study to provide spatially explicit predictions of within-species genetic diversity using climatic, demographic, and genetic data. Our approach accounts for climatic, geographic, and biological complexity. This framework is promising for understanding evolutionary consequences of climate change, and guiding conservation planning. © 2016 Botanical Society of America.

  5. Bistability in self-activating genes regulated by non-coding RNAs

    International Nuclear Information System (INIS)

    Miro-Bueno, Jesus

    2015-01-01

    Non-coding RNA molecules are able to regulate gene expression and play an essential role in cells. On the other hand, bistability is an important behaviour of genetic networks. Here, we propose and study an ODE model in order to show how non-coding RNA can produce bistability in a simple way. The model comprises a single gene with positive feedback that is repressed by non-coding RNA molecules. We show how the values of all the reaction rates involved in the model are able to control the transitions between the high and low states. This new model can be interesting to clarify the role of non-coding RNA molecules in genetic networks. As well, these results can be interesting in synthetic biology for developing new genetic memories and biomolecular devices based on non-coding RNAs

  6. Climatic changes can drive the loss of genetic diversity in a Neotropical savanna tree species.

    Science.gov (United States)

    Lima, Jacqueline S; Ballesteros-Mejia, Liliana; Lima-Ribeiro, Matheus S; Collevatti, Rosane G

    2017-11-01

    The high rates of future climatic changes, compared with the rates reported for past changes, may hamper species adaptation to new climates or the tracking of suitable conditions, resulting in significant loss of genetic diversity. Trees are dominant species in many biomes and because they are long-lived, they may not be able to cope with ongoing climatic changes. Here, we coupled ecological niche modelling (ENM) and genetic simulations to forecast the effects of climatic changes on the genetic diversity and the structure of genetic clusters. Genetic simulations were conditioned to climatic variables and restricted to plant dispersal and establishment. We used a Neotropical savanna tree as species model that shows a preference for hot and drier climates, but with low temperature seasonality. The ENM predicts a decreasing range size along the more severe future climatic scenario. Additionally, genetic diversity and allelic richness also decrease with range retraction and climatic genetic clusters are lost for both future scenarios, which will lead genetic variability to homogenize throughout the landscape. Besides, climatic genetic clusters will spatially reconfigure on the landscape following displacements of climatic conditions. Our findings indicate that climate change effects will challenge population adaptation to new environmental conditions because of the displacement of genetic ancestry clusters from their optimal conditions. © 2017 John Wiley & Sons Ltd.

  7. Self-complementary circular codes in coding theory.

    Science.gov (United States)

    Fimmel, Elena; Michel, Christian J; Starman, Martin; Strüngmann, Lutz

    2018-04-01

    Self-complementary circular codes are involved in pairing genetic processes. A maximal [Formula: see text] self-complementary circular code X of trinucleotides was identified in genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel in Life 7(20):1-16 2017, J Theor Biol 380:156-177, 2015; Arquès and Michel in J Theor Biol 182:45-58 1996). In this paper, self-complementary circular codes are investigated using the graph theory approach recently formulated in Fimmel et al. (Philos Trans R Soc A 374:20150058, 2016). A directed graph [Formula: see text] associated with any code X mirrors the properties of the code. In the present paper, we demonstrate a necessary condition for the self-complementarity of an arbitrary code X in terms of the graph theory. The same condition has been proven to be sufficient for codes which are circular and of large size [Formula: see text] trinucleotides, in particular for maximal circular codes ([Formula: see text] trinucleotides). For codes of small-size [Formula: see text] trinucleotides, some very rare counterexamples have been constructed. Furthermore, the length and the structure of the longest paths in the graphs associated with the self-complementary circular codes are investigated. It has been proven that the longest paths in such graphs determine the reading frame for the self-complementary circular codes. By applying this result, the reading frame in any arbitrary sequence of trinucleotides is retrieved after at most 15 nucleotides, i.e., 5 consecutive trinucleotides, from the circular code X identified in genes. Thus, an X motif of a length of at least 15 nucleotides in an arbitrary sequence of trinucleotides (not necessarily all of them belonging to X) uniquely defines the reading (correct) frame, an important criterion for analyzing the X motifs in genes in the future.

  8. Genetic alterations and epigenetic changes in hepatocarcinogenesis

    Directory of Open Access Journals (Sweden)

    Luz Stella Hoyos Giraldo

    2007-02-01

    Full Text Available

    Hepatocarcinogenesis as hepatocellular carcinoma (HCC is associated with background of chronic liver disease usually in association with cirrhosis, marked hepatic fibrosis, hepatitis B virus (HBV and/or hepatitis virus (HCV infection, chronic inflammation, Aflatoxin B1(AFB1 exposure, chronic alcoholism, metabolic disorder of the liver and necroinflamatory liver disease. Hepatocarcinogenesis involve two mechanisms, genetic alterations (with changes in the cell's DNA sequence and epigenetic changes (without changes in the cell's DNA sequence, but changes in the pattern of gene expression that can persist through one or more generations (somatic sense. Hepatocarcinogenesis is associated with activation of oncogenes and decreased expression of tumor suppressor genes (TSG; include those involved in cell cycle control, apoptosis, DNA repair, immortalization and angiogenesis. AFB1 is metabolized in the liver into a potent carcinogen, aflatoxin 8, 9-epoxide, which is detoxified by epoxide hydrolase (EPHX and glutathione S-transferase M1 (GSTM1.

    A failure of detoxification processes can allow to mutagenic metabolite to bind to DNA and inducing P53 mutation. Genetic polymorphism of EPHX and GSTM1 can make individuals more susceptible to AFB1. Epigenetic inactivation of GSTP1 by promoter hypermethylation plays a role in the development of HCC because, it leads that electrophilic metabolite increase DNA damage and mutations. HBV DNA integration into the host chromosomal DNA of hepatocytes has been detected in HBV-related HCC.

    DNA tumor viruses cause cancer mainly by interfering with cell cycle controls, and activating the cell's replication machinery by blocking the action of key TSG. HBx protein is a

  9. All about Genetics (For Parents)

    Science.gov (United States)

    ... Videos for Educators Search English Español All About Genetics KidsHealth / For Parents / All About Genetics What's in ... the way they pick up special laboratory dyes. Genetic Problems Errors in the genetic code or "gene ...

  10. Advanced Design of Dumbbell-shaped Genetic Minimal Vectors Improves Non-coding and Coding RNA Expression.

    Science.gov (United States)

    Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker

    2016-09-01

    Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.

  11. Genic non-coding microsatellites in the rice genome: characterization, marker design and use in assessing genetic and evolutionary relationships among domesticated groups

    Directory of Open Access Journals (Sweden)

    Singh Nagendra

    2009-03-01

    Full Text Available Abstract Background Completely sequenced plant genomes provide scope for designing a large number of microsatellite markers, which are useful in various aspects of crop breeding and genetic analysis. With the objective of developing genic but non-coding microsatellite (GNMS markers for the rice (Oryza sativa L. genome, we characterized the frequency and relative distribution of microsatellite repeat-motifs in 18,935 predicted protein coding genes including 14,308 putative promoter sequences. Results We identified 19,555 perfect GNMS repeats with densities ranging from 306.7/Mb in chromosome 1 to 450/Mb in chromosome 12 with an average of 357.5 GNMS per Mb. The average microsatellite density was maximum in the 5' untranslated regions (UTRs followed by those in introns, promoters, 3'UTRs and minimum in the coding sequences (CDS. Primers were designed for 17,966 (92% GNMS repeats, including 4,288 (94% hypervariable class I types, which were bin-mapped on the rice genome. The GNMS markers were most polymorphic in the intronic region (73.3% followed by markers in the promoter region (53.3% and least in the CDS (26.6%. The robust polymerase chain reaction (PCR amplification efficiency and high polymorphic potential of GNMS markers over genic coding and random genomic microsatellite markers suggest their immediate use in efficient genotyping applications in rice. A set of these markers could assess genetic diversity and establish phylogenetic relationships among domesticated rice cultivar groups. We also demonstrated the usefulness of orthologous and paralogous conserved non-coding microsatellite (CNMS markers, identified in the putative rice promoter sequences, for comparative physical mapping and understanding of evolutionary and gene regulatory complexities among rice and other members of the grass family. The divergence between long-grained aromatics and subspecies japonica was estimated to be more recent (0.004 Mya compared to short

  12. Modification in the CITATION computer code: change of microscopic cross sections by zone

    International Nuclear Information System (INIS)

    Yamaguchi, M.; Kosaka, N.

    1983-01-01

    Some modifications done in the CITATION computer code are presented, aiming to calculate the accumulated burnup for each reactor zone in each step of burnup and allow changing the microscopic cross sections for each zone in accordance to the burnup accumulated after each step of burnup. Some input data were put in the computer code. The alterations were tested and the results were compared with and without modifications. (E.G.) [pt

  13. Description of comprehensive pump test change to ASME OM code, subsection ISTB

    International Nuclear Information System (INIS)

    Hartley, R.S.

    1994-01-01

    The American Society of Mechanical Engineers (ASME) Operations and Maintenance (OM) Main Committee and Board on Nuclear Codes and Standards (BNCS) recently approved changes to ASME OM Code-1990, Subsection ISTB, Inservice Testing of Pumps in Light-Water Reactor Power Plants. The changes will be included in the 1994 addenda to ISTB. The changes, designated as the comprehensive pump test, incorporate a new, improved philosophy for testing safety-related pumps in nuclear power plants. An important philosophical difference between the open-quotes old codeclose quotes inservice testing (IST) requirements and these changes is that the changes concentrate on less frequent, more meaningful testing while minimizing damaging and uninformative low-flow testing. The comprehensive pump test change establishes a more involved biannual test for all pumps and significantly reduces the rigor of the quarterly test for standby pumps. The increased rigor and cost of the biannual comprehensive tests are offset by the reduced cost of testing and potential damage to the standby pumps, which comprise a large portion of the safety-related pumps at most plants. This paper provides background on the pump testing requirements, discusses potential industry benefits of the change, describes the development of the comprehensive pump test, and gives examples and reasons for many of the specific changes. This paper also describes additional changes to ISTB that will be included in the 1994 addenda that are associated with, but not part of, the comprehensive pump test

  14. Allele coding in genomic evaluation

    Directory of Open Access Journals (Sweden)

    Christensen Ole F

    2011-06-01

    Full Text Available Abstract Background Genomic data are used in animal breeding to assist genetic evaluation. Several models to estimate genomic breeding values have been studied. In general, two approaches have been used. One approach estimates the marker effects first and then, genomic breeding values are obtained by summing marker effects. In the second approach, genomic breeding values are estimated directly using an equivalent model with a genomic relationship matrix. Allele coding is the method chosen to assign values to the regression coefficients in the statistical model. A common allele coding is zero for the homozygous genotype of the first allele, one for the heterozygote, and two for the homozygous genotype for the other allele. Another common allele coding changes these regression coefficients by subtracting a value from each marker such that the mean of regression coefficients is zero within each marker. We call this centered allele coding. This study considered effects of different allele coding methods on inference. Both marker-based and equivalent models were considered, and restricted maximum likelihood and Bayesian methods were used in inference. Results Theoretical derivations showed that parameter estimates and estimated marker effects in marker-based models are the same irrespective of the allele coding, provided that the model has a fixed general mean. For the equivalent models, the same results hold, even though different allele coding methods lead to different genomic relationship matrices. Calculated genomic breeding values are independent of allele coding when the estimate of the general mean is included into the values. Reliabilities of estimated genomic breeding values calculated using elements of the inverse of the coefficient matrix depend on the allele coding because different allele coding methods imply different models. Finally, allele coding affects the mixing of Markov chain Monte Carlo algorithms, with the centered coding being

  15. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa

    Science.gov (United States)

    Duque-Lazo, Joaquín; Durka, Walter; Hauenschild, Frank; Schnitzler, Jan; Michalak, Ingo; Ogundipe, Oluwatoyin Temitayo; Muellner-Riehl, Alexandra Nora

    2018-01-01

    Climate change is predicted to impact species’ genetic diversity and distribution. We used Senegalia senegal (L.) Britton, an economically important species distributed in the Sudano-Sahelian savannah belt of West Africa, to investigate the impact of climate change on intraspecific genetic diversity and distribution. We used ten nuclear and two plastid microsatellite markers to assess genetic variation, population structure and differentiation across thirteen sites in West Africa. We projected suitable range, and potential impact of climate change on genetic diversity using a maximum entropy approach, under four different climate change scenarios. We found higher genetic and haplotype diversity at both nuclear and plastid markers than previously reported. Genetic differentiation was strong for chloroplast and moderate for the nuclear genome. Both genomes indicated three spatially structured genetic groups. The distribution of Senegalia senegal is strongly correlated with extractable nitrogen, coarse fragments, soil organic carbon stock, precipitation of warmest and coldest quarter and mean temperature of driest quarter. We predicted 40.96 to 6.34 per cent of the current distribution to favourably support the species’ ecological requirements under future climate scenarios. Our results suggest that climate change is going to affect the population genetic structure of Senegalia senegal, and that patterns of genetic diversity are going to influence the species’ adaptive response to climate change. Our study contributes to the growing evidence predicting the loss of economically relevant plants in West Africa in the next decades due to climate change. PMID:29659603

  16. Automated JPSS VIIRS GEO code change testing by using Chain Run Scripts

    Science.gov (United States)

    Chen, W.; Wang, W.; Zhao, Q.; Das, B.; Mikles, V. J.; Sprietzer, K.; Tsidulko, M.; Zhao, Y.; Dharmawardane, V.; Wolf, W.

    2015-12-01

    The Joint Polar Satellite System (JPSS) is the next generation polar-orbiting operational environmental satellite system. The first satellite in the JPSS series of satellites, J-1, is scheduled to launch in early 2017. J1 will carry similar versions of the instruments that are on board of Suomi National Polar-Orbiting Partnership (S-NPP) satellite which was launched on October 28, 2011. The center for Satellite Applications and Research Algorithm Integration Team (STAR AIT) uses the Algorithm Development Library (ADL) to run S-NPP and pre-J1 algorithms in a development and test mode. The ADL is an offline test system developed by Raytheon to mimic the operational system while enabling a development environment for plug and play algorithms. The Perl Chain Run Scripts have been developed by STAR AIT to automate the staging and processing of multiple JPSS Sensor Data Record (SDR) and Environmental Data Record (EDR) products. JPSS J1 VIIRS Day Night Band (DNB) has anomalous non-linear response at high scan angles based on prelaunch testing. The flight project has proposed multiple mitigation options through onboard aggregation, and the Option 21 has been suggested by the VIIRS SDR team as the baseline aggregation mode. VIIRS GEOlocation (GEO) code analysis results show that J1 DNB GEO product cannot be generated correctly without the software update. The modified code will support both Op21, Op21/26 and is backward compatible with SNPP. J1 GEO code change version 0 delivery package is under development for the current change request. In this presentation, we will discuss how to use the Chain Run Script to verify the code change and Lookup Tables (LUTs) update in ADL Block2.

  17. Changes in classification of genetic variants in BRCA1 and BRCA2.

    Science.gov (United States)

    Kast, Karin; Wimberger, Pauline; Arnold, Norbert

    2018-02-01

    Classification of variants of unknown significance (VUS) in the breast cancer genes BRCA1 and BRCA2 changes with accumulating evidence for clinical relevance. In most cases down-staging towards neutral variants without clinical significance is possible. We searched the database of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC) for changes in classification of genetic variants as an update to our earlier publication on genetic variants in the Centre of Dresden. Changes between 2015 and 2017 were recorded. In the group of variants of unclassified significance (VUS, Class 3, uncertain), only changes of classification towards neutral genetic variants were noted. In BRCA1, 25% of the Class 3 variants (n = 2/8) changed to Class 2 (likely benign) and Class 1 (benign). In BRCA2, in 50% of the Class 3 variants (n = 16/32), a change to Class 2 (n = 10/16) or Class 1 (n = 6/16) was observed. No change in classification was noted in Class 4 (likely pathogenic) and Class 5 (pathogenic) genetic variants in both genes. No up-staging from Class 1, Class 2 or Class 3 to more clinical significance was observed. All variants with a change in classification in our cohort were down-staged towards no clinical significance by a panel of experts of the German Consortium for Hereditary Breast and Ovarian Cancer (GC-HBOC). Prevention in families with Class 3 variants should be based on pedigree based risks and should not be guided by the presence of a VUS.

  18. Molecular genetic alterations in egfr CA-SSR-1 microsatellite and egfr copy number changes are associated with aggressiveness in thymoma.

    Science.gov (United States)

    Conti, Salvatore; Gallo, Enzo; Sioletic, Stefano; Facciolo, Francesco; Palmieri, Giovannella; Lauriola, Libero; Evoli, Amelia; Martucci, Robert; Di Benedetto, Anna; Novelli, Flavia; Giannarelli, Diana; Deriu, Gloria; Granone, Pierluigi; Ottaviano, Margaret; Muti, Paola; Pescarmona, Edoardo; Marino, Mirella

    2016-03-01

    The key role of egfr in thymoma pathogenesis has been questioned following the failure in identifying recurrent genetic alterations of egfr coding sequences and relevant egfr amplification rate. We investigated the role of the non-coding egfr CA simple sequence repeat 1 (CA-SSR-1) in a thymoma case series. We used sequencing and egfr-fluorescence in situ hybridization (FISH) to genotype 43 thymomas; (I) for polymorphisms and somatic loss of heterozygosity of the non-coding egfr CA-SSR-1 microsatellite and (II) for egfr gene copy number changes. We found two prevalent CA-SSR-1 genotypes: a homozygous 16 CA repeat and a heterozygous genotype, bearing alleles with 16 and 20 CA repeats. The average combined allele length was correlated with tumor subtype: shorter sequences were significantly associated with the more aggressive WHO thymoma subtype group including B2/B3, B3 and B3/C histotypes. Four out of 29 informative cases analysed for somatic CA-SSR-1 loss of heterozygosity showed allelic imbalance (AI), 3/4 with loss of the longer allele. By egfr-FISH analysis, 9 out of 33 cases were FISH positive. Moreover, the two integrated techniques demonstrated that 3 out of 4 CA-SSR-1-AI positive cases with short allele relative prevalence showed significantly low or high chromosome 7 "polysomy"/increased gene copy number by egfr-FISH. Our molecular and genetic and follow up data indicated that CA-SSR-1-allelic imbalance with short allele relative prevalence significantly correlated with EGFR 3+ immunohistochemical score, increased egfr Gene Copy Number, advanced stage and with relapsing/metastatic behaviour in thymomas.

  19. Changing priorities of codes and standards -- quality engineering: Experiences in plant construction, maintenance, and operation

    International Nuclear Information System (INIS)

    Antony, D.D.; Suleski, P.F.; Meier, J.C.

    1994-01-01

    Application of the ASME Code across various fossil and nuclear plants necessitates a Company approach adapted by unique status of each plant. This arises from State Statutes, Federal Regulations and consideration of each plant's as-built history over a broad time frame of design, construction and operation. Additionally, the National Board Inspection Code accompanies Minnesota Statutes for plants owned by Northern States Power Company. This paper addresses some key points on NSP's use of ASME Code as a principal mechanical standard in plant design, construction and operation. A primary resource facilitating review of Code provisions is accurate status on current plant configuration. As plant design changes arise, the Code Edition/Addenda of original construction and installed upgrades or replacements are considered against available options allowed by current standards and dialog with the Jurisdictional Authority. Consistent with the overall goal of safe and reliable plant operation, there are numerous Code details and future needs to be addressed in concert with expected plant economics and planned outages for implementation. The discussion begins in the late 60's with new construction of Monticello and Prairie Island (both nuclear), through Sherburne County Units 1 through 3 (fossil), and their changes, replacements or repairs as operating plants

  20. Common Genetic Risk for Melanoma Encourages Preventive Behavior Change

    Directory of Open Access Journals (Sweden)

    Lori Diseati

    2015-02-01

    Full Text Available There is currently great interest in using genetic risk estimates for common disease in personalized healthcare. Here we assess melanoma risk-related preventive behavioral change in the context of the Coriell Personalized Medicine Collaborative (CPMC. As part of on-going reporting activities within the project, participants received a personalized risk assessment including information related to their own self-reported family history of melanoma and a genetic risk variant showing a moderate effect size (1.7, 3.0 respectively for heterozygous and homozygous individuals. Participants who opted to view their report were sent an optional outcome survey assessing risk perception and behavioral change in the months that followed. Participants that report family history risk, genetic risk, or both risk factors for melanoma were significantly more likely to increase skin cancer preventive behaviors when compared to participants with neither risk factor (ORs = 2.04, 2.79, 4.06 and p-values = 0.02, 2.86 × 10−5, 4.67 × 10−5, respectively, and we found the relationship between risk information and behavior to be partially mediated by anxiety. Genomic risk assessments appear to encourage positive behavioral change in a manner that is complementary to family history risk information and therefore may represent a useful addition to standard of care for melanoma prevention.

  1. Impact of literacy and numeracy on motivation for behavior change after diabetes genetic risk testing.

    Science.gov (United States)

    Vassy, Jason L; O'Brien, Kelsey E; Waxler, Jessica L; Park, Elyse R; Delahanty, Linda M; Florez, Jose C; Meigs, James B; Grant, Richard W

    2012-01-01

    Type 2 diabetes genetic risk testing might motivate at-risk patients to adopt diabetes prevention behaviors. However, the influence of literacy and numeracy on patient response to diabetes genetic risk is unknown. The authors investigated the association of health literacy, genetic literacy, and health numeracy with patient responses to diabetes genetic risk. and Measurements Overweight patients at high phenotypic risk for type 2 diabetes were recruited for a clinical trial of diabetes genetic risk testing. At baseline, participants predicted how their motivation for lifestyle modification to prevent diabetes might change in response to hypothetical scenarios of receiving "high" and "low" genetic risk results. Responses were analyzed according to participants' health literacy, genetic literacy, and health numeracy. Two-thirds (67%) of participants (n = 175) reported very high motivation to prevent diabetes. Despite high health literacy (92% at high school level), many participants had limited health numeracy (30%) and genetic literacy (38%). Almost all (98%) reported that high-risk genetic results would increase their motivation for lifestyle modification. In contrast, response to low-risk genetic results varied. Higher levels of health literacy (P = 0.04), genetic literacy (P = 0.02), and health numeracy (P = 0.02) were associated with an anticipated decrease in motivation for lifestyle modification in response to low-risk results. While patients reported that high-risk genetic results would motivate them to adopt healthy lifestyle changes, response to low-risk results varied by patient numeracy and literacy. However, anticipated responses may not correlate with true behavior change. If future research justifies the clinical use of genetic testing to motivate behavior change, it may be important to assess how patient characteristics modify that motivational effect.

  2. Adaptive genetic potential of coniferous forest tree species under climate change: implications for sustainable forest management

    Science.gov (United States)

    Mihai, Georgeta; Birsan, Marius-Victor; Teodosiu, Maria; Dumitrescu, Alexandru; Daia, Mihai; Mirancea, Ionel; Ivanov, Paula; Alin, Alexandru

    2017-04-01

    Mountain ecosystems are extremely vulnerable to climate change. The real potential for adaptation depends upon the existence of a wide genetic diversity in trees populations, upon the adaptive genetic variation, respectively. Genetic diversity offers the guarantee that forest species can survive, adapt and evolve under the influence of changing environmental conditions. The aim of this study is to evaluate the genetic diversity and adaptive genetic potential of two local species - Norway spruce and European silver fir - in the context of regional climate change. Based on data from a long-term provenance experiments network and climate variables spanning over more than 50 years, we have investigated the impact of climatic factors on growth performance and adaptation of tree species. Our results indicate that climatic and geographic factors significantly affect forest site productivity. Mean annual temperature and annual precipitation amount were found to be statistically significant explanatory variables. Combining the additive genetic model with the analysis of nuclear markers we obtained different images of the genetic structure of tree populations. As genetic indicators we used: gene frequencies, genetic diversity, genetic differentiation, genetic variance, plasticity. Spatial genetic analyses have allowed identifying the genetic centers holding high genetic diversity which will be valuable sources of gene able to buffer the negative effects of future climate change. Correlations between the marginal populations and in the optimal vegetation, between the level of genetic diversity and ecosystem stability, will allow the assessment of future risks arising from current genetic structure. Therefore, the strategies for sustainable forest management have to rely on the adaptive genetic variation and local adaptation of the valuable genetic resources. This work was realized within the framework of the project GENCLIM (Evaluating the adaptive potential of the main

  3. Single nucleotide polymorphisms (SNPs in coding regions of canine dopamine- and serotonin-related genes

    Directory of Open Access Journals (Sweden)

    Lingaas Frode

    2008-01-01

    Full Text Available Abstract Background Polymorphism in genes of regulating enzymes, transporters and receptors of the neurotransmitters of the central nervous system have been associated with altered behaviour, and single nucleotide polymorphisms (SNPs represent the most frequent type of genetic variation. The serotonin and dopamine signalling systems have a central influence on different behavioural phenotypes, both of invertebrates and vertebrates, and this study was undertaken in order to explore genetic variation that may be associated with variation in behaviour. Results Single nucleotide polymorphisms in canine genes related to behaviour were identified by individually sequencing eight dogs (Canis familiaris of different breeds. Eighteen genes from the dopamine and the serotonin systems were screened, revealing 34 SNPs distributed in 14 of the 18 selected genes. A total of 24,895 bp coding sequence was sequenced yielding an average frequency of one SNP per 732 bp (1/732. A total of 11 non-synonymous SNPs (nsSNPs, which may be involved in alteration of protein function, were detected. Of these 11 nsSNPs, six resulted in a substitution of amino acid residue with concomitant change in structural parameters. Conclusion We have identified a number of coding SNPs in behaviour-related genes, several of which change the amino acids of the proteins. Some of the canine SNPs exist in codons that are evolutionary conserved between five compared species, and predictions indicate that they may have a functional effect on the protein. The reported coding SNP frequency of the studied genes falls within the range of SNP frequencies reported earlier in the dog and other mammalian species. Novel SNPs are presented and the results show a significant genetic variation in expressed sequences in this group of genes. The results can contribute to an improved understanding of the genetics of behaviour.

  4. Adapting Canada's northern infrastructure to climate change: the role of codes and standards

    International Nuclear Information System (INIS)

    Steenhof, P.

    2009-01-01

    This report provides the results of a research project that investigated the use of codes and standards in terms of their potential for fostering adaptation to the future impacts of climate change on built infrastructure in Canada's north. This involved a literature review, undertaking key informant interviews, and a workshop where key stakeholders came together to dialogue on the challenges facing built infrastructure in the north as a result of climate change and the role of codes and standards to help mitigate climate change risk. In this article, attention is given to the topic area of climate data and information requirements related to climate and climate change. This was an important focal area that was identified through this broader research effort since adequate data is essential in allowing codes and standards to meet their ultimate policy objective. A number of priorities have been identified specific to data and information needs in the context of the research topic investigated: There is a need to include northerners in developing the climate and permafrost data required for codes and standards so that these reflect the unique geographical, economic, and cultural realities and variability of the north; Efforts should be undertaken to realign climate design values so that they reflect both present and future risks; There is a need for better information on the rate and extent of permafrost degradation in the north; and, There is a need to improve monitoring of the rate of climate change in the Arctic. (author)

  5. WONOEP appraisal: new genetic approaches to study epilepsy

    Science.gov (United States)

    Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.

    2014-01-01

    Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non-coding

  6. An Analysis of the Changes in Communication Techniques in the Italian Codes of Medical Deontology.

    Science.gov (United States)

    Conti, Andrea Alberto

    2017-04-28

    The code of deontology of the Italian National Federation of the Colleges of Physicians, Surgeons and Dentists (FNOMCeO) contains the principles and rules to which the professional medical practitioner must adhere. This work identifies and analyzes the medical-linguistic choices and the expressive techniques present in the different editions of the code, and evaluates their purpose and function, focusing on the first appearance and the subsequent frequency of key terms. Various aspects of the formal and expressive revisions of the eight editions of the Codes of Medical Deontology published after the Second World War (from 1947/48 to 2014) are here presented, starting from a brief comparison with the first edition of 1903. Formal characteristics, choices of medical terminology and the introduction of new concepts and communicative attitudes are here identified and evaluated. This paper, in presenting a quantitative and epistemological analysis of variations, modifications and confirmations in the different editions of the Italian code of medical deontology over the last century, enucleates and demonstrates the dynamic paradigm of changing attitudes in the medical profession. This analysis shows the evolution in medical-scientific communication as embodied in the Italian code of medical deontology. This code, in its adoption, changes and adaptations, as evidenced in its successive editions, bears witness to the expressions and attitudes pertinent to and characteristic of the deontological stance of the medical profession during the twentieth century.

  7. The lack of foundation in the mechanism on which are based the physico-chemical theories for the origin of the genetic code is counterposed to the credible and natural mechanism suggested by the coevolution theory.

    Science.gov (United States)

    Di Giulio, Massimo

    2016-06-21

    I analyze the mechanism on which are based the majority of theories that put to the center of the origin of the genetic code the physico-chemical properties of amino acids. As this mechanism is based on excessive mutational steps, I conclude that it could not have been operative or if operative it would not have allowed a full realization of predictions of these theories, because this mechanism contained, evidently, a high indeterminacy. I make that disapproving the four-column theory of the origin of the genetic code (Higgs, 2009) and reply to the criticism that was directed towards the coevolution theory of the origin of the genetic code. In this context, I suggest a new hypothesis that clarifies the mechanism by which the domains of codons of the precursor amino acids would have evolved, as predicted by the coevolution theory. This mechanism would have used particular elongation factors that would have constrained the evolution of all amino acids belonging to a given biosynthetic family to the progenitor pre-tRNA, that for first recognized, the first codons that evolved in a certain codon domain of a determined precursor amino acid. This happened because the elongation factors recognized two characteristics of the progenitor pre-tRNAs of precursor amino acids, which prevented the elongation factors from recognizing the pre-tRNAs belonging to biosynthetic families of different precursor amino acids. Finally, I analyze by means of Fisher's exact test, the distribution, within the genetic code, of the biosynthetic classes of amino acids and the ones of polarity values of amino acids. This analysis would seem to support the biosynthetic classes of amino acids over the ones of polarity values, as the main factor that led to the structuring of the genetic code, with the physico-chemical properties of amino acids playing only a subsidiary role in this evolution. As a whole, the full analysis brings to the conclusion that the coevolution theory of the origin of the

  8. The Poitiers School of Mathematical and Theoretical Biology: Besson-Gavaudan-Schützenberger's Conjectures on Genetic Code and RNA Structures.

    Science.gov (United States)

    Demongeot, J; Hazgui, H

    2016-12-01

    The French school of theoretical biology has been mainly initiated in Poitiers during the sixties by scientists like J. Besson, G. Bouligand, P. Gavaudan, M. P. Schützenberger and R. Thom, launching many new research domains on the fractal dimension, the combinatorial properties of the genetic code and related amino-acids as well as on the genetic regulation of the biological processes. Presently, the biological science knows that RNA molecules are often involved in the regulation of complex genetic networks as effectors, e.g., activators (small RNAs as transcription factors), inhibitors (micro-RNAs) or hybrids (circular RNAs). Examples of such networks will be given showing that (1) there exist RNA "relics" that have played an important role during evolution and have survived in many genomes, whose probability distribution of their sub-sequences is quantified by the Shannon entropy, and (2) the robustness of the dynamics of the networks they regulate can be characterized by the Kolmogorov-Sinaï dynamic entropy and attractor entropy.

  9. Quantum algorithms and the genetic code

    Indian Academy of Sciences (India)

    the process of replication. One generation of organisms produces the next generation, which is essentially a copy of itself. The self-similarity is maintained by the hereditary information—the genetic code—that is passed on from one generation to the next. The long chains of DNA molecules residing in the nuclei of the cells ...

  10. A symmetry model for genetic coding via a wallpaper group composed of the traditional four bases and an imaginary base E: towards category theory-like systematization of molecular/genetic biology.

    Science.gov (United States)

    Sawamura, Jitsuki; Morishita, Shigeru; Ishigooka, Jun

    2014-05-07

    Previously, we suggested prototypal models that describe some clinical states based on group postulates. Here, we demonstrate a group/category theory-like model for molecular/genetic biology as an alternative application of our previous model. Specifically, we focus on deoxyribonucleic acid (DNA) base sequences. We construct a wallpaper pattern based on a five-letter cruciform motif with letters C, A, T, G, and E. Whereas the first four letters represent the standard DNA bases, the fifth is introduced for ease in formulating group operations that reproduce insertions and deletions of DNA base sequences. A basic group Z5 = {r, u, d, l, n} of operations is defined for the wallpaper pattern, with which a sequence of points can be generated corresponding to changes of a base in a DNA sequence by following the orbit of a point of the pattern under operations in group Z5. Other manipulations of DNA sequence can be treated using a vector-like notation 'Dj' corresponding to a DNA sequence but based on the five-letter base set; also, 'Dj's are expressed graphically. Insertions and deletions of a series of letters 'E' are admitted to assist in describing DNA recombination. Likewise, a vector-like notation Rj can be constructed for sequences of ribonucleic acid (RNA). The wallpaper group B = {Z5×∞, ●} (an ∞-fold Cartesian product of Z5) acts on Dj (or Rj) yielding changes to Dj (or Rj) denoted by 'Dj◦B(j→k) = Dk' (or 'Rj◦B(j→k) = Rk'). Based on the operations of this group, two types of groups-a modulo 5 linear group and a rotational group over the Gaussian plane, acting on the five bases-are linked as parts of the wallpaper group for broader applications. As a result, changes, insertions/deletions and DNA (RNA) recombination (partial/total conversion) are described. As an exploratory study, a notation for the canonical "central dogma" via a category theory-like way is presented for future developments. Despite the large incompleteness of our

  11. Genetic correlations between body weight change and reproduction traits in Merino ewes depend on age.

    Science.gov (United States)

    Rose, G; Mulder, H A; van der Werf, J H J; Thompson, A N; van Arendonk, J A M

    2014-08-01

    Merino sheep in Australia experience periods of variable feed supply. Merino sheep can be bred to be more resilient to this variation by losing less BW when grazing poor quality pasture and gaining more BW when grazing good quality pasture. Therefore, selection on BW change might be economically attractive but correlations with other traits in the breeding objective need to be known. The genetic correlations (rg) between BW, BW change, and reproduction were estimated using records from approximately 7,350 fully pedigreed Merino ewes managed at Katanning in Western Australia. Number of lambs and total weight of lambs born and weaned were measured on approximately 5,300 2-yr-old ewes, approximately 4,900 3-yr-old ewes, and approximately 3,600 4-yr-old ewes. On a proportion of these ewes BW change was measured: approximately 1,950 2-yr-old ewes, approximately 1,500 3-yr-old ewes, and approximately 1,100 4-yr-old ewes. The BW measurements were for 3 periods. The first period was during mating period over 42 d on poor pasture. The second period was during pregnancy over 90 d for ewes that got pregnant on poor and medium quality pasture. The third period was during lactation over 130 d for ewes that weaned a lamb on good quality pasture. Genetic correlations between weight change and reproduction were estimated within age classes. Genetic correlations were tested to be significantly greater magnitude than 0 using likelihood ratio tests. Nearly all BW had significant positive genetic correlations with all reproduction traits. In 2-yr-old ewes, BW change during the mating period had a positive genetic correlation with number of lambs weaned (rg = 0.58); BW change during pregnancy had a positive genetic correlation with total weight of lambs born (rg = 0.33) and a negative genetic correlation with number of lambs weaned (rg = -0.49). All other genetic correlations were not significantly greater magnitude than 0 but estimates of genetic correlations for 3-yr-old ewes were

  12. Integration of population genetic structure and plant response to climate change: sustaining genetic resources through evaluation of projected threats

    Science.gov (United States)

    Bryce A. Richardson; Marcus V. Warwell; Mee-Sook Kim; Ned B. Klopfenstein; Geral I. McDonald

    2010-01-01

    To assess threats or predict responses to disturbances, or both, it is essential to recognize and characterize the population structures of forest species in relation to changing environments. Appropriate management of these genetic resources in the future will require (1) understanding the existing genetic diversity/variation and population structure of forest trees...

  13. Environment Changes Genetic Effects on Respiratory Conditions and Allergic Phenotypes

    DEFF Research Database (Denmark)

    Song, Yong; Schwager, Michelle J; Backer, Vibeke

    2017-01-01

    The prevalence of asthma and allergic diseases is disproportionately distributed among different populations, with an increasing trend observed in Western countries. Here we investigated how the environment affected genotype-phenotype association in a genetically homogeneous, but geographically...... separated population. We evaluated 18 single nucleotide polymorphisms (SNPs) corresponding to 8 genes (ADAM33, ALOX5, LT-α, LTC4S, NOS1, ORMDL3, TBXA2R and TNF-α), the lung function and five respiratory/allergic conditions (ever asthma, bronchitis, rhinitis, dermatitis and atopy) in two populations of Inuit......-phenotype associations relating to bronchitis and allergy susceptibility are dependent on the environment and that environmental factors/lifestyles modify genetic predisposition and change the genetic effects on diseases....

  14. The genetic variance but not the genetic covariance of life-history traits changes towards the north in a time-constrained insect.

    Science.gov (United States)

    Sniegula, Szymon; Golab, Maria J; Drobniak, Szymon M; Johansson, Frank

    2018-03-22

    Seasonal time constraints are usually stronger at higher than lower latitudes and can exert strong selection on life-history traits and the correlations among these traits. To predict the response of life-history traits to environmental change along a latitudinal gradient, information must be obtained about genetic variance in traits and also genetic correlation between traits, that is the genetic variance-covariance matrix, G. Here, we estimated G for key life-history traits in an obligate univoltine damselfly that faces seasonal time constraints. We exposed populations to simulated native temperatures and photoperiods and common garden environmental conditions in a laboratory set-up. Despite differences in genetic variance in these traits between populations (lower variance at northern latitudes), there was no evidence for latitude-specific covariance of the life-history traits. At simulated native conditions, all populations showed strong genetic and phenotypic correlations between traits that shaped growth and development. The variance-covariance matrix changed considerably when populations were exposed to common garden conditions compared with the simulated natural conditions, showing the importance of environmentally induced changes in multivariate genetic structure. Our results highlight the importance of estimating variance-covariance matrixes in environments that mimic selection pressures and not only trait variances or mean trait values in common garden conditions for understanding the trait evolution across populations and environments. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.

  15. Use of PRIM code to analyze potential radiation-induced genetic and somatic effects to man from Jackpile-Paguate mines

    International Nuclear Information System (INIS)

    Momeni, M.H.

    1983-01-01

    Potential radiation-induced effects from inhalation and ingestion of land external exposure to radioactive materials at the Jackpile-Paguate uranium mine complex near Paguate, New Mexico, were analyzed. The Uranium Dispersion and Dosimetry (UDAD) computer code developed at Argonne National Laboratory was used to calculate the dose rates and the time-integrated doses to tissues at risk as a function of age and time for the population within 80 km of the mines. The ANL computer code Potential Radiation-Induced Biological Effects on Man (PRIM) then was used to calculate the potential radiation-induced somatic and genetic effects among the same population on the basis of absolute and relative risk models as a function of duration of exposure and age at time of exposure. The analyses were based on the recommendations in BEIR II and WASH-1400 and the lifetable method. The death rates were calculated for radiation exposure from the mines and for naturally induced effects for 19 age cohorts, 20 time intervals, and for each sex. The results indicated that under present conditions of the radiation environment at the mines, the number of potential fatal radiation-induced neoplasms that could occur among the regional population over the next 85 years would be 95 using the absolute risk model, and 243 using the relative risk model. Over the same period, there would be less than two radiation-induced genetic effects (dominant and multifactorials). After decommissioning f the mine site, these risks would decrease to less than 1 and less than 3 potential radiation-induced deaths under the relative and absolute risk models, respectively, and 0.001 genetic disorders. Because of various sources of error, the uncertainty in these predicted risks could be a factor of five

  16. Aminotryptophan-containing barstar: structure--function tradeoff in protein design and engineering with an expanded genetic code.

    Science.gov (United States)

    Rubini, Marina; Lepthien, Sandra; Golbik, Ralph; Budisa, Nediljko

    2006-07-01

    The indole ring of the canonical amino acid tryptophan (Trp) possesses distinguished features, such as sterical bulk, hydrophobicity and the nitrogen atom which is capable of acting as a hydrogen bond donor. The introduction of an amino group into the indole moiety of Trp yields the structural analogs 4-aminotryptophan ((4-NH(2))Trp) and 5-aminotryptophan ((5-NH(2))Trp). Their hydrophobicity and spectral properties are substantially different when compared to those of Trp. They resemble the purine bases of DNA and share their capacity for pH-sensitive intramolecular charge transfer. The Trp --> aminotryptophan substitution in proteins during ribosomal translation is expected to result in related protein variants that acquire these features. These expectations have been fulfilled by incorporating (4-NH(2))Trp and (5-NH(2))Trp into barstar, an intracellular inhibitor of the ribonuclease barnase from Bacillus amyloliquefaciens. The crystal structure of (4-NH(2))Trp-barstar is similar to that of the parent protein, whereas its spectral and thermodynamic behavior is found to be remarkably different. The T(m) value of (4-NH(2))Trp- and (5-NH(2))Trp-barstar is lowered by about 20 degrees Celsius, and they exhibit a strongly reduced unfolding cooperativity and substantial loss of free energy in folding. Furthermore, folding kinetic study of (4-NH(2))Trp-barstar revealed that the denatured state is even preferred over native one. The combination of structural and thermodynamic analyses clearly shows how structures of substituted barstar display a typical structure-function tradeoff: the acquirement of unique pH-sensitive charge transfer as a novel function is achieved at the expense of protein stability. These findings provide a new insight into the evolution of the amino acid repertoire of the universal genetic code and highlight possible problems regarding protein engineering and design by using an expanded genetic code.

  17. On RELAP5-simulated High Flux Isotope Reactor reactivity transients: Code change and application

    International Nuclear Information System (INIS)

    Freels, J.D.

    1993-01-01

    This paper presents a new and innovative application for the RELAP5 code (hereafter referred to as ''the code''). The code has been used to simulate several transients associated with the (presently) draft version of the High-Flux Isotope Reactor (HFIR) updated safety analysis report (SAR). This paper investigates those thermal-hydraulic transients induced by nuclear reactivity changes. A major goal of the work was to use an existing RELAP5 HFIR model for consistency with other thermal-hydraulic transient analyses of the SAR. To achieve this goal, it was necessary to incorporate a new self-contained point kinetics solver into the code because of a deficiency in the point-kinetics reactivity model of the Mod 2.5 version of the code. The model was benchmarked against previously analyzed (known) transients. Given this new code, four event categories defined by the HFIR probabilistic risk assessment (PRA) were analyzed: (in ascending order of severity) a cold-loop pump start; run-away shim-regulating control cylinder and safety plate withdrawal; control cylinder ejection; and generation of an optimum void in the target region. All transients are discussed. Results of the bounding incredible event transient, the target region optimum void, are shown. Future plans for RELAP5 HFIR applications and recommendations for code improvements are also discussed

  18. Fatal anaphylaxis registries data support changes in the who anaphylaxis mortality coding rules.

    Science.gov (United States)

    Tanno, Luciana Kase; Simons, F Estelle R; Annesi-Maesano, Isabella; Calderon, Moises A; Aymé, Ségolène; Demoly, Pascal

    2017-01-13

    Anaphylaxis is defined as a severe life-threatening generalized or systemic hypersensitivity reaction. The difficulty of coding anaphylaxis fatalities under the World Health Organization (WHO) International Classification of Diseases (ICD) system is recognized as an important reason for under-notification of anaphylaxis deaths. On current death certificates, a limited number of ICD codes are valid as underlying causes of death, and death certificates do not include the word anaphylaxis per se. In this review, we provide evidences supporting the need for changes in WHO mortality coding rules and call for addition of anaphylaxis as an underlying cause of death on international death certificates. This publication will be included in support of a formal request to the WHO as a formal request for this move taking the 11 th ICD revision.

  19. Orthogonal transformations for change detection, Matlab code

    DEFF Research Database (Denmark)

    2005-01-01

    Matlab code to do multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data.......Matlab code to do multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data....

  20. Effects of climate change on nutrition and genetics of White-tailed Ptarmigan

    Science.gov (United States)

    Oyler-McCance, Sara J.; Stricker, Craig A.; St. John, Judy; Braun, Clait E.; Wann, Gregory T.; Aldridge, Cameron L.; Sandercock, Brett K.; Martin, Kathy; Segelbacher, Gernot

    2011-01-01

    White-tailed Ptarmigan (Lagopus leucura) are well suited as a focal species for the study of climate change because they are adapted to cool, alpine environments that are expected to undergo unusually rapid climate change. We compared samples collected in the late 1930s, the late 1960s, and the late 2000s using molecular genetic and stable isotope methods in an effort to determine whether White-tailed Ptarmigan on Mt. Evans, Colorado, have experiences recent environmental changes resulting in shifts in genetic diversity, gene frequency, and nutritional ecology. We genotyped 115 individuals spanning the three time periods, using nine polymorphic microsatellite loci in our genetic analysis. These samples were also analyzed for stable carbon and nitrogen isotopic composition. We found a slight trend of lower heterozygosity through time, and allelic richness values were significantly lower in more recent times, but not significantly using an alpha of 0.05 (P 13C and δ15N values decreased significantly across time periods, whereas the range in isotope values increased consistently from the late 1930s to the late time periods. Inferred changes in the nutritional ecology of White-tailed Ptarmigan on Mt. Evans relate primarily to increased atmospheric deposition of nutrients that likely influenced foraging habits and tundra plant composition and nutritional quality. Future work seeks to integrate genetic and isotopic data with long-term demographics to develop a detailed understanding of the interaction among environmental stressors on the long-term viability of ptarmigan populations.

  1. Assessment of genetic and epigenetic changes in virus-free garlic (Allium sativum L.) plants obtained by meristem culture followed by in vitro propagation.

