WorldWideScience

Sample records for genetic association analysis

  1. Multivariate Methods for Meta-Analysis of Genetic Association Studies.

    Science.gov (United States)

    Dimou, Niki L; Pantavou, Katerina G; Braliou, Georgia G; Bagos, Pantelis G

    2018-01-01

    Multivariate meta-analysis of genetic association studies and genome-wide association studies has received a remarkable attention as it improves the precision of the analysis. Here, we review, summarize and present in a unified framework methods for multivariate meta-analysis of genetic association studies and genome-wide association studies. Starting with the statistical methods used for robust analysis and genetic model selection, we present in brief univariate methods for meta-analysis and we then scrutinize multivariate methodologies. Multivariate models of meta-analysis for a single gene-disease association studies, including models for haplotype association studies, multiple linked polymorphisms and multiple outcomes are discussed. The popular Mendelian randomization approach and special cases of meta-analysis addressing issues such as the assumption of the mode of inheritance, deviation from Hardy-Weinberg Equilibrium and gene-environment interactions are also presented. All available methods are enriched with practical applications and methodologies that could be developed in the future are discussed. Links for all available software implementing multivariate meta-analysis methods are also provided.

  2. MetaGenyo: a web tool for meta-analysis of genetic association studies.

    Science.gov (United States)

    Martorell-Marugan, Jordi; Toro-Dominguez, Daniel; Alarcon-Riquelme, Marta E; Carmona-Saez, Pedro

    2017-12-16

    Genetic association studies (GAS) aims to evaluate the association between genetic variants and phenotypes. In the last few years, the number of this type of study has increased exponentially, but the results are not always reproducible due to experimental designs, low sample sizes and other methodological errors. In this field, meta-analysis techniques are becoming very popular tools to combine results across studies to increase statistical power and to resolve discrepancies in genetic association studies. A meta-analysis summarizes research findings, increases statistical power and enables the identification of genuine associations between genotypes and phenotypes. Meta-analysis techniques are increasingly used in GAS, but it is also increasing the amount of published meta-analysis containing different errors. Although there are several software packages that implement meta-analysis, none of them are specifically designed for genetic association studies and in most cases their use requires advanced programming or scripting expertise. We have developed MetaGenyo, a web tool for meta-analysis in GAS. MetaGenyo implements a complete and comprehensive workflow that can be executed in an easy-to-use environment without programming knowledge. MetaGenyo has been developed to guide users through the main steps of a GAS meta-analysis, covering Hardy-Weinberg test, statistical association for different genetic models, analysis of heterogeneity, testing for publication bias, subgroup analysis and robustness testing of the results. MetaGenyo is a useful tool to conduct comprehensive genetic association meta-analysis. The application is freely available at http://bioinfo.genyo.es/metagenyo/ .

  3. SimHap GUI: an intuitive graphical user interface for genetic association analysis.

    Science.gov (United States)

    Carter, Kim W; McCaskie, Pamela A; Palmer, Lyle J

    2008-12-25

    Researchers wishing to conduct genetic association analysis involving single nucleotide polymorphisms (SNPs) or haplotypes are often confronted with the lack of user-friendly graphical analysis tools, requiring sophisticated statistical and informatics expertise to perform relatively straightforward tasks. Tools, such as the SimHap package for the R statistics language, provide the necessary statistical operations to conduct sophisticated genetic analysis, but lacks a graphical user interface that allows anyone but a professional statistician to effectively utilise the tool. We have developed SimHap GUI, a cross-platform integrated graphical analysis tool for conducting epidemiological, single SNP and haplotype-based association analysis. SimHap GUI features a novel workflow interface that guides the user through each logical step of the analysis process, making it accessible to both novice and advanced users. This tool provides a seamless interface to the SimHap R package, while providing enhanced functionality such as sophisticated data checking, automated data conversion, and real-time estimations of haplotype simulation progress. SimHap GUI provides a novel, easy-to-use, cross-platform solution for conducting a range of genetic and non-genetic association analyses. This provides a free alternative to commercial statistics packages that is specifically designed for genetic association analysis.

  4. SecureMA: protecting participant privacy in genetic association meta-analysis.

    Science.gov (United States)

    Xie, Wei; Kantarcioglu, Murat; Bush, William S; Crawford, Dana; Denny, Joshua C; Heatherly, Raymond; Malin, Bradley A

    2014-12-01

    Sharing genomic data is crucial to support scientific investigation such as genome-wide association studies. However, recent investigations suggest the privacy of the individual participants in these studies can be compromised, leading to serious concerns and consequences, such as overly restricted access to data. We introduce a novel cryptographic strategy to securely perform meta-analysis for genetic association studies in large consortia. Our methodology is useful for supporting joint studies among disparate data sites, where privacy or confidentiality is of concern. We validate our method using three multisite association studies. Our research shows that genetic associations can be analyzed efficiently and accurately across substudy sites, without leaking information on individual participants and site-level association summaries. Our software for secure meta-analysis of genetic association studies, SecureMA, is publicly available at http://github.com/XieConnect/SecureMA. Our customized secure computation framework is also publicly available at http://github.com/XieConnect/CircuitService. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Association Between Coronary Artery Disease Genetic Variants and Subclinical Atherosclerosis: An Association Study and Meta-analysis.

    Science.gov (United States)

    Zabalza, Michel; Subirana, Isaac; Lluis-Ganella, Carla; Sayols-Baixeras, Sergi; de Groot, Eric; Arnold, Roman; Cenarro, Ana; Ramos, Rafel; Marrugat, Jaume; Elosua, Roberto

    2015-10-01

    Recent studies have identified several genetic variants associated with coronary artery disease. Some of these genetic variants are not associated with classical cardiovascular risk factors and the mechanism of such associations is unclear. The aim of the study was to determine whether these genetic variants are related to subclinical atherosclerosis measured by carotid intima media thickness, carotid stiffness, and ankle brachial index. A cross-sectional study nested in the follow-up of the REGICOR cohort was undertaken. The study included 2667 individuals. Subclinical atherosclerosis measurements were performed with standardized methods. Nine genetic variants were genotyped to assess associations with subclinical atherosclerosis, individually and in a weighted genetic risk score. A systematic review and meta-analysis of previous studies that analyzed these associations was undertaken. Neither the selected genetic variants nor the genetic risk score were significantly associated with subclinical atherosclerosis. In the meta-analysis, the rs1746048 (CXCL12; n = 10581) risk allele was directly associated with carotid intima-media thickness (β = 0.008; 95% confidence interval, 0.001-0.015), whereas the rs6725887 (WDR12; n = 7801) risk allele was inversely associated with this thickness (β = -0.013; 95% confidence interval, -0.024 to -0.003). The analyzed genetic variants seem to mediate their association with coronary artery disease through different mechanisms. Our results generate the hypothesis that the CXCL12 variant appears to influence coronary artery disease risk through arterial remodeling and thickening, whereas the WDR12 risk variant could be related to higher plaque vulnerability. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  6. Hierarchical linear modeling of longitudinal pedigree data for genetic association analysis

    DEFF Research Database (Denmark)

    Tan, Qihua; B Hjelmborg, Jacob V; Thomassen, Mads

    2014-01-01

    -effect models to explicitly model the genetic relationship. These have proved to be an efficient way of dealing with sample clustering in pedigree data. Although current algorithms implemented in popular statistical packages are useful for adjusting relatedness in the mixed modeling of genetic effects...... associated with blood pressure with estimated inflation factors of 0.99, suggesting that our modeling of random effects efficiently handles the genetic relatedness in pedigrees. Application to simulated data captures important variants specified in the simulation. Our results show that the method is useful......Genetic association analysis on complex phenotypes under a longitudinal design involving pedigrees encounters the problem of correlation within pedigrees, which could affect statistical assessment of the genetic effects. Approaches have been proposed to integrate kinship correlation into the mixed...

  7. Smoking and caffeine consumption: a genetic analysis of their association.

    Science.gov (United States)

    Treur, Jorien L; Taylor, Amy E; Ware, Jennifer J; Nivard, Michel G; Neale, Michael C; McMahon, George; Hottenga, Jouke-Jan; Baselmans, Bart M L; Boomsma, Dorret I; Munafò, Marcus R; Vink, Jacqueline M

    2017-07-01

    Smoking and caffeine consumption show a strong positive correlation, but the mechanism underlying this association is unclear. Explanations include shared genetic/environmental factors or causal effects. This study employed three methods to investigate the association between smoking and caffeine. First, bivariate genetic models were applied to data of 10 368 twins from the Netherlands Twin Register in order to estimate genetic and environmental correlations between smoking and caffeine use. Second, from the summary statistics of meta-analyses of genome-wide association studies on smoking and caffeine, the genetic correlation was calculated by LD-score regression. Third, causal effects were tested using Mendelian randomization analysis in 6605 Netherlands Twin Register participants and 5714 women from the Avon Longitudinal Study of Parents and Children. Through twin modelling, a genetic correlation of r0.47 and an environmental correlation of r0.30 were estimated between current smoking (yes/no) and coffee use (high/low). Between current smoking and total caffeine use, this was r0.44 and r0.00, respectively. LD-score regression also indicated sizeable genetic correlations between smoking and coffee use (r0.44 between smoking heaviness and cups of coffee per day, r0.28 between smoking initiation and coffee use and r0.25 between smoking persistence and coffee use). Consistent with the relatively high genetic correlations and lower environmental correlations, Mendelian randomization provided no evidence for causal effects of smoking on caffeine or vice versa. Genetic factors thus explain most of the association between smoking and caffeine consumption. These findings suggest that quitting smoking may be more difficult for heavy caffeine consumers, given their genetic susceptibility. © 2016 The Authors.Addiction Biology published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.

  8. Genetics of Obesity Traits: A Bivariate Genome-Wide Association Analysis

    DEFF Research Database (Denmark)

    Wu, Yili; Duan, Haiping; Tian, Xiaocao

    2018-01-01

    Previous genome-wide association studies on anthropometric measurements have identified more than 100 related loci, but only a small portion of heritability in obesity was explained. Here we present a bivariate twin study to look for the genetic variants associated with body mass index and waist......-hip ratio, and to explore the obesity-related pathways in Northern Han Chinese. Cholesky decompositionmodel for 242monozygotic and 140 dizygotic twin pairs indicated a moderate genetic correlation (r = 0.53, 95%CI: 0.42–0.64) between body mass index and waist-hip ratio. Bivariate genome-wide association.......05. Expression quantitative trait loci analysis identified rs2242044 as a significant cis-eQTL in both the normal adipose-subcutaneous (P = 1.7 × 10−9) and adipose-visceral (P = 4.4 × 10−15) tissue. These findings may provide an important entry point to unravel genetic pleiotropy in obesity traits....

  9. An efficient Bayesian meta-analysis approach for studying cross-phenotype genetic associations.

    Directory of Open Access Journals (Sweden)

    Arunabha Majumdar

    2018-02-01

    Full Text Available Simultaneous analysis of genetic associations with multiple phenotypes may reveal shared genetic susceptibility across traits (pleiotropy. For a locus exhibiting overall pleiotropy, it is important to identify which specific traits underlie this association. We propose a Bayesian meta-analysis approach (termed CPBayes that uses summary-level data across multiple phenotypes to simultaneously measure the evidence of aggregate-level pleiotropic association and estimate an optimal subset of traits associated with the risk locus. This method uses a unified Bayesian statistical framework based on a spike and slab prior. CPBayes performs a fully Bayesian analysis by employing the Markov Chain Monte Carlo (MCMC technique Gibbs sampling. It takes into account heterogeneity in the size and direction of the genetic effects across traits. It can be applied to both cohort data and separate studies of multiple traits having overlapping or non-overlapping subjects. Simulations show that CPBayes can produce higher accuracy in the selection of associated traits underlying a pleiotropic signal than the subset-based meta-analysis ASSET. We used CPBayes to undertake a genome-wide pleiotropic association study of 22 traits in the large Kaiser GERA cohort and detected six independent pleiotropic loci associated with at least two phenotypes. This includes a locus at chromosomal region 1q24.2 which exhibits an association simultaneously with the risk of five different diseases: Dermatophytosis, Hemorrhoids, Iron Deficiency, Osteoporosis and Peripheral Vascular Disease. We provide an R-package 'CPBayes' implementing the proposed method.

  10. Methodological issues of genetic association studies.

    Science.gov (United States)

    Simundic, Ana-Maria

    2010-12-01

    Genetic association studies explore the association between genetic polymorphisms and a certain trait, disease or predisposition to disease. It has long been acknowledged that many genetic association studies fail to replicate their initial positive findings. This raises concern about the methodological quality of these reports. Case-control genetic association studies often suffer from various methodological flaws in study design and data analysis, and are often reported poorly. Flawed methodology and poor reporting leads to distorted results and incorrect conclusions. Many journals have adopted guidelines for reporting genetic association studies. In this review, some major methodological determinants of genetic association studies will be discussed.

  11. Multivariate Meta-Analysis of Genetic Association Studies: A Simulation Study.

    Directory of Open Access Journals (Sweden)

    Binod Neupane

    Full Text Available In a meta-analysis with multiple end points of interests that are correlated between or within studies, multivariate approach to meta-analysis has a potential to produce more precise estimates of effects by exploiting the correlation structure between end points. However, under random-effects assumption the multivariate estimation is more complex (as it involves estimation of more parameters simultaneously than univariate estimation, and sometimes can produce unrealistic parameter estimates. Usefulness of multivariate approach to meta-analysis of the effects of a genetic variant on two or more correlated traits is not well understood in the area of genetic association studies. In such studies, genetic variants are expected to roughly maintain Hardy-Weinberg equilibrium within studies, and also their effects on complex traits are generally very small to modest and could be heterogeneous across studies for genuine reasons. We carried out extensive simulation to explore the comparative performance of multivariate approach with most commonly used univariate inverse-variance weighted approach under random-effects assumption in various realistic meta-analytic scenarios of genetic association studies of correlated end points. We evaluated the performance with respect to relative mean bias percentage, and root mean square error (RMSE of the estimate and coverage probability of corresponding 95% confidence interval of the effect for each end point. Our simulation results suggest that multivariate approach performs similarly or better than univariate method when correlations between end points within or between studies are at least moderate and between-study variation is similar or larger than average within-study variation for meta-analyses of 10 or more genetic studies. Multivariate approach produces estimates with smaller bias and RMSE especially for the end point that has randomly or informatively missing summary data in some individual studies, when

  12. Two-level mixed modeling of longitudinal pedigree data for genetic association analysis

    DEFF Research Database (Denmark)

    Tan, Q.

    2013-01-01

    of follow-up. Approaches have been proposed to integrate kinship correlation into the mixed effect models to explicitly model the genetic relationship which have been proven as an efficient way for dealing with sample clustering in pedigree data. Although useful for adjusting relatedness in the mixed...... assess the genetic associations with the mean level and the rate of change in a phenotype both with kinship correlation integrated in the mixed effect models. We apply our method to longitudinal pedigree data to estimate the genetic effects on systolic blood pressure measured over time in large pedigrees......Genetic association analysis on complex phenotypes under a longitudinal design involving pedigrees encounters the problem of correlation within pedigrees which could affect statistical assessment of the genetic effects on both the mean level of the phenotype and its rate of change over the time...

  13. A strategy analysis for genetic association studies with known inbreeding

    Directory of Open Access Journals (Sweden)

    del Giacco Stefano

    2011-07-01

    Full Text Available Abstract Background Association studies consist in identifying the genetic variants which are related to a specific disease through the use of statistical multiple hypothesis testing or segregation analysis in pedigrees. This type of studies has been very successful in the case of Mendelian monogenic disorders while it has been less successful in identifying genetic variants related to complex diseases where the insurgence depends on the interactions between different genes and the environment. The current technology allows to genotype more than a million of markers and this number has been rapidly increasing in the last years with the imputation based on templates sets and whole genome sequencing. This type of data introduces a great amount of noise in the statistical analysis and usually requires a great number of samples. Current methods seldom take into account gene-gene and gene-environment interactions which are fundamental especially in complex diseases. In this paper we propose to use a non-parametric additive model to detect the genetic variants related to diseases which accounts for interactions of unknown order. Although this is not new to the current literature, we show that in an isolated population, where the most related subjects share also most of their genetic code, the use of additive models may be improved if the available genealogical tree is taken into account. Specifically, we form a sample of cases and controls with the highest inbreeding by means of the Hungarian method, and estimate the set of genes/environmental variables, associated with the disease, by means of Random Forest. Results We have evidence, from statistical theory, simulations and two applications, that we build a suitable procedure to eliminate stratification between cases and controls and that it also has enough precision in identifying genetic variants responsible for a disease. This procedure has been successfully used for the beta-thalassemia, which is

  14. Genetic association of telomere length with hepatocellular carcinoma risk: A Mendelian randomization analysis.

    Science.gov (United States)

    Cheng, Yue; Yu, Chengxiao; Huang, Mingtao; Du, Fangzhi; Song, Ci; Ma, Zijian; Zhai, Xiangjun; Yang, Yuan; Liu, Jibin; Bei, Jin-Xin; Jia, Weihua; Jin, Guangfu; Li, Shengping; Zhou, Weiping; Liu, Jianjun; Dai, Juncheng; Hu, Zhibin

    2017-10-01

    Observational studies show an association between telomere length and Hepatocellular carcinoma (HCC) risk, but the relationship is controversial. Particularly, it remains unclear whether the association is due to confounding or biases inherent in conventional epidemiological studies. Here, we applied Mendelian randomization approach to evaluate whether telomere length is causally associated with HCC risk. Individual-level data were from HBV-related HCC Genome-wide association studies (1,538 HBV positive HCC patients and 1,465 HBV positive controls). Genetic risk score, as proxy for actual measured telomere length, derived from nine telomere length-associated genetic variants was used to evaluate the effect of telomere length on HCC risk. We observed a significant risk signal between genetically increased telomere length and HBV-related HCC risk (OR=2.09, 95% CI 1.32-3.31, P=0.002). Furthermore, a U-shaped curve was fitted by the restricted cubic spline curve, which indicated that either short or long telomere length would increase HCC risk (P=0.0022 for non-linearity test). Subgroup analysis did not reveal significant heterogeneity between different age, gender, smoking status and drinking status groups. Our results indicated that a genetic background that favors longer or shorter telomere length may increase HBV-related HCC risk-a U-shaped association. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bayesian analysis of genetic association across tree-structured routine healthcare data in the UK Biobank.

    Science.gov (United States)

    Cortes, Adrian; Dendrou, Calliope A; Motyer, Allan; Jostins, Luke; Vukcevic, Damjan; Dilthey, Alexander; Donnelly, Peter; Leslie, Stephen; Fugger, Lars; McVean, Gil

    2017-09-01

    Genetic discovery from the multitude of phenotypes extractable from routine healthcare data can transform understanding of the human phenome and accelerate progress toward precision medicine. However, a critical question when analyzing high-dimensional and heterogeneous data is how best to interrogate increasingly specific subphenotypes while retaining statistical power to detect genetic associations. Here we develop and employ a new Bayesian analysis framework that exploits the hierarchical structure of diagnosis classifications to analyze genetic variants against UK Biobank disease phenotypes derived from self-reporting and hospital episode statistics. Our method displays a more than 20% increase in power to detect genetic effects over other approaches and identifies new associations between classical human leukocyte antigen (HLA) alleles and common immune-mediated diseases (IMDs). By applying the approach to genetic risk scores (GRSs), we show the extent of genetic sharing among IMDs and expose differences in disease perception or diagnosis with potential clinical implications.

  16. Bayesian analysis of genetic association across tree-structured routine healthcare data in the UK Biobank

    DEFF Research Database (Denmark)

    Cortes, Adrian; Dendrou, Calliope A; Motyer, Allan

    2017-01-01

    Genetic discovery from the multitude of phenotypes extractable from routine healthcare data can transform understanding of the human phenome and accelerate progress toward precision medicine. However, a critical question when analyzing high-dimensional and heterogeneous data is how best...... to interrogate increasingly specific subphenotypes while retaining statistical power to detect genetic associations. Here we develop and employ a new Bayesian analysis framework that exploits the hierarchical structure of diagnosis classifications to analyze genetic variants against UK Biobank disease phenotypes...... derived from self-reporting and hospital episode statistics. Our method displays a more than 20% increase in power to detect genetic effects over other approaches and identifies new associations between classical human leukocyte antigen (HLA) alleles and common immune-mediated diseases (IMDs). By applying...

  17. Genome-wide association analysis reveals distinct genetic architectures for single and combined stress responses in Arabidopsis thaliana

    NARCIS (Netherlands)

    Davila Olivas, Nelson H.; Kruijer, Willem; Gort, Gerrit; Wijnen, Cris L.; Loon, van Joop J.A.; Dicke, Marcel

    2017-01-01

    Plants are commonly exposed to abiotic and biotic stresses. We used 350 Arabidopsis thaliana accessions grown under controlled conditions. We employed genome-wide association analysis to investigate the genetic architecture and underlying loci involved in genetic variation in resistance to: two

  18. Gene set analysis for interpreting genetic studies

    DEFF Research Database (Denmark)

    Pers, Tune H

    2016-01-01

    Interpretation of genome-wide association study (GWAS) results is lacking behind the discovery of new genetic associations. Consequently, there is an urgent need for data-driven methods for interpreting genetic association studies. Gene set analysis (GSA) can identify aetiologic pathways...

  19. COMPUTER METHODS OF GENETIC ANALYSIS.

    Directory of Open Access Journals (Sweden)

    A. L. Osipov

    2017-02-01

    Full Text Available The basic statistical methods used in conducting the genetic analysis of human traits. We studied by segregation analysis, linkage analysis and allelic associations. Developed software for the implementation of these methods support.

  20. Association genetics and transcriptome analysis reveal a gibberellin-responsive pathway involved in regulating photosynthesis.

    Science.gov (United States)

    Xie, Jianbo; Tian, Jiaxing; Du, Qingzhang; Chen, Jinhui; Li, Ying; Yang, Xiaohui; Li, Bailian; Zhang, Deqiang

    2016-05-01

    Gibberellins (GAs) regulate a wide range of important processes in plant growth and development, including photosynthesis. However, the mechanism by which GAs regulate photosynthesis remains to be understood. Here, we used multi-gene association to investigate the effect of genes in the GA-responsive pathway, as constructed by RNA sequencing, on photosynthesis, growth, and wood property traits, in a population of 435 Populus tomentosa By analyzing changes in the transcriptome following GA treatment, we identified many key photosynthetic genes, in agreement with the observed increase in measurements of photosynthesis. Regulatory motif enrichment analysis revealed that 37 differentially expressed genes related to photosynthesis shared two essential GA-related cis-regulatory elements, the GA response element and the pyrimidine box. Thus, we constructed a GA-responsive pathway consisting of 47 genes involved in regulating photosynthesis, including GID1, RGA, GID2, MYBGa, and 37 photosynthetic differentially expressed genes. Single nucleotide polymorphism (SNP)-based association analysis showed that 142 SNPs, representing 40 candidate genes in this pathway, were significantly associated with photosynthesis, growth, and wood property traits. Epistasis analysis uncovered interactions between 310 SNP-SNP pairs from 37 genes in this pathway, revealing possible genetic interactions. Moreover, a structural gene-gene matrix based on a time-course of transcript abundances provided a better understanding of the multi-gene pathway affecting photosynthesis. The results imply a functional role for these genes in mediating photosynthesis, growth, and wood properties, demonstrating the potential of combining transcriptome-based regulatory pathway construction and genetic association approaches to detect the complex genetic networks underlying quantitative traits. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights

  1. Gene ontology analysis of pairwise genetic associations in two genome-wide studies of sporadic ALS

    Directory of Open Access Journals (Sweden)

    Kim Nora

    2012-07-01

    Full Text Available Abstract Background It is increasingly clear that common human diseases have a complex genetic architecture characterized by both additive and nonadditive genetic effects. The goal of the present study was to determine whether patterns of both additive and nonadditive genetic associations aggregate in specific functional groups as defined by the Gene Ontology (GO. Results We first estimated all pairwise additive and nonadditive genetic effects using the multifactor dimensionality reduction (MDR method that makes few assumptions about the underlying genetic model. Statistical significance was evaluated using permutation testing in two genome-wide association studies of ALS. The detection data consisted of 276 subjects with ALS and 271 healthy controls while the replication data consisted of 221 subjects with ALS and 211 healthy controls. Both studies included genotypes from approximately 550,000 single-nucleotide polymorphisms (SNPs. Each SNP was mapped to a gene if it was within 500 kb of the start or end. Each SNP was assigned a p-value based on its strongest joint effect with the other SNPs. We then used the Exploratory Visual Analysis (EVA method and software to assign a p-value to each gene based on the overabundance of significant SNPs at the α = 0.05 level in the gene. We also used EVA to assign p-values to each GO group based on the overabundance of significant genes at the α = 0.05 level. A GO category was determined to replicate if that category was significant at the α = 0.05 level in both studies. We found two GO categories that replicated in both studies. The first, ‘Regulation of Cellular Component Organization and Biogenesis’, a GO Biological Process, had p-values of 0.010 and 0.014 in the detection and replication studies, respectively. The second, ‘Actin Cytoskeleton’, a GO Cellular Component, had p-values of 0.040 and 0.046 in the detection and replication studies, respectively. Conclusions Pathway

  2. Association of functional MMP-2 gene variant with intracranial aneurysms: case-control genetic association study and meta-analysis.

    Science.gov (United States)

    Alg, Varinder S; Ke, Xiayi; Grieve, Joan; Bonner, Stephen; Walsh, Daniel C; Bulters, Diederik; Kitchen, Neil; Houlden, Henry; Werring, David J

    2018-01-15

    Abnormalities in Matrix Metalloproteinase (MMP) genes, which are important in extracellular matrix (ECM) maintenance and therefore arterial wall integrity are a plausible underlying mechanism of intracranial aneurysm (IA) formation, growth and subsequent rupture. We investigated whether the rs243865 C > T SNP (single nucleotide polymorphism) within the MMP-2 gene (which influences gene transcription) is associated with IA compared to matched controls. We conducted a case-control genetic association study, adjusted for known IA risk factors (smoking and hypertension), in a UK Caucasian population of 1409 patients with intracranial aneurysms (IA), and 1290 matched controls, to determine the association of the rs243865 C > T functional MMP-2 gene SNP with IA (overall, and classified as ruptured and unruptured). We also undertook a meta-analysis of two previous studies examining this SNP. The rs243865 T allele was associated with IA presence in univariate (OR 1.18 [95% CI 1.04-1.33], p = .01) and in multi-variable analyses adjusted for smoking and hypertension status (OR 1.16 [95% CI 1.01-1.35], p = .042). Subgroup analysis demonstrated an association of the rs243865 SNP with ruptured IA (OR 1.18 [95% CI 1.03-1.34] p = .017), but, not unruptured IA (OR 1.17 [95% CI 0.97-1.42], p = .11). Our study demonstrated an association between the functional MMP-2 rs243865 variant and IAs. Our findings suggest a genetic role for altered extracellular matrix integrity in the pathogenesis of IA development and rupture.

  3. Smoking and caffeine consumption: a genetic analysis of their association

    NARCIS (Netherlands)

    Treur, J.L.; Taylor, A.E.; Ware, J.J.; Nivard, M.G.; Neale, M.C.; McMahon, G.; Hottenga, J.J.; Baselmans, B.M.L.; Boomsma, D.I.; Munafò, M.; Vink, J.M.

    2017-01-01

    Smoking and caffeine consumption show a strong positive correlation, but the mechanism underlying this association is unclear. Explanations include shared genetic/environmental factors or causal effects. This study employed three methods to investigate the association between smoking and caffeine.

  4. Genetic Variations and their Association with Diseases among ...

    African Journals Online (AJOL)

    genetics plays in disease, death and infections. The mode of study involved a combination of a retrospective study and the analysis of genetic variation among Kenyan ethnic populations using ABO blood group system. The results showed that there was association between allele frequencies of ABO system and disease ...

  5. Capturing the spectrum of interaction effects in genetic association studies by simulated evaporative cooling network analysis.

    Directory of Open Access Journals (Sweden)

    Brett A McKinney

    2009-03-01

    Full Text Available Evidence from human genetic studies of several disorders suggests that interactions between alleles at multiple genes play an important role in influencing phenotypic expression. Analytical methods for identifying Mendelian disease genes are not appropriate when applied to common multigenic diseases, because such methods investigate association with the phenotype only one genetic locus at a time. New strategies are needed that can capture the spectrum of genetic effects, from Mendelian to multifactorial epistasis. Random Forests (RF and Relief-F are two powerful machine-learning methods that have been studied as filters for genetic case-control data due to their ability to account for the context of alleles at multiple genes when scoring the relevance of individual genetic variants to the phenotype. However, when variants interact strongly, the independence assumption of RF in the tree node-splitting criterion leads to diminished importance scores for relevant variants. Relief-F, on the other hand, was designed to detect strong interactions but is sensitive to large backgrounds of variants that are irrelevant to classification of the phenotype, which is an acute problem in genome-wide association studies. To overcome the weaknesses of these data mining approaches, we develop Evaporative Cooling (EC feature selection, a flexible machine learning method that can integrate multiple importance scores while removing irrelevant genetic variants. To characterize detailed interactions, we construct a genetic-association interaction network (GAIN, whose edges quantify the synergy between variants with respect to the phenotype. We use simulation analysis to show that EC is able to identify a wide range of interaction effects in genetic association data. We apply the EC filter to a smallpox vaccine cohort study of single nucleotide polymorphisms (SNPs and infer a GAIN for a collection of SNPs associated with adverse events. Our results suggest an important

  6. Novel genetic loci associated with hippocampal volume.

    Science.gov (United States)

    Hibar, Derrek P; Adams, Hieab H H; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L; Hofer, Edith; Renteria, Miguel E; Bis, Joshua C; Arias-Vasquez, Alejandro; Ikram, M Kamran; Desrivières, Sylvane; Vernooij, Meike W; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beecham, Ashley H; Beiser, Alexa; Bernard, Manon; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chen, Qiang; Ching, Christopher R K; Chouraki, Vincent; Cuellar-Partida, Gabriel; Crivello, Fabrice; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Gutman, Boris A; Hass, Johanna; Haukvik, Unn K; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Jørgensen, Kjetil N; Karbalai, Nazanin; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liewald, David C M; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre F; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; McKay, David R; Milaneschi, Yuri; Muñoz Maniega, Susana; Nho, Kwangsik; Nugent, Allison C; Nyquist, Paul; Loohuis, Loes M Olde; Oosterlaan, Jaap; Papmeyer, Martina; Pirpamer, Lukas; Pütz, Benno; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Ropele, Stefan; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Saremi, Arvin; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Trompet, Stella; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Lee, Sven J; Van der Meer, Dennis; Van Donkelaar, Marjolein M J; Van Eijk, Kristel R; Van Erp, Theo G M; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Wittfeld, Katharina; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Craen, Anton J M; De Geus, Eco J C; De Jager, Philip L; De Zubicaray, Greig I; Deary, Ian J; Debette, Stéphanie; DeCarli, Charles; Delanty, Norman; Depondt, Chantal; DeStefano, Anita; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Enzinger, Christian; Erk, Susanne; Espeseth, Thomas; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Fornage, Myriam; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald H H; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Håberg, Asta K; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Huentelman, Matthew; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Francis J; McMahon, Katie L; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda W J H; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schmidt, Helena; Schofield, Peter R; Sigursson, Sigurdur; Simmons, Andrew; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Tsolaki, Magda; Tzourio, Christophe; Uitterlinden, Andre G; Hernández, Maria C Valdés; Van der Brug, Marcel; van der Lugt, Aad; van der Wee, Nic J A; Van Haren, Neeltje E M; van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Vellas, Bruno; Veltman, Dick J; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, Ronald H; Zonderman, Alan B; Martin, Nicholas G; Van Duijn, Cornelia M; Wright, Margaret J; Longstreth, W T; Schumann, Gunter; Grabe, Hans J; Franke, Barbara; Launer, Lenore J; Medland, Sarah E; Seshadri, Sudha; Thompson, Paul M; Ikram, M Arfan

    2017-01-18

    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r g =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.

  7. Genome-Wide DNA Copy Number Analysis of Acute Lymphoblastic Leukemia Identifies New Genetic Markers Associated with Clinical Outcome.