    Science.gov (United States)

    Gimenez, Magalí Diana; Yañez-Santos, Anahí Mara; Paz, Rosalía Cristina; Quiroga, Mariana Paola; Marfil, Carlos Federico; Conci, Vilma Cecilia; García-Lampasona, Sandra Claudia

    2016-01-01

    This is the first report assessing epigenetic variation in garlic. High genetic and epigenetic polymorphism during in vitro culture was detected.Sequencing of MSAP fragments revealed homology with ESTs. Garlic (Allium sativum) is a worldwide crop of economic importance susceptible to viral infections that can cause significant yield losses. Meristem tissue culture is the most employed method to sanitize elite cultivars.Often the virus-free garlic plants obtained are multiplied in vitro (micro propagation). However, it was reported that micro-propagation frequently produces somaclonal variation at the phenotypic level, which is an undesirable trait when breeders are seeking to maintain varietal stability. We employed amplification fragment length polymorphism and methylation sensitive amplified polymorphism (MSAP) methodologies to assess genetic and epigenetic modifications in two culture systems: virus-free plants obtained by meristem culture followed by in vitro multiplication and field culture. Our results suggest that garlic exhibits genetic and epigenetic polymorphism under field growing conditions. However, during in vitro culture system both kinds of polymorphisms intensify indicating that this system induces somaclonal variation. Furthermore, while genetic changes accumulated along the time of in vitro culture, epigenetic polymorphism reached the major variation at 6 months and then stabilize, being demethylation and CG methylation the principal conversions.Cloning and sequencing differentially methylated MSAP fragments allowed us to identify coding and unknown sequences of A. sativum, including sequences belonging to LTR Gypsy retrotransposons. Together, our results highlight that main changes occur in the initial 6 months of micro propagation. For the best of our knowledge, this is the first report on epigenetic assessment in garlic.

  2. Genetic and Environmental Architecture of Changes in Episodic Memory from Middle to Late Middle Age

    Science.gov (United States)

    Panizzon, Matthew S.; Neale, Michael C.; Docherty, Anna R.; Franz, Carol E.; Jacobson, Kristen C.; Toomey, Rosemary; Xian, Hong; Vasilopoulos, Terrie; Rana, Brinda K.; McKenzie, Ruth M.; Lyons, Michael J.; Kremen, William S.

    2015-01-01

    Episodic memory is a complex construct at both the phenotypic and genetic level. Ample evidence supports age-related cognitive stability and change being accounted for by general and domain-specific factors. We hypothesized that general and specific factors would underlie change even within this single cognitive domain. We examined six measures from three episodic memory tests in a narrow age cohort at middle and late middle age. The factor structure was invariant across occasions. At both timepoints two of three test-specific factors (story recall, design recall) had significant genetic influences independent of the general memory factor. Phenotypic stability was moderate to high, and primarily accounted for by genetic influences, except for one test-specific factor (list learning). Mean change over time was nonsignificant for one test-level factor; one declined; one improved. The results highlight the phenotypic and genetic complexity of memory and memory change, and shed light on an understudied period of life. PMID:25938244

  3. Genetics researchers’ and iRB professionals’ attitudes toward genetic research review: a comparative analysis

    Science.gov (United States)

    Edwards, Karen L.; Lemke, Amy A.; Trinidad, Susan B.; Lewis, Susan M.; Starks, Helene; Snapinn, Katherine W.; Griffin, Mary Quinn; Wiesner, Georgia L.; Burke, Wylie

    2012-01-01

    Purpose Genetic research involving human participants can pose challenging questions related to ethical and regulatory standards for research oversight. However, few empirical studies describe how genetic researchers and institutional review board (IRB) professionals conceptualize ethical issues in genetic research or where common ground might exist. Methods Parallel online surveys collected information from human genetic researchers (n = 351) and IRB professionals (n = 208) regarding their views about human participant oversight for genetic protocols. Results A range of opinions were observed within groups on most issues. In both groups, a minority thought it likely that people would be harmed by participation in genetic research or identified from coded genetic data. A majority of both groups agreed that reconsent should be required for four of the six scenarios presented. Statistically significant differences were observed between groups on some issues, with more genetic researcher respondents trusting the confidentiality of coded data, fewer expecting harms from reidentification, and fewer considering reconsent necessary in certain scenarios. Conclusions The range of views observed within and between IRB and genetic researcher groups highlights the complexity and unsettled nature of many ethical issues in genome research. Our findings also identify areas where researcher and IRB views diverge and areas of common ground. PMID:22241102

  4. Unintended compositional changes in genetically modified (GM) crops: 20 years of research.

    Science.gov (United States)

    Herman, Rod A; Price, William D

    2013-12-04

    The compositional equivalency between genetically modified (GM) crops and nontransgenic comparators has been a fundamental component of human health safety assessment for 20 years. During this time, a large amount of information has been amassed on the compositional changes that accompany both the transgenesis process and traditional breeding methods; additionally, the genetic mechanisms behind these changes have been elucidated. After two decades, scientists are encouraged to objectively assess this body of literature and determine if sufficient scientific uncertainty still exists to continue the general requirement for these studies to support the safety assessment of transgenic crops. It is concluded that suspect unintended compositional effects that could be caused by genetic modification have not materialized on the basis of this substantial literature. Hence, compositional equivalence studies uniquely required for GM crops may no longer be justified on the basis of scientific uncertainty.

  5. Converter of a continuous code into the Grey code

    International Nuclear Information System (INIS)

    Gonchar, A.I.; TrUbnikov, V.R.

    1979-01-01

    Described is a converter of a continuous code into the Grey code used in a 12-charged precision amplitude-to-digital converter to decrease the digital component of spectrometer differential nonlinearity to +0.7% in the 98% range of the measured band. To construct the converter of a continuous code corresponding to the input signal amplitude into the Grey code used is the regularity in recycling of units and zeroes in each discharge of the Grey code in the case of a continuous change of the number of pulses of a continuous code. The converter is constructed on the elements of 155 series, the frequency of continuous code pulse passing at the converter input is 25 MHz

  6. Function and Application Areas in Medicine of Non-Coding RNA

    Directory of Open Access Journals (Sweden)

    Figen Guzelgul

    2009-06-01

    Full Text Available RNA is the genetic material converting the genetic code that it gets from DNA into protein. While less than 2 % of RNA is converted into protein , more than 98 % of it can not be converted into protein and named as non-coding RNAs. 70 % of noncoding RNAs consists of introns , however, the rest part of them consists of exons. Non-coding RNAs are examined in two classes according to their size and functions. Whereas they are classified as long non-coding and small non-coding RNAs according to their size , they are grouped as housekeeping non-coding RNAs and regulating non-coding RNAs according to their function. For long years ,these non-coding RNAs have been considered as non-functional. However, today, it has been proved that these non-coding RNAs play role in regulating genes and in structural, functional and catalitic roles of RNAs converted into protein. Due to its taking a role in gene silencing mechanism, particularly in medical world , non-coding RNAs have led to significant developments. RNAi technolgy , which is used in designing drugs to be used in treatment of various diseases , is a ray of hope for medical world. [Archives Medical Review Journal 2009; 18(3.000: 141-155

  7. Geographic, genetic and life-history variability in a sex-changing fish

    Directory of Open Access Journals (Sweden)

    Chiara Benvenuto

    2015-11-01

    Full Text Available Sequential hermaphroditism, commonly referred to as sex change or sex reversal, is a striking phenomenon in mating-system evolution and the most remarkable example of sexual plasticity. Among vertebrates, it is specific to teleosts. Some fish species reproduce initially as females and then change into males (protogynous hermaphrodites or vice versa (protandrous hermaphrodites. The white sea bream, Diplodus sargus, exhibits a high degree of sexual plasticity: populations have been reported to be gonochoristic, protandrous or digynic (with primary females, derived from intersexual juveniles, and secondary females, derived from males. We analysed populations collected from eight different locations across the species distribution range (between the Mediterranean and the North-Eastern Atlantic. These populations are characterized by different degrees of connectivity, spatial demographics and life histories. Using individual-based analyses, we linked the genetic structure of each specimen with environmental heterogeneity, life-history traits and reproductive modes. Our aim is to gather a better understanding of the variation in reproductive life-history strategies in this sexually plastic species. Diplodus sargus is a valuable candidate organism to investigate sequential hermaphroditism and it also has a commercial value. The application of population genetics tools against the background of life-history theory can bring valuable insights for the management of marine resources. The geographical patterns of sex change (and of age- and size-at-sex change linked with population genetics can be pivotal for both theoretical investigations and conservation and management plans in marine areas.

  8. Genetic and DNA methylation changes in cotton (Gossypium genotypes and tissues.

    Directory of Open Access Journals (Sweden)

    Kenji Osabe

    Full Text Available In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP assays including a methylation insensitive enzyme (BsiSI, and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC. DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  9. Genetic and DNA methylation changes in cotton (Gossypium) genotypes and tissues.

    Science.gov (United States)

    Osabe, Kenji; Clement, Jenny D; Bedon, Frank; Pettolino, Filomena A; Ziolkowski, Lisa; Llewellyn, Danny J; Finnegan, E Jean; Wilson, Iain W

    2014-01-01

    In plants, epigenetic regulation is important in normal development and in modulating some agronomic traits. The potential contribution of DNA methylation mediated gene regulation to phenotypic diversity and development in cotton was investigated between cotton genotypes and various tissues. DNA methylation diversity, genetic diversity, and changes in methylation context were investigated using methylation-sensitive amplified polymorphism (MSAP) assays including a methylation insensitive enzyme (BsiSI), and the total DNA methylation level was measured by high-performance liquid chromatography (HPLC). DNA methylation diversity was greater than the genetic diversity in the selected cotton genotypes and significantly different levels of DNA methylation were identified between tissues, including fibre. The higher DNA methylation diversity (CHG methylation being more diverse than CG methylation) in cotton genotypes suggest epigenetic regulation may be important for cotton, and the change in DNA methylation between fibre and other tissues hints that some genes may be epigenetically regulated for fibre development. The novel approach using BsiSI allowed direct comparison between genetic and epigenetic diversity, and also measured CC methylation level that cannot be detected by conventional MSAP.

  10. GENETIC CHANGES FOR PERFORMANCE TRAITS IN SLOVENIAN PIG NUCLEUS HERDS

    Directory of Open Access Journals (Sweden)

    Špela Malovrh

    2000-06-01

    Full Text Available In Slovenian pig nucleus herds, the genetic trends for performance traits in boars were investigated using mixed model methodology. Altogether, data sets from four farms with test stations consisted of 60709 records for five breeds: Swedish Landrace (SL, Large White (LW, Duroc (D, Pietrain (P, and German Landrace (GL boars from years 1975 to 1999. Separate analyses were performed for each farm using the PEST package. Breed, season, and weight on test within breed were fixed effects, while common litter environment and additive genetic effect were treated as random. Genetic trends for days on test from 30 to 100 kg (DoT30100, feed conversion efficiency from 30 to 100 kg (FCE30100, and ultrasonically measured backfat thickness (BF100 were expressed as linear regression of the averages of predicted breeding values on the year of birth. Estimates for genetic changes varied between farms and breeds from +0.0046 to –0.374 day, +0.0019 to – 0.013, and +0.262 to –0.221 mm per year for DoT30100, FCE30100, and BF100, respectively.

  11. Origin of an alternative genetic code in the extremely small and GC-rich genome of a bacterial symbiont.

    Directory of Open Access Journals (Sweden)

    John P McCutcheon

    2009-07-01

    Full Text Available The genetic code relates nucleotide sequence to amino acid sequence and is shared across all organisms, with the rare exceptions of lineages in which one or a few codons have acquired novel assignments. Recoding of UGA from stop to tryptophan has evolved independently in certain reduced bacterial genomes, including those of the mycoplasmas and some mitochondria. Small genomes typically exhibit low guanine plus cytosine (GC content, and this bias in base composition has been proposed to drive UGA Stop to Tryptophan (Stop-->Trp recoding. Using a combination of genome sequencing and high-throughput proteomics, we show that an alpha-Proteobacterial symbiont of cicadas has the unprecedented combination of an extremely small genome (144 kb, a GC-biased base composition (58.4%, and a coding reassignment of UGA Stop-->Trp. Although it is not clear why this tiny genome lacks the low GC content typical of other small bacterial genomes, these observations support a role of genome reduction rather than base composition as a driver of codon reassignment.

  12. Impact of unlinked deaths and coding changes on mortality trends in the Swiss National Cohort.

    Science.gov (United States)

    Schmidlin, Kurt; Clough-Gorr, Kerri M; Spoerri, Adrian; Egger, Matthias; Zwahlen, Marcel

    2013-01-04

    Results of epidemiological studies linking census with mortality records may be affected by unlinked deaths and changes in cause of death classification. We examined these issues in the Swiss National Cohort (SNC). The SNC is a longitudinal study of the entire Swiss population, based on the 1990 (6.8 million persons) and 2000 (7.3 million persons) censuses. Among 1,053,393 deaths recorded 1991-2007 5.4% could not be linked using stringent probabilistic linkage. We included the unlinked deaths using pragmatic linkages and compared mortality rates for selected causes with official mortality rates. We also examined the impact of the 1995 change in cause of death coding from version 8 (with some additional rules) to version 10 of the International Classification of Diseases (ICD), using Poisson regression models with restricted cubic splines. Finally, we compared results from Cox models including and excluding unlinked deaths of the association of education, marital status, and nationality with selected causes of death. SNC mortality rates underestimated all cause mortality by 9.6% (range 2.4%-17.9%) in the 85+ population. Underestimation was less pronounced in years nearer the censuses and in the 75-84 age group. After including 99.7% of unlinked deaths, annual all cause SNC mortality rates were reflecting official rates (relative difference between -1.4% and +1.8%). In the 85+ population the rates for prostate and breast cancer dropped, by 16% and 21% respectively, between 1994 and 1995 coincident with the change in cause of death coding policy. For suicide in males almost no change was observed. Hazard ratios were only negligibly affected by including the unlinked deaths. A sudden decrease in breast (21% less, 95% confidence interval: 12%-28%) and prostate (16% less, 95% confidence interval: 7%-23%) cancer mortality rates in the 85+ population coincided with the 1995 change in cause of death coding policy. Unlinked deaths bias analyses of absolute mortality rates

  13. Impact of unlinked deaths and coding changes on mortality trends in the Swiss National Cohort

    Directory of Open Access Journals (Sweden)

    Schmidlin Kurt

    2013-01-01

    Full Text Available Abstract Background Results of epidemiological studies linking census with mortality records may be affected by unlinked deaths and changes in cause of death classification. We examined these issues in the Swiss National Cohort (SNC. Methods The SNC is a longitudinal study of the entire Swiss population, based on the 1990 (6.8 million persons and 2000 (7.3 million persons censuses. Among 1,053,393 deaths recorded 1991–2007 5.4% could not be linked using stringent probabilistic linkage. We included the unlinked deaths using pragmatic linkages and compared mortality rates for selected causes with official mortality rates. We also examined the impact of the 1995 change in cause of death coding from version 8 (with some additional rules to version 10 of the International Classification of Diseases (ICD, using Poisson regression models with restricted cubic splines. Finally, we compared results from Cox models including and excluding unlinked deaths of the association of education, marital status, and nationality with selected causes of death. Results SNC mortality rates underestimated all cause mortality by 9.6% (range 2.4% - 17.9% in the 85+ population. Underestimation was less pronounced in years nearer the censuses and in the 75–84 age group. After including 99.7% of unlinked deaths, annual all cause SNC mortality rates were reflecting official rates (relative difference between −1.4% and +1.8%. In the 85+ population the rates for prostate and breast cancer dropped, by 16% and 21% respectively, between 1994 and 1995 coincident with the change in cause of death coding policy. For suicide in males almost no change was observed. Hazard ratios were only negligibly affected by including the unlinked deaths. A sudden decrease in breast (21% less, 95% confidence interval: 12% - 28% and prostate (16% less, 95% confidence interval: 7% - 23% cancer mortality rates in the 85+ population coincided with the 1995 change in cause of death coding policy

  14. Quantum Genetics in terms of Quantum Reversible Automata and Quantum Computation of Genetic Codes and Reverse Transcription

    CERN Document Server

    Baianu,I C

    2004-01-01

    The concepts of quantum automata and quantum computation are studied in the context of quantum genetics and genetic networks with nonlinear dynamics. In previous publications (Baianu,1971a, b) the formal concept of quantum automaton and quantum computation, respectively, were introduced and their possible implications for genetic processes and metabolic activities in living cells and organisms were considered. This was followed by a report on quantum and abstract, symbolic computation based on the theory of categories, functors and natural transformations (Baianu,1971b; 1977; 1987; 2004; Baianu et al, 2004). The notions of topological semigroup, quantum automaton, or quantum computer, were then suggested with a view to their potential applications to the analogous simulation of biological systems, and especially genetic activities and nonlinear dynamics in genetic networks. Further, detailed studies of nonlinear dynamics in genetic networks were carried out in categories of n-valued, Lukasiewicz Logic Algebra...

  15. Foundations of genetic algorithms 1991

    CERN Document Server

    1991-01-01

    Foundations of Genetic Algorithms 1991 (FOGA 1) discusses the theoretical foundations of genetic algorithms (GA) and classifier systems.This book compiles research papers on selection and convergence, coding and representation, problem hardness, deception, classifier system design, variation and recombination, parallelization, and population divergence. Other topics include the non-uniform Walsh-schema transform; spurious correlations and premature convergence in genetic algorithms; and variable default hierarchy separation in a classifier system. The grammar-based genetic algorithm; condition

  16. Unnatural reactive amino acid genetic code additions

    Energy Technology Data Exchange (ETDEWEB)

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, Christopher J.; Schultz, Peter G.

    2017-10-25

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  17. Association of the position of a hospital-acquired condition diagnosis code with changes in medicare severity diagnosis-related group assignment.

    Science.gov (United States)

    Johnson, Tricia; Kane, Jason M; Odwazny, Richard; McNutt, Robert

    2014-11-01

    Incentives to improve quality include paying less for adverse events, including the Centers for Medicare and Medicaid Services' policy to not pay additionally for events classified as hospital-acquired conditions (HACs). This policy is controversial, as variable coding practices at hospitals may lead to differences in the inclusion and position of HACs in the list of codes used for Medicare Severity Diagnosis-Related Group (MS-DRG) assignment. Evaluate changes in MS-DRG assignment for patients with an HAC and test the association of the position of an HAC in the list of International Classification of Diseases, 9th Revision (ICD-9) diagnosis codes with change in MS-DRG assignment. Retrospective analysis of patients discharged from hospital members of the University HealthSystem Consortium's Clinical Data Base between October 2007 and April 2008. Comparisons were made between the MS-DRG assigned when the HAC was not included in the list of ICD-9 diagnosis codes and the MS-DRG that would have been assigned had the HAC code been included in the assignment. Of the 7027 patients with an HAC, 13.8% changed MS-DRG assignment when the HAC was removed. An HAC in the second position versus third position or lower was associated with a 40-fold increase in the likelihood of MS-DRG change. The position of an HAC in the list of diagnosis codes, rather than the presence of an HAC, is associated with a change in MS-DRG assignment. HACs have little effect on reimbursement unless the HAC is in the second position and patients have minor severity of illness. © 2014 Society of Hospital Medicine.

  18. Consequences of the genetic threshold model for observing partial migration under climate change scenarios.

    Science.gov (United States)

    Cobben, Marleen M P; van Noordwijk, Arie J

    2017-10-01

    Migration is a widespread phenomenon across the animal kingdom as a response to seasonality in environmental conditions. Partially migratory populations are populations that consist of both migratory and residential individuals. Such populations are very common, yet their stability has long been debated. The inheritance of migratory activity is currently best described by the threshold model of quantitative genetics. The inclusion of such a genetic threshold model for migratory behavior leads to a stable zone in time and space of partially migratory populations under a wide range of demographic parameter values, when assuming stable environmental conditions and unlimited genetic diversity. Migratory species are expected to be particularly sensitive to global warming, as arrival at the breeding grounds might be increasingly mistimed as a result of the uncoupling of long-used cues and actual environmental conditions, with decreasing reproduction as a consequence. Here, we investigate the consequences for migratory behavior and the stability of partially migratory populations under five climate change scenarios and the assumption of a genetic threshold value for migratory behavior in an individual-based model. The results show a spatially and temporally stable zone of partially migratory populations after different lengths of time in all scenarios. In the scenarios in which the species expands its range from a particular set of starting populations, the genetic diversity and location at initialization determine the species' colonization speed across the zone of partial migration and therefore across the entire landscape. Abruptly changing environmental conditions after model initialization never caused a qualitative change in phenotype distributions, or complete extinction. This suggests that climate change-induced shifts in species' ranges as well as changes in survival probabilities and reproductive success can be met with flexibility in migratory behavior at the

  19. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    Directory of Open Access Journals (Sweden)

    Juha eKantanen

    2015-02-01

    Full Text Available Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources.There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment.Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4 emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection.Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programmes for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species.

  20. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    Science.gov (United States)

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling; Eythorsdottir, Emma; Li, Meng-Hua; Kettunen-Præbel, Anne; Berg, Peer; Meuwissen, Theo

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources. There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4) emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection. Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programs for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species. PMID:25767477

  1. The Genetic Privacy Act and commentary

    Energy Technology Data Exchange (ETDEWEB)

    Annas, G.J.; Glantz, L.H.; Roche, P.A.

    1995-02-28

    The Genetic Privacy Act is a proposal for federal legislation. The Act is based on the premise that genetic information is different from other types of personal information in ways that require special protection. The DNA molecule holds an extensive amount of currently indecipherable information. The major goal of the Human Genome Project is to decipher this code so that the information it contains is accessible. The privacy question is, accessible to whom? The highly personal nature of the information contained in DNA can be illustrated by thinking of DNA as containing an individual`s {open_quotes}future diary.{close_quotes} A diary is perhaps the most personal and private document a person can create. It contains a person`s innermost thoughts and perceptions, and is usually hidden and locked to assure its secrecy. Diaries describe the past. The information in one`s genetic code can be thought of as a coded probabilistic future diary because it describes an important part of a unique and personal future. This document presents an introduction to the proposal for federal legislation `the Genetic Privacy Act`; a copy of the proposed act; and comment.

  2. Annotating pathogenic non-coding variants in genic regions.

    Science.gov (United States)

    Gelfman, Sahar; Wang, Quanli; McSweeney, K Melodi; Ren, Zhong; La Carpia, Francesca; Halvorsen, Matt; Schoch, Kelly; Ratzon, Fanni; Heinzen, Erin L; Boland, Michael J; Petrovski, Slavé; Goldstein, David B

    2017-08-09

    Identifying the underlying causes of disease requires accurate interpretation of genetic variants. Current methods ineffectively capture pathogenic non-coding variants in genic regions, resulting in overlooking synonymous and intronic variants when searching for disease risk. Here we present the Transcript-inferred Pathogenicity (TraP) score, which uses sequence context alterations to reliably identify non-coding variation that causes disease. High TraP scores single out extremely rare variants with lower minor allele frequencies than missense variants. TraP accurately distinguishes known pathogenic and benign variants in synonymous (AUC = 0.88) and intronic (AUC = 0.83) public datasets, dismissing benign variants with exceptionally high specificity. TraP analysis of 843 exomes from epilepsy family trios identifies synonymous variants in known epilepsy genes, thus pinpointing risk factors of disease from non-coding sequence data. TraP outperforms leading methods in identifying non-coding variants that are pathogenic and is therefore a valuable tool for use in gene discovery and the interpretation of personal genomes.While non-coding synonymous and intronic variants are often not under strong selective constraint, they can be pathogenic through affecting splicing or transcription. Here, the authors develop a score that uses sequence context alterations to predict pathogenicity of synonymous and non-coding genetic variants, and provide a web server of pre-computed scores.

  3. Effect of change in coding rules on recording diabetes in hospital administrative datasets.

    Science.gov (United States)

    Assareh, Hassan; Achat, Helen M; Guevarra, Veth M; Stubbs, Joanne M

    2016-10-01

    During 2008-2011 Australian Coding Standards mandated a causal relationship between diabetes and inpatient care as a criterion for recording diabetes as a comorbidity in hospital administrative datasets. We aim to measure the effect of the causality mandate on recorded diabetes and associated inter-hospital variations. For patients with diabetes, all admissions between 2004 and 2013 to all New South Wales acute public hospitals were investigated. Poisson mixed models were employed to derive adjusted rates and variations. The non-recorded diabetes incidence rate was 20.7%. The causality mandate increased the incidence rate four fold during the change period, 2008-2011, compared to the pre- or post-change periods (32.5% vs 8.4% and 6.9%). The inter-hospital variation was also higher, with twice the difference in the non-recorded rate between hospitals with the highest and lowest rates (50% vs 24% and 27% risk gap). The variation decreased during the change period (29%), while the rate continued to rise (53%). Admission characteristics accounted for over 44% of the variation compared with at most two per cent attributable to patient or hospital characteristics. Contributing characteristics explained less of the variation within the change period compared to pre- or post-change (46% vs 58% and 53%). Hospital relative performance was not constant over time. The causality mandate substantially increased the non-recorded diabetes rate and associated inter-hospital variation. Longitudinal accumulation of clinical information at the patient level, and the development of appropriate adoption protocols to achieve comprehensive and timely implementation of coding changes are essential to supporting the integrity of hospital administrative datasets. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Ombuds’ corner: Code of Conduct and change of behaviour

    CERN Multimedia

    Vincent Vuillemin

    2012-01-01

    In this series, the Bulletin aims to explain the role of the Ombuds at CERN by presenting practical examples of misunderstandings that could have been resolved by the Ombuds if he had been contacted earlier. Please note that, in all the situations we present, the names are fictitious and used only to improve clarity.   Is our Code of Conduct actually effective in influencing behaviour? Research studies suggest that codes, while necessary, are insufficient as a means of encouraging respectful behaviour among employees. Codes are only a potential means of influencing employee behaviour. For a Code of Conduct to be effective, several elements must be in place. Firstly, there needs to be communication and effective training using relevant examples to make the code real. It should be embraced by the leaders and accepted by the personnel. Finally, it should be embedded in the CERN culture and not seen as a separate entity, which requires serious discussions to raise awareness. In addition, every c...

  5. Health effects estimation code development for accident consequence analysis

    International Nuclear Information System (INIS)

    Togawa, O.; Homma, T.

    1992-01-01

    As part of a computer code system for nuclear reactor accident consequence analysis, two computer codes have been developed for estimating health effects expected to occur following an accident. Health effects models used in the codes are based on the models of NUREG/CR-4214 and are revised for the Japanese population on the basis of the data from the reassessment of the radiation dosimetry and information derived from epidemiological studies on atomic bomb survivors of Hiroshima and Nagasaki. The health effects models include early and continuing effects, late somatic effects and genetic effects. The values of some model parameters are revised for early mortality. The models are modified for predicting late somatic effects such as leukemia and various kinds of cancers. The models for genetic effects are the same as those of NUREG. In order to test the performance of one of these codes, it is applied to the U.S. and Japanese populations. This paper provides descriptions of health effects models used in the two codes and gives comparisons of the mortality risks from each type of cancer for the two populations. (author)

  6. Utility experience in code updating of equipment built to 1974 code, Section 3, Subsection NF

    International Nuclear Information System (INIS)

    Rao, K.R.; Deshpande, N.

    1990-01-01

    This paper addresses changes to ASME Code Subsection NF and reconciles the differences between the updated codes and the as built construction code, of ASME Section III, 1974 to which several nuclear plants have been built. Since Section III is revised every three years and replacement parts complying with the construction code are invariably not available from the plant stock inventory, parts must be procured from vendors who comply with the requirements of the latest codes. Aspects of the ASME code which reflect Subsection NF are identified and compared with the later Code editions and addenda, especially up to and including the 1974 ASME code used as the basis for the plant qualification. The concern of the regulatory agencies is that if later code allowables and provisions are adopted it is possible to reduce the safety margins of the construction code. Areas of concern are highlighted and the specific changes of later codes are discerned; adoption of which, would not sacrifice the intended safety margins of the codes to which plants are licensed

  7. Coding in Muscle Disease.

    Science.gov (United States)

    Jones, Lyell K; Ney, John P

    2016-12-01

    Accurate coding is critically important for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of administrative coding for patients with muscle disease and includes a case-based review of diagnostic and Evaluation and Management (E/M) coding principles in patients with myopathy. Procedural coding for electrodiagnostic studies and neuromuscular ultrasound is also reviewed.

  8. Genetic susceptibility testing for chronic disease and intention for behavior change in healthy young adults.

    Science.gov (United States)

    Vassy, Jason L; Donelan, Karen; Hivert, Marie-France; Green, Robert C; Grant, Richard W

    2013-04-01

    Genetic testing for chronic disease susceptibility may motivate young adults for preventive behavior change. This nationally representative survey gave 521 young adults hypothetical scenarios of receiving genetic susceptibility results for heart disease, type 2 diabetes, and stroke and asked their (1) interest in such testing, (2) anticipated likelihood of improving diet and physical activity with high- and low-risk test results, and (3) readiness to make behavior change. Responses were analyzed by presence of established disease-risk factors. Respondents with high phenotypic diabetes risk reported increased likelihood of improving their diet and physical activity in response to high-risk results compared with those with low diabetes risk (odds ratio (OR), 1.82 (1.03, 3.21) for diet and OR, 2.64 (1.24, 5.64) for physical activity). In contrast, poor baseline diet (OR, 0.51 (0.27, 0.99)) and poor physical activity (OR, 0.53 (0.29, 0.99)) were associated with decreased likelihood of improving diet. Knowledge of genetic susceptibility may motivate young adults with higher personal diabetes risk for improvement in diet and exercise, but poor baseline behaviors are associated with decreased intention to make these changes. To be effective, genetic risk testing in young adults may need to be coupled with other strategies to enable behavior change.

  9. Purifying selection acts on coding and non-coding sequences of paralogous genes in Arabidopsis thaliana.

    Science.gov (United States)

    Hoffmann, Robert D; Palmgren, Michael

    2016-06-13

    Whole-genome duplications in the ancestors of many diverse species provided the genetic material for evolutionary novelty. Several models explain the retention of paralogous genes. However, how these models are reflected in the evolution of coding and non-coding sequences of paralogous genes is unknown. Here, we analyzed the coding and non-coding sequences of paralogous genes in Arabidopsis thaliana and compared these sequences with those of orthologous genes in Arabidopsis lyrata. Paralogs with lower expression than their duplicate had more nonsynonymous substitutions, were more likely to fractionate, and exhibited less similar expression patterns with their orthologs in the other species. Also, lower-expressed genes had greater tissue specificity. Orthologous conserved non-coding sequences in the promoters, introns, and 3' untranslated regions were less abundant at lower-expressed genes compared to their higher-expressed paralogs. A gene ontology (GO) term enrichment analysis showed that paralogs with similar expression levels were enriched in GO terms related to ribosomes, whereas paralogs with different expression levels were enriched in terms associated with stress responses. Loss of conserved non-coding sequences in one gene of a paralogous gene pair correlates with reduced expression levels that are more tissue specific. Together with increased mutation rates in the coding sequences, this suggests that similar forces of purifying selection act on coding and non-coding sequences. We propose that coding and non-coding sequences evolve concurrently following gene duplication.

  10. Heuristic rules embedded genetic algorithm for in-core fuel management optimization

    Science.gov (United States)

    Alim, Fatih

    The objective of this study was to develop a unique methodology and a practical tool for designing loading pattern (LP) and burnable poison (BP) pattern for a given Pressurized Water Reactor (PWR) core. Because of the large number of possible combinations for the fuel assembly (FA) loading in the core, the design of the core configuration is a complex optimization problem. It requires finding an optimal FA arrangement and BP placement in order to achieve maximum cycle length while satisfying the safety constraints. Genetic Algorithms (GA) have been already used to solve this problem for LP optimization for both PWR and Boiling Water Reactor (BWR). The GA, which is a stochastic method works with a group of solutions and uses random variables to make decisions. Based on the theories of evaluation, the GA involves natural selection and reproduction of the individuals in the population for the next generation. The GA works by creating an initial population, evaluating it, and then improving the population by using the evaluation operators. To solve this optimization problem, a LP optimization package, GARCO (Genetic Algorithm Reactor Code Optimization) code is developed in the framework of this thesis. This code is applicable for all types of PWR cores having different geometries and structures with an unlimited number of FA types in the inventory. To reach this goal, an innovative GA is developed by modifying the classical representation of the genotype. To obtain the best result in a shorter time, not only the representation is changed but also the algorithm is changed to use in-core fuel management heuristics rules. The improved GA code was tested to demonstrate and verify the advantages of the new enhancements. The developed methodology is explained in this thesis and preliminary results are shown for the VVER-1000 reactor hexagonal geometry core and the TMI-1 PWR. The improved GA code was tested to verify the advantages of new enhancements. The core physics code

  11. Genetic and cytokine changes associated with symptomatic stages of CLL.

    Science.gov (United States)

    Agarwal, Amit; Cooke, Lawrence; Riley, Christopher; Qi, Wenqing; Mount, David; Mahadevan, Daruka

    2014-09-01

    The pathogenesis and drug resistance of symptomatic CLL patients involves genetic changes associated with the CLL clone as well as changes within the microenvironment. To further understand these processes, we compared early stage CLL to symptomatic late stage using gene expression and serum cytokine profiling to gain insight of the genetic and microenvironment changes associated with the most severe form of the disease. Patients were classified into low stage (Rai stage 0/I/II) and high stage (Rai stage III/IV). Gene expression profiles were obtained on pretreatment samples using the HG-U133A 2.0 Affymetrix platform. A comparison of low versus high stage CLL revealed a set of 21 genes differentially expressed genes. 15 genes were up regulated in the high stage compared to low stage while 6 genes were down regulated. Analysis of GO molecular function revealed 9 of 21 genes were involved in transcription factor activity. Serum cytokine profiles showed six cytokines to be significantly different in high stage patients. Two chemokines, SDF-1/CXCL12 and uPAR known to be involved in stem cell mobilization and homing were increased in serum of high stage patients. This study has identified therapeutic targets for symptomatic CLL patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Induction of genetic changes in Saccharomyces cerevisiae by partial drying in air of constant relative humidity and by UV

    International Nuclear Information System (INIS)

    Hieda, K.

    1981-01-01

    It was investigated whether there was a critical degree of dryness for induction of genetic changes by drying. Saccharomyces cerevisiae cells were dried in air of 0.33, 53 and 76% relative humidity (RH). The frequencies of mitotic recombination at ade2, of gene conversion at leu1, and of gene mutation at can1 were measured in X2447, XS1473 and S288C strains, respectively. After the cells had been dried at 0% RH for 4 h the frequencies of the genetic changes at ade2, leu1 and can1 were, respectively, 56, 7 and 3.5 times higher than each spontaneous frequency. Induction rates, defined as the frequencies of the induced genetic changes per unit time (1 h) of drying, were greatly decreased with increase in RH. Partial drying in air of 76% RH up to 4 and 8 h induced no genetic change at ade2 and leu1, respectively. It was concluded, therefore, that drying at a certain RH between 53 and 76% gave the critical degreee of dryness of cells for the induction of the genetic changes. The water contents of cells (g water per g dry material) were 12% at 53% RH and 21% at 76% RH, whereas the water content of native cells was 212%. Removal of a large amount of cellular water had no effect on the induction of the genetic changes. UV sensitivity of partially dried cells of X2447 for the induction of the genetic change at ade2 drastically increased with decrease in RH between 76 and 53%. The drastic change in the UV sensitivity suggested that photochemical reactivity of DNA of chromosome XV, in which the ade2 locus is located, changed between 76 and 53% RH. It seems that the genetic changes were induced only in the low RH region where DNA in vivo had a different photochemical reactivity. (orig.)

  13. A Stress-Induced Bias in the Reading of the Genetic Code in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Adi Oron-Gottesman

    2016-11-01

    Full Text Available Escherichia coli mazEF is an extensively studied stress-induced toxin-antitoxin (TA system. The toxin MazF is an endoribonuclease that cleaves RNAs at ACA sites. Thereby, under stress, the induced MazF generates a stress-induced translation machinery (STM, composed of MazF-processed mRNAs and selective ribosomes that specifically translate the processed mRNAs. Here, we further characterized the STM system, finding that MazF cleaves only ACA sites located in the open reading frames of processed mRNAs, while out-of-frame ACAs are resistant. This in-frame ACA cleavage of MazF seems to depend on MazF binding to an extracellular-death-factor (EDF-like element in ribosomal protein bS1 (bacterial S1, apparently causing MazF to be part of STM ribosomes. Furthermore, due to the in-frame MazF cleavage of ACAs under stress, a bias occurs in the reading of the genetic code causing the amino acid threonine to be encoded only by its synonym codon ACC, ACU, or ACG, instead of by ACA.

  14. Disclosure of genetic information and change in dietary intake: a randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Daiva E Nielsen

    Full Text Available Proponents of consumer genetic tests claim that the information can positively impact health behaviors and aid in chronic disease prevention. However, the effects of disclosing genetic information on dietary intake behavior are not clear.A double-blinded, parallel group, 2:1 online randomized controlled trial was conducted to determine the short- and long-term effects of disclosing nutrition-related genetic information for personalized nutrition on dietary intakes of caffeine, vitamin C, added sugars, and sodium. Participants were healthy men and women aged 20-35 years (n = 138. The intervention group (n = 92 received personalized DNA-based dietary advice for 12-months and the control group (n = 46 received general dietary recommendations with no genetic information for 12-months. Food frequency questionnaires were collected at baseline and 3- and 12-months after the intervention to assess dietary intakes. General linear models were used to compare changes in intakes between those receiving general dietary advice and those receiving DNA-based dietary advice.Compared to the control group, no significant changes to dietary intakes of the nutrients were observed at 3-months. At 12-months, participants in the intervention group who possessed a risk version of the ACE gene, and were advised to limit their sodium intake, significantly reduced their sodium intake (mg/day compared to the control group (-287.3 ± 114.1 vs. 129.8 ± 118.2, p = 0.008. Those who had the non-risk version of ACE did not significantly change their sodium intake compared to the control group (12-months: -244.2 ± 150.2, p = 0.11. Among those with the risk version of the ACE gene, the proportion who met the targeted recommendation of 1500 mg/day increased from 19% at baseline to 34% after 12 months (p = 0.06.These findings demonstrate that disclosing genetic information for personalized nutrition results in greater changes in intake for some dietary components compared to

  15. Maximization Network Throughput Based on Improved Genetic Algorithm and Network Coding for Optical Multicast Networks

    Science.gov (United States)

    Wei, Chengying; Xiong, Cuilian; Liu, Huanlin

    2017-12-01

    Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.

  16. VHBORE: A code to compute borehole fluid conductivity profiles with pressure changes in the borehole

    International Nuclear Information System (INIS)

    Hale, F.V.; Tsang, C.F.

    1994-06-01

    This report describes the code VHBORE which can be used to model fluid electric conductivity profiles in a borehole intersecting fractured rock under conditions of changing pressure in the well bore. Pressure changes may be due to water level variations caused by pumping or fluid density effects as formation fluid is drawn into the borehole. Previous reports describe the method of estimating the hydrologic behavior of fractured rock using a time series of electric conductivity logs and an earlier code, BORE, to generate electric conductivity logs under constant pressure and flow rate conditions. The earlier model, BORE, assumed a constant flow rate, q i , for each inflow into the well bore. In the present code the user supplies the location, constant pressure, h i , transmissivity, T i , and storativity, S i , for each fracture, as well as the initial water level in the well, h w (0), In addition, the input data contains changes in the water level at later times, Δh w (t), typically caused by turning a pump on or off. The variable density calculation also requires input of the density of each of the inflow fluids, ρ i , and the initial uniform density of the well bore fluid, ρ w (0). These parameters are used to compute the flow rate for each inflow point at each time step. The numerical method of Jacob and Lohman (1952) is used to compute the flow rate into or out of the fractures based on the changes in pressure in the wellbore. A dimensionless function relates flow rate as a function of time in response to an imposed pressure change. The principle of superposition is used to determine the net flow rate from a time series of pressure changes. Additional reading on the relationship between drawdown and flow rate can be found in Earlougher (1977), particularly his Section 4.6, open-quotes Constant-Pressure Flow Testingclose quotes

  17. Developmental-Genetic Effects on Level and Change in Childhood Fears of Twins during Adolescence

    Science.gov (United States)

    Eaves, Lindon J.; Silberg, Judy L.

    2008-01-01

    Background: If the adaptive significance of specific fears changes with age, the genetic contribution to individual differences may be lowest at the age of greatest salience. The roles of genes and environment in the developmental-genetic trajectory of five common childhood fears are explored in 1094 like-sex pairs of male and female monozygotic…

  18. Non-coding RNAs and epigenome: de novo DNA methylation, allelic exclusion and X-inactivation

    Directory of Open Access Journals (Sweden)

    V. A. Halytskiy

    2013-12-01

    Full Text Available Non-coding RNAs are widespread class of cell RNAs. They participate in many important processes in cells – signaling, posttranscriptional silencing, protein biosynthesis, splicing, maintenance of genome stability, telomere lengthening, X-inactivation. Nevertheless, activity of these RNAs is not restricted to posttranscriptional sphere, but cover also processes that change or maintain the epigenetic information. Non-coding RNAs can directly bind to the DNA targets and cause their repression through recruitment of DNA methyltransferases as well as chromatin modifying enzymes. Such events constitute molecular mechanism of the RNA-dependent DNA methylation. It is possible, that the RNA-DNA interaction is universal mechanism triggering DNA methylation de novo. Allelic exclusion can be also based on described mechanism. This phenomenon takes place, when non-coding RNA, which precursor is transcribed from one allele, triggers DNA methylation in all other alleles present in the cell. Note, that miRNA-mediated transcriptional silencing resembles allelic exclusion, because both miRNA gene and genes, which can be targeted by this miRNA, contain elements with the same sequences. It can be assumed that RNA-dependent DNA methylation and allelic exclusion originated with the purpose of counteracting the activity of mobile genetic elements. Probably, thinning and deregulation of the cellular non-coding RNA pattern allows reactivation of silent mobile genetic elements resulting in genome instability that leads to ageing and carcinogenesis. In the course of X-inactivation, DNA methylation and subsequent hete­rochromatinization of X chromosome can be triggered by direct hybridization of 5′-end of large non-coding RNA Xist with DNA targets in remote regions of the X chromosome.

  19. RFQ simulation code

    International Nuclear Information System (INIS)

    Lysenko, W.P.

    1984-04-01

    We have developed the RFQLIB simulation system to provide a means to systematically generate the new versions of radio-frequency quadrupole (RFQ) linac simulation codes that are required by the constantly changing needs of a research environment. This integrated system simplifies keeping track of the various versions of the simulation code and makes it practical to maintain complete and up-to-date documentation. In this scheme, there is a certain standard version of the simulation code that forms a library upon which new versions are built. To generate a new version of the simulation code, the routines to be modified or added are appended to a standard command file, which contains the commands to compile the new routines and link them to the routines in the library. The library itself is rarely changed. Whenever the library is modified, however, this modification is seen by all versions of the simulation code, which actually exist as different versions of the command file. All code is written according to the rules of structured programming. Modularity is enforced by not using COMMON statements, simplifying the relation of the data flow to a hierarchy diagram. Simulation results are similar to those of the PARMTEQ code, as expected, because of the similar physical model. Different capabilities, such as those for generating beams matched in detail to the structure, are available in the new code for help in testing new ideas in designing RFQ linacs

  20. The amendment of the Labour Code

    Directory of Open Access Journals (Sweden)

    Jana Mervartová

    2012-01-01

    Full Text Available The amendment of the Labour Code, No. 365/2011 Coll., effective as from 1st January 2012, brings some of fundamental changes in labour law. The amendment regulates relation between the Labour Code and the Civil Code; and is also formulates principles of labour law relations newly. The basic period by fixed-term contract of employment is extended and also frequency its conclusion is limited. The length of trial period and the amount of redundancy payment are graduated. An earlier legislative regulation which an employee is temporarily assign to work for different employer has been returned. The number of hours by agreement to perform work is increased. The monetary compensation by competitive clause is reduced. The other changes are realised in part of collective labour law. The authoress of article notifies of the most important changes. She compares new changes of the Labour Code and former legal system and she also evaluates their advantages and disadvantages. The main objective of changes ensures labour law relations to be more flexible. And it should motivate creation of new jobs opening by employers. Amended provisions are aimed to reduction expenses of employers under the reform of the public finances. Also changes are expected in the Labour Code in connection with the further new Civil Code.

  1. Genetic and environmental relationships between change in weight and insulin resistance: the Healthy Twin Study.

    Science.gov (United States)

    Song, Yun-Mi; Lee, Kayoung; Sung, Joohon

    2014-06-01

    We aimed to investigate the association between weight change from 20 years of age and insulin resistance (IR), and genetic and environmental relationships between these traits. In 594 Korean twins and family members (209 men, 385 women, 44.0 ± 10.8 years old), the percentage of weight change was calculated using self-reported body weight at 20 years of age and currently measured bodyweight. IR traits were assessed using fasting plasma glucose and insulin, the homeostasis model assessment of IR index (HOMA-IR), and the quantitative insulin sensitivity check index (QUICKI). Linear mixed analysis was applied after adjusting for household, body mass index (BMI) at the age of 20 years, age, sex, alcohol, smoking, physical activity, and caloric intake. Heritabilities and genetic and environmental correlations were estimated after adjusting for covariates. In 55 monozygotic twin pairs discordant for HOMA-IR level by >0.3, a conditional logistic regression analysis was conducted regarding weight change. Increases in glucose, insulin, and HOMA-IR and a decrease in QUICKI were associated with a higher percentage of weight change (p change since 20 years old, after adjusting for lifestyle-related factors. In conclusion, both genetic and environmental influences played significant roles in the positive association between weight change from 20 years of age and IR.

  2. Change in MS-DRG assignment and hospital reimbursement as a result of Centers for Medicare & Medicaid changes in payment for hospital-acquired conditions: is it coding or quality?

    Science.gov (United States)

    McNutt, Robert; Johnson, Tricia J; Odwazny, Richard; Remmich, Zachary; Skarupski, Kimberly; Meurer, Steven; Hohmann, Samuel; Harting, Brian

    2010-01-01

    In October 2008, the Centers for Medicare & Medicaid Services reduced payments to hospitals for a group of hospital-acquired conditions (HACs) not documented as present on admission (POA). It is unknown what proportion of Medicare severity diagnosis related group (MS-DRG) assignments will change when the International Classification of Disease, 9th Revision, Clinical Modification (ICD-9-CM) diagnosis code for the HAC is not taken into account even before considering the POA status. The primary objectives were to estimate the proportion of cases that change MS-DRG assignment when HACs are removed from the calculation, the subsequent changes in reimbursement to hospitals, and the attenuation in changes in MS-DRG assignment after factoring in those that may be POA. Last, we explored the effect of the numbers of ICD-9-CM diagnosis codes on MS-DRG assignment. We obtained 2 years of discharge data from academic medical centers that were members of the University Health System Consortium and identified all cases with 1 of 7 HACs coded through ICD-9-CM diagnosis codes. We calculated the MS-DRG for each case with and without the HAC and, hence, the proportion where MS-DRG assignment changed. Next, we used a bootstrap method to calculate the range in the proportion of cases changing assignment to account for POA status. Changes in reimbursement were estimated by using the 2008 MS-DRG weights payment formula. Of 184,932 cases with at least 1 HAC, 27.6% (n = 52,272) would experience a change in MS-DRG assignment without the HAC factored into the assignment. After taking into account those conditions that were potentially POA, 7.5% (n = 14,176) of the original cases would change MS-DRG assignment, with an average loss in reimbursement per case ranging from $1548 with a catheter-associated urinary tract infection to $7310 for a surgical site infection. These reductions would translate into a total reimbursement loss of $50 261,692 (range: $38 330,747-$62 344,360) for the 86

  3. Recent activities in accelerator code development

    International Nuclear Information System (INIS)

    Copper, R.K.; Ryne, R.D.

    1992-01-01

    In this paper we will review recent activities in the area of code development as it affects the accelerator community. We will first discuss the changing computing environment. We will review how the computing environment has changed in the last 10 years, with emphasis on computing power, operating systems, computer languages, graphics standards, and massively parallel processing. Then we will discuss recent code development activities in the areas of electromagnetics codes and beam dynamics codes

  4. Mutational analyses of molecularly cloned satellite tobacco mosaic virus during serial passage in plants: Evidence for hotspots of genetic change

    Science.gov (United States)

    Kurath, G.; Dodds, J.A.

    1995-01-01

    The high level of genetic diversity and rapid evolution of viral RNA genomes are well documented, but few studies have characterized the rate and nature of ongoing genetic change over time under controlled experimental conditions, especially in plant hosts. The RNA genome of satellite tobacco mosaic virus (STMV) was used as an effective model for such studies because of advantageous features of its genome structure and because the extant genetic heterogeneity of STMV has been characterized previously. In the present study, the process of genetic change over time was studied by monitoring multiple serial passage lines of STMV populations for changes in their consensus sequences. A total of 42 passage lines were initiated by inoculation of tobacco plants with a helper tobamovirus and one of four STMV RNA inocula that were transcribed from full-length infectious STMV clones or extracted from purified STMV type strain virions. Ten serial passages were carried out for each line and the consensus genotypes of progeny STMV populations were assessed for genetic change by RNase protection analyses of the entire 1,059-nt STMV genome. Three different types of genetic change were observed, including the fixation of novel mutations in 9 of 42 lines, mutation at the major heterogeneity site near nt 751 in 5 of the 19 lines inoculated with a single genotype, and selection of a single major genotype in 6 of the 23 lines inoculated with mixed genotypes. Sequence analyses showed that the majority of mutations were single base substitutions. The distribution of mutation sites included three clusters in which mutations occurred at or very near the same site, suggesting hot spots of genetic change in the STMV genome. The diversity of genetic changes in sibling lines is clear evidence for the important role of chance and random sampling events in the process of genetic diversification of STMV virus populations.

  5. Looping Genomes: Diagnostic Change and the Genetic Makeup of the Autism Population.

    Science.gov (United States)

    Navon, Daniel; Eyal, Gil

    2016-03-01

    This article builds on Hacking's framework of "dynamic nominalism" to show how knowledge about biological etiology can interact with the "kinds of people" delineated by diagnostic categories in ways that "loop" or modify both over time. The authors use historical materials to show how "geneticization" played a crucial role in binding together autism as a biosocial community and how evidence from genetics research later made an important contribution to the diagnostic expansion of autism. In the second part of the article, the authors draw on quantitative and qualitative analyses of autism rates over time in several rare conditions that are delineated strictly according to genomic mutations in order to demonstrate that these changes in diagnostic practice helped to both increase autism's prevalence and create its enormous genetic heterogeneity. Thus, a looping process that began with geneticization and involved the social effects of genetics research itself transformed the autism population and its genetic makeup.

  6. "Hour of Code": Can It Change Students' Attitudes toward Programming?

    Science.gov (United States)

    Du, Jie; Wimmer, Hayden; Rada, Roy

    2016-01-01

    The Hour of Code is a one-hour introduction to computer science organized by Code.org, a non-profit dedicated to expanding participation in computer science. This study investigated the impact of the Hour of Code on students' attitudes towards computer programming and their knowledge of programming. A sample of undergraduate students from two…

  7. Numeral series hidden in the distribution of atomic mass of amino acids to codon domains in the genetic code.

    Science.gov (United States)

    Wohlin, Åsa

    2015-03-21

    The distribution of codons in the nearly universal genetic code is a long discussed issue. At the atomic level, the numeral series 2x(2) (x=5-0) lies behind electron shells and orbitals. Numeral series appear in formulas for spectral lines of hydrogen. The question here was if some similar scheme could be found in the genetic code. A table of 24 codons was constructed (synonyms counted as one) for 20 amino acids, four of which have two different codons. An atomic mass analysis was performed, built on common isotopes. It was found that a numeral series 5 to 0 with exponent 2/3 times 10(2) revealed detailed congruency with codon-grouped amino acid side-chains, simultaneously with the division on atom kinds, further with main 3rd base groups, backbone chains and with codon-grouped amino acids in relation to their origin from glycolysis or the citrate cycle. Hence, it is proposed that this series in a dynamic way may have guided the selection of amino acids into codon domains. Series with simpler exponents also showed noteworthy correlations with the atomic mass distribution on main codon domains; especially the 2x(2)-series times a factor 16 appeared as a conceivable underlying level, both for the atomic mass and charge distribution. Furthermore, it was found that atomic mass transformations between numeral systems, possibly interpretable as dimension degree steps, connected the atomic mass of codon bases with codon-grouped amino acids and with the exponent 2/3-series in several astonishing ways. Thus, it is suggested that they may be part of a deeper reference system. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.

  8. I-Ching, dyadic groups of binary numbers and the geno-logic coding in living bodies.

    Science.gov (United States)

    Hu, Zhengbing; Petoukhov, Sergey V; Petukhova, Elena S

    2017-12-01

    The ancient Chinese book I-Ching was written a few thousand years ago. It introduces the system of symbols Yin and Yang (equivalents of 0 and 1). It had a powerful impact on culture, medicine and science of ancient China and several other countries. From the modern standpoint, I-Ching declares the importance of dyadic groups of binary numbers for the Nature. The system of I-Ching is represented by the tables with dyadic groups of 4 bigrams, 8 trigrams and 64 hexagrams, which were declared as fundamental archetypes of the Nature. The ancient Chinese did not know about the genetic code of protein sequences of amino acids but this code is organized in accordance with the I-Ching: in particularly, the genetic code is constructed on DNA molecules using 4 nitrogenous bases, 16 doublets, and 64 triplets. The article also describes the usage of dyadic groups as a foundation of the bio-mathematical doctrine of the geno-logic code, which exists in parallel with the known genetic code of amino acids but serves for a different goal: to code the inherited algorithmic processes using the logical holography and the spectral logic of systems of genetic Boolean functions. Some relations of this doctrine with the I-Ching are discussed. In addition, the ratios of musical harmony that can be revealed in the parameters of DNA structure are also represented in the I-Ching book. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Role of horizontal gene transfer as a control on the coevolution of ribosomal proteins and the genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Woese, Carl R.; Goldenfeld, Nigel; Luthey-Schulten, Zaida

    2011-03-31

    Our main goal is to develop the conceptual and computational tools necessary to understand the evolution of the universal processes of translation and replication and to identify events of horizontal gene transfer that occurred within the components. We will attempt to uncover the major evolutionary transitions that accompanied the development of protein synthesis by the ribosome and associated components of the translation apparatus. Our project goes beyond standard genomic approaches to explore homologs that are represented at both the structure and sequence level. Accordingly, use of structural phylogenetic analysis allows us to probe further back into deep evolutionary time than competing approaches, permitting greater resolution of primitive folds and structures. Specifically, our work focuses on the elements of translation, ranging from the emergence of the canonical genetic code to the evolution of specific protein folds, mediated by the predominance of horizontal gene transfer in early life. A unique element of this study is the explicit accounting for the impact of phenotype selection on translation, through a coevolutionary control mechanism. Our work contributes to DOE mission objectives through: (1) sophisticated computer simulation of protein dynamics and evolution, and the further refinement of techniques for structural phylogeny, which complement sequence information, leading to improved annotation of genomic databases; (2) development of evolutionary approaches to exploring cellular function and machinery in an integrated way; and (3) documentation of the phenotype interaction with translation over evolutionary time, reflecting the system response to changing selection pressures through horizontal gene transfer.

  10. User's manual for computer code RIBD-II, a fission product inventory code

    International Nuclear Information System (INIS)

    Marr, D.R.

    1975-01-01

    The computer code RIBD-II is used to calculate inventories, activities, decay powers, and energy releases for the fission products generated in a fuel irradiation. Changes from the earlier RIBD code are: the expansion to include up to 850 fission product isotopes, input in the user-oriented NAMELIST format, and run-time choice of fuels from an extensively enlarged library of nuclear data. The library that is included in the code package contains yield data for 818 fission product isotopes for each of fourteen different fissionable isotopes, together with fission product transmutation cross sections for fast and thermal systems. Calculational algorithms are little changed from those in RIBD. (U.S.)

  11. Something about Genetics in Psychiatry

    Directory of Open Access Journals (Sweden)

    Bakir Mehić

    2012-11-01

    of the brain functioning and connect them with the hereditary basis. An important advantage of the endophenotype evaluation is also, that it can work in small groups of respondents. Endophenotype evaluation includes an assessment of cognitive deficits, EEG abnormalities, and data obtained by the method of neuroimaging. Considering the current cognition about the genetics of psychiatric disorders, especially schizophrenia [2], it can be said that no single gene by itself causes brain dysfunction. Many gene variants that have proved to be risky for psychiatric disorders have also been found in many healthy individuals. Strength of correlation of the detected genetic polymorphisms is estimated to be relatively low. This means: COMT genes’ polymorphisms (catecho-O-methyltransferase, but also many other genes, modulate cognitive functions, but they do not represent the primary cause of disease[3],genetic risk variants for psychiatric disorders are also found in many healthy people,“Strength” of correlation of detected genetic polymorphisms and diseases is estimated as relative. Except for the primary sequence of nucleotides in our genome, there is also likely a hidden genetic code, which does not determine the sequence of amino acids in proteins, but it determines the time when a gene turns on or off (rewrites or not. The problem with this code is that it is more or less changeable. It is because of the modification of the genome (DNA. The modification with metillization of cytosine in CpG dinucleotide turns off the gene, whereas the acetylation of histones alters the structure of chromatin and turns on the genes. Epigenetics studies[4] such modifications of genomes. Epigenetics may explain the large variability of phenotypes in human population, and why monozygotic twins are not quite identical. They do not differ in the sequence of nucleotides in DNA, but they have different modifications of DNA, because they occur and change by the effect of environmental

  12. Rapid changes in genetic architecture of behavioural syndromes following colonization of a novel environment.

    Science.gov (United States)

    Karlsson Green, K; Eroukhmanoff, F; Harris, S; Pettersson, L B; Svensson, E I

    2016-01-01

    Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat-specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  13. On fuzzy semantic similarity measure for DNA coding.

    Science.gov (United States)

    Ahmad, Muneer; Jung, Low Tang; Bhuiyan, Md Al-Amin

    2016-02-01

    A coding measure scheme numerically translates the DNA sequence to a time domain signal for protein coding regions identification. A number of coding measure schemes based on numerology, geometry, fixed mapping, statistical characteristics and chemical attributes of nucleotides have been proposed in recent decades. Such coding measure schemes lack the biologically meaningful aspects of nucleotide data and hence do not significantly discriminate coding regions from non-coding regions. This paper presents a novel fuzzy semantic similarity measure (FSSM) coding scheme centering on FSSM codons׳ clustering and genetic code context of nucleotides. Certain natural characteristics of nucleotides i.e. appearance as a unique combination of triplets, preserving special structure and occurrence, and ability to own and share density distributions in codons have been exploited in FSSM. The nucleotides׳ fuzzy behaviors, semantic similarities and defuzzification based on the center of gravity of nucleotides revealed a strong correlation between nucleotides in codons. The proposed FSSM coding scheme attains a significant enhancement in coding regions identification i.e. 36-133% as compared to other existing coding measure schemes tested over more than 250 benchmarked and randomly taken DNA datasets of different organisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Subbaraj, P. [Kalasalingam University, Srivilliputhur, Tamilnadu 626 190 (India); Rengaraj, R. [Electrical and Electronics Engineering, S.S.N. College of Engineering, Old Mahabalipuram Road, Thirupporur (T.K), Kalavakkam, Kancheepuram (Dist.) 603 110, Tamilnadu (India); Salivahanan, S. [S.S.N. College of Engineering, Old Mahabalipuram Road, Thirupporur (T.K), Kalavakkam, Kancheepuram (Dist.) 603 110, Tamilnadu (India)

    2009-06-15

    In this paper, a self adaptive real-coded genetic algorithm (SARGA) is implemented to solve the combined heat and power economic dispatch (CHPED) problem. The self adaptation is achieved by means of tournament selection along with simulated binary crossover (SBX). The selection process has a powerful exploration capability by creating tournaments between two solutions. The better solution is chosen and placed in the mating pool leading to better convergence and reduced computational burden. The SARGA integrates penalty parameterless constraint handling strategy and simultaneously handles equality and inequality constraints. The population diversity is introduced by making use of distribution index in SBX operator to create a better offspring. This leads to a high diversity in population which can increase the probability towards the global optimum and prevent premature convergence. The SARGA is applied to solve CHPED problem with bounded feasible operating region which has large number of local minima. The numerical results demonstrate that the proposed method can find a solution towards the global optimum and compares favourably with other recent methods in terms of solution quality, handling constraints and computation time. (author)

  15. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. Amit Katiyar. Articles written in Journal of Genetics. Volume 92 Issue 3 December 2013 pp 363-368 Research Article. Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits.

  16. Trends in genetic patent applications: The commercialization of academic intellectual property

    NARCIS (Netherlands)

    Kers, J.G.; van Burg, J.C.; Stoop, T.; Cornel, M.C.

    2014-01-01

    We studied trends in genetic patent applications in order to identify the trends in the commercialization of research findings in genetics. To define genetic patent applications, the European version (ECLA) of the International Patent Classification (IPC) codes was used. Genetic patent applications

  17. Genomic hotspots for adaptation: the population genetics of Müllerian mimicry in Heliconius erato.

    Directory of Open Access Journals (Sweden)

    Brian A Counterman

    2010-02-01

    Full Text Available Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD, and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative

  18. Emergence of a code in the polymerization of amino acids along RNA templates.

    Directory of Open Access Journals (Sweden)

    Jean Lehmann

    2009-06-01

    Full Text Available The origin of the genetic code in the context of an RNA world is a major problem in the field of biophysical chemistry. In this paper, we describe how the polymerization of amino acids along RNA templates can be affected by the properties of both molecules. Considering a system without enzymes, in which the tRNAs (the translation adaptors are not loaded selectively with amino acids, we show that an elementary translation governed by a Michaelis-Menten type of kinetics can follow different polymerization regimes: random polymerization, homopolymerization and coded polymerization. The regime under which the system is running is set by the relative concentrations of the amino acids and the kinetic constants involved. We point out that the coding regime can naturally occur under prebiotic conditions. It generates partially coded proteins through a mechanism which is remarkably robust against non-specific interactions (mismatches between the adaptors and the RNA template. Features of the genetic code support the existence of this early translation system.

  19. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    Science.gov (United States)

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.

  20. A study on climatic adaptation of dipteran mitochondrial protein coding genes

    Directory of Open Access Journals (Sweden)

    Debajyoti Kabiraj

    2017-10-01

    Full Text Available Diptera, the true flies are frequently found in nature and their habitat is found all over the world including Antarctica and Polar Regions. The number of documented species for order diptera is quite high and thought to be 14% of the total animal present in the earth [1]. Most of the study in diptera has focused on the taxa of economic and medical importance, such as the fruit flies Ceratitis capitata and Bactrocera spp. (Tephritidae, which are serious agricultural pests; the blowflies (Calliphoridae and oestrid flies (Oestridae, which can cause myiasis; the anopheles mosquitoes (Culicidae, are the vectors of malaria; and leaf-miners (Agromyzidae, vegetable and horticultural pests [2]. Insect mitochondrion consists of 13 protein coding genes, 22 tRNAs and 2 rRNAs, are the remnant portion of alpha-proteobacteria is responsible for simultaneous function of energy production and thermoregulation of the cell through the bi-genomic system thus different adaptability in different climatic condition might have compensated by complementary changes is the both genomes [3,4]. In this study we have collected complete mitochondrial genome and occurrence data of one hundred thirteen such dipteran insects from different databases and literature survey. Our understanding of the genetic basis of climatic adaptation in diptera is limited to the basic information on the occurrence location of those species and mito genetic factors underlying changes in conspicuous phenotypes. To examine this hypothesis, we have taken an approach of Nucleotide substitution analysis for 13 protein coding genes of mitochondrial DNA individually and combined by different software for monophyletic group as well as paraphyletic group of dipteran species. Moreover, we have also calculated codon adaptation index for all dipteran mitochondrial protein coding genes. Following this work, we have classified our sample organisms according to their location data from GBIF (https

  1. Landscape genetics as a tool for conservation planning: predicting the effects of landscape change on gene flow.

    Science.gov (United States)

    van Strien, Maarten J; Keller, Daniela; Holderegger, Rolf; Ghazoul, Jaboury; Kienast, Felix; Bolliger, Janine

    2014-03-01

    For conservation managers, it is important to know whether landscape changes lead to increasing or decreasing gene flow. Although the discipline of landscape genetics assesses the influence of landscape elements on gene flow, no studies have yet used landscape-genetic models to predict gene flow resulting from landscape change. A species that has already been severely affected by landscape change is the large marsh grasshopper (Stethophyma grossum), which inhabits moist areas in fragmented agricultural landscapes in Switzerland. From transects drawn between all population pairs within maximum dispersal distance (landscape composition as well as some measures of habitat configuration. Additionally, a complete sampling of all populations in our study area allowed incorporating measures of population topology. These measures together with the landscape metrics formed the predictor variables in linear models with gene flow as response variable (F(ST) and mean pairwise assignment probability). With a modified leave-one-out cross-validation approach, we selected the model with the highest predictive accuracy. With this model, we predicted gene flow under several landscape-change scenarios, which simulated construction, rezoning or restoration projects, and the establishment of a new population. For some landscape-change scenarios, significant increase or decrease in gene flow was predicted, while for others little change was forecast. Furthermore, we found that the measures of population topology strongly increase model fit in landscape genetic analysis. This study demonstrates the use of predictive landscape-genetic models in conservation and landscape planning.

  2. Code of ethics: principles for ethical leadership.

    Science.gov (United States)

    Flite, Cathy A; Harman, Laurinda B

    2013-01-01

    The code of ethics for a professional association incorporates values, principles, and professional standards. A review and comparative analysis of a 1934 pledge and codes of ethics from 1957, 1977, 1988, 1998, 2004, and 2011 for a health information management association was conducted. Highlights of some changes in the healthcare delivery system are identified as a general context for the codes of ethics. The codes of ethics are examined in terms of professional values and changes in the language used to express the principles of the various codes.

  3. The materiality of Code

    DEFF Research Database (Denmark)

    Soon, Winnie

    2014-01-01

    This essay studies the source code of an artwork from a software studies perspective. By examining code that come close to the approach of critical code studies (Marino, 2006), I trace the network artwork, Pupufu (Lin, 2009) to understand various real-time approaches to social media platforms (MSN......, Twitter and Facebook). The focus is not to investigate the functionalities and efficiencies of the code, but to study and interpret the program level of code in order to trace the use of various technological methods such as third-party libraries and platforms’ interfaces. These are important...... to understand the socio-technical side of a changing network environment. Through the study of code, including but not limited to source code, technical specifications and other materials in relation to the artwork production, I would like to explore the materiality of code that goes beyond technical...

  4. Erasure Coded Storage on a Changing Network

    DEFF Research Database (Denmark)

    Sipos, Marton A.; Venkat, Narayan; Oran, David

    2016-01-01

    As faster storage devices become commercially viable alternatives to disk drives, the network is increasingly becoming the bottleneck in achieving good performance in distributed storage systems. This is especially true for erasure coded storage, where the reconstruction of lost data can signific...

  5. A Real-Coded Genetic Algorithm with System Reduction and Restoration for Rapid and Reliable Power Flow Solution of Power Systems

    Directory of Open Access Journals (Sweden)

    Hassan Abdullah Kubba

    2015-05-01

    Full Text Available The paper presents a highly accurate power flow solution, reducing the possibility of ending at local minima, by using Real-Coded Genetic Algorithm (RCGA with system reduction and restoration. The proposed method (RCGA is modified to reduce the total computing time by reducing the system in size to that of the generator buses, which, for any realistic system, will be smaller in number, and the load buses are eliminated. Then solving the power flow problem for the generator buses only by real-coded GA to calculate the voltage phase angles, whereas the voltage magnitudes are specified resulted in reduced computation time for the solution. Then the system is restored by calculating the voltages of the load buses in terms of the calculated voltages of the generator buses, after a derivation of equations for calculating the voltages of the load busbars. The proposed method was demonstrated on 14-bus IEEE test systems and the practical system 362-busbar IRAQI NATIONAL GRID (ING. The proposed method has reliable convergence, a highly accurate solution and less computing time for on-line applications. The method can conveniently be applied for on-line analysis and planning studies of large power systems.

  6. Present, past and future of the European rock fern Asplenium fontanum: combining distribution modelling and population genetics to study the effect of climate change on geographic range and genetic diversity.

    Science.gov (United States)

    Bystriakova, Nadia; Ansell, Stephen W; Russell, Stephen J; Grundmann, Michael; Vogel, Johannes C; Schneider, Harald

    2014-02-01

    Climate change is expected to alter the geographic range of many plant species dramatically. Predicting this response will be critical to managing the conservation of plant resources and the effects of invasive species. The aim of this study was to predict the response of temperate homosporous ferns to climate change. Genetic diversity and changes in distribution range were inferred for the diploid rock fern Asplenium fontanum along a South-North transect, extending from its putative last glacial maximum (LGM) refugia in southern France towards southern Germany and eastern-central France. This study reconciles observations from distribution models and phylogeographic analyses derived from plastid and nuclear diversity. Genetic diversity distribution and niche modelling propose that genetic diversity accumulates in the LGM climate refugium in southern France with the formation of a diversity gradient reflecting a slow, post-LGM range expansion towards the current distribution range. Evidence supports the fern's preference for outcrossing, contradicting the expectation that homosporous ferns would populate new sites by single-spore colonization. Prediction of climate and distribution range change suggests that a dramatic loss of range and genetic diversity in this fern is possible. The observed migration is best described by the phalanx expansion model. The results suggest that homosporous ferns reproducing preferentially by outcrossing accumulate genetic diversity primarily in LGM climate refugia and may be threatened if these areas disappear due to global climate change.

  7. Significant issues and changes for ANSI/ASME OM-1 1981, part 1, ASME OMc code-1994, and ASME OM Code-1995, Appendix I, inservice testing of pressure relief devices in light water reactor power plants

    Energy Technology Data Exchange (ETDEWEB)

    Seniuk, P.J.

    1996-12-01

    This paper identifies significant changes to the ANSI/ASME OM-1 1981, Part 1, and ASME Omc Code-1994 and ASME OM Code-1995, Appendix I, {open_quotes}Inservice Testing of Pressure Relief Devices in Light-Water Reactor Power Plants{close_quotes}. The paper describes changes to different Code editions and presents insights into the direction of the code committee and selected topics to be considered by the ASME O&M Working Group on pressure relief devices. These topics include scope issues, thermal relief valve issues, as-found and as-left set-pressure determinations, exclusions from testing, and cold setpoint bench testing. The purpose of this paper is to describe some significant issues being addressed by the O&M Working Group on Pressure Relief Devices (OM-1). The writer is currently the chair of OM-1 and the statements expressed herein represents his personal opinion.

  8. Significant issues and changes for ANSI/ASME OM-1 1981, part 1, ASME OMc code-1994, and ASME OM Code-1995, Appendix I, inservice testing of pressure relief devices in light water reactor power plants

    International Nuclear Information System (INIS)

    Seniuk, P.J.

    1996-01-01

    This paper identifies significant changes to the ANSI/ASME OM-1 1981, Part 1, and ASME Omc Code-1994 and ASME OM Code-1995, Appendix I, open-quotes Inservice Testing of Pressure Relief Devices in Light-Water Reactor Power Plantsclose quotes. The paper describes changes to different Code editions and presents insights into the direction of the code committee and selected topics to be considered by the ASME O ampersand M Working Group on pressure relief devices. These topics include scope issues, thermal relief valve issues, as-found and as-left set-pressure determinations, exclusions from testing, and cold setpoint bench testing. The purpose of this paper is to describe some significant issues being addressed by the O ampersand M Working Group on Pressure Relief Devices (OM-1). The writer is currently the chair of OM-1 and the statements expressed herein represents his personal opinion

  9. The impact of changing computing technology on EPRI [Electric Power Research Institute] nuclear analysis codes

    International Nuclear Information System (INIS)

    Breen, R.J.

    1988-01-01

    The Nuclear Reload Management Program of the Nuclear Power Division (NPD) of the Electric Power Research Institute (EPRI) has the responsibility for initiating and managing applied research in selected nuclear engineering analysis functions for nuclear utilities. The computer systems that result from the research projects consist of large FORTRAN programs containing elaborate computational algorithms used to access such areas as core physics, fuel performance, thermal hydraulics, and transient analysis. This paper summarizes a study of computing technology trends sponsored by the NPD. The approach taken was to interview hardware and software vendors, industry observers, and utility personnel focusing on expected changes that will occur in the computing industry over the next 3 to 5 yr. Particular emphasis was placed on how these changes will impact engineering/scientific computer code development, maintenance, and use. In addition to the interviews, a workshop was held with attendees from EPRI, Power Computing Company, industry, and utilities. The workshop provided a forum for discussing issues and providing input into EPRI's long-term computer code planning process

  10. Recent changes in code requirements for repair of in-service pipelines by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, W.A. [Edison Welding Inst., Columbus, OH (United States)

    2000-07-01

    Corrosion damage on pipelines represents the second most important cause of damage to natural gas pipelines in the United States. The area containing the corrosion damage must be reinforced to prevent the pipeline to rupture and from bulging. The predominant method of reinforcing corrosion damage in cross-country pipelines is to install a full-encirclement repair sleeve. The recent up-date of American Petroleum Institute (API) code requirement for repair of in-service pipelines by welding was published to provide a recommended practice for pipeline maintenance welding. The recent changes to the code are explained. The appendix B to the up-date is intended to alleviate redundancy between API 1104 and API 1107 and the time lag between up-dates, and to address technological advances made in the area of in-service welding. An alternative repair method of deposited weld metal, or weld deposition repair is briefly explained. 9 refs., 5 figs.

  11. Conceptual Approach to Forming the Basic Code of Neo-Industrial Development of a Region

    Directory of Open Access Journals (Sweden)

    Elena Leonidovna Andreeva

    2017-09-01

    Full Text Available In the article, the authors propose the conceptual fundamentals of the “code approach” to the regional neo-industrial development. The purpose of the research is to reveal the essence of the transition to a new type of industrial and economic relations through a prism of “genetic codes” of the region. We consider these codes as a system of the “racial memory” of a territory, which determines the specificity and features of neo-industrialization realization. We substantiated the hypothesis about the influence of the “genetic codes” of the region on the effectiveness of the neo-industrialization. We have defined the participants, or else the carriers of the codes in the transformation of regional inheritance for the stimulation of the neoindustrial development of region’s economy. The subject matter of the research is the distinctive features of the functioning of the determinative region’s codes. Their content determines the socio-economic specificity of the region and the features of innovative, informational, value-based and competence-based development of the territory. The determinative codes generate the dynamic codes of the region, which are understood as their derivatives. They have a high probability of occurrence, higher speed of development and distribution, internal forces that make possible the self-development of the region. The scientific contribution is the substantiation of the basic code of the regional neo-industrial development. It represents the evolutionary accumulation of the rapid changes of its innovative, informational, value-based and competence-based codes stimulating the generation and implementation of new ideas regarding to economic entities adapted to the historical and cultural conditions. The article presents the code model of neo-industrial development of the region described by formulas. We applied the system analysis methods, historical and civilization approaches, evolutionary and

  12. Preimplantation genetic screening.

    Science.gov (United States)

    Harper, Joyce C

    2018-03-01

    Preimplantation genetic diagnosis was first successfully performed in 1989 as an alternative to prenatal diagnosis for couples at risk of transmitting a genetic or chromosomal abnormality, such as cystic fibrosis, to their child. From embryos generated in vitro, biopsied cells are genetically tested. From the mid-1990s, this technology has been employed as an embryo selection tool for patients undergoing in vitro fertilisation, screening as many chromosomes as possible, in the hope that selecting chromosomally normal embryos will lead to higher implantation and decreased miscarriage rates. This procedure, preimplantation genetic screening, was initially performed using fluorescent in situ hybridisation, but 11 randomised controlled trials of screening using this technique showed no improvement in in vitro fertilisation delivery rates. Progress in genetic testing has led to the introduction of array comparative genomic hybridisation, quantitative polymerase chain reaction, and next generation sequencing for preimplantation genetic screening, and three small randomised controlled trials of preimplantation genetic screening using these new techniques indicate a modest benefit. Other trials are still in progress but, regardless of their results, preimplantation genetic screening is now being offered globally. In the near future, it is likely that sequencing will be used to screen the full genetic code of the embryo.

  13. The Coding of Biological Information: From Nucleotide Sequence to Protein Recognition

    Science.gov (United States)

    Štambuk, Nikola

    The paper reviews the classic results of Swanson, Dayhoff, Grantham, Blalock and Root-Bernstein, which link genetic code nucleotide patterns to the protein structure, evolution and molecular recognition. Symbolic representation of the binary addresses defining particular nucleotide and amino acid properties is discussed, with consideration of: structure and metric of the code, direct correspondence between amino acid and nucleotide information, and molecular recognition of the interacting protein motifs coded by the complementary DNA and RNA strands.

  14. Risk of genetic maladaptation due to climate change in three major European tree species

    Science.gov (United States)

    Aline Frank; Glenn T. Howe; Christoph Sperisen; Peter Brang; Brad St. Clair; Dirk R. Schmatz; Caroline Heiri

    2017-01-01

    Tree populations usually show adaptations to their local environments as a result of natural selection. As climates change, populations can become locally maladapted and decline in fitness. Evaluating the expected degree of genetic maladaptation due to climate change will allow forest managers to assess forest vulnerability, and develop strategies to preserve forest...

  15. Report number codes

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, R.N. (ed.)

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  16. Report number codes

    International Nuclear Information System (INIS)

    Nelson, R.N.

    1985-05-01

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name

  17. Meeting review. Uncovering the genetic basis of adaptive change: on the intersection of landscape genomics and theoretical population genetics.

    Science.gov (United States)

    Joost, Stéphane; Vuilleumier, Séverine; Jensen, Jeffrey D; Schoville, Sean; Leempoel, Kevin; Stucki, Sylvie; Widmer, Ivo; Melodelima, Christelle; Rolland, Jonathan; Manel, Stéphanie

    2013-07-01

    A workshop recently held at the École Polytechnique Fédérale de Lausanne (EPFL, Switzerland) was dedicated to understanding the genetic basis of adaptive change, taking stock of the different approaches developed in theoretical population genetics and landscape genomics and bringing together knowledge accumulated in both research fields. Indeed, an important challenge in theoretical population genetics is to incorporate effects of demographic history and population structure. But important design problems (e.g. focus on populations as units, focus on hard selective sweeps, no hypothesis-based framework in the design of the statistical tests) reduce their capability of detecting adaptive genetic variation. In parallel, landscape genomics offers a solution to several of these problems and provides a number of advantages (e.g. fast computation, landscape heterogeneity integration). But the approach makes several implicit assumptions that should be carefully considered (e.g. selection has had enough time to create a functional relationship between the allele distribution and the environmental variable, or this functional relationship is assumed to be constant). To address the respective strengths and weaknesses mentioned above, the workshop brought together a panel of experts from both disciplines to present their work and discuss the relevance of combining these approaches, possibly resulting in a joint software solution in the future.

  18. Changes to perceptions of the pros and cons of genetic susceptibility testing after APOE genotyping for Alzheimer disease risk

    Science.gov (United States)

    Christensen, Kurt D.; Roberts, J. Scott; Uhlmann, Wendy R.; Green, Robert C.

    2011-01-01

    Purpose Perceptions about the pros and cons of genetic susceptibility testing are among the best predictors of test utilization. How actual testing changes such perceptions has yet to be examined. Methods In a clinical trial, first-degree relatives of patients with Alzheimer disease received genetic risk assessments for Alzheimer disease including APOE disclosure. Participants rated 11 possible benefits associated with genetic testing (pros) and 10 risks or limitations (cons) before genetic risk disclosure and again 12 months afterward. Results Pros were rated higher than cons at baseline (3.53 vs. 1.83, P cons did not change (1.88 vs. 1.83, P = 0.199) except for a three-item discrimination subscale which increased (2.07 vs. 1.92, P = 0.012). Among specific pros and cons, three items related to prevention and treatment changed the most. Conclusion The process of APOE genetic risk assessment for Alzheimer disease sensitizes some to its limitations and the risks of discrimination; however, 1-year after disclosure, test recipients still consider the pros to strongly outweigh the cons. PMID:21270636

  19. Genetic influences on individual differences in longitudinal changes in global and subcortical brain volumes: Results of the ENIGMA plasticity working group.

    Science.gov (United States)

    Brouwer, Rachel M; Panizzon, Matthew S; Glahn, David C; Hibar, Derrek P; Hua, Xue; Jahanshad, Neda; Abramovic, Lucija; de Zubicaray, Greig I; Franz, Carol E; Hansell, Narelle K; Hickie, Ian B; Koenis, Marinka M G; Martin, Nicholas G; Mather, Karen A; McMahon, Katie L; Schnack, Hugo G; Strike, Lachlan T; Swagerman, Suzanne C; Thalamuthu, Anbupalam; Wen, Wei; Gilmore, John H; Gogtay, Nitin; Kahn, René S; Sachdev, Perminder S; Wright, Margaret J; Boomsma, Dorret I; Kremen, William S; Thompson, Paul M; Hulshoff Pol, Hilleke E

    2017-09-01

    Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h 2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. Quantum-genetic theory of the hafure of malignant tumors

    International Nuclear Information System (INIS)

    Ovsyannikov, V.A.

    1984-01-01

    It is shown, that all interactions, which can cause a transformation in genetic code of a cell, from energy viewpoint should possess quantum energy from 4 to 10 eV, i.e. they should be referred to radiations of UV range. All the reasons known presently, which cause initial carcinomas, are accompanied by UV radiation in the range. The mechanism of UV radiation interaction with living cells, mechanism of genetic code transformation and mechanism of appearance and development of initial and secondary carcinomas are considered

  1. Code Disentanglement: Initial Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wohlbier, John Greaton [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kelley, Timothy M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rockefeller, Gabriel M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Calef, Matthew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-01-27

    The first step to making more ambitious changes in the EAP code base is to disentangle the code into a set of independent, levelized packages. We define a package as a collection of code, most often across a set of files, that provides a defined set of functionality; a package a) can be built and tested as an entity and b) fits within an overall levelization design. Each package contributes one or more libraries, or an application that uses the other libraries. A package set is levelized if the relationships between packages form a directed, acyclic graph and each package uses only packages at lower levels of the diagram (in Fortran this relationship is often describable by the use relationship between modules). Independent packages permit independent- and therefore parallel|development. The packages form separable units for the purposes of development and testing. This is a proven path for enabling finer-grained changes to a complex code.

  2. Evaluating Changes in Omega-3 Fatty Acid Intake after Receiving Personal FADS1 Genetic Information: A Randomized Nutrigenetic Intervention

    Science.gov (United States)

    Roke, Kaitlin; Walton, Kathryn; Klingel, Shannon L.; Harnett, Amber; Subedi, Sanjeena; Haines, Jess; Mutch, David M.

    2017-01-01

    Nutrigenetics research is anticipated to lay the foundation for personalized dietary recommendations; however, it remains unclear if providing individuals with their personal genetic information changes dietary behaviors. Our objective was to evaluate if providing information for a common variant in the fatty acid desaturase 1 (FADS1) gene changed omega-3 fatty acid (FA) intake and blood levels in young female adults (18–25 years). Participants were randomized into Genetic (intervention) and Non-Genetic (control) groups, with measurements taken at Baseline and Final (12 weeks). Dietary intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) was assessed using an omega-3 food frequency questionnaire. Red blood cell (RBC) FA content was quantified by gas chromatography. Implications of participation in a nutrigenetics study and awareness of omega-3 FAs were assessed with online questionnaires. Upon completion of the study, EPA and DHA intake increased significantly (p = 1.0 × 10−4) in all participants. This change was reflected by small increases in RBC %EPA. Participants in the Genetic group showed increased awareness of omega-3 terminology by the end of the study, reported that the dietary recommendations were more useful, and rated cost as a barrier to omega-3 consumption less often than those in the Non-Genetic group. Providing participants FADS1 genetic information did not appear to influence omega-3 intake during the 12 weeks, but did change perceptions and behaviors related to omega-3 FAs in this timeframe. PMID:28272299

  3. Evaluating Changes in Omega-3 Fatty Acid Intake after Receiving Personal FADS1 Genetic Information: A Randomized Nutrigenetic Intervention

    Directory of Open Access Journals (Sweden)

    Kaitlin Roke

    2017-03-01

    Full Text Available Nutrigenetics research is anticipated to lay the foundation for personalized dietary recommendations; however, it remains unclear if providing individuals with their personal genetic information changes dietary behaviors. Our objective was to evaluate if providing information for a common variant in the fatty acid desaturase 1 (FADS1 gene changed omega-3 fatty acid (FA intake and blood levels in young female adults (18–25 years. Participants were randomized into Genetic (intervention and Non-Genetic (control groups, with measurements taken at Baseline and Final (12 weeks. Dietary intake of eicosapentaenoic acid (EPA and docosahexaenoic acid (DHA was assessed using an omega-3 food frequency questionnaire. Red blood cell (RBC FA content was quantified by gas chromatography. Implications of participation in a nutrigenetics study and awareness of omega-3 FAs were assessed with online questionnaires. Upon completion of the study, EPA and DHA intake increased significantly (p = 1.0 × 10−4 in all participants. This change was reflected by small increases in RBC %EPA. Participants in the Genetic group showed increased awareness of omega-3 terminology by the end of the study, reported that the dietary recommendations were more useful, and rated cost as a barrier to omega-3 consumption less often than those in the Non-Genetic group. Providing participants FADS1 genetic information did not appear to influence omega-3 intake during the 12 weeks, but did change perceptions and behaviors related to omega-3 FAs in this timeframe.

  4. Expression profile of genes coding for carotenoid biosynthetic ...

    Indian Academy of Sciences (India)

    Expression profile of genes coding for carotenoid biosynthetic pathway during ripening and their association with accumulation of lycopene in tomato fruits. Shuchi Smita, Ravi Rajwanshi, Sangram Keshari Lenka, Amit Katiyar, Viswanathan Chinnusamy and. Kailash Chander Bansal. J. Genet. 92, 363–368. Table 1.

  5. Health Impact Assessment (HIA) of Proposed Code Changes Regarding Onsite Sewage Disposal Systems in Suffolk County, NY

    Science.gov (United States)

    The U.S. Environmental Protection Agency (EPA) conducted a Health Impact Assessment (HIA) of proposed code changes regarding residential onsite sewage disposal systems (OSDS) in Suffolk County, New York. Of the approximately 569,000 housing units in Suffolk County, 365,000 are no...

  6. A SNP panel and online tool for checking genotype concordance through comparing QR codes.

    Directory of Open Access Journals (Sweden)

    Yonghong Du

    Full Text Available In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech, nicknamed QRC (for QR code based Concordance check, which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine.

  7. A SNP panel and online tool for checking genotype concordance through comparing QR codes.

    Science.gov (United States)

    Du, Yonghong; Martin, Joshua S; McGee, John; Yang, Yuchen; Liu, Eric Yi; Sun, Yingrui; Geihs, Matthias; Kong, Xuejun; Zhou, Eric Lingfeng; Li, Yun; Huang, Jie

    2017-01-01

    In the current precision medicine era, more and more samples get genotyped and sequenced. Both researchers and commercial companies expend significant time and resources to reduce the error rate. However, it has been reported that there is a sample mix-up rate of between 0.1% and 1%, not to mention the possibly higher mix-up rate during the down-stream genetic reporting processes. Even on the low end of this estimate, this translates to a significant number of mislabeled samples, especially over the projected one billion people that will be sequenced within the next decade. Here, we first describe a method to identify a small set of Single nucleotide polymorphisms (SNPs) that can uniquely identify a personal genome, which utilizes allele frequencies of five major continental populations reported in the 1000 genomes project and the ExAC Consortium. To make this panel more informative, we added four SNPs that are commonly used to predict ABO blood type, and another two SNPs that are capable of predicting sex. We then implement a web interface (http://qrcme.tech), nicknamed QRC (for QR code based Concordance check), which is capable of extracting the relevant ID SNPs from a raw genetic data, coding its genotype as a quick response (QR) code, and comparing QR codes to report the concordance of underlying genetic datasets. The resulting 80 fingerprinting SNPs represent a significant decrease in complexity and the number of markers used for genetic data labelling and tracking. Our method and web tool is easily accessible to both researchers and the general public who consider the accuracy of complex genetic data as a prerequisite towards precision medicine.

  8. Evolving a Dynamic Predictive Coding Mechanism for Novelty Detection

    OpenAIRE

    Haggett, Simon J.; Chu, Dominique; Marshall, Ian W.

    2007-01-01

    Novelty detection is a machine learning technique which identifies new or unknown information in data sets. We present our current work on the construction of a new novelty detector based on a dynamical version of predictive coding. We compare three evolutionary algorithms, a simple genetic algorithm, NEAT and FS-NEAT, for the task of optimising the structure of an illustrative dynamic predictive coding neural network to improve its performance over stimuli from a number of artificially gener...

  9. The Genomic Code: Genome Evolution and Potential Applications

    KAUST Repository

    Bernardi, Giorgio

    2016-01-25

    The genome of metazoans is organized according to a genomic code which comprises three laws: 1) Compositional correlations hold between contiguous coding and non-coding sequences, as well as among the three codon positions of protein-coding genes; these correlations are the consequence of the fact that the genomes under consideration consist of fairly homogeneous, long (≥200Kb) sequences, the isochores; 2) Although isochores are defined on the basis of purely compositional properties, GC levels of isochores are correlated with all tested structural and functional properties of the genome; 3) GC levels of isochores are correlated with chromosome architecture from interphase to metaphase; in the case of interphase the correlation concerns isochores and the three-dimensional “topological associated domains” (TADs); in the case of mitotic chromosomes, the correlation concerns isochores and chromosomal bands. Finally, the genomic code is the fourth and last pillar of molecular biology, the first three pillars being 1) the double helix structure of DNA; 2) the regulation of gene expression in prokaryotes; and 3) the genetic code.

  10. Optical code division multiple access secure communications systems with rapid reconfigurable polarization shift key user code

    Science.gov (United States)

    Gao, Kaiqiang; Wu, Chongqing; Sheng, Xinzhi; Shang, Chao; Liu, Lanlan; Wang, Jian

    2015-09-01

    An optical code division multiple access (OCDMA) secure communications system scheme with rapid reconfigurable polarization shift key (Pol-SK) bipolar user code is proposed and demonstrated. Compared to fix code OCDMA, by constantly changing the user code, the performance of anti-eavesdropping is greatly improved. The Pol-SK OCDMA experiment with a 10 Gchip/s user code and a 1.25 Gb/s user data of payload has been realized, which means this scheme has better tolerance and could be easily realized.

  11. Coded diffraction system in X-ray crystallography using a boolean phase coded aperture approximation

    Science.gov (United States)

    Pinilla, Samuel; Poveda, Juan; Arguello, Henry

    2018-03-01

    Phase retrieval is a problem present in many applications such as optics, astronomical imaging, computational biology and X-ray crystallography. Recent work has shown that the phase can be better recovered when the acquisition architecture includes a coded aperture, which modulates the signal before diffraction, such that the underlying signal is recovered from coded diffraction patterns. Moreover, this type of modulation effect, before the diffraction operation, can be obtained using a phase coded aperture, just after the sample under study. However, a practical implementation of a phase coded aperture in an X-ray application is not feasible, because it is computationally modeled as a matrix with complex entries which requires changing the phase of the diffracted beams. In fact, changing the phase implies finding a material that allows to deviate the direction of an X-ray beam, which can considerably increase the implementation costs. Hence, this paper describes a low cost coded X-ray diffraction system based on block-unblock coded apertures that enables phase reconstruction. The proposed system approximates the phase coded aperture with a block-unblock coded aperture by using the detour-phase method. Moreover, the SAXS/WAXS X-ray crystallography software was used to simulate the diffraction patterns of a real crystal structure called Rhombic Dodecahedron. Additionally, several simulations were carried out to analyze the performance of block-unblock approximations in recovering the phase, using the simulated diffraction patterns. Furthermore, the quality of the reconstructions was measured in terms of the Peak Signal to Noise Ratio (PSNR). Results show that the performance of the block-unblock phase coded apertures approximation decreases at most 12.5% compared with the phase coded apertures. Moreover, the quality of the reconstructions using the boolean approximations is up to 2.5 dB of PSNR less with respect to the phase coded aperture reconstructions.

  12. Sparse coding can predict primary visual cortex receptive field changes induced by abnormal visual input.

    Science.gov (United States)

    Hunt, Jonathan J; Dayan, Peter; Goodhill, Geoffrey J

    2013-01-01

    Receptive fields acquired through unsupervised learning of sparse representations of natural scenes have similar properties to primary visual cortex (V1) simple cell receptive fields. However, what drives in vivo development of receptive fields remains controversial. The strongest evidence for the importance of sensory experience in visual development comes from receptive field changes in animals reared with abnormal visual input. However, most sparse coding accounts have considered only normal visual input and the development of monocular receptive fields. Here, we applied three sparse coding models to binocular receptive field development across six abnormal rearing conditions. In every condition, the changes in receptive field properties previously observed experimentally were matched to a similar and highly faithful degree by all the models, suggesting that early sensory development can indeed be understood in terms of an impetus towards sparsity. As previously predicted in the literature, we found that asymmetries in inter-ocular correlation across orientations lead to orientation-specific binocular receptive fields. Finally we used our models to design a novel stimulus that, if present during rearing, is predicted by the sparsity principle to lead robustly to radically abnormal receptive fields.