    Directory of Open Access Journals (Sweden)

    Maribel Forero-Castro

    Full Text Available Identifying additional genetic alterations associated with poor prognosis in acute lymphoblastic leukemia (ALL is still a challenge.To characterize the presence of additional DNA copy number alterations (CNAs in children and adults with ALL by whole-genome oligonucleotide array (aCGH analysis, and to identify their associations with clinical features and outcome. Array-CGH was carried out in 265 newly diagnosed ALLs (142 children and 123 adults. The NimbleGen CGH 12x135K array (Roche was used to analyze genetic gains and losses. CNAs were analyzed with GISTIC and aCGHweb software. Clinical and biological variables were analyzed. Three of the patients showed chromothripsis (cth6, cth14q and cth15q. CNAs were associated with age, phenotype, genetic subtype and overall survival (OS. In the whole cohort of children, the losses on 14q32.33 (p = 0.019 and 15q13.2 (p = 0.04 were related to shorter OS. In the group of children without good- or poor-risk cytogenetics, the gain on 1p36.11 was a prognostic marker independently associated with shorter OS. In adults, the gains on 19q13.2 (p = 0.001 and Xp21.1 (p = 0.029, and the loss of 17p (p = 0.014 were independent markers of poor prognosis with respect to OS. In summary, CNAs are frequent in ALL and are associated with clinical parameters and survival. Genome-wide DNA copy number analysis allows the identification of genetic markers that predict clinical outcome, suggesting that detection of these genetic lesions will be useful in the management of patients newly diagnosed with ALL.

  8. Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization.

    Directory of Open Access Journals (Sweden)

    Xiaoquan Wen

    2017-03-01

    Full Text Available We propose a novel statistical framework for integrating the result from molecular quantitative trait loci (QTL mapping into genome-wide genetic association analysis of complex traits, with the primary objectives of quantitatively assessing the enrichment of the molecular QTLs in complex trait-associated genetic variants and the colocalizations of the two types of association signals. We introduce a natural Bayesian hierarchical model that treats the latent association status of molecular QTLs as SNP-level annotations for candidate SNPs of complex traits. We detail a computational procedure to seamlessly perform enrichment, fine-mapping and colocalization analyses, which is a distinct feature compared to the existing colocalization analysis procedures in the literature. The proposed approach is computationally efficient and requires only summary-level statistics. We evaluate and demonstrate the proposed computational approach through extensive simulation studies and analyses of blood lipid data and the whole blood eQTL data from the GTEx project. In addition, a useful utility from our proposed method enables the computation of expected colocalization signals using simple characteristics of the association data. Using this utility, we further illustrate the importance of enrichment analysis on the ability to discover colocalized signals and the potential limitations of currently available molecular QTL data. The software pipeline that implements the proposed computation procedures, enloc, is freely available at https://github.com/xqwen/integrative.

  9. Preimplantation genetic diagnosis associated to Duchenne muscular dystrophy.

    Science.gov (United States)

    Bianco, Bianca; Christofolini, Denise Maria; Conceição, Gabriel Seixas; Barbosa, Caio Parente

    2017-01-01

    Duchenne muscular dystrophy is the most common muscle disease found in male children. Currently, there is no effective therapy available for Duchenne muscular dystrophy patients. Therefore, it is essential to make a prenatal diagnosis and provide genetic counseling to reduce the birth of such boys. We report a case of preimplantation genetic diagnosis associated with Duchenne muscular dystrophy. The couple E.P.R., 38-year-old, symptomatic patient heterozygous for a 2 to 47 exon deletion mutation in DMD gene and G.T.S., 39-year-old, sought genetic counseling about preimplantation genetic diagnosis process. They have had a 6-year-old son who died due to Duchenne muscular dystrophy complications. The couple underwent four cycles of intracytoplasmic sperm injection (ICSI) and eight embryos biopsies were analyzed by polymerase chain reaction (PCR) for specific mutation analysis, followed by microarray-based comparative genomic hybridisation (array CGH) for aneuploidy analysis. Preimplantation genetic diagnosis revealed that two embryos had inherited the maternal DMD gene mutation, one embryo had a chromosomal alteration and five embryos were normal. One blastocyst was transferred and resulted in successful pregnancy. The other embryos remain vitrified. We concluded that embryo analysis using associated techniques of PCR and array CGH seems to be safe for embryo selection in cases of X-linked disorders, such as Duchenne muscular dystrophy.

  10. Genetic Structure and Relationship Analysis of an Association Population in Jute (Corchorus spp. Evaluated by SSR Markers.

    Directory of Open Access Journals (Sweden)

    Liwu Zhang

    Full Text Available Population structure and relationship analysis is of great importance in the germplasm utilization and association mapping. Jute, comprised of white jute (C. capsularis L and dark jute (C. olitorius L, is second to cotton in its commercial significance in the world. Here, we assessed the genetic structure and relationship in a panel of 159 jute accessions from 11 countries and regions using 63 SSRs. The structure analysis divided the 159 jute accessions from white and dark jute into Co and Cc group, further into Co1, Co2, Cc1 and Cc2 subgroups. Out of Cc1 subgroup, 81 accessions were from China and the remaining 10 accessions were from India (2, Japan (5, Thailand, Vietnam (2 and Pakistan (1. Out of Cc2 subgroup, 35 accessions were from China, and the remaining 3 accessions were from India, Pakistan and Thailand respectively. It can be inferred that the genetic background of these jute accessions was not always correlative with their geographical regions. Similar results were found in Co1 and Co2 subgroups. Analysis of molecular variance revealed 81% molecular variation between groups but it was low (19% within subgroups, which further confirmed the genetic differentiation between the two groups. The genetic relationship analysis showed that the most diverse genotypes were Maliyeshengchangguo and Changguozhongyueyin in dark jute, BZ-2-2, Aidianyehuangma, Yangjuchiyuanguo, Zijinhuangma and Jute 179 in white jute, which could be used as the potential parents in breeding programs for jute improvement. These results would be very useful for association studies and breeding in jute.

  11. On the validity of within-nuclear-family genetic association analysis in samples of extended families.

    Science.gov (United States)

    Bureau, Alexandre; Duchesne, Thierry

    2015-12-01

    Splitting extended families into their component nuclear families to apply a genetic association method designed for nuclear families is a widespread practice in familial genetic studies. Dependence among genotypes and phenotypes of nuclear families from the same extended family arises because of genetic linkage of the tested marker with a risk variant or because of familial specificity of genetic effects due to gene-environment interaction. This raises concerns about the validity of inference conducted under the assumption of independence of the nuclear families. We indeed prove theoretically that, in a conditional logistic regression analysis applicable to disease cases and their genotyped parents, the naive model-based estimator of the variance of the coefficient estimates underestimates the true variance. However, simulations with realistic effect sizes of risk variants and variation of this effect from family to family reveal that the underestimation is negligible. The simulations also show the greater efficiency of the model-based variance estimator compared to a robust empirical estimator. Our recommendation is therefore, to use the model-based estimator of variance for inference on effects of genetic variants.

  12. Genetic association analysis of vitamin D receptor gene polymorphisms and obesity-related phenotypes.

    Science.gov (United States)

    Correa-Rodríguez, M; Carrillo-Ávila, J A; Schmidt-RioValle, J; González-Jiménez, E; Vargas, S; Martín, J; Rueda-Medina, B

    2018-01-15

    Vitamin D has been established as a key factor in the development of obesity through the vitamin D receptor (VDR). The aim of this study was to investigate the contribution of the VDR gene to obesity-related phenotypes in a population of Caucasian young adults. The study population consisted of 701 healthy Spanish young adults (mean age 20.41±2.48). Three single-nucleotide polymorphisms (SNPs) of VDR (TaqI, BsmI and FokI) were selected as genetic markers. Body composition measurements including weight, body mass index (BMI), fat mass (FM), percentage of fat mass (PFM), fat-free mass (FFM) and visceral fat level (VFL) were analysed. Differences in obesity traits across the genotypes were determined using analysis of covariance (ANCOVA). The FokI polymorphism showed a significant association with PFM across the whole population after adjusting for age and sex (p=0.022). Age-adjusted analysis revealed an association between body weight and the TaqI and BsmI SNPs in males (p=0.033 and p=0.028, respectively). However, these positive findings did not remain significant after applying the Bonferroni correction for multiple testing. Our findings suggest that VDR genetic variants are unlikely to play a major role in obesity-related phenotypes in a population of Caucasian young adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Directory of Open Access Journals (Sweden)

    Sharat Kumar Pradhan

    Full Text Available Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  14. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  15. Rapid Genetic Analysis in Congenital Hyperinsulinism

    DEFF Research Database (Denmark)

    Christesen, Henrik Thybo; Brusgaard, Klaus; Alm, Jan

    2007-01-01

    BACKGROUND: In severe, medically unresponsive congenital hyperinsulinism (CHI), the histological differentiation of focal versus diffuse disease is vital, since the surgical management is completely different. Genetic analysis may help in the differential diagnosis, as focal CHI is associated...... with a paternal germline ABCC8 or KCNJ11 mutation and a focal loss of maternal chromosome 11p15, whereas a maternal mutation, or homozygous/compound heterozygous ABCC8 and KCNJ11 mutations predict diffuse-type disease. However, genotyping usually takes too long to be helpful in the absence of a founder mutation....... METHODS: In 4 patients, a rapid genetic analysis of the ABBC8 and KCNJ11 genes was performed within 2 weeks on request prior to the decision of pancreatic surgery. RESULTS: Two patients had no mutations, rendering the genetic analysis non-informative. Peroperative multiple biopsies showed diffuse disease...

  16. Genetic Associations of Angiotensin-Converting Enzyme with Primary Intracerebral Hemorrhage: A Meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yuhao Sun

    Full Text Available A number of studies have reported an association of angiotensin-converting enzyme (ACE gene polymorphism with primary intracerebral hemorrhage (PICH, however the reports have demonstrated inconclusive results. To clarify this conflict, we updated the previously performed meta-analysis by Peck et al., which revealed negative results, by investigating the ACE polymorphism and its correlation to PICH.PubMed and Embase databases (through Dec 2012 were searched for English articles on the relationship of the I/D polymorphism in ACE with PICH in humans. Summary odds ratios (ORs were estimated and potential sources of heterogeneity and bias were explored.A total of 805 PICH cases and 1641 control cases obtained from 8 case-control studies were included. The results suggest that in dominant genetic models, the ACE I/D polymorphic variant was associated with a 58% increase in susceptibility risk of PICH (OR = 1.58; 95% CI = 1.07-2.35 for DD vs. DI+II. However, in the subgroup analysis based on race, a significant increased risk was found in Asian DD homozygote carriers (OR = 1.76 and 95% CI = 1.16-2.66 for DD vs. DI+II, but not in Caucasian DD homozygote carriers (OR = 1.18, 95% CI = 0.36-3.88, P = 0.784 for DD vs. DI+II. The heterogeneity between studies was remarkable, and its major sources of heterogeneity were due to the year in which the study was published. No potential publication bias was observed in dominant genetic models.These data demonstrated evidence of a positive association between ACE I/D polymorphism with PICH, and suggested that the ACE gene is a PICH susceptible gene in Asian populations.

  17. A roadmap for the genetic analysis of renal aging.

    Science.gov (United States)

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-10-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. © 2015 The Authors. Aging Cell published by the Anatomical Society and John

  18. A roadmap for the genetic analysis of renal aging

    Science.gov (United States)

    Noordmans, Gerda A; Hillebrands, Jan-Luuk; van Goor, Harry; Korstanje, Ron

    2015-01-01

    Several studies show evidence for the genetic basis of renal disease, which renders some individuals more prone than others to accelerated renal aging. Studying the genetics of renal aging can help us to identify genes involved in this process and to unravel the underlying pathways. First, this opinion article will give an overview of the phenotypes that can be observed in age-related kidney disease. Accurate phenotyping is essential in performing genetic analysis. For kidney aging, this could include both functional and structural changes. Subsequently, this article reviews the studies that report on candidate genes associated with renal aging in humans and mice. Several loci or candidate genes have been found associated with kidney disease, but identification of the specific genetic variants involved has proven to be difficult. CUBN, UMOD, and SHROOM3 were identified by human GWAS as being associated with albuminuria, kidney function, and chronic kidney disease (CKD). These are promising examples of genes that could be involved in renal aging, and were further mechanistically evaluated in animal models. Eventually, we will provide approaches for performing genetic analysis. We should leverage the power of mouse models, as testing in humans is limited. Mouse and other animal models can be used to explain the underlying biological mechanisms of genes and loci identified by human GWAS. Furthermore, mouse models can be used to identify genetic variants associated with age-associated histological changes, of which Far2, Wisp2, and Esrrg are examples. A new outbred mouse population with high genetic diversity will facilitate the identification of genes associated with renal aging by enabling high-resolution genetic mapping while also allowing the control of environmental factors, and by enabling access to renal tissues at specific time points for histology, proteomics, and gene expression. PMID:26219736

  19. Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies.

    Science.gov (United States)

    Broce, Iris; Karch, Celeste M; Wen, Natalie; Fan, Chun C; Wang, Yunpeng; Tan, Chin Hong; Kouri, Naomi; Ross, Owen A; Höglinger, Günter U; Muller, Ulrich; Hardy, John; Momeni, Parastoo; Hess, Christopher P; Dillon, William P; Miller, Zachary A; Bonham, Luke W; Rabinovici, Gil D; Rosen, Howard J; Schellenberg, Gerard D; Franke, Andre; Karlsen, Tom H; Veldink, Jan H; Ferrari, Raffaele; Yokoyama, Jennifer S; Miller, Bruce L; Andreassen, Ole A; Dale, Anders M; Desikan, Rahul S; Sugrue, Leo P

    2018-01-01

    Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD). Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed. Using large genome-wide association studies (GWASs) (total n = 192,886 cases and controls) and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with FTD-related disorders-namely, FTD, corticobasal degeneration (CBD), progressive supranuclear palsy (PSP), and amyotrophic lateral sclerosis (ALS)-and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC), rheumatoid arthritis (RA), type 1 diabetes (T1D), celiac disease (CeD), and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold). For FTD, at a conjunction false discovery rate enriched in microglia/macrophages compared to other central nervous system cell types. The main study limitation is that the results represent only clinically diagnosed individuals. Also, given the complex interconnectedness of the HLA region, we were not able to define the specific gene or genes on Chr 6 responsible for our pleiotropic signal. We

  20. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes

    Science.gov (United States)

    Morris, Andrew P; Voight, Benjamin F; Teslovich, Tanya M; Ferreira, Teresa; Segrè, Ayellet V; Steinthorsdottir, Valgerdur; Strawbridge, Rona J; Khan, Hassan; Grallert, Harald; Mahajan, Anubha; Prokopenko, Inga; Kang, Hyun Min; Dina, Christian; Esko, Tonu; Fraser, Ross M; Kanoni, Stavroula; Kumar, Ashish; Lagou, Vasiliki; Langenberg, Claudia; Luan, Jian'an; Lindgren, Cecilia M; Müller-Nurasyid, Martina; Pechlivanis, Sonali; Rayner, N William; Scott, Laura J; Wiltshire, Steven; Yengo, Loic; Kinnunen, Leena; Rossin, Elizabeth J; Raychaudhuri, Soumya; Johnson, Andrew D; Dimas, Antigone S; Loos, Ruth J F; Vedantam, Sailaja; Chen, Han; Florez, Jose C; Fox, Caroline; Liu, Ching-Ti; Rybin, Denis; Couper, David J; Kao, Wen Hong L; Li, Man; Cornelis, Marilyn C; Kraft, Peter; Sun, Qi; van Dam, Rob M; Stringham, Heather M; Chines, Peter S; Fischer, Krista; Fontanillas, Pierre; Holmen, Oddgeir L; Hunt, Sarah E; Jackson, Anne U; Kong, Augustine; Lawrence, Robert; Meyer, Julia; Perry, John RB; Platou, Carl GP; Potter, Simon; Rehnberg, Emil; Robertson, Neil; Sivapalaratnam, Suthesh; Stančáková, Alena; Stirrups, Kathleen; Thorleifsson, Gudmar; Tikkanen, Emmi; Wood, Andrew R; Almgren, Peter; Atalay, Mustafa; Benediktsson, Rafn; Bonnycastle, Lori L; Burtt, Noël; Carey, Jason; Charpentier, Guillaume; Crenshaw, Andrew T; Doney, Alex S F; Dorkhan, Mozhgan; Edkins, Sarah; Emilsson, Valur; Eury, Elodie; Forsen, Tom; Gertow, Karl; Gigante, Bruna; Grant, George B; Groves, Christopher J; Guiducci, Candace; Herder, Christian; Hreidarsson, Astradur B; Hui, Jennie; James, Alan; Jonsson, Anna; Rathmann, Wolfgang; Klopp, Norman; Kravic, Jasmina; Krjutškov, Kaarel; Langford, Cordelia; Leander, Karin; Lindholm, Eero; Lobbens, Stéphane; Männistö, Satu; Mirza, Ghazala; Mühleisen, Thomas W; Musk, Bill; Parkin, Melissa; Rallidis, Loukianos; Saramies, Jouko; Sennblad, Bengt; Shah, Sonia; Sigurðsson, Gunnar; Silveira, Angela; Steinbach, Gerald; Thorand, Barbara; Trakalo, Joseph; Veglia, Fabrizio; Wennauer, Roman; Winckler, Wendy; Zabaneh, Delilah; Campbell, Harry; van Duijn, Cornelia; Uitterlinden89-, Andre G; Hofman, Albert; Sijbrands, Eric; Abecasis, Goncalo R; Owen, Katharine R; Zeggini, Eleftheria; Trip, Mieke D; Forouhi, Nita G; Syvänen, Ann-Christine; Eriksson, Johan G; Peltonen, Leena; Nöthen, Markus M; Balkau, Beverley; Palmer, Colin N A; Lyssenko, Valeriya; Tuomi, Tiinamaija; Isomaa, Bo; Hunter, David J; Qi, Lu; Shuldiner, Alan R; Roden, Michael; Barroso, Ines; Wilsgaard, Tom; Beilby, John; Hovingh, Kees; Price, Jackie F; Wilson, James F; Rauramaa, Rainer; Lakka, Timo A; Lind, Lars; Dedoussis, George; Njølstad, Inger; Pedersen, Nancy L; Khaw, Kay-Tee; Wareham, Nicholas J; Keinanen-Kiukaanniemi, Sirkka M; Saaristo, Timo E; Korpi-Hyövälti, Eeva; Saltevo, Juha; Laakso, Markku; Kuusisto, Johanna; Metspalu, Andres; Collins, Francis S; Mohlke, Karen L; Bergman, Richard N; Tuomilehto, Jaakko; Boehm, Bernhard O; Gieger, Christian; Hveem, Kristian; Cauchi, Stephane; Froguel, Philippe; Baldassarre, Damiano; Tremoli, Elena; Humphries, Steve E; Saleheen, Danish; Danesh, John; Ingelsson, Erik; Ripatti, Samuli; Salomaa, Veikko; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne; Peters, Annette; Illig, Thomas; de Faire, Ulf; Hamsten, Anders; Morris, Andrew D; Donnelly, Peter J; Frayling, Timothy M; Hattersley, Andrew T; Boerwinkle, Eric; Melander, Olle; Kathiresan, Sekar; Nilsson, Peter M; Deloukas, Panos; Thorsteinsdottir, Unnur; Groop, Leif C; Stefansson, Kari; Hu, Frank; Pankow, James S; Dupuis, Josée; Meigs, James B; Altshuler, David; Boehnke, Michael; McCarthy, Mark I

    2012-01-01

    To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip involving 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D susceptibility loci, including two demonstrating sex-differentiated association. Genome-wide analyses of these data are consistent with a long tail of further common variant loci explaining much of the variation in susceptibility to T2D. Exploration of the enlarged set of susceptibility loci implicates several processes, including CREBBP-related transcription, adipocytokine signalling and cell cycle regulation, in diabetes pathogenesis. PMID:22885922

  1. An integrated system for genetic analysis

    Directory of Open Access Journals (Sweden)

    Duan Xiao

    2006-04-01

    Full Text Available Abstract Background Large-scale genetic mapping projects require data management systems that can handle complex phenotypes and detect and correct high-throughput genotyping errors, yet are easy to use. Description We have developed an Integrated Genotyping System (IGS to meet this need. IGS securely stores, edits and analyses genotype and phenotype data. It stores information about DNA samples, plates, primers, markers and genotypes generated by a genotyping laboratory. Data are structured so that statistical genetic analysis of both case-control and pedigree data is straightforward. Conclusion IGS can model complex phenotypes and contain genotypes from whole genome association studies. The database makes it possible to integrate genetic analysis with data curation. The IGS web site http://bioinformatics.well.ox.ac.uk/project-igs.shtml contains further information.

  2. Systems Genetics Analysis to Identify the Genetic Modulation of a Glaucoma-Associated Gene.

    Science.gov (United States)

    Chintalapudi, Sumana R; Jablonski, Monica M

    2017-01-01

    Loss of retinal ganglion cells (RGCs) is one of the hallmarks of retinal neurodegenerative diseases, glaucoma being one of the most common. Recently, γ-synuclein (SNCG) was shown to be highly expressed in the somas and axons of RGCs. In various mouse models of glaucoma, downregulation of Sncg gene expression correlates with RGC loss. To investigate the regulation of Sncg in RGCs, we used a systems genetics approach to identify a gene that modulates the expression of Sncg, followed by confirmatory studies in both healthy and diseased retinas. We found that chromosome 1 harbors an eQTL that modulates the expression of Sncg in the mouse retina and identified Pfdn2 as the candidate upstream modulator of Sncg expression. Downregulation of Pfdn2 in enriched RGCs causes a concomitant reduction in Sncg. In this chapter, we describe our strategy and methods for identifying and confirming a genetic modulation of a glaucoma-associated gene. A similar method can be applied to other genes expressed in other tissues.

  3. Temperament and character associated with depressive symptoms in women: analysis of two genetically informative samples.

    Science.gov (United States)

    Yuh, Jongil; Neiderhiser, Jenae M; Lichtenstein, Paul; Hansson, Kjell; Cederblad, Marianne; Elthammer, Olle; Reiss, David

    2009-09-01

    Although previous research has explored associations between personality and depressive symptoms, a limited number of studies have assessed the extent to which genetic and environmental influences explain the association. This study investigated how temperament and character were associated with depressive symptoms in 131 pairs of twin and sibling women in early adulthood, as well as 326 pairs of twin women in middle adulthood. Results indicated that genetic influences accounted for a moderate to substantial percentage of the association between these personality features and depressive symptoms, emphasizing the role of genetic influences. Nonshared environmental influences made important contributions to the association between character and depressive symptoms, particularly in the sample of middle-aged twin women. These findings suggest that unique social experiences and relationships with a partner in adulthood may play an important role in these associations between character and depressive symptoms.

  4. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores

    Directory of Open Access Journals (Sweden)

    Wang Kai

    2011-05-01

    Full Text Available Abstract Background Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs have multiple cores, whereas Graphics Processing Units (GPUs also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Findings Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1 the interaction of SNPs within it in parallel, and 2 the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. Conclusions GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

  5. Bias due to two-stage residual-outcome regression analysis in genetic association studies.

    Science.gov (United States)

    Demissie, Serkalem; Cupples, L Adrienne

    2011-11-01

    Association studies of risk factors and complex diseases require careful assessment of potential confounding factors. Two-stage regression analysis, sometimes referred to as residual- or adjusted-outcome analysis, has been increasingly used in association studies of single nucleotide polymorphisms (SNPs) and quantitative traits. In this analysis, first, a residual-outcome is calculated from a regression of the outcome variable on covariates and then the relationship between the adjusted-outcome and the SNP is evaluated by a simple linear regression of the adjusted-outcome on the SNP. In this article, we examine the performance of this two-stage analysis as compared with multiple linear regression (MLR) analysis. Our findings show that when a SNP and a covariate are correlated, the two-stage approach results in biased genotypic effect and loss of power. Bias is always toward the null and increases with the squared-correlation between the SNP and the covariate (). For example, for , 0.1, and 0.5, two-stage analysis results in, respectively, 0, 10, and 50% attenuation in the SNP effect. As expected, MLR was always unbiased. Since individual SNPs often show little or no correlation with covariates, a two-stage analysis is expected to perform as well as MLR in many genetic studies; however, it produces considerably different results from MLR and may lead to incorrect conclusions when independent variables are highly correlated. While a useful alternative to MLR under , the two -stage approach has serious limitations. Its use as a simple substitute for MLR should be avoided. © 2011 Wiley Periodicals, Inc.

  6. Disease-Concordant Twins Empower Genetic Association Studies

    DEFF Research Database (Denmark)

    Tan, Qihua; Li, Weilong; Vandin, Fabio

    2017-01-01

    and ordinary healthy samples as controls. We examined the power gain of the twin-based design for various scenarios (i.e., cases from monozygotic and dizygotic twin pairs concordant for a disease) and compared the power with the ordinary case-control design with cases collected from the unrelated patient...... concordant for a disease, should confer increased power in genetic association analysis because of their genetic relatedness. We conducted a computer simulation study to explore the power advantage of the disease-concordant twin design, which uses singletons from disease-concordant twin pairs as cases...... population. Simulation was done by assigning various allele frequencies and allelic relative risks for different mode of genetic inheritance. In general, for achieving a power estimate of 80%, the sample sizes needed for dizygotic and monozygotic twin cases were one half and one fourth of the sample size...

  7. Systems genetics of obesity in an F2 pig model by genome-wide association, genetic network and pathway analyses

    DEFF Research Database (Denmark)

    Kogelman, Lisette; Pant, Sameer Dinkar; Fredholm, Merete

    2014-01-01

    .g. metabolic processes. WISH networks based on genotypic correlations allowed further identification of various gene ontology terms and pathways related to obesity and related traits, which were not identified by the GWA study. In conclusion, this is the first study to develop a (genetic) obesity index...... investigations focusing on single genetic variants have achieved limited success, and the importance of including genetic interactions is becoming evident. Here, the aim was to perform an integrative genomic analysis in an F2 pig resource population that was constructed with an aim to maximize genetic variation...... of obesity-related phenotypes and genotyped using the 60K SNP chip. Firstly, Genome Wide Association (GWA) analysis was performed on the Obesity Index to locate candidate genomic regions that were further validated using combined Linkage Disequilibrium Linkage Analysis and investigated by evaluation...

  8. Immune-related genetic enrichment in frontotemporal dementia: An analysis of genome-wide association studies.

    Directory of Open Access Journals (Sweden)

    Iris Broce

    2018-01-01

    Full Text Available Converging evidence suggests that immune-mediated dysfunction plays an important role in the pathogenesis of frontotemporal dementia (FTD. Although genetic studies have shown that immune-associated loci are associated with increased FTD risk, a systematic investigation of genetic overlap between immune-mediated diseases and the spectrum of FTD-related disorders has not been performed.Using large genome-wide association studies (GWASs (total n = 192,886 cases and controls and recently developed tools to quantify genetic overlap/pleiotropy, we systematically identified single nucleotide polymorphisms (SNPs jointly associated with FTD-related disorders-namely, FTD, corticobasal degeneration (CBD, progressive supranuclear palsy (PSP, and amyotrophic lateral sclerosis (ALS-and 1 or more immune-mediated diseases including Crohn disease, ulcerative colitis (UC, rheumatoid arthritis (RA, type 1 diabetes (T1D, celiac disease (CeD, and psoriasis. We found up to 270-fold genetic enrichment between FTD and RA, up to 160-fold genetic enrichment between FTD and UC, up to 180-fold genetic enrichment between FTD and T1D, and up to 175-fold genetic enrichment between FTD and CeD. In contrast, for CBD and PSP, only 1 of the 6 immune-mediated diseases produced genetic enrichment comparable to that seen for FTD, with up to 150-fold genetic enrichment between CBD and CeD and up to 180-fold enrichment between PSP and RA. Further, we found minimal enrichment between ALS and the immune-mediated diseases tested, with the highest levels of enrichment between ALS and RA (up to 20-fold. For FTD, at a conjunction false discovery rate < 0.05 and after excluding SNPs in linkage disequilibrium, we found that 8 of the 15 identified loci mapped to the human leukocyte antigen (HLA region on Chromosome (Chr 6. We also found novel candidate FTD susceptibility loci within LRRK2 (leucine rich repeat kinase 2, TBKBP1 (TBK1 binding protein 1, and PGBD5 (piggyBac transposable element

  9. Integrated genetic analysis microsystems

    International Nuclear Information System (INIS)

    Lagally, Eric T; Mathies, Richard A

    2004-01-01

    With the completion of the Human Genome Project and the ongoing DNA sequencing of the genomes of other animals, bacteria, plants and others, a wealth of new information about the genetic composition of organisms has become available. However, as the demand for sequence information grows, so does the workload required both to generate this sequence and to use it for targeted genetic analysis. Microfabricated genetic analysis systems are well poised to assist in the collection and use of these data through increased analysis speed, lower analysis cost and higher parallelism leading to increased assay throughput. In addition, such integrated microsystems may point the way to targeted genetic experiments on single cells and in other areas that are otherwise very difficult. Concomitant with these advantages, such systems, when fully integrated, should be capable of forming portable systems for high-speed in situ analyses, enabling a new standard in disciplines such as clinical chemistry, forensics, biowarfare detection and epidemiology. This review will discuss the various technologies available for genetic analysis on the microscale, and efforts to integrate them to form fully functional robust analysis devices. (topical review)

  10. MTLRP genetic polymorphism (214C>A) was associated with Type 2 diabetes in Caucasian population: a meta-analysis

    OpenAIRE

    Chen, Li-Li; Han, Song-Mei; Tang, Fei-Fei; Li, Qiang

    2014-01-01

    Background Previous studies reported the relation between MTLRP genetic polymorphism and type 2 diabetes, however, the conclusion were conflicting. In the present study, we performed a meta-analysis to reveal this association. Methods Literature retrieval, selection and assessment, data extraction, and meta-analyses were performed according to the RevMan 5.0 guidelines. In the meta-analysis, we utilized random-effect model or fixed-effect model to pool the Odds ratio (OR) according to the tes...

  11. A genetic analysis of epistaxis as associated with EIPH in the ...

    African Journals Online (AJOL)

    Pedigree and race run data from Thoroughbreds racing in Southern Africa, covering the period 1986-2002 (63 146 horses in pedigree data-set and 778 532 race runs), were analysed in order to study genetic and environmental factors affecting the incidence of epistaxis as associated with \\"exercise-induced pulmonary ...

  12. Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    OpenAIRE

    Hensman Moss, Davina J; Pardinas, Antonio; Langbehn, Douglas; Lo, Kitty; Leavitt, Blair R; Roos, Raymund; Durr, Alexandra; Mead, Simon; Holmans, Peter; Jones, Lesley; Tabrizi, Sarah J; Coleman, A; Santos, R Dar; Decolongon, J; Sturrock, A

    2017-01-01

    Background\\ud \\ud Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure.\\ud \\ud Methods\\ud \\ud We generated a progression score on the basis of principal ...

  13. A Cross-Cancer Genetic Association Analysis of the DNA Repair and DNA Damage Signaling Pathways for Lung, Ovary, Prostate, Breast, and Colorectal Cancer.

    Science.gov (United States)

    Scarbrough, Peter M; Weber, Rachel Palmieri; Iversen, Edwin S; Brhane, Yonathan; Amos, Christopher I; Kraft, Peter; Hung, Rayjean J; Sellers, Thomas A; Witte, John S; Pharoah, Paul; Henderson, Brian E; Gruber, Stephen B; Hunter, David J; Garber, Judy E; Joshi, Amit D; McDonnell, Kevin; Easton, Doug F; Eeles, Ros; Kote-Jarai, Zsofia; Muir, Kenneth; Doherty, Jennifer A; Schildkraut, Joellen M

    2016-01-01

    DNA damage is an established mediator of carcinogenesis, although genome-wide association studies (GWAS) have identified few significant loci. This cross-cancer site, pooled analysis was performed to increase the power to detect common variants of DNA repair genes associated with cancer susceptibility. We conducted a cross-cancer analysis of 60,297 single nucleotide polymorphisms, at 229 DNA repair gene regions, using data from the NCI Genetic Associations and Mechanisms in Oncology (GAME-ON) Network. Our analysis included data from 32 GWAS and 48,734 controls and 51,537 cases across five cancer sites (breast, colon, lung, ovary, and prostate). Because of the unavailability of individual data, data were analyzed at the aggregate level. Meta-analysis was performed using the Association analysis for SubSETs (ASSET) software. To test for genetic associations that might escape individual variant testing due to small effect sizes, pathway analysis of eight DNA repair pathways was performed using hierarchical modeling. We identified three susceptibility DNA repair genes, RAD51B (P cancer risk in the base excision repair, nucleotide excision repair, mismatch repair, and homologous recombination pathways. Only three susceptibility loci were identified, which had all been previously reported. In contrast, hierarchical modeling identified several pleiotropic cancer risk associations in key DNA repair pathways. Results suggest that many common variants in DNA repair genes are likely associated with cancer susceptibility through small effect sizes that do not meet stringent significance testing criteria. ©2015 American Association for Cancer Research.

  14. Functional relevance for associations between genetic variants and systemic lupus erythematosus.

    Directory of Open Access Journals (Sweden)

    Fei-Yan Deng

    Full Text Available Systemic lupus erythematosus (SLE is a serious prototype autoimmune disease characterized by chronic inflammation, auto-antibody production and multi-organ damage. Recent association studies have identified a long list of loci that were associated with SLE with relatively high statistical power. However, most of them only established the statistical associations of genetic markers and SLE at the DNA level without supporting evidence of functional relevance. Here, using publically available datasets, we performed integrative analyses (gene relationship across implicated loci analysis, differential gene expression analysis and functional annotation clustering analysis and combined with expression quantitative trait loci (eQTLs results to dissect functional mechanisms underlying the associations for SLE. We found that 14 SNPs, which were significantly associated with SLE in previous studies, have cis-regulation effects on four eQTL genes (HLA-DQA1, HLA-DQB1, HLA-DQB2, and IRF5 that were also differentially expressed in SLE-related cell groups. The functional evidence, taken together, suggested the functional mechanisms underlying the associations of 14 SNPs and SLE. The study may serve as an example of mining publically available datasets and results in validation of significant disease-association results. Utilization of public data resources for integrative analyses may provide novel insights into the molecular genetic mechanisms underlying human diseases.

  15. Meta-Analysis of Genome-Wide Association Studies in African Americans Provides Insights into the Genetic Architecture of Type 2 Diabetes

    OpenAIRE

    Ng, Maggie C. Y.; Shriner, Daniel; Chen, Brian H.; Li, Jiang; Chen, Wei-Min; Guo, Xiuqing; Liu, Jiankang; Bielinski, Suzette J.; Yanek, Lisa R.; Nalls, Michael A.; Comeau, Mary E.; Rasmussen-Torvik, Laura J.; Jensen, Richard A.; Evans, Daniel S.; Sun, Yan V.

    2014-01-01

    Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 case...

  16. A weighted U statistic for association analyses considering genetic heterogeneity.

    Science.gov (United States)

    Wei, Changshuai; Elston, Robert C; Lu, Qing

    2016-07-20

    Converging evidence suggests that common complex diseases with the same or similar clinical manifestations could have different underlying genetic etiologies. While current research interests have shifted toward uncovering rare variants and structural variations predisposing to human diseases, the impact of heterogeneity in genetic studies of complex diseases has been largely overlooked. Most of the existing statistical methods assume the disease under investigation has a homogeneous genetic effect and could, therefore, have low power if the disease undergoes heterogeneous pathophysiological and etiological processes. In this paper, we propose a heterogeneity-weighted U (HWU) method for association analyses considering genetic heterogeneity. HWU can be applied to various types of phenotypes (e.g., binary and continuous) and is computationally efficient for high-dimensional genetic data. Through simulations, we showed the advantage of HWU when the underlying genetic etiology of a disease was heterogeneous, as well as the robustness of HWU against different model assumptions (e.g., phenotype distributions). Using HWU, we conducted a genome-wide analysis of nicotine dependence from the Study of Addiction: Genetics and Environments dataset. The genome-wide analysis of nearly one million genetic markers took 7h, identifying heterogeneous effects of two new genes (i.e., CYP3A5 and IKBKB) on nicotine dependence. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  17. Genome-wide meta-analysis of observational studies shows common genetic variants associated with macronutrient intake

    NARCIS (Netherlands)

    T. Tanaka (Toshiko); J.S. Ngwa; F.J.A. van Rooij (Frank); M.C. Zillikens (Carola); M.K. Wojczynski (Mary ); A.C. Frazier-Wood (Alexis); D.K. Houston (Denise); S. Kanoni (Stavroula); R.N. Lemaitre (Rozenn ); J. Luan; V. Mikkilä (Vera); F. Renström (Frida); E. Sonestedt (Emily); J.H. Zhao (Jing Hua); A.Y. Chu (Audrey); L. Qi (Lu); D.I. Chasman (Daniel); M.C. De Oliveira Otto (Marcia); E.J. Dhurandhar (Emily); M.F. Feitosa (Mary Furlan); I. Johansson (Ingegerd); K-T. Khaw (Kay-Tee); K. Lohman (Kurt); A. Manichaikul (Ani); N.M. McKeown (Nicola ); D. Mozaffarian (Dariush); A.B. Singleton (Andrew); K. Stirrups (Kathy); J. Viikari (Jorma); Z. Ye (Zheng); S. Bandinelli (Stefania); I.E. Barroso (Inês); P. Deloukas (Panagiotis); N.G. Forouhi (Nita); A. Hofman (Albert); Y. Liu (YongMei); L.-P. Lyytikäinen (Leo-Pekka); K.E. North (Kari); M. Dimitriou (Maria); G. Hallmans (Göran); M. Kähönen (Mika); C. Langenberg (Claudia); J.M. Ordovas (Jose); A.G. Uitterlinden (André); F.B. Hu (Frank); I.-P. Kalafati (Ioanna-Panagiota); O. Raitakari (Olli); O.H. Franco (Oscar); A. Johnson (Anthony); V. Emilsson (Valur); J.A. Schrack (Jennifer); R.D. Semba; D.S. Siscovick (David); D.K. Arnett (Donna); I.B. Borecki (Ingrid); P.W. Franks (Paul); S.B. Kritchevsky (Stephen); R.J.F. Loos (Ruth); M. Orho-Melander (Marju); J.I. Rotter (Jerome); N.J. Wareham (Nick); J.C.M. Witteman (Jacqueline); L. Ferrucci (Luigi); G.V. Dedoussis (George); L.A. Cupples (Adrienne); J.A. Nettleton (Jennifer )

    2013-01-01

    textabstractBackground: Macronutrient intake varies substantially between individuals, and there is evidence that this variation is partly accounted for by genetic variants. Objective: The objective of the study was to identify common genetic variants that are associated with macronutrient intake.

  18. Study on the Method of Association Rules Mining Based on Genetic Algorithm and Application in Analysis of Seawater Samples

    Directory of Open Access Journals (Sweden)

    Qiuhong Sun

    2014-04-01

    Full Text Available Based on the data mining research, the data mining based on genetic algorithm method, the genetic algorithm is briefly introduced, while the genetic algorithm based on two important theories and theoretical templates principle implicit parallelism is also discussed. Focuses on the application of genetic algorithms for association rule mining method based on association rule mining, this paper proposes a genetic algorithm fitness function structure, data encoding, such as the title of the improvement program, in particular through the early issues study, proposed the improved adaptive Pc, Pm algorithm is applied to the genetic algorithm, thereby improving efficiency of the algorithm. Finally, a genetic algorithm based association rule mining algorithm, and be applied in sea water samples database in data mining and prove its effective.

  19. Association analysis of PON2 genetic variants with serum paraoxonase activity and systemic lupus erythematosus

    Directory of Open Access Journals (Sweden)

    Manzi Susan

    2011-01-01

    Full Text Available Abstract Background Low serum paraoxonase (PON activity is associated with the risk of coronary artery disease, diabetes and systemic lupus erythematosus (SLE. Our prior studies have shown that the PON1/rs662 (p.Gln192Arg, PON1/rs854560 (p.Leu55Met, PON3/rs17884563 and PON3/rs740264 SNPs (single nucleotide polymorphisms significantly affect serum PON activity. Since PON1, PON2 and PON3 share high degree of structural and functional properties, in this study, we examined the role of PON2 genetic variation on serum PON activity, risk of SLE and SLE-related clinical manifestations in a Caucasian case-control sample. Methods PON2 SNPs were selected from HapMap and SeattleSNPs databases by including at least one tagSNP from each bin defined in these resources. A total of nineteen PON2 SNPs were successfully genotyped in 411 SLE cases and 511 healthy controls using pyrosequencing, restriction fragment length polymorphism (RFLP or TaqMan allelic discrimination methods. Results Our pair-wise linkage disequilibrium (LD analysis, using an r2 cutoff of 0.7, identified 14 PON2 tagSNPs that captured all 19 PON2 variants in our sample, 12 of which were not in high LD with known PON1 and PON3 SNP modifiers of PON activity. Stepwise regression analysis of PON activity, including the known modifiers, identified five PON2 SNPs [rs6954345 (p.Ser311Cys, rs13306702, rs987539, rs11982486, and rs4729189; P = 0.005 to 2.1 × 10-6] that were significantly associated with PON activity. We found no association of PON2 SNPs with SLE risk but modest associations were observed with lupus nephritis (rs11981433, rs17876205, rs17876183 and immunologic disorder (rs11981433 in SLE patients (P = 0.013 to 0.042. Conclusions Our data indicate that PON2 genetic variants significantly affect variation in serum PON activity and have modest effects on risk of lupus nephritis and SLE-related immunologic disorder.

  20. Genetically Distinct Subsets within ANCA-Associated Vasculitis

    Science.gov (United States)

    Lyons, Paul A.; Rayner, Tim F.; Trivedi, Sapna; Holle, Julia U.; Watts, Richard A.; Jayne, David R.W.; Baslund, Bo; Brenchley, Paul; Bruchfeld, Annette; Chaudhry, Afzal N.; Tervaert, Jan Willem Cohen; Deloukas, Panos; Feighery, Conleth; Gross, Wolfgang L.; Guillevin, Loic; Gunnarsson, Iva; P, Lorraine Harper M.R.C; Hrušková, Zdenka; Little, Mark A.; Martorana, Davide; Neumann, Thomas; Ohlsson, Sophie; Padmanabhan, Sandosh; Pusey, Charles D.; Salama, Alan D.; Sanders, Jan-Stephan F.; Savage, Caroline O.; Segelmark, Mårten; Stegeman, Coen A.; Tesař, Vladimir; Vaglio, Augusto; Wieczorek, Stefan; Wilde, Benjamin; Zwerina, Jochen; Rees, Andrew J.; Clayton, David G.; Smith, Kenneth G.C.

    2013-01-01

    BACKGROUND Antineutrophil cytoplasmic antibody (ANCA)–associated vasculitis is a severe condition encompassing two major syndromes: granulomatosis with polyangiitis (formerly known as Wegener’s granulomatosis) and microscopic polyangiitis. Its cause is unknown, and there is debate about whether it is a single disease entity and what role ANCA plays in its pathogenesis. We investigated its genetic basis. METHODS A genomewide association study was performed in a discovery cohort of 1233 U.K. patients with ANCA-associated vasculitis and 5884 controls and was replicated in 1454 Northern European case patients and 1666 controls. Quality control, population stratification, and statistical analyses were performed according to standard criteria. RESULTS We found both major-histocompatibility-complex (MHC) and non-MHC associations with ANCA-associated vasculitis and also that granulomatosis with polyangiitis and microscopic polyangiitis were genetically distinct. The strongest genetic associations were with the antigenic specificity of ANCA, not with the clinical syndrome. Anti–proteinase 3 ANCA was associated with HLA-DP and the genes encoding α1-antitrypsin (SERPINA1) and proteinase 3 (PRTN3) (P = 6.2×10−89, P = 5.6×10−12, and P = 2.6×10−7, respectively). Anti–myeloperoxidase ANCA was associated with HLA-DQ (P = 2.1×10−8). CONCLUSIONS This study confirms that the pathogenesis of ANCA-associated vasculitis has a genetic component, shows genetic distinctions between granulomatosis with polyangiitis and microscopic polyangiitis that are associated with ANCA specificity, and suggests that the response against the autoantigen proteinase 3 is a central pathogenic feature of proteinase 3 ANCA–associated vasculitis. These data provide preliminary support for the concept that proteinase 3 ANCA–associated vasculitis and myeloperoxidase ANCA–associated vasculitis are distinct autoimmune syndromes. (Funded by the British Heart Foundation and others.) PMID

  1. Novel genetic loci underlying human intracranial volume identified through genome-wide association

    Science.gov (United States)

    Adams, Hieab HH; Hibar, Derrek P; Chouraki, Vincent; Stein, Jason L; Nyquist, Paul A; Rentería, Miguel E; Trompet, Stella; Arias-Vasquez, Alejandro; Seshadri, Sudha; Desrivières, Sylvane; Beecham, Ashley H; Jahanshad, Neda; Wittfeld, Katharina; Van der Lee, Sven J; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf; Andersson, Micael; Arfanakis, Konstantinos; Aribisala, Benjamin S; Armstrong, Nicola J; Athanasiu, Lavinia; Axelsson, Tomas; Beiser, Alexa; Bernard, Manon; Bis, Joshua C; Blanken, Laura ME; Blanton, Susan H; Bohlken, Marc M; Boks, Marco P; Bralten, Janita; Brickman, Adam M; Carmichael, Owen; Chakravarty, M Mallar; Chauhan, Ganesh; Chen, Qiang; Ching, Christopher RK; Cuellar-Partida, Gabriel; Den Braber, Anouk; Doan, Nhat Trung; Ehrlich, Stefan; Filippi, Irina; Ge, Tian; Giddaluru, Sudheer; Goldman, Aaron L; Gottesman, Rebecca F; Greven, Corina U; Grimm, Oliver; Griswold, Michael E; Guadalupe, Tulio; Hass, Johanna; Haukvik, Unn K; Hilal, Saima; Hofer, Edith; Hoehn, David; Holmes, Avram J; Hoogman, Martine; Janowitz, Deborah; Jia, Tianye; Kasperaviciute, Dalia; Kim, Sungeun; Klein, Marieke; Kraemer, Bernd; Lee, Phil H; Liao, Jiemin; Liewald, David CM; Lopez, Lorna M; Luciano, Michelle; Macare, Christine; Marquand, Andre; Matarin, Mar; Mather, Karen A; Mattheisen, Manuel; Mazoyer, Bernard; McKay, David R; McWhirter, Rebekah; Milaneschi, Yuri; Mirza-Schreiber, Nazanin; Muetzel, Ryan L; Maniega, Susana Muñoz; Nho, Kwangsik; Nugent, Allison C; Olde Loohuis, Loes M; Oosterlaan, Jaap; Papmeyer, Martina; Pappa, Irene; Pirpamer, Lukas; Pudas, Sara; Pütz, Benno; Rajan, Kumar B; Ramasamy, Adaikalavan; Richards, Jennifer S; Risacher, Shannon L; Roiz-Santiañez, Roberto; Rommelse, Nanda; Rose, Emma J; Royle, Natalie A; Rundek, Tatjana; Sämann, Philipp G; Satizabal, Claudia L; Schmaal, Lianne; Schork, Andrew J; Shen, Li; Shin, Jean; Shumskaya, Elena; Smith, Albert V; Sprooten, Emma; Strike, Lachlan T; Teumer, Alexander; Thomson, Russell; Tordesillas-Gutierrez, Diana; Toro, Roberto; Trabzuni, Daniah; Vaidya, Dhananjay; Van der Grond, Jeroen; Van der Meer, Dennis; Van Donkelaar, Marjolein MJ; Van Eijk, Kristel R; Van Erp, Theo GM; Van Rooij, Daan; Walton, Esther; Westlye, Lars T; Whelan, Christopher D; Windham, Beverly G; Winkler, Anderson M; Woldehawariat, Girma; Wolf, Christiane; Wolfers, Thomas; Xu, Bing; Yanek, Lisa R; Yang, Jingyun; Zijdenbos, Alex; Zwiers, Marcel P; Agartz, Ingrid; Aggarwal, Neelum T; Almasy, Laura; Ames, David; Amouyel, Philippe; Andreassen, Ole A; Arepalli, Sampath; Assareh, Amelia A; Barral, Sandra; Bastin, Mark E; Becker, Diane M; Becker, James T; Bennett, David A; Blangero, John; van Bokhoven, Hans; Boomsma, Dorret I; Brodaty, Henry; Brouwer, Rachel M; Brunner, Han G; Buckner, Randy L; Buitelaar, Jan K; Bulayeva, Kazima B; Cahn, Wiepke; Calhoun, Vince D; Cannon, Dara M; Cavalleri, Gianpiero L; Chen, Christopher; Cheng, Ching-Yu; Cichon, Sven; Cookson, Mark R; Corvin, Aiden; Crespo-Facorro, Benedicto; Curran, Joanne E; Czisch, Michael; Dale, Anders M; Davies, Gareth E; De Geus, Eco JC; De Jager, Philip L; de Zubicaray, Greig I; Delanty, Norman; Depondt, Chantal; DeStefano, Anita L; Dillman, Allissa; Djurovic, Srdjan; Donohoe, Gary; Drevets, Wayne C; Duggirala, Ravi; Dyer, Thomas D; Erk, Susanne; Espeseth, Thomas; Evans, Denis A; Fedko, Iryna O; Fernández, Guillén; Ferrucci, Luigi; Fisher, Simon E; Fleischman, Debra A; Ford, Ian; Foroud, Tatiana M; Fox, Peter T; Francks, Clyde; Fukunaga, Masaki; Gibbs, J Raphael; Glahn, David C; Gollub, Randy L; Göring, Harald HH; Grabe, Hans J; Green, Robert C; Gruber, Oliver; Gudnason, Vilmundur; Guelfi, Sebastian; Hansell, Narelle K; Hardy, John; Hartman, Catharina A; Hashimoto, Ryota; Hegenscheid, Katrin; Heinz, Andreas; Le Hellard, Stephanie; Hernandez, Dena G; Heslenfeld, Dirk J; Ho, Beng-Choon; Hoekstra, Pieter J; Hoffmann, Wolfgang; Hofman, Albert; Holsboer, Florian; Homuth, Georg; Hosten, Norbert; Hottenga, Jouke-Jan; Hulshoff Pol, Hilleke E; Ikeda, Masashi; Ikram, M Kamran; Jack, Clifford R; Jenkinson, Mark; Johnson, Robert; Jönsson, Erik G; Jukema, J Wouter; Kahn, René S; Kanai, Ryota; Kloszewska, Iwona; Knopman, David S; Kochunov, Peter; Kwok, John B; Lawrie, Stephen M; Lemaître, Hervé; Liu, Xinmin; Longo, Dan L; Longstreth, WT; Lopez, Oscar L; Lovestone, Simon; Martinez, Oliver; Martinot, Jean-Luc; Mattay, Venkata S; McDonald, Colm; McIntosh, Andrew M; McMahon, Katie L; McMahon, Francis J; Mecocci, Patrizia; Melle, Ingrid; Meyer-Lindenberg, Andreas; Mohnke, Sebastian; Montgomery, Grant W; Morris, Derek W; Mosley, Thomas H; Mühleisen, Thomas W; Müller-Myhsok, Bertram; Nalls, Michael A; Nauck, Matthias; Nichols, Thomas E; Niessen, Wiro J; Nöthen, Markus M; Nyberg, Lars; Ohi, Kazutaka; Olvera, Rene L; Ophoff, Roel A; Pandolfo, Massimo; Paus, Tomas; Pausova, Zdenka; Penninx, Brenda WJH; Pike, G Bruce; Potkin, Steven G; Psaty, Bruce M; Reppermund, Simone; Rietschel, Marcella; Roffman, Joshua L; Romanczuk-Seiferth, Nina; Rotter, Jerome I; Ryten, Mina; Sacco, Ralph L; Sachdev, Perminder S; Saykin, Andrew J; Schmidt, Reinhold; Schofield, Peter R; Sigurdsson, Sigurdur; Simmons, Andy; Singleton, Andrew; Sisodiya, Sanjay M; Smith, Colin; Smoller, Jordan W; Soininen, Hilkka; Srikanth, Velandai; Steen, Vidar M; Stott, David J; Sussmann, Jessika E; Thalamuthu, Anbupalam; Tiemeier, Henning; Toga, Arthur W; Traynor, Bryan J; Troncoso, Juan; Turner, Jessica A; Tzourio, Christophe; Uitterlinden, Andre G; Valdés Hernández, Maria C; Van der Brug, Marcel; Van der Lugt, Aad; Van der Wee, Nic JA; Van Duijn, Cornelia M; Van Haren, Neeltje EM; Van 't Ent, Dennis; Van Tol, Marie-Jose; Vardarajan, Badri N; Veltman, Dick J; Vernooij, Meike W; Völzke, Henry; Walter, Henrik; Wardlaw, Joanna M; Wassink, Thomas H; Weale, Michael E; Weinberger, Daniel R; Weiner, Michael W; Wen, Wei; Westman, Eric; White, Tonya; Wong, Tien Y; Wright, Clinton B; Zielke, H Ronald; Zonderman, Alan B; Deary, Ian J; DeCarli, Charles; Schmidt, Helena; Martin, Nicholas G; De Craen, Anton JM; Wright, Margaret J; Launer, Lenore J; Schumann, Gunter; Fornage, Myriam; Franke, Barbara; Debette, Stéphanie; Medland, Sarah E; Ikram, M Arfan; Thompson, Paul M

    2016-01-01

    Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five novel loci for intracranial volume and confirmed two known signals. Four of the loci are also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (ρgenetic=0.748), which indicated a similar genetic background and allowed for the identification of four additional loci through meta-analysis (Ncombined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, Parkinson’s disease, and enriched near genes involved in growth pathways including PI3K–AKT signaling. These findings identify biological underpinnings of intracranial volume and provide genetic support for theories on brain reserve and brain overgrowth. PMID:27694991

  2. Association of Genetic Variants Related to Serum Calcium Levels With Coronary Artery Disease and Myocardial Infarction.

    Science.gov (United States)

    Larsson, Susanna C; Burgess, Stephen; Michaëlsson, Karl

    2017-07-25

    Serum calcium has been associated with cardiovascular disease in observational studies and evidence from randomized clinical trials indicates that calcium supplementation, which raises serum calcium levels, may increase the risk of cardiovascular events, particularly myocardial infarction. To evaluate the potential causal association between genetic variants related to elevated serum calcium levels and risk of coronary artery disease (CAD) and myocardial infarction using mendelian randomization. The analyses were performed using summary statistics obtained for single-nucleotide polymorphisms (SNPs) identified from a genome-wide association meta-analysis of serum calcium levels (N = up to 61 079 individuals) and from the Coronary Artery Disease Genome-wide Replication and Meta-analysis Plus the Coronary Artery Disease Genetics (CardiogramplusC4D) consortium's 1000 genomes-based genome-wide association meta-analysis (N = up to 184 305 individuals) that included cases (individuals with CAD and myocardial infarction) and noncases, with baseline data collected from 1948 and populations derived from across the globe. The association of each SNP with CAD and myocardial infarction was weighted by its association with serum calcium, and estimates were combined using an inverse-variance weighted meta-analysis. Genetic risk score based on genetic variants related to elevated serum calcium levels. Co-primary outcomes were the odds of CAD and myocardial infarction. Among the mendelian randomized analytic sample of 184 305 individuals (60 801 CAD cases [approximately 70% with myocardial infarction] and 123 504 noncases), the 6 SNPs related to serum calcium levels and without pleiotropic associations with potential confounders were estimated to explain about 0.8% of the variation in serum calcium levels. In the inverse-variance weighted meta-analysis (combining the estimates of the 6 SNPs), the odds ratios per 0.5-mg/dL increase (about 1 SD) in genetically

  3. Meta-Analysis of Genome-Wide Association Studies Identifies Genetic Risk Factors for Stroke in African Americans.

    Science.gov (United States)

    Carty, Cara L; Keene, Keith L; Cheng, Yu-Ching; Meschia, James F; Chen, Wei-Min; Nalls, Mike; Bis, Joshua C; Kittner, Steven J; Rich, Stephen S; Tajuddin, Salman; Zonderman, Alan B; Evans, Michele K; Langefeld, Carl D; Gottesman, Rebecca; Mosley, Thomas H; Shahar, Eyal; Woo, Daniel; Yaffe, Kristine; Liu, Yongmei; Sale, Michèle M; Dichgans, Martin; Malik, Rainer; Longstreth, W T; Mitchell, Braxton D; Psaty, Bruce M; Kooperberg, Charles; Reiner, Alexander; Worrall, Bradford B; Fornage, Myriam

    2015-08-01

    The majority of genome-wide association studies (GWAS) of stroke have focused on European-ancestry populations; however, none has been conducted in African Americans, despite the disproportionately high burden of stroke in this population. The Consortium of Minority Population Genome-Wide Association Studies of Stroke (COMPASS) was established to identify stroke susceptibility loci in minority populations. Using METAL, we conducted meta-analyses of GWAS in 14 746 African Americans (1365 ischemic and 1592 total stroke cases) from COMPASS, and tested genetic variants with Pstroke genetic studies in European-ancestry populations. We also evaluated stroke loci previously identified in European-ancestry populations. The 15q21.3 locus linked with lipid levels and hypertension was associated with total stroke (rs4471613; P=3.9×10(-8)) in African Americans. Nominal associations (Pstroke were observed for 18 variants in or near genes implicated in cell cycle/mRNA presplicing (PTPRG, CDC5L), platelet function (HPS4), blood-brain barrier permeability (CLDN17), immune response (ELTD1, WDFY4, and IL1F10-IL1RN), and histone modification (HDAC9). Two of these loci achieved nominal significance in METASTROKE: 5q35.2 (P=0.03), and 1p31.1 (P=0.018). Four of 7 previously reported ischemic stroke loci (PITX2, HDAC9, CDKN2A/CDKN2B, and ZFHX3) were nominally associated (Pstroke in COMPASS. We identified a novel genetic variant associated with total stroke in African Americans and found that ischemic stroke loci identified in European-ancestry populations may also be relevant for African Americans. Our findings support investigation of diverse populations to identify and characterize genetic risk factors, and the importance of shared genetic risk across populations. © 2015 American Heart Association, Inc.

  4. Evolving temporal association rules with genetic algorithms

    OpenAIRE

    Matthews, Stephen G.; Gongora, Mario A.; Hopgood, Adrian A.

    2010-01-01

    A novel framework for mining temporal association rules by discovering itemsets with a genetic algorithm is introduced. Metaheuristics have been applied to association rule mining, we show the efficacy of extending this to another variant - temporal association rule mining. Our framework is an enhancement to existing temporal association rule mining methods as it employs a genetic algorithm to simultaneously search the rule space and temporal space. A methodology for validating the ability of...

  5. A meta-analysis of genome-wide association studies identifies novel variants associated with osteoarthritis of the hip

    DEFF Research Database (Denmark)

    Evangelou, Evangelos; Kerkhof, Hanneke J; Styrkarsdottir, Unnur

    2014-01-01

    Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects.......Osteoarthritis (OA) is the most common form of arthritis with a clear genetic component. To identify novel loci associated with hip OA we performed a meta-analysis of genome-wide association studies (GWAS) on European subjects....

  6. Genome-Wide Association Analysis Reveals Genetic Heterogeneity of Sjögren's Syndrome According to Ancestry.

    Science.gov (United States)

    Taylor, Kimberly E; Wong, Quenna; Levine, David M; McHugh, Caitlin; Laurie, Cathy; Doheny, Kimberly; Lam, Mi Y; Baer, Alan N; Challacombe, Stephen; Lanfranchi, Hector; Schiødt, Morten; Srinivasan, M; Umehara, Hisanori; Vivino, Frederick B; Zhao, Yan; Shiboski, Stephen C; Daniels, Troy E; Greenspan, John S; Shiboski, Caroline H; Criswell, Lindsey A

    2017-06-01

    The Sjögren's International Collaborative Clinical Alliance (SICCA) is an international data registry and biorepository derived from a multisite observational study of participants in whom genotyping was performed on the Omni2.5M platform and who had undergone deep phenotyping using common protocol-directed methods. The aim of this study was to examine the genetic etiology of Sjögren's syndrome (SS) across ancestry and disease subsets. We performed genome-wide association study analyses using SICCA subjects and external controls obtained from dbGaP data sets, one using all participants (1,405 cases, 1,622 SICCA controls, and 3,125 external controls), one using European participants (585, 966, and 580, respectively), and one using Asian participants (460, 224, and 901, respectively) with ancestry adjustments via principal components analyses. We also investigated whether subphenotype distributions differ by ethnicity, and whether this contributes to the heterogeneity of genetic associations. We observed significant associations in established regions of the major histocompatibility complex (MHC), IRF5, and STAT4 (P = 3 × 10 -42 , P = 3 × 10 -14 , and P = 9 × 10 -10 , respectively), and several novel suggestive regions (those with 2 or more associations at P ancestry (P = 4 × 10 -15 and P = 4 × 10 -5 , respectively), but that subphenotype differences did not explain most of the ancestry differences in genetic associations. Genetic associations with SS differ markedly according to ancestry; however, this is not explained by differences in subphenotypes. © 2017, The Authors. Arthritis & Rheumatology published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology.

  7. Genetic and Non-genetic Factors Associated WithConstipation in Cancer Patients Receiving Opioids

    OpenAIRE

    Laugsand, Eivor Alette; Skorpen, Frank; Kaasa, Stein; Sabatowski, Rainer; Strasser, Florian; Fayers, Peter; Klepstad, Pål

    2015-01-01

    Objectives: To examine whether the inter-individual variation in constipation among patients receiving opioids for cancer pain is associated with genetic or non-genetic factors. Methods: Cancer patients receiving opioids were included from 17 centers in 11 European countries. Intensity of constipation was reported by 1,568 patients on a four-point categorical scale. Non-genetic factors were included as covariates in stratified regression analyses on the association between constipation a...

  8. Attitudes towards genetic testing: analysis of contradictions

    DEFF Research Database (Denmark)

    Jallinoja, P; Hakonen, A; Aro, A R

    1998-01-01

    A survey study was conducted among 1169 people to evaluate attitudes towards genetic testing in Finland. Here we present an analysis of the contradictions detected in people's attitudes towards genetic testing. This analysis focuses on the approval of genetic testing as an individual choice and o...... studies on attitudes towards genetic testing as well as in the health care context, e.g. in genetic counselling.......A survey study was conducted among 1169 people to evaluate attitudes towards genetic testing in Finland. Here we present an analysis of the contradictions detected in people's attitudes towards genetic testing. This analysis focuses on the approval of genetic testing as an individual choice...... and on the confidence in control of the process of genetic testing and its implications. Our analysis indicated that some of the respondents have contradictory attitudes towards genetic testing. It is proposed that contradictory attitudes towards genetic testing should be given greater significance both in scientific...

  9. Validating genetic risk associations for ovarian cancer through the international Ovarian Cancer Association Consortium

    DEFF Research Database (Denmark)

    Pearce, C L; Near, A M; Van Den Berg, D J

    2009-01-01

    The search for genetic variants associated with ovarian cancer risk has focused on pathways including sex steroid hormones, DNA repair, and cell cycle control. The Ovarian Cancer Association Consortium (OCAC) identified 10 single-nucleotide polymorphisms (SNPs) in genes in these pathways, which had...... been genotyped by Consortium members and a pooled analysis of these data was conducted. Three of the 10 SNPs showed evidence of an association with ovarian cancer at P... and risk of ovarian cancer suggests that this pathway may be involved in ovarian carcinogenesis. Additional follow-up is warranted....

  10. Genome-wide assessment for genetic variants associated with ventricular dysfunction after primary coronary artery bypass graft surgery.

    Directory of Open Access Journals (Sweden)

    Amanda A Fox

    Full Text Available BACKGROUND: Postoperative ventricular dysfunction (VnD occurs in 9-20% of coronary artery bypass graft (CABG surgical patients and is associated with increased postoperative morbidity and mortality. Understanding genetic causes of postoperative VnD should enhance patient risk stratification and improve treatment and prevention strategies. We aimed to determine if genetic variants associate with occurrence of in-hospital VnD after CABG surgery. METHODS: A genome-wide association study identified single nucleotide polymorphisms (SNPs associated with postoperative VnD in male subjects of European ancestry undergoing isolated primary CABG surgery with cardiopulmonary bypass. VnD was defined as the need for ≥2 inotropes or mechanical ventricular support after CABG surgery. Validated SNPs were assessed further in two replication CABG cohorts and meta-analysis was performed. RESULTS: Over 100 SNPs were associated with VnD (P2.1 of developing in-hospital VnD after CABG surgery. However, three genetic loci identified by meta-analysis were more modestly associated with development of postoperative VnD. Studies of larger cohorts to assess these loci as well as to define other genetic mechanisms and related biology that link genetic variants to postoperative ventricular dysfunction are warranted.

  11. Multi-variant pathway association analysis reveals the importance of genetic determinants of estrogen metabolism in breast and endometrial cancer susceptibility.