  13. Changes in alanine turnover rate due to nutritional and genetic obesity in the rat.

    Science.gov (United States)

    Yebras, M; Salvadó, J; Arola, L; Remesar, X; Segués, T

    1994-08-01

    The changes in alanine turnover were determined in Zucker rats, which were either genetically obese (fa/fa) or rendered obese by dietary treatment (cafeteria fed). The whole body rate of alanine turnover was higher in genetically obese rats than in rats in which obesity was induced by diet (cafeteria). This is possibly due to variations in the rate of the amino acid incorporation into proteins, since the rate of whole body alanine degradation is the same for both groups. Thus, the different pattern followed by alanine turnover rate in these types of obese animals reflects the differences in the nitrogen economy of these animals, pointing to a higher alanine utilization in the genetically obese animals and a conservative management of alanine in the cafeteria-fed animals.

  14. A novel neutron energy spectrum unfolding code using particle swarm optimization

    International Nuclear Information System (INIS)

    Shahabinejad, H.; Sohrabpour, M.

    2017-01-01

    A novel neutron Spectrum Deconvolution using Particle Swarm Optimization (SDPSO) code has been developed to unfold the neutron spectrum from a pulse height distribution and a response matrix. The Particle Swarm Optimization (PSO) imitates the bird flocks social behavior to solve complex optimization problems. The results of the SDPSO code have been compared with those of the standard spectra and recently published Two-steps Genetic Algorithm Spectrum Unfolding (TGASU) code. The TGASU code have been previously compared with the other codes such as MAXED, GRAVEL, FERDOR and GAMCD and shown to be more accurate than the previous codes. The results of the SDPSO code have been demonstrated to match well with those of the TGASU code for both under determined and over-determined problems. In addition the SDPSO has been shown to be nearly two times faster than the TGASU code. - Highlights: • Introducing a novel method for neutron spectrum unfolding. • Implementation of a particle swarm optimization code for neutron unfolding. • Comparing results of the PSO code with those of recently published TGASU code. • Match results of the PSO code with those of TGASU code. • Greater convergence rate of implemented PSO code than TGASU code.

  15. Genetic programming in microorganisms

    Energy Technology Data Exchange (ETDEWEB)

    Hopwood, D A

    1981-11-01

    Formerly, when microbiologists had only existing organisms at their disposal whose characteristics could only be changed randomly by genetic experiments, they used to dream of programmed genetic changes. This dream has come true with modern genetic engineering.

  16. Nondestructive testing standards and the ASME code

    International Nuclear Information System (INIS)

    Spanner, J.C.

    1991-04-01

    Nondestructive testing (NDT) requirements and standards are an important part of the ASME Boiler and Pressure Vessel Code. In this paper, the evolution of these requirements and standards is reviewed in the context of the unique technical and legal stature of the ASME Code. The coherent and consistent manner by which the ASME Code rules are organized is described, and the interrelationship between the various ASME Code sections, the piping codes, and the ASTM Standards is discussed. Significant changes occurred in ASME Sections 5 and 11 during the 1980s, and these are highlighted along with projections and comments regarding future trends and changes in these important documents. 4 refs., 8 tabs

  17. Optical network security using unipolar Walsh code

    Science.gov (United States)

    Sikder, Somali; Sarkar, Madhumita; Ghosh, Shila

    2018-04-01

    Optical code-division multiple-access (OCDMA) is considered as a good technique to provide optical layer security. Many research works have been published to enhance optical network security by using optical signal processing. The paper, demonstrates the design of the AWG (arrayed waveguide grating) router-based optical network for spectral-amplitude-coding (SAC) OCDMA networks with Walsh Code to design a reconfigurable network codec by changing signature codes to against eavesdropping. In this paper we proposed a code reconfiguration scheme to improve the network access confidentiality changing the signature codes by cyclic rotations, for OCDMA system. Each of the OCDMA network users is assigned a unique signature code to transmit the information and at the receiving end each receiver correlates its own signature pattern a(n) with the receiving pattern s(n). The signal arriving at proper destination leads to s(n)=a(n).

  18. Remediating Viking Origins: Genetic Code as Archival Memory of the Remote Past.

    Science.gov (United States)

    Scully, Marc; King, Turi; Brown, Steven D

    2013-10-01

    This article introduces some early data from the Leverhulme Trust-funded research programme, 'The Impact of the Diasporas on the Making of Britain: evidence, memories, inventions'. One of the interdisciplinary foci of the programme, which incorporates insights from genetics, history, archaeology, linguistics and social psychology, is to investigate how genetic evidence of ancestry is incorporated into identity narratives. In particular, we investigate how 'applied genetic history' shapes individual and familial narratives, which are then situated within macro-narratives of the nation and collective memories of immigration and indigenism. It is argued that the construction of genetic evidence as a 'gold standard' about 'where you really come from' involves a remediation of cultural and archival memory, in the construction of a 'usable past'. This article is based on initial questionnaire data from a preliminary study of those attending DNA collection sessions in northern England. It presents some early indicators of the perceived importance of being of Viking descent among participants, notes some emerging patterns and considers the implications for contemporary debates on migration, belonging and local and national identity.

  19. Discovery of coding genetic variants influencing diabetes-related serum biomarkers and their impact on risk of type 2 diabetes

    DEFF Research Database (Denmark)

    Ahluwalia, Tarun Veer Singh; Allin, Kristine Højgaard; Sandholt, Camilla Helene

    2015-01-01

    CONTEXT: Type 2 diabetes (T2D) prevalence is spiraling globally, and knowledge of its pathophysiological signatures is crucial for a better understanding and treatment of the disease. OBJECTIVE: We aimed to discover underlying coding genetic variants influencing fasting serum levels of nine......-nucleotide polymorphisms and were tested for association with each biomarker. Identified loci were tested for association with T2D through a large-scale meta-analysis involving up to 17 024 T2D cases and up to 64 186 controls. RESULTS: We discovered 11 associations between single-nucleotide polymorphisms and five distinct......, of which the association with the CELSR2 locus has not been shown previously. CONCLUSION: The identified loci influence processes related to insulin signaling, cell communication, immune function, apoptosis, DNA repair, and oxidative stress, all of which could provide a rationale for novel diabetes...

  20. Development of a graphical interface computer code for reactor fuel reloading optimization

    International Nuclear Information System (INIS)

    Do Quang Binh; Nguyen Phuoc Lan; Bui Xuan Huy

    2007-01-01

    This report represents the results of the project performed in 2007. The aim of this project is to develop a graphical interface computer code that allows refueling engineers to design fuel reloading patterns for research reactor using simulated graphical model of reactor core. Besides, this code can perform refueling optimization calculations based on genetic algorithms as well as simulated annealing. The computer code was verified based on a sample problem, which relies on operational and experimental data of Dalat research reactor. This code can play a significant role in in-core fuel management practice at nuclear research reactor centers and in training. (author)

  1. Analyzing the loss of coolant accident in PWR nuclear reactors with elevation change in cold leg by RELAP5/MOD3.2 system code

    International Nuclear Information System (INIS)

    Kheshtpaz, H.; Alison, C.

    2006-01-01

    As, the Russian designed VVER-1000 reactor of the Bushehr Nuclear Power Plant by taking into account the change from German technology to that of Russian technology, and with the design of elevation change in the cold legs has been developed; therefore safety assessment of these systems for loss of coolant accident in elevation change in the cold legs and comparison results for non change elevation in the cold legs for a typical reactor (normal design of nuclear reactors) is the main important factor to be considered for the safe operation. In this article, the main objective is the simulation of the loss of coolant accident scenario by the RELAP5/MOD3.2 code in two different cases; first, the elevation change in the cold legs, and the second, non change in it. After comparing and analyzing these two code calculations the results have been generalized for a new design feature of Bushehr reactor. The design and simulation of the elevation change in the cold legs process with RELAP5/MOD3.2 code for PWR reactor is performed for the first time in the country, where it is introducing several important results in this respect

  2. Land use, climate parameters and water quality changes at surroundings of Code River, Indonesia

    Science.gov (United States)

    Muryanto; Suntoro; Gunawan, T.; Setyono, P.

    2018-03-01

    Regional development of an area has the potential of adverse impact on land use, vegetation, or green space. The reduction of green open space is known to contribute to global warming. According to the Intergovernmental Panel on Climate Change (IPCC), global warming has become a serious and significant phenomenon in human life. It affects not only ecological environment but also social and cultural environment. Global warming is a rise in global annual temperature due to, one of which, greenhouse gases. The purpose of this research is to determine the effects of land use change on water pollution and climate parameters at Code river. The results showed that Code River is experiencing land use conversion. Rice field was the most extensively reduced land use, by 467.496 ha. Meanwhile, the other land uses, namely plantation, grass, and forest, were reduced by 111.475 ha, 31.218 ha, and 1.307 ha, respectively. The least converted land use was bushed, whose decreased 0.403 ha. The land use conversion in the study area deteriorated the water quality of river, as proven by the increasing trend of COD and BOD from 2012 to 2016. The COD from 2012 to 2016 was 14, 16.6, 18.7, 22.5, and 22.8 ppm, respectively. Meanwhile, the BOD from the same observation years was 6, 7.2, 8.9, 9.3, and 10.3 ppm, respectively.

  3. Calculations of void swelling in Type 316 stainless steel after a temperature change using the VS8 code

    International Nuclear Information System (INIS)

    Windsor, M.E.; Matthews, J.R.

    1985-06-01

    The report compares measurements made by Norris and Buswell of void swelling in irradiated Type 316 steel after a temperature change from 475 to 575 C, and vice versa, with calculated swelling using the VS8 FACSIMILE code. (author)

  4. Office of Codes and Standards resource book. Section 1, Building energy codes and standards

    Energy Technology Data Exchange (ETDEWEB)

    Hattrup, M.P.

    1995-01-01

    The US Department of Energy`s (DOE`s) Office of Codes and Standards has developed this Resource Book to provide: A discussion of DOE involvement in building codes and standards; a current and accurate set of descriptions of residential, commercial, and Federal building codes and standards; information on State contacts, State code status, State building construction unit volume, and State needs; and a list of stakeholders in the building energy codes and standards arena. The Resource Book is considered an evolving document and will be updated occasionally. Users are requested to submit additional data (e.g., more current, widely accepted, and/or documented data) and suggested changes to the address listed below. Please provide sources for all data provided.

  5. Orthogonal transformations for change detection, Matlab code (ENVI-like headers)

    DEFF Research Database (Denmark)

    2007-01-01

    Matlab code to do (iteratively reweighted) multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data; accommodates ENVI (like) header files.......Matlab code to do (iteratively reweighted) multivariate alteration detection (MAD) analysis, maximum autocorrelation factor (MAF) analysis, canonical correlation analysis (CCA) and principal component analysis (PCA) on image data; accommodates ENVI (like) header files....

  6. An RNA Phage Lab: MS2 in Walter Fiers' laboratory of molecular biology in Ghent, from genetic code to gene and genome, 1963-1976.

    Science.gov (United States)

    Pierrel, Jérôme

    2012-01-01

    The importance of viruses as model organisms is well-established in molecular biology and Max Delbrück's phage group set standards in the DNA phage field. In this paper, I argue that RNA phages, discovered in the 1960s, were also instrumental in the making of molecular biology. As part of experimental systems, RNA phages stood for messenger RNA (mRNA), genes and genome. RNA was thought to mediate information transfers between DNA and proteins. Furthermore, RNA was more manageable at the bench than DNA due to the availability of specific RNases, enzymes used as chemical tools to analyse RNA. Finally, RNA phages provided scientists with a pure source of mRNA to investigate the genetic code, genes and even a genome sequence. This paper focuses on Walter Fiers' laboratory at Ghent University (Belgium) and their work on the RNA phage MS2. When setting up his Laboratory of Molecular Biology, Fiers planned a comprehensive study of the virus with a strong emphasis on the issue of structure. In his lab, RNA sequencing, now a little-known technique, evolved gradually from a means to solve the genetic code, to a tool for completing the first genome sequence. Thus, I follow the research pathway of Fiers and his 'RNA phage lab' with their evolving experimental system from 1960 to the late 1970s. This study illuminates two decisive shifts in post-war biology: the emergence of molecular biology as a discipline in the 1960s in Europe and of genomics in the 1990s.

  7. Increasing asthma mortality in Denmark 1969-88 not a result of a changed coding practice

    DEFF Research Database (Denmark)

    Juel, K; Pedersen, P A

    1992-01-01

    We have studied asthma mortality in Denmark from 1969 to 1988. Age standardized mortality rates calculated in three age groups, 10-34, 35-59, and greater than or equal to 60 years, disclosed similar trends. Increasing mortality from asthma in the mid-1970s to 1988 was seen in all three age groups...... with higher mortality in 1979-88 as compared with 1969-78 of 95%, 55%, and 69%, respectively. Since the eighth revision of the International Classification of Diseases (ICD8) was used in Denmark over the entire 20-year period, changes in coding practice due to change of classification system cannot explain...

  8. Integrating population and genetic monitoring to understand changes in the abundance of a threatened seabird

    Science.gov (United States)

    Catalina Vásquez-Carrillo; R. William Henry; Laird Henkel; M. Zachariah. Peery

    2013-01-01

    Population monitoring programs for threatened species are rarely designed to disentangle the effects of movements from changes in birth and death rates on estimated trends in abundance. Here, we illustrate how population and genetic monitoring can be integrated to understand the cause of large changes in the abundance of a threatened species of seabird, the Marbled...

  9. Quality assurance procedures for the CONTAIN severe reactor accident computer code

    International Nuclear Information System (INIS)

    Russell, N.A.; Washington, K.E.; Bergeron, K.D.; Murata, K.K.; Carroll, D.E.; Harris, C.L.

    1991-01-01

    The CONTAIN quality assurance program follows a strict set of procedures designed to ensure the integrity of the code, to avoid errors in the code, and to prolong the life of the code. The code itself is maintained under a code-configuration control system that provides a historical record of changes. All changes are incorporated using an update processor that allows separate identification of improvements made to each successive code version. Code modifications and improvements are formally reviewed and checked. An exhaustive, multilevel test program validates the theory and implementation of all codes changes through assessment calculations that compare the code-predicted results to standard handbooks of idealized test cases. A document trail and archive establish the problems solved by the software, the verification and validation of the software, software changes and subsequent reverification and revalidation, and the tracking of software problems and actions taken to resolve those problems. This document describes in detail the CONTAIN quality assurance procedures. 4 refs., 21 figs., 4 tabs

  10. Genetic variability of the pattern of night melatonin blood levels in relation to coat changes development in rabbits

    Directory of Open Access Journals (Sweden)

    Chemineau Philippe

    2004-03-01

    Full Text Available Abstract To assess the genetic variability in both the nocturnal increase pattern of melatonin concentration and photoresponsiveness in coat changes, an experiment on 422 Rex rabbits (from 23 males raised under a constant light programme from birth was performed. The animals were sampled at 12 weeks of age, according to 4 periods over a year. Blood samples were taken 7 times during the dark phase and up to 1 h after the lighting began. Maturity of the fur was assessed at pelting. Heritability estimates of blood melatonin concentration (0.42, 0.17 and 0.11 at mid-night, 13 and 15 h after lights-out respectively and strong genetic correlations between fur maturity and melatonin levels at the end of the dark phase (-0.64 indicates that (i the variability of the nocturnal pattern of melatonin levels is under genetic control and (ii the duration of the nocturnal melatonin increase is a genetic component of photoresponsiveness in coat changes.

  11. Coding in Stroke and Other Cerebrovascular Diseases.

    Science.gov (United States)

    Korb, Pearce J; Jones, William

    2017-02-01

    Accurate coding is critical for clinical practice and research. Ongoing changes to diagnostic and billing codes require the clinician to stay abreast of coding updates. Payment for health care services, data sets for health services research, and reporting for medical quality improvement all require accurate administrative coding. This article provides an overview of coding principles for patients with strokes and other cerebrovascular diseases and includes an illustrative case as a review of coding principles in a patient with acute stroke.

  12. Debarring from succession – Comparing the regulations of the former civil code and the New Civil Code from 2009

    Directory of Open Access Journals (Sweden)

    Ioana NICOLAE

    2012-01-01

    Full Text Available This paper presents the changes in the legal framework regarding succession issue. These changes have been examined in light of three hypotheses arising from the former Civil Code. The distinction between judiciary debarring and lawful debarring introduced by the New Civil Code from 2009 is also presented. The conditions for cancelling the effects of debarring from succession stipulated by the New Civil Code are explained. Finally, several legal circumstances for declaring a person unworthy of succession are comparatively presented.

  13. Gap Conductance model Validation in the TASS/SMR-S code using MARS code

    International Nuclear Information System (INIS)

    Ahn, Sang Jun; Yang, Soo Hyung; Chung, Young Jong; Lee, Won Jae

    2010-01-01

    Korea Atomic Energy Research Institute (KAERI) has been developing the TASS/SMR-S (Transient and Setpoint Simulation/Small and Medium Reactor) code, which is a thermal hydraulic code for the safety analysis of the advanced integral reactor. An appropriate work to validate the applicability of the thermal hydraulic models within the code should be demanded. Among the models, the gap conductance model which is describes the thermal gap conductivity between fuel and cladding was validated through the comparison with MARS code. The validation of the gap conductance model was performed by evaluating the variation of the gap temperature and gap width as the changed with the power fraction. In this paper, a brief description of the gap conductance model in the TASS/SMR-S code is presented. In addition, calculated results to validate the gap conductance model are demonstrated by comparing with the results of the MARS code with the test case

  14. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics

    Science.gov (United States)

    Merelo, Veronica; Durand, Dante; Lescallette, Adam R.; Vrana, Kent E.; Hong, L. Elliot; Faghihi, Mohammad Ali; Bellon, Alfredo

    2015-01-01

    Several lines of evidence indicate that schizophrenia has a strong genetic component. But the exact nature and functional role of this genetic component in the pathophysiology of this mental illness remains a mystery. Long non-coding RNAs (lncRNAs) are a recently discovered family of molecules that regulate gene transcription through a variety of means. Consequently, lncRNAs could help us bring together apparent unrelated findings in schizophrenia; namely, genomic deficiencies on one side and neuroimaging, as well as postmortem results on the other. In fact, the most consistent finding in schizophrenia is decreased brain size together with enlarged ventricles. This anomaly appears to originate from shorter and less ramified dendrites and axons. But a decrease in neuronal arborizations cannot explain the complex pathophysiology of this psychotic disorder; however, dynamic changes in neuronal structure present throughout life could. It is well recognized that the structure of developing neurons is extremely plastic. This structural plasticity was thought to stop with brain development. However, breakthrough discoveries have shown that neuronal structure retains some degree of plasticity throughout life. What the neuroscientific field is still trying to understand is how these dynamic changes are regulated and lncRNAs represent promising candidates to fill this knowledge gap. Here, we present evidence that associates specific lncRNAs with schizophrenia. We then discuss the potential role of lncRNAs in neurostructural dynamics. Finally, we explain how dynamic neurostructural modifications present throughout life could, in theory, reconcile apparent unrelated findings in schizophrenia. PMID:26483630

  15. [Far Eastern mullet Mugil soiuy Basilewsky (Mugilidae, Mugiliformes): the genetic structure of populations and its change under acclimatization].

    Science.gov (United States)

    Omel'chenko, V T; Salmenkova, E A; Makhotkin, M A; Romanov, N S; Altukhov, Iu P; Dudkin, S I; Dekhta, V A; Rubtsova, G A; Kovalev, M Iu

    2004-08-01

    The introduction of Far Eastern mullet (pilengas) in the Azov Sea in the 1970s-1980s has resulted in the formation of a self-reproducing commercial population. We have carried out a comparative population-genetic analysis of the mullet from the native (Primorye, the Sea of Japan basin) and the new (The Azov Sea basin) ranges. Genetic characteristics of three Primorye and three Azov local samples were studied using electrophoretic analysis of 15 enzymes encoded by 21 gene loci. In the Azov mullet, the initial heterozygosity characteristic of the donor population was preserved while the genotype and the allele compositions changed; the changes included a 1.9-fold reduction in the percentage of polymorphic loci and 1.5-fold reduction in the mean number of alleles per locus. The genetic differences between the Azov and the Primorye sample groups were highly significant. In the native range, no genetic differentiation among the mullet samples from different areas was found (Gst = 0.42%), whereas in the Azov Sea basin, the samples from spatially isolated populations (ecological groups) exhibited genetic differences (Gst = 1.38). The genetic divergence of the subpopulations and the excess of heterozygotes at some loci in the Azov mullet suggest selection processes that formed genetically divergent groups associated with the areas of different salinity in the new range. The salinity level is assumed to be the most probable factor of local differentiating selection during fast adaptation and naturalization of the introduced mullet.

  16. Use of genetic algorithms for optimization of subchannel simulations

    International Nuclear Information System (INIS)

    Nava Dominguez, A.

    2004-01-01

    To facilitate the modeling of a rod fuel bundle, the most common used method consist in dividing the complex cross-sectional area in small subsections called subchannels. To close the system equations, a mixture model is used to represent the intersubchannel interactions. These interactions are as follows: diversion cross-flow, turbulent void diffusion, void drift and buoyancy drift. Amongst these mechanisms, the turbulent void diffusion and void drift are frequently modelled using diffusion coefficients. In this work, a novel approach has been employed where an existing subchannel code coupled to a genetic algorithm code which were used to optimize these coefficients. After several numerical simulations, a new objective function based in the principle of minimum dissipated energy was developed. The use of this function in the genetic algorithm coupled to the subchannel code, gave results in good agreement with the experimental data

  17. Assessment of genetic mutations in the XRCC2 coding region by high resolution melting curve analysis and the risk of differentiated thyroid carcinoma in Iran

    Directory of Open Access Journals (Sweden)

    Shima Fayaz

    2012-01-01

    Full Text Available Homologous recombination (HR is the major pathway for repairing double strand breaks (DSBs in eukaryotes and XRCC2 is an essential component of the HR repair machinery. To evaluate the potential role of mutations in gene repair by HR in individuals susceptible to differentiated thyroid carcinoma (DTC we used high resolution melting (HRM analysis, a recently introduced method for detecting mutations, to examine the entire XRCC2 coding region in an Iranian population. HRM analysis was used to screen for mutations in three XRCC2 coding regions in 50 patients and 50 controls. There was no variation in the HRM curves obtained from the analysis of exons 1 and 2 in the case and control groups. In exon 3, an Arg188His polymorphism (rs3218536 was detected as a new melting curve group (OR: 1.46; 95%CI: 0.432-4.969; p = 0.38 compared with the normal melting curve. We also found a new Ser150Arg polymorphism in exon 3 of the control group. These findings suggest that genetic variations in the XRCC2 coding region have no potential effects on susceptibility to DTC. However, further studies with larger populations are required to confirm this conclusion.

  18. Optimal codes as Tanner codes with cyclic component codes

    DEFF Research Database (Denmark)

    Høholdt, Tom; Pinero, Fernando; Zeng, Peng

    2014-01-01

    In this article we study a class of graph codes with cyclic code component codes as affine variety codes. Within this class of Tanner codes we find some optimal binary codes. We use a particular subgraph of the point-line incidence plane of A(2,q) as the Tanner graph, and we are able to describe ...

  19. Pollen, wind and fire: how to investigate genetic effects of disturbance-induced change in forest trees.

    Science.gov (United States)

    Bacles, Cecile F E

    2014-01-01

    Understanding the consequences of habitat disturbance on mating patterns although pollen and seed dispersal in forest trees has been a long-standing theme of forest and conservation genetics. Forest ecosystems face global environmental pressures from timber exploitation to genetic pollution and climate change, and it is therefore essential to comprehend how disturbances may alter the dispersal of genes and their establishment in tree populations in order to formulate relevant recommendations for sustainable resource management practices and realistic predictions of potential adaptation to climate change by means of range shift or expansion (Kremer et al. 2012). However, obtaining reliable evidence of disturbance-induced effects on gene dispersal processes from empirical evaluation of forest tree populations is difficult. Indeed, tree species share characteristics such as high longevity, long generation time and large reproductive population size, which may impede the experimenter's ability to assess parameters at the spatial and time scales at which any change may occur (Petit and Hampe 2006). It has been suggested that appropriate study designs should encompass comparison of populations before and after disturbance as well as account for demonstrated variation in conspecific density, that is, the spatial distribution of mates, and forest density, including all species and relating to alteration in landscape openness (Bacles & Jump 2011). However, more often than not, empirical studies aiming to assess the consequences of habitat disturbance on genetic processes in tree populations assume rather than quantify a change in tree densities in forests under disturbance and generally fail to account for population history, which may lead to inappropriate interpretation of a causal relationship between population genetic structure and habitat disturbance due to effects of unmonitored confounding variables (Gauzere et al. 2013). In this issue, Shohami and Nathan (2014

  20. Interaction between genetic predisposition to obesity and dietary calcium in relation to subsequent change in body weight and waist circumference

    DEFF Research Database (Denmark)

    Larsen, Sofus C; Angquist, Lars; Ahluwalia, Tarun Veer Singh

    2014-01-01

    Studies indicate an effect of dietary calcium on change in body weight (BW) and waist circumference (WC), but the results are inconsistent. Furthermore, a relation could depend on genetic predisposition to obesity.......Studies indicate an effect of dietary calcium on change in body weight (BW) and waist circumference (WC), but the results are inconsistent. Furthermore, a relation could depend on genetic predisposition to obesity....

  1. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change

    OpenAIRE

    Schueler, Silvio; Falk, Wolfgang; Koskela, Jarkko; Lefèvre, François; Bozzano, Michele; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C.

    2014-01-01

    A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man-made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species p...

  2. Temporal changes in genetic variation of boll weevil (Coleoptera: Curculionidae) populations, and implications for population assignment in eradication zones

    Science.gov (United States)

    Genetic differentiation among 10 populations of boll weevil, Anthonomus grandis grandis, sampled in 2009, in Texas and Mexico, was determined using ten microsatellite loci. In addition, temporal changes in genetic composition were examined in the eight populations for which samples were available fr...

  3. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves II, H. James

    2015-01-01

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or “chemistry space.” Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set. PMID:25802223

  4. Extraordinarily adaptive properties of the genetically encoded amino acids.

    Science.gov (United States)

    Ilardo, Melissa; Meringer, Markus; Freeland, Stephen; Rasulev, Bakhtiyor; Cleaves, H James

    2015-03-24

    Using novel advances in computational chemistry, we demonstrate that the set of 20 genetically encoded amino acids, used nearly universally to construct all coded terrestrial proteins, has been highly influenced by natural selection. We defined an adaptive set of amino acids as one whose members thoroughly cover relevant physico-chemical properties, or "chemistry space." Using this metric, we compared the encoded amino acid alphabet to random sets of amino acids. These random sets were drawn from a computationally generated compound library containing 1913 alternative amino acids that lie within the molecular weight range of the encoded amino acids. Sets that cover chemistry space better than the genetically encoded alphabet are extremely rare and energetically costly. Further analysis of more adaptive sets reveals common features and anomalies, and we explore their implications for synthetic biology. We present these computations as evidence that the set of 20 amino acids found within the standard genetic code is the result of considerable natural selection. The amino acids used for constructing coded proteins may represent a largely global optimum, such that any aqueous biochemistry would use a very similar set.

  5. Perceived Changes to Obstetric Care and the Integration of Personal and Professional Life as a Pregnant Prenatal Genetic Counselor.

    Science.gov (United States)

    Rietzler, Jennifer L; Birkeland, Laura E; Petty, Elizabeth M

    2018-02-08

    The impact of practicing as a prenatal genetic counselor while pregnant is unclear given the limited amount of published literature on this issue. To address this gap in knowledge, a total of 215 current and past prenatal genetic counselors provided insights regarding this personal yet professional juncture through completion of an online survey that allowed for both close-ended and open-ended responses. While participants agreed that experiencing pregnancy affected their perspectives and counseling in several ways, this paper focuses on one particular finding-that of the changes in their own obstetric care perceived by genetic counselors while working within the prenatal setting and being pregnant themselves. As a result of these changes, considerations about when to disclose a pregnancy to colleagues along with how to integrate personal and professional needs as a pregnant prenatal genetic counselor surfaced. Additional findings, practice implications, and research recommendations are discussed.

  6. How to measure genetic heterogeneity

    International Nuclear Information System (INIS)

    Yamada, Ryo

    2009-01-01

    Genetic information of organisms is coded as a string of four letters, A, T, G and C, a sequence in macromolecules called deoxyribonucleic acid (DNA). DNA sequence offers blueprint of organisms and its heterogeneity determines identity and variation of species. The quantitation of this genetic heterogeneity is fundamental to understand biology. We compared previously-reported three measures, covariance matrix expression of list of loci (pair-wise r 2 ), the most popular index in genetics, and its multi-dimensional form, Ψ, and entropy-based index, ε. Thereafter we proposed two methods so that we could handle the diplotypic heterogeneity and quantitate the conditions where the number of DNA sequence samples is much smaller than the number of possible variants.

  7. Advanced and flexible genetic algorithms for BWR fuel loading pattern optimization

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Palomera-Perez, Miguel-Angel; Francois, Juan-Luis

    2009-01-01

    This work proposes advances in the implementation of a flexible genetic algorithm (GA) for fuel loading pattern optimization for Boiling Water Reactors (BWRs). In order to avoid specific implementations of genetic operators and to obtain a more flexible treatment, a binary representation of the solution was implemented; this representation had to take into account that a little change in the genotype must correspond to a little change in the phenotype. An identifier number is assigned to each assembly by means of a Gray Code of 7 bits and the solution (the loading pattern) is represented by a binary chain of 777 bits of length. Another important contribution is the use of a Fitness Function which includes a Heuristic Function and an Objective Function. The Heuristic Function which is defined to give flexibility on the application of a set of positioning rules based on knowledge, and the Objective Function that contains all the parameters which qualify the neutronic and thermal hydraulic performances of each loading pattern. Experimental results illustrating the effectiveness and flexibility of this optimization algorithm are presented and discussed.

  8. Genetic and environmental etiology of stability and changes in self-esteem linked to personality: A Japanese twin study

    OpenAIRE

    Shikishima, Chizuru; Hiraishi, Kai; Takahashi, Yusuke; Yamagata, Shinji; Yamaguchi, Susumu; Ando, Juko

    2018-01-01

    This study used a behavioral genetic approach to examine the genetic and environmental etiology of stability and changes in self-esteem in relation to personality. Multiple genetic analyses were conducted on a longitudinal dataset of self-esteem and Big Five personality scores among young adult Japanese twins over the course of a decade. There were 1221 individuals for whom data were available on both self-esteem and the Big Five personality test at Time 1 and 365 at Time 2. The mean interval...

  9. The archaeology of computer codes - illustrated on the basis of the code SABINE

    International Nuclear Information System (INIS)

    Sdouz, G.

    1987-02-01

    Computer codes used by the physics group of the Institute for Reactor Safety are stored on back-up-tapes. However during the last years both the computer and the system have been changed. For new tasks these programmes have to be available. A new procedure is necessary to find and to activate a stored programme. This procedure is illustrated on the basis of the code SABINE. (Author)

  10. Learners' strategies for reconstructing cognitive frameworks and navigating conceptual change from prior conception to consensual genetics knowledge

    Science.gov (United States)

    Parrott, Annette M.

    Problem. Science teachers are charged with preparing students to become scientifically literate individuals. Teachers are given curriculum that specifies the knowledge that students should come away with; however, they are not necessarily aware of the knowledge with which the student arrives or how best to help them navigate between the two knowledge states. Educators must be aware, not only of where their students are conceptually, but how their students move from their prior knowledge and naive theories, to scientifically acceptable theories. The understanding of how students navigate this course has the potential to revolutionize educational practices. Methods. This study explored how five 9th grade biology students reconstructed their cognitive frameworks and navigated conceptual change from prior conception to consensual genetics knowledge. The research questions investigated were: (1) how do students in the process of changing their naive science theories to accepted science theories describe their journey from prior knowledge to current conception, and (2) what are the methods that students utilize to bridge the gap between alternate and consensual science conceptions to effect conceptual change. Qualitative and quantitative methods were employed to gather and analyze the data. In depth, semi-structured interviews formed the primary data for probing the context and details of students' conceptual change experience. Primary interview data was coded by thematic analysis. Results and discussion. This study revealed information about students' perceived roles in learning, the role of articulation in the conceptual change process, and ways in which a community of learners aids conceptual change. It was ascertained that students see their role in learning primarily as repeating information until they could add that information to their knowledge. Students are more likely to consider challenges to their conceptual frameworks and be more motivated to become active

  11. Genetics of complex diseases

    DEFF Research Database (Denmark)

    Mellerup, Erling; Møller, Gert Lykke; Koefoed, Pernille

    2012-01-01

    A complex disease with an inheritable component is polygenic, meaning that several different changes in DNA are the genetic basis for the disease. Such a disease may also be genetically heterogeneous, meaning that independent changes in DNA, i.e. various genotypes, can be the genetic basis...... for the disease. Each of these genotypes may be characterized by specific combinations of key genetic changes. It is suggested that even if all key changes are found in genes related to the biology of a certain disease, the number of combinations may be so large that the number of different genotypes may be close...... to the number of patients suffering from the disease. This hypothesis is based on a study of bipolar disorder....

  12. Biochemical and genetic analysis of the role of the viral polymerase in enterovirus recombination.

    Science.gov (United States)

    Woodman, Andrew; Arnold, Jamie J; Cameron, Craig E; Evans, David J

    2016-08-19

    Genetic recombination in single-strand, positive-sense RNA viruses is a poorly understand mechanism responsible for generating extensive genetic change and novel phenotypes. By moving a critical cis-acting replication element (CRE) from the polyprotein coding region to the 3' non-coding region we have further developed a cell-based assay (the 3'CRE-REP assay) to yield recombinants throughout the non-structural coding region of poliovirus from dually transfected cells. We have additionally developed a defined biochemical assay in which the only protein present is the poliovirus RNA dependent RNA polymerase (RdRp), which recapitulates the strand transfer events of the recombination process. We have used both assays to investigate the role of the polymerase fidelity and nucleotide turnover rates in recombination. Our results, of both poliovirus intertypic and intratypic recombination in the CRE-REP assay and using a range of polymerase variants in the biochemical assay, demonstrate that RdRp fidelity is a fundamental determinant of recombination frequency. High fidelity polymerases exhibit reduced recombination and low fidelity polymerases exhibit increased recombination in both assays. These studies provide the basis for the analysis of poliovirus recombination throughout the non-structural region of the virus genome and provide a defined biochemical assay to further dissect this important evolutionary process. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. The genetic basis of evolutionary change

    National Research Council Canada - National Science Library

    Lewontin, Richard C

    1974-01-01

    In this volume the author surveys the many experiments using new molecular techniques that have revealed the enormous wealth of hereditary variation among individuals and have quantified the genetic...

  14. Pragmatic turn in biology: From biological molecules to genetic content operators.

    Science.gov (United States)

    Witzany, Guenther

    2014-08-26

    Erwin Schrödinger's question "What is life?" received the answer for decades of "physics + chemistry". The concepts of Alain Turing and John von Neumann introduced a third term: "information". This led to the understanding of nucleic acid sequences as a natural code. Manfred Eigen adapted the concept of Hammings "sequence space". Similar to Hilbert space, in which every ontological entity could be defined by an unequivocal point in a mathematical axiomatic system, in the abstract "sequence space" concept each point represents a unique syntactic structure and the value of their separation represents their dissimilarity. In this concept molecular features of the genetic code evolve by means of self-organisation of matter. Biological selection determines the fittest types among varieties of replication errors of quasi-species. The quasi-species concept dominated evolution theory for many decades. In contrast to this, recent empirical data on the evolution of DNA and its forerunners, the RNA-world and viruses indicate cooperative agent-based interactions. Group behaviour of quasi-species consortia constitute de novo and arrange available genetic content for adaptational purposes within real-life contexts that determine epigenetic markings. This review focuses on some fundamental changes in biology, discarding its traditional status as a subdiscipline of physics and chemistry.

  15. [Genetic diversity analysis of Andrographis paniculata in China based on SRAP and SNP].

    Science.gov (United States)

    Chen, Rong; Wang, Xiao-Yun; Song, Yu-Ning; Zhu, Yun-feng; Wang, Peng-liang; Li, Min; Zhong, Guo-Yue

    2014-12-01

    In order to reveal genetic diversity of domestic Andrographis paniculata and its impact on quality, genetic backgrounds of 103 samples from 7 provinces in China were analyzed using SRAP marker and SNP marker. Genetic structures of the A. paniculata populations were estimated with Powermarker V 3.25 and Mega 6.0 software, and polymorphic SNPs were identified with CodonCode Aligner software. The results showed that the genetic distances of domestic A. paniculata germplasm ranged from 0. 01 to 0.09, and no polymorphic SNPs were discovered in coding sequence fragments of ent-copalyl diphosphate synthase. A. paniculata germplasm from various regions in China had poor genetic diversity. This phenomenon was closely related to strict self-fertilization and earlier introduction from the same origin. Therefore, genetic background had little impact on variable qualities of A. paniculata in domestic market. Mutation breeding, polyploid breeding and molecular breeding were proposed as promising strategies in germplasm innovation.

  16. A method to optimize the shield compact and lightweight combining the structure with components together by genetic algorithm and MCNP code.

    Science.gov (United States)

    Cai, Yao; Hu, Huasi; Pan, Ziheng; Hu, Guang; Zhang, Tao

    2018-05-17

    To optimize the shield for neutrons and gamma rays compact and lightweight, a method combining the structure and components together was established employing genetic algorithms and MCNP code. As a typical case, the fission energy spectrum of 235 U which mixed neutrons and gamma rays was adopted in this study. Six types of materials were presented and optimized by the method. Spherical geometry was adopted in the optimization after checking the geometry effect. Simulations have made to verify the reliability of the optimization method and the efficiency of the optimized materials. To compare the materials visually and conveniently, the volume and weight needed to build a shield are employed. The results showed that, the composite multilayer material has the best performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. NIH Scientists Map Genetic Changes That Drive Tumors in a Common Pediatric Soft-Tissue Cancer

    Science.gov (United States)

    ... Press Release NIH scientists map genetic changes that drive tumors in a common pediatric soft-tissue cancer ... of Health FOLLOW US Facebook Twitter Instagram YouTube Google+ LinkedIn GovDelivery RSS CONTACT INFORMATION Contact Us LiveHelp ...

  18. Changes in genetic architecture during relaxation in Drosophila melanogaster selected on divergent virgin life span

    NARCIS (Netherlands)

    Vermeulen, CJ; Bijlsma, R

    Artificial selection experiments often confer important information on the genetic correlations constraining the evolution of life history. After artificial selection has ceased however, selection pressures in the culture environment can change the correlation matrix again. Here, we reinvestigate

  19. Nutrigenetics: links between genetic background and response to Mediterranean-type diets.

    Science.gov (United States)

    Lairon, Denis; Defoort, Catherine; Martin, Jean-Charles; Amiot-Carlin, Marie-Jo; Gastaldi, Marguerite; Planells, Richard

    2009-09-01

    It has been substantiated that the onset of most major diseases (CVD, diabetes, obesity, cancers, etc.) is modulated by the interaction between genetic traits (susceptibility) and environmental factors, especially diet. We aim to report more specific observations relating the effects of Mediterranean-type diets on cardiovascular risk factors and the genetic background of subjects. In the first part, general concepts about nutrigenetics are briefly presented. Human genome has, overall, only marginally changed since its origin but it is thought that minor changes (polymorphisms) of common genes that occurred during evolution are now widespread in human populations, and can alter metabolic pathways and response to diets. In the second part, we report the data obtained during the Medi-RIVAGE intervention study performed in the South-East of France. Data obtained in 169 subjects at moderate cardiovascular risk after a 3-month dietary intervention indicate that some of the twenty-three single nucleotide polymorphisms (SNP) studied exhibit interactions with diets regarding changes of particular parameters after 3-month regimens. Detailed examples are presented, such as interactions between SNP in genes coding for microsomial transfer protein (MTTP) or intestinal fatty acid binding protein (FABP2) and triglyceride, LDL-cholesterol or Framigham score lowering in responses to Mediterranean-type diets. The data provided add further evidence of the interaction between particular SNP and metabolic responses to diets. Finally, improvement in dietary recommendations by taking into account known genetic variability has been discussed.

  20. Change in genetic size of small-closed populations: lessons from a domestic mammal population

    Directory of Open Access Journals (Sweden)

    Farhad Ghafouri-Kesbi

    2010-01-01

    Full Text Available The aim of this study was to monitor changes in genetic size of a small-closed population of Iranian Zandi sheep, by using pedigree information from animals born between 1991 and 2005. The genetic size was assessed by using measures based on the probability of identity-by-descend of genes (coancestry, f, and effective population size, Ne, as well as measures based on probability of gene origin (effective number of founders, f e, effective number of founder genomes, f g, and effective number of non-founder genomes, f ne. Average coancestry, or the degree of genetic similarity of individuals, increased from 0.81% to 1.44% during the period 1993 to 2005, at the same time that Ne decreased from 263 to 93. The observed trend for f e was irregular throughout the experiment in a way that f e was 68, 87, 77, 92, and 80 in 1993, 1996, 1999, 2002, and 2005, respectively. Simultaneously, f g, the most informative effective number, decreased from 61 to 35. The index of genetic diversity (GD which was obtained from estimates of f g,decreased about 2% throughout the period studied. In addition, a noticeable reduction was observed in the estimates of f ne from 595 in 1993 to 61 in 2005. The higher than 1 ratio of f e to f g indicated the presence of bottlenecks and genetic drift in the development of this population of Zandi sheep. From 1993 to 1999, f ne was much higher than f e, thereby indicating that with respect to loss of genetic diversity, the unequal contribution of founders was more important than the random genetic drift in non-founder generations. Subsequently, random genetic drift in non-founder generations was the major reason for f e> f ne. The minimization of average coancestry in new reproductive individuals was recommended as a means of preserving the population against a further loss in genetic diversity.

  1. Change in genetic size of small-closed populations: Lessons from a domestic mammal population.

    Science.gov (United States)

    Ghafouri-Kesbi, Farhad

    2010-10-01

    The aim of this study was to monitor changes in genetic size of a small-closed population of Iranian Zandi sheep, by using pedigree information from animals born between 1991 and 2005. The genetic size was assessed by using measures based on the probability of identity-by-descend of genes (coancestry, f, and effective population size, N(e) ), as well as measures based on probability of gene origin (effective number of founders, f(e) , effective number of founder genomes, f(g) , and effective number of non-founder genomes, f(ne) ). Average coancestry, or the degree of genetic similarity of individuals, increased from 0.81% to 1.44% during the period 1993 to 2005, at the same time that N(e) decreased from 263 to 93. The observed trend for f(e) was irregular throughout the experiment in a way that f(e) was 68, 87, 77, 92, and 80 in 1993, 1996, 1999, 2002, and 2005, respectively. Simultaneously, f(g) , the most informative effective number, decreased from 61 to 35. The index of genetic diversity (GD) which was obtained from estimates of f(g) , decreased about 2% throughout the period studied. In addition, a noticeable reduction was observed in the estimates of f(ne) from 595 in 1993 to 61 in 2005. The higher than 1 ratio of f(e) to f(g) indicated the presence of bottlenecks and genetic drift in the development of this population of Zandi sheep. From 1993 to 1999, f(ne) was much higher than f(e) , thereby indicating that with respect to loss of genetic diversity, the unequal contribution of founders was more important than the random genetic drift in non-founder generations. Subsequently, random genetic drift in non-founder generations was the major reason for f(e) > f(ne) . The minimization of average coancestry in new reproductive individuals was recommended as a means of preserving the population against a further loss in genetic diversity.

  2. Epigenetic codes programming class switch recombination

    Directory of Open Access Journals (Sweden)

    Bharat eVaidyanathan

    2015-09-01

    Full Text Available Class switch recombination imparts B cells with a fitness-associated adaptive advantage during a humoral immune response by using a precision-tailored DNA excision and ligation process to swap the default constant region gene of the antibody with a new one that has unique effector functions. This secondary diversification of the antibody repertoire is a hallmark of the adaptability of B cells when confronted with environmental and pathogenic challenges. Given that the nucleotide sequence of genes during class switching remains unchanged (genetic constraints, it is logical and necessary therefore, to integrate the adaptability of B cells to an epigenetic state, which is dynamic and can be heritably modulated before, after or even during an antibody-dependent immune response. Epigenetic regulation encompasses heritable changes that affect function (phenotype without altering the sequence information embedded in a gene, and include histone, DNA and RNA modifications. Here, we review current literature on how B cells use an epigenetic code language as a means to ensure antibody plasticity in light of pathogenic insults.

  3. Call for consistent coding in diabetes mellitus using the Royal College of General Practitioners and NHS pragmatic classification of diabetes

    Directory of Open Access Journals (Sweden)

    Simon de Lusignan

    2013-03-01

    Full Text Available Background The prevalence of diabetes is increasing with growing levels of obesity and an aging population. New practical guidelines for diabetes provide an applicable classification. Inconsistent coding of diabetes hampers the use of computerised disease registers for quality improvement, and limits the monitoring of disease trends.Objective To develop a consensus set of codes that should be used when recording diabetes diagnostic data.Methods The consensus approach was hierarchical, with a preference for diagnostic/disorder codes, to define each type of diabetes and non-diabetic hyperglycaemia, which were listed as being completely, partially or not readily mapped to available codes. The practical classification divides diabetes into type 1 (T1DM, type 2 (T2DM, genetic, other, unclassified and non-diabetic fasting hyperglycaemia. We mapped the classification to Read version 2, Clinical Terms version 3 and SNOMED CT.Results T1DMand T2DM were completely mapped to appropriate codes. However, in other areas only partial mapping is possible. Genetics is a fast-moving field and there were considerable gaps in the available labels for genetic conditions; what the classification calls ‘other’ the coding system labels ‘secondary’ diabetes. The biggest gap was the lack of a code for diabetes where the type of diabetes was uncertain. Notwithstanding these limitations we were able to develop a consensus list.Conclusions It is a challenge to develop codes that readily map to contemporary clinical concepts. However, clinicians should adopt the standard recommended codes; and audit the quality of their existing records.

  4. Immediate Genetic and Epigenetic Changes in F1 Hybrids Parented by Species with Divergent Genomes in the Rice Genus (Oryza.

    Directory of Open Access Journals (Sweden)

    Ying Wu

    Full Text Available Inter-specific hybridization occurs frequently in higher plants, and represents a driving force of evolution and speciation. Inter-specific hybridization often induces genetic and epigenetic instabilities in the resultant homoploid hybrids or allopolyploids, a phenomenon known as genome shock. Although genetic and epigenetic consequences of hybridizations between rice subspecies (e.g., japonica and indica and closely related species sharing the same AA genome have been extensively investigated, those of inter-specific hybridizations between more remote species with different genomes in the rice genus, Oryza, remain largely unknown.We investigated the immediate chromosomal and molecular genetic/epigenetic instability of three triploid F1 hybrids produced by inter-specific crossing between species with divergent genomes of Oryza by genomic in situ hybridization (GISH and molecular marker analysis. Transcriptional and transpositional activity of several transposable elements (TEs and methylation stability of their flanking regions were also assessed. We made the following principle findings: (i all three triploid hybrids are stable in both chromosome number and gross structure; (ii stochastic changes in both DNA sequence and methylation occurred in individual plants of all three triploid hybrids, but in general methylation changes occurred at lower frequencies than genetic changes; (iii alteration in DNA methylation occurred to a greater extent in genomic loci flanking potentially active TEs than in randomly sampled loci; (iv transcriptional activation of several TEs commonly occurred in all three hybrids but transpositional events were detected in a genetic context-dependent manner.Artificially constructed inter-specific hybrids of remotely related species with divergent genomes in genus Oryza are chromosomally stable but show immediate and highly stochastic genetic and epigenetic instabilities at the molecular level. These novel hybrids might

  5. From observational to dynamic genetics

    Directory of Open Access Journals (Sweden)

    Claire M. A. Haworth

    2014-01-01

    Full Text Available Twin and family studies have shown that most traits are at least moderately heritable. But what are the implications of finding genetic influence for the design of intervention and prevention programs? For complex traits, heritability does not mean immutability, and research has shown that genetic influences can change with age, context and in response to behavioural and drug interventions. The most significant implications for intervention will come when we move from observational genetics to investigating dynamic genetics, including genetically sensitive interventions. Future interventions should be designed to overcome genetic risk and draw upon genetic strengths by changing the environment.

  6. Invoking adaptation to decipher the genetic legacy of past climate change.

    Science.gov (United States)

    de Lafontaine, Guillaume; Napier, Joseph D; Petit, Rémy J; Hu, Feng Sheng

    2018-05-05

    Persistence of natural populations during periods of climate change is likely to depend on migration (range shifts) or adaptation. These responses were traditionally considered discrete processes and conceptually divided into the realms of ecology and evolution. In a milestone paper, Davis and Shaw (2001) argued that the interplay of adaptation and migration was central to biotic responses to Quaternary climate, but since then there has been no synthesis of efforts made to set up this research program. Here we review some of the salient findings from molecular genetic studies assessing ecological and evolutionary responses to Quaternary climate change. These studies have revolutionized our understanding of population processes associated with past species migration. However, knowledge remains limited about the role of natural selection for local adaptation of populations to Quaternary environmental fluctuations and associated range shifts, and for the footprints this might have left on extant populations. Next-generation sequencing technologies, high-resolution paleoclimate analyses, and advances in population genetic theory offer an unprecedented opportunity to test hypotheses about adaptation through time. Recent population genomics studies have greatly improved our understanding of the role of contemporary adaptation to local environments in shaping spatial patterns of genetic diversity across modern-day landscapes. Advances in this burgeoning field provide important conceptual and methodological bases to decipher the historical role of natural selection and assess adaptation to past environmental variation. We suggest that a process called "temporal conditional neutrality" has taken place: some alleles favored in glacial environments become selectively neutral in modern-day conditions, whereas some alleles that had been neutral during glacial periods become under selection in modern environments. Building on this view, we present a new integrative framework for

  7. Audit of accuracy of clinical coding in oral surgery.

    Science.gov (United States)

    Naran, S; Hudovsky, A; Antscherl, J; Howells, S; Nouraei, S A R

    2014-10-01

    We aimed to study the accuracy of clinical coding within oral surgery and to identify ways in which it can be improved. We undertook did a multidisciplinary audit of a sample of 646 day case patients who had had oral surgery procedures between 2011 and 2012. We compared the codes given with their case notes and amended any discrepancies. The accuracy of coding was assessed for primary and secondary diagnoses and procedures, and for health resource groupings (HRGs). The financial impact of coding Subjectivity, Variability and Error (SVE) was assessed by reference to national tariffs. The audit resulted in 122 (19%) changes to primary diagnoses. The codes for primary procedures changed in 224 (35%) cases; 310 (48%) morbidities and complications had been missed, and 266 (41%) secondary procedures had been missed or were incorrect. This led to at least one change of coding in 496 (77%) patients, and to the HRG changes in 348 (54%) patients. The financial impact of this was £114 in lost revenue per patient. There is a high incidence of coding errors in oral surgery because of the large number of day cases, a lack of awareness by clinicians of coding issues, and because clinical coders are not always familiar with the large number of highly specialised abbreviations used. Accuracy of coding can be improved through the use of a well-designed proforma, and standards can be maintained by the use of an ongoing data quality assurance programme. Copyright © 2014. Published by Elsevier Ltd.

  8. Genetic algorithms - A new technique for solving the neutron spectrum unfolding problem

    International Nuclear Information System (INIS)

    Freeman, David W.; Edwards, D. Ray; Bolon, Albert E.

    1999-01-01

    A new technique utilizing genetic algorithms has been applied to the Bonner sphere neutron spectrum unfolding problem. Genetic algorithms are part of a relatively new field of 'evolutionary' solution techniques that mimic living systems with computer-simulated 'chromosome' solutions. Solutions mate and mutate to create better solutions. Several benchmark problems, considered representative of radiation protection environments, have been evaluated using the newly developed UMRGA code which implements the genetic algorithm unfolding technique. The results are compared with results from other well-established unfolding codes. The genetic algorithm technique works remarkably well and produces solutions with relatively high spectral qualities. UMRGA appears to be a superior technique in the absence of a priori data - it does not rely on 'lucky' guesses of input spectra. Calculated personnel doses associated with the unfolded spectra match benchmark values within a few percent

  9. Analysis code for large rupture accidents in ATR. SENHOR/FLOOD/HEATUP

    International Nuclear Information System (INIS)

    1997-08-01

    In the evaluation of thermo-hydraulic transient change, the behavior of core reflooding and the transient change of fuel temperature in the events which are classified in large rupture accidents of reactor coolant loss, that is the safety evaluation event of the ATR, the analysis codes for thermo-hydraulic transient change at the time of large rupture SENHOR, for core reflooding characteristics FLOOD and for fuel temperature HEATUP are used, respectively. The analysis code system for loss of coolant accident comprises the analysis code for thermo-hydraulic transient change at the time of medium and small ruptures LOTRAC in addition to the above three codes. Based on the changes with time lapse of reactor thermal output and steam drum pressure obtained by the SENHOR, average reflooding rate is analyzed by the FLOOD, and the time of starting the turnaround of fuel cladding tube temperature and the heat transfer rate after the turnaround are determined. Based on these data, the detailed temperature change of fuel elements is analyzed by the HEATUP, and the highest temperature and the amount of oxidation of fuel cladding tubes are determined. The SENHOR code, the FLOOD code and the HEATUP code and various models for these codes are explained. The example of evaluation and the sensitivity analysis of the ATR plant are reported in the Appendix. (K.I.)

  10. Longitudinal changes in telomere length and associated genetic parameters in dairy cattle analysed using random regression models.

    Directory of Open Access Journals (Sweden)

    Luise A Seeker

    Full Text Available Telomeres cap the ends of linear chromosomes and shorten with age in many organisms. In humans short telomeres have been linked to morbidity and mortality. With the accumulation of longitudinal datasets the focus shifts from investigating telomere length (TL to exploring TL change within individuals over time. Some studies indicate that the speed of telomere attrition is predictive of future disease. The objectives of the present study were to 1 characterize the change in bovine relative leukocyte TL (RLTL across the lifetime in Holstein Friesian dairy cattle, 2 estimate genetic parameters of RLTL over time and 3 investigate the association of differences in individual RLTL profiles with productive lifespan. RLTL measurements were analysed using Legendre polynomials in a random regression model to describe TL profiles and genetic variance over age. The analyses were based on 1,328 repeated RLTL measurements of 308 female Holstein Friesian dairy cattle. A quadratic Legendre polynomial was fitted to the fixed effect of age in months and to the random effect of the animal identity. Changes in RLTL, heritability and within-trait genetic correlation along the age trajectory were calculated and illustrated. At a population level, the relationship between RLTL and age was described by a positive quadratic function. Individuals varied significantly regarding the direction and amount of RLTL change over life. The heritability of RLTL ranged from 0.36 to 0.47 (SE = 0.05-0.08 and remained statistically unchanged over time. The genetic correlation of RLTL at birth with measurements later in life decreased with the time interval between samplings from near unity to 0.69, indicating that TL later in life might be regulated by different genes than TL early in life. Even though animals differed in their RLTL profiles significantly, those differences were not correlated with productive lifespan (p = 0.954.

  11. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  12. Identification of small non-coding RNA classes expressed in swine whole blood during HP-PRRSV infection

    Science.gov (United States)

    It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs ...

  13. Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp (Fabaceae).

    Science.gov (United States)

    Duminil, Jerome; Brown, Richard P; Ewédjè, Eben-Ezer B K; Mardulyn, Patrick; Doucet, Jean-Louis; Hardy, Olivier J

    2013-09-12

    The evolutionary events that have shaped biodiversity patterns in the African rainforests are still poorly documented. Past forest fragmentation and ecological gradients have been advocated as important drivers of genetic differentiation but their respective roles remain unclear. Using nuclear microsatellites (nSSRs) and chloroplast non-coding sequences (pDNA), we characterised the spatial genetic structure of Erythrophleum (Fabaceae) forest trees in West and Central Africa (Guinea Region, GR). This widespread genus displays a wide ecological amplitude and taxonomists recognize two forest tree species, E. ivorense and E. suaveolens, which are difficult to distinguish in the field and often confused. Bayesian-clustering applied on nSSRs of a blind sample of 648 specimens identified three major gene pools showing no or very limited introgression. They present parapatric distributions correlated to rainfall gradients and forest types. One gene pool is restricted to coastal evergreen forests and corresponds to E. ivorense; a second one is found in gallery forests from the dry forest zone of West Africa and North-West Cameroon and corresponds to West-African E. suaveolens; the third gene pool occurs in semi-evergreen forests and corresponds to Central African E. suaveolens. These gene pools have mostly unique pDNA haplotypes but they do not form reciprocally monophyletic clades. Nevertheless, pDNA molecular dating indicates that the divergence between E. ivorense and Central African E. suaveolens predates the Pleistocene. Further Bayesian-clustering applied within each major gene pool identified diffuse genetic discontinuities (minor gene pools displaying substantial introgression) at a latitude between 0 and 2°N in Central Africa for both species, and at a longitude between 5° and 8°E for E. ivorense. Moreover, we detected evidence of past population declines which are consistent with historical habitat fragmentation induced by Pleistocene climate changes. Overall

  14. Atlas C++ Coding Standard Specification

    CERN Document Server

    Albrand, S; Barberis, D; Bosman, M; Jones, B; Stavrianakou, M; Arnault, C; Candlin, D; Candlin, R; Franck, E; Hansl-Kozanecka, Traudl; Malon, D; Qian, S; Quarrie, D; Schaffer, R D

    2001-01-01

    This document defines the ATLAS C++ coding standard, that should be adhered to when writing C++ code. It has been adapted from the original "PST Coding Standard" document (http://pst.cern.ch/HandBookWorkBook/Handbook/Programming/programming.html) CERN-UCO/1999/207. The "ATLAS standard" comprises modifications, further justification and examples for some of the rules in the original PST document. All changes were discussed in the ATLAS Offline Software Quality Control Group and feedback from the collaboration was taken into account in the "current" version.

  15. Research on pre-processing of QR Code

    Science.gov (United States)

    Sun, Haixing; Xia, Haojie; Dong, Ning

    2013-10-01

    QR code encodes many kinds of information because of its advantages: large storage capacity, high reliability, full arrange of utter-high-speed reading, small printing size and high-efficient representation of Chinese characters, etc. In order to obtain the clearer binarization image from complex background, and improve the recognition rate of QR code, this paper researches on pre-processing methods of QR code (Quick Response Code), and shows algorithms and results of image pre-processing for QR code recognition. Improve the conventional method by changing the Souvola's adaptive text recognition method. Additionally, introduce the QR code Extraction which adapts to different image size, flexible image correction approach, and improve the efficiency and accuracy of QR code image processing.

  16. Changing profile of couples seeking genetic counseling for consanguinity in Australia.

    Science.gov (United States)

    Port, Katrina E; Mountain, Helen; Nelson, John; Bittles, Alan H

    2005-01-15

    Consanguineous marriage is rare in most Western countries and, for example, in the USA it may be subject to regulation by both civil legislation and religious prescription. This is not the case in many regions of Asia and Africa where marriage within the family is strongly favored. Since the 1970s there has been widespread migration to North America, Western Europe, and Australasia from communities which encourage consanguineous marriage. To assess the effect of this trend on a genetic counseling program, the records of 302 couples referred to Genetic Services of Western Australia for consanguinity counseling were abstracted for the period 1975-2001. Overall, a family history of genetic disease or a previously affected child was reported in 28.8% of cases. Premarital or prepregnancy counseling on grounds of consanguinity was sought by 41.0% of couples, and a further 18.2% of consanguineous couples had been referred because of a consanguineous pregnancy. In 7.6% of cases a relationship closer than first cousin was involved. Through time there was a significant increase in the numbers of consanguineous consultants, and their patterns of religious affiliation and ethnic origin widened markedly. Although effectively excluded from entry to Australia prior to 1975, couples of Asian origin accounted for 25.5% of all consanguineous consultants. With ongoing migration, changes in the ethnic profiles and the specific counseling requirements of consanguineous couples can be expected to continue and probably accelerate.

  17. How sea level change mediates genetic divergence in coastal species across regions with varying tectonic and sediment processes.

    Science.gov (United States)

    Dolby, Greer A; Ellingson, Ryan A; Findley, Lloyd T; Jacobs, David K

    2018-02-01

    Plate tectonics and sediment processes control regional continental shelf topography. We examine the genetic consequences of how glacial-associated sea level change interacted with variable nearshore topography since the last glaciation. We reconstructed the size and distribution of areas suitable for tidal estuary formation from the last glacial maximum, ~20 thousand years ago, to present from San Francisco, California, USA (~38°N) to Reforma, Sinaloa, Mexico (~25°N). We assessed range-wide genetic structure and diversity of three codistributed tidal estuarine fishes (California Killifish, Shadow Goby, Longjaw Mudsucker) along ~4,600 km using mitochondrial control region and cytB sequence, and 16-20 microsatellite loci from a total of 524 individuals. Results show that glacial-associated sea level change limited estuarine habitat to few, widely separated refugia at glacial lowstand, and present-day genetic clades were sourced from specific refugia. Habitat increased during postglacial sea level rise and refugial populations admixed in newly formed habitats. Continental shelves with active tectonics and/or low sediment supply were steep and hosted fewer, smaller refugia with more genetically differentiated populations than on broader shelves. Approximate Bayesian computation favoured the refuge-recolonization scenarios from habitat models over isolation by distance and seaway alternatives, indicating isolation at lowstand is a major diversification mechanism among these estuarine (and perhaps other) coastal species. Because sea level change is a global phenomenon, we suggest this top-down physical control of extirpation-isolation-recolonization may be an important driver of genetic diversification in coastal taxa inhabiting other topographically complex coasts globally during the Mid- to Late Pleistocene and deeper timescales. © 2018 John Wiley & Sons Ltd.

  18. Integrated Analysis of Long Noncoding RNA and Coding RNA Expression in Esophageal Squamous Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Wei Cao

    2013-01-01

    Full Text Available Tumorigenesis is a complex dynamic biological process that includes multiple steps of genetic and epigenetic alterations, aberrant expression of noncoding RNA, and changes in the expression profiles of coding genes. We call the collection of those perturbations in genome space the “cancer initiatome.” Long noncoding RNAs (lncRNAs are pervasively transcribed in the genome and they have key regulatory functions in chromatin remodeling and gene expression. Spatiotemporal variation in the expression of lncRNAs has been observed in development and disease states, including cancer. A few dysregulated lncRNAs have been studied in cancers, but the role of lncRNAs in the cancer initiatome remains largely unknown, especially in esophageal squamous cell carcinoma (ESCC. We conducted a genome-wide screen of the expression of lncRNAs and coding RNAs from ESCC and matched adjacent nonneoplastic normal tissues. We identified differentially expressed lncRNAs and coding RNAs in ESCC relative to their matched normal tissue counterparts and validated the result using polymerase chain reaction analysis. Furthermore, we identified differentially expressed lncRNAs that are co-located and co-expressed with differentially expressed coding RNAs in ESCC and the results point to a potential interaction between lncRNAs and neighboring coding genes that affect ether lipid metabolism, and the interaction may contribute to the development of ESCC. These data provide compelling evidence for a potential novel genomic biomarker of esophageal squamous cell cancer.

  19. Therapeutic targeting of non-coding RNAs in cancer

    Czech Academy of Sciences Publication Activity Database

    Slabý, O.; Laga, Richard; Sedláček, Ondřej

    2017-01-01

    Roč. 474, č. 24 (2017), s. 4219-4251 ISSN 0264-6021 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 Keywords : non-coding RNA * RNA delivery * polymer carriers Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Biochemical research methods Impact factor: 3.797, year: 2016

  20. Associating schizophrenia, long non-coding RNAs and neurostructural dynamics

    Directory of Open Access Journals (Sweden)

    Veronica eMerelo

    2015-09-01

    Full Text Available Several lines of evidence indicate that schizophrenia has a strong genetic component. But the exact nature and functional role of this genetic component in the pathophysiology of this mental illness remains a mystery. Long non-coding RNAs (lncRNAs are a recently discovered family of molecules that regulate gene transcription through a variety of means. Consequently, lncRNAs could help us bring together apparent unrelated findings in schizophrenia; namely, genomic deficiencies on one side and neuroimaging, as well as postmortem results on the other. In fact, the most consistent finding in schizophrenia is decreased brain size together with enlarged ventricles. This anomaly appears to originate from shorter and less ramified dendrites and axons. But a decrease in neuronal arborizations cannot explain the complex pathophysiology of this psychotic disorder; however, dynamic changes in neuronal structure present throughout life could. It is well recognized that the structure of developing neurons is extremely plastic. This structural plasticity was thought to stop with brain development. However, breakthrough discoveries have shown that neuronal structure retains some degree of plasticity throughout life. What the neuroscientific field is still trying to understand is how these dynamic changes are regulated and lncRNAs represent promising candidates to fill this knowledge gap. Here, we present evidence that associates specific lncRNAs with schizophrenia. We then discuss the potential role of lncRNAs in neurostructural dynamics. Finally, we explain how dynamic neurostructural modifications present throughout life could, in theory, reconcile apparent unrelated findings in schizophrenia.

  1. Genetics and bioethics: how our thinking has changed since 1969.

    Science.gov (United States)

    Walters, LeRoy

    2012-02-01

    In 1969, the field of human genetics was in its infancy. Amniocentesis was a new technique for prenatal diagnosis, and a newborn genetic screening program had been established in one state. There were also concerns about the potential hazards of genetic engineering. A research group at the Hastings Center and Paul Ramsey pioneered in the discussion of genetics and bioethics. Two principal techniques have emerged as being of enduring importance: human gene transfer research and genetic testing and screening. This essay tracks the development and use of these techniques and considers the ethical issues that they raise.

  2. Genetics of immune-mediated disorders : from genome-wide association to molecular mechanism

    NARCIS (Netherlands)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2014-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory

  3. Interactive effects of genetic polymorphisms and childhood adversity on brain morphologic changes in depression.

    Science.gov (United States)

    Kim, Yong-Ku; Ham, Byung-Joo; Han, Kyu-Man

    2018-03-10

    The etiology of depression is characterized by the interplay of genetic and environmental factors and brain structural alteration. Childhood adversity is a major contributing factor in the development of depression. Interactions between childhood adversity and candidate genes for depression could affect brain morphology via the modulation of neurotrophic factors, serotonergic neurotransmission, or the hypothalamus-pituitary-adrenal (HPA) axis, and this pathway may explain the subsequent onset of depression. Childhood adversity is associated with structural changes in the hippocampus, amygdala, anterior cingulate cortex (ACC), and prefrontal cortex (PFC), as well as white matter tracts such as the corpus callosum, cingulum, and uncinate fasciculus. Childhood adversity showed an interaction with the brain-derived neurotrophic factor (BDNF) gene Val66Met polymorphism, serotonin transporter-linked promoter region (5-HTTLPR), and FK506 binding protein 51 (FKBP5) gene rs1360780 in brain morphologic changes in patients with depression and in a non-clinical population. Individuals with the Met allele of BDNF Val66Met and a history of childhood adversity had reduced volume in the hippocampus and its subfields, amygdala, and PFC and thinner rostral ACC in a study of depressed patients and healthy controls. The S allele of 5-HTTLPR combined with exposure to childhood adversity or a poorer parenting environment was associated with a smaller hippocampal volume and subsequent onset of depression. The FKBP5 gene rs160780 had a significant interaction with childhood adversity in the white matter integrity of brain regions involved in emotion processing. This review identified that imaging genetic studies on childhood adversity may deepen our understanding on the neurobiological background of depression by scrutinizing complicated pathways of genetic factors, early psychosocial environments, and the accompanying morphologic changes in emotion-processing neural circuitry. Copyright

  4. New capabilities of the lattice code WIMS-AECL

    International Nuclear Information System (INIS)

    Altiparmakov, Dimitar

    2008-01-01

    The lattice code WIMS-AECL has been restructured and rewritten in Fortran 95 in order to increase the accuracy of its responses and extend its capabilities. Significant changes of computing algorithms have been made in the following two areas: geometric calculations and resonance self-shielding. Among various geometry enhancements, the code is no longer restricted to deal with single lattice cell problems. The multi-cell capability allows modelling of various lattice structures such as checkerboard lattices, a de-fuelled channel, and core-reflector interface problems. The new resonance method performs distributed resonance self-shielding including the skin effect. This paper describes the main code changes and presents selected code verification results. (authors)

  5. Computation of the bounce-average code

    International Nuclear Information System (INIS)

    Cutler, T.A.; Pearlstein, L.D.; Rensink, M.E.

    1977-01-01

    The bounce-average computer code simulates the two-dimensional velocity transport of ions in a mirror machine. The code evaluates and bounce-averages the collision operator and sources along the field line. A self-consistent equilibrium magnetic field is also computed using the long-thin approximation. Optionally included are terms that maintain μ, J invariance as the magnetic field changes in time. The assumptions and analysis that form the foundation of the bounce-average code are described. When references can be cited, the required results are merely stated and explained briefly. A listing of the code is appended

  6. Detecting Malicious Code by Binary File Checking

    Directory of Open Access Journals (Sweden)

    Marius POPA

    2014-01-01

    Full Text Available The object, library and executable code is stored in binary files. Functionality of a binary file is altered when its content or program source code is changed, causing undesired effects. A direct content change is possible when the intruder knows the structural information of the binary file. The paper describes the structural properties of the binary object files, how the content can be controlled by a possible intruder and what the ways to identify malicious code in such kind of files. Because the object files are inputs in linking processes, early detection of the malicious content is crucial to avoid infection of the binary executable files.

  7. Breaking the code: Statistical methods and methodological issues in psychiatric genetics

    NARCIS (Netherlands)

    Stringer, S.

    2015-01-01

    The genome-wide association (GWA) era has confirmed the heritability of many psychiatric disorders, most notably schizophrenia. Thousands of genetic variants with individually small effect sizes cumulatively constitute a large contribution to the heritability of psychiatric disorders. This thesis

  8. Clinical and Genetic Associations of Objectively Identified Interstitial Changes in Smokers.

    Science.gov (United States)

    Ash, Samuel Y; Harmouche, Rola; Putman, Rachel K; Ross, James C; Diaz, Alejandro A; Hunninghake, Gary M; Onieva Onieva, Jorge; Martinez, Fernando J; Choi, Augustine M; Lynch, David A; Hatabu, Hiroto; Rosas, Ivan O; San Jose Estepar, Raul; Washko, George R

    2017-10-01

    Smoking-related lung injury may manifest on CT scans as both emphysema and interstitial changes. We have developed an automated method to quantify interstitial changes and hypothesized that this measurement would be associated with lung function, quality of life, mortality, and a mucin 5B (MUC5B) polymorphism. Using CT scans from the Genetic Epidemiology of COPD Study, we objectively labeled lung parenchyma as a tissue subtype. We calculated the percentage of the lung occupied by interstitial subtypes. A total of 8,345 participants had clinical and CT scanning data available. A 5% absolute increase in interstitial changes was associated with an absolute decrease in FVC % predicted of 2.47% (P percentage of lung with interstitial changes. Objective interstitial changes on CT scans were associated with impaired lung function, worse quality of life, increased mortality, and more copies of a MUC5B promoter polymorphism, suggesting that these changes may be a marker of susceptibility to smoking-related lung injury, detectable even in those who are healthy by other measures. Copyright © 2017 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  9. Extensive genetic and DNA methylation variation contribute to heterosis in triploid loquat hybrids.

    Science.gov (United States)

    Liu, Chao; Wang, Mingbo; Wang, Lingli; Guo, Qigao; Liang, Guolu

    2018-04-24

    We aim to overcome the unclear origin of the loquat and elucidate the heterosis mechanism of the triploid loquat. Here we investigated the genetic and epigenetic variations between the triploid plant and its parental lines using amplified fragment length polymorphism (AFLP) and methylation-sensitive amplified fragment length polymorphism (MSAP) analyses. We show that in addition to genetic variations, extensive DNA methylation variation occurred during the formation process of triploid loquat, with the triploid hybrid having increased DNA methylation compared to the parents. Furthermore, a correlation existed between genetic variation and DNA methylation remodeling, suggesting that genome instability may lead to DNA methylation variation or vice versa. Sequence analysis of the MSAP bands revealed that over 53% of them overlap with protein-coding genes, which may indicate a functional role of the differential DNA methylation in gene regulation and hence heterosis phenotypes. Consistent with this, the genetic and epigenetic alterations were associated closely to the heterosis phenotypes of triploid loquat, and this association varied for different traits. Our results suggested that the formation of triploid is accompanied by extensive genetic and DNA methylation variation, and these changes contribute to the heterosis phenotypes of the triploid loquats from the two cross lines.

  10. Genetic and Environmental Regulation on Longitudinal Change of Metabolic Phenotypes in Danish and Chinese Adult Twins

    DEFF Research Database (Denmark)

    Li, Shuxia; Kyvik, Kirsten Ohm; Pang, Zengchang

    2016-01-01

    OBJECTIVE: The rate of change in metabolic phenotypes can be highly indicative of metabolic disorders and disorder-related modifications. We analyzed data from longitudinal twin studies on multiple metabolic phenotypes in Danish and Chinese twins representing two populations of distinct ethnic...... pairs traced for about 7 years with a mean baseline age of 39.5 years (range: 23-64). The classical twin models were fitted to the longitudinal change in each phenotype (Δphenotype) to estimate the genetic and environmental contributions to the variation in Δphenotype. RESULTS: Moderate to high...... contributions by the unique environment were estimated for all phenotypes in both Danish (from 0.51 for low density lipoprotein cholesterol up to 0.72 for triglycerides) and Chinese (from 0.41 for triglycerides up to 0.73 for diastolic blood pressure) twins; low to moderate genetic components were estimated...

  11. The in-core fuel management code system for VVER reactors

    International Nuclear Information System (INIS)

    Cada, R.; Krysl, V.; Mikolas, P.; Sustek, J.; Svarny, J.

    2004-01-01

    The structure and methodology of a fuel management system for NPP VVER 1000 (NPP Temelin) and VVER 440 (NPP Dukovany) is described. It is under development in SKODA JS a.s. and is followed by practical applications. The general objectives of the system are maximization of end of cycle reactivity, the minimization of fresh fuel inventory for the minimization of fed enrichment and minimization of burnable poisons (BPs) inventory. They are also safety related constraints in witch minimization of power peaking plays a dominant role. General structure of the system consists in preparation of input data for macrocode calculation, algorithms (codes) for optimization of fuel loading, calculation of fuel enrichment and BPs assignment. At present core loading can be calculated (optimized) by Tabu search algorithm (code ATHENA), genetic algorithm (code Gen1) and hybrid algorithm - simplex procedure with application of Tabu search algorithm on binary shuffling (code OPAL B ). Enrichment search is realized by the application of simplex algorithm (OPAL B code) and BPs assignment by module BPASS and simplex algorithm in OPAL B code. Calculations of the real core loadings are presented and a comparison of different optimization methods is provided. (author)

  12. Integrated analysis of genetic data with R

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2006-01-01

    Full Text Available Abstract Genetic data are now widely available. There is, however, an apparent lack of concerted effort to produce software systems for statistical analysis of genetic data compared with other fields of statistics. It is often a tremendous task for end-users to tailor them for particular data, especially when genetic data are analysed in conjunction with a large number of covariates. Here, R http://www.r-project.org, a free, flexible and platform-independent environment for statistical modelling and graphics is explored as an integrated system for genetic data analysis. An overview of some packages currently available for analysis of genetic data is given. This is followed by examples of package development and practical applications. With clear advantages in data management, graphics, statistical analysis, programming, internet capability and use of available codes, it is a feasible, although challenging, task to develop it into an integrated platform for genetic analysis; this will require the joint efforts of many researchers.

  13. Plant Genetic Resources: Selected Issues from Genetic Erosion to Genetic Engineering

    Directory of Open Access Journals (Sweden)

    Karl Hammer

    2008-04-01

    Full Text Available Plant Genetic Resources (PGR continue to play an important role in the development of agriculture. The following aspects receive a special consideration:1. Definition. The term was coined in 1970. The genepool concept served as an important tool in the further development. Different approaches are discussed.2. Values of Genetic Resources. A short introduction is highlighting this problem and stressing the economic usfulness of PGR.3. Genetic Erosion. Already observed by E. Baur in 1914, this is now a key issue within PGR. The case studies cited include Ethiopia, Italy, China, S Korea, Greece and S. Africa. Modern approaches concentrate on allelic changes in varieties over time but neglect the landraces. The causes and consequences of genetic erosion are discussed.4. Genetic Resources Conservation. Because of genetic erosion there is a need for conservation. PGR should be consigned to the appropriate method of conservation (ex situ, in situ, on-farm according to the scientific basis of biodiversity (genetic diversity, species diversity, ecosystem diversity and the evolutionary status of plants (cultivated plants, weeds, related wild plants (crop wild relatives.5. GMO. The impact of genetically engineered plants on genetic diversity is discussed.6. The Conclusions and Recommendations stress the importance of PGR. Their conservation and use are urgent necessities for the present development and future survival of mankind.

  14. Speech coding

    Energy Technology Data Exchange (ETDEWEB)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the

  15. Common and Rare Coding Genetic Variation Underlying the Electrocardiographic PR Interval

    DEFF Research Database (Denmark)

    Lin, Honghuang; van Setten, Jessica; Smith, Albert V

    2018-01-01

    BACKGROUND: Electrical conduction from the cardiac sinoatrial node to the ventricles is critical for normal heart function. Genome-wide association studies have identified more than a dozen common genetic loci that are associated with PR interval. However, it is unclear whether rare and low-frequ...

  16. Genetic effects of ionizing radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Childs, J.D.

    1980-01-01

    The genetic material in living organisms is susceptible to damage from a wide variety of causes including radiation exposure. Most of this damage is repaired by the organism; the residual damage and damage which is not correctly repaired can lead to genetic changes such as mutations. In lower organisms, most offspring carry an unaltered copy of the genetic information that was present in the parental organism, most of the genetic changes which do occur are not caused by natural background radiation, and the increase in frequency of genetic changes after irradiation at low-dose rates is directly proportional to total radiation dose. The same principles appear to be valid in mammals and other higher organisms. About 105 out of every 1000 humans born suffer from some genetic or partly-genetic condition requiring medical attention at some time. It has been estimated that approximately 1 person in every 2000 born carry a deleterious genetic mutation that was caused by the continued exposure of many generations of our ancestors to natural background radiation. On the same basis, it is predicted that the incidence of genetic diseases would be increased to 106 per 1000 in the children and grandchildren of radiation workers who were exposed to 1 rem per year commencing at age 18. However, there was no detectable change in the health and fitness of mice whose male ancestors were repeatedly exposed to high radiation doses up to 900 rem per generation. (auth)

  17. Monitoring changes in genetic diversity

    CSIR Research Space (South Africa)

    Bruford, MW

    2018-01-01

    Full Text Available has thrived in many different environments over the billions of years, encoding its solutions into DNA—the heredity material. Thanks to this genetic patrimony, many species are equipped with sufficient evolutionary resi- lience to overcome rapid... for food, shelter, medicines, fuel and ecotourism income but may also include those that are ecologically important providing other key ecosystem services such as 120 M.W. Bruford et al. pollination, nutrient cycling and pest regulation (Bailey 2011...

  18. The RETRAN-03 computer code

    International Nuclear Information System (INIS)

    Paulsen, M.P.; McFadden, J.H.; Peterson, C.E.; McClure, J.A.; Gose, G.C.; Jensen, P.J.

    1991-01-01

    The RETRAN-03 code development effort is designed to overcome the major theoretical and practical limitations associated with the RETRAN-02 computer code. The major objectives of the development program are to extend the range of analyses that can be performed with RETRAN, to make the code more dependable and faster running, and to have a more transportable code. The first two objectives are accomplished by developing new models and adding other models to the RETRAN-02 base code. The major model additions for RETRAN-03 are as follows: implicit solution methods for the steady-state and transient forms of the field equations; additional options for the velocity difference equation; a new steady-state initialization option for computer low-power steam generator initial conditions; models for nonequilibrium thermodynamic conditions; and several special-purpose models. The source code and the environmental library for RETRAN-03 are written in standard FORTRAN 77, which allows the last objective to be fulfilled. Some models in RETRAN-02 have been deleted in RETRAN-03. In this paper the changes between RETRAN-02 and RETRAN-03 are reviewed

  19. Efficacy of physical activity interventions in post-natal populations: systematic review, meta-analysis and content coding of behaviour change techniques.

    Science.gov (United States)

    Gilinsky, Alyssa Sara; Dale, Hannah; Robinson, Clare; Hughes, Adrienne R; McInnes, Rhona; Lavallee, David

    2015-01-01

    This systematic review and meta-analysis reports the efficacy of post-natal physical activity change interventions with content coding of behaviour change techniques (BCTs). Electronic databases (MEDLINE, CINAHL and PsychINFO) were searched for interventions published from January 1980 to July 2013. Inclusion criteria were: (i) interventions including ≥1 BCT designed to change physical activity behaviour, (ii) studies reporting ≥1 physical activity outcome, (iii) interventions commencing later than four weeks after childbirth and (iv) studies including participants who had given birth within the last year. Controlled trials were included in the meta-analysis. Interventions were coded using the 40-item Coventry, Aberdeen & London - Refined (CALO-RE) taxonomy of BCTs and study quality assessment was conducted using Cochrane criteria. Twenty studies were included in the review (meta-analysis: n = 14). Seven were interventions conducted with healthy inactive post-natal women. Nine were post-natal weight management studies. Two studies included women with post-natal depression. Two studies focused on improving general well-being. Studies in healthy populations but not for weight management successfully changed physical activity. Interventions increased frequency but not volume of physical activity or walking behaviour. Efficacious interventions always included the BCTs 'goal setting (behaviour)' and 'prompt self-monitoring of behaviour'.

  20. Silviculture and the assessment of climate change genetic risk for southern Appalachian forest tree species

    Science.gov (United States)

    Kevin M. Potter; Barbara S. Crane

    2012-01-01

    Changing climate conditions and increasing insect and pathogen infestations will increase the likelihood that forest trees could experience population-level extirpation or species-level extinction during the next century. Gene conservation and silvicultural efforts to preserve forest tree genetic diversity present a particular challenge in species-rich regions such as...

  1. Next generation Zero-Code control system UI

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    Developing ergonomic user interfaces for control systems is challenging, especially during machine upgrade and commissioning where several small changes may suddenly be required. Zero-code systems, such as *Inspector*, provide agile features for creating and maintaining control system interfaces. More so, these next generation Zero-code systems bring simplicity and uniformity and brake the boundaries between Users and Developers. In this talk we present *Inspector*, a CERN made Zero-code application development system, and we introduce the major differences and advantages of using Zero-code control systems to develop operational UI.

  2. From concatenated codes to graph codes

    DEFF Research Database (Denmark)

    Justesen, Jørn; Høholdt, Tom

    2004-01-01

    We consider codes based on simple bipartite expander graphs. These codes may be seen as the first step leading from product type concatenated codes to more complex graph codes. We emphasize constructions of specific codes of realistic lengths, and study the details of decoding by message passing...

  3. Developments of HTGR thermofluid dynamic analysis codes and HTGR plant dynamic simulation code

    International Nuclear Information System (INIS)

    Tanaka, Mitsuhiro; Izaki, Makoto; Koike, Hiroyuki; Tokumitsu, Masashi

    1983-01-01

    In nuclear power plants as well as high temperature gas-cooled reactor plants, the design is mostly performed on the basis of the results after their characteristics have been grasped by carrying out the numerical simulation using the analysis code. Also in Kawasaki Heavy Industries Ltd., on the basis of the system engineering accumulated with gas-cooled reactors since several years ago, the preparation and systematization of analysis codes have been advanced, aiming at lining up the analysis codes for heat transferring flow and control characteristics, taking up HTGR plants as the main object. In this report, a part of the results is described. The example of the analysis applying the two-dimensional compressible flow analysis codes SOLA-VOF and SALE-2D, which were developed by Los Alamos National Laboratory in USA and modified for use in Kawasaki, to HTGR system is reported. Besides, Kawasaki has developed the control characteristics analyzing code DYSCO by which the change of system composition is easy and high versatility is available. The outline, fundamental equations, fundamental algorithms and examples of application of the SOLA-VOF and SALE-2D, the present status of system characteristic simulation codes and the outline of the DYSCO are described. (Kako, I.)

  4. Privacy rules for DNA databanks. Protecting coded 'future diaries'.

    Science.gov (United States)

    Annas, G J

    1993-11-17

    In privacy terms, genetic information is like medical information. But the information contained in the DNA molecule itself is more sensitive because it contains an individual's probabilistic "future diary," is written in a code that has only partially been broken, and contains information about an individual's parents, siblings, and children. Current rules for protecting the privacy of medical information cannot protect either genetic information or identifiable DNA samples stored in DNA databanks. A review of the legal and public policy rationales for protecting genetic privacy suggests that specific enforceable privacy rules for DNA databanks are needed. Four preliminary rules are proposed to govern the creation of DNA databanks, the collection of DNA samples for storage, limits on the use of information derived from the samples, and continuing obligations to those whose DNA samples are in the databanks.

  5. Loss of heterozygosity in fibrocystic change of the breast: genetic relationship between benign proliferative lesions and associated carcinomas.

    Science.gov (United States)

    Washington, C; Dalbègue, F; Abreo, F; Taubenberger, J K; Lichy, J H

    2000-07-01

    Loss of heterozygosity (LOH), a genetic change frequently detected in cancer, can also occur in benign epithelial foci in the breast. To characterize LOH in benign breast tissue, 32 cases containing the various components of fibrocystic change in the absence of malignancy were studied. Microdissected foci of ductal hyperplasia, apocrine metaplasia, sclerosing adenosis, and morphologically normal terminal duct lobular units (TDLUs) were analyzed for LOH at 14 polymorphic loci representing seven chromosomal arms. LOH was detected in 22% of normal TDLUs (6/27), 17% of adenosis (4/23), 19% of hyperplasia (4/21), and 53% of apocrine metaplasia (10/19) specimens. Because of the high percentage of LOH in apocrine metaplasia in nonneoplastic specimens, the genetic relationship between apocrine metaplasia and cancer was studied in a panel of breast cancer cases. Of 14 examples of apocrine metaplasia adjacent to a carcinoma, seven were found to have LOH with at least one marker. In all seven cases, the tumor and apocrine metaplasia shared LOH at one or more markers. The results demonstrate that LOH occurs frequently in the components of fibrocystic change as well as in normal TDLUs and suggest that foci of apocrine metaplasia can share a genetically altered precursor cell with an associated carcinoma.

  6. Non-binary unitary error bases and quantum codes

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.

    1996-06-01

    Error operator bases for systems of any dimension are defined and natural generalizations of the bit-flip/ sign-change error basis for qubits are given. These bases allow generalizing the construction of quantum codes based on eigenspaces of Abelian groups. As a consequence, quantum codes can be constructed form linear codes over {ital Z}{sub {ital n}} for any {ital n}. The generalization of the punctured code construction leads to many codes which permit transversal (i.e. fault tolerant) implementations of certain operations compatible with the error basis.

  7. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils

    DEFF Research Database (Denmark)

    Rosendahl, Søren; Matzen, Hans

    2008-01-01

    protein-coding genes GmFOX2 and GmTOR2 were used as co-dominant genetic markers together with the large subunit (LSU) rDNA. The gene diversity and genetic structure of Glomus mosseae, Glomus geosporum and Glomus caledonium were compared within and between the fields. •  Spores of G. caledonium and G...

  8. The "ACA Code of Ethics": Articulating Counseling's Professional Covenant

    Science.gov (United States)

    Ponton, Richard F.; Duba, Jill D.

    2009-01-01

    The "ACA Code of Ethics" (American Counseling Association, 2005) is an articulation of the ever-changing relationship between counseling professionals and society. It provides clear parameters of behaviors to meet the changing needs of the people counselors are called to serve. This article reviews the 2005 "Code" as both a statement of counselor…

  9. Assessment of genetic diversity among maize accessions using inter ...

    African Journals Online (AJOL)

    NRCC

    2011-11-07

    Nov 7, 2011 ... Key words: Zea mays, Tripsacum sp., genetic narrowing, gene pool, DNA markers. INTRODUCTION ... coding, genomic mapping and evolutionary biology (Reddy et al., 2002). ... (http://www.r-project.org). RESULTS AND ...

  10. Mistranslation: from adaptations to applications.

    Science.gov (United States)

    Hoffman, Kyle S; O'Donoghue, Patrick; Brandl, Christopher J

    2017-11-01

    The conservation of the genetic code indicates that there was a single origin, but like all genetic material, the cell's interpretation of the code is subject to evolutionary pressure. Single nucleotide variations in tRNA sequences can modulate codon assignments by altering codon-anticodon pairing or tRNA charging. Either can increase translation errors and even change the code. The frozen accident hypothesis argued that changes to the code would destabilize the proteome and reduce fitness. In studies of model organisms, mistranslation often acts as an adaptive response. These studies reveal evolutionary conserved mechanisms to maintain proteostasis even during high rates of mistranslation. This review discusses the evolutionary basis of altered genetic codes, how mistranslation is identified, and how deviations to the genetic code are exploited. We revisit early discoveries of genetic code deviations and provide examples of adaptive mistranslation events in nature. Lastly, we highlight innovations in synthetic biology to expand the genetic code. The genetic code is still evolving. Mistranslation increases proteomic diversity that enables cells to survive stress conditions or suppress a deleterious allele. Genetic code variants have been identified by genome and metagenome sequence analyses, suppressor genetics, and biochemical characterization. Understanding the mechanisms of translation and genetic code deviations enables the design of new codes to produce novel proteins. Engineering the translation machinery and expanding the genetic code to incorporate non-canonical amino acids are valuable tools in synthetic biology that are impacting biomedical research. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses.

    Science.gov (United States)

    Guo, Zixiao; Li, Xinnian; He, Ziwen; Yang, Yuchen; Wang, Wenqing; Zhong, Cairong; Greenberg, Anthony J; Wu, Chung-I; Duke, Norman C; Shi, Suhua

    2018-04-01

    The projected increases in sea levels are expected to affect coastal ecosystems. Tropical communities, anchored by mangrove trees and having experienced frequent past sea level changes, appear to be vibrant at present. However, any optimism about the resilience of these ecosystems is premature because the impact of past climate events may not be reflected in the current abundance. To assess the impact of historical sea level changes, we conducted an extensive genetic diversity survey on the Indo-Malayan coast, a hotspot with a large global mangrove distribution. A survey of 26 populations in six species reveals extremely low genome-wide nucleotide diversity and hence very small effective population sizes (N e ) in all populations. Whole-genome sequencing of three mangrove species further shows the decline in N e to be strongly associated with the speed of past changes in sea level. We also used a recent series of flooding events in Yalong Bay, southern China, to test the robustness of mangroves to sea level changes in relation to their genetic diversity. The events resulted in the death of half of the mangrove trees in this area. Significantly, less genetically diverse mangrove species suffered much greater destruction. The dieback was accompanied by a drastic reduction in local invertebrate biodiversity. We thus predict that tropical coastal communities will be seriously endangered as the global sea level rises. Well-planned coastal development near mangrove forests will be essential to avert this crisis. © 2017 John Wiley & Sons Ltd.

  12. A genetic polymorphism in the coding region of the gastric intrinsic factor gene (GIF) is associated with congenital intrinsic factor deficiency.

    Science.gov (United States)

    Gordon, Marilyn M; Brada, Nancy; Remacha, Angel; Badell, Isabel; del Río, Elisabeth; Baiget, Montserrat; Santer, René; Quadros, Edward V; Rothenberg, Sheldon P; Alpers, David H

    2004-01-01

    Congenital intrinsic factor (IF) deficiency is a disorder characterized by megaloblastic anemia due to the absence of gastric IF (GIF, GenBank NM_005142) and GIF antibodies, with probable autosomal recessive inheritance. Most of the reported patients are isolated cases without genetic studies of the parents or siblings. Complete exonic sequences were determined from the PCR products generated from genomic DNA of five affected individuals. All probands had the identical variant (g.68A>G) in the second position of the fifth codon in the coding sequence of the gene that introduces a restriction enzyme site for Msp I and predicts a change in the mature protein from glutamine(5) (CAG) to arginine(5) (CGG). Three subjects were homozygous for this base exchange and two subjects were heterozygous, one of which was apparently a compound heterozygote at positions 1 and 2 of the fifth codon ([g.67C>G] + [g.68A>G]). The other patient, heterozygous for position 2, had one heterozygous unaffected parent. Most parents were heterozygous for this base exchange, confirming the pattern of autosomal recessive inheritance for congenital IF deficiency. cDNA encoding GIF was mutated at base pair g.68 (A>G) and expressed in COS-7 cells. The apparent size, secretion rate, and sensitivity to pepsin hydrolysis of the expressed IF were similar to native IF. The allelic frequency of g.68A>G was 0.067 and 0.038 in two control populations. This sequence aberration is not the cause of the phenotype, but is associated with the genotype of congenital IF deficiency and could serve as a marker for inheritance of this disorder. Copyright 2003 Wiley-Liss, Inc.

  13. Liposarcoma or lipoma: Does genetics change classic imaging criteria?

    International Nuclear Information System (INIS)

    Bidault, F.; Vanel, D.; Terrier, Ph.; Jalaguier, A.; Bonvalot, S.; Pedeutour, F.; Couturier, J.M.; Dromain, C.