    Directory of Open Access Journals (Sweden)

    Yen Ling Low

    2010-07-01

    Full Text Available Despite the central role of estrogen exposure in breast and endometrial cancer development and numerous studies of genes in the estrogen metabolic pathway, polymorphisms within the pathway have not been consistently associated with these cancers. We posit that this is due to the complexity of multiple weak genetic effects within the metabolic pathway that can only be effectively detected through multi-variant analysis. We conducted a comprehensive association analysis of the estrogen metabolic pathway by interrogating 239 tagSNPs within 35 genes of the pathway in three tumor samples. The discovery sample consisted of 1,596 breast cancer cases, 719 endometrial cancer cases, and 1,730 controls from Sweden; and the validation sample included 2,245 breast cancer cases and 1,287 controls from Finland. We performed admixture maximum likelihood (AML-based global tests to evaluate the cumulative effect from multiple SNPs within the whole metabolic pathway and three sub-pathways for androgen synthesis, androgen-to-estrogen conversion, and estrogen removal. In the discovery sample, although no single polymorphism was significant after correction for multiple testing, the pathway-based AML global test suggested association with both breast (p(global = 0.034 and endometrial (p(global = 0.052 cancers. Further testing revealed the association to be focused on polymorphisms within the androgen-to-estrogen conversion sub-pathway, for both breast (p(global = 0.008 and endometrial cancer (p(global = 0.014. The sub-pathway association was validated in the Finnish sample of breast cancer (p(global = 0.015. Further tumor subtype analysis demonstrated that the association of the androgen-to-estrogen conversion sub-pathway was confined to postmenopausal women with sporadic estrogen receptor positive tumors (p(global = 0.0003. Gene-based AML analysis suggested CYP19A1 and UGT2B4 to be the major players within the sub-pathway. Our study indicates that the composite

  12. Role of genetics in infection-associated arthritis.

    Science.gov (United States)

    Benham, Helen; Robinson, Philip C; Baillet, Athan C; Rehaume, Linda M; Thomas, Ranjeny

    2015-04-01

    Genetic discoveries in arthritis and their associated biological pathways spanning the innate and adaptive immune system demonstrate the strong association between susceptibility to arthritis and control of exogenous organisms. The canonical theory of the aetiology of immune-mediated arthritis and other immune-mediated diseases is that the introduction of exogenous antigenic stimuli to a genetically susceptible host sets up the environment for an abnormal immune response manifesting as disease. A disruption in host-microbe homeostasis driven by disease-associated genetic variants could ultimately provide the source of exogenous antigen triggering disease development. We discuss genetic variants impacting the innate and adaptive arms of the immune system and their relationship to microbial control and arthritic disease. We go on to consider the evidence for a relationship between HLA-B27, infection and arthritis, and then emerging evidence for an interaction between microbiota and rheumatoid arthritis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes.

    Science.gov (United States)

    Rohde, Palle Duun; Demontis, Ditte; Cuyabano, Beatriz Castro Dias; Børglum, Anders D; Sørensen, Peter

    2016-08-01

    Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited power to detect genetic markers with small effects. Instead, aggregating genetic markers based on biological information might increase the power to identify sets of genetic markers of etiological significance. Several set test methods have been proposed: Here we propose a new set test derived from genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT was among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case-control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism and immunological responses, which previously have been implicated with schizophrenia based on experimental and observational studies. Copyright © 2016 by the Genetics Society of America.

  14. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution

    NARCIS (Netherlands)

    I.M. Heid (Iris); A.U. Jackson (Anne); J.C. Randall (Joshua); T.W. Winkler (Thomas); L. Qi (Lu); V. Ssteinthorsdottir (Valgerdur); G. Tthorleifsson (Ggudmar); M.C. Zillikens (Carola); E.K. Sspeliotes (Eelizabeth); R. Mägi (Reedik); T. Workalemahu (Tsegaselassie); C.C. White (Charles); N. Bouatia-Naji (Nabila); T.B. Harris (Tamara); S.I. Berndt (Sonja); E. Ingelsson (Erik); C.J. Willer (Cristen); J. Luan; S. Vedantam (Sailaja); T. Eesko (Tõnu); T.O. Kilpeläinen (Tuomas); Z. Kutalik (Zoltán); S. Li (Shengxu); K.L. Monda (Keri); A.L. Dixon (Anna); C. Holmes (Christopher); R.C. Kaplan (Robert); L. Liang (Liming); J. Min (Josine); M.F. Moffatt (Miriam); C. Molony (Cliona); G. Nicholson (Ggeorge); E.E. Sschadt (Eeric); K.T. Zondervan (Krina); M.F. Feitosa (Mary Furlan); T. Ferreira (Teresa); H.L. Allen; R.J. Weyant (Robert); E. Wheeler (Eleanor); A.R. Wood (Andrew); K. Eestrada (Karol); M.E. Goddard (Michael); G. Lettre (Guillaume); M. Mangino (Massimo); D.R. Nyholt (Dale); S. Purcell (Shaun); A.V. Ssmith; P.M. Visscher (Peter); J. Yang (Joanna); S.A. McCcarroll (Ssteven); J. Nemesh (James); B.F. Voight (Benjamin); D. Absher (Devin); N. Amin (Najaf); T. Aspelund (Thor); L. Coin (Lachlan); N.L. Glazer (Nicole); C. Hayward (Caroline); N. Heard-Ccosta (Nancy); J.J. Hottenga (Jouke Jan); A. Johansson (Åsa); T. Johnson (Toby); M. Kaakinen (Marika); K. Kapur (Karen); S. Ketkar (Shamika); J.W. Knowles (Joshua); P. Kraft (Peter); A. Kraja (Aldi); C. Lamina (Claudia); M.F. Leitzmann (Michael); B. McKknight (Barbara); A.D. Morris (Andrew); K. Oong (Ken); J.R.B. Perry (John); M.J. Peters (Marjolein); O. Polasek (Ozren); I. Prokopenko (Inga); N.W. Rayner (Nigel William); S. Ripatti (Samuli); F. Rivadeneira Ramirez (Fernando); N.R. Robertson (Neil); S. Sanna (Serena); U. Sovio (Ulla); I. Surakka (Ida); A. Teumer (Alexander); S. van Wingerden (Sophie); V. Vitart (Veronique); J.H. Zhao (Jing Hua); C. Cavalcanti-Proença (Christine); P.S. Chines (Peter); E. Fisher (Eeva); J.R. Kulzer (Jennifer); C. Lecoeur (Cécile); N. Narisu (Narisu); C. Sandholt (Camilla); L.J. Scott (Laura); K. Silander (Kaisa); K. Stark (Klaus); M.L. Tammesoo; T.M. Teslovich (Tanya); N.J. Timpson (Nicholas); R.P. Welch (Ryan); D.I. Chasman (Daniel); M.N. Cooper (Matthew); J.O. Jansson; J. Kettunen (Johannes); R. Wlawrence (Robert); N. Pellikka (Niina); M. Perola (Markus); L. Vandenput (Liesbeth); H. Alavere (Helene); P. Almgren (Peter); L.D. Atwood (Larry); A.J. Bennett (Amanda); R. Biffar (Reiner); L.L. Bonnycastle (Lori); S.R. Bornstein (Stefan); T.A. Buchanan (Thomas); H. Campbell (Harry); I.N.M. Day (Ian); M. Dei (Mariano); M. Dörr (Marcus); P. Eelliott (Paul); M.R. Eerdos (Micheal); J.G. Eeriksson (Johan); N.B. Freimer (Nelson); M. Fu (Mao); S. Gaget (Stefan); E.J.C. de Geus (Eco); A.P. Gjesing (Anette); H. Grallert (Harald); J. Gräßler (Jürgen); C.J. Groves (Christopher); C. Guiducci (Candace); A.L. Hartikainen; N. Hassanali (Neelam); A.S. Havulinna (Aki); K.H. Herzig; A.A. Hicks (Andrew); J. Hui (Jennie); W. Igl (Wilmar); P. Jousilahti (Pekka); A. Jula (Antti); E. Kajantie (Eero); L. Kinnunen (Leena); I. Kolcic (Ivana); S. Koskinen (Seppo); P. Kovacs (Peter); H.K. Kroemer (Heyo); V. Krzelj (Vjekoslav); J. Kuusisto (Johanna); K. Kvaløy (Kirsti); J. Laitinen (Jaana); O. Lantieri (Olivier); G.M. Lathrop (Mark); M.L. Lokki; R.N. Luben (Robert); B. Ludwig (Barbara); W.L. McArdle (Wendy); A. McCcarthy (Anne); M.A. Morken (Mario); M. Nelis (Mari); M.J. Neville (Matthew); G. Paré (Guillaume); A.N. Parker (Alex); J. Peden (John); I. Pichler (Irene); K.H. Pietilainen (Kirsi Hannele); C.P. Platou (Carl); A. Pouta (Anneli); M. Ridderstråle (Martin); N.J. Samani (Nilesh); J. Saramies (Jouko); J. Sinisalo (Juha); J.H. Smit (Jan); R.J. Strawbridge (Rona); H.M. Stringham (Heather); A.J. Swift (Amy); M. Teder-Llaving (Maris); B. Thomson (Brian); G. Usala; J.B.J. van Meurs (Joyce); G.J. van Ommen (Gert); V. Vatin (Vincent); C.B. Volpato; H. Wallaschofski (Henri); G.B. Walters (Bragi); E. Widen (Elisabeth); S.H. Wild (Sarah); G.A.H.M. Willemsen (Gonneke); D.R. Witte (Deniel); L. Zgaga (Lina); P. Zitting (Paavo); J.P. Beilby (John); A. James (Alan); M. Kähönen (Mika); T. Lehtimäki (Terho); M.S. Nieminen (Markku); C. Ohlsson (Claes); C. Palmer (Cameron); O. Raitakari (Olli); P.M. Ridker (Paul); M. Stumvoll (Michael); A. Tönjes (Anke); J. Viikari (Jorma); B. Balkau (Beverley); Y. Ben-Shlomo; R.N. Bergman (Richard); H. Boeing (Heiner); A.V. Smith (Albert Vernon); S. Eebrahim (Shah); P. Froguel (Philippe); T. Hansen (Torben); C. Hengstenberg (Christian); K. Hveem (Kristian); B. Isomaa (Bo); T. Jørgensen (Torben); F. Karpe (Fredrik); K-T. Khaw (Kay-Tee); M. Laakso (Markku); D.A. Lawlor (Debbie); M. Marre (Michel); T. Meitinger (Thomas); A. Metspalu (Andres); K. Midthjell (Kristian); O. Pedersen (Oluf); V. Salomaa (Veikko); P.E.H. Schwarz (Peter); T. Tuomi (Tiinamaija); J. Tuomilehto (Jaakko); T.T. Valle (Timo); N.J. Wareham (Nick); A.M. Arnold (Alice); J.S. Beckmann (Jacques); S.M. Bergmann (Sven); E.A. Boerwinkle (Eric); D.I. Boomsma (Dorret); M. Caulfield (Mark); F.S. Collins (Francis); G. Eeiriksdottir (Gudny); V. Gudnason (Vilmundur); U. Gyllensten (Ulf); A. Hamsten (Anders); A.T. Hattersley (Andrew); A. Hofman (Albert); F.B. Hu (Frank); T. Illig (Thomas); C. Iribarren (Carlos); M.R. Järvelin; W.H.L. Kao (Wen); J. Kaprio (Jaakko); L.J. Launer (Lenore); P. Munroe (Patricia); B.A. Oostra (Ben); B.W.J.H. Penninx (Brenda); P.P. Pramstaller (Peter Paul); B.M. Psaty (Bruce); T. Quertermous (Thomas); A. Rissanen (Aila); I. Rudan (Igor); A.R. Shuldiner (Alan); N. Soranzo (Nicole); T.D. Spector (Timothy); A.C. Syvanen; M. Uda (Manuela); A.G. Uitterlinden (André); H. Völzke (Henry); P. Vollenweider (Peter); J.F. Wilson (James); J.C.M. Witteman (Jacqueline); A.F. Wright (Alan); G.R. Abecasis (Gonçalo); M. Boehnke (Michael); I.B. Borecki (Ingrid); P. Deloukas (Panagiotis); T.M. Frayling (Timothy); L. Groop (Leif); T. Haritunians (Talin); D.J. Hunter (David); K.E. North (Kari); J.R. O'Cconnell (Jeffrey); L. Peltonen (Leena Johanna); D. Schlessinger; D.P. Strachan (David); J.N. Hirschhorn (Joel); T.L. Assimes (Themistocles); H.E. Wichmann (Heinz Erich); U. Thorsteinsdottir (Unnur); C.M. van Duijn (Cornelia); K. Stefansson (Kari); L.A. Cupples (Adrienne); R.J.F. Loos (Ruth); I.E. Barroso (Inês); C.S. Fox (Caroline); K.L. Mohlke (Karen); C.M. Lindgren (Cecilia); R.M. Watanabe (Richard); M.N. Weedon (Michael)

    2010-01-01

    textabstractWaist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association

  15. Genome-wide association identifies genetic variants associated with lentiform nucleus volume in N = 1345 young and elderly subjects.

    Science.gov (United States)

    Hibar, Derrek P; Stein, Jason L; Ryles, April B; Kohannim, Omid; Jahanshad, Neda; Medland, Sarah E; Hansell, Narelle K; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Martin, Nicholas G; Wright, Margaret J; Saykin, Andrew J; Jack, Clifford R; Weiner, Michael W; Toga, Arthur W; Thompson, Paul M

    2013-06-01

    Deficits in lentiform nucleus volume and morphometry are implicated in a number of genetically influenced disorders, including Parkinson's disease, schizophrenia, and ADHD. Here we performed genome-wide searches to discover common genetic variants associated with differences in lentiform nucleus volume in human populations. We assessed structural MRI scans of the brain in two large genotyped samples: the Alzheimer's Disease Neuroimaging Initiative (ADNI; N = 706) and the Queensland Twin Imaging Study (QTIM; N = 639). Statistics of association from each cohort were combined meta-analytically using a fixed-effects model to boost power and to reduce the prevalence of false positive findings. We identified a number of associations in and around the flavin-containing monooxygenase (FMO) gene cluster. The most highly associated SNP, rs1795240, was located in the FMO3 gene; after meta-analysis, it showed genome-wide significant evidence of association with lentiform nucleus volume (P MA  = 4.79 × 10(-8)). This commonly-carried genetic variant accounted for 2.68 % and 0.84 % of the trait variability in the ADNI and QTIM samples, respectively, even though the QTIM sample was on average 50 years younger. Pathway enrichment analysis revealed significant contributions of this gene to the cytochrome P450 pathway, which is involved in metabolizing numerous therapeutic drugs for pain, seizures, mania, depression, anxiety, and psychosis. The genetic variants we identified provide replicated, genome-wide significant evidence for the FMO gene cluster's involvement in lentiform nucleus volume differences in human populations.

  16. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes

    DEFF Research Database (Denmark)

    Bonàs-Guarch, Sílvia; Guindo-Martínez, Marta; Miguel-Escalada, Irene

    2018-01-01

    The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel...... available data using novel genetic resources and analytical approaches....... associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly...

  17. Genome-Wide Association Study of the Genetic Determinants of Emphysema Distribution.

    Science.gov (United States)

    Boueiz, Adel; Lutz, Sharon M; Cho, Michael H; Hersh, Craig P; Bowler, Russell P; Washko, George R; Halper-Stromberg, Eitan; Bakke, Per; Gulsvik, Amund; Laird, Nan M; Beaty, Terri H; Coxson, Harvey O; Crapo, James D; Silverman, Edwin K; Castaldi, Peter J; DeMeo, Dawn L

    2017-03-15

    Emphysema has considerable variability in the severity and distribution of parenchymal destruction throughout the lungs. Upper lobe-predominant emphysema has emerged as an important predictor of response to lung volume reduction surgery. Yet, aside from alpha-1 antitrypsin deficiency, the genetic determinants of emphysema distribution remain largely unknown. To identify the genetic influences of emphysema distribution in non-alpha-1 antitrypsin-deficient smokers. A total of 11,532 subjects with complete genotype and computed tomography densitometry data in the COPDGene (Genetic Epidemiology of Chronic Obstructive Pulmonary Disease [COPD]; non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), and GenKOLS (Genetics of Chronic Obstructive Lung Disease) studies were analyzed. Two computed tomography scan emphysema distribution measures (difference between upper-third and lower-third emphysema; ratio of upper-third to lower-third emphysema) were tested for genetic associations in all study subjects. Separate analyses in each study population were followed by a fixed effect metaanalysis. Single-nucleotide polymorphism-, gene-, and pathway-based approaches were used. In silico functional evaluation was also performed. We identified five loci associated with emphysema distribution at genome-wide significance. These loci included two previously reported associations with COPD susceptibility (4q31 near HHIP and 15q25 near CHRNA5) and three new associations near SOWAHB, TRAPPC9, and KIAA1462. Gene set analysis and in silico functional evaluation revealed pathways and cell types that may potentially contribute to the pathogenesis of emphysema distribution. This multicohort genome-wide association study identified new genomic loci associated with differential emphysematous destruction throughout the lungs. These findings may point to new biologic pathways on which to expand diagnostic and therapeutic

  18. Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases

    Science.gov (United States)

    Amos, Christopher I.; Bafna, Vineet; Hauser, Elizabeth R.; Hernandez, Ryan D.; Li, Chun; Liberles, David A.; McAllister, Kimberly; Moore, Jason H.; Paltoo, Dina N.; Papanicolaou, George J.; Peng, Bo; Ritchie, Marylyn D.; Rosenfeld, Gabriel; Witte, John S.

    2014-01-01

    Genetic simulation programs are used to model data under specified assumptions to facilitate the understanding and study of complex genetic systems. Standardized data sets generated using genetic simulation are essential for the development and application of novel analytical tools in genetic epidemiology studies. With continuing advances in high-throughput genomic technologies and generation and analysis of larger, more complex data sets, there is a need for updating current approaches in genetic simulation modeling. To provide a forum to address current and emerging challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled “Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases” at the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of the workshop were to: (i) identify opportunities, challenges and resource needs for the development and application of genetic simulation models; (ii) improve the integration of tools for modeling and analysis of simulated data; and (iii) foster collaborations to facilitate development and applications of genetic simulation. During the course of the meeting the group identified challenges and opportunities for the science of simulation, software and methods development, and collaboration. This paper summarizes key discussions at the meeting, and highlights important challenges and opportunities to advance the field of genetic simulation. PMID:25371374

  19. A hybrid correlation analysis with application to imaging genetics

    Science.gov (United States)

    Hu, Wenxing; Fang, Jian; Calhoun, Vince D.; Wang, Yu-Ping

    2018-03-01

    Investigating the association between brain regions and genes continues to be a challenging topic in imaging genetics. Current brain region of interest (ROI)-gene association studies normally reduce data dimension by averaging the value of voxels in each ROI. This averaging may lead to a loss of information due to the existence of functional sub-regions. Pearson correlation is widely used for association analysis. However, it only detects linear correlation whereas nonlinear correlation may exist among ROIs. In this work, we introduced distance correlation to ROI-gene association analysis, which can detect both linear and nonlinear correlations and overcome the limitation of averaging operations by taking advantage of the information at each voxel. Nevertheless, distance correlation usually has a much lower value than Pearson correlation. To address this problem, we proposed a hybrid correlation analysis approach, by applying canonical correlation analysis (CCA) to the distance covariance matrix instead of directly computing distance correlation. Incorporating CCA into distance correlation approach may be more suitable for complex disease study because it can detect highly associated pairs of ROI and gene groups, and may improve the distance correlation level and statistical power. In addition, we developed a novel nonlinear CCA, called distance kernel CCA, which seeks the optimal combination of features with the most significant dependence. This approach was applied to imaging genetic data from the Philadelphia Neurodevelopmental Cohort (PNC). Experiments showed that our hybrid approach produced more consistent results than conventional CCA across resampling and both the correlation and statistical significance were increased compared to distance correlation analysis. Further gene enrichment analysis and region of interest (ROI) analysis confirmed the associations of the identified genes with brain ROIs. Therefore, our approach provides a powerful tool for finding

  20. Analysis of malaria associated genetic traits in Cabo Verde, a melting pot of European and sub Saharan settlers.

    Science.gov (United States)

    Alves, Joana; Machado, Patrícia; Silva, João; Gonçalves, Nilza; Ribeiro, Letícia; Faustino, Paula; do Rosário, Virgílio Estólio; Manco, Licínio; Gusmão, Leonor; Amorim, António; Arez, Ana Paula

    2010-01-15

    Malaria has occurred in the Cabo Verde archipelago with epidemic characteristics since its colonization. Nowadays, it occurs in Santiago Island alone and though prophylaxis is not recommended by the World Health Organization, studies have highlight the prospect of malaria becoming a serious public health problem as a result of the presence of antimalarial drug resistance associated with mutations in the parasite populations and underscore the need for tighter surveillance. Despite the presumptive weak immune status of the population, severe symptoms of malaria are not observed and many people present a subclinical course of the disease. No data on the prevalence of sickle-cell trait and red cell glucose-6-phosphate dehydrogenase deficiency (two classical genetic factors associated with resistance to severe malaria) were available for the Cabo Verde archipelago and, therefore, we studied the low morbidity from malaria in relation to the particular genetic characteristics of the human host population. We also included the analysis of the pyruvate kinase deficiency associated gene, reported as putatively associated with resistance to the disease. Allelic frequencies of the polymorphisms examined are closer to European than to African populations and no malaria selection signatures were found. No association was found between the analyzed human factors and infection but one result is of high interest: a linkage disequilibrium test revealed an association of distant loci in the PKLR gene and adjacent regions, only in non-infected individuals. This could mean a more conserved gene region selected in association to protection against the infection and/or the disease. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Multiple genetic variants associated with primary biliary cirrhosis in a Han Chinese population.

    Science.gov (United States)

    Dong, Ming; Li, Jinxin; Tang, Ruqi; Zhu, Ping; Qiu, Fang; Wang, Chan; Qiu, Jie; Wang, Lan; Dai, Yaping; Xu, Ping; Gao, Yueqiu; Han, Chongxu; Wang, Yongzhong; Wu, Jian; Wu, Xudong; Zhang, Kui; Dai, Na; Sun, Weihao; Zhou, Jianpo; Hu, Zhigang; Liu, Lei; Jiang, Yuzhang; Nie, Jinshan; Zhao, Yi; Gong, Yuhua; Tian, Ye; Ji, Hualiang; Jiao, Zhijun; Jiang, Po; Shi, Xingjuan; Jawed, Rohil; Zhang, Yu; Huang, Qinghai; Li, Enling; Wei, Yiran; Xie, Wei; Zhao, Weifeng; Liu, Xiang; Zhu, Xiang; Qiu, Hong; He, Gengsheng; Chen, Weichang; Seldin, Michael F; Gershwin, M Eric; Liu, Xiangdong; Ma, Xiong

    2015-06-01

    Multiple genome-wide association studies of primary biliary cirrhosis (PBC) in both European and Japanese ancestries have shown significant associations of many genetic loci contributing to the susceptibility to PBC. Major differences in susceptibility loci between these two population groups were observed. In this study, we examined whether the most significant loci observed in either European and/or Japanese cohorts are associated with PBC in a Han Chinese population. In 1070 PBC patients and 1198 controls, we observed highly significant associations at CD80 (rs2293370, P = 2.67 × 10(-8)) and TNFSF15 (rs4979462, P = 3.86 × 10(-8)) and significant associations at 17q12-21 (rs9303277), PDGFB (rs715505), NF-κB1 (rs7665090), IL12RB2 (rs11209050), and STAT4 (rs7574865; all corrected P values rs7574865) was strongly associated after additional control samples were analyzed. Our study is the first large-scale genetic analysis in a Han Chinese PBC cohort. These results do not only reflect that Han Chinese PBC patients share common genetic susceptibility genes with both their Japanese and European counterparts but also suggest a distinctly different genetic susceptibility profile.

  2. Association analysis of genetic variants in the myosin IXB gene in acute pancreatitis.

    Directory of Open Access Journals (Sweden)

    Rian M Nijmeijer

    Full Text Available INTRODUCTION: Impairment of the mucosal barrier plays an important role in the pathophysiology of acute pancreatitis. The myosin IXB (MYO9B gene and the two tight-junction adaptor genes, PARD3 and MAGI2, have been linked to gastrointestinal permeability. Common variants of these genes are associated with celiac disease and inflammatory bowel disease, two other conditions in which intestinal permeability plays a role. We investigated genetic variation in MYO9B, PARD3 and MAGI2 for association with acute pancreatitis. METHODS: Five single nucleotide polymorphisms (SNPs in MYO9B, two SNPs in PARD3, and three SNPs in MAGI2 were studied in a Dutch cohort of 387 patients with acute pancreatitis and over 800 controls, and in a German cohort of 235 patients and 250 controls. RESULTS: Association to MYO9B and PARD3 was observed in the Dutch cohort, but only one SNP in MYO9B and one in MAGI2 showed association in the German cohort (p < 0.05. Joint analysis of the combined cohorts showed that, after correcting for multiple testing, only two SNPs in MYO9B remained associated (rs7259292, p = 0.0031, odds ratio (OR 1.94, 95% confidence interval (95% CI 1.35-2.78; rs1545620, p = 0.0006, OR 1.33, 95% CI 1.16-1.53. SNP rs1545620 is a non-synonymous SNP previously suspected to impact on ulcerative colitis. None of the SNPs showed association to disease severity or etiology. CONCLUSION: Variants in MYO9B may be involved in acute pancreatitis, but we found no evidence for involvement of PARD3 or MAGI2.

  3. Re-analysis of public genetic data reveals a rare X-chromosomal variant associated with type 2 diabetes.

    Science.gov (United States)

    Bonàs-Guarch, Sílvia; Guindo-Martínez, Marta; Miguel-Escalada, Irene; Grarup, Niels; Sebastian, David; Rodriguez-Fos, Elias; Sánchez, Friman; Planas-Fèlix, Mercè; Cortes-Sánchez, Paula; González, Santi; Timshel, Pascal; Pers, Tune H; Morgan, Claire C; Moran, Ignasi; Atla, Goutham; González, Juan R; Puiggros, Montserrat; Martí, Jonathan; Andersson, Ehm A; Díaz, Carlos; Badia, Rosa M; Udler, Miriam; Leong, Aaron; Kaur, Varindepal; Flannick, Jason; Jørgensen, Torben; Linneberg, Allan; Jørgensen, Marit E; Witte, Daniel R; Christensen, Cramer; Brandslund, Ivan; Appel, Emil V; Scott, Robert A; Luan, Jian'an; Langenberg, Claudia; Wareham, Nicholas J; Pedersen, Oluf; Zorzano, Antonio; Florez, Jose C; Hansen, Torben; Ferrer, Jorge; Mercader, Josep Maria; Torrents, David

    2018-01-22

    The reanalysis of existing GWAS data represents a powerful and cost-effective opportunity to gain insights into the genetics of complex diseases. By reanalyzing publicly available type 2 diabetes (T2D) genome-wide association studies (GWAS) data for 70,127 subjects, we identify seven novel associated regions, five driven by common variants (LYPLAL1, NEUROG3, CAMKK2, ABO, and GIP genes), one by a low-frequency (EHMT2), and one driven by a rare variant in chromosome Xq23, rs146662057, associated with a twofold increased risk for T2D in males. rs146662057 is located within an active enhancer associated with the expression of Angiotensin II Receptor type 2 gene (AGTR2), a modulator of insulin sensitivity, and exhibits allelic specific activity in muscle cells. Beyond providing insights into the genetics and pathophysiology of T2D, these results also underscore the value of reanalyzing publicly available data using novel genetic resources and analytical approaches.

  4. Genetic association of marbling score with intragenic nucleotide variants at selection signals of the bovine genome.

    Science.gov (United States)

    Ryu, J; Lee, C

    2016-04-01

    Selection signals of Korean cattle might be attributed largely to artificial selection for meat quality. Rapidly increased intragenic markers of newly annotated genes in the bovine genome would help overcome limited findings of genetic markers associated with meat quality at the selection signals in a previous study. The present study examined genetic associations of marbling score (MS) with intragenic nucleotide variants at selection signals of Korean cattle. A total of 39 092 nucleotide variants of 407 Korean cattle were utilized in the association analysis. A total of 129 variants were selected within newly annotated genes in the bovine genome. Their genetic associations were analyzed using the mixed model with random polygenic effects based on identical-by-state genetic relationships among animals in order to control for spurious associations produced by population structure. Genetic associations of MS were found (Pdirectional selection for greater MS and remain selection signals in the bovine genome. Further studies of fine mapping would be useful to incorporate favorable alleles in marker-assisted selection for MS of Korean cattle.

  5. Genetic mutations associated with status epilepticus.

    Science.gov (United States)

    Bhatnagar, M; Shorvon, S

    2015-08-01

    This paper reports the results of a preliminary search of the literature aimed at identifying the genetic mutations reported to be strongly associated with status epilepticus. Genetic mutations were selected for inclusion if status epilepticus was specifically mentioned as a consequence of the mutation in standard genetic databases or in a case report or review article. Mutations in 122 genes were identified. The genetic mutations identified were found in only rare conditions (sometimes vanishingly rare) and mostly in infants and young children with multiple other handicaps. Most of the genetic mutations can be subdivided into those associated with cortical dysplasias, inborn errors of metabolism, mitochondrial disease, or epileptic encephalopathies and childhood syndromes. There are no identified 'pure status epilepticus genes'. The range of genes underpinning status epilepticus differs in many ways from the range of genes underpinning epilepsy, which suggests that the processes underpinning status epilepticus differ from those underpinning epilepsy. It has been frequently postulated that status epilepticus is the result of a failure of 'seizure termination mechanisms', but the wide variety of genes affecting very diverse biochemical pathways identified in this survey makes any unitary cause unlikely. The genetic influences in status epilepticus are likely to involve a wide range of mechanisms, some related to development, some to cerebral energy production, some to diverse altered biochemical pathways, some to transmitter and membrane function, and some to defects in networks or systems. The fact that many of the identified genes are involved with cerebral development suggests that status epilepticus might often be a system or network phenomenon. To date, there are very few genes identified which are associated with adult-onset status epilepticus (except in those with preexisting neurological damage), and this is disappointing as the cause of many adult

  6. Candidate genetic pathways for attention-deficit/hyperactivity disorder (ADHD) show association to hyperactive/impulsive symptoms in children with ADHD.

    Science.gov (United States)

    Bralten, Janita; Franke, Barbara; Waldman, Irwin; Rommelse, Nanda; Hartman, Catharina; Asherson, Philip; Banaschewski, Tobias; Ebstein, Richard P; Gill, Michael; Miranda, Ana; Oades, Robert D; Roeyers, Herbert; Rothenberger, Aribert; Sergeant, Joseph A; Oosterlaan, Jaap; Sonuga-Barke, Edmund; Steinhausen, Hans-Christoph; Faraone, Stephen V; Buitelaar, Jan K; Arias-Vásquez, Alejandro

    2013-11-01

    Because multiple genes with small effect sizes are assumed to play a role in attention-deficit/hyperactivity disorder (ADHD) etiology, considering multiple variants within the same analysis likely increases the total explained phenotypic variance, thereby boosting the power of genetic studies. This study investigated whether pathway-based analysis could bring scientists closer to unraveling the biology of ADHD. The pathway was described as a predefined gene selection based on a well-established database or literature data. Common genetic variants in pathways involved in dopamine/norepinephrine and serotonin neurotransmission and genes involved in neuritic outgrowth were investigated in cases from the International Multicentre ADHD Genetics (IMAGE) study. Multivariable analysis was performed to combine the effects of single genetic variants within the pathway genes. Phenotypes were DSM-IV symptom counts for inattention and hyperactivity/impulsivity (n = 871) and symptom severity measured with the Conners Parent (n = 930) and Teacher (n = 916) Rating Scales. Summing genetic effects of common genetic variants within the pathways showed a significant association with hyperactive/impulsive symptoms ((p)empirical = .007) but not with inattentive symptoms ((p)empirical = .73). Analysis of parent-rated Conners hyperactive/impulsive symptom scores validated this result ((p)empirical = .0018). Teacher-rated Conners scores were not associated. Post hoc analyses showed a significant contribution of all pathways to the hyperactive/impulsive symptom domain (dopamine/norepinephrine, (p)empirical = .0004; serotonin, (p)empirical = .0149; neuritic outgrowth, (p)empirical = .0452). The present analysis shows an association between common variants in 3 genetic pathways and the hyperactive/impulsive component of ADHD. This study demonstrates that pathway-based association analyses, using quantitative measurements of ADHD symptom domains, can increase the power of genetic analyses to

  7. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes

    DEFF Research Database (Denmark)

    Ng, Maggie C Y; Shriner, Daniel; Chen, Brian H

    2014-01-01

    . In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs......) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications...... for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies....

  8. Multivariate genetic divergence among sugarcane clones by multivariate analysis associated with mixed models

    Directory of Open Access Journals (Sweden)

    Valéria Rosa Lopes

    2014-02-01

    Full Text Available This work had the aim to evaluate the genetic divergence in sugarcane clones using the methodology of graphic dispersion by principal components analysis associated to linear mixed models, indentifying the more divergent and productive genotypes with more precision, for a subsequent combination. 138 sugarcane clones of the RB97 series of the Sugarcane Breeding Program of the Universidade Federal do Parana, more two standard cultivars were evaluated in three environments, with two replications. The two first components explained 96% of the total variation, sufficiently for explaining the divergence found. The variable that contributed the most to de divergence was kilogram of brix per plot (BKP followed by brix, mass of 10 stalks and number of stalks per plot. The more divergent sugarcane clones were RB975008, RB975112, RB975019, RB975153 and RB975067 and the more productive clones were RB975269, RB977533, RB975102, RB975317 and RB975038.

  9. Genetic analysis

    NARCIS (Netherlands)

    Koornneef, M.; Alonso-Blanco, C.; Stam, P.

    2006-01-01

    The Mendelian analysis of genetic variation, available as induced mutants or as natural variation, requires a number of steps that are described in this chapter. These include the determination of the number of genes involved in the observed trait's variation, the determination of dominance

  10. Genetic Analysis of Seed Yield Components and its Association with Forage Production in Wild and Cultivated Species of Sainfoin

    Directory of Open Access Journals (Sweden)

    A. Najafipoor

    2017-02-01

    Full Text Available Little is known about genetic variation of seed related traits and their association with forage characters in sainfoin. In order to investigate the variation and relationship among seed yield and its components, 93 genotypes from 21 wild and cultivated species of genus Onobrychis were evaluated using a randomized complete block design with four replications at Isfahan University of Technology Research Farm, Isfahan, Iran. Analysis of variance showed that there was significant difference among genotypes, indicating existence of considerable genetic variation in this germplasm. Panicle fertility and panicle length had the most variation in cultivated and the wild genotypes, respectively. Results of correlation analysis showed that seed yield was positively correlated with number of stems per plant and number of seeds per panicle and negatively correlated with panicle length and days to 50% flowering. Seed yield had positive correlation with forage yield in wild species while this correlation was not significant in cultivated one. Cluster analysis classified the genotypes into three groups which separate wild and cultivated species. Based on principal component analysis the first component was related to seed yield and the second one was related to components of forage yield which can be used for selection of high forage and seed yielding genotypes.

  11. PedGenie: meta genetic association testing in mixed family and case-control designs

    Directory of Open Access Journals (Sweden)

    Allen-Brady Kristina

    2007-11-01

    Full Text Available Abstract Background- PedGenie software, introduced in 2006, includes genetic association testing of cases and controls that may be independent or related (nuclear families or extended pedigrees or mixtures thereof using Monte Carlo significance testing. Our aim is to demonstrate that PedGenie, a unique and flexible analysis tool freely available in Genie 2.4 software, is significantly enhanced by incorporating meta statistics for detecting genetic association with disease using data across multiple study groups. Methods- Meta statistics (chi-squared tests, odds ratios, and confidence intervals were calculated using formal Cochran-Mantel-Haenszel techniques. Simulated data from unrelated individuals and individuals in families were used to illustrate meta tests and their empirically-derived p-values and confidence intervals are accurate, precise, and for independent designs match those provided by standard statistical software. Results- PedGenie yields accurate Monte Carlo p-values for meta analysis of data across multiple studies, based on validation testing using pedigree, nuclear family, and case-control data simulated under both the null and alternative hypotheses of a genotype-phenotype association. Conclusion- PedGenie allows valid combined analysis of data from mixtures of pedigree-based and case-control resources. Added meta capabilities provide new avenues for association analysis, including pedigree resources from large consortia and multi-center studies.

  12. Genetic diversity and population structure of Pisum sativum accessions for marker-trait association of lipid content

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmad

    2015-06-01

    Full Text Available Field pea (Pisum sativum L. is an important protein-rich pulse crop produced globally. Increasing the lipid content of Pisum seeds through conventional and contemporary molecular breeding tools may bring added value to the crop. However, knowledge about genetic diversity and lipid content in field pea is limited. An understanding of genetic diversity and population structure in diverse germplasm is important and a prerequisite for genetic dissection of complex characteristics and marker-trait associations. Fifty polymorphic microsatellite markers detecting a total of 207 alleles were used to obtain information on genetic diversity, population structure and marker-trait associations. Cluster analysis was performed using UPGMA to construct a dendrogram from a pairwise similarity matrix. Pea genotypes were divided into five major clusters. A model-based population structure analysis divided the pea accessions into four groups. Percentage lipid content in 35 diverse pea accessions was used to find potential associations with the SSR markers. Markers AD73, D21, and AA5 were significantly associated with lipid content using a mixed linear model (MLM taking population structure (Q and relative kinship (K into account. The results of this preliminary study suggested that the population could be used for marker-trait association mapping studies.

  13. Integrated analysis of genetic data with R

    Directory of Open Access Journals (Sweden)

    Zhao Jing

    2006-01-01

    Full Text Available Abstract Genetic data are now widely available. There is, however, an apparent lack of concerted effort to produce software systems for statistical analysis of genetic data compared with other fields of statistics. It is often a tremendous task for end-users to tailor them for particular data, especially when genetic data are analysed in conjunction with a large number of covariates. Here, R http://www.r-project.org, a free, flexible and platform-independent environment for statistical modelling and graphics is explored as an integrated system for genetic data analysis. An overview of some packages currently available for analysis of genetic data is given. This is followed by examples of package development and practical applications. With clear advantages in data management, graphics, statistical analysis, programming, internet capability and use of available codes, it is a feasible, although challenging, task to develop it into an integrated platform for genetic analysis; this will require the joint efforts of many researchers.

  14. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes.

    Science.gov (United States)

    McKay, James D; Hung, Rayjean J; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C; Caporaso, Neil E; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A; Qian, David C; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N; Bojesen, Stig E; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C; Bush, William S; Tardon, Adonina; Rennert, Gad; Teare, M Dawn; Field, John K; Kiemeney, Lambertus A; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B; Andrew, Angeline S; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A; Wilkens, Lynne R; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F M; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael P A; Marcus, Michael W; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A; Barnett, Matt P; Chen, Chu; Goodman, Gary E; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H-Erich; Manz, Judith; Muley, Thomas R; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A; Tsao, Ming-Sound; Arnold, Susanne M; Haura, Eric B; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J; Butler, Lesley M; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S; McLaughlin, John; Stevens, Victoria L; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C; Obeidat, Ma'en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D; Wain, Louise V; Rafnar, Thorunn; Thorgeirsson, Thorgeir E; Reginsson, Gunnar W; Stefansson, Kari; Hancock, Dana B; Bierut, Laura J; Spitz, Margaret R; Gaddis, Nathan C; Lutz, Sharon M; Gu, Fangyi; Johnson, Eric O; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I

    2017-07-01

    Although several lung cancer susceptibility loci have been identified, much of the heritability for lung cancer remains unexplained. Here 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated genome-wide association study (GWAS) analysis of lung cancer in 29,266 cases and 56,450 controls. We identified 18 susceptibility loci achieving genome-wide significance, including 10 new loci. The new loci highlight the striking heterogeneity in genetic susceptibility across the histological subtypes of lung cancer, with four loci associated with lung cancer overall and six loci associated with lung adenocarcinoma. Gene expression quantitative trait locus (eQTL) analysis in 1,425 normal lung tissue samples highlights RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer.

  15. A Multi-Marker Genetic Association Test Based on the Rasch Model Applied to Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Wenjia Wang

    Full Text Available Results from Genome-Wide Association Studies (GWAS have shown that the genetic basis of complex traits often include many genetic variants with small to moderate effects whose identification remains a challenging problem. In this context multi-marker analysis at the gene and pathway level can complement traditional point-wise approaches that treat the genetic markers individually. In this paper we propose a novel statistical approach for multi-marker analysis based on the Rasch model. The method summarizes the categorical genotypes of SNPs by a generalized logistic function into a genetic score that can be used for association analysis. Through different sets of simulations, the false-positive rate and power of the proposed approach are compared to a set of existing methods, and shows good performances. The application of the Rasch model on Alzheimer's Disease (AD ADNI GWAS dataset also allows a coherent interpretation of the results. Our analysis supports the idea that APOE is a major susceptibility gene for AD. In the top genes selected by proposed method, several could be functionally linked to AD. In particular, a pathway analysis of these genes also highlights the metabolism of cholesterol, that is known to play a key role in AD pathogenesis. Interestingly, many of these top genes can be integrated in a hypothetic signalling network.

  16. A weighted U-statistic for genetic association analyses of sequencing data.

    Science.gov (United States)

    Wei, Changshuai; Li, Ming; He, Zihuai; Vsevolozhskaya, Olga; Schaid, Daniel J; Lu, Qing

    2014-12-01

    With advancements in next-generation sequencing technology, a massive amount of sequencing data is generated, which offers a great opportunity to comprehensively investigate the role of rare variants in the genetic etiology of complex diseases. Nevertheless, the high-dimensional sequencing data poses a great challenge for statistical analysis. The association analyses based on traditional statistical methods suffer substantial power loss because of the low frequency of genetic variants and the extremely high dimensionality of the data. We developed a Weighted U Sequencing test, referred to as WU-SEQ, for the high-dimensional association analysis of sequencing data. Based on a nonparametric U-statistic, WU-SEQ makes no assumption of the underlying disease model and phenotype distribution, and can be applied to a variety of phenotypes. Through simulation studies and an empirical study, we showed that WU-SEQ outperformed a commonly used sequence kernel association test (SKAT) method when the underlying assumptions were violated (e.g., the phenotype followed a heavy-tailed distribution). Even when the assumptions were satisfied, WU-SEQ still attained comparable performance to SKAT. Finally, we applied WU-SEQ to sequencing data from the Dallas Heart Study (DHS), and detected an association between ANGPTL 4 and very low density lipoprotein cholesterol. © 2014 WILEY PERIODICALS, INC.

  17. Genome-wide association study and genetic diversity analysis on nitrogen use efficiency in a Central European winter wheat (Triticum aestivum L. collection.

    Directory of Open Access Journals (Sweden)

    István Monostori

    Full Text Available To satisfy future demands, the increase of wheat (Triticum aestivum L. yield is inevitable. Simultaneously, maintaining high crop productivity and efficient use of nutrients, especially nitrogen use efficiency (NUE, are essential for sustainable agriculture. NUE and its components are inherently complex and highly influenced by environmental factors, nitrogen management practices and genotypic variation. Therefore, a better understanding of their genetic basis and regulation is fundamental. To investigate NUE-related traits and their genetic and environmental regulation, field trials were evaluated in a Central European wheat collection of 93 cultivars at two nitrogen input levels across three seasons. This elite germplasm collection was genotyped on DArTseq® genotypic platform to identify loci affecting N-related complex agronomic traits. To conduct robust genome-wide association mapping, the genetic diversity, population structure and linkage disequilibrium were examined. Population structure was investigated by various methods and two subpopulations were identified. Their separation is based on the breeding history of the cultivars, while analysis of linkage disequilibrium suggested that selective pressures had acted on genomic regions bearing loci with remarkable agronomic importance. Besides NUE, genetic basis for variation in agronomic traits indirectly affecting NUE and its components, moreover genetic loci underlying response to nitrogen fertilisation were also determined. Altogether, 183 marker-trait associations (MTA were identified spreading over almost the entire genome. We found that most of the MTAs were environmental-dependent. The present study identified several associated markers in those genomic regions where previous reports had found genes or quantitative trait loci influencing the same traits, while most of the MTAs revealed new genomic regions. Our data provides an overview of the allele composition of bread wheat

  18. Genome-Wide Association Analysis Reveals Genetic Heterogeneity of Sjögren's Syndrome According to Ancestry

    DEFF Research Database (Denmark)

    Taylor, Kimberly E; Wong, Quenna; Levine, David M

    2017-01-01

    common protocol-directed methods. The aim of this study was to examine the genetic etiology of Sjögren's syndrome (SS) across ancestry and disease subsets. METHODS: We performed genome-wide association study analyses using SICCA subjects and external controls obtained from dbGaP data sets, one using all......OBJECTIVE: The Sjögren's International Collaborative Clinical Alliance (SICCA) is an international data registry and biorepository derived from a multisite observational study of participants in whom genotyping was performed on the Omni2.5M platform and who had undergone deep phenotyping using...... subphenotype distributions differ by ethnicity, and whether this contributes to the heterogeneity of genetic associations. RESULTS: We observed significant associations in established regions of the major histocompatibility complex (MHC), IRF5, and STAT4 (P = 3 × 10(-42) , P = 3 × 10(-14) , and P = 9 × 10...

  19. Insights into the genetic architecture of early stage age-related macular degeneration: a genome-wide association study meta-analysis.

    Directory of Open Access Journals (Sweden)

    Elizabeth G Holliday

    Full Text Available Genetic factors explain a majority of risk variance for age-related macular degeneration (AMD. While genome-wide association studies (GWAS for late AMD implicate genes in complement, inflammatory and lipid pathways, the genetic architecture of early AMD has been relatively under studied. We conducted a GWAS meta-analysis of early AMD, including 4,089 individuals with prevalent signs of early AMD (soft drusen and/or retinal pigment epithelial changes and 20,453 individuals without these signs. For various published late AMD risk loci, we also compared effect sizes between early and late AMD using an additional 484 individuals with prevalent late AMD. GWAS meta-analysis confirmed previously reported association of variants at the complement factor H (CFH (peak P = 1.5×10(-31 and age-related maculopathy susceptibility 2 (ARMS2 (P = 4.3×10(-24 loci, and suggested Apolipoprotein E (ApoE polymorphisms (rs2075650; P = 1.1×10(-6 associated with early AMD. Other possible loci that did not reach GWAS significance included variants in the zinc finger protein gene GLI3 (rs2049622; P = 8.9×10(-6 and upstream of GLI2 (rs6721654; P = 6.5×10(-6, encoding retinal Sonic hedgehog signalling regulators, and in the tyrosinase (TYR gene (rs621313; P = 3.5×10(-6, involved in melanin biosynthesis. For a range of published, late AMD risk loci, estimated effect sizes were significantly lower for early than late AMD. This study confirms the involvement of multiple established AMD risk variants in early AMD, but suggests weaker genetic effects on the risk of early AMD relative to late AMD. Several biological processes were suggested to be potentially specific for early AMD, including pathways regulating RPE cell melanin content and signalling pathways potentially involved in retinal regeneration, generating hypotheses for further investigation.

  20. Arthritis Genetics Analysis Aids Drug Discovery

    Science.gov (United States)

    ... NIH Research Matters January 13, 2014 Arthritis Genetics Analysis Aids Drug Discovery An international research team identified 42 new ... Edition Distracted Driving Raises Crash Risk Arthritis Genetics Analysis Aids Drug Discovery Oxytocin Affects Facial Recognition Connect with Us ...

  1. Covariance Association Test (CVAT) Identifies Genetic Markers Associated with Schizophrenia in Functionally Associated Biological Processes

    DEFF Research Database (Denmark)

    Rohde, Palle Duun; Demontis, Ditte; Castro Dias Cuyabano, Beatriz

    2016-01-01

    was among the top performers. When extending CVAT to utilize a mixture of SNP effects, we found an increase in power to detect the causal sets. Applying the methods to a Danish schizophrenia case–control data set, we found genomic evidence for association of schizophrenia with vitamin A metabolism......Schizophrenia is a psychiatric disorder with large personal and social costs, and understanding the genetic etiology is important. Such knowledge can be obtained by testing the association between a disease phenotype and individual genetic markers; however, such single-marker methods have limited...... genomic best linear unbiased prediction (GBLUP), the covariance association test (CVAT). We compared the performance of CVAT to other commonly used set tests. The comparison was conducted using a simulated study population having the same genetic parameters as for schizophrenia. We found that CVAT...

  2. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits.

    Directory of Open Access Journals (Sweden)

    Angelo Scuteri

    2007-07-01

    Full Text Available The obesity epidemic is responsible for a substantial economic burden in developed countries and is a major risk factor for type 2 diabetes and cardiovascular disease. The disease is the result not only of several environmental risk factors, but also of genetic predisposition. To take advantage of recent advances in gene-mapping technology, we executed a genome-wide association scan to identify genetic variants associated with obesity-related quantitative traits in the genetically isolated population of Sardinia. Initial analysis suggested that several SNPs in the FTO and PFKP genes were associated with increased BMI, hip circumference, and weight. Within the FTO gene, rs9930506 showed the strongest association with BMI (p = 8.6 x10(-7, hip circumference (p = 3.4 x 10(-8, and weight (p = 9.1 x 10(-7. In Sardinia, homozygotes for the rare "G" allele of this SNP (minor allele frequency = 0.46 were 1.3 BMI units heavier than homozygotes for the common "A" allele. Within the PFKP gene, rs6602024 showed very strong association with BMI (p = 4.9 x 10(-6. Homozygotes for the rare "A" allele of this SNP (minor allele frequency = 0.12 were 1.8 BMI units heavier than homozygotes for the common "G" allele. To replicate our findings, we genotyped these two SNPs in the GenNet study. In European Americans (N = 1,496 and in Hispanic Americans (N = 839, we replicated significant association between rs9930506 in the FTO gene and BMI (p-value for meta-analysis of European American and Hispanic American follow-up samples, p = 0.001, weight (p = 0.001, and hip circumference (p = 0.0005. We did not replicate association between rs6602024 and obesity-related traits in the GenNet sample, although we found that in European Americans, Hispanic Americans, and African Americans, homozygotes for the rare "A" allele were, on average, 1.0-3.0 BMI units heavier than homozygotes for the more common "G" allele. In summary, we have completed a whole genome-association scan for

  3. Genetic determinants of heel bone properties: genome-wide association meta-analysis and replication in the GEFOS/GENOMOS consortium

    Science.gov (United States)

    Moayyeri, Alireza; Hsu, Yi-Hsiang; Karasik, David; Estrada, Karol; Xiao, Su-Mei; Nielson, Carrie; Srikanth, Priya; Giroux, Sylvie; Wilson, Scott G.; Zheng, Hou-Feng; Smith, Albert V.; Pye, Stephen R.; Leo, Paul J.; Teumer, Alexander; Hwang, Joo-Yeon; Ohlsson, Claes; McGuigan, Fiona; Minster, Ryan L.; Hayward, Caroline; Olmos, José M.; Lyytikäinen, Leo-Pekka; Lewis, Joshua R.; Swart, Karin M.A.; Masi, Laura; Oldmeadow, Chris; Holliday, Elizabeth G.; Cheng, Sulin; van Schoor, Natasja M.; Harvey, Nicholas C.; Kruk, Marcin; del Greco M, Fabiola; Igl, Wilmar; Trummer, Olivia; Grigoriou, Efi; Luben, Robert; Liu, Ching-Ti; Zhou, Yanhua; Oei, Ling; Medina-Gomez, Carolina; Zmuda, Joseph; Tranah, Greg; Brown, Suzanne J.; Williams, Frances M.; Soranzo, Nicole; Jakobsdottir, Johanna; Siggeirsdottir, Kristin; Holliday, Kate L.; Hannemann, Anke; Go, Min Jin; Garcia, Melissa; Polasek, Ozren; Laaksonen, Marika; Zhu, Kun; Enneman, Anke W.; McEvoy, Mark; Peel, Roseanne; Sham, Pak Chung; Jaworski, Maciej; Johansson, Åsa; Hicks, Andrew A.; Pludowski, Pawel; Scott, Rodney; Dhonukshe-Rutten, Rosalie A.M.; van der Velde, Nathalie; Kähönen, Mika; Viikari, Jorma S.; Sievänen, Harri; Raitakari, Olli T.; González-Macías, Jesús; Hernández, Jose L.; Mellström, Dan; Ljunggren, Östen; Cho, Yoon Shin; Völker, Uwe; Nauck, Matthias; Homuth, Georg; Völzke, Henry; Haring, Robin; Brown, Matthew A.; McCloskey, Eugene; Nicholson, Geoffrey C.; Eastell, Richard; Eisman, John A.; Jones, Graeme; Reid, Ian R.; Dennison, Elaine M.; Wark, John; Boonen, Steven; Vanderschueren, Dirk; Wu, Frederick C.W.; Aspelund, Thor; Richards, J. Brent; Bauer, Doug; Hofman, Albert; Khaw, Kay-Tee; Dedoussis, George; Obermayer-Pietsch, Barbara; Gyllensten, Ulf; Pramstaller, Peter P.; Lorenc, Roman S.; Cooper, Cyrus; Kung, Annie Wai Chee; Lips, Paul; Alen, Markku; Attia, John; Brandi, Maria Luisa; de Groot, Lisette C.P.G.M.; Lehtimäki, Terho; Riancho, José A.; Campbell, Harry; Liu, Yongmei; Harris, Tamara B.; Akesson, Kristina; Karlsson, Magnus; Lee, Jong-Young; Wallaschofski, Henri; Duncan, Emma L.; O'Neill, Terence W.; Gudnason, Vilmundur; Spector, Timothy D.; Rousseau, François; Orwoll, Eric; Cummings, Steven R.; Wareham, Nick J.; Rivadeneira, Fernando; Uitterlinden, Andre G.; Prince, Richard L.; Kiel, Douglas P.; Reeve, Jonathan; Kaptoge, Stephen K.

    2014-01-01

    Quantitative ultrasound of the heel captures heel bone properties that independently predict fracture risk and, with bone mineral density (BMD) assessed by X-ray (DXA), may be convenient alternatives for evaluating osteoporosis and fracture risk. We performed a meta-analysis of genome-wide association (GWA) studies to assess the genetic determinants of heel broadband ultrasound attenuation (BUA; n = 14 260), velocity of sound (VOS; n = 15 514) and BMD (n = 4566) in 13 discovery cohorts. Independent replication involved seven cohorts with GWA data (in silico n = 11 452) and new genotyping in 15 cohorts (de novo n = 24 902). In combined random effects, meta-analysis of the discovery and replication cohorts, nine single nucleotide polymorphisms (SNPs) had genome-wide significant (P < 5 × 10−8) associations with heel bone properties. Alongside SNPs within or near previously identified osteoporosis susceptibility genes including ESR1 (6q25.1: rs4869739, rs3020331, rs2982552), SPTBN1 (2p16.2: rs11898505), RSPO3 (6q22.33: rs7741021), WNT16 (7q31.31: rs2908007), DKK1 (10q21.1: rs7902708) and GPATCH1 (19q13.11: rs10416265), we identified a new locus on chromosome 11q14.2 (rs597319 close to TMEM135, a gene recently linked to osteoblastogenesis and longevity) significantly associated with both BUA and VOS (P < 8.23 × 10−14). In meta-analyses involving 25 cohorts with up to 14 985 fracture cases, six of 10 SNPs associated with heel bone properties at P < 5 × 10−6 also had the expected direction of association with any fracture (P < 0.05), including three SNPs with P < 0.005: 6q22.33 (rs7741021), 7q31.31 (rs2908007) and 10q21.1 (rs7902708). In conclusion, this GWA study reveals the effect of several genes common to central DXA-derived BMD and heel ultrasound/DXA measures and points to a new genetic locus with potential implications for better understanding of osteoporosis pathophysiology. PMID:24430505

  4. Phenotype variations affect genetic association studies of degenerative disc disease: conclusions of analysis of genetic association of 58 single nucleotide polymorphisms with highly specific phenotypes for disc degeneration in 332 subjects.

    Science.gov (United States)

    Rajasekaran, S; Kanna, Rishi Mugesh; Senthil, Natesan; Raveendran, Muthuraja; Cheung, Kenneth M C; Chan, Danny; Subramaniam, Sakthikanal; Shetty, Ajoy Prasad

    2013-10-01

    Although the influence of genetics on the process of disc degeneration is well recognized, in recently published studies, there is a wide variation in the race and selection criteria for such study populations. More importantly, the radiographic features of disc degeneration that are selected to represent the disc degeneration phenotype are variable in these studies. The study presented here evaluates the association between single nucleotide polymorphisms (SNPs) of candidate genes and three distinct radiographic features that can be defined as the degenerative disc disease (DDD) phenotype. The study objectives were to examine the allelic diversity of 58 SNPs related to 35 candidate genes related to lumbar DDD, to evaluate the association in a hitherto unevaluated ethnic Indian population that represents more than one-sixth of the world population, and to analyze how genetic associations can vary in the same study subjects with the choice of phenotype. A cross-sectional, case-control study of an ethnic Indian population was carried out. Fifty-eight SNPs in 35 potential candidate genes were evaluated in 342 subjects and the associations were analyzed against three highly specific markers for DDD, namely disc degeneration by Pfirrmann grading, end-plate damage evaluated by total end-plate damage score, and annular tears evaluated by disc herniations and hyperintense zones. Genotyping of cases and controls was performed on a genome-wide SNP array to identify potential associated disease loci. The results from the genome-wide SNP array were then used to facilitate SNP selection and genotype validation was conducted using Sequenom-based genotyping. Eleven of the 58 SNPs provided evidence of association with one of the phenotypes. For annular tears, rs1042631 SNP of AGC1 and rs467691 SNP of ADAMTS5 were highly significantly associated (p<.01) and SNPs in NGFB, IL1B, IL18RAP, and MMP10 were also significantly associated (p<.05). The rs4076018 SNP of NGFB was highly

  5. Genetic association signal near NTN4 in Tourette Syndrome

    Science.gov (United States)

    Paschou, Peristera; Yu, Dongmei; Gerber, Gloria; Evans, Patrick; Tsetsos, Fotis; Davis, Lea K.; Karagiannidis, Iordanis; Chaponis, Jonathan; Gamazon, Eric; Mueller-Vahl, Kirsten; Stuhrmann, Manfred; Schloegelhofer, Monika; Stamenkovic, Mara; Hebebrand, Johannes; Noethen, Markus; Nagy, Peter; Barta, Csaba; Tarnok, Zsanett; Rizzo, Renata; Depienne, Christel; Worbe, Yulia; Hartmann, Andreas; Cath, Danielle C.; Budman, Cathy L.; Sandor, Paul; Barr, Cathy; Wolanczyk, Thomas; Singer, Harvey; Chou, I-Ching; Grados, Marco; Posthuma, Danielle; Rouleau, Guy A.; Aschauer, Harald; Freimer, Nelson B.; Pauls, David L.; Cox, Nancy J.; Mathews, Carol A.; Scharf, Jeremiah M.

    2014-01-01

    Tourette Syndrome (TS) is a neurodevelopmental disorder with a complex genetic etiology. Through an international collaboration, we genotyped 42 single nucleotide polymorphisms (SNPs)(p<10−3) from the recent TS genome-wide association study (GWAS) in 609 independent cases and 610 ancestry-matched controls. Only rs2060546 on chromosome 12q22 (p=3.3×10−4) remained significant after Bonferroni correction. Meta-analysis with the original GWAS yielded the strongest association to date (p=5.8×10−7). Although its functional significance is unclear, rs2060546 lies closest to NTN4, an axon guidance molecule expressed in developing striatum. Risk score analysis significantly predicted case/control status (p=0.042), suggesting that many of these variants are true TS risk alleles. PMID:25042818

  6. Genetic variants associated with lung function

    DEFF Research Database (Denmark)

    Thyagarajan, Bharat; Wojczynski, Mary; Minster, Ryan L

    2014-01-01

    with exceptional longevity have not been identified. METHOD: We conducted a genome wide association study (GWAS) to identify novel genetic variants associated with lung function in the Long Life Family Study (LLFS) (n = 3,899). Replication was performed using data from the CHARGE/SpiroMeta consortia...

  7. Celiac disease : moving from genetic associations to causal variants

    NARCIS (Netherlands)

    Hrdlickova, B.; Westra, H-J; Franke, L.; Wijmenga, C.

    Genome-wide association studies are providing insight into the genetic basis of common complex diseases: more than 1150 genetic loci [2165 unique single nucleotide polymorphisms (SNPs)] have recently been associated to 159 complex diseases. The hunt for genes contributing to immune-related diseases

  8. Born to Lead? A Twin Design and Genetic Association Study of Leadership Role Occupancy*

    Science.gov (United States)

    De Neve, Jan-Emmanuel; Mikhaylov, Slava; Dawes, Christopher T.; Christakis, Nicholas A.; Fowler, James H.

    2013-01-01

    We address leadership emergence and the possibility that there is a partially innate predisposition to occupy a leadership role. Employing twin design methods on data from the National Longitudinal Study of Adolescent Health, we estimate the heritability of leadership role occupancy at 24%. Twin studies do not point to specific genes or neurological processes that might be involved. We therefore also conduct association analysis on the available genetic markers. The results show that leadership role occupancy is associated with rs4950, a single nucleotide polymorphism (SNP) residing on a neuronal acetylcholine receptor gene (CHRNB3). We replicate this family-based genetic association result on an independent sample in the Framingham Heart Study. This is the first study to identify a specific genotype associated with the tendency to occupy a leadership position. The results suggest that what determines whether an individual occupies a leadership position is the complex product of genetic and environmental influences; with a particular role for rs4950. PMID:23459689

  9. Construction of the model for the Genetic Analysis Workshop 14 simulated data: genotype-phenotype relationships, gene interaction, linkage, association, disequilibrium, and ascertainment effects for a complex phenotype.

    Science.gov (United States)

    Greenberg, David A; Zhang, Junying; Shmulewitz, Dvora; Strug, Lisa J; Zimmerman, Regina; Singh, Veena; Marathe, Sudhir

    2005-12-30

    The Genetic Analysis Workshop 14 simulated dataset was designed 1) To test the ability to find genes related to a complex disease (such as alcoholism). Such a disease may be given a variety of definitions by different investigators, have associated endophenotypes that are common in the general population, and is likely to be not one disease but a heterogeneous collection of clinically similar, but genetically distinct, entities. 2) To observe the effect on genetic analysis and gene discovery of a complex set of gene x gene interactions. 3) To allow comparison of microsatellite vs. large-scale single-nucleotide polymorphism (SNP) data. 4) To allow testing of association to identify the disease gene and the effect of moderate marker x marker linkage disequilibrium. 5) To observe the effect of different ascertainment/disease definition schemes on the analysis. Data was distributed in two forms. Data distributed to participants contained about 1,000 SNPs and 400 microsatellite markers. Internet-obtainable data consisted of a finer 10,000 SNP map, which also contained data on controls. While disease characteristics and parameters were constant, four "studies" used varying ascertainment schemes based on differing beliefs about disease characteristics. One of the studies contained multiplex two- and three-generation pedigrees with at least four affected members. The simulated disease was a psychiatric condition with many associated behaviors (endophenotypes), almost all of which were genetic in origin. The underlying disease model contained four major genes and two modifier genes. The four major genes interacted with each other to produce three different phenotypes, which were themselves heterogeneous. The population parameters were calibrated so that the major genes could be discovered by linkage analysis in most datasets. The association evidence was more difficult to calibrate but was designed to find statistically significant association in 50% of datasets. We also

  10. Association of genetic ancestry with breast cancer in ethnically diverse women from Chicago.

    Directory of Open Access Journals (Sweden)

    Umaima Al-Alem

    Full Text Available Non-Hispanic (nH Black and Hispanic women are disproportionately affected by early onset disease, later stage, and with more aggressive, higher grade and ER/PR negative breast cancers. The purpose of this analysis was to examine whether genetic ancestry could account for these variation in breast cancer characteristics, once data were stratified by self-reported race/ethnicity and adjusted for potential confounding by social and behavioral factors.We used a panel of 100 ancestry informative markers (AIMs to estimate individual genetic ancestry in 656 women from the "Breast Cancer Care in Chicago" study, a multi-ethnic cohort of breast cancer patients to examine the association between individual genetic ancestry and breast cancer characteristics. In addition we examined the association of individual AIMs and breast cancer to identify genes/regions that may potentially play a role in breast cancer disease disparities.As expected, nH Black and Hispanic patients were more likely than nH White patients to be diagnosed at later stages, with higher grade, and with ER/PR negative tumors. Higher European genetic ancestry was protective against later stage at diagnosis (OR 0.7 95%CI: 0.54-0.92 among Hispanic patients, and higher grade (OR 0.73, 95%CI: 0.56-0.95 among nH Black patients. After adjustment for multiple social and behavioral risk factors, the association with later stage remained, while the association with grade was not significant. We also found that the AIM SNP rs10954631 on chromosome 7 was associated with later stage (p = 0.02 and higher grade (p = 0.012 in nH Whites and later stage (p = 0.03 in nH Blacks.Non-European genetic ancestry was associated with later stage at diagnosis in ethnic minorities. The relation between genetic ancestry and stage at diagnosis may be due to genetic factors and/or unmeasured environmental factors that are overrepresented within certain racial/ethnic groups.