    2009-01-01

    Differentiating benign from malignant fatty tumours has always been very difficult for both radiologists and pathologists. Cytogenetic and molecular genetic analyses provide complementary tools for differentiating soft tissue tumours. Our objective was to compare imaging criteria of malignancy with a new diagnostic gold standard, namely, pathological analysis combined with cytogenetic and molecular genetic analyses. Nineteen patients with a fatty tumour were included. All had computed tomography and/or magnetic resonance imaging examination before any biopsy or surgery. All had histopathological and cytogenetic and/or molecular genetic analyses. The imaging diagnosis of benign or malignant lesions was accurate in 15 cases, with 4 false positives for malignancy. Erroneous criteria were a large size (4 cases), and a mass that was not purely fatty. In conclusion, the main pitfall for a false positive radiological diagnosis of liposarcoma is certainly a large-sized tumour. Cytogenetic and molecular genetic analyses contribute to the diagnosis and can be performed at the same time with a core biopsy.

  14. Open Genetic Code: on open source in the life sciences

    OpenAIRE

    Deibel, Eric

    2014-01-01

    The introduction of open source in the life sciences is increasingly being suggested as an alternative to patenting. This is an alternative, however, that takes its shape at the intersection of the life sciences and informatics. Numerous examples can be identified wherein open source in the life sciences refers to access, sharing and collaboration as informatic practices. This includes open source as an experimental model and as a more sophisticated approach of genetic engineering. The first ...

  15. A novel progressively swarmed mixed integer genetic algorithm for ...

    African Journals Online (AJOL)

    MIGA) which inherits the advantages of binary and real coded Genetic Algorithm approach. The proposed algorithm is applied for the conventional generation cost minimization Optimal Power Flow (OPF) problem and for the Security ...

  16. Genetic variants in promoters and coding regions of the muscle glycogen synthase and the insulin-responsive GLUT4 genes in NIDDM

    DEFF Research Database (Denmark)

    Bjørbaek, C; Echwald, Søren Morgenthaler; Hubricht, P

    1994-01-01

    To examine the hypothesis that variants in the regulatory or coding regions of the glycogen synthase (GS) and insulin-responsive glucose transporter (GLUT4) genes contribute to insulin-resistant glucose processing of muscle from non-insulin-dependent diabetes mellitus (NIDDM) patients, promoter...... volunteers. By applying inverse polymerase chain reaction and direct DNA sequencing, 532 base pairs (bp) of the GS promoter were identified and the transcriptional start site determined by primer extension. SSCP scanning of the promoter region detected five single nucleotide substitutions, positioned at 42......'-untranslated region, and the coding region of the GLUT4 gene showed four polymorphisms, all single nucleotide substitutions, positioned at -581, 1, 30, and 582. None of the three changes in the regulatory region of the gene had any major influence on expression of the GLUT4 gene in muscle. The variant at 582...

  17. Diabetes Mellitus Coding Training for Family Practice Residents.

    Science.gov (United States)

    Urse, Geraldine N

    2015-07-01

    Although physicians regularly use numeric coding systems such as the International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) to describe patient encounters, coding errors are common. One of the most complicated diagnoses to code is diabetes mellitus. The ICD-9-CM currently has 39 separate codes for diabetes mellitus; this number will be expanded to more than 50 with the introduction of ICD-10-CM in October 2015. To assess the effect of a 1-hour focused presentation on ICD-9-CM codes on diabetes mellitus coding. A 1-hour focused lecture on the correct use of diabetes mellitus codes for patient visits was presented to family practice residents at Doctors Hospital Family Practice in Columbus, Ohio. To assess resident knowledge of the topic, a pretest and posttest were given to residents before and after the lecture, respectively. Medical records of all patients with diabetes mellitus who were cared for at the hospital 6 weeks before and 6 weeks after the lecture were reviewed and compared for the use of diabetes mellitus ICD-9 codes. Eighteen residents attended the lecture and completed the pretest and posttest. The mean (SD) percentage of correct answers was 72.8% (17.1%) for the pretest and 84.4% (14.6%) for the posttest, for an improvement of 11.6 percentage points (P≤.035). The percentage of total available codes used did not substantially change from before to after the lecture, but the use of the generic ICD-9-CM code for diabetes mellitus type II controlled (250.00) declined (58 of 176 [33%] to 102 of 393 [26%]) and the use of other codes increased, indicating a greater variety in codes used after the focused lecture. After a focused lecture on diabetes mellitus coding, resident coding knowledge improved. Review of medical record data did not reveal an overall change in the number of diabetic codes used after the lecture but did reveal a greater variety in the codes used.

  18. Toric Varieties and Codes, Error-correcting Codes, Quantum Codes, Secret Sharing and Decoding

    DEFF Research Database (Denmark)

    Hansen, Johan Peder

    We present toric varieties and associated toric codes and their decoding. Toric codes are applied to construct Linear Secret Sharing Schemes (LSSS) with strong multiplication by the Massey construction. Asymmetric Quantum Codes are obtained from toric codes by the A.R. Calderbank P.W. Shor and A.......M. Steane construction of stabilizer codes (CSS) from linear codes containing their dual codes....

  19. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    problem through an identification approach using the real coded Genetic Algorithm (GA). The desired FOPDT/SOPDT model is directly identified based on the measured system's input and output data. In order to evaluate the quality and performance of this GA-based approach, the proposed method is compared...

  20. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    https://www.ias.ac.in/article/fulltext/jgen/095/01/0003-0012. Keywords. codon usage; eukaryotes; nonstandard genetic code; phages; prokaryotes; transfer RNA; translation factors; viruses. Author Affiliations. Sushil Kumar1 2 Renu Kumari2 Vishakha Sharma1 2. SKA Institution for Research, Education and Development, ...

  1. CVSscan : Visualization of Code Evolution

    NARCIS (Netherlands)

    Voinea, Lucian; Telea, Alex; Wijk, Jarke J. van

    2005-01-01

    During the life cycle of a software system, the source code is changed many times. We study how developers can be enabled to get insight in these changes, in order to understand the status, history and structure better, as well as for instance the roles played by various contributors. We present

  2. Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change.

    Science.gov (United States)

    Schueler, Silvio; Falk, Wolfgang; Koskela, Jarkko; Lefèvre, François; Bozzano, Michele; Hubert, Jason; Kraigher, Hojka; Longauer, Roman; Olrik, Ditte C

    2014-05-01

    A transnational network of genetic conservation units for forest trees was recently documented in Europe aiming at the conservation of evolutionary processes and the adaptive potential of natural or man-made tree populations. In this study, we quantified the vulnerability of individual conservation units and the whole network to climate change using climate favourability models and the estimated velocity of climate change. Compared to the overall climate niche of the analysed target species populations at the warm and dry end of the species niche are underrepresented in the network. However, by 2100, target species in 33-65 % of conservation units, mostly located in southern Europe, will be at the limit or outside the species' current climatic niche as demonstrated by favourabilities below required model sensitivities of 95%. The highest average decrease in favourabilities throughout the network can be expected for coniferous trees although they are mainly occurring within units in mountainous landscapes for which we estimated lower velocities of change. Generally, the species-specific estimates of favourabilities showed only low correlations to the velocity of climate change in individual units, indicating that both vulnerability measures should be considered for climate risk analysis. The variation in favourabilities among target species within the same conservation units is expected to increase with climate change and will likely require a prioritization among co-occurring species. The present results suggest that there is a strong need to intensify monitoring efforts and to develop additional conservation measures for populations in the most vulnerable units. Also, our results call for continued transnational actions for genetic conservation of European forest trees, including the establishment of dynamic conservation populations outside the current species distribution ranges within European assisted migration schemes. © 2013 John Wiley & Sons Ltd.

  3. Genetic Contributions to Continuity and Change in Attachment Security: A Prospective, Longitudinal Investigation from Infancy to Young Adulthood

    Science.gov (United States)

    Raby, K. Lee; Cicchetti, Dante; Carlson, Elizabeth A.; Egeland, Byron; Collins, W. Andrew

    2013-01-01

    Background Longitudinal research has demonstrated that individual differences in attachment security show only modest continuity from infancy to adulthood. Recent findings based on retrospective reports suggest that individuals’ genetic variation may moderate the developmental associations between early attachment-relevant relationship experiences and adult attachment security. The purpose of this study was to use a prospective, longitudinal design to investigate genetic contributions to continuity and changes in attachment security from infancy to young adulthood in a higher risk sample. Methods Infant attachment security was assessed using the Strange Situation Procedure at 12 and 18 months. Adults’ general attachment representations were assessed using the Adult Attachment Interview at age 19 and age 26. Romantic attachment representations were assessed with the Current Relationship Interview at ages 20–21 and ages 26–28. Individuals were genotyped for variants within the oxytocin receptor (OXTR), dopamine D4 receptor (DRD4), and serotonin transporter linked polymorphic region (5-HTTLPR). Results The continuity of attachment security from infancy into young adulthood was consistently moderated by OXTR genetic variation. Infant attachment security predicted the security of adults’ general and romantic attachment representations only for individuals with the OXTR G/G genotype. This interaction was significant when predicting adult attachment security as measured by the Adult Attachment Interview at age 19 and 26 and the Current Relationship Interview at ages 26–28. DRD4 and 5-HTTLPR genetic variation did not consistently moderate the longitudinal associations between attachment security during infancy and adulthood. Conclusions This study provides initial longitudinal evidence for genetic contributions to continuity and change in attachment security from infancy to young adulthood. Genetic variation related to the oxytocin system may moderate the

  4. Genetic variation of fasting glucose and changes in glycemia in response to 2-year weight-loss diet intervention: the POUNDS Lost trial

    Science.gov (United States)

    Wang, Tiange; Huang, Tao; Zheng, Yan; Rood, Jennifer; Bray, George A.; Sacks, Frank M.; Qi, Lu

    2016-01-01

    Objective Weight loss intervention through diet modification has been widely used to improve obesity-related hyperglycemia; however, little is known about whether genetic variation modifies the intervention effect. We examined the interaction between weight-loss diets and genetic variation of fasting glucose on changes in glycemic traits in a dietary intervention trial. Research Design and Methods The Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial is a randomized, controlled 2-year weight-loss trial. We assessed overall genetic variation of fasting glucose by calculating a genetic risk score (GRS) based on 14 fasting glucose-associated single nucleotide polymorphisms, and examined the progression in fasting glucose and insulin levels, and insulin resistance and insulin sensitivity in 733 adults from this trial. Results The GRS was associated with 6-month changes in fasting glucose (Pfasting insulin (P=0.042), homeostasis model assessment of insulin resistance (HOMA-IR, P=0.009) and insulin sensitivity (HOMA-S, P=0.043). We observed significant interaction between the GRS and dietary fat on 6-month changes in fasting glucose, HOMA-IR and HOMA-S after multivariable adjustment (P-interaction=0.007, 0.045, and 0.028, respectively). After further adjustment for weight loss, the interaction remained significant on change in fasting glucose (P=0.015). In the high-fat diet group, participants in the highest GRS tertile showed increased fasting glucose, whereas participants in the lowest tertile showed decreased fasting glucose (P-trend<0.001); in contrast, the genetic association was not significant in the low-fat diet group (P-trend=0.087). Conclusions Our data suggest that participants with a higher genetic risk may benefit more by eating a low-fat diet to improve glucose metabolism. PMID:27113490

  5. Automatic coding method of the ACR Code

    International Nuclear Information System (INIS)

    Park, Kwi Ae; Ihm, Jong Sool; Ahn, Woo Hyun; Baik, Seung Kook; Choi, Han Yong; Kim, Bong Gi

    1993-01-01

    The authors developed a computer program for automatic coding of ACR(American College of Radiology) code. The automatic coding of the ACR code is essential for computerization of the data in the department of radiology. This program was written in foxbase language and has been used for automatic coding of diagnosis in the Department of Radiology, Wallace Memorial Baptist since May 1992. The ACR dictionary files consisted of 11 files, one for the organ code and the others for the pathology code. The organ code was obtained by typing organ name or code number itself among the upper and lower level codes of the selected one that were simultaneous displayed on the screen. According to the first number of the selected organ code, the corresponding pathology code file was chosen automatically. By the similar fashion of organ code selection, the proper pathologic dode was obtained. An example of obtained ACR code is '131.3661'. This procedure was reproducible regardless of the number of fields of data. Because this program was written in 'User's Defined Function' from, decoding of the stored ACR code was achieved by this same program and incorporation of this program into program in to another data processing was possible. This program had merits of simple operation, accurate and detail coding, and easy adjustment for another program. Therefore, this program can be used for automation of routine work in the department of radiology

  6. Development of a BWR loading pattern design system based on modified genetic algorithms and knowledge

    International Nuclear Information System (INIS)

    Martin-del-Campo, Cecilia; Francois, Juan Luis; Avendano, Linda; Gonzalez, Mario

    2004-01-01

    An optimization system based on Genetic Algorithms (GAs), in combination with expert knowledge coded in heuristics rules, was developed for the design of optimized boiling water reactor (BWR) fuel loading patterns. The system was coded in a computer program named Loading Pattern Optimization System based on Genetic Algorithms, in which the optimization code uses GAs to select candidate solutions, and the core simulator code CM-PRESTO to evaluate them. A multi-objective function was built to maximize the cycle energy length while satisfying power and reactivity constraints used as BWR design parameters. Heuristic rules were applied to satisfy standard fuel management recommendations as the Control Cell Core and Low Leakage loading strategies, and octant symmetry. To test the system performance, an optimized cycle was designed and compared against an actual operating cycle of Laguna Verde Nuclear Power Plant, Unit I

  7. Genetic Brain Disorders

    Science.gov (United States)

    A genetic brain disorder is caused by a variation or a mutation in a gene. A variation is a different form ... mutation is a change in a gene. Genetic brain disorders affect the development and function of the ...

  8. An Outline of the New Norwegian Criminal Code

    Directory of Open Access Journals (Sweden)

    Jørn Jacobsen

    2015-12-01

    Full Text Available This article gives an overview of the new criminal code, its background and content. It maps out the code’s background, the legislative process and central ideas. Furthermore, the article gives an outline of the general criteria for criminal responsibility according to the code, the offences and forms of punishment and other reactions. The article emphasises the most important changes from the previous code of 1902. To some degree, strengths and weaknesses of the new code are addressed.

  9. Challenging the dogma: the hidden layer of non-protein-coding RNAs in complex organisms.

    Science.gov (United States)

    Mattick, John S

    2003-10-01

    The central dogma of biology holds that genetic information normally flows from DNA to RNA to protein. As a consequence it has been generally assumed that genes generally code for proteins, and that proteins fulfil not only most structural and catalytic but also most regulatory functions, in all cells, from microbes to mammals. However, the latter may not be the case in complex organisms. A number of startling observations about the extent of non-protein-coding RNA (ncRNA) transcription in the higher eukaryotes and the range of genetic and epigenetic phenomena that are RNA-directed suggests that the traditional view of the structure of genetic regulatory systems in animals and plants may be incorrect. ncRNA dominates the genomic output of the higher organisms and has been shown to control chromosome architecture, mRNA turnover and the developmental timing of protein expression, and may also regulate transcription and alternative splicing. This paper re-examines the available evidence and suggests a new framework for considering and understanding the genomic programming of biological complexity, autopoietic development and phenotypic variation. Copyright 2003 Wiley Periodicals, Inc.

  10. Time for change: a roadmap to guide the implementation of the World Anti-Doping Code 2015.

    Science.gov (United States)

    Dvorak, Jiri; Baume, Norbert; Botré, Francesco; Broséus, Julian; Budgett, Richard; Frey, Walter O; Geyer, Hans; Harcourt, Peter Rex; Ho, Dave; Howman, David; Isola, Victor; Lundby, Carsten; Marclay, François; Peytavin, Annie; Pipe, Andrew; Pitsiladis, Yannis P; Reichel, Christian; Robinson, Neil; Rodchenkov, Grigory; Saugy, Martial; Sayegh, Souheil; Segura, Jordi; Thevis, Mario; Vernec, Alan; Viret, Marjolaine; Vouillamoz, Marc; Zorzoli, Mario

    2014-05-01

    A medical and scientific multidisciplinary consensus meeting was held from 29 to 30 November 2013 on Anti-Doping in Sport at the Home of FIFA in Zurich, Switzerland, to create a roadmap for the implementation of the 2015 World Anti-Doping Code. The consensus statement and accompanying papers set out the priorities for the antidoping community in research, science and medicine. The participants achieved consensus on a strategy for the implementation of the 2015 World Anti-Doping Code. Key components of this strategy include: (1) sport-specific risk assessment, (2) prevalence measurement, (3) sport-specific test distribution plans, (4) storage and reanalysis, (5) analytical challenges, (6) forensic intelligence, (7) psychological approach to optimise the most deterrent effect, (8) the Athlete Biological Passport (ABP) and confounding factors, (9) data management system (Anti-Doping Administration & Management System (ADAMS), (10) education, (11) research needs and necessary advances, (12) inadvertent doping and (13) management and ethics: biological data. True implementation of the 2015 World Anti-Doping Code will depend largely on the ability to align thinking around these core concepts and strategies. FIFA, jointly with all other engaged International Federations of sports (Ifs), the International Olympic Committee (IOC) and World Anti-Doping Agency (WADA), are ideally placed to lead transformational change with the unwavering support of the wider antidoping community. The outcome of the consensus meeting was the creation of the ad hoc Working Group charged with the responsibility of moving this agenda forward.

  11. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Science.gov (United States)

    Fu, Shulan; Sun, Chuanfei; Yang, Manyu; Fei, Yunyan; Tan, Feiqun; Yan, Benju; Ren, Zhenglong; Tang, Zongxiang

    2013-01-01

    Monosomic alien addition lines (MAALs) can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP) and methylation-sensitive amplification polymorphism (MSAP) analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  12. Coding in pigeons: Multiple-coding versus single-code/default strategies.

    Science.gov (United States)

    Pinto, Carlos; Machado, Armando

    2015-05-01

    To investigate the coding strategies that pigeons may use in a temporal discrimination tasks, pigeons were trained on a matching-to-sample procedure with three sample durations (2s, 6s and 18s) and two comparisons (red and green hues). One comparison was correct following 2-s samples and the other was correct following both 6-s and 18-s samples. Tests were then run to contrast the predictions of two hypotheses concerning the pigeons' coding strategies, the multiple-coding and the single-code/default. According to the multiple-coding hypothesis, three response rules are acquired, one for each sample. According to the single-code/default hypothesis, only two response rules are acquired, one for the 2-s sample and a "default" rule for any other duration. In retention interval tests, pigeons preferred the "default" key, a result predicted by the single-code/default hypothesis. In no-sample tests, pigeons preferred the key associated with the 2-s sample, a result predicted by multiple-coding. Finally, in generalization tests, when the sample duration equaled 3.5s, the geometric mean of 2s and 6s, pigeons preferred the key associated with the 6-s and 18-s samples, a result predicted by the single-code/default hypothesis. The pattern of results suggests the need for models that take into account multiple sources of stimulus control. © Society for the Experimental Analysis of Behavior.

  13. Changes to the Employers' Use of Genetic Information and Non-discrimination for Health Insurance in the USA: Implications for Australians

    Directory of Open Access Journals (Sweden)

    Gemma A. Bilkey

    2018-06-01

    Full Text Available In the USA, a bill has been introduced to the senate that may jeopardize an individual's rights to privacy and non-discrimination. This piece examines the proposed Preserving Employee Wellness Programs Act (PEWPA, and implications this will have on the use of genetic information. The Act allows for employers to apply financial penalties for health insurance based on genetic information, which raises concerns as the capacity to interpret genetic results is limited by knowledge of the significance of both benign and pathogenic variants. In Australia, genetic information can only be used to determine life insurance, not to stratify health insurance, and any precedent set internationally should raise concerns of the potential for change on the horizon.

  14. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    This noticeable hot spot regions hold higher frequency (50%) of pathogenic / likely pathogenic genetic variants constituting single nucleotide variants than large deletion and insertion that actually represents only 41.08% of coding sequence ofPKD2. Statistically significant association for IVS3-22AA genotype was observed ...

  15. Change in optimum genetic algorithm solution with changing band discontinuities and band widths of electrically conducting copolymers

    Science.gov (United States)

    Kaur, Avneet; Bakhshi, A. K.

    2010-04-01

    The interest in copolymers stems from the fact that they present interesting electronic and optical properties leading to a variety of technological applications. In order to get a suitable copolymer for a specific application, genetic algorithm (GA) along with negative factor counting (NFC) method has recently been used. In this paper, we study the effect of change in the ratio of conduction band discontinuity to valence band discontinuity (Δ Ec/Δ Ev) on the optimum solution obtained from GA for model binary copolymers. The effect of varying bandwidths on the optimum GA solution is also investigated. The obtained results show that the optimum solution changes with varying parameters like band discontinuity and band width of constituent homopolymers. As the ratio Δ Ec/Δ Ev increases, band gap of optimum solution decreases. With increasing band widths of constituent homopolymers, the optimum solution tends to be dependent on the component with higher band gap.

  16. Systematic screening for mutations in the promoter and the coding region of the 5-HT{sub 1A} gene

    Energy Technology Data Exchange (ETDEWEB)

    Erdmann, J.; Shimron-Abarbanell, D.; Cichon, S. [Univ. of Bonn (Germany)] [and others

    1995-10-09

    In the present study we sought to identify genetic variation in the 5-HT{sub 1A} receptor gene which through alteration of protein function or level of expression might contribute to the genetic predisposition to neuropsychiatric diseases. Genomic DNA samples from 159 unrelated subjects (including 45 schizophrenic, 46 bipolar affective, and 43 patients with Tourette`s syndrome, as well as 25 healthy controls) were investigated by single-strand conformation analysis. Overlapping PCR (polymerase chain reaction) fragments covered the whole coding sequence as well as the 5{prime} untranslated region of the 5-HT{sub 1A} gene. The region upstream to the coding sequence we investigated contains a functional promoter. We found two rare nucleotide sequence variants. Both mutations are located in the coding region of the gene: a coding mutation (A{yields}G) in nucleotide position 82 which leads to an amino acid exchange (Ile{yields}Val) in position 28 of the receptor protein and a silent mutation (C{yields}T) in nucleotide position 549. The occurrence of the Ile-28-Val substitution was studied in an extended sample of patients (n = 352) and controls (n = 210) but was found in similar frequencies in all groups. Thus, this mutation is unlikely to play a significant role in the genetic predisposition to the diseases investigated. In conclusion, our study does not provide evidence that the 5-HT{sub 1A} gene plays either a major or a minor role in the genetic predisposition to schizophrenia, bipolar affective disorder, or Tourette`s syndrome. 29 refs., 4 figs., 1 tab.

  17. Code Cactus; Code Cactus

    Energy Technology Data Exchange (ETDEWEB)

    Fajeau, M; Nguyen, L T; Saunier, J [Commissariat a l' Energie Atomique, Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1966-09-01

    This code handles the following problems: -1) Analysis of thermal experiments on a water loop at high or low pressure; steady state or transient behavior; -2) Analysis of thermal and hydrodynamic behavior of water-cooled and moderated reactors, at either high or low pressure, with boiling permitted; fuel elements are assumed to be flat plates: - Flowrate in parallel channels coupled or not by conduction across plates, with conditions of pressure drops or flowrate, variable or not with respect to time is given; the power can be coupled to reactor kinetics calculation or supplied by the code user. The code, containing a schematic representation of safety rod behavior, is a one dimensional, multi-channel code, and has as its complement (FLID), a one-channel, two-dimensional code. (authors) [French] Ce code permet de traiter les problemes ci-dessous: 1. Depouillement d'essais thermiques sur boucle a eau, haute ou basse pression, en regime permanent ou transitoire; 2. Etudes thermiques et hydrauliques de reacteurs a eau, a plaques, a haute ou basse pression, ebullition permise: - repartition entre canaux paralleles, couples on non par conduction a travers plaques, pour des conditions de debit ou de pertes de charge imposees, variables ou non dans le temps; - la puissance peut etre couplee a la neutronique et une representation schematique des actions de securite est prevue. Ce code (Cactus) a une dimension d'espace et plusieurs canaux, a pour complement Flid qui traite l'etude d'un seul canal a deux dimensions. (auteurs)

  18. Revised SRAC code system

    International Nuclear Information System (INIS)

    Tsuchihashi, Keichiro; Ishiguro, Yukio; Kaneko, Kunio; Ido, Masaru.

    1986-09-01

    Since the publication of JAERI-1285 in 1983 for the preliminary version of the SRAC code system, a number of additions and modifications to the functions have been made to establish an overall neutronics code system. Major points are (1) addition of JENDL-2 version of data library, (2) a direct treatment of doubly heterogeneous effect on resonance absorption, (3) a generalized Dancoff factor, (4) a cell calculation based on the fixed boundary source problem, (5) the corresponding edit required for experimental analysis and reactor design, (6) a perturbation theory calculation for reactivity change, (7) an auxiliary code for core burnup and fuel management, etc. This report is a revision of the users manual which consists of the general description, input data requirements and their explanation, detailed information on usage, mathematics, contents of libraries and sample I/O. (author)

  19. Implications of recurrent disturbance for genetic diversity.

    Science.gov (United States)

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.

  20. Genetics meets metabolomics: a genome-wide association study of metabolite profiles in human serum.

    Directory of Open Access Journals (Sweden)

    Christian Gieger

    2008-11-01

    Full Text Available The rapidly evolving field of metabolomics aims at a comprehensive measurement of ideally all endogenous metabolites in a cell or body fluid. It thereby provides a functional readout of the physiological state of the human body. Genetic variants that associate with changes in the homeostasis of key lipids, carbohydrates, or amino acids are not only expected to display much larger effect sizes due to their direct involvement in metabolite conversion modification, but should also provide access to the biochemical context of such variations, in particular when enzyme coding genes are concerned. To test this hypothesis, we conducted what is, to the best of our knowledge, the first GWA study with metabolomics based on the quantitative measurement of 363 metabolites in serum of 284 male participants of the KORA study. We found associations of frequent single nucleotide polymorphisms (SNPs with considerable differences in the metabolic homeostasis of the human body, explaining up to 12% of the observed variance. Using ratios of certain metabolite concentrations as a proxy for enzymatic activity, up to 28% of the variance can be explained (p-values 10(-16 to 10(-21. We identified four genetic variants in genes coding for enzymes (FADS1, LIPC, SCAD, MCAD where the corresponding metabolic phenotype (metabotype clearly matches the biochemical pathways in which these enzymes are active. Our results suggest that common genetic polymorphisms induce major differentiations in the metabolic make-up of the human population. This may lead to a novel approach to personalized health care based on a combination of genotyping and metabolic characterization. These genetically determined metabotypes may subscribe the risk for a certain medical phenotype, the response to a given drug treatment, or the reaction to a nutritional intervention or environmental challenge.

  1. Improvement of JRR-4 core management code system

    International Nuclear Information System (INIS)

    Izumo, H.; Watanabe, S.; Nagatomi, H.; Hori, N.

    2000-01-01

    In the modification of JRR-4, the fuel was changed from 93% high enrichment uranium aluminized fuel to 20% low enriched uranium silicide fuel in conformity with the framework of reduced enrichment program on JAERI research reactors. As changing of this, JRR-4 core management code system which estimates excess reactivity of core, fuel burn-up and so on, was improved too. It had been difficult for users to operate the former code system because its input-output form was text-form. But, in the new code system (COMMAS-JRR), users are able to operate the code system without using difficult text-form input. The estimation results of excess reactivity of JRR-4 LEU fuel core were showed very good agreements with the measured value. It is the strong points of this new code system to be operated simply by using the windows form pictures act on a personal workstation equip with the graphical-user-interface (GUI), and to estimate accurately the specific characteristics of the LEU core. (author)

  2. Genetic variation in KCNA5

    DEFF Research Database (Denmark)

    Christophersen, Ingrid E; Olesen, Morten S; Liang, Bo

    2012-01-01

    AimsGenetic factors may be important in the development of atrial fibrillation (AF) in the young. KCNA5 encodes the potassium channel a-subunit K(V)1.5, which underlies the voltage-gated atrial-specific potassium current I(Kur). KCNAB2 encodes K(V)ß2, a ß-subunit of K(V)1.5, which increases I......(Kur). Three studies have identified loss-of-function mutations in KCNA5 in patients with idiopathic AF. We hypothesized that early-onset lone AF is associated with high prevalence of genetic variants in KCNA5 and KCNAB2.Methods and resultsThe coding sequences of KCNA5 and KCNAB2 were sequenced in 307 patients...

  3. Behavioural changes, sharing behaviour and psychological responses after receiving direct-to-consumer genetic test results: a systematic review and meta-analysis.

    Science.gov (United States)

    Stewart, Kelly F J; Wesselius, Anke; Schreurs, Maartje A C; Schols, Annemie M W J; Zeegers, Maurice P

    2018-01-01

    It has been hypothesised that direct-to-consumer genetic tests (DTC-GTs) could stimulate health behaviour change. However, genetic testing may also lead to anxiety and distress or unnecessarily burden the health care system. The aim is to review and meta-analyse the effects of DTC-GT on (1) behaviour change, (2) psychological response and (3) medical consumption. A systematic literature search was performed in three databases, using "direct-to-consumer genetic testing" as a key search term. Random effects meta-analyses were performed when at least two comparable outcomes were available. After selection, 19 articles were included involving 11 unique studies. Seven studies involved actual consumers who paid the retail price, whereas four included participants who received free genetic testing as part of a research trial (non-actual consumers). In meta-analysis, 23% had a positive lifestyle change. More specifically, improved dietary and exercise practices were both reported by 12%, whereas 19% quit smoking. Seven percent of participants had subsequent preventive checks. Thirty-three percent shared their results with any health care professional and 50% with family and/or friends. Sub-analyses show that behaviour change was more prevalent among non-actual consumers, whereas sharing was more prevalent among actual consumers. Results on psychological responses showed that anxiety, distress and worry were low or absent and that the effect faded with time. DTC-GT has potential to be effective as a health intervention, but the right audience needs to be addressed with tailored follow-up. Research is needed to identify consumers who do and do not change behaviour or experience adverse psychological responses.

  4. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Cotranslational protein folding reveals the selective use of synonymous codons along the coding sequence of a low expression gene ... Genetic analysis to identify good combiners for ToLCV resistance and yield components in tomato ... The colocation of O. nivara-derived yield QTL with yield meta-QTL on chromosomes 1, ...

  5. Genetic Syndromes Associated with Congenital Cardiac Defects and Ophthalmologic Changes - Systematization for Diagnosis in the Clinical Practice.

    Science.gov (United States)

    Oliveira, Priscila H A; Souza, Beatriz S; Pacheco, Eimi N; Menegazzo, Michele S; Corrêa, Ivan S; Zen, Paulo R G; Rosa, Rafael F M; Cesa, Claudia C; Pellanda, Lucia C; Vilela, Manuel A P

    2018-01-01

    Numerous genetic syndromes associated with heart disease and ocular manifestations have been described. However, a compilation and a summarization of these syndromes for better consultation and comparison have not been performed yet. The objective of this work is to systematize available evidence in the literature on different syndromes that may cause congenital heart diseases associated with ocular changes, focusing on the types of anatomical and functional changes. A systematic search was performed on Medline electronic databases (PubMed, Embase, Cochrane, Lilacs) of articles published until January 2016. Eligibility criteria were case reports or review articles that evaluated the association of ophthalmic and cardiac abnormalities in genetic syndrome patients younger than 18 years. The most frequent genetic syndromes were: Down Syndrome, Velo-cardio-facial / DiGeorge Syndrome, Charge Syndrome and Noonan Syndrome. The most associated cardiac malformations with ocular findings were interatrial communication (77.4%), interventricular communication (51.6%), patent ductus arteriosus (35.4%), pulmonary artery stenosis (25.8%) and tetralogy of Fallot (22.5%). Due to their clinical variability, congenital cardiac malformations may progress asymptomatically to heart defects associated with high morbidity and mortality. For this reason, the identification of extra-cardiac characteristics that may somehow contribute to the diagnosis of the disease or reveal its severity is of great relevance.

  6. Test Code Quality and Its Relation to Issue Handling Performance

    NARCIS (Netherlands)

    Athanasiou, D.; Nugroho, A.; Visser, J.; Zaidman, A.

    2014-01-01

    Automated testing is a basic principle of agile development. Its benefits include early defect detection, defect cause localization and removal of fear to apply changes to the code. Therefore, maintaining high quality test code is essential. This study introduces a model that assesses test code

  7. Evaluation Codes from an Affine Veriety Code Perspective

    DEFF Research Database (Denmark)

    Geil, Hans Olav

    2008-01-01

    Evaluation codes (also called order domain codes) are traditionally introduced as generalized one-point geometric Goppa codes. In the present paper we will give a new point of view on evaluation codes by introducing them instead as particular nice examples of affine variety codes. Our study...... includes a reformulation of the usual methods to estimate the minimum distances of evaluation codes into the setting of affine variety codes. Finally we describe the connection to the theory of one-pointgeometric Goppa codes. Contents 4.1 Introduction...... . . . . . . . . . . . . . . . . . . . . . . . 171 4.9 Codes form order domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 4.10 One-point geometric Goppa codes . . . . . . . . . . . . . . . . . . . . . . . . 176 4.11 Bibliographical Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 References...

  8. Selfish genetic elements, genetic conflict, and evolutionary innovation.

    Science.gov (United States)

    Werren, John H

    2011-06-28

    Genomes are vulnerable to selfish genetic elements (SGEs), which enhance their own transmission relative to the rest of an individual's genome but are neutral or harmful to the individual as a whole. As a result, genetic conflict occurs between SGEs and other genetic elements in the genome. There is growing evidence that SGEs, and the resulting genetic conflict, are an important motor for evolutionary change and innovation. In this review, the kinds of SGEs and their evolutionary consequences are described, including how these elements shape basic biological features, such as genome structure and gene regulation, evolution of new genes, origin of new species, and mechanisms of sex determination and development. The dynamics of SGEs are also considered, including possible "evolutionary functions" of SGEs.

  9. Kinetic models of gene expression including non-coding RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Vladimir P., E-mail: zhdanov@catalysis.r

    2011-03-15

    In cells, genes are transcribed into mRNAs, and the latter are translated into proteins. Due to the feedbacks between these processes, the kinetics of gene expression may be complex even in the simplest genetic networks. The corresponding models have already been reviewed in the literature. A new avenue in this field is related to the recognition that the conventional scenario of gene expression is fully applicable only to prokaryotes whose genomes consist of tightly packed protein-coding sequences. In eukaryotic cells, in contrast, such sequences are relatively rare, and the rest of the genome includes numerous transcript units representing non-coding RNAs (ncRNAs). During the past decade, it has become clear that such RNAs play a crucial role in gene expression and accordingly influence a multitude of cellular processes both in the normal state and during diseases. The numerous biological functions of ncRNAs are based primarily on their abilities to silence genes via pairing with a target mRNA and subsequently preventing its translation or facilitating degradation of the mRNA-ncRNA complex. Many other abilities of ncRNAs have been discovered as well. Our review is focused on the available kinetic models describing the mRNA, ncRNA and protein interplay. In particular, we systematically present the simplest models without kinetic feedbacks, models containing feedbacks and predicting bistability and oscillations in simple genetic networks, and models describing the effect of ncRNAs on complex genetic networks. Mathematically, the presentation is based primarily on temporal mean-field kinetic equations. The stochastic and spatio-temporal effects are also briefly discussed.

  10. The combined influence of genetic factors and sedentary activity on body mass changes from adolescence to young adulthood: the National Longitudinal Adolescent Health Study.

    Science.gov (United States)

    Graff, M; North, K E; Monda, K L; Lange, E M; Lange, L A; Guo, G; Gordon-Larsen, P

    2011-01-01

    an increase in sedentary activities is likely a major contributor to the rise in obesity over the last three decades. Little research has examined interactions between genetic variants and sedentary activity on obesity phenotypes. High levels of sedentary activity during adolescence may interact with genetic factors to influence body mass changes between adolescence and young adulthood, a high risk period for weight gain. in the National Longitudinal Study of Adolescent Health, siblings and twin pairs (16.5 ± 1.7 years) were followed into young adulthood (22.4 ± 1.8 years). Self-reported screen time (TV, video, and computer use in h/week) and body mass index (kg/m(2) ), calculated from measured height and weight at adolescence and at young adulthood, were available for 3795 participants. We employed a variance component approach to estimate the interaction between genotype and screen time for body mass changes. Additive genotype-by-screen time interactions were assessed using likelihood-ratio tests. Models were adjusted for race, age, sex, and age-by-sex interaction. the genetic variation in body mass changes was significantly larger in individuals with low ( δ(G) = 27.59 ± 1.58) compared with high (δ(G) = 18.76 ± 2.59) levels of screen time (p adolescence. Our findings demonstrate that sedentary activities during adolescence may interact with genetic factors to influence body mass changes between adolescence and young adulthood. Accounting for obesity-related behaviours may improve current understanding of the genetic variation in body mass changes. 2010 John Wiley & Sons, Ltd.

  11. Version 4. 00 of the MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Eary, L.E.; Jenne, E.A.

    1992-09-01

    The MINTEQ code is a thermodynamic model that can be used to calculate solution equilibria for geochemical applications. Included in the MINTEQ code are formulations for ionic speciation, ion exchange, adsorption, solubility, redox, gas-phase equilibria, and the dissolution of finite amounts of specified solids. Since the initial development of the MINTEQ geochemical code, a number of undocumented versions of the source code and data files have come into use at the Pacific Northwest Laboratory (PNL). This report documents these changes, describes source code modifications made for the Aquifer Thermal Energy Storage (ATES) program, and provides comprehensive listings of the data files. A version number of 4.00 has been assigned to the MINTEQ source code and the individual data files described in this report.

  12. Version 4.00 of the MINTEQ geochemical code

    Energy Technology Data Exchange (ETDEWEB)

    Eary, L.E.; Jenne, E.A.

    1992-09-01

    The MINTEQ code is a thermodynamic model that can be used to calculate solution equilibria for geochemical applications. Included in the MINTEQ code are formulations for ionic speciation, ion exchange, adsorption, solubility, redox, gas-phase equilibria, and the dissolution of finite amounts of specified solids. Since the initial development of the MINTEQ geochemical code, a number of undocumented versions of the source code and data files have come into use at the Pacific Northwest Laboratory (PNL). This report documents these changes, describes source code modifications made for the Aquifer Thermal Energy Storage (ATES) program, and provides comprehensive listings of the data files. A version number of 4.00 has been assigned to the MINTEQ source code and the individual data files described in this report.

  13. Two-dimensional disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayashi, Takeshi; Seki, Masahiro.

    1988-08-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing components such as first wall and divertor/limiter are subjected to an intense heat load with very high heat flux and short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs, it causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes (melting/evaporation) and radiation heat loss is required in the design of these components. This paper describes the computer code DREAM developed to perform the two-dimensional transient thermal analysis that takes phase changes and radiation into account. The input and output of the code and a sample analysis on a disruption simulation experiment are also reported. The user's input manual is added as an appendix. The profiles and time variations of temperature, and melting and evaporated thicknesses of the material subjected to intense heat load can be obtained, using this computer code. This code also gives the temperature data for elastoplastic analysis with FEM structural analysis codes (ADINA, MARC, etc.) to evaluate the thermal stress and crack propagation behavior within the wall materials. (author)

  14. Guidelines for collecting and maintaining archives for genetic monitoring

    Science.gov (United States)

    Jackson, Jennifer A.; Laikre, Linda; Baker, C. Scott; Kendall, Katherine C.; ,

    2012-01-01

    Rapid advances in molecular genetic techniques and the statistical analysis of genetic data have revolutionized the way that populations of animals, plants and microorganisms can be monitored. Genetic monitoring is the practice of using molecular genetic markers to track changes in the abundance, diversity or distribution of populations, species or ecosystems over time, and to follow adaptive and non-adaptive genetic responses to changing external conditions. In recent years, genetic monitoring has become a valuable tool in conservation management of biological diversity and ecological analysis, helping to illuminate and define cryptic and poorly understood species and populations. Many of the detected biodiversity declines, changes in distribution and hybridization events have helped to drive changes in policy and management. Because a time series of samples is necessary to detect trends of change in genetic diversity and species composition, archiving is a critical component of genetic monitoring. Here we discuss the collection, development, maintenance, and use of archives for genetic monitoring. This includes an overview of the genetic markers that facilitate effective monitoring, describes how tissue and DNA can be stored, and provides guidelines for proper practice.

  15. Genetics Home Reference: ulcerative colitis

    Science.gov (United States)

    ... are some genetic conditions more common in particular ethnic groups? Genetic Changes A variety of genetic and environmental factors are likely involved in the development of ulcerative colitis . Recent studies have identified variations in dozens of genes that may be linked ...

  16. A new coding system for metabolic disorders demonstrates gaps in the international disease classifications ICD-10 and SNOMED-CT, which can be barriers to genotype-phenotype data sharing.

    Science.gov (United States)

    Sollie, Annet; Sijmons, Rolf H; Lindhout, Dick; van der Ploeg, Ans T; Rubio Gozalbo, M Estela; Smit, G Peter A; Verheijen, Frans; Waterham, Hans R; van Weely, Sonja; Wijburg, Frits A; Wijburg, Rudolph; Visser, Gepke

    2013-07-01

    Data sharing is essential for a better understanding of genetic disorders. Good phenotype coding plays a key role in this process. Unfortunately, the two most widely used coding systems in medicine, ICD-10 and SNOMED-CT, lack information necessary for the detailed classification and annotation of rare and genetic disorders. This prevents the optimal registration of such patients in databases and thus data-sharing efforts. To improve care and to facilitate research for patients with metabolic disorders, we developed a new coding system for metabolic diseases with a dedicated group of clinical specialists. Next, we compared the resulting codes with those in ICD and SNOMED-CT. No matches were found in 76% of cases in ICD-10 and in 54% in SNOMED-CT. We conclude that there are sizable gaps in the SNOMED-CT and ICD coding systems for metabolic disorders. There may be similar gaps for other classes of rare and genetic disorders. We have demonstrated that expert groups can help in addressing such coding issues. Our coding system has been made available to the ICD and SNOMED-CT organizations as well as to the Orphanet and HPO organizations for further public application and updates will be published online (www.ddrmd.nl and www.cineas.org). © 2013 WILEY PERIODICALS, INC.

  17. An Optimal Linear Coding for Index Coding Problem

    OpenAIRE

    Pezeshkpour, Pouya

    2015-01-01

    An optimal linear coding solution for index coding problem is established. Instead of network coding approach by focus on graph theoric and algebraic methods a linear coding program for solving both unicast and groupcast index coding problem is presented. The coding is proved to be the optimal solution from the linear perspective and can be easily utilize for any number of messages. The importance of this work is lying mostly on the usage of the presented coding in the groupcast index coding ...

  18. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons

    Directory of Open Access Journals (Sweden)

    Joseph Valentino Raimondo

    2012-05-01

    Full Text Available The regulation of hydrogen ion concentration (pH is fundamental to cell viability, metabolism and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilised to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E2GFP and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  19. Genetically encoded proton sensors reveal activity-dependent pH changes in neurons.

    Science.gov (United States)

    Raimondo, Joseph V; Irkle, Agnese; Wefelmeyer, Winnie; Newey, Sarah E; Akerman, Colin J

    2012-01-01

    The regulation of hydrogen ion concentration (pH) is fundamental to cell viability, metabolism, and enzymatic function. Within the nervous system, the control of pH is also involved in diverse and dynamic processes including development, synaptic transmission, and the control of network excitability. As pH affects neuronal activity, and can also itself be altered by neuronal activity, the existence of tools to accurately measure hydrogen ion fluctuations is important for understanding the role pH plays under physiological and pathological conditions. Outside of their use as a marker of synaptic release, genetically encoded pH sensors have not been utilized to study hydrogen ion fluxes associated with network activity. By combining whole-cell patch clamp with simultaneous two-photon or confocal imaging, we quantified the amplitude and time course of neuronal, intracellular, acidic transients evoked by epileptiform activity in two separate in vitro models of temporal lobe epilepsy. In doing so, we demonstrate the suitability of three genetically encoded pH sensors: deGFP4, E(2)GFP, and Cl-sensor for investigating activity-dependent pH changes at the level of single neurons.

  20. Genetic Testing for ALS

    Science.gov (United States)

    ... genetic counselor can help you work through the pros and cons of genetic testing based on your ... showing symptoms or what their progression will be. Technology is changing rapidly and costs of testing are ...

  1. Climate change and recent genetic flux in populations of Drosophila robusta

    Directory of Open Access Journals (Sweden)

    Etges William J

    2005-01-01

    Full Text Available Abstract Background Studied since the early 1940's, chromosomal polymorphisms in the deciduous woods species Drosophila robusta have been characterized by well-defined latitudinal, longitudinal, and elevational clines, but – until at least ten years ago – stable, local population frequencies. Recent biogeographical analyses indicate that D. robusta invaded North America from southeast Asia and has persisted in eastern temperate forests for at least 20–25 my without speciating. The abundant chromosome polymorphisms found across the range of D. robusta are thus likely to be relatively ancient, having accumulated over many well known climatic cycles in North America. Sufficient long-term data are now available such that we can now gauge the rate of these evolutionary changes in natural populations due to environmental change. Results Recent local collections have revealed significant changes in the frequencies of several chromosomal forms. New data presented here extend the range of these changes to six states, three in the northeastern United States and three west of the Mississippi River. These data reinforce recent directional changes in which the frequencies of three gene arrangements have reached percentage levels typical of distant southern populations consistent with regional climatic changes. Another gene arrangement has been steadily decreasing in frequency at a number of the sites studied. Meteorological records from 1945 to 2003 indicate temperature increases at all study sites, particularly average minimum air temperatures. Conclusions Observation of parallel genetic flux suggests that these long-term temporal frequency shifts in widely disparate populations of D. robusta are evolutionary responses to environmental change. Since these chromosomes are known to be sensitive to ambient temperature, regional climatic shifts associated with global warming are likely to be responsible.

  2. Genetic maps and physical units

    International Nuclear Information System (INIS)

    Karunakaran, V.; Holt, G.