  11. Coronary artery disease-associated genetic variants and biomarkers of inflammation

    DEFF Research Database (Denmark)

    Christiansen, Morten Krogh; Larsen, Sanne Bøjet; Nyegaard, Mette

    2017-01-01

    score was calculated to assess the combined risk associated with all the genetic variants. A multiple linear regression model was used to assess associations between the genetic risk score, single SNPs, and the five inflammatory biomarkers. RESULTS:The minor allele (G) (CAD risk allele) of rs2075650......INTRODUCTION:Genetic constitution and inflammation both contribute to development of coronary artery disease (CAD). Several CAD-associated single-nucleotide polymorphisms (SNPs) have recently been identified, but their functions are largely unknown. We investigated the associations between CAD...

  12. Fatty Acid Diversity is Not Associated with Neutral Genetic Diversity in Native Populations of the Biodiesel Plant Jatropha curcas L.

    Science.gov (United States)

    Martínez-Díaz, Yesenia; González-Rodríguez, Antonio; Rico-Ponce, Héctor Rómulo; Rocha-Ramírez, Víctor; Ovando-Medina, Isidro; Espinosa-García, Francisco J

    2017-01-01

    Jatropha curcas L. (Euphorbiaceae) is a shrub native to Mexico and Central America, which produces seeds with a high oil content that can be converted to biodiesel. The genetic diversity of this plant has been widely studied, but it is not known whether the diversity of the seed oil chemical composition correlates with neutral genetic diversity. The total seed oil content, the diversity of profiles of fatty acids and phorbol esters were quantified, also, the genetic diversity obtained from simple sequence repeats was analyzed in native populations of J. curcas in Mexico. Using the fatty acids profiles, a discriminant analysis recognized three groups of individuals according to geographical origin. Bayesian assignment analysis revealed two genetic groups, while the genetic structure of the populations could not be explained by isolation-by-distance. Genetic and fatty acid profile data were not correlated based on Mantel test. Also, phorbol ester content and genetic diversity were not associated. Multiple linear regression analysis showed that total oil content was associated with altitude and seasonality of temperature. The content of unsaturated fatty acids was associated with altitude. Therefore, the cultivation planning of J. curcas should take into account chemical variation related to environmental factors. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  13. Genetic diversity analysis of pearl millet ( Pennisetum glauccum [L ...

    African Journals Online (AJOL)

    between genotype PT 2835/1 and PT 5552 and lowest similarity index was observed between PT 5554 and PT 2835/1. Analysis of RAPD data appears to be helpful in determining the genetic relationship among 20 pearl millet genotypes. The associations among the 20 genotypes were also examined with Principle ...

  14. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce.

    Science.gov (United States)

    Lamara, Mebarek; Raherison, Elie; Lenz, Patrick; Beaulieu, Jean; Bousquet, Jean; MacKay, John

    2016-04-01

    Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  15. Morphological Characterization and Assessment of Genetic Variability, Character Association, and Divergence in Soybean Mutants

    Directory of Open Access Journals (Sweden)

    M. A. Malek

    2014-01-01

    Full Text Available Genetic diversity is important for crop improvement. An experiment was conducted during 2011 to study genetic variability, character association, and genetic diversity among 27 soybean mutants and four mother genotypes. Analysis of variance revealed significant differences among the mutants and mothers for nine morphological traits. Eighteen mutants performed superiorly to their mothers in respect to seed yield and some morphological traits including yield attributes. Narrow differences between phenotypic and genotypic coefficients of variation (PCV and GCV for most of the characters revealed less environmental influence on their expression. High values of heritability and genetic advance with high GCV for branch number, plant height, pod number, and seed weight can be considered as favorable attributes for soybean improvement through phenotypic selection and high expected genetic gain can be achieved. Pod and seed number and maturity period appeared to be the first order traits for higher yield and priority should be given in selection due to their strong associations and high magnitudes of direct effects on yield. Cluster analysis grouped 31 genotypes into five groups at the coefficient value of 235. The mutants/genotypes from cluster I and cluster II could be used for hybridization program with the mutants of clusters IV and V in order to develop high yielding mutant-derived soybean varieties for further improvement.

  16. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes.

    Directory of Open Access Journals (Sweden)

    Maggie C Y Ng

    2014-08-01

    Full Text Available Type 2 diabetes (T2D is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1 and two novel loci (HLA-B and INS-IGF2 at genome-wide significance (4.15 × 10(-94association (2.2 × 10(-23 < locus-wide P<0.05. These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.

  17. Simple Algorithms to Calculate Asymptotic Null Distributions of Robust Tests in Case-Control Genetic Association Studies in R

    Directory of Open Access Journals (Sweden)

    Wing Kam Fung

    2010-02-01

    Full Text Available The case-control study is an important design for testing association between genetic markers and a disease. The Cochran-Armitage trend test (CATT is one of the most commonly used statistics for the analysis of case-control genetic association studies. The asymptotically optimal CATT can be used when the underlying genetic model (mode of inheritance is known. However, for most complex diseases, the underlying genetic models are unknown. Thus, tests robust to genetic model misspecification are preferable to the model-dependant CATT. Two robust tests, MAX3 and the genetic model selection (GMS, were recently proposed. Their asymptotic null distributions are often obtained by Monte-Carlo simulations, because they either have not been fully studied or involve multiple integrations. In this article, we study how components of each robust statistic are correlated, and find a linear dependence among the components. Using this new finding, we propose simple algorithms to calculate asymptotic null distributions for MAX3 and GMS, which greatly reduce the computing intensity. Furthermore, we have developed the R package Rassoc implementing the proposed algorithms to calculate the empirical and asymptotic p values for MAX3 and GMS as well as other commonly used tests in case-control association studies. For illustration, Rassoc is applied to the analysis of case-control data of 17 most significant SNPs reported in four genome-wide association studies.

  18. Identification of genes associated with dissociation of cognitive performance and neuropathological burden: Multistep analysis of genetic, epigenetic, and transcriptional data.

    Directory of Open Access Journals (Sweden)

    Charles C White

    2017-04-01

    the previously documented effect of depression on cognitive decline, while UNC5C may alter the composition of presynaptic terminals. Of note, the TMEM106B allele identified in the first step as being associated with better residual cognition is in strong linkage disequilibrium with rs1990622A (r2 = 0.66, a previously identified protective allele for TDP-43 proteinopathy. Limitations include the small sample size for the genetic analysis, which was underpowered to detect genome-wide significance, the evaluation being limited to a single cortical region for epigenetic and transcriptomic data, and the use of categorical measures for certain non-amyloid-plaque, non-neurofibrillary-tangle neuropathologies.Through a multistep analysis of cognitive, neuropathological, genomic, epigenomic, and transcriptomic data, we identified ENC1 and UNC5C as genes with convergent genetic, epigenetic, and transcriptomic evidence supporting a potential role in the dissociation of cognition and neuropathology in an aging population, and we expanded our understanding of the TMEM106B haplotype that is protective against TDP-43 proteinopathy.

  19. Homologous Recombination between Genetically Divergent Campylobacter fetus Lineages Supports Host-Associated Speciation

    Science.gov (United States)

    Duim, Birgitta; van der Graaf-van Bloois, Linda; Wagenaar, Jaap A; Zomer, Aldert L

    2018-01-01

    Abstract Homologous recombination is a major driver of bacterial speciation. Genetic divergence and host association are important factors influencing homologous recombination. Here, we study these factors for Campylobacter fetus, which shows a distinct intraspecific host dichotomy. Campylobacter fetus subspecies fetus (Cff) and venerealis are associated with mammals, whereas C. fetus subsp. testudinum (Cft) is associated with reptiles. Recombination between these genetically divergent C. fetus lineages is extremely rare. Previously it was impossible to show whether this barrier to recombination was determined by the differential host preferences, by the genetic divergence between both lineages or by other factors influencing recombination, such as restriction-modification, CRISPR/Cas, and transformation systems. Fortuitously, a distinct C. fetus lineage (ST69) was found, which was highly related to mammal-associated C. fetus, yet isolated from a chelonian. The whole genome sequences of two C. fetus ST69 isolates were compared with those of mammal- and reptile-associated C. fetus strains for phylogenetic and recombination analysis. In total, 5.1–5.5% of the core genome of both ST69 isolates showed signs of recombination. Of the predicted recombination regions, 80.4% were most closely related to Cft, 14.3% to Cff, and 5.6% to C. iguaniorum. Recombination from C. fetus ST69 to Cft was also detected, but to a lesser extent and only in chelonian-associated Cft strains. This study shows that despite substantial genetic divergence no absolute barrier to homologous recombination exists between two distinct C. fetus lineages when occurring in the same host type, which provides valuable insights in bacterial speciation and evolution. PMID:29608720

  20. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes

    DEFF Research Database (Denmark)

    Morris, Andrew P; Voight, Benjamin F; Teslovich, Tanya M

    2012-01-01

    To extend understanding of the genetic architecture and molecular basis of type 2 diabetes (T2D), we conducted a meta-analysis of genetic variants on the Metabochip, including 34,840 cases and 114,981 controls, overwhelmingly of European descent. We identified ten previously unreported T2D...... processes, including CREBBP-related transcription, adipocytokine signaling and cell cycle regulation, in diabetes pathogenesis....

  1. Evidence for genetic factors explaining the association between birth weight and low-density lipoprotein cholesterol and possible intrauterine factors influencing the association between birth weight and high-density lipoprotein cholesterol: Analysis in twins

    NARCIS (Netherlands)

    IJzerman, R.G.; Stehouwer, C.D.A.; van Weissenbruch, M.M.; de Geus, E.J.C.; Boomsma, D.I.

    2001-01-01

    Recent studies have demonstrated an association between low weight at birth and an atherogenic lipid profile in later life. To examine the influences of intrauterine and genetic factors, we investigated 53 dizygotic and 61 monozygotic adolescent twin pairs. Regression analysis demonstrated that low

  2. Microsatellite data analysis for population genetics

    Science.gov (United States)

    Theories and analytical tools of population genetics have been widely applied for addressing various questions in the fields of ecological genetics, conservation biology, and any context where the role of dispersal or gene flow is important. Underlying much of population genetics is the analysis of ...

  3. The Analysis of Polyploid Genetic Data

    NARCIS (Netherlands)

    Meirmans, P.G.; Liu, S.; van Tienderen, P.H.

    2018-01-01

    Though polyploidy is an important aspect of the evolutionary genetics of both plants and animals, the development of population genetic theory of polyploids has seriously lagged behind that of diploids. This is unfortunate since the analysis of polyploid genetic data—and the interpretation of the

  4. Genetics of Beckwith-Wiedemann syndrome-associated tumors: common genetic pathways

    NARCIS (Netherlands)

    Steenman, M.; Westerveld, A.; Mannens, M.

    2000-01-01

    A specific subset of solid childhood tumors-Wilms' tumor, adrenocortical carcinoma, rhabdomyosarcoma, and hepatoblastoma-is characterized by its association with Beckwith-Wiedemann syndrome. Genetic abnormalities found in these tumors affect the same chromosome region (11p15), which has been

  5. Whole genome population genetics analysis of Sudanese goats identifies regions harboring genes associated with major traits.

    Science.gov (United States)

    Rahmatalla, Siham A; Arends, Danny; Reissmann, Monika; Said Ahmed, Ammar; Wimmers, Klaus; Reyer, Henry; Brockmann, Gudrun A

    2017-10-23

    Sudan is endowed with a variety of indigenous goat breeds which are used for meat and milk production and which are well adapted to the local environment. The aim of the present study was to determine the genetic diversity and relationship within and between the four main Sudanese breeds of Nubian, Desert, Taggar and Nilotic goats. Using the 50 K SNP chip, 24 animals of each breed were genotyped. More than 96% of high quality SNPs were polymorphic with an average minor allele frequency of 0.3. In all breeds, no significant difference between observed (0.4) and expected (0.4) heterozygosity was found and the inbreeding coefficients (F IS ) did not differ from zero. F st coefficients for the genetic distance between breeds also did not significantly deviate from zero. In addition, the analysis of molecular variance revealed that 93% of the total variance in the examined population can be explained by differences among individuals, while only 7% result from differences between the breeds. These findings provide evidence for high genetic diversity and little inbreeding within breeds on one hand, and low diversity between breeds on the other hand. Further examinations using Nei's genetic distance and STRUCTURE analysis clustered Taggar goats distinct from the other breeds. In a principal component (PC) analysis, PC1 could separate Taggar, Nilotic and a mix of Nubian and Desert goats into three groups. The SNPs that contributed strongly to PC1 showed high F st values in Taggar goat versus the other goat breeds. PCA allowed us to identify target genomic regions which contain genes known to influence growth, development, bone formation and the immune system. The information on the genetic variability and diversity in this study confirmed that Taggar goat is genetically different from the other goat breeds in Sudan. The SNPs identified by the first principal components show high F st values in Taggar goat and allowed to identify candidate genes which can be used in the

  6. Genetic and Non-genetic Factors Associated With Constipation in Cancer Patients Receiving Opioids.

    Science.gov (United States)

    Laugsand, Eivor A; Skorpen, Frank; Kaasa, Stein; Sabatowski, Rainer; Strasser, Florian; Fayers, Peter; Klepstad, Pål

    2015-06-18

    To examine whether the inter-individual variation in constipation among patients receiving opioids for cancer pain is associated with genetic or non-genetic factors. Cancer patients receiving opioids were included from 17 centers in 11 European countries. Intensity of constipation was reported by 1,568 patients on a four-point categorical scale. Non-genetic factors were included as covariates in stratified regression analyses on the association between constipation and 75 single-nucleotide polymorphisms (SNPs) within 15 candidate genes related to opioid- or constipation-signaling pathways (HTR3E, HTR4, HTR2A, TPH1, ADRA2A, CHRM3, TACR1, CCKAR, KIT, ARRB2, GHRL, ABCB1, COMT, OPRM1, and OPRD1). The non-genetic factors significantly associated with constipation were type of laxative, mobility and place of care among patients receiving laxatives (N=806), in addition to Karnofsky performance status and presence of metastases among patients not receiving laxatives (N=762) (Pconstipation. Five SNPs, rs1800532 in TPH1, rs1799971 in OPRM1, rs4437575 in ABCB1, rs10802789 in CHRM3, and rs2020917 in COMT were associated with constipation (Phospitalization, Karnofsky performance status, presence of metastases, and five SNPs within TPH1, OPRM1, ABCB1, CHRM3, and COMT may contribute to the variability in constipation among cancer patients treated with opioids. Knowledge of these factors may help to develop new therapies and to identify patients needing a more individualized approach to treatment.

  7. Evolutionary Meta-Analysis of Association Studies Reveals Ancient Constraints Affecting Disease Marker Discovery

    Science.gov (United States)

    Dudley, Joel T.; Chen, Rong; Sanderford, Maxwell; Butte, Atul J.; Kumar, Sudhir

    2012-01-01

    Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases. PMID:22389448

  8. Identifying Associations Between Brain Imaging Phenotypes and Genetic Factors via A Novel Structured SCCA Approach.

    Science.gov (United States)

    Du, Lei; Zhang, Tuo; Liu, Kefei; Yan, Jingwen; Yao, Xiaohui; Risacher, Shannon L; Saykin, Andrew J; Han, Junwei; Guo, Lei; Shen, Li

    2017-06-01

    Brain imaging genetics attracts more and more attention since it can reveal associations between genetic factors and the structures or functions of human brain. Sparse canonical correlation analysis (SCCA) is a powerful bi-multivariate association identification technique in imaging genetics. There have been many SCCA methods which could capture different types of structured imaging genetic relationships. These methods either use the group lasso to recover the group structure, or employ the graph/network guided fused lasso to find out the network structure. However, the group lasso methods have limitation in generalization because of the incomplete or unavailable prior knowledge in real world. The graph/network guided methods are sensitive to the sign of the sample correlation which may be incorrectly estimated. We introduce a new SCCA model using a novel graph guided pairwise group lasso penalty, and propose an efficient optimization algorithm. The proposed method has a strong upper bound for the grouping effect for both positively and negatively correlated variables. We show that our method performs better than or equally to two state-of-the-art SCCA methods on both synthetic and real neuroimaging genetics data. In particular, our method identifies stronger canonical correlations and captures better canonical loading profiles, showing its promise for revealing biologically meaningful imaging genetic associations.

  9. Methods for Analyzing Multivariate Phenotypes in Genetic Association Studies

    Directory of Open Access Journals (Sweden)

    Qiong Yang

    2012-01-01

    Full Text Available Multivariate phenotypes are frequently encountered in genetic association studies. The purpose of analyzing multivariate phenotypes usually includes discovery of novel genetic variants of pleiotropy effects, that is, affecting multiple phenotypes, and the ultimate goal of uncovering the underlying genetic mechanism. In recent years, there have been new method development and application of existing statistical methods to such phenotypes. In this paper, we provide a review of the available methods for analyzing association between a single marker and a multivariate phenotype consisting of the same type of components (e.g., all continuous or all categorical or different types of components (e.g., some are continuous and others are categorical. We also reviewed causal inference methods designed to test whether the detected association with the multivariate phenotype is truly pleiotropy or the genetic marker exerts its effects on some phenotypes through affecting the others.

  10. An analysis of the genetic diversity and genetic structure of ...

    African Journals Online (AJOL)

    Scientific approaches to conservation of threatened species depend on a good understanding of the genetic information of wild and artificial population. The genetic diversity and structure analysis of 10 Eucommia ulmoides population was analyzed using inter-simple sequence repeat (ISSR) markers in this paper.

  11. Diagnostic and therapeutic implications of genetic heterogeneity in myeloid neoplasms uncovered by comprehensive mutational analysis

    Directory of Open Access Journals (Sweden)

    Sarah M. Choi

    2017-01-01

    Full Text Available While growing use of comprehensive mutational analysis has led to the discovery of innumerable genetic alterations associated with various myeloid neoplasms, the under-recognized phenomenon of genetic heterogeneity within such neoplasms creates a potential for diagnostic confusion. Here, we describe two cases where expanded mutational testing led to amendment of an initial diagnosis of chronic myelogenous leukemia with subsequent altered treatment of each patient. We demonstrate the power of comprehensive testing in ensuring appropriate classification of genetically heterogeneous neoplasms, and emphasize thoughtful analysis of molecular and genetic data as an essential component of diagnosis and management.

  12. The Analysis of Polyploid Genetic Data.

    Science.gov (United States)

    Meirmans, Patrick G; Liu, Shenglin; van Tienderen, Peter H

    2018-03-16

    Though polyploidy is an important aspect of the evolutionary genetics of both plants and animals, the development of population genetic theory of polyploids has seriously lagged behind that of diploids. This is unfortunate since the analysis of polyploid genetic data-and the interpretation of the results-requires even more scrutiny than with diploid data. This is because of several polyploidy-specific complications in segregation and genotyping such as tetrasomy, double reduction, and missing dosage information. Here, we review the theoretical and statistical aspects of the population genetics of polyploids. We discuss several widely used types of inferences, including genetic diversity, Hardy-Weinberg equilibrium, population differentiation, genetic distance, and detecting population structure. For each, we point out how the statistical approach, expected result, and interpretation differ between different ploidy levels. We also discuss for each type of inference what biases may arise from the polyploid-specific complications and how these biases can be overcome. From our overview, it is clear that the statistical toolbox that is available for the analysis of genetic data is flexible and still expanding. Modern sequencing techniques will soon be able to overcome some of the current limitations to the analysis of polyploid data, though the techniques are lagging behind those available for diploids. Furthermore, the availability of more data may aggravate the biases that can arise, and increase the risk of false inferences. Therefore, simulations such as we used throughout this review are an important tool to verify the results of analyses of polyploid genetic data.

  13. Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes.

    Science.gov (United States)

    Cook, James P; Mahajan, Anubha; Morris, Andrew P

    2017-02-01

    Linear mixed models are increasingly used for the analysis of genome-wide association studies (GWAS) of binary phenotypes because they can efficiently and robustly account for population stratification and relatedness through inclusion of random effects for a genetic relationship matrix. However, the utility of linear (mixed) models in the context of meta-analysis of GWAS of binary phenotypes has not been previously explored. In this investigation, we present simulations to compare the performance of linear and logistic regression models under alternative weighting schemes in a fixed-effects meta-analysis framework, considering designs that incorporate variable case-control imbalance, confounding factors and population stratification. Our results demonstrate that linear models can be used for meta-analysis of GWAS of binary phenotypes, without loss of power, even in the presence of extreme case-control imbalance, provided that one of the following schemes is used: (i) effective sample size weighting of Z-scores or (ii) inverse-variance weighting of allelic effect sizes after conversion onto the log-odds scale. Our conclusions thus provide essential recommendations for the development of robust protocols for meta-analysis of binary phenotypes with linear models.

  14. Common genetic variation and novel loci associated with volumetric mammographic density.

    Science.gov (United States)

    Brand, Judith S; Humphreys, Keith; Li, Jingmei; Karlsson, Robert; Hall, Per; Czene, Kamila

    2018-04-17

    Mammographic density (MD) is a strong and heritable intermediate phenotype of breast cancer, but much of its genetic variation remains unexplained. We conducted a genetic association study of volumetric MD in a Swedish mammography screening cohort (n = 9498) to identify novel MD loci. Associations with volumetric MD phenotypes (percent dense volume, absolute dense volume, and absolute nondense volume) were estimated using linear regression adjusting for age, body mass index, menopausal status, and six principal components. We also estimated the proportion of MD variance explained by additive contributions from single-nucleotide polymorphisms (SNP-based heritability [h 2 SNP ]) in 4948 participants of the cohort. In total, three novel MD loci were identified (at P associated with breast cancer in available meta-analysis data including 122,977 breast cancer cases and 105,974 control subjects (P < 0.05). h 2 SNP (SE) estimates for percent dense, absolute dense, and nondense volume were 0.29 (0.07), 0.31 (0.07), and 0.25 (0.07), respectively. Corresponding ratios of h 2 SNP to previously observed narrow-sense h 2 estimates in the same cohort were 0.46, 0.72, and 0.41, respectively. These findings provide new insights into the genetic basis of MD and biological mechanisms linking MD to breast cancer risk. Apart from identifying three novel loci, we demonstrate that at least 25% of the MD variance is explained by common genetic variation with h 2 SNP /h 2 ratios varying between dense and nondense MD components.

  15. Genome-Wide Association Uncovers Shared Genetic Effects Among Personality Traits and Mood States

    NARCIS (Netherlands)

    Luciano, Michelle; Huffman, Jennifer E.; Arias-Vásquez, Alejandro; Vinkhuyzen, Anna A. E.; Middeldorp, Christel M.; Giegling, Ina; Payton, Antony; Davies, Gail; Zgaga, Lina; Janzing, Joost; Ke, Xiayi; Galesloot, Tessel; Hartmann, Annette M.; Ollier, William; Tenesa, Albert; Hayward, Caroline; Verhagen, Maaike; Montgomery, Grant W.; Hottenga, Jouke-Jan; Konte, Bettina; Starr, John M.; Vitart, Veronique; Vos, Pieter E.; Madden, Pamela A. F.; Willemsen, Gonneke; Konnerth, Heike; Horan, Michael A.; Porteous, David J.; Campbell, Harry; Vermeulen, Sita H.; Heath, Andrew C.; Wright, Alan; Polasek, Ozren; Kovacevic, Sanja B.; Hastie, Nicholas D.; Franke, Barbara; Boomsma, Dorret I.; Martin, Nicholas G.; Rujescu, Dan; Wilson, James F.; Buitelaar, Jan; Pendleton, Neil; Rudan, Igor; Deary, Ian J.

    2012-01-01

    Measures of personality and psychological distress are correlated and exhibit genetic covariance. We conducted univariate genome-wide SNP (similar to 2.5 million) and gene-based association analyses of these traits and examined the overlap in results across traits, including a prediction analysis of

  16. Social isolation, loneliness and depression in young adulthood: a behavioural genetic analysis.

    Science.gov (United States)

    Matthews, Timothy; Danese, Andrea; Wertz, Jasmin; Odgers, Candice L; Ambler, Antony; Moffitt, Terrie E; Arseneault, Louise

    2016-03-01

    To investigate the association between social isolation and loneliness, how they relate to depression, and whether these associations are explained by genetic influences. We used data from the age-18 wave of the Environmental Risk Longitudinal Twin Study, a birth cohort of 1116 same-sex twin pairs born in England and Wales in 1994 and 1995. Participants reported on their levels of social isolation, loneliness and depressive symptoms. We conducted regression analyses to test the differential associations of isolation and loneliness with depression. Using the twin study design, we estimated the proportion of variance in each construct and their covariance that was accounted for by genetic and environmental factors. Social isolation and loneliness were moderately correlated (r = 0.39), reflecting the separateness of these constructs, and both were associated with depression. When entered simultaneously in a regression analysis, loneliness was more robustly associated with depression. We observed similar degrees of genetic influence on social isolation (40 %) and loneliness (38 %), and a smaller genetic influence on depressive symptoms (29 %), with the remaining variance accounted for by the non-shared environment. Genetic correlations of 0.65 between isolation and loneliness and 0.63 between loneliness and depression indicated a strong role of genetic influences in the co-occurrence of these phenotypes. Socially isolated young adults do not necessarily experience loneliness. However, those who are lonely are often depressed, partly because the same genes influence loneliness and depression. Interventions should not only aim at increasing social connections but also focus on subjective feelings of loneliness.

  17. Genetic Diversity and Association of EST-SSR and SCoT Markers with Rust Traits in Orchardgrass (Dactylis glomerata L.).

    Science.gov (United States)

    Yan, Haidong; Zhang, Yu; Zeng, Bing; Yin, Guohua; Zhang, Xinquan; Ji, Yang; Huang, Linkai; Jiang, Xiaomei; Liu, Xinchun; Peng, Yan; Ma, Xiao; Yan, Yanhong

    2016-01-08

    Orchardgrass (Dactylis glomerata L.), is a well-known perennial forage species; however, rust diseases have caused a noticeable reduction in the quality and production of orchardgrass. In this study, genetic diversity was assessed and the marker-trait associations for rust were examined using 18 EST-SSR and 21 SCoT markers in 75 orchardgrass accessions. A high level of genetic diversity was detected in orchardgrass with an average genetic diversity index of 0.369. For the EST-SSR and SCoT markers, 164 and 289 total bands were obtained, of which 148 (90.24%) and 272 (94.12%) were polymorphic, respectively. Results from an AMOVA analysis showed that more genetic variance existed within populations (87.57%) than among populations (12.43%). Using a parameter marker index, the efficiencies of the EST-SSR and SCoT markers were compared to show that SCoTs have higher marker efficiency (8.07) than EST-SSRs (4.82). The results of a UPGMA cluster analysis and a STRUCTURE analysis were both correlated with the geographic distribution of the orchardgrass accessions. Linkage disequilibrium analysis revealed an average r² of 0.1627 across all band pairs, indicating a high extent of linkage disequilibrium in the material. An association analysis between the rust trait and 410 bands from the EST-SSR and SCoT markers using TASSEL software revealed 20 band panels were associated with the rust trait in both 2011 and 2012. The 20 bands obtained from association analysis could be used in breeding programs for lineage selection to prevent great losses of orchardgrass caused by rust, and provide valuable information for further association mapping using this collection of orchardgrass.

  18. Discovery of new candidate genes for rheumatoid arthritis through integration of genetic association data with expression pathway analysis.

    Science.gov (United States)

    Shchetynsky, Klementy; Diaz-Gallo, Lina-Marcella; Folkersen, Lasse; Hensvold, Aase Haj; Catrina, Anca Irinel; Berg, Louise; Klareskog, Lars; Padyukov, Leonid

    2017-02-02

    Here we integrate verified signals from previous genetic association studies with gene expression and pathway analysis for discovery of new candidate genes and signaling networks, relevant for rheumatoid arthritis (RA). RNA-sequencing-(RNA-seq)-based expression analysis of 377 genes from previously verified RA-associated loci was performed in blood cells from 5 newly diagnosed, non-treated patients with RA, 7 patients with treated RA and 12 healthy controls. Differentially expressed genes sharing a similar expression pattern in treated and untreated RA sub-groups were selected for pathway analysis. A set of "connector" genes derived from pathway analysis was tested for differential expression in the initial discovery cohort and validated in blood cells from 73 patients with RA and in 35 healthy controls. There were 11 qualifying genes selected for pathway analysis and these were grouped into two evidence-based functional networks, containing 29 and 27 additional connector molecules. The expression of genes, corresponding to connector molecules was then tested in the initial RNA-seq data. Differences in the expression of ERBB2, TP53 and THOP1 were similar in both treated and non-treated patients with RA and an additional nine genes were differentially expressed in at least one group of patients compared to healthy controls. The ERBB2, TP53. THOP1 expression profile was successfully replicated in RNA-seq data from peripheral blood mononuclear cells from healthy controls and non-treated patients with RA, in an independent collection of samples. Integration of RNA-seq data with findings from association studies, and consequent pathway analysis implicate new candidate genes, ERBB2, TP53 and THOP1 in the pathogenesis of RA.

  19. Pitfalls in genetic analysis of pheochromocytomas/paragangliomas-case report.

    Science.gov (United States)

    Canu, Letizia; Rapizzi, Elena; Zampetti, Benedetta; Fucci, Rossella; Nesi, Gabriella; Richter, Susan; Qin, Nan; Giachè, Valentino; Bergamini, Carlo; Parenti, Gabriele; Valeri, Andrea; Ercolino, Tonino; Eisenhofer, Graeme; Mannelli, Massimo

    2014-07-01

    About 35% of patients with pheochromocytoma/paraganglioma carry a germline mutation in one of the 10 main susceptibility genes. The recent introduction of next-generation sequencing will allow the analysis of all these genes in one run. When positive, the analysis is generally unequivocal due to the association between a germline mutation and a concordant clinical presentation or positive family history. When genetic analysis reveals a novel mutation with no clinical correlates, particularly in the presence of a missense variant, the question arises whether the mutation is pathogenic or a rare polymorphism. We report the case of a 35-year-old patient operated for a pheochromocytoma who turned out to be a carrier of a novel SDHD (succinate dehydrogenase subunit D) missense mutation. With no positive family history or clinical correlates, we decided to perform additional analyses to test the clinical significance of the mutation. We performed in silico analysis, tissue loss of heterozygosity analysis, immunohistochemistry, Western blot analysis, SDH enzymatic assay, and measurement of the succinate/fumarate concentration ratio in the tumor tissue by tandem mass spectrometry. Although the in silico analysis gave contradictory results according to the different methods, all the other tests demonstrated that the SDH complex was conserved and normally active. We therefore came to the conclusion that the variant was a nonpathogenic polymorphism. Advancements in technology facilitate genetic analysis of patients with pheochromocytoma but also offer new challenges to the clinician who, in some cases, needs clinical correlates and/or functional tests to give significance to the results of the genetic assay.

  20. Common genetic variants on 6q24 associated with exceptional episodic memory performance in the elderly

    DEFF Research Database (Denmark)

    Barral, Sandra; Cosentino, Stephanie; Christensen, Kaare

    2014-01-01

    IMPORTANCE: There are genetic influences on memory ability as we age, but no specific genes have been identified. OBJECTIVE: To use a cognitive endophenotype, exceptional episodic memory (EEM) performance, derived from nondemented offspring from the Long Life Family Study (LLFS) to identify genetic...... individuals. Results of the individual replication cohorts were combined by meta-analysis. MAIN OUTCOME MEASURE: Episodic memory scores computed as the mean of the 2 standardized measures of Logical Memory IA and IIA. RESULTS: Heritability estimates indicated a significant genetic component for EEM (h2 = 0...... peak. Replication in one cohort identified a set of 26 SNPs associated with episodic memory (P ≤ .05). Meta-analysis of the 26 SNPs using the 4 independent replication cohorts found SNPs rs9321334 and rs6902875 to be nominally significantly associated with episodic memory (P = .009 and P = .013...

  1. STrengthening the REporting of Genetic Association Studies (STREGA – An Extension of the STROBE Statement

    Directory of Open Access Journals (Sweden)

    Julian Little

    2009-09-01

    Full Text Available Making sense of rapidly evolving evidence on genetic associations is crucial to making genuine advances in human genomics and the eventual integration of this information in the practice of medicine and public health. Assessment of the strengths and weaknesses of this evidence, and hence the ability to synthesize it, has been limited by inadequate reporting of results. The STrengthening the REporting of Genetic Association studies (STREGA initiative builds on the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE Statement and provides additions to 12 of the 22 items on the STROBE checklist. The additions concern population stratification, genotyping errors, modelling haplotype variation, Hardy-Weinberg equilibrium, replication, selection of participants, rationale for choice of genes and variants, treatment effects in studying quantitative traits, statistical methods, relatedness, reporting of descriptive and outcome data, and the volume of data issues that are important to consider in genetic association studies. The STREGA recommendations do not prescribe or dictate how a genetic association study should be designed but seek to enhance the transparency of its reporting, regardless of choices made during design, conduct, or analysis.