    1976-01-01

    The relationships between physical and genetic units are examined. Genetic mapping involves the detection of linkage of genes and the measurement of recombination frequencies. The genetic distance is measured in map units and is proportional to the recombination frequencies between linked markers. Physical mapping of genophores, particularly the simple genomes of bacteriophages and bacterial plasmids can be achieved through heteroduplex analysis. Genetic distances are dependent on recombination frequencies and, therefore, can only be correlated accurately with physical unit lengths if the recombination frequency is constant throughout the entire genome. Methods are available to calculate the equivalent length of DNA per average map unit in different organisms. Such estimates indicate significant differences from one organism to another. Gene lengths can also be calculated from the number of amino acids in a specified polypeptide and relating this to the number of nucleotides required to code for such a polypeptide. Many attempts have been made to relate microdosimetric measurements to radiobiological data. For irradiation effects involving deletion of genetic material such a detailed correlation may be possible in systems where heteroduplex analysis or amino acid sequencing can be performed. The problems of DNA packaging and other functional associations within the cell in interpreting data is discussed

  3. Effects of Knowledge on Attitude Formation and Change Toward Genetically Modified Foods.

    Science.gov (United States)

    Zhu, Xiaoqin; Xie, Xiaofei

    2015-05-01

    In three waves, this study investigates the impact of risk and benefit knowledge on attitude formation toward genetically modified (GM) foods as well as the moderating effect of knowledge level on attitude change caused by receiving information. The data in Wave 1 (N = 561) demonstrate that both benefit and risk knowledge either directly contribute to attitude formation or indirectly affect attitudes through the mediating roles of benefit and risk perceptions. Overall, benefit and risk knowledge affect consumer attitudes positively and negatively, respectively. In Wave 2, 486 participants from Wave 1 were provided with information about GM foods, and their attitudes were assessed. Three weeks later, 433 of these participants again reported their attitudes. The results indicate that compared with the benefit and mixed information, risk information has a greater and longer lasting impact on attitude change, which results in lower acceptance of GM foods. Furthermore, risk information more strongly influences participants with a higher knowledge level. The moderating effect of knowledge on attitude change may result from these participants' better understanding of and greater trust in the information. These findings highlight the important role of knowledge in attitude formation and attitude change toward GM foods as well as the necessity of considering the determinants of attitude formation in attitude change studies. © 2014 Society for Risk Analysis.

  4. Genes Left Behind: Climate Change Threatens Cryptic Genetic Diversity in the Canopy-Forming Seaweed Bifurcaria bifurcata.

    Directory of Open Access Journals (Sweden)

    João Neiva

    Full Text Available The global redistribution of biodiversity will intensify in the coming decades of climate change, making projections of species range shifts and of associated genetic losses important components of conservation planning. Highly-structured marine species, notably brown seaweeds, often harbor unique genetic variation at warmer low-latitude rear edges and thus are of particular concern. Here, a combination of Ecological Niche Models (ENMs and molecular data is used to forecast the potential near-future impacts of climate change for a warm-temperate, canopy forming seaweed, Bifurcaria bifurcata. ENMs for B. bifurcata were developed using marine and terrestrial climatic variables, and its range projected for 2040-50 and 2090-2100 under two greenhouse emission scenarios. Geographical patterns of genetic diversity were assessed by screening 18 populations spawning the entire distribution for two organelle genes and 6 microsatellite markers. The southern limit of B. bifurcata was predicted to shift northwards to central Morocco by the mid-century. By 2090-2100, depending on the emission scenario, it could either retreat further north to western Iberia or be relocated back to Western Sahara. At the opposing margin, B. bifurcata was predicted to expand its range to Scotland or even Norway. Microsatellite diversity and endemism were highest in Morocco, where a unique and very restricted lineage was also identified. Our results imply that B. bifurcata will maintain a relatively broad latitudinal distribution. Although its persistence is not threatened, the predicted extirpation of a unique southern lineage or even the entire Moroccan diversity hotspot will erase a rich evolutionary legacy and shrink global diversity to current (low European levels. NW Africa and similarly understudied southern regions should receive added attention if expected range changes and diversity loss of warm-temperate species is not to occur unnoticed.

  5. Innovation of genetic algorithm code GenA for WWER fuel loading optimization

    International Nuclear Information System (INIS)

    Sustek, J.

    2005-01-01

    One of the stochastic search techniques - genetic algorithms - was recently used for optimization of arrangement of fuel assemblies (FA) in core of reactors WWER-440 and WWER-1000. Basic algorithm was modified by incorporation of SPEA scheme. Both were enhanced and some results are presented (Authors)

  6. Development of HTGR plant dynamics simulation code

    International Nuclear Information System (INIS)

    Ohashi, Kazutaka; Tazawa, Yujiro; Mitake, Susumu; Suzuki, Katsuo.

    1987-01-01

    Plant dynamics simulation analysis plays an important role in the design work of nuclear power plant especially in the plant safety analysis, control system analysis, and transient condition analysis. The authors have developed the plant dynamics simulation code named VESPER, which is applicable to the design work of High Temperature Engineering Test Reactor, and have been improving the code corresponding to the design changes made in the subsequent design works. This paper describes the outline of VESPER code and shows its sample calculation results selected from the recent design work. (author)

  7. Proposal to consistently apply the International Code of Nomenclature of Prokaryotes (ICNP) to names of the oxygenic photosynthetic bacteria (cyanobacteria), including those validly published under the International Code of Botanical Nomenclature (ICBN)/International Code of Nomenclature for algae, fungi and plants (ICN), and proposal to change Principle 2 of the ICNP.

    Science.gov (United States)

    Pinevich, Alexander V

    2015-03-01

    This taxonomic note was motivated by the recent proposal [Oren & Garrity (2014) Int J Syst Evol Microbiol 64, 309-310] to exclude the oxygenic photosynthetic bacteria (cyanobacteria) from the wording of General Consideration 5 of the International Code of Nomenclature of Prokaryotes (ICNP), which entails unilateral coverage of these prokaryotes by the International Code of Nomenclature for algae, fungi, and plants (ICN; formerly the International Code of Botanical Nomenclature, ICBN). On the basis of key viewpoints, approaches and rules in the systematics, taxonomy and nomenclature of prokaryotes it is reciprocally proposed to apply the ICNP to names of cyanobacteria including those validly published under the ICBN/ICN. For this purpose, a change to Principle 2 of the ICNP is proposed to enable validation of cyanobacterial names published under the ICBN/ICN rules. © 2015 IUMS.

  8. ClinicalCodes: an online clinical codes repository to improve the validity and reproducibility of research using electronic medical records.

    Science.gov (United States)

    Springate, David A; Kontopantelis, Evangelos; Ashcroft, Darren M; Olier, Ivan; Parisi, Rosa; Chamapiwa, Edmore; Reeves, David

    2014-01-01

    Lists of clinical codes are the foundation for research undertaken using electronic medical records (EMRs). If clinical code lists are not available, reviewers are unable to determine the validity of research, full study replication is impossible, researchers are unable to make effective comparisons between studies, and the construction of new code lists is subject to much duplication of effort. Despite this, the publication of clinical codes is rarely if ever a requirement for obtaining grants, validating protocols, or publishing research. In a representative sample of 450 EMR primary research articles indexed on PubMed, we found that only 19 (5.1%) were accompanied by a full set of published clinical codes and 32 (8.6%) stated that code lists were available on request. To help address these problems, we have built an online repository where researchers using EMRs can upload and download lists of clinical codes. The repository will enable clinical researchers to better validate EMR studies, build on previous code lists and compare disease definitions across studies. It will also assist health informaticians in replicating database studies, tracking changes in disease definitions or clinical coding practice through time and sharing clinical code information across platforms and data sources as research objects.

  9. Economic aspects and models for building codes

    DEFF Research Database (Denmark)

    Bonke, Jens; Pedersen, Dan Ove; Johnsen, Kjeld

    It is the purpose of this bulletin to present an economic model for estimating the consequence of new or changed building codes. The object is to allow comparative analysis in order to improve the basis for decisions in this field. The model is applied in a case study.......It is the purpose of this bulletin to present an economic model for estimating the consequence of new or changed building codes. The object is to allow comparative analysis in order to improve the basis for decisions in this field. The model is applied in a case study....

  10. Update on Sporadic Colorectal Cancer Genetics.

    Science.gov (United States)

    Hardiman, Karin M

    2018-05-01

    Our understanding of the genetics of colorectal cancer has changed dramatically over recent years. Colorectal cancer can be classified in multiple different ways. Along with the advent of whole-exome sequencing, we have gained an understanding of the scale of the genetic changes found in sporadic colorectal cancer. We now know that there are multiple pathways that are commonly involved in the evolution of colorectal cancer including Wnt/β-catenin, RAS, EGFR, and PIK3 kinase. Another recent leap in our understanding of colorectal cancer genetics is the recognition that many, if not all tumors, are actually genetically heterogeneous within individual tumors and also between tumors. Recent research has revealed the prognostic and possibly therapeutic implications of various specific mutations, including specific mutations in BRAF and KRAS . There is increasing interest in the use of mutation testing for screening and surveillance through stool and circulating DNA testing. Recent advances in translational research in colorectal cancer genetics are dramatically changing our understanding of colorectal cancer and will likely change therapy and surveillance in the near future.

  11. Genetic secrets: Protecting privacy and confidentiality in the genetic era

    Energy Technology Data Exchange (ETDEWEB)

    Rothstein, M.A. [ed.

    1998-07-01

    Few developments are likely to affect human beings more profoundly in the long run than the discoveries resulting from advances in modern genetics. Although the developments in genetic technology promise to provide many additional benefits, their application to genetic screening poses ethical, social, and legal questions, many of which are rooted in issues of privacy and confidentiality. The ethical, practical, and legal ramifications of these and related questions are explored in depth. The broad range of topics includes: the privacy and confidentiality of genetic information; the challenges to privacy and confidentiality that may be projected to result from the emerging genetic technologies; the role of informed consent in protecting the confidentiality of genetic information in the clinical setting; the potential uses of genetic information by third parties; the implications of changes in the health care delivery system for privacy and confidentiality; relevant national and international developments in public policies, professional standards, and laws; recommendations; and the identification of research needs.

  12. Genetic and epigenetic variations induced by wheat-rye 2R and 5R monosomic addition lines.

    Directory of Open Access Journals (Sweden)

    Shulan Fu

    Full Text Available BACKGROUND: Monosomic alien addition lines (MAALs can easily induce structural variation of chromosomes and have been used in crop breeding; however, it is unclear whether MAALs will induce drastic genetic and epigenetic alterations. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, wheat-rye 2R and 5R MAALs together with their selfed progeny and parental common wheat were investigated through amplified fragment length polymorphism (AFLP and methylation-sensitive amplification polymorphism (MSAP analyses. The MAALs in different generations displayed different genetic variations. Some progeny that only contained 42 wheat chromosomes showed great genetic/epigenetic alterations. Cryptic rye chromatin has introgressed into the wheat genome. However, one of the progeny that contained cryptic rye chromatin did not display outstanding genetic/epigenetic variation. 78 and 49 sequences were cloned from changed AFLP and MSAP bands, respectively. Blastn search indicated that almost half of them showed no significant similarity to known sequences. Retrotransposons were mainly involved in genetic and epigenetic variations. Genetic variations basically affected Gypsy-like retrotransposons, whereas epigenetic alterations affected Copia-like and Gypsy-like retrotransposons equally. Genetic and epigenetic variations seldom affected low-copy coding DNA sequences. CONCLUSIONS/SIGNIFICANCE: The results in the present study provided direct evidence to illustrate that monosomic wheat-rye addition lines could induce different and drastic genetic/epigenetic variations and these variations might not be caused by introgression of rye chromatins into wheat. Therefore, MAALs may be directly used as an effective means to broaden the genetic diversity of common wheat.

  13. PM1 steganographic algorithm using ternary Hamming Code

    Directory of Open Access Journals (Sweden)

    Kamil Kaczyński

    2015-12-01

    Full Text Available PM1 algorithm is a modification of well-known LSB steganographic algorithm. It has increased resistance to selected steganalytic attacks and increased embedding efficiency. Due to its uniqueness, PM1 algorithm allows us to use of larger alphabet of symbols, making it possible to further increase steganographic capacity. In this paper, we present the modified PM1 algorithm which utilizies so-called syndrome coding and ternary Hamming code. The modified algorithm has increased embedding efficiency, which means fewer changes introduced to carrier and increased capacity.[b]Keywords[/b]: steganography, linear codes, PM1, LSB, ternary Hamming code

  14. International Accreditation of ASME Codes and Standards

    International Nuclear Information System (INIS)

    Green, Mervin R.

    1989-01-01

    ASME established a Boiler Code Committee to develop rules for the design, fabrication and inspection of boilers. This year we recognize 75 years of that Code and will publish a history of that 75 years. The first Code and subsequent editions provided for a Code Symbol Stamp or mark which could be affixed by a manufacturer to a newly constructed product to certify that the manufacturer had designed, fabricated and had inspected it in accordance with Code requirements. The purpose of the ASME Mark is to identify those boilers that meet ASME Boiler and Pressure Vessel Code requirements. Through thousands of updates over the years, the Code has been revised to reflect technological advances and changing safety needs. Its scope has been broadened from boilers to include pressure vessels, nuclear components and systems. Proposed revisions to the Code are published for public review and comment four times per year and revisions and interpretations are published annually; it's a living and constantly evolving Code. You and your organizations are a vital part of the feedback system that keeps the Code alive. Because of this dynamic Code, we no longer have columns in newspapers listing boiler explosions. Nevertheless, it has been argued recently that ASME should go further in internationalizing its Code. Specifically, representatives of several countries, have suggested that ASME delegate to them responsibility for Code implementation within their national boundaries. The question is, thus, posed: Has the time come to franchise responsibility for administration of ASME's Code accreditation programs to foreign entities or, perhaps, 'institutes.' And if so, how should this be accomplished?

  15. Development of Coolant Radioactivity Interpretation Code

    International Nuclear Information System (INIS)

    Kim, Kiyoung; Jung, Youngsuk; Kim, Kyounghyun; Kim, Jangwook

    2013-01-01

    In Korea, the coolant radioactivity analysis has been performed by using the computer codes of foreign companies such as CADE (Westinghouse), IODYNE and CESIUM (ABB-CE). However, these computer codes are too conservative and have involved considerable errors. Furthermore, since these codes are DOS-based program, their easy operability is not satisfactory. Therefore it is required development of an enhanced analysis algorithm applying an analytical method reflecting the change of operational environments of domestic nuclear power plants and a fuel failure evaluation software considering user' conveniences. We have developed a nuclear fuel failure evaluation code able to estimate the number of failed fuel rods and the burn-up of failed fuels during nuclear power plant operation cycle. A Coolant Radio-activity Interpretation Code (CRIC) for LWR has been developed as the output of the project 'Development of Fuel Reliability Enhanced Technique' organized by Korea Institute of Energy Technology Evaluation and Planning (KETEP). The CRIC is Windows based-software able to evaluate the number of failed fuel rods and the burn-up of failed fuel region by analyzing coolant radioactivity of LWR in operation. The CRIC is based on the model of fission products release commonly known as 'three region model' (pellet region, gap region, and coolant region), and we are verifying the CRIC results based on the cases of domestic fuel failures. CRIC users are able to estimate the number of failed fuel rods, burn-up and regions of failed fuel considered enrichment and power distribution of fuel region by using operational cycle data, coolant activity data, fuel loading pattern, Cs-134/Cs-137 ratio according to burn-up and U-235 enrichment provided in the code. Due to development of the CRIC, it is secured own unique fuel failure evaluation code. And, it is expected to have the following significant meaning. This is that the code reflecting a proprietary technique for quantitatively

  16. User's manual for the NEFTRAN II computer code

    International Nuclear Information System (INIS)

    Olague, N.E.; Campbell, J.E.; Leigh, C.D.; Longsine, D.E.

    1991-02-01

    This document describes the NEFTRAN II (NEtwork Flow and TRANsport in Time-Dependent Velocity Fields) computer code and is intended to provide the reader with sufficient information to use the code. NEFTRAN II was developed as part of a performance assessment methodology for storage of high-level nuclear waste in unsaturated, welded tuff. NEFTRAN II is a successor to the NEFTRAN and NWFT/DVM computer codes and contains several new capabilities. These capabilities include: (1) the ability to input pore velocities directly to the transport model and bypass the network fluid flow model, (2) the ability to transport radionuclides in time-dependent velocity fields, (3) the ability to account for the effect of time-dependent saturation changes on the retardation factor, and (4) the ability to account for time-dependent flow rates through the source regime. In addition to these changes, the input to NEFTRAN II has been modified to be more convenient for the user. This document is divided into four main sections consisting of (1) a description of all the models contained in the code, (2) a description of the program and subprograms in the code, (3) a data input guide and (4) verification and sample problems. Although NEFTRAN II is the fourth generation code, this document is a complete description of the code and reference to past user's manuals should not be necessary. 19 refs., 33 figs., 25 tabs

  17. Measuring coding intensity in the Medicare Advantage program.

    Science.gov (United States)

    Kronick, Richard; Welch, W Pete

    2014-01-01

    In 2004, Medicare implemented a system of paying Medicare Advantage (MA) plans that gave them greater incentive than fee-for-service (FFS) providers to report diagnoses. Risk scores for all Medicare beneficiaries 2004-2013 and Medicare Current Beneficiary Survey (MCBS) data, 2006-2011. Change in average risk score for all enrollees and for stayers (beneficiaries who were in either FFS or MA for two consecutive years). Prevalence rates by Hierarchical Condition Category (HCC). Each year the average MA risk score increased faster than the average FFS score. Using the risk adjustment model in place in 2004, the average MA score as a ratio of the average FFS score would have increased from 90% in 2004 to 109% in 2013. Using the model partially implemented in 2014, the ratio would have increased from 88% to 102%. The increase in relative MA scores appears to largely reflect changes in diagnostic coding, not real increases in the morbidity of MA enrollees. In survey-based data for 2006-2011, the MA-FFS ratio of risk scores remained roughly constant at 96%. Intensity of coding varies widely by contract, with some contracts coding very similarly to FFS and others coding much more intensely than the MA average. Underpinning this relative growth in scores is particularly rapid relative growth in a subset of HCCs. Medicare has taken significant steps to mitigate the effects of coding intensity in MA, including implementing a 3.4% coding intensity adjustment in 2010 and revising the risk adjustment model in 2013 and 2014. Given the continuous relative increase in the average MA risk score, further policy changes will likely be necessary.

  18. Genetic polymorphisms and lipid response to dietary changes in humans

    NARCIS (Netherlands)

    Weggemans, R.M.; Zock, P.L.; Ordovas, J.M.; Ramos-Galluzzi, J.; Katan, M.B.

    2001-01-01

    Previous studies on the effects of genetic polymorphisms on the serum cholesterol response to dietary treatments were often inconsistent and frequently involved small numbers of subjects. We studied the effect of 10 genetic polymorphisms on the responses of serum cholesterol to saturated and trans

  19. PLASMOR: A laser-plasma simulation code. Pt. 2

    International Nuclear Information System (INIS)

    Salzman, D.; Krumbein, A.D.; Szichman, H.

    1987-06-01

    This report supplements a previous one which describes the PLASMOR hydrodynamics code. The present report documents the recent changes and additions made in the code. In particular described are two new subroutines for radiative preheat, a system of preprocessors which prepare the code before run, a list of postprocessors which simulate experimental setups, and the basic data sets required to run PLASMOR. In the Appendix a new computer-based manual which lists the main features of PLASMOR is reproduced

  20. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    DEFF Research Database (Denmark)

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects...... to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation...

  1. BPA genetic monitoring - BPA Genetic Monitoring Project

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Initiated in 1989, this study monitors genetic changes associated with hatchery propagation in multiple Snake River sub-basins for Chinook salmon and steelhead. We...

  2. Genetic Syndromes Associated with Congenital Cardiac Defects and Ophthalmologic Changes - Systematization for Diagnosis in the Clinical Practice

    Directory of Open Access Journals (Sweden)

    Priscila H. A. Oliveira

    Full Text Available Abstract Background: Numerous genetic syndromes associated with heart disease and ocular manifestations have been described. However, a compilation and a summarization of these syndromes for better consultation and comparison have not been performed yet. Objective: The objective of this work is to systematize available evidence in the literature on different syndromes that may cause congenital heart diseases associated with ocular changes, focusing on the types of anatomical and functional changes. Method: A systematic search was performed on Medline electronic databases (PubMed, Embase, Cochrane, Lilacs of articles published until January 2016. Eligibility criteria were case reports or review articles that evaluated the association of ophthalmic and cardiac abnormalities in genetic syndrome patients younger than 18 years. Results: The most frequent genetic syndromes were: Down Syndrome, Velo-cardio-facial / DiGeorge Syndrome, Charge Syndrome and Noonan Syndrome. The most associated cardiac malformations with ocular findings were interatrial communication (77.4%, interventricular communication (51.6%, patent ductus arteriosus (35.4%, pulmonary artery stenosis (25.8% and tetralogy of Fallot (22.5%. Conclusion: Due to their clinical variability, congenital cardiac malformations may progress asymptomatically to heart defects associated with high morbidity and mortality. For this reason, the identification of extra-cardiac characteristics that may somehow contribute to the diagnosis of the disease or reveal its severity is of great relevance.

  3. Technological change in the wine market? The role of QR codes and wine apps in consumer wine purchases

    Directory of Open Access Journals (Sweden)

    Lindsey M. Higgins

    2014-06-01

    Full Text Available As an experiential good, wine purchases in the absence of tastings are often challenging and information-laden decisions. Technology has shaped the way consumers negotiate this complex purchase process. Using a sample of 631 US wine consumers, this research aims to identify the role of mobile applications and QR codes in the wine purchase decision. Results suggest that wine consumers that consider themselves wine connoisseurs or experts, enjoy talking about wine, and are interested in wine that is produced locally, organically, or sustainably are more likely to employ technology in their wine purchase decision. While disruption appears to have occurred on the supply side (number of wine applications available and the number of wine labels with a QR code, this research suggests that relatively little change is occurring on the demand side (a relatively small segment of the population—those already interested in wine—are employing the technology to aid in their purchase decision.

  4. Use of Contemporary Genetics in Cardiovascular Diagnosis

    Science.gov (United States)

    George, Alfred L.

    2015-01-01

    An explosion of knowledge regarding the genetic and genomic basis for rare and common diseases has provided a framework for revolutionizing the practice of medicine. Achieving the reality of a genomic medicine era requires that basic discoveries are effectively translated into clinical practice through implementation of genetic and genomic testing. Clinical genetic tests have become routine for many inherited disorders and can be regarded as the standard-of-care in many circumstances including disorders affecting the cardiovascular system. New, high-throughput methods for determining the DNA sequence of all coding exons or complete genomes are being adopted for clinical use to expand the speed and breadth of genetic testing. Along with these extraordinary advances have emerged new challenges to practicing physicians for understanding when and how to use genetic testing along with how to appropriately interpret test results. This review will acquaint readers with general principles of genetic testing including newer technologies, test interpretation and pitfalls. The focus will be on testing genes responsible for monogenic disorders and on other emerging applications such as pharmacogenomic profiling. The discussion will be extended to the new paradigm of direct-to-consumer genetic testing and the value of assessing genomic risk for common diseases. PMID:25421045

  5. [MapDraw: a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data].

    Science.gov (United States)

    Liu, Ren-Hu; Meng, Jin-Ling

    2003-05-01

    MAPMAKER is one of the most widely used computer software package for constructing genetic linkage maps.However, the PC version, MAPMAKER 3.0 for PC, could not draw the genetic linkage maps that its Macintosh version, MAPMAKER 3.0 for Macintosh,was able to do. Especially in recent years, Macintosh computer is much less popular than PC. Most of the geneticists use PC to analyze their genetic linkage data. So a new computer software to draw the same genetic linkage maps on PC as the MAPMAKER for Macintosh to do on Macintosh has been crying for. Microsoft Excel,one component of Microsoft Office package, is one of the most popular software in laboratory data processing. Microsoft Visual Basic for Applications (VBA) is one of the most powerful functions of Microsoft Excel. Using this program language, we can take creative control of Excel, including genetic linkage map construction, automatic data processing and more. In this paper, a Microsoft Excel macro called MapDraw is constructed to draw genetic linkage maps on PC computer based on given genetic linkage data. Use this software,you can freely construct beautiful genetic linkage map in Excel and freely edit and copy it to Word or other application. This software is just an Excel format file. You can freely copy it from ftp://211.69.140.177 or ftp://brassica.hzau.edu.cn and the source code can be found in Excel's Visual Basic Editor.

  6. Rate-adaptive BCH codes for distributed source coding

    DEFF Research Database (Denmark)

    Salmistraro, Matteo; Larsen, Knud J.; Forchhammer, Søren

    2013-01-01

    This paper considers Bose-Chaudhuri-Hocquenghem (BCH) codes for distributed source coding. A feedback channel is employed to adapt the rate of the code during the decoding process. The focus is on codes with short block lengths for independently coding a binary source X and decoding it given its...... strategies for improving the reliability of the decoded result are analyzed, and methods for estimating the performance are proposed. In the analysis, noiseless feedback and noiseless communication are assumed. Simulation results show that rate-adaptive BCH codes achieve better performance than low...... correlated side information Y. The proposed codes have been analyzed in a high-correlation scenario, where the marginal probability of each symbol, Xi in X, given Y is highly skewed (unbalanced). Rate-adaptive BCH codes are presented and applied to distributed source coding. Adaptive and fixed checking...

  7. Towards advanced code simulators

    International Nuclear Information System (INIS)

    Scriven, A.H.

    1990-01-01

    The Central Electricity Generating Board (CEGB) uses advanced thermohydraulic codes extensively to support PWR safety analyses. A system has been developed to allow fully interactive execution of any code with graphical simulation of the operator desk and mimic display. The system operates in a virtual machine environment, with the thermohydraulic code executing in one virtual machine, communicating via interrupts with any number of other virtual machines each running other programs and graphics drivers. The driver code itself does not have to be modified from its normal batch form. Shortly following the release of RELAP5 MOD1 in IBM compatible form in 1983, this code was used as the driver for this system. When RELAP5 MOD2 became available, it was adopted with no changes needed in the basic system. Overall the system has been used for some 5 years for the analysis of LOBI tests, full scale plant studies and for simple what-if studies. For gaining rapid understanding of system dependencies it has proved invaluable. The graphical mimic system, being independent of the driver code, has also been used with other codes to study core rewetting, to replay results obtained from batch jobs on a CRAY2 computer system and to display suitably processed experimental results from the LOBI facility to aid interpretation. For the above work real-time execution was not necessary. Current work now centers on implementing the RELAP 5 code on a true parallel architecture machine. Marconi Simulation have been contracted to investigate the feasibility of using upwards of 100 processors, each capable of a peak of 30 MIPS to run a highly detailed RELAP5 model in real time, complete with specially written 3D core neutronics and balance of plant models. This paper describes the experience of using RELAP5 as an analyzer/simulator, and outlines the proposed methods and problems associated with parallel execution of RELAP5

  8. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

    Science.gov (United States)

    Xu, Hui-Yun; Yang, Guo-Hui

    2017-09-01

    By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity ( χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity ( χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

  9. Diagonal Eigenvalue Unity (DEU) code for spectral amplitude coding-optical code division multiple access

    Science.gov (United States)

    Ahmed, Hassan Yousif; Nisar, K. S.

    2013-08-01

    Code with ideal in-phase cross correlation (CC) and practical code length to support high number of users are required in spectral amplitude coding-optical code division multiple access (SAC-OCDMA) systems. SAC systems are getting more attractive in the field of OCDMA because of its ability to eliminate the influence of multiple access interference (MAI) and also suppress the effect of phase induced intensity noise (PIIN). In this paper, we have proposed new Diagonal Eigenvalue Unity (DEU) code families with ideal in-phase CC based on Jordan block matrix with simple algebraic ways. Four sets of DEU code families based on the code weight W and number of users N for the combination (even, even), (even, odd), (odd, odd) and (odd, even) are constructed. This combination gives DEU code more flexibility in selection of code weight and number of users. These features made this code a compelling candidate for future optical communication systems. Numerical results show that the proposed DEU system outperforms reported codes. In addition, simulation results taken from a commercial optical systems simulator, Virtual Photonic Instrument (VPI™) shown that, using point to multipoint transmission in passive optical network (PON), DEU has better performance and could support long span with high data rate.

  10. Sociolinguistic aspects of language change in kabiye-french code ...

    African Journals Online (AJOL)

    Ce phénomène peut s'expliquer par le fait que la réussite à l'école, et par conséquent dans la vie sociale, dépend de la maîtrise du Français. La présente étude montre qu'aujourd'hui, le 'code-switching' kabiyè et français est devenu le moyen de communication le plus courant non seulement entre les scolarisés, mais ...

  11. How Sensitive Is Genetic Data?

    Science.gov (United States)

    Sariyar, Murat; Suhr, Stephanie; Schlünder, Irene

    2017-12-01

    The rising demand to use genetic data for research goes hand in hand with an increased awareness of privacy issues related to its use. Using human genetic data in a legally compliant way requires an examination of the legal basis as well as an assessment of potential disclosure risks. Focusing on the relevant legal framework in the European Union, we discuss open questions and uncertainties around the handling of genetic data in research, which can result in the introduction of unnecessary hurdles for data sharing. First, we discuss defining features and relative disclosure risks of some DNA-related biomarkers, distinguishing between the risk for disclosure of (1) the identity of an individual, (2) information about an individual's health and behavior, including previously unknown phenotypes, and (3) information about an individual's blood relatives. Second, we discuss the European legal framework applicable to the use of DNA-related biomarkers in research, the implications of including both inherited and acquired traits in the legal definition, as well as the issue of "genetic exceptionalism"-the notion that genetic information has inherent characteristics that require different considerations than other health and medical information. Finally, by mapping the legal to specific technical definitions, we draw some initial conclusions concerning how sensitive different types of "genetic data" may actually be. We argue that whole genome sequences may justifiably be considered "exceptional" and require special protection, whereas other genetic data that do not fulfill the same criteria should be treated in a similar manner to other clinical data. This kind of differentiation should be reflected by the law and/or other governance frameworks as well as agreed Codes of Conduct when using the term "genetic data."

  12. List Decoding of Matrix-Product Codes from nested codes: an application to Quasi-Cyclic codes

    DEFF Research Database (Denmark)

    Hernando, Fernando; Høholdt, Tom; Ruano, Diego

    2012-01-01

    A list decoding algorithm for matrix-product codes is provided when $C_1,..., C_s$ are nested linear codes and $A$ is a non-singular by columns matrix. We estimate the probability of getting more than one codeword as output when the constituent codes are Reed-Solomon codes. We extend this list...... decoding algorithm for matrix-product codes with polynomial units, which are quasi-cyclic codes. Furthermore, it allows us to consider unique decoding for matrix-product codes with polynomial units....

  13. Genetic Testing for Respiratory Disease: Are We There Yet?

    Directory of Open Access Journals (Sweden)

    Peter D Paré

    2012-01-01

    Full Text Available The human genome project promised a revolution in health care – the development of ‘personalized medicine’, where knowledge of an individual’s genetic code enables the prediction of risk for specific diseases and the potential to alter that risk based on preventive measures and lifestyle modification. The present brief review provides a report card on the progress toward that goal with respect to respiratory disease. Should generalized population screening for genetic risk factors for respiratory disease be instituted? Or not?

  14. Genetic changes of MLH1 and MSH2 genes could explain constant findings on microsatellite instability in intracranial meningioma.

    Science.gov (United States)

    Pećina-Šlaus, Nives; Kafka, Anja; Bukovac, Anja; Vladušić, Tomislav; Tomas, Davor; Hrašćan, Reno

    2017-07-01

    Postreplicative mismatch repair safeguards the stability of our genome. The defects in its functioning will give rise to microsatellite instability. In this study, 50 meningiomas were investigated for microsatellite instability. Two major mismatch repair genes, MLH1 and MSH2, were analyzed using microsatellite markers D1S1611 and BAT26 amplified by polymerase chain reaction and visualized by gel electrophoresis on high-resolution gels. Furthermore, genes DVL3 (D3S1262), AXIN1 (D16S3399), and CDH1 (D16S752) were also investigated for microsatellite instability. Our study revealed constant presence of microsatellite instability in meningioma patients when compared to their autologous blood DNA. Altogether 38% of meningiomas showed microsatellite instability at one microsatellite locus, 16% on two, and 13.3% on three loci. The percent of detected microsatellite instability for MSH2 gene was 14%, and for MLH1, it was 26%, for DVL3 22.9%, for AXIN1 17.8%, and for CDH1 8.3%. Since markers also allowed for the detection of loss of heterozygosity, gross deletions of MLH1 gene were found in 24% of meningiomas. Genetic changes between MLH1 and MSH2 were significantly positively correlated (p = 0.032). We also noted a positive correlation between genetic changes of MSH2 and DVL3 genes (p = 0.034). No significant associations were observed when MLH1 or MSH2 was tested against specific histopathological meningioma subtype or World Health Organization grade. However, genetic changes in DVL3 were strongly associated with anaplastic histology of meningioma (χ 2  = 9.14; p = 0.01). Our study contributes to better understanding of the genetic profile of human intracranial meningiomas and suggests that meningiomas harbor defective cellular DNA mismatch repair mechanisms.

  15. Cryptic Genetic Variation in Evolutionary Developmental Genetics

    Directory of Open Access Journals (Sweden)

    Annalise B. Paaby

    2016-06-01

    Full Text Available Evolutionary developmental genetics has traditionally been conducted by two groups: Molecular evolutionists who emphasize divergence between species or higher taxa, and quantitative geneticists who study variation within species. Neither approach really comes to grips with the complexities of evolutionary transitions, particularly in light of the realization from genome-wide association studies that most complex traits fit an infinitesimal architecture, being influenced by thousands of loci. This paper discusses robustness, plasticity and lability, phenomena that we argue potentiate major evolutionary changes and provide a bridge between the conceptual treatments of macro- and micro-evolution. We offer cryptic genetic variation and conditional neutrality as mechanisms by which standing genetic variation can lead to developmental system drift and, sheltered within canalized processes, may facilitate developmental transitions and the evolution of novelty. Synthesis of the two dominant perspectives will require recognition that adaptation, divergence, drift and stability all depend on similar underlying quantitative genetic processes—processes that cannot be fully observed in continuously varying visible traits.

  16. Coding early naturalists' accounts into long-term fish community changes in the Adriatic Sea (1800-2000.

    Directory of Open Access Journals (Sweden)

    Tomaso Fortibuoni

    Full Text Available The understanding of fish communities' changes over the past centuries has important implications for conservation policy and marine resource management. However, reconstructing these changes is difficult because information on marine communities before the second half of the 20(th century is, in most cases, anecdotal and merely qualitative. Therefore, historical qualitative records and modern quantitative data are not directly comparable, and their integration for long-term analyses is not straightforward. We developed a methodology that allows the coding of qualitative information provided by early naturalists into semi-quantitative information through an intercalibration with landing proportions. This approach allowed us to reconstruct and quantitatively analyze a 200-year-long time series of fish community structure indicators in the Northern Adriatic Sea (Mediterranean Sea. Our analysis provides evidence of long-term changes in fish community structure, including the decline of Chondrichthyes, large-sized and late-maturing species. This work highlights the importance of broadening the time-frame through which we look at marine ecosystem changes and provides a methodology to exploit, in a quantitative framework, historical qualitative sources. To the purpose, naturalists' eyewitness accounts proved to be useful for extending the analysis on fish community back in the past, well before the onset of field-based monitoring programs.

  17. Evaluation of practicality of ASME code, Section XI

    International Nuclear Information System (INIS)

    Mattu, R.K.; Lauderdale, J.R.; Liu, S.N.; Lance, J.J.

    2004-01-01

    Many nuclear power plants have found that it is impractical or unduly burdensome to comply with some ASME Boiler and Pressure Code provisions and have sought relief from those provisions from the Nuclear Regulatory Commission. An Electric Power Research Institute (EPRI) project is evaluating such Code provisions and alternatives to them that will meet the safety intent of the Code with less burden on utilities. The methodology is to extract data from an on-line data base of relief requests since 1980, analyse the data to identify burdensome provisions for which there are satisfactory alternatives, and recommend changes in the Code to the ASME. (author)

  18. Coding Partitions

    Directory of Open Access Journals (Sweden)

    Fabio Burderi

    2007-05-01

    Full Text Available Motivated by the study of decipherability conditions for codes weaker than Unique Decipherability (UD, we introduce the notion of coding partition. Such a notion generalizes that of UD code and, for codes that are not UD, allows to recover the ``unique decipherability" at the level of the classes of the partition. By tacking into account the natural order between the partitions, we define the characteristic partition of a code X as the finest coding partition of X. This leads to introduce the canonical decomposition of a code in at most one unambiguouscomponent and other (if any totally ambiguouscomponents. In the case the code is finite, we give an algorithm for computing its canonical partition. This, in particular, allows to decide whether a given partition of a finite code X is a coding partition. This last problem is then approached in the case the code is a rational set. We prove its decidability under the hypothesis that the partition contains a finite number of classes and each class is a rational set. Moreover we conjecture that the canonical partition satisfies such a hypothesis. Finally we consider also some relationships between coding partitions and varieties of codes.

  19. The genetic basis of DOORS syndrome : an exome-sequencing study

    NARCIS (Netherlands)

    Campeau, Philippe M.; Kasperaviciute, Dalia; Lu, James T.; Burrage, Lindsay C.; Kim, Choel; Hori, Mutsuki; Powell, Berkley R.; Stewart, Fiona; Felix, Temis Maria; van den Ende, Jenneke; Wisniewska, Marzena; Kayserili, Huelya; Rump, Patrick; Nampoothiri, Sheela; Aftimos, Salim; Mey, Antje; Nair, Lal D. V.; Begleiter, Michael L.; De Bie, Isabelle; Meenakshi, Girish; Murray, Mitzi L.; Repetto, Gabriela M.; Golabi, Mahin; Blair, Edward; Male, Alison; Giuliano, Fabienne; Kariminejad, Ariana; Newman, William G.; Bhaskar, Sanjeev S.; Dickerson, Jonathan E.; Kerr, Bronwyn; Banka, Siddharth; Giltay, Jacques C.; Wieczorek, Dagmar; Tostevin, Anna; Wiszniewska, Joanna; Cheung, Sau Wai; Hennekam, Raoul C.; Gibbs, Richard A.; Lee, Brendan H.; Sisodiya, Sanjay M.

    Background Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals. Methods Through a search

  20. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    Science.gov (United States)

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  1. Adaptive variable-length coding for efficient compression of spacecraft television data.

    Science.gov (United States)

    Rice, R. F.; Plaunt, J. R.

    1971-01-01

    An adaptive variable length coding system is presented. Although developed primarily for the proposed Grand Tour missions, many features of this system clearly indicate a much wider applicability. Using sample to sample prediction, the coding system produces output rates within 0.25 bit/picture element (pixel) of the one-dimensional difference entropy for entropy values ranging from 0 to 8 bit/pixel. This is accomplished without the necessity of storing any code words. Performance improvements of 0.5 bit/pixel can be simply achieved by utilizing previous line correlation. A Basic Compressor, using concatenated codes, adapts to rapid changes in source statistics by automatically selecting one of three codes to use for each block of 21 pixels. The system adapts to less frequent, but more dramatic, changes in source statistics by adjusting the mode in which the Basic Compressor operates on a line-to-line basis. Furthermore, the compression system is independent of the quantization requirements of the pulse-code modulation system.

  2. Combinatorial neural codes from a mathematical coding theory perspective.

    Science.gov (United States)

    Curto, Carina; Itskov, Vladimir; Morrison, Katherine; Roth, Zachary; Walker, Judy L

    2013-07-01

    Shannon's seminal 1948 work gave rise to two distinct areas of research: information theory and mathematical coding theory. While information theory has had a strong influence on theoretical neuroscience, ideas from mathematical coding theory have received considerably less attention. Here we take a new look at combinatorial neural codes from a mathematical coding theory perspective, examining the error correction capabilities of familiar receptive field codes (RF codes). We find, perhaps surprisingly, that the high levels of redundancy present in these codes do not support accurate error correction, although the error-correcting performance of receptive field codes catches up to that of random comparison codes when a small tolerance to error is introduced. However, receptive field codes are good at reflecting distances between represented stimuli, while the random comparison codes are not. We suggest that a compromise in error-correcting capability may be a necessary price to pay for a neural code whose structure serves not only error correction, but must also reflect relationships between stimuli.

  3. A Hybrid Genetic Algorithm Approach for Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Sydulu Maheswarapu

    2011-08-01

    Full Text Available This paper puts forward a reformed hybrid genetic algorithm (GA based approach to the optimal power flow. In the approach followed here, continuous variables are designed using real-coded GA and discrete variables are processed as binary strings. The outcomes are compared with many other methods like simple genetic algorithm (GA, adaptive genetic algorithm (AGA, differential evolution (DE, particle swarm optimization (PSO and music based harmony search (MBHS on a IEEE30 bus test bed, with a total load of 283.4 MW. Its found that the proposed algorithm is found to offer lowest fuel cost. The proposed method is found to be computationally faster, robust, superior and promising form its convergence characteristics.

  4. (Nearly) portable PIC code for parallel computers

    International Nuclear Information System (INIS)

    Decyk, V.K.

    1993-01-01

    As part of the Numerical Tokamak Project, the author has developed a (nearly) portable, one dimensional version of the GCPIC algorithm for particle-in-cell codes on parallel computers. This algorithm uses a spatial domain decomposition for the fields, and passes particles from one domain to another as the particles move spatially. With only minor changes, the code has been run in parallel on the Intel Delta, the Cray C-90, the IBM ES/9000 and a cluster of workstations. After a line by line translation into cmfortran, the code was also run on the CM-200. Impressive speeds have been achieved, both on the Intel Delta and the Cray C-90, around 30 nanoseconds per particle per time step. In addition, the author was able to isolate the data management modules, so that the physics modules were not changed much from their sequential version, and the data management modules can be used as open-quotes black boxes.close quotes

  5. LDGM Codes for Channel Coding and Joint Source-Channel Coding of Correlated Sources

    Directory of Open Access Journals (Sweden)

    Javier Garcia-Frias

    2005-05-01

    Full Text Available We propose a coding scheme based on the use of systematic linear codes with low-density generator matrix (LDGM codes for channel coding and joint source-channel coding of multiterminal correlated binary sources. In both cases, the structures of the LDGM encoder and decoder are shown, and a concatenated scheme aimed at reducing the error floor is proposed. Several decoding possibilities are investigated, compared, and evaluated. For different types of noisy channels and correlation models, the resulting performance is very close to the theoretical limits.

  6. Genetics and epigenetics of obesity

    OpenAIRE

    Herrera, Blanca M.; Keildson, Sarah; Lindgren, Cecilia M.

    2011-01-01

    Obesity results from interactions between environmental and genetic factors. Despite a relatively high heritability of common, non-syndromic obesity (40?70%), the search for genetic variants contributing to susceptibility has been a challenging task. Genome wide association (GWA) studies have dramatically changed the pace of detection of common genetic susceptibility variants. To date, more than 40 genetic variants have been associated with obesity and fat distribution. However, since these v...

  7. Code on nuclear air and gas treatment ASME/ANSI AG-1

    International Nuclear Information System (INIS)

    Miller, W.H. Jr.

    1993-01-01

    The focus of this panel is on equipment code section work over the past two years. Major topics include changes in Filter Code Sections, revamping of the Ductwork Code Section, and emergence of an improved I ampersand C Code Section. Actual applications of AG-1 are to be discussed by CONAGT members. Remaining time will be devoted to fielding questions concerning ASMA/ANSI AG-1

  8. Software Certification - Coding, Code, and Coders

    Science.gov (United States)

    Havelund, Klaus; Holzmann, Gerard J.

    2011-01-01

    We describe a certification approach for software development that has been adopted at our organization. JPL develops robotic spacecraft for the exploration of the solar system. The flight software that controls these spacecraft is considered to be mission critical. We argue that the goal of a software certification process cannot be the development of "perfect" software, i.e., software that can be formally proven to be correct under all imaginable and unimaginable circumstances. More realistically, the goal is to guarantee a software development process that is conducted by knowledgeable engineers, who follow generally accepted procedures to control known risks, while meeting agreed upon standards of workmanship. We target three specific issues that must be addressed in such a certification procedure: the coding process, the code that is developed, and the skills of the coders. The coding process is driven by standards (e.g., a coding standard) and tools. The code is mechanically checked against the standard with the help of state-of-the-art static source code analyzers. The coders, finally, are certified in on-site training courses that include formal exams.

  9. Expectation and futurity: The remarkable success of genetic determinism.

    Science.gov (United States)

    Esposito, Maurizio

    2017-04-01

    Genetic determinism is nowadays largely questioned and widely criticized. However, if we look at the history of biology in the last one hundred years, we realize that genetic determinism has always been controversial. Why, then, did it acquire such relevance in the past despite facing longstanding criticism? Through the analysis of some of the ambitious expectations of future scientific applications, this article explores the possibility that part of the historical success of genetic determinism lies in the powerful rhetorical strategies that have connected the germinal matter with alluring bio-technological visions. Indeed, in drawing on the recent perspectives of "expectation studies" in science and technology, it will be shown that there has been an interesting historical relationship between reductionist notions of the gene as a hereditary unit, coded information or functional DNA segment, and startling prophecies of what controlling such an entity might achieve. It will also be suggested that the well-known promissory nature of genomics is far older than the emergence of biotechnology in the 1970s. At least from the time of the bio-utopias predicted by J.B.S. Haldane and J. S. Huxley, the gene has often been surrounded by what I call the "rhetoric of futurity": a promissory rhetoric that, despite momentous changes in the life sciences throughout the 20th century, has remained relatively consistent over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Code Differentiation for Hydrodynamic Model Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, R.J.; Maudlin, P.J.

    1999-06-27

    Use of a hydrodynamics code for experimental data fitting purposes (an optimization problem) requires information about how a computed result changes when the model parameters change. These so-called sensitivities provide the gradient that determines the search direction for modifying the parameters to find an optimal result. Here, the authors apply code-based automatic differentiation (AD) techniques applied in the forward and adjoint modes to two problems with 12 parameters to obtain these gradients and compare the computational efficiency and accuracy of the various methods. They fit the pressure trace from a one-dimensional flyer-plate experiment and examine the accuracy for a two-dimensional jet-formation problem. For the flyer-plate experiment, the adjoint mode requires similar or less computer time than the forward methods. Additional parameters will not change the adjoint mode run time appreciably, which is a distinct advantage for this method. Obtaining ''accurate'' sensitivities for the j et problem parameters remains problematic.

  11. DNA: Polymer and molecular code

    Science.gov (United States)

    Shivashankar, G. V.