  2. Genetic polymorphisms and their association with the prevalence and severity of chronic postsurgical pain: a systematic review.

    Science.gov (United States)

    Hoofwijk, D M N; van Reij, R R I; Rutten, B P; Kenis, G; Buhre, W F; Joosten, E A

    2016-12-01

    Although several patient characteristic, clinical, and psychological risk factors for chronic postsurgical pain (CPSP) have been identified, genetic variants including single nucleotide polymorphisms have also become of interest as potential risk factors for the development of CPSP. The aim of this review is to summarize the current evidence on genetic polymorphisms associated with the prevalence and severity of CPSP in adult patients. A systematic review of the literature was performed, and additional literature was obtained by reference tracking. The primary outcome was CPSP, defined as pain at least 2 months after the surgery. Studies performed exclusively in animals were excluded. Out of the 1001 identified studies, 14 studies were selected for inclusion. These studies described 5269 participants in 17 cohorts. A meta-analysis was not possible because of heterogeneity of data and data analysis. Associations with the prevalence or severity of CPSP were reported for genetic variants in the COMT gene, OPRM1, potassium channel genes, GCH1, CACNG, CHRNA6, P2X7R, cytokine-associated genes, human leucocyte antigens, DRD2, and ATXN1 CONCLUSIONS: Research on the topic of genetic variants associated with CPSP is still in its initial phase. Hypothesis-free, genome-wide association studies on large cohorts are needed in this field. In addition, future studies may also integrate genetic risk factors and patient characteristic, clinical, and psychological predictors for CPSP. © The Author 2016. Published by Oxford University Press on behalf of the British Journal of Anaesthesia. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. A Simple Test of Class-Level Genetic Association Can Reveal Novel Cardiometabolic Trait Loci.

    Directory of Open Access Journals (Sweden)

    Jing Qian

    Full Text Available Characterizing the genetic determinants of complex diseases can be further augmented by incorporating knowledge of underlying structure or classifications of the genome, such as newly developed mappings of protein-coding genes, epigenetic marks, enhancer elements and non-coding RNAs.We apply a simple class-level testing framework, termed Genetic Class Association Testing (GenCAT, to identify protein-coding gene association with 14 cardiometabolic (CMD related traits across 6 publicly available genome wide association (GWA meta-analysis data resources. GenCAT uses SNP-level meta-analysis test statistics across all SNPs within a class of elements, as well as the size of the class and its unique correlation structure, to determine if the class is statistically meaningful. The novelty of findings is evaluated through investigation of regional signals. A subset of findings are validated using recently updated, larger meta-analysis resources. A simulation study is presented to characterize overall performance with respect to power, control of family-wise error and computational efficiency. All analysis is performed using the GenCAT package, R version 3.2.1.We demonstrate that class-level testing complements the common first stage minP approach that involves individual SNP-level testing followed by post-hoc ascribing of statistically significant SNPs to genes and loci. GenCAT suggests 54 protein-coding genes at 41 distinct loci for the 13 CMD traits investigated in the discovery analysis, that are beyond the discoveries of minP alone. An additional application to biological pathways demonstrates flexibility in defining genetic classes.We conclude that it would be prudent to include class-level testing as standard practice in GWA analysis. GenCAT, for example, can be used as a simple, complementary and efficient strategy for class-level testing that leverages existing data resources, requires only summary level data in the form of test statistics, and

  4. Inherited determinants of Crohn's disease and ulcerative colitis phenotypes: a genetic association study.

    Science.gov (United States)

    Cleynen, Isabelle; Boucher, Gabrielle; Jostins, Luke; Schumm, L Philip; Zeissig, Sebastian; Ahmad, Tariq; Andersen, Vibeke; Andrews, Jane M; Annese, Vito; Brand, Stephan; Brant, Steven R; Cho, Judy H; Daly, Mark J; Dubinsky, Marla; Duerr, Richard H; Ferguson, Lynnette R; Franke, Andre; Gearry, Richard B; Goyette, Philippe; Hakonarson, Hakon; Halfvarson, Jonas; Hov, Johannes R; Huang, Hailang; Kennedy, Nicholas A; Kupcinskas, Limas; Lawrance, Ian C; Lee, James C; Satsangi, Jack; Schreiber, Stephan; Théâtre, Emilie; van der Meulen-de Jong, Andrea E; Weersma, Rinse K; Wilson, David C; Parkes, Miles; Vermeire, Severine; Rioux, John D; Mansfield, John; Silverberg, Mark S; Radford-Smith, Graham; McGovern, Dermot P B; Barrett, Jeffrey C; Lees, Charlie W

    2016-01-09

    Crohn's disease and ulcerative colitis are the two major forms of inflammatory bowel disease; treatment strategies have historically been determined by this binary categorisation. Genetic studies have identified 163 susceptibility loci for inflammatory bowel disease, mostly shared between Crohn's disease and ulcerative colitis. We undertook the largest genotype association study, to date, in widely used clinical subphenotypes of inflammatory bowel disease with the goal of further understanding the biological relations between diseases. This study included patients from 49 centres in 16 countries in Europe, North America, and Australasia. We applied the Montreal classification system of inflammatory bowel disease subphenotypes to 34,819 patients (19,713 with Crohn's disease, 14,683 with ulcerative colitis) genotyped on the Immunochip array. We tested for genotype-phenotype associations across 156,154 genetic variants. We generated genetic risk scores by combining information from all known inflammatory bowel disease associations to summarise the total load of genetic risk for a particular phenotype. We used these risk scores to test the hypothesis that colonic Crohn's disease, ileal Crohn's disease, and ulcerative colitis are all genetically distinct from each other, and to attempt to identify patients with a mismatch between clinical diagnosis and genetic risk profile. After quality control, the primary analysis included 29,838 patients (16,902 with Crohn's disease, 12,597 with ulcerative colitis). Three loci (NOD2, MHC, and MST1 3p21) were associated with subphenotypes of inflammatory bowel disease, mainly disease location (essentially fixed over time; median follow-up of 10·5 years). Little or no genetic association with disease behaviour (which changed dramatically over time) remained after conditioning on disease location and age at onset. The genetic risk score representing all known risk alleles for inflammatory bowel disease showed strong association with

  5. Genetic analysis in Bartter syndrome from India.

    Science.gov (United States)

    Sharma, Pradeep Kumar; Saikia, Bhaskar; Sharma, Rachna; Ankur, Kumar; Khilnani, Praveen; Aggarwal, Vinay Kumar; Cheong, Hae

    2014-10-01

    Bartter syndrome is a group of inherited, salt-losing tubulopathies presenting as hypokalemic metabolic alkalosis with normotensive hyperreninemia and hyperaldosteronism. Around 150 cases have been reported in literature till now. Mutations leading to salt losing tubulopathies are not routinely tested in Indian population. The authors have done the genetic analysis for the first time in the Bartter syndrome on two cases from India. First case was antenatal Bartter syndrome presenting with massive polyuria and hyperkalemia. Mutational analysis revealed compound heterozygous mutations in KCNJ1(ROMK) gene [p(Leu220Phe), p(Thr191Pro)]. Second case had a phenotypic presentation of classical Bartter syndrome however, genetic analysis revealed only heterozygous novel mutation in SLC12A gene p(Ala232Thr). Bartter syndrome is a clinical diagnosis and genetic analysis is recommended for prognostication and genetic counseling.

  6. Association Analysis of Genetic Variants with Type 2 Diabetes in a Mongolian Population in China

    Directory of Open Access Journals (Sweden)

    Haihua Bai

    2015-01-01

    Full Text Available The large scale genome wide association studies (GWAS have identified approximately 80 single nucleotide polymorphisms (SNPs conferring susceptibility to type 2 diabetes (T2D. However, most of these loci have not been replicated in diverse populations and much genetic heterogeneity has been observed across ethnic groups. We tested 28 SNPs previously found to be associated with T2D by GWAS in a Mongolian sample of Northern China (497 diagnosed with T2D and 469 controls for association with T2D and diabetes related quantitative traits. We replicated T2D association of 11 SNPs, namely, rs7578326 (IRS1, rs1531343 (HMGA2, rs8042680 (PRC1, rs7578597 (THADA, rs1333051 (CDKN2, rs6723108 (TMEM163, rs163182 and rs2237897 (KCNQ1, rs1387153 (MTNR1B, rs243021 (BCL11A, and rs10229583 (PAX4 in our sample. Further, we showed that risk allele of the strongest T2D associated SNP in our sample, rs757832 (IRS1, is associated with increased level of TG. We observed substantial difference of T2D risk allele frequency between the Mongolian sample and the 1000G Caucasian sample for a few SNPs, including rs6723108 (TMEM163 whose risk allele reaches near fixation in the Mongolian sample. Further study of genetic architecture of these variants in susceptibility of T2D is needed to understand the role of these variants in heterogeneous populations.

  7. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis.

    Science.gov (United States)

    Upadhyaya, Hari D; Wang, Yi-Hong; Sharma, Rajan; Sharma, Shivali

    2013-06-01

    Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.

  8. Genetic diversity, population structure and marker trait associations ...

    Indian Academy of Sciences (India)

    Supplementary data: Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum). Ashok Badigannavar and Gerald O. Myers. J. Genet. 94, 87–94. Table 1. List of cotton germplasm lines used in this study. Germplasm no. Cultivar. Region. Germplasm no. Cultivar.

  9. Association analysis of multiple traits by an approach of combining ...

    Indian Academy of Sciences (India)

    Lili Chen

    diseases. Joint analysis of multiple traits can increase statistical power of association analysis and uncover the underlying genetic ... genthaler and Thilly 2007), the combined multivariate and ... Because of using reverse regression model, our.

  10. Genetic differentiation in Elaeocarpus photiniifolia (Elaeocarpaceae) associated with geographic distribution and habitat variation in the Bonin (Ogasawara) Islands.

    Science.gov (United States)

    Sugai, Kyoko; Setsuko, Suzuki; Nagamitsu, Teruyoshi; Murakami, Noriaki; Kato, Hidetoshi; Yoshimaru, Hiroshi

    2013-11-01

    Gene flow between populations in different environmental conditions can be limited due to divergent natural selection, thus promoting genetic differentiation. Elaeocarpus photiniifolia, an endemic tree species in the Bonin Islands, is distributed in two types of habitats, dry scrubs and mesic forests. We aim to elucidate the genetic differentiation in E. photiniifolia within and between islands and between the habitat types. We investigated genotypes of 639 individuals from 19 populations of E. photiniifolia and its closely-related E. sylvestris at 24 microsatellite loci derived from expressed sequence tags. The data revealed genetic differentiation (1) between E. photiniifolia and E. sylvestris (0.307 ≤ F ST ≤ 0.470), (2) between the E. photiniifolia populations of the Chichijima and Hahajima Island Groups in the Bonin Islands (0.033 ≤ F ST ≤ 0.121) and (3) between E. photiniifolia populations associated with dry scrubs and mesic forests in the Chichijima Island Group (0.005 ≤ F ST ≤ 0.071). Principal coordinate analysis and Bayesian clustering analysis also showed that genetically distinct groups were associated with the habitat types, and isolation by distance was not responsible for the genetic differentiation. These findings suggest that E. photiniifolia is divided into genetically differentiated groups associated with different environmental conditions in the Bonin Islands.

  11. Genetic association between leg conformation in young pigs and sow reproduction

    DEFF Research Database (Denmark)

    Le, Thu Hong; Nilsson, Katja; Norberg, Elise

    2015-01-01

    Lameness is an issue of concern in pig production due both to animal welfare and to economical aspects. Lame sows are believed to suffer from pain and stress which is reported to have a negative influence on reproduction. Leg conformation and locomotion traits in young animals are associated...... with the risk of lameness at higher age. The purpose of this study was to estimate the genetic parameters of leg conformation traits recorded at performance testing (around 5 months of age) and their genetic correlations with reproduction traits. Information on leg conformation traits from 123,307 pigs scored...... and on reproduction traits from 22,204 litters in the first and second parity from Swedish Yorkshire nucleus herds were available for genetic analysis. Eight conformation and locomotion traits, coming from the old or the new scoring system in Sweden, included old movement, old overall leg score, new movement, new...

  12. Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Sarah L. Kerns

    2016-08-01

    Full Text Available Nearly 50% of cancer patients undergo radiotherapy. Late radiotherapy toxicity affects quality-of-life in long-term cancer survivors and risk of side-effects in a minority limits doses prescribed to the majority of patients. Development of a test predicting risk of toxicity could benefit many cancer patients. We aimed to meta-analyze individual level data from four genome-wide association studies from prostate cancer radiotherapy cohorts including 1564 men to identify genetic markers of toxicity. Prospectively assessed two-year toxicity endpoints (urinary frequency, decreased urine stream, rectal bleeding, overall toxicity and single nucleotide polymorphism (SNP associations were tested using multivariable regression, adjusting for clinical and patient-related risk factors. A fixed-effects meta-analysis identified two SNPs: rs17599026 on 5q31.2 with urinary frequency (odds ratio [OR] 3.12, 95% confidence interval [CI] 2.08–4.69, p-value 4.16 × 10−8 and rs7720298 on 5p15.2 with decreased urine stream (OR 2.71, 95% CI 1.90–3.86, p-value = 3.21 × 10−8. These SNPs lie within genes that are expressed in tissues adversely affected by pelvic radiotherapy including bladder, kidney, rectum and small intestine. The results show that heterogeneous radiotherapy cohorts can be combined to identify new moderate-penetrance genetic variants associated with radiotherapy toxicity. The work provides a basis for larger collaborative efforts to identify enough variants for a future test involving polygenic risk profiling.

  13. Targeted association mapping demonstrating the complex molecular genetics of fatty acid formation in soybean.

    Science.gov (United States)

    Li, Ying-hui; Reif, Jochen C; Ma, Yan-song; Hong, Hui-long; Liu, Zhang-xiong; Chang, Ru-zhen; Qiu, Li-juan

    2015-10-23

    The relative abundance of five dominant fatty acids (FAs) (palmitic, stearic, oleic, linoleic and linolenic acids) is a major factor determining seed quality in soybean. To clarify the currently poorly understood genetic architecture of FAs in soybean, targeted association analysis was conducted in 421 diverse accessions phenotyped in three environments and genotyped using 1536 pre-selected SNPs. The population of 421 soybean accessions displayed significant genetic variation for each FA. Analysis of the molecular data revealed three subpopulations, which reflected a trend depending on latitude of cultivation. A total of 37 significant (p seed quality of soybean with benefits for human health and for food processing.

  14. Phenome Wide Association Studies demonstrating pleiotropy of genetic variants within FTO with and without adjustment for body mass index

    Directory of Open Access Journals (Sweden)

    Robert Michael Cronin

    2014-08-01

    Full Text Available Phenome-wide association studies (PheWAS have demonstrated utility in validating genetic associations derived from traditional genetic studies as well as identifying novel genetic associations. Here we used an electronic health record (EHR-based PheWAS to explore pleiotropy of genetic variants in the fat mass and obesity associated gene (FTO, some of which have been previously associated with obesity and type 2 diabetes (T2D. We used a population of 10,487 individuals of European ancestry with genome-wide genotyping from the Electronic Medical Records and Genomics (eMERGE Network and another population of 13,711 individuals of European ancestry from the BioVU DNA biobank at Vanderbilt genotyped using Illumina HumanExome BeadChip. A meta-analysis of the two study populations replicated the well-described associations between FTO variants and obesity (odds ratio [OR]=1.25, 95% Confidence Interval=1.11-1.24, p=2.10 x 10 9 and FTO variants and T2D (OR=1.14, 95% CI=1.08-1.21, p=2.34 x 10 6. The meta-analysis also demonstrated that FTO variant rs8050136 was significantly associated with sleep apnea (OR=1.14, 95% CI=1.07-1.22, p=3.33 x 10 5; however, the association was attenuated after adjustment for body mass index (BMI. Novel phenotype associations with obesity-associated FTO variants included fibrocystic breast disease (rs9941349, OR=0.81, 95% CI=0.74-0.91, p=5.41x10 5 and trends toward associations with nonalcoholic liver disease and gram-positive bacterial infections. FTO variants not associated with obesity demonstrated other potential disease associations including noninflammatory disorders of the cervix and chronic periodontitis. These results suggest that genetic variants in FTO may have pleiotropic associations, some of which are not mediated by obesity.

  15. The association of XRCC3 Thr241Met genetic variant with risk of ...

    African Journals Online (AJOL)

    Background: Previous studies suggest that the X-ray repair cross-complementing group 3 gene (XRCC3) Thr241Met genetic variant could be potentially associated with the risk of prostate cancer. However, results from these published studies were conflicting rather than conclusive. Objectives:This meta-analysis aimed to ...

  16. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    van Rheenen, Wouter; Shatunov, Aleksey; Dekker, Annelot M; McLaughlin, Russell L; Diekstra, Frank P; Pulit, Sara L; van der Spek, Rick A A; Võsa, Urmo; de Jong, Simone; Robinson, Matthew R; Yang, Jian; Fogh, Isabella; van Doormaal, Perry Tc; Tazelaar, Gijs H P; Koppers, Max; Blokhuis, Anna M; Sproviero, William; Jones, Ashley R; Kenna, Kevin P; van Eijk, Kristel R; Harschnitz, Oliver; Schellevis, Raymond D; Brands, William J; Medic, Jelena; Menelaou, Androniki; Vajda, Alice; Ticozzi, Nicola; Lin, Kuang; Rogelj, Boris; Vrabec, Katarina; Ravnik-Glavač, Metka; Koritnik, Blaž; Zidar, Janez; Leonardis, Lea; Grošelj, Leja Dolenc; Millecamps, Stéphanie; Salachas, François; Meininger, Vincent; de Carvalho, Mamede; Pinto, Susana; Mora, Jesus S; Rojas-García, Ricardo; Polak, Meraida; Chandran, Siddharthan; Colville, Shuna; Swingler, Robert; Morrison, Karen E; Shaw, Pamela J; Hardy, John; Orrell, Richard W; Pittman, Alan; Sidle, Katie; Fratta, Pietro; Malaspina, Andrea; Topp, Simon; Petri, Susanne; Abdulla, Susanne; Drepper, Carsten; Sendtner, Michael; Meyer, Thomas; Ophoff, Roel A.; Staats, Kim A; Wiedau-Pazos, Martina; Lomen-Hoerth, Catherine; Van Deerlin, Vivianna M; Trojanowski, John Q; Elman, Lauren; McCluskey, Leo; Basak, A Nazli; Tunca, Ceren; Hamzeiy, Hamid; Parman, Yesim; Meitinger, Thomas; Lichtner, Peter; Radivojkov-Blagojevic, Milena; Andres, Christian R; Maurel, Cindy; Bensimon, Gilbert; Landwehrmeyer, Bernhard; Brice, Alexis; Payan, Christine A M; Saker-Delye, Safaa; Dürr, Alexandra; Wood, Nicholas W; Tittmann, Lukas; Lieb, Wolfgang; Franke, Andre; Rietschel, Marcella; Cichon, Sven; Nöthen, Markus M; Amouyel, Philippe; Tzourio, Christophe; Dartigues, Jean-François; Uitterlinden, Andre G; Rivadeneira, Fernando; Estrada, Karol; Hofman, Albert; Curtis, Charles; Blauw, Hylke M; van der Kooi, Anneke J; de Visser, Marianne; Goris, An; Weber, Markus; Shaw, Christopher E; Smith, Bradley N; Pansarasa, Orietta; Cereda, Cristina; Del Bo, Roberto; Comi, Giacomo P; D'Alfonso, Sandra; Bertolin, Cinzia; Sorarù, Gianni; Mazzini, Letizia; Pensato, Viviana; Gellera, Cinzia; Tiloca, Cinzia; Ratti, Antonia; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Arcuti, Simona; Capozzo, Rosa; Zecca, Chiara; Lunetta, Christian; Penco, Silvana; Riva, Nilo; Padovani, Alessandro; Filosto, Massimiliano; Muller, Bernard; Stuit, Robbert Jan; Blair, Ian; Zhang, Katharine; McCann, Emily P; Fifita, Jennifer A; Nicholson, Garth A; Rowe, Dominic B; Pamphlett, Roger; Kiernan, Matthew C; Grosskreutz, Julian; Witte, Otto W; Ringer, Thomas; Prell, Tino; Stubendorff, Beatrice; Kurth, Ingo; Hübner, Christian A; Leigh, P Nigel; Casale, Federico; Chio, Adriano; Beghi, Ettore; Pupillo, Elisabetta; Tortelli, Rosanna; Logroscino, Giancarlo; Powell, John; Ludolph, Albert C; Weishaupt, Jochen H; Robberecht, Wim; Van Damme, Philip; Franke, Lude; Pers, Tune H; Brown, Robert H; Glass, Jonathan D; Landers, John E; Hardiman, Orla; Andersen, Peter M; Corcia, Philippe; Vourc'h, Patrick; Silani, Vincenzo; Wray, Naomi R; Visscher, Peter M; de Bakker, Paul I W; van Es, Michael A; Pasterkamp, R Jeroen; Lewis, Cathryn M; Breen, Gerome; Al-Chalabi, Ammar; van den Berg, Leonard H; Veldink, Jan H

    To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577

  17. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis

    NARCIS (Netherlands)

    van Rheenen, Wouter; Shatunov, Aleksey; Dekker, Annelot M.; McLaughlin, Russell L.; Diekstra, Frank P.; Pulit, Sara L.; van der Spek, Rick A. A.; Võsa, Urmo; de Jong, Simone; Robinson, Matthew R.; Yang, Jian; Fogh, Isabella; van Doormaal, Perry Tc; Tazelaar, Gijs H. P.; Koppers, Max; Blokhuis, Anna M.; Sproviero, William; Jones, Ashley R.; Kenna, Kevin P.; van Eijk, Kristel R.; Harschnitz, Oliver; Schellevis, Raymond D.; Brands, William J.; Medic, Jelena; Menelaou, Androniki; Vajda, Alice; Ticozzi, Nicola; Lin, Kuang; Rogelj, Boris; Vrabec, Katarina; Ravnik-Glavač, Metka; Koritnik, Blaž; Zidar, Janez; Leonardis, Lea; Grošelj, Leja Dolenc; Millecamps, Stéphanie; Salachas, François; Meininger, Vincent; de Carvalho, Mamede; Pinto, Susana; Mora, Jesus S.; Rojas-García, Ricardo; Polak, Meraida; Chandran, Siddharthan; Colville, Shuna; Swingler, Robert; Morrison, Karen E.; Shaw, Pamela J.; Hardy, John; Orrell, Richard W.; Pittman, Alan; Sidle, Katie; Fratta, Pietro; Malaspina, Andrea; Topp, Simon; Petri, Susanne; Abdulla, Susanne; Drepper, Carsten; Sendtner, Michael; Meyer, Thomas; Ophoff, Roel A.; Staats, Kim A.; Wiedau-Pazos, Martina; Lomen-Hoerth, Catherine; van Deerlin, Vivianna M.; Trojanowski, John Q.; Elman, Lauren; McCluskey, Leo; Basak, A. Nazli; Tunca, Ceren; Hamzeiy, Hamid; Parman, Yesim; Meitinger, Thomas; Lichtner, Peter; Radivojkov-Blagojevic, Milena; Andres, Christian R.; Maurel, Cindy; Bensimon, Gilbert; Landwehrmeyer, Bernhard; Brice, Alexis; Payan, Christine A. M.; Saker-Delye, Safaa; Dürr, Alexandra; Wood, Nicholas W.; Tittmann, Lukas; Lieb, Wolfgang; Franke, Andre; Rietschel, Marcella; Cichon, Sven; Nöthen, Markus M.; Amouyel, Philippe; Tzourio, Christophe; Dartigues, Jean-François; Uitterlinden, Andre G.; Rivadeneira, Fernando; Estrada, Karol; Hofman, Albert; Curtis, Charles; Blauw, Hylke M.; van der Kooi, Anneke J.; de Visser, Marianne; Goris, An; Weber, Markus; Shaw, Christopher E.; Smith, Bradley N.; Pansarasa, Orietta; Cereda, Cristina; del Bo, Roberto; Comi, Giacomo P.; D'alfonso, Sandra; Bertolin, Cinzia; Sorarù, Gianni; Mazzini, Letizia; Pensato, Viviana; Gellera, Cinzia; Tiloca, Cinzia; Ratti, Antonia; Calvo, Andrea; Moglia, Cristina; Brunetti, Maura; Arcuti, Simona; Capozzo, Rosa; Zecca, Chiara; Lunetta, Christian; Penco, Silvana; Riva, Nilo; Padovani, Alessandro; Filosto, Massimiliano; Muller, Bernard; Stuit, Robbert Jan; Blair, Ian; Zhang, Katharine; McCann, Emily P.; Fifita, Jennifer A.; Nicholson, Garth A.; Rowe, Dominic B.; Pamphlett, Roger; Kiernan, Matthew C.; Grosskreutz, Julian; Witte, Otto W.; Ringer, Thomas; Prell, Tino; Stubendorff, Beatrice; Kurth, Ingo; Hübner, Christian A.; Leigh, P. Nigel; Casale, Federico; Chio, Adriano; Beghi, Ettore; Pupillo, Elisabetta; Tortelli, Rosanna; Logroscino, Giancarlo; Powell, John; Ludolph, Albert C.; Weishaupt, Jochen H.; Robberecht, Wim; van Damme, Philip; Franke, Lude; Pers, Tune H.; Brown, Robert H.; Glass, Jonathan D.; Landers, John E.; Hardiman, Orla; Andersen, Peter M.; Corcia, Philippe; Vourc'h, Patrick; Silani, Vincenzo; Wray, Naomi R.; Visscher, Peter M.; de Bakker, Paul I. W.; van Es, Michael A.; Pasterkamp, R. Jeroen; Lewis, Cathryn M.; Breen, Gerome; Al-Chalabi, Ammar; van den Berg, Leonard H.; Veldink, Jan H.

    2016-01-01

    To elucidate the genetic architecture of amyotrophic lateral sclerosis (ALS) and find associated loci, we assembled a custom imputation reference panel from whole-genome-sequenced patients with ALS and matched controls (n = 1,861). Through imputation and mixed-model association analysis in 12,577

  18. Genetic pleiotropy explains associations between musical auditory discrimination and intelligence.

    Science.gov (United States)

    Mosing, Miriam A; Pedersen, Nancy L; Madison, Guy; Ullén, Fredrik

    2014-01-01

    Musical aptitude is commonly measured using tasks that involve discrimination of different types of musical auditory stimuli. Performance on such different discrimination tasks correlates positively with each other and with intelligence. However, no study to date has explored these associations using a genetically informative sample to estimate underlying genetic and environmental influences. In the present study, a large sample of Swedish twins (N = 10,500) was used to investigate the genetic architecture of the associations between intelligence and performance on three musical auditory discrimination tasks (rhythm, melody and pitch). Phenotypic correlations between the tasks ranged between 0.23 and 0.42 (Pearson r values). Genetic modelling showed that the covariation between the variables could be explained by shared genetic influences. Neither shared, nor non-shared environment had a significant effect on the associations. Good fit was obtained with a two-factor model where one underlying shared genetic factor explained all the covariation between the musical discrimination tasks and IQ, and a second genetic factor explained variance exclusively shared among the discrimination tasks. The results suggest that positive correlations among musical aptitudes result from both genes with broad effects on cognition, and genes with potentially more specific influences on auditory functions.

  19. Association of systemic lupus erythematosus clinical features with European population genetic substructure.

    Directory of Open Access Journals (Sweden)

    Elisa Alonso-Perez

    Full Text Available Systemic Lupus Erythematosus (SLE is an autoimmune disease with a very varied spectrum of clinical manifestations that could be partly determined by genetic factors. We aimed to determine the relationship between prevalence of 11 clinical features and age of disease onset with European population genetic substructure. Data from 1413 patients of European ancestry recruited in nine countries was tested for association with genotypes of top ancestry informative markers. This analysis was done with logistic regression between phenotypes and genotypes or principal components extracted from them. We used a genetic additive model and adjusted for gender and disease duration. Three clinical features showed association with ancestry informative markers: autoantibody production defined as immunologic disorder (P = 6.8×10(-4, oral ulcers (P = 6.9×10(-4 and photosensitivity (P = 0.002. Immunologic disorder was associated with genotypes more common in Southern European ancestries, whereas the opposite trend was observed for photosensitivity. Oral ulcers were specifically more common in patients of Spanish and Portuguese self-reported ancestry. These results should be taken into account in future research and suggest new hypotheses and possible underlying mechanisms to be investigated. A first hypothesis linking photosensitivity with variation in skin pigmentation is suggested.

  20. Association of Systemic Lupus Erythematosus Clinical Features with European Population Genetic Substructure

    Science.gov (United States)

    Calaza, Manuel; Witte, Torsten; Papasteriades, Chryssa; Marchini, Maurizio; Migliaresi, Sergio; Kovacs, Attila; Ordi-Ros, Josep; Bijl, Marc; Santos, Maria Jose; Ruzickova, Sarka; Pullmann, Rudolf; Carreira, Patricia; Skopouli, Fotini N.; D'Alfonso, Sandra; Sebastiani, Gian Domenico; Suarez, Ana; Blanco, Francisco J.; Gomez-Reino, Juan J.; Gonzalez, Antonio

    2011-01-01

    Systemic Lupus Erythematosus (SLE) is an autoimmune disease with a very varied spectrum of clinical manifestations that could be partly determined by genetic factors. We aimed to determine the relationship between prevalence of 11 clinical features and age of disease onset with European population genetic substructure. Data from 1413 patients of European ancestry recruited in nine countries was tested for association with genotypes of top ancestry informative markers. This analysis was done with logistic regression between phenotypes and genotypes or principal components extracted from them. We used a genetic additive model and adjusted for gender and disease duration. Three clinical features showed association with ancestry informative markers: autoantibody production defined as immunologic disorder (P = 6.8×10−4), oral ulcers (P = 6.9×10−4) and photosensitivity (P = 0.002). Immunologic disorder was associated with genotypes more common in Southern European ancestries, whereas the opposite trend was observed for photosensitivity. Oral ulcers were specifically more common in patients of Spanish and Portuguese self-reported ancestry. These results should be taken into account in future research and suggest new hypotheses and possible underlying mechanisms to be investigated. A first hypothesis linking photosensitivity with variation in skin pigmentation is suggested. PMID:22194982

  1. A possible genetic association with chronic fatigue in primary Sjögren's syndrome: a candidate gene study.

    Science.gov (United States)

    Norheim, Katrine Brække; Le Hellard, Stephanie; Nordmark, Gunnel; Harboe, Erna; Gøransson, Lasse; Brun, Johan G; Wahren-Herlenius, Marie; Jonsson, Roland; Omdal, Roald

    2014-02-01

    Fatigue is prevalent and disabling in primary Sjögren's syndrome (pSS). Results from studies in chronic fatigue syndrome (CFS) indicate that genetic variation may influence fatigue. The aim of this study was to investigate single nucleotide polymorphism (SNP) variations in pSS patients with high and low fatigue. A panel of 85 SNPs in 12 genes was selected based on previous studies in CFS. A total of 207 pSS patients and 376 healthy controls were genotyped. One-hundred and ninety-three patients and 70 SNPs in 11 genes were available for analysis after quality control. Patients were dichotomized based on fatigue visual analogue scale (VAS) scores, with VAS fatigue" (n = 53) and VAS ≥50 denominated "high fatigue" (n = 140). We detected signals of association with pSS for one SNP in SLC25A40 (unadjusted p = 0.007) and two SNPs in PKN1 (both p = 0.03) in our pSS case versus control analysis. The association with SLC25A40 was stronger when only pSS high fatigue patients were analysed versus controls (p = 0.002). One SNP in PKN1 displayed an association in the case-only analysis of pSS high fatigue versus pSS low fatigue (p = 0.005). This candidate gene study in pSS did reveal a trend for associations between genetic variation in candidate genes and fatigue. The results will need to be replicated. More research on genetic associations with fatigue is warranted, and future trials should include larger cohorts and multicentre collaborations with sharing of genetic material to increase the statistical power.

  2. Recruitment and Participation of Recreational Runners in a Large Epidemiological and Genetic Research Study: Retrospective Data Analysis.