    1999-10-01

    The thesis work focusses upon two aspects of DNA, the polymer and the molecular code. Our approach was to bring single molecule micromanipulation methods to the study of DNA. It included a home built optical microscope combined with an atomic force microscope and an optical tweezer. This combined approach led to a novel method to graft a single DNA molecule onto a force cantilever using the optical tweezer and local heating. With this method, a force versus extension assay of double stranded DNA was realized. The resolution was about 10 picoN. To improve on this force measurement resolution, a simple light backscattering technique was developed and used to probe the DNA polymer flexibility and its fluctuations. It combined the optical tweezer to trap a DNA tethered bead and the laser backscattering to detect the beads Brownian fluctuations. With this technique the resolution was about 0.1 picoN with a millisecond access time, and the whole entropic part of the DNA force-extension was measured. With this experimental strategy, we measured the polymerization of the protein RecA on an isolated double stranded DNA. We observed the progressive decoration of RecA on the l DNA molecule, which results in the extension of l , due to unwinding of the double helix. The dynamics of polymerization, the resulting change in the DNA entropic elasticity and the role of ATP hydrolysis were the main parts of the study. A simple model for RecA assembly on DNA was proposed. This work presents a first step in the study of genetic recombination. Recently we have started a study of equilibrium binding which utilizes fluorescence polarization methods to probe the polymerization of RecA on single stranded DNA. In addition to the study of material properties of DNA and DNA-RecA, we have developed experiments for which the code of the DNA is central. We studied one aspect of DNA as a molecular code, using different techniques. In particular the programmatic use of template specificity makes

  12. Discussion on LDPC Codes and Uplink Coding

    Science.gov (United States)

    Andrews, Ken; Divsalar, Dariush; Dolinar, Sam; Moision, Bruce; Hamkins, Jon; Pollara, Fabrizio

    2007-01-01

    This slide presentation reviews the progress that the workgroup on Low-Density Parity-Check (LDPC) for space link coding. The workgroup is tasked with developing and recommending new error correcting codes for near-Earth, Lunar, and deep space applications. Included in the presentation is a summary of the technical progress of the workgroup. Charts that show the LDPC decoder sensitivity to symbol scaling errors are reviewed, as well as a chart showing the performance of several frame synchronizer algorithms compared to that of some good codes and LDPC decoder tests at ESTL. Also reviewed is a study on Coding, Modulation, and Link Protocol (CMLP), and the recommended codes. A design for the Pseudo-Randomizer with LDPC Decoder and CRC is also reviewed. A chart that summarizes the three proposed coding systems is also presented.

  13. Securing optical code-division multiple-access networks with a postswitching coding scheme of signature reconfiguration

    Science.gov (United States)

    Huang, Jen-Fa; Meng, Sheng-Hui; Lin, Ying-Chen

    2014-11-01

    The optical code-division multiple-access (OCDMA) technique is considered a good candidate for providing optical layer security. An enhanced OCDMA network security mechanism with a pseudonoise (PN) random digital signals type of maximal-length sequence (M-sequence) code switching to protect against eavesdropping is presented. Signature codes unique to individual OCDMA-network users are reconfigured according to the register state of the controlling electrical shift registers. Examples of signature reconfiguration following state switching of the controlling shift register for both the network user and the eavesdropper are numerically illustrated. Dynamically changing the PN state of the shift register to reconfigure the user signature sequence is shown; this hinders eavesdroppers' efforts to decode correct data sequences. The proposed scheme increases the probability of eavesdroppers committing errors in decoding and thereby substantially enhances the degree of an OCDMA network's confidentiality.

  14. Developmental imaging genetics: linking dopamine function to adolescent behavior.

    Science.gov (United States)

    Padmanabhan, Aarthi; Luna, Beatriz

    2014-08-01

    Adolescence is a period of development characterized by numerous neurobiological changes that significantly influence behavior and brain function. Adolescence is of particular interest due to the alarming statistics indicating that mortality rates increase two to three-fold during this time compared to childhood, due largely to a peak in risk-taking behaviors resulting from increased impulsivity and sensation seeking. Furthermore, there exists large unexplained variability in these behaviors that are in part mediated by biological factors. Recent advances in molecular genetics and functional neuroimaging have provided a unique and exciting opportunity to non-invasively study the influence of genetic factors on brain function in humans. While genes do not code for specific behaviors, they do determine the structure and function of proteins that are essential to the neuronal processes that underlie behavior. Therefore, studying the interaction of genotype with measures of brain function over development could shed light on critical time points when biologically mediated individual differences in complex behaviors emerge. Here we review animal and human literature examining the neurobiological basis of adolescent development related to dopamine neurotransmission. Dopamine is of critical importance because of (1) its role in cognitive and affective behaviors, (2) its role in the pathogenesis of major psychopathology, and (3) the protracted development of dopamine signaling pathways over adolescence. We will then focus on current research examining the role of dopamine-related genes on brain function. We propose the use of imaging genetics to examine the influence of genetically mediated dopamine variability on brain function during adolescence, keeping in mind the limitations of this approach. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk.

    Science.gov (United States)

    Blair, David R; Lyttle, Christopher S; Mortensen, Jonathan M; Bearden, Charles F; Jensen, Anders Boeck; Khiabanian, Hossein; Melamed, Rachel; Rabadan, Raul; Bernstam, Elmer V; Brunak, Søren; Jensen, Lars Juhl; Nicolae, Dan; Shah, Nigam H; Grossman, Robert L; Cox, Nancy J; White, Kevin P; Rzhetsky, Andrey

    2013-09-26

    Although countless highly penetrant variants have been associated with Mendelian disorders, the genetic etiologies underlying complex diseases remain largely unresolved. By mining the medical records of over 110 million patients, we examine the extent to which Mendelian variation contributes to complex disease risk. We detect thousands of associations between Mendelian and complex diseases, revealing a nondegenerate, phenotypic code that links each complex disorder to a unique collection of Mendelian loci. Using genome-wide association results, we demonstrate that common variants associated with complex diseases are enriched in the genes indicated by this "Mendelian code." Finally, we detect hundreds of comorbidity associations among Mendelian disorders, and we use probabilistic genetic modeling to demonstrate that Mendelian variants likely contribute nonadditively to the risk for a subset of complex diseases. Overall, this study illustrates a complementary approach for mapping complex disease loci and provides unique predictions concerning the etiologies of specific diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Diet Quality and Change in Blood Lipids during 16 Years of Follow-up and Their Interaction with Genetic Risk for Dyslipidemia.

    Science.gov (United States)

    Sonestedt, Emily; Hellstrand, Sophie; Drake, Isabel; Schulz, Christina-Alexandra; Ericson, Ulrika; Hlebowicz, Joanna; Persson, Margaretha M; Gullberg, Bo; Hedblad, Bo; Engström, Gunnar; Orho-Melander, Marju

    2016-05-09

    A high diet quality according to the Swedish nutrition recommendations is associated with a reduced risk of cardiovascular disease in the population-based Malmö Diet and Cancer cohort. To further clarify this protective association, we examined the association between high diet quality and change in triglycerides, high density lipoprotein-cholesterol (HDL-C), and low density lipoprotein-cholesterol (LDL-C) after 16 years of follow-up in 3152 individuals (61% women; 46-68 years at baseline). In addition, we examined if genetic risk scores composed of 80 lipid-associated genetic variants modify these associations. A diet quality index based on intakes of saturated fat, polyunsaturated fat, sucrose, fiber, fruit and vegetables, and fish was constructed. A high diet quality was associated with lower risk of developing high triglycerides (p = 0.02) and high LDL-C (p = 0.03) during follow-up compared with a low diet quality. We found an association between diet quality and long-term change in HDL-C only among those with lower genetic risk for low HDL-C as opposed to those with higher genetic risk (p-interaction = 0.04). Among those with lower genetic risk for low HDL-C, low diet quality was associated with decreased HDL-C during follow-up (p = 0.05). In conclusion, individuals with high adherence to the Swedish nutrition recommendation had lower risk of developing high triglycerides and LDL-C during 16 years of follow-up.

  17. Development and application of proposed ASME Section XI Code changes for risk-based inspection of piping

    International Nuclear Information System (INIS)

    West, R.A.

    1996-01-01

    This synopsis has been written to describe a perspective on the development and application of ASME Section XI Code changes for risk-based inspection of piping. The content is specifically related to the use of risk-based technology for Inservice Inspection (ISI) of piping and efforts made to support the ASME Research/Westinghouse Owners Group/Millstone Unit 3 approach for use of this technology. The opinions contained herein may or may not reflect those of the ASME Codes and Standards Committees responsible for these activities. In order to take such a detailed technical subject and put it into an understandable format, the author has chosen to provide an analogy to simplify what is actually taking place. Risk-based technology in the ISI of piping can be likened to the process of making and using specifically ground prescription glasses to allow for better vision. It provides a process to develop and use these uniquely ground glasses that will dynamically focus on all the locations and obstacles within a plant's piping systems that could cause that plant to trip and fall; more importantly it identifies the locations where the fall could possibly hurt someone else. In this way, Nuclear Safety is being addressed

  18. Optimization of multicast optical networks with genetic algorithm

    Science.gov (United States)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  19. The genetic basis of DOORS syndrome: an exome-sequencing study

    NARCIS (Netherlands)

    Campeau, Philippe M.; Kasperaviciute, Dalia; Lu, James T.; Burrage, Lindsay C.; Kim, Choel; Hori, Mutsuki; Powell, Berkley R.; Stewart, Fiona; Félix, Têmis Maria; van den Ende, Jenneke; Wisniewska, Marzena; Kayserili, Hülya; Rump, Patrick; Nampoothiri, Sheela; Aftimos, Salim; Mey, Antje; Nair, Lal D. V.; Begleiter, Michael L.; de Bie, Isabelle; Meenakshi, Girish; Murray, Mitzi L.; Repetto, Gabriela M.; Golabi, Mahin; Blair, Edward; Male, Alison; Giuliano, Fabienne; Kariminejad, Ariana; Newman, William G.; Bhaskar, Sanjeev S.; Dickerson, Jonathan E.; Kerr, Bronwyn; Banka, Siddharth; Giltay, Jacques C.; Wieczorek, Dagmar; Tostevin, Anna; Wiszniewska, Joanna; Cheung, Sau Wai; Hennekam, Raoul C.; Gibbs, Richard A.; Lee, Brendan H.; Sisodiya, Sanjay M.

    2014-01-01

    Deafness, onychodystrophy, osteodystrophy, mental retardation, and seizures (DOORS) syndrome is a rare autosomal recessive disorder of unknown cause. We aimed to identify the genetic basis of this syndrome by sequencing most coding exons in affected individuals. Through a search of available case

  20. Cell-assembly coding in several memory processes.

    Science.gov (United States)

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  1. The Future of Genetics in Psychology and Psychiatry: Microarrays, Genome-Wide Association, and Non-Coding RNA

    Science.gov (United States)

    Plomin, Robert; Davis, Oliver S. P.

    2009-01-01

    Background: Much of what we thought we knew about genetics needs to be modified in light of recent discoveries. What are the implications of these advances for identifying genes responsible for the high heritability of many behavioural disorders and dimensions in childhood? Methods: Although quantitative genetics such as twin studies will continue…

  2. AD codes of practice 'pressure vessels'

    International Nuclear Information System (INIS)

    Schefe, G.

    1978-01-01

    Within the AD-Regelwerk, a manual of regulations, the AD codes of practice HP1 and HP20 have been published for the first time. In contrast to the already existing codes of practice of the series HP, these leaflets do not mainly contain changes in the test details and the course of the procedure, but, in a summarized form, that which has been practiced for years. Comments on the new codes concentrate mainly on those things, which are really new, or which might appear to be new. Furthermore, control lists and proposals for printed forms, addressed to designers and supervisors on the side of the manufacturers, are to contribute to the tests being carried out economically. (orig./RW) [de

  3. Genetic diagnosis of a Chinese multiple endocrine neoplasia type ...

    Indian Academy of Sciences (India)

    However, different families with MEN 2A due to the same RET mutation often have significant variability inthe clinical exhibition of disease and aggressiveness of the MTC, which implies additional genetic loci exsit beyondRET coding region. Whole genome sequencing (WGS) greatly expands the breadth of screening from ...

  4. Sex Determination, Sex Ratios, and Genetic Conflict

    NARCIS (Netherlands)

    Werren, John H.; Beukeboom, Leo W.

    1998-01-01

    Genetic mechanisms of sex determination are unexpectedly diverse and change rapidly during evolution. We review the role of genetic conflict as the driving force behind this diversity and turnover. Genetic conflict occurs when different components of a genetic system are subject to selection in

  5. Genetically Modified (GM) Foods and Ethical Eating.

    Science.gov (United States)

    Dizon, Francis; Costa, Sarah; Rock, Cheryl; Harris, Amanda; Husk, Cierra; Mei, Jenny

    2016-02-01

    The ability to manipulate and customize the genetic code of living organisms has brought forth the production of genetically modified organisms (GMOs) and consumption of genetically modified (GM) foods. The potential for GM foods to improve the efficiency of food production, increase customer satisfaction, and provide potential health benefits has contributed to the rapid incorporation of GM foods into the American diet. However, GM foods and GMOs are also a topic of ethical debate. The use of GM foods and GM technology is surrounded by ethical concerns and situational judgment, and should ideally adhere to the ethical standards placed upon food and nutrition professionals, such as: beneficence, nonmaleficence, justice and autonomy. The future of GM foods involves many aspects and trends, including enhanced nutritional value in foods, strict labeling laws, and potential beneficial economic conditions in developing nations. This paper briefly reviews the origin and background of GM foods, while delving thoroughly into 3 areas: (1) GMO labeling, (2) ethical concerns, and (3) health and industry applications. This paper also examines the relationship between the various applications of GM foods and their corresponding ethical issues. Ethical concerns were evaluated in the context of the code of ethics developed by the Academy of Nutrition and Dietetics (AND) that govern the work of food and nutrition professionals. Overall, there is a need to stay vigilant about the many ethical implications of producing and consuming GM foods and GMOs. © 2015 Institute of Food Technologists®

  6. Verification of thermal-irradiation stress analytical code VIENUS of graphite block

    International Nuclear Information System (INIS)

    Iyoku, Tatsuo; Ishihara, Masahiro; Shiozawa, Shusaku; Shirai, Hiroshi; Minato, Kazuo.

    1992-02-01

    The core graphite components of the High Temperature Engineering Test Reactor (HTTR) show both the dimensional change (irradiation shrinkage) and creep behavior due to fast neutron irradiation under the temperature and the fast neutron irradiation conditions of the HTTR. Therefore, thermal/irradiation stress analytical code, VIENUS, which treats these graphite irradiation behavior, is to be employed in order to design the core components such as fuel block etc. of the HTTR. The VIENUS is a two dimensional finite element viscoelastic stress analytical code to take account of changes in mechanical properties, thermal strain, irradiation-induced dimensional change and creep in the fast neutron irradiation environment. Verification analyses were carried out in order to prove the validity of this code based on the irradiation tests of the 8th OGL-1 fuel assembly and the fuel element of the Peach Bottom reactor. This report describes the outline of the VIENUS code and its verification analyses. (author)

  7. Real Time Updating Genetic Network Programming for Adapting to the Change of Stock Prices

    Science.gov (United States)

    Chen, Yan; Mabu, Shingo; Shimada, Kaoru; Hirasawa, Kotaro

    The key in stock trading model is to take the right actions for trading at the right time, primarily based on the accurate forecast of future stock trends. Since an effective trading with given information of stock prices needs an intelligent strategy for the decision making, we applied Genetic Network Programming (GNP) to creating a stock trading model. In this paper, we propose a new method called Real Time Updating Genetic Network Programming (RTU-GNP) for adapting to the change of stock prices. There are three important points in this paper: First, the RTU-GNP method makes a stock trading decision considering both the recommendable information of technical indices and the candlestick charts according to the real time stock prices. Second, we combine RTU-GNP with a Sarsa learning algorithm to create the programs efficiently. Also, sub-nodes are introduced in each judgment and processing node to determine appropriate actions (buying/selling) and to select appropriate stock price information depending on the situation. Third, a Real Time Updating system has been firstly introduced in our paper considering the change of the trend of stock prices. The experimental results on the Japanese stock market show that the trading model with the proposed RTU-GNP method outperforms other models without real time updating. We also compared the experimental results using the proposed method with Buy&Hold method to confirm its effectiveness, and it is clarified that the proposed trading model can obtain much higher profits than Buy&Hold method.

  8. Genetics of Congenital Heart Disease: Past and Present.

    Science.gov (United States)

    Muntean, Iolanda; Togănel, Rodica; Benedek, Theodora

    2017-04-01

    Congenital heart disease is the most common congenital anomaly, representing an important cause of infant morbidity and mortality. Congenital heart disease represents a group of heart anomalies that include septal defects, valve defects, and outflow tract anomalies. The exact genetic, epigenetic, or environmental basis of congenital heart disease remains poorly understood, although the exact mechanism is likely multifactorial. However, the development of new technologies including copy number variants, single-nucleotide polymorphism, next-generation sequencing are accelerating the detection of genetic causes of heart anomalies. Recent studies suggest a role of small non-coding RNAs, micro RNA, in congenital heart disease. The recently described epigenetic factors have also been found to contribute to cardiac morphogenesis. In this review, we present past and recent genetic discoveries in congenital heart disease.

  9. New quantum codes constructed from quaternary BCH codes

    Science.gov (United States)

    Xu, Gen; Li, Ruihu; Guo, Luobin; Ma, Yuena

    2016-10-01

    In this paper, we firstly study construction of new quantum error-correcting codes (QECCs) from three classes of quaternary imprimitive BCH codes. As a result, the improved maximal designed distance of these narrow-sense imprimitive Hermitian dual-containing quaternary BCH codes are determined to be much larger than the result given according to Aly et al. (IEEE Trans Inf Theory 53:1183-1188, 2007) for each different code length. Thus, families of new QECCs are newly obtained, and the constructed QECCs have larger distance than those in the previous literature. Secondly, we apply a combinatorial construction to the imprimitive BCH codes with their corresponding primitive counterpart and construct many new linear quantum codes with good parameters, some of which have parameters exceeding the finite Gilbert-Varshamov bound for linear quantum codes.

  10. Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET)

    International Nuclear Information System (INIS)

    Ramsdell, J.V. Jr.; Simonen, C.A.; Burk, K.W.

    1994-02-01

    The purpose of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate radiation doses that individuals may have received from operations at the Hanford Site since 1944. This report deals specifically with the atmospheric transport model, Regional Atmospheric Transport Code for Hanford Emission Tracking (RATCHET). RATCHET is a major rework of the MESOILT2 model used in the first phase of the HEDR Project; only the bookkeeping framework escaped major changes. Changes to the code include (1) significant changes in the representation of atmospheric processes and (2) incorporation of Monte Carlo methods for representing uncertainty in input data, model parameters, and coefficients. To a large extent, the revisions to the model are based on recommendations of a peer working group that met in March 1991. Technical bases for other portions of the atmospheric transport model are addressed in two other documents. This report has three major sections: a description of the model, a user's guide, and a programmer's guide. These sections discuss RATCHET from three different perspectives. The first provides a technical description of the code with emphasis on details such as the representation of the model domain, the data required by the model, and the equations used to make the model calculations. The technical description is followed by a user's guide to the model with emphasis on running the code. The user's guide contains information about the model input and output. The third section is a programmer's guide to the code. It discusses the hardware and software required to run the code. The programmer's guide also discusses program structure and each of the program elements

  11. Affective changes during the postpartum period: Influences of genetic and experiential factors.

    Science.gov (United States)

    Agrati, Daniella; Lonstein, Joseph S

    2016-01-01

    This article is part of a Special Issue "Parental Care". The postpartum period involves some truly transformational changes in females' socioemotional behaviors. For most female laboratory rodents and women, these changes include an improvement in their affective state, which has positive consequences for their ability to sensitively care for their offspring. There is heterogeneity among females in the likelihood of this positive affective change, though, and some women experience elevated anxiety or depression (or in rodents anxiety- or depression-related behaviors) after giving birth. We aim to contribute to the understanding of this heterogeneity in maternal affectivity by reviewing selected components of the scientific literatures on laboratory rodents and humans examining how mothers' physical contact with her infants, genetics, history of anxiety and depression and early-life and recent-life experiences contribute to individual differences in postpartum affective states. These studies together indicate that multiple biological and environmental factors beyond female maternal state shape affective responses during the postpartum period, and probably do so in an interactive manner. Furthermore, the similar capacity of some of these factors to modulate anxiety and depression in human and rodent mothers suggests cross-species conservation of mechanisms regulating postpartum affectivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Entanglement-assisted quantum MDS codes from negacyclic codes

    Science.gov (United States)

    Lu, Liangdong; Li, Ruihu; Guo, Luobin; Ma, Yuena; Liu, Yang

    2018-03-01

    The entanglement-assisted formalism generalizes the standard stabilizer formalism, which can transform arbitrary classical linear codes into entanglement-assisted quantum error-correcting codes (EAQECCs) by using pre-shared entanglement between the sender and the receiver. In this work, we construct six classes of q-ary entanglement-assisted quantum MDS (EAQMDS) codes based on classical negacyclic MDS codes by exploiting two or more pre-shared maximally entangled states. We show that two of these six classes q-ary EAQMDS have minimum distance more larger than q+1. Most of these q-ary EAQMDS codes are new in the sense that their parameters are not covered by the codes available in the literature.

  13. Change to CERN Safety Rules: Abolition of Safety Code A7

    CERN Multimedia

    2016-01-01

    As from 3 June 2016 Safety Code A7 “Road traffic at CERN” is abolished.   CERN's current practice to follow French or Swiss road traffic regulations on the corresponding parts of the CERN site will continue to apply. HSE Unit

  14. The evolving genetic risk for sporadic ALS.

    Science.gov (United States)

    Gibson, Summer B; Downie, Jonathan M; Tsetsou, Spyridoula; Feusier, Julie E; Figueroa, Karla P; Bromberg, Mark B; Jorde, Lynn B; Pulst, Stefan M

    2017-07-18

    To estimate the genetic risk conferred by known amyotrophic lateral sclerosis (ALS)-associated genes to the pathogenesis of sporadic ALS (SALS) using variant allele frequencies combined with predicted variant pathogenicity. Whole exome sequencing and repeat expansion PCR of C9orf72 and ATXN2 were performed on 87 patients of European ancestry with SALS seen at the University of Utah. DNA variants that change the protein coding sequence of 31 ALS-associated genes were annotated to determine which were rare and deleterious as predicted by MetaSVM. The percentage of patients with SALS with a rare and deleterious variant or repeat expansion in an ALS-associated gene was calculated. An odds ratio analysis was performed comparing the burden of ALS-associated genes in patients with SALS vs 324 normal controls. Nineteen rare nonsynonymous variants in an ALS-associated gene, 2 of which were found in 2 different individuals, were identified in 21 patients with SALS. Further, 5 deleterious C9orf72 and 2 ATXN2 repeat expansions were identified. A total of 17.2% of patients with SALS had a rare and deleterious variant or repeat expansion in an ALS-associated gene. The genetic burden of ALS-associated genes in patients with SALS as predicted by MetaSVM was significantly higher than in normal controls. Previous analyses have identified SALS-predisposing variants only in terms of their rarity in normal control populations. By incorporating variant pathogenicity as well as variant frequency, we demonstrated that the genetic risk contributed by these genes for SALS is substantially lower than previous estimates. © 2017 American Academy of Neurology.

  15. Homological stabilizer codes

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com

    2013-03-15

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  16. Development of a perturbation code, PERT-K, for hexagonal core geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek Kyum; Kim, Sang Ji; Song, Hoon; Kim, Young Il; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    A perturbation code for hexagonal core geometry has been developed based on Nodal Expansion Method. By using relevant output files of DIF3D code, it can calculate the reactivity changes caused by perturbation in composition or/and neutron cross section libraries. The accuracy of PERT-K code has been validated by calculating the reactivity changes due to fuel composition change, the sodium void coefficients, and the sample reactivity worths of BFS-73-1 critical experiments. In the case of 10% reduction in all fuel isotopics at a assembly located in the outer core, PERT-K computation agrees with the direct computation by DIF3D within 60 pcm. The sample reactivity worths of BFS-73-1 critical experiments are predicted with PERT-K code within the experimental error bounds. For 100% sodium void occurrence at the inner core, the maximum difference of reactivity changes between PERT-K and direct DIF3D computations is less than 40 pcm. On the other hand, the same sodium void condition at the outer core leads to a difference of reactivity change greater than 400 pcm. However, as sodium voiding becomes near zero value, the difference becomes less and rapidly falls within the acceptable bound, i.e. 40 pcm. (author). 11 refs., 9 figs., 6 tabs.

  17. SPECTRAL AMPLITUDE CODING OCDMA SYSTEMS USING ENHANCED DOUBLE WEIGHT CODE

    Directory of Open Access Journals (Sweden)

    F.N. HASOON

    2006-12-01

    Full Text Available A new code structure for spectral amplitude coding optical code division multiple access systems based on double weight (DW code families is proposed. The DW has a fixed weight of two. Enhanced double-weight (EDW code is another variation of a DW code family that can has a variable weight greater than one. The EDW code possesses ideal cross-correlation properties and exists for every natural number n. A much better performance can be provided by using the EDW code compared to the existing code such as Hadamard and Modified Frequency-Hopping (MFH codes. It has been observed that theoretical analysis and simulation for EDW is much better performance compared to Hadamard and Modified Frequency-Hopping (MFH codes.

  18. Change in genetic correlation due to selection using animal model evaluation.

    Science.gov (United States)

    Strandén, I; Mäntysaari, E A; Mäki-Tanila, A

    1993-01-12

    Monte Carlo simulation and analytical calculations were used to study the effect of selection on genetic correlation between two traits. The simulated breeding program was based on a closed adult multiple ovulation and embryo transfer nucleus breeding scheme. Selection was on an index calculated using multi-trait animal model (AM). Analytical formulae applicable to any evaluation method were derived to predict change in genetic (co)variance due to selection under multi-trait selection using different evaluation methods. Two formulae were investigated, one assuming phenotypic selection and the other based on a recursive two-generation AM selection index. The recursive AM method approximated information due to relatives by a relationship matrix of two generations. Genetic correlation after selection was compared under different levels of initial genetic and environmental correlations with two different selection criteria. Changes in genetic correlation were similar in simulation and analytical predictions. After one round of selection the recursive AM method and the simulation gave similar predictions while the phenotypic selection predicted usually more change in genetic correlation. After several rounds of selection both analytical formulae predicted more change in genetic correlation than the simulation. ZUSAMMENFASSUNG: Änderung der genetischen Korrelation bei Selektion mit einem Tiermodell Der Selektionseffekt auf die genetische Korrelation zwischen zwei Merkmalen wurde mit Hilfe von Monte Carlo-Simulation und analytischen Berechnungen untersucht. Ein geschlossener Adulter - MOET (Multiple Ovulation and Embryo Transfer) Zuchtplan wurde simuliert. Die Selektion gründete sich auf einen Index, der die Zuchtwertschätzung des Mehrmerkmals-Tiermodells benutzte. Analytische Formeln für die Voraussage der Änderung der genetischen (Ko)varianz unter multivariate Selektion für verschiedene Zuchtwertschätzungsmethode wurden deduziert. Zwei Formeln wurden studiert

  19. Improved Transient Performance of a Fuzzy Modified Model Reference Adaptive Controller for an Interacting Coupled Tank System Using Real-Coded Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Asan Mohideen Khansadurai

    2014-01-01

    Full Text Available The main objective of the paper is to design a model reference adaptive controller (MRAC with improved transient performance. A modification to the standard direct MRAC called fuzzy modified MRAC (FMRAC is used in the paper. The FMRAC uses a proportional control based Mamdani-type fuzzy logic controller (MFLC to improve the transient performance of a direct MRAC. The paper proposes the application of real-coded genetic algorithm (RGA to tune the membership function parameters of the proposed FMRAC offline so that the transient performance of the FMRAC is improved further. In this study, a GA based modified MRAC (GAMMRAC, an FMRAC, and a GA based FMRAC (GAFMRAC are designed for a coupled tank setup in a hybrid tank process and their transient performances are compared. The results show that the proposed GAFMRAC gives a better transient performance than the GAMMRAC or the FMRAC. It is concluded that the proposed controller can be used to obtain very good transient performance for the control of nonlinear processes.

  20. A field release of genetically engineered gypsy moth (Lymantria dispar L.) Nuclear Polyhedrosis Virus (LdNPV)

    Science.gov (United States)

    Vincent D' Amico; Joseph S. Elkinton; John D. Podgwaite; James M. Slavicek; Michael L. McManus; John P. Burand

    1999-01-01

    The gypsy moth (Lymantria dispar L.) nuclear polyhedrosis virus was genetically engineered for nonpersistence by removal of the gene coding for polyhedrin production and stabilized using a coocclusion process. A β-galactosidase marker gene was inserted into the genetically engineered virus (LdGEV) so that infected larvae could be tested for...

  1. RESEARCH NOTE Genetic Analyses for Deciphering the Status and ...

    Indian Academy of Sciences (India)

    Precision breeding for developing varieties for a specific area would involve ... Presently India is the fifth largest soybean producing country after US, Brazil, ... Genetic analysis at E3 and E4 loci and assessment of effect of photoperiodic ... outsourced (Scigenom, Banglore) for Sanger sequencing of coding region of E1.

  2. Genetic algorithm for the optimization of the loading pattern for reactor core fuel management

    International Nuclear Information System (INIS)

    Zhou Sheng; Hu Yongming; zheng Wenxiang

    2000-01-01

    The paper discusses the application of a genetic algorithm to the optimization of the loading pattern for in-core fuel management with the NP characteristics. The algorithm develops a matrix model for the fuel assembly loading pattern. The burnable poisons matrix was assigned randomly considering the distributed nature of the poisons. A method based on the traveling salesman problem was used to solve the problem. A integrated code for in-core fuel management was formed by combining this code with a reactor physics code

  3. A bar-code reader for an alpha-beta automatic counting system - FAG

    Energy Technology Data Exchange (ETDEWEB)

    Levinson, S; Shemesh, Y; Ankry, N; Assido, H; German, U; Peled, O [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    A bar-code laser system for sample number reading was integrated into the FAG Alpha-Beta automatic counting system. The sample identification by means of an attached bar-code label enables unmistakable and reliable attribution of results to the counted sample. Installation of the bar-code reader system required several modifications: Mechanical changes in the automatic sample changer, design and production of new sample holders, modification of the sample planchettes, changes in the electronic system, update of the operating software of the system (authors).

  4. A bar-code reader for an alpha-beta automatic counting system - FAG

    International Nuclear Information System (INIS)

    Levinson, S.; Shemesh, Y.; Ankry, N.; Assido, H.; German, U.; Peled, O.

    1996-01-01

    A bar-code laser system for sample number reading was integrated into the FAG Alpha-Beta automatic counting system. The sample identification by means of an attached bar-code label enables unmistakable and reliable attribution of results to the counted sample. Installation of the bar-code reader system required several modifications: Mechanical changes in the automatic sample changer, design and production of new sample holders, modification of the sample planchettes, changes in the electronic system, update of the operating software of the system (authors)

  5. Genetic secrets: Protecting privacy and confidentiality in the genetic era. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rothstein, M.A. [ed.

    1998-09-01

    Few developments are likely to affect human beings more profoundly in the long run than the discoveries resulting from advances in modern genetics. Although the developments in genetic technology promise to provide many additional benefits, their application to genetic screening poses ethical, social, and legal questions, many of which are rooted in issues of privacy and confidentiality. The ethical, practical, and legal ramifications of these and related questions are explored in depth. The broad range of topics includes: the privacy and confidentiality of genetic information; the challenges to privacy and confidentiality that may be projected to result from the emerging genetic technologies; the role of informed consent in protecting the confidentiality of genetic information in the clinical setting; the potential uses of genetic information by third parties; the implications of changes in the health care delivery system for privacy and confidentiality; relevant national and international developments in public policies, professional standards, and laws; recommendations; and the identification of research needs.

  6. Annotating long intergenic non-coding RNAs under artificial selection during chicken domestication.

    Science.gov (United States)

    Wang, Yun-Mei; Xu, Hai-Bo; Wang, Ming-Shan; Otecko, Newton Otieno; Ye, Ling-Qun; Wu, Dong-Dong; Zhang, Ya-Ping

    2017-08-15

    Numerous biological functions of long intergenic non-coding RNAs (lincRNAs) have been identified. However, the contribution of lincRNAs to the domestication process has remained elusive. Following domestication from their wild ancestors, animals display substantial changes in many phenotypic traits. Therefore, it is possible that diverse molecular drivers play important roles in this process. We analyzed 821 transcriptomes in this study and annotated 4754 lincRNA genes in the chicken genome. Our population genomic analysis indicates that 419 lincRNAs potentially evolved during artificial selection related to the domestication of chicken, while a comparative transcriptomic analysis identified 68 lincRNAs that were differentially expressed under different conditions. We also found 47 lincRNAs linked to special phenotypes. Our study provides a comprehensive view of the genome-wide landscape of lincRNAs in chicken. This will promote a better understanding of the roles of lincRNAs in domestication, and the genetic mechanisms associated with the artificial selection of domestic animals.

  7. The status of Korean nuclear codes and standards

    International Nuclear Information System (INIS)

    Namha Kim; Jong-Hae Kim

    2005-01-01

    Korea Electric Power Industry Code (KEPIC), a set of integrated standards applicable to the design, construction and operation of electric power facilities including nuclear power plants, has been developed on the basis of referring to the prevailing U.S. codes and standards which had been applied to the electric power facilities in Korea. Being the developing and managing organization of KEPIC, Korea Electric Association (KEA) published its first edition in 1995, the second in 200,0 and is expected to publish the 2005 edition. KEPIC was applied to the construction of Ulchin Nuclear Units 5 and 6 in 1997, and will be applicable to the construction of forthcoming nuclear power plants in Korea. Along with the effectuation of the Agreement on Technical Barriers to Trade (TBT) in 1995, the international trend related to codes and standards is changing rapidly. The KEA is, therefore, making its utmost efforts so as for KEPIC to keep abreast with the changing environment in international arena. KEA notified ISO/IEC Information Centre of its acceptance of the Code of Good Practice in the Agreement on TBT. The 2005 KEPIC edition will be retrofitted according to the ISO/IEC Guide 21- Adoption of International Standards as regional or national standards. KEA's efforts will help KEPIC correspond with international standards such as ISO/IEC standards, and internationally recognized standards such as ASME codes and standards. (authors)

  8. Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code.

    Science.gov (United States)

    Yinda, Claude Kwe; Ghogomu, Stephen Mbigha; Conceição-Neto, Nádia; Beller, Leen; Deboutte, Ward; Vanhulle, Emiel; Maes, Piet; Van Ranst, Marc; Matthijnssens, Jelle

    2018-01-01

    Most human emerging infectious diseases originate from wildlife and bats are a major reservoir of viruses, a few of which have been highly pathogenic to humans. In some regions of Cameroon, bats are hunted and eaten as a delicacy. This close proximity between human and bats provides ample opportunity for zoonotic events. To elucidate the viral diversity of Cameroonian fruit bats, we collected and metagenomically screened eighty-seven fecal samples of Eidolon helvum and Epomophorus gambianus fruit bats. The results showed a plethora of known and novel viruses. Phylogenetic analyses of the eleven gene segments of the first complete bat rotavirus H genome, showed clearly separated clusters of human, porcine, and bat rotavirus H strains, not indicating any recent interspecies transmission events. Additionally, we identified and analyzed a bat bastrovirus genome (a novel group of recently described viruses, related to astroviruses and hepatitis E viruses), confirming their recombinant nature, and provide further evidence of additional recombination events among bat bastroviruses. Interestingly, picobirnavirus-like RNA-dependent RNA polymerase gene segments were identified using an alternative mitochondrial genetic code, and further principal component analyses suggested that they may have a similar lifestyle to mitoviruses, a group of virus-like elements known to infect the mitochondria of fungi. Although identified bat coronavirus, parvovirus, and cyclovirus strains belong to established genera, most of the identified partitiviruses and densoviruses constitute putative novel genera in their respective families. Finally, the results of the phage community analyses of these bats indicate a very diverse geographically distinct bat phage population, probably reflecting different diets and gut bacterial ecosystems.

  9. Multifactor dimensionality reduction analysis identifies specific nucleotide patterns promoting genetic polymorphisms

    Directory of Open Access Journals (Sweden)

    Arehart Eric

    2009-03-01

    Full Text Available Abstract Background The fidelity of DNA replication serves as the nidus for both genetic evolution and genomic instability fostering disease. Single nucleotide polymorphisms (SNPs constitute greater than 80% of the genetic variation between individuals. A new theory regarding DNA replication fidelity has emerged in which selectivity is governed by base-pair geometry through interactions between the selected nucleotide, the complementary strand, and the polymerase active site. We hypothesize that specific nucleotide combinations in the flanking regions of SNP fragments are associated with mutation. Results We modeled the relationship between DNA sequence and observed polymorphisms using the novel multifactor dimensionality reduction (MDR approach. MDR was originally developed to detect synergistic interactions between multiple SNPs that are predictive of disease susceptibility. We initially assembled data from the Broad Institute as a pilot test for the hypothesis that flanking region patterns associate with mutagenesis (n = 2194. We then confirmed and expanded our inquiry with human SNPs within coding regions and their flanking sequences collected from the National Center for Biotechnology Information (NCBI database (n = 29967 and a control set of sequences (coding region not associated with SNP sites randomly selected from the NCBI database (n = 29967. We discovered seven flanking region pattern associations in the Broad dataset which reached a minimum significance level of p ≤ 0.05. Significant models (p Conclusion The present study represents the first use of this computational methodology for modeling nonlinear patterns in molecular genetics. MDR was able to identify distinct nucleotide patterning around sites of mutations dependent upon the observed nucleotide change. We discovered one flanking region set that included five nucleotides clustered around a specific type of SNP site. Based on the strongly associated patterns identified in

  10. Coding for effective denial management.

    Science.gov (United States)

    Miller, Jackie; Lineberry, Joe

    2004-01-01

    ABNs and the compliance risks associated with improper use. Finally, training programs should include routine audits to monitor coders for competence and precision. Constantly changing codes and guidelines mean that a coder's skills can quickly become obsolete if not reinforced by ongoing training and monitoring. Comprehensive reporting and routine analysis of claim denials is without a doubt one of the greatest assets to a practice that is suffering from excessive claim denials and should be considered an investment capable of providing both short and long term ROIs. Some radiologists may lack the funding or human resources needed to implement truly effective coding programs for their staff members. In these circumstances, radiology business managers should consider outsourcing their coding.

  11. The conservation of forest genetic resources: case histories from Canada, Mexico, and the United States

    Science.gov (United States)

    F. Thomas Ledig; J. Jesús Vargas-Hernández; Kurt H. Johnsen

    1998-01-01

    The genetic codes of living organisms are natural resources no less than soil, air, and water. Genetic resources-from nucleotide sequences in DNA to selected genotypes, populations, and species-are the raw material in forestry: for breeders, for the forest manager who produces an economic crop, for society that reaps the environmental benefits provided by forests, and...

  12. Vectorization of the KENO V.a criticality safety code

    International Nuclear Information System (INIS)

    Hollenbach, D.F.; Dodds, H.L.; Petrie, L.M.

    1991-01-01

    The development of the vector processor, which is used in the current generation of supercomputers and is beginning to be used in workstations, provides the potential for dramatic speed-up for codes that are able to process data as vectors. Unfortunately, the stochastic nature of Monte Carlo codes prevents the old scalar version of these codes from taking advantage of the vector processors. New Monte Carlo algorithms that process all the histories undergoing the same event as a batch are required. Recently, new vectorized Monte Carlo codes have been developed that show significant speed-ups when compared to the scalar version of themselves or equivalent codes. This paper discusses the vectorization of an already existing and widely used criticality safety code, KENO V.a All the changes made to KENO V.a are transparent to the user making it possible to upgrade from the standard scalar version of KENO V.a to the vectorized version without learning a new code

  13. A yeast screening system for simultaneously monitoring multiple genetic endpoints

    International Nuclear Information System (INIS)

    Dixon, M.L.; Mortimer, R.K.

    1986-01-01

    Mutation, recombination, and mitochondrial deficiencies have been proposed to have roles in the carcinogenic process. The authors describe a diploid strain of the yeast Saccharomyces cerevisiae capable of detecting this wide spectrum of genetic changes. The markers used for monitoring these events have been especially well characterized genetically. Ultraviolet light was chosen as a model carcinogenic agent to test this system. In addition to highly significant increases in the frequencies of each genetic change, increases in the absolute numbers of each change indicated induction and not selective survival. The relative amounts of each type of genetic change varied with dose. The wide spectrum of endpoints monitored in the XD83 yeast system may allow the detection of certain carcinogens and other genetically toxic agents which have escaped detection in more limited systems. Since only one strain is required to simultaneously monitor these genetic changes, this assay system should facilitate comparisons of the induced changes and be more efficient than using multiple strains to monitor the same endpoints. (Auth.)

  14. Portable LQCD Monte Carlo code using OpenACC

    Science.gov (United States)

    Bonati, Claudio; Calore, Enrico; Coscetti, Simone; D'Elia, Massimo; Mesiti, Michele; Negro, Francesco; Fabio Schifano, Sebastiano; Silvi, Giorgio; Tripiccione, Raffaele

    2018-03-01

    Varying from multi-core CPU processors to many-core GPUs, the present scenario of HPC architectures is extremely heterogeneous. In this context, code portability is increasingly important for easy maintainability of applications; this is relevant in scientific computing where code changes are numerous and frequent. In this talk we present the design and optimization of a state-of-the-art production level LQCD Monte Carlo application, using the OpenACC directives model. OpenACC aims to abstract parallel programming to a descriptive level, where programmers do not need to specify the mapping of the code on the target machine. We describe the OpenACC implementation and show that the same code is able to target different architectures, including state-of-the-art CPUs and GPUs.

  15. DLLExternalCode

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-14

    DLLExternalCode is the a general dynamic-link library (DLL) interface for linking GoldSim (www.goldsim.com) with external codes. The overall concept is to use GoldSim as top level modeling software with interfaces to external codes for specific calculations. The DLLExternalCode DLL that performs the linking function is designed to take a list of code inputs from GoldSim, create an input file for the external application, run the external code, and return a list of outputs, read from files created by the external application, back to GoldSim. Instructions for creating the input file, running the external code, and reading the output are contained in an instructions file that is read and interpreted by the DLL.

  16. High efficiency video coding coding tools and specification

    CERN Document Server

    Wien, Mathias

    2015-01-01

    The video coding standard High Efficiency Video Coding (HEVC) targets at improved compression performance for video resolutions of HD and beyond, providing Ultra HD video at similar compressed bit rates as for HD video encoded with the well-established video coding standard H.264 | AVC. Based on known concepts, new coding structures and improved coding tools have been developed and specified in HEVC. The standard is expected to be taken up easily by established industry as well as new endeavors, answering the needs of todays connected and ever-evolving online world. This book presents the High Efficiency Video Coding standard and explains it in a clear and coherent language. It provides a comprehensive and consistently written description, all of a piece. The book targets at both, newbies to video coding as well as experts in the field. While providing sections with introductory text for the beginner, it suits as a well-arranged reference book for the expert. The book provides a comprehensive reference for th...

  17. BWR plant dynamic analysis code BWRDYN user's manual

    International Nuclear Information System (INIS)

    Yokobayashi, Masao; Yoshida, Kazuo; Fujiki, Kazuo

    1989-06-01

    Computer code BWRDYN has been developed for thermal-hydraulic analysis of a BWR plant. It can analyze the various types of transient caused by not only small but also large disturbances such as operating mode changes and/or system malfunctions. The verification of main analytical models of the BWRDYN code has been performed with measured data of actual BWR plant. Furthermore, the installation of BOP (Balance of Plant) model has made it possible to analyze the effect of BOP on reactor system. This report describes on analytical models and instructions for user of the BWRDYN code. (author)

  18. Draft genomes and reference transcriptomes extend the coding potential of the fish pathogen Piscirickettsia salmonis

    Directory of Open Access Journals (Sweden)

    Angela D. Millar

    2018-05-01

    Full Text Available Background: Draft and complete genome sequences from bacteria are key tools to understand genetic determinants involved in pathogenesis in several disease models. Piscirickettsia salmonis is a Gram-negative bacterium responsible for the Salmon Rickettsial Syndrome (SRS, a bacterial disease that threatens the sustainability of the Chilean salmon industry. In previous reports, complete and draft genome sequences have been generated and annotated. However, the lack of transcriptome data underestimates the genetic potential, does not provide information about transcriptional units and contributes to disseminate annotation errors. Results: Here we present the draft genome and transcriptome sequences of four P. salmonis strains. We have identified the transcriptional architecture of previously characterized virulence factors and trait-specific genes associated to cation uptake, metal efflux, antibiotic resistance, secretion systems and other virulence factors. Conclusions: This data has provided a refined genome annotation and also new insights on the transcriptional structures and coding potential of this fish pathogen.How to cite: Millar AD, Tapia P, Gomez FA, et al. Draft genomes and reference transcriptomes extend the coding potential of the fish pathogen Piscirickettsia salmonis. Electron J Biotechnol 2018;33. https://doi.org/10.1016/j.ejbt.2018.04.002. Keywords: Bacterial genomes, Coding potential, Comparative analysis, Draft genome, Piscirickettsia salmonis, Reference transcriptome, Refined annotation, Salmon Rickettsial Syndrome, Salmonids

  19. Focus Group Research on the Implications of Adopting the Unified English Braille Code

    Science.gov (United States)

    Wetzel, Robin; Knowlton, Marie

    2006-01-01

    Five focus groups explored concerns about adopting the Unified English Braille Code. The consensus was that while the proposed changes to the literary braille code would be minor, those to the mathematics braille code would be much more extensive. The participants emphasized that "any code that reduces the number of individuals who can access…

  20. The Astrophysics Source Code Library by the numbers

    Science.gov (United States)

    Allen, Alice; Teuben, Peter; Berriman, G. Bruce; DuPrie, Kimberly; Mink, Jessica; Nemiroff, Robert; Ryan, PW; Schmidt, Judy; Shamir, Lior; Shortridge, Keith; Wallin, John; Warmels, Rein

    2018-01-01

    The Astrophysics Source Code Library (ASCL, ascl.net) was founded in 1999 by Robert Nemiroff and John Wallin. ASCL editors seek both new and old peer-reviewed papers that describe methods or experiments that involve the development or use of source code, and add entries for the found codes to the library. Software authors can submit their codes to the ASCL as well. This ensures a comprehensive listing covering a significant number of the astrophysics source codes used in peer-reviewed studies. The ASCL is indexed by both NASA’s Astrophysics Data System (ADS) and Web of Science, making software used in research more discoverable. This presentation covers the growth in the ASCL’s number of entries, the number of citations to its entries, and in which journals those citations appear. It also discusses what changes have been made to the ASCL recently, and what its plans are for the future.