    Science.gov (United States)

    Manzanero, Silvia; Kozlovskaia, Maria; Vlahovich, Nicole; Hughes, David C

    2018-05-23

    With the increasing capacity for remote collection of both data and samples for medical research, a thorough assessment is needed to determine the association of population characteristics and recruitment methodologies with response rates. The aim of this research was to assess population representativeness in a two-stage study of health and injury in recreational runners, which consisted of an epidemiological arm and genetic analysis. The cost and success of various classical and internet-based methods were analyzed, and demographic representativeness was assessed for recruitment to the epidemiological survey, reported willingness to participate in the genetic arm of the study, actual participation, sample return, and approval for biobank storage. A total of 4965 valid responses were received, of which 1664 were deemed eligible for genetic analysis. Younger age showed a negative association with initial recruitment rate, expressed willingness to participate in genetic analysis, and actual participation. Additionally, female sex was associated with higher initial recruitment rates, and ethnic origin impacted willingness to participate in the genetic analysis (all P<.001). The sharp decline in retention through the different stages of the study in young respondents suggests the necessity to develop specific recruitment and retention strategies when investigating a young, physically active population. ©Silvia Manzanero, Maria Kozlovskaia, Nicole Vlahovich, David C Hughes. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 23.05.2018.

  3. A Review of Pathway-Based Analysis Tools That Visualize Genetic Variants

    Directory of Open Access Journals (Sweden)

    Elisa Cirillo

    2017-11-01

    Full Text Available Pathway analysis is a powerful method for data analysis in genomics, most often applied to gene expression analysis. It is also promising for single-nucleotide polymorphism (SNP data analysis, such as genome-wide association study data, because it allows the interpretation of variants with respect to the biological processes in which the affected genes and proteins are involved. Such analyses support an interactive evaluation of the possible effects of variations on function, regulation or interaction of gene products. Current pathway analysis software often does not support data visualization of variants in pathways as an alternate method to interpret genetic association results, and specific statistical methods for pathway analysis of SNP data are not combined with these visualization features. In this review, we first describe the visualization options of the tools that were identified by a literature review, in order to provide insight for improvements in this developing field. Tool evaluation was performed using a computational epistatic dataset of gene–gene interactions for obesity risk. Next, we report the necessity to include in these tools statistical methods designed for the pathway-based analysis with SNP data, expressly aiming to define features for more comprehensive pathway-based analysis tools. We conclude by recognizing that pathway analysis of genetic variations data requires a sophisticated combination of the most useful and informative visual aspects of the various tools evaluated.

  4. Characterization of clinical and genetic risk factors associated with dyslipidemia after kidney transplantation.

    Science.gov (United States)

    Numakura, Kazuyuki; Kagaya, Hideaki; Yamamoto, Ryohei; Komine, Naoki; Saito, Mitsuru; Hiroshi, Tsuruta; Akihama, Susumu; Inoue, Takamitsu; Narita, Shintaro; Tsuchiya, Norihiko; Habuchi, Tomonori; Niioka, Takenori; Miura, Masatomo; Satoh, Shigeru

    2015-01-01

    We determined the prevalence of dyslipidemia in a Japanese cohort of renal allograft recipients and investigated clinical and genetic characteristics associated with having the disease. In total, 126 patients that received renal allograft transplants between February 2002 and August 2011 were studied, of which 44 recipients (34.9%) were diagnosed with dyslipidemia at 1 year after transplantation. Three clinical factors were associated with a risk of having dyslipidemia: a higher prevalence of disease observed among female than male patients (P = 0.021) and treatment with high mycophenolate mofetil (P = 0.012) and prednisolone (P = 0.023) doses per body weight at 28 days after transplantation. The genetic association between dyslipidemia and 60 previously described genetic polymorphisms in 38 putative disease-associated genes was analyzed. The frequency of dyslipidemia was significantly higher in patients with the glucocorticoid receptor (NR3C1) Bcl1 G allele than in those with the CC genotype (P = 0.001). A multivariate analysis revealed that the NR3C1 Bcl1 G allele was a significant risk factor for the prevalence of dyslipidemia (odds ratio = 4.6; 95% confidence interval = 1.8-12.2). These findings may aid in predicting a patient's risk of developing dyslipidemia.

  5. Characterization of Clinical and Genetic Risk Factors Associated with Dyslipidemia after Kidney Transplantation

    Science.gov (United States)

    Numakura, Kazuyuki; Kagaya, Hideaki; Yamamoto, Ryohei; Komine, Naoki; Saito, Mitsuru; Hiroshi, Tsuruta; Akihama, Susumu; Narita, Shintaro; Tsuchiya, Norihiko; Habuchi, Tomonori; Niioka, Takenori; Miura, Masatomo; Satoh, Shigeru

    2015-01-01

    We determined the prevalence of dyslipidemia in a Japanese cohort of renal allograft recipients and investigated clinical and genetic characteristics associated with having the disease. In total, 126 patients that received renal allograft transplants between February 2002 and August 2011 were studied, of which 44 recipients (34.9%) were diagnosed with dyslipidemia at 1 year after transplantation. Three clinical factors were associated with a risk of having dyslipidemia: a higher prevalence of disease observed among female than male patients (P = 0.021) and treatment with high mycophenolate mofetil (P = 0.012) and prednisolone (P = 0.023) doses per body weight at 28 days after transplantation. The genetic association between dyslipidemia and 60 previously described genetic polymorphisms in 38 putative disease-associated genes was analyzed. The frequency of dyslipidemia was significantly higher in patients with the glucocorticoid receptor (NR3C1) Bcl1 G allele than in those with the CC genotype (P = 0.001). A multivariate analysis revealed that the NR3C1 Bcl1 G allele was a significant risk factor for the prevalence of dyslipidemia (odds ratio = 4.6; 95% confidence interval = 1.8–12.2). These findings may aid in predicting a patient's risk of developing dyslipidemia. PMID:25944971

  6. A general framework for the evaluation of genetic association studies using multiple marginal models

    DEFF Research Database (Denmark)

    Kitsche, Andreas; Ritz, Christian; Hothorn, Ludwig A.

    2016-01-01

    OBJECTIVE: In this study, we present a simultaneous inference procedure as a unified analysis framework for genetic association studies. METHODS: The method is based on the formulation of multiple marginal models that reflect different modes of inheritance. The basic advantage of this methodology...

  7. Structural and Temporal Variation in Genetic Diversity of European Spring Two-Row Barley Cultivars and Association Mapping of Quantitative Traits

    Directory of Open Access Journals (Sweden)

    Alessandro Tondelli

    2013-07-01

    Full Text Available Two hundred sixteen barley ( L. cultivars were selected to represent the diversity and history of European spring two-row barley breeding and to search for alleles controlling agronomic traits by association genetics. The germplasm was genotyped with 7864 gene-based single nucleotide polymorphism markers and corresponding field trial trait data relating to growth and straw strength were obtained at multiple European sites. Analysis of the marker data by statistical population genetics approaches revealed two important trends in the genetic diversity of European two-row spring barley, namely, i directional selection for approximately 14% of total genetic variation of the population in the last approximately 50 yr and ii highly uneven genomic distribution of genetic diversity. Association analysis of the phenotypic and genotypic data identified multiple loci affecting the traits investigated, some of which co-map with selected regions. Collectively, these data show that the genetic makeup of European two-row spring barley is evolving under breeder selection, with signs of extinction of diversity in some genomic regions, suggesting that “breeding the best with the best” is leading towards fixation of some breeder targets. Nevertheless, modern germplasm also retains many regions of high diversity, suggesting that site-specific genetic approaches for allele identification and crop improvement such as association genetics are likely to be successful.

  8. A fast multilocus test with adaptive SNP selection for large-scale genetic-association studies

    KAUST Repository

    Zhang, Han

    2013-09-11

    As increasing evidence suggests that multiple correlated genetic variants could jointly influence the outcome, a multilocus test that aggregates association evidence across multiple genetic markers in a considered gene or a genomic region may be more powerful than a single-marker test for detecting susceptibility loci. We propose a multilocus test, AdaJoint, which adopts a variable selection procedure to identify a subset of genetic markers that jointly show the strongest association signal, and defines the test statistic based on the selected genetic markers. The P-value from the AdaJoint test is evaluated by a computationally efficient algorithm that effectively adjusts for multiple-comparison, and is hundreds of times faster than the standard permutation method. Simulation studies demonstrate that AdaJoint has the most robust performance among several commonly used multilocus tests. We perform multilocus analysis of over 26,000 genes/regions on two genome-wide association studies of pancreatic cancer. Compared with its competitors, AdaJoint identifies a much stronger association between the gene CLPTM1L and pancreatic cancer risk (6.0 × 10(-8)), with the signal optimally captured by two correlated single-nucleotide polymorphisms (SNPs). Finally, we show AdaJoint as a powerful tool for mapping cis-regulating methylation quantitative trait loci on normal breast tissues, and find many CpG sites whose methylation levels are jointly regulated by multiple SNPs nearby.

  9. Genetic Variants in Transcription Factors Are Associated With the Pharmacokinetics and Pharmacodynamics of Metformin

    Science.gov (United States)

    Goswami, S; Yee, SW; Stocker, S; Mosley, JD; Kubo, M; Castro, R; Mefford, JA; Wen, C; Liang, X; Witte, J; Brett, C; Maeda, S; Simpson, MD; Hedderson, MM; Davis, RL; Roden, DM; Giacomini, KM; Savic, RM

    2014-01-01

    One-third of type 2 diabetes patients do not respond to metformin. Genetic variants in metformin transporters have been extensively studied as a likely contributor to this high failure rate. Here, we investigate, for the first time, the effect of genetic variants in transcription factors on metformin pharmacokinetics (PK) and response. Overall, 546 patients and healthy volunteers contributed their genome-wide, pharmacokinetic (235 subjects), and HbA1c data (440 patients) for this analysis. Five variants in specificity protein 1 (SP1), a transcription factor that modulates the expression of metformin transporters, were associated with changes in treatment HbA1c (P < 0.01) and metformin secretory clearance (P < 0.05). Population pharmacokinetic modeling further confirmed a 24% reduction in apparent clearance in homozygous carriers of one such variant, rs784888. Genetic variants in other transcription factors, peroxisome proliferator–activated receptor-α and hepatocyte nuclear factor 4-α, were significantly associated with HbA1c change only. Overall, our study highlights the importance of genetic variants in transcription factors as modulators of metformin PK and response. PMID:24853734

  10. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis)

    Science.gov (United States)

    FUNK, W. CHRIS; LOVICH, ROBERT E.; HOHENLOHE, PAUL A.; HOFMAN, COURTNEY A.; MORRISON, SCOTT A.; SILLETT, T. SCOTT; GHALAMBOR, CAMERON K.; MALDONADO, JESUS E.; RICK, TORBEN C.; DAY, MITCH D.; POLATO, NICHOLAS R.; FITZPATRICK, SARAH W.; COONAN, TIMOTHY J.; CROOKS, KEVIN R.; DILLON, ADAM; GARCELON, DAVID K.; KING, JULIE L.; BOSER, CHRISTINA L.; GOULD, NICHOLAS; ANDELT, WILLIAM F.

    2016-01-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of 6 subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland gray foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness, and reduced adaptive potential. PMID:26992010

  11. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    Science.gov (United States)

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. © 2016 John Wiley & Sons Ltd.

  12. Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE Cohorts

    Directory of Open Access Journals (Sweden)

    Unjin Shim

    2014-12-01

    Full Text Available Metabolic syndrome (MetS is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs, important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs, explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE was used for analysis, which include 8,842 individuals (age, 52.2 ± 8.9 years; body mass index, 24.6 ± 3.2 kg/m2. A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < 5 × 10-6, and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < 1.38 × 10-7, Bonferroni-adjusted p < 0.05. Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF, the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.

  13. Seasonality shows evidence for polygenic architecture and genetic correlation with schizophrenia and bipolar disorder – a meta-analysis of genetic studies

    Science.gov (United States)

    Byrne, Enda M; Raheja, Uttam; Stephens, Sarah H.; Heath, Andrew C; Madden, Pamela AF; Vaswani, Dipika; Nijjar, Gagan V.; Ryan, Kathleen A.; Youssufi, Hassaan; Gehrman, Philip R; Shuldiner, Alan R; Martin, Nicholas G; Montgomery, Grant W; Wray, Naomi R; Nelson, Elliot C; Mitchell, Braxton D; Postolache, Teodor T

    2015-01-01

    Objective To test common genetic variants for association with seasonality (seasonal changes in mood and behavior) and to investigate whether there are shared genetic risk factors between psychiatric disorders and seasonality. Methods A meta-analysis of genome-wide association studies (GWAS) conducted in Australian and Amish populations in whom the Seasonal Pattern Assessment Questionnaire (SPAQ) had been administered. The total sample size was 4,156 individuals. Genetic risk scores based on results from prior large GWAS studies of bipolar disorder (BD), major depressive disorder (MDD), and schizophrenia (SCZ) were calculated to test for overlap in risk between psychiatric disorders and seasonality. Results The most significant association was with rs11825064 (p = 1.7 × 10−6, β = 0.64, S.E = 0.13), an intergenic SNP found on chromosome 11. The evidence for overlap in risk factors was strongest for SCZ and seasonality, with the SCZ genetic profile scores explaining 3% of the variance in log-transformed GSS. BD genetic profile scores were also significantly associated with seasonality, although at much weaker levels, and no evidence for overlap in risk was detected between MDD and seasonality. Conclusions Common SNPs of very large effect likely do not exist for seasonality in the populations examined. As expected, there was overlapping genetic risk factors for BD (but not MDD) with seasonality. Unexpectedly, the risk for SCZ and seasonality had the largest overlap, an unprecedented finding that requires replication in other populations, and has potential clinical implications considering overlapping cognitive deficits in seasonal affective disorders and SCZ PMID:25562672

  14. A genome-wide association meta-analysis identifies new childhood obesity loci

    NARCIS (Netherlands)

    Bradfield, Jonathan P.; Taal, H. Rob; Timpson, Nicholas J.; Scherag, Andre; Lecoeur, Cecile; Warrington, Nicole M.; Hypponen, Elina; Holst, Claus; Valcarcel, Beatriz; Thiering, Elisabeth; Salem, Rany M.; Schumacher, Fredrick R.; Cousminer, Diana L.; Sleiman, Patrick M. A.; Zhao, Jianhua; Berkowitz, Robert I.; Vimaleswaran, Karani S.; Jarick, Ivonne; Pennell, Craig E.; Evans, David M.; St Pourcain, Beate; Berry, Diane J.; Mook-Kanamori, Dennis O.; Hofman, Albert; Rivadeneira, Fernando; Uitterlinden, Andre G.; van Duijn, Cornelia M.; van der Valk, Ralf J. P.; de Jongste, Johan C.; Postma, Dirkje S.; Boomsma, Dorret I.; Gauderman, W. James; Hassanein, Mohamed T.; Lindgren, Cecilia M.; Magi, Reedik; Boreham, Colin A. G.; Neville, Charlotte E.; Moreno, Luis A.; Elliott, Paul; Pouta, Anneli; Hartikainen, Anna-Liisa; Li, Mingyao; Raitakari, Olli; Lehtimaki, Terho; Eriksson, Johan G.; Palotie, Aarno; Dallongeville, Jean; Das, Shikta; Deloukas, Panos; McMahon, George

    Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made in establishing genetic influences on common early-onset obesity. We performed a North American, Australian and European collaborative meta-analysis of

  15. A genome-wide association meta-analysis identifies new childhood obesity loci

    NARCIS (Netherlands)

    Bradfield, J.P.; Taal, H.R.; Timpson, N.J.; Scherag, A.; Lecoeur, C.; Warrington, N.M.; Hypponen, E.; Holst, C.; Valcarcel, B.; Thiering, E.; Salem, R.M.; Schumacher, F.R.; Cousminer, D.L.; Sleiman, P.M.A.; Zhao, J.; Berkowitz, R.I.; Vimaleswaran, K.S.; Jarick, I.; Pennell, C.E.; Evans, D.M.; St Pourcain, B.; Berry, D.J.; Mook-Kanamori, D.O.; Hofman, A.; Rivadeneira, F.; Uitterlinden, A.G.; van Duijn, C.M.; van der Valk, R.J.P.; de Jongste, J.C.; Postma, D.S.; Boomsma, D.I.; Gauderman, W.J.; Hassanein, M.T.; Lindgren, C.M.; Mägi, R.; Boreham, C.A.G.; Neville, C.E.; Moreno, L.A.; Elliott, P.; Pouta, A.; Hartikainen, A.-L.; Li, M.; Raitakari, O.; Lehtimäki, T.; Eriksson, J.G.; Palotie, A.; Dallongeville, J.; Das, S.; Deloukas, P.; McMahon, G.; Ring, S.M.; Kemp, J.P.; Buxton, J.L.; Blakemore, A.I.F.; Bustamante, M.; Guxens, M.; Hirschhorn, J.N.; Gillman, M.W.; Kreiner-Møller, E.; Bisgaard, H.; Gilliland, F.D.; Heinrich, J.; Wheeler, E.; Barroso, I.; O'Rahilly, S.; Meirhaeghe, A.; Sørensen, T.I.A.; Power, C.; Palmer, L.J.; Hinney, A.; Widen, E.; Farooqi, I.S.; McCarthy, M.I.; Froguel, P.; Meyre, D.; Hebebrand, J.; Järvelin, M.J.; Jaddoe, V.W.V.; Smith, G.D.; Hakonarson, H.; Grant, S.F.A.

    2012-01-01

    Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made in establishing genetic influences on common early-onset obesity. We performed a North American, Australian and European collaborative meta-analysis of

  16. Investigation of Genetic Variants Associated with Alzheimer Disease in Parkinson Disease Cognition.

    Science.gov (United States)

    Barrett, Matthew J; Koeppel, Alexander F; Flanigan, Joseph L; Turner, Stephen D; Worrall, Bradford B

    2016-01-01

    Meta-analysis of genome-wide association studies have implicated multiple single nucleotide polymorphisms (SNPs) and associated genes with Alzheimer disease. The role of these SNPs in cognitive impairment in Parkinson disease (PD) remains incompletely evaluated. The objective of this study was to test alleles associated with risk of Alzheimer disease for association with cognitive impairment in Parkinson disease (PD). Two datasets with PD subjects accessed through the NIH database of Genotypes and Phenotypes contained both single nucleotide polymorphism (SNP) arrays and mini-mental state exam (MMSE) scores. Genetic data underwent rigorous quality control and we selected SNPs for genes associated with AD other than APOE. We constructed logistic regression and ordinal regression models, adjusted for sex, age at MMSE, and duration of PD, to assess the association between selected SNPs and MMSE score. In one dataset, PICALM rs3851179 was associated with cognitive impairment (MMSE  70 years old (OR = 2.3; adjusted p-value = 0.017; n = 250) but not in PD subjects ≤ 70 years old. Our finding suggests that PICALM rs3851179 could contribute to cognitive impairment in older patients with PD. It is important that future studies consider the interaction of age and genetic risk factors in the development of cognitive impairment in PD.

  17. Solar Radiation-Associated Adaptive SNP Genetic Differentiation in Wild Emmer Wheat, Triticum dicoccoides.

    Science.gov (United States)

    Ren, Jing; Chen, Liang; Jin, Xiaoli; Zhang, Miaomiao; You, Frank M; Wang, Jirui; Frenkel, Vladimir; Yin, Xuegui; Nevo, Eviatar; Sun, Dongfa; Luo, Ming-Cheng; Peng, Junhua

    2017-01-01

    Whole-genome scans with large number of genetic markers provide the opportunity to investigate local adaptation in natural populations and identify candidate genes under positive selection. In the present study, adaptation genetic differentiation associated with solar radiation was investigated using 695 polymorphic SNP markers in wild emmer wheat originated in a micro-site at Yehudiyya, Israel. The test involved two solar radiation niches: (1) sun, in-between trees; and (2) shade, under tree canopy, separated apart by a distance of 2-4 m. Analysis of molecular variance showed a small (0.53%) but significant portion of overall variation between the sun and shade micro-niches, indicating a non-ignorable genetic differentiation between sun and shade habitats. Fifty SNP markers showed a medium (0.05 ≤ F ST ≤ 0.15) or high genetic differentiation ( F ST > 0.15). A total of 21 outlier loci under positive selection were identified by using four different F ST -outlier testing algorithms. The markers and genome locations under positive selection are consistent with the known patterns of selection. These results suggested that genetic differentiation between sun and shade habitats is substantial, radiation-associated, and therefore ecologically determined. Hence, the results of this study reflected effects of natural selection through solar radiation on EST-related SNP genetic diversity, resulting presumably in different adaptive complexes at a micro-scale divergence. The present work highlights the evolutionary theory and application significance of solar radiation-driven natural selection in wheat improvement.

  18. Association Between Chromosome 9p21 Variants and the Ankle-Brachial Index Identified by a Meta-Analysis of 21 Genome-Wide Association Studies

    DEFF Research Database (Denmark)

    Murabito, Joanne M; White, Charles C; Kavousi, Maryam

    2012-01-01

    BACKGROUND: -Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based coh...

  19. Association Between Chromosome 9p21 Variants and the Ankle-Brachial Index Identified by a Meta-Analysis of 21 Genome-Wide Association Studies

    NARCIS (Netherlands)

    Murabito, Joanne M.; White, Charles C.; Kavousi, Maryam; Sun, Yan V.; Feitosa, Mary F.; Nambi, Vijay; Lamina, Claudia; Schillert, Arne; Coassin, Stefan; Bis, Joshua C.; Broer, Linda; Crawford, Dana C.; Franceschini, Nora; Frikke-Schmidt, Ruth; Haun, Margot; Holewijn, Suzanne; Huffman, Jennifer E.; Hwang, Shih-Jen; Kiechl, Stefan; Kollerits, Barbara; Montasser, May E.; Nolte, Ilja M.; Rudock, Megan E.; Senft, Andrea; Teumer, Alexander; van der Harst, Pim; Vitart, Veronique; Waite, Lindsay L.; Wood, Andrew R.; Wassel, Christina L.; Absher, Devin M.; Allison, Matthew A.; Amin, Najaf; Arnold, Alice; Asselbergs, Folkert W.; Aulchenko, Yurii; Bandinelli, Stefania; Barbalic, Maja; Boban, Mladen; Brown-Gentry, Kristin; Couper, David J.; Criqui, Michael H.; Dehghan, Abbas; den Heijer, Martin; Dieplinger, Benjamin; Ding, Jingzhong; Doerr, Marcus; Espinola-Klein, Christine; Felix, Stephan B.; Ferrucci, Luigi; Folsom, Aaron R.; Fraedrich, Gustav; Gibson, Quince; Goodloe, Robert; Gunjaca, Grgo; Haltmayer, Meinhard; Heiss, Gerardo; Hofman, Albert; Kieback, Arne; Kiemeney, Lambertus A.; Kolcic, Ivana; Kullo, Iftikhar J.; Kritchevsky, Stephen B.; Lackner, Karl J.; Li, Xiaohui; Lieb, Wolfgang; Lohman, Kurt; Meisinger, Christa; Melzer, David; Mohler, Emile R.; Mudnic, Ivana; Mueller, Thomas; Navis, Gerjan; Oberhollenzer, Friedrich; Olin, Jeffrey W.; O'Connell, Jeff; O'Donnell, Christopher J.; Palmas, Walter; Penninx, Brenda W.; Petersmann, Astrid; Polasek, Ozren; Psaty, Bruce M.; Rantner, Barbara; Rice, Ken; Rivadeneira, Fernando; Rotter, Jerome I.; Seldenrijk, Adrie; Stadler, Marietta; Summerer, Monika; Tanaka, Toshiko; Tybjaerg-Hansen, Anne; Uitterlinden, Andre G.; van Gilst, Wiek H.; Vermeulen, Sita H.; Wild, Sarah H.; Wild, Philipp S.; Willeit, Johann; Zeller, Tanja; Zemunik, Tatijana; Zgaga, Lina; Assimes, Themistocles L.; Blankenberg, Stefan; Campbell, Harry; Boerwinkle, Eric; Cooke, John P.; de Graaf, Jacqueline; Herrington, David; Kardia, Sharon L. R.; Mitchell, Braxton D.; Murray, Anna; Muenzel, Thomas; Newman, Anne B.; Oostra, Ben A.; Rudan, Igor; Shuldiner, Alan R.; Snieder, Harold; van Duijn, Cornelia M.; Voelker, Uwe; Wright, Alan F.; Wichmann, H. -Erich; Wilson, James F.; Witteman, Jacqueline C. M.; Liu, Yongmei; Hayward, Caroline; Borecki, Ingrid B.; Ziegler, Andreas; North, Kari E.; Cupples, L. Adrienne; Kronenberg, Florian; Dorr, M.; Munzel, T.; Volker, U.

    Background-Genetic determinants of peripheral arterial disease (PAD) remain largely unknown. To identify genetic variants associated with the ankle-brachial index (ABI), a noninvasive measure of PAD, we conducted a meta-analysis of genome-wide association study data from 21 population-based cohorts.

  20. Genome-Wide Association Analysis of Ischemic Stroke in Young Adults

    OpenAIRE

    Cheng, Yu-Ching; O’Connell, Jeffrey R.; Cole, John W.; Stine, O. Colin; Dueker, Nicole; McArdle, Patrick F.; Sparks, Mary J.; Shen, Jess; Laurie, Cathy C.; Nelson, Sarah; Doheny, Kimberly F.; Ling, Hua; Pugh, Elizabeth W.; Brott, Thomas G.; Brown, Robert D.

    2011-01-01

    Ischemic stroke (IS) is among the leading causes of death in Western countries. There is a significant genetic component to IS susceptibility, especially among young adults. To date, research to identify genetic loci predisposing to stroke has met only with limited success. We performed a genome-wide association (GWA) analysis of early-onset IS to identify potential stroke susceptibility loci. The GWA analysis was conducted by genotyping 1 million SNPs in a biracial population of 889 IS cases...

  1. Genetic polymorphisms associated with psoriasis and development of psoriatic arthritis in patients with psoriasis.

    Science.gov (United States)

    Loft, Nikolai Dyrberg; Skov, Lone; Rasmussen, Mads Kirchheiner; Gniadecki, Robert; Dam, Tomas Norman; Brandslund, Ivan; Hoffmann, Hans Jürgen; Andersen, Malene Rohr; Dessau, Ram Benny; Bergmann, Ann Christina; Andersen, Niels Møller; Abildtoft, Mikkel Kramme; Andersen, Paal Skytt; Hetland, Merete Lund; Glintborg, Bente; Bank, Steffen; Vogel, Ulla; Andersen, Vibeke

    2018-01-01

    Psoriasis (PsO) is a chronic inflammatory disease with predominantly cutaneous manifestations. Approximately one third of patients with PsO develop psoriatic arthritis (PsA), whereas the remaining proportion of patients has isolated cutaneous psoriasis (PsC). These two phenotypes share common immunology, but with different heredity that might in part be explained by genetic variables. Using a candidate gene approach, we studied 53 single nucleotide polymorphisms (SNPs) in 37 genes that regulate inflammation. In total, we assessed 480 patients with PsO from DERMBIO, of whom 151 had PsC for 10 years or more (PsC10), 459 patients with PsA from DANBIO, and 795 healthy controls. Using logistic regression analysis, crude and adjusted for age and gender, we assessed associations between genetic variants and PsO, PsC10, and PsA, as well as associations between genetic variants and development of PsA in PsO. Eleven polymorphisms in 10 genes were nominally associated with PsO and/or PsC and/or PsA (P psoriasis, two SNPs in the IL12B and TNF genes were associated with susceptibility of psoriasis. None of the SNPs were specifically associated with isolated cutaneous psoriasis or psoriatic arthritis.

  2. Systematic review genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases

    DEFF Research Database (Denmark)

    Sørensen, Signe Bek; Nielsen, J V; Bo Bojesen, Anders

    2016-01-01

    BACKGROUND: Personalised medicine, including biomarkers for treatment selection, may provide new algorithms for more effective treatment of patients. Genetic variation may impact drug response and genetic markers could help selecting the best treatment strategy for the individual patient. AIM......2430561) [OR = 1.66 (1.05-2.63)], IL6 (rs10499563) [OR = 1.65 (1.04-2.63)] and IL1B (rs4848306) [OR = 1.88 (1.05-3.35)] were significantly associated with response among IBD patients using clinical response criteria. A positive predictive value of 0.96 was achieved by combining five genetic markers...... in an explorative analysis. CONCLUSIONS: There are no genetic markers currently available which are adequately predictive of anti-TNF response for use in the clinic. Genetic markers bear the advantage that they do not change over time. Therefore, hypothesis-free approaches, testing a large number of polymorphisms...

  3. Functional linear models for association analysis of quantitative traits.

    Science.gov (United States)

    Fan, Ruzong; Wang, Yifan; Mills, James L; Wilson, Alexander F; Bailey-Wilson, Joan E; Xiong, Momiao

    2013-11-01

    Functional linear models are developed in this paper for testing associations between quantitative traits and genetic variants, which can be rare variants or common variants or the combination of the two. By treating multiple genetic variants of an individual in a human population as a realization of a stochastic process, the genome of an individual in a chromosome region is a continuum of sequence data rather than discrete observations. The genome of an individual is viewed as a stochastic function that contains both linkage and linkage disequilibrium (LD) information of the genetic markers. By using techniques of functional data analysis, both fixed and mixed effect functional linear models are built to test the association between quantitative traits and genetic variants adjusting for covariates. After extensive simulation analysis, it is shown that the F-distributed tests of the proposed fixed effect functional linear models have higher power than that of sequence kernel association test (SKAT) and its optimal unified test (SKAT-O) for three scenarios in most cases: (1) the causal variants are all rare, (2) the causal variants are both rare and common, and (3) the causal variants are common. The superior performance of the fixed effect functional linear models is most likely due to its optimal utilization of both genetic linkage and LD information of multiple genetic variants in a genome and similarity among different individuals, while SKAT and SKAT-O only model the similarities and pairwise LD but do not model linkage and higher order LD information sufficiently. In addition, the proposed fixed effect models generate accurate type I error rates in simulation studies. We also show that the functional kernel score tests of the proposed mixed effect functional linear models are preferable in candidate gene analysis and small sample problems. The methods are applied to analyze three biochemical traits in data from the Trinity Students Study. © 2013 WILEY

  4. Exploring genetic variants predisposing to diabetes mellitus and their association with indicators of socioeconomic status.

    Science.gov (United States)

    Schmidt, Börge; Dragano, Nico; Scherag, André; Pechlivanis, Sonali; Hoffmann, Per; Nöthen, Markus M; Erbel, Raimund; Jöckel, Karl-Heinz; Moebus, Susanne

    2014-06-16

    The relevance of disease-related genetic variants for the explanation of social inequalities in complex diseases is unclear and empirical analyses are largely missing. The aim of our study was to examine whether genetic variants predisposing to diabetes mellitus are associated with socioeconomic status in a population-based cohort. We genotyped 11 selected diabetes-related single nucleotide polymorphisms in 4655 participants (age 45-75 years) of the Heinz Nixdorf Recall study. Diabetes status was self-reported or defined by blood glucose levels. Education, income and paternal occupation were assessed as indicators of socioeconomic status. Multiple regression analyses were used to examine the association of socioeconomic status and diabetes by estimating sex-specific and age-adjusted prevalence ratios and their corresponding 95%-confidence intervals. To explore the relationship between individual single nucleotide polymorphisms and socioeconomic status sex- and age-adjusted odds ratios were computed. We adjusted the alpha-level for multiple testing of 11 single nucleotide polymorphisms using Bonferroni's method (α(BF) ~ 0.005). In addition, we explored the association of a genetic risk score with socioeconomic status. Social inequalities in diabetes were observed for all indicators of socioeconomic status. However, there were no significant associations between individual diabetes-related risk alleles and socioeconomic status with odds ratios ranging from 0.87 to 1.23. Similarly, the genetic risk score analysis revealed no evidence for an association. Our data provide no evidence for an association between 11 diabetes-related risk alleles and different indicators of socioeconomic status in a population-based cohort, suggesting that the explored genetic variants do not contribute to health inequalities in diabetes.

  5. Education influences the association between genetic variants and refractive error: a meta-analysis of five Singapore studies

    Science.gov (United States)

    Fan, Qiao; Wojciechowski, Robert; Kamran Ikram, M.; Cheng, Ching-Yu; Chen, Peng; Zhou, Xin; Pan, Chen-Wei; Khor, Chiea-Chuen; Tai, E-Shyong; Aung, Tin; Wong, Tien-Yin; Teo, Yik-Ying; Saw, Seang-Mei

    2014-01-01

    Refractive error is a complex ocular trait governed by both genetic and environmental factors and possibly their interplay. Thus far, data on the interaction between genetic variants and environmental risk factors for refractive errors are largely lacking. By using findings from recent genome-wide association studies, we investigated whether the main environmental factor, education, modifies the effect of 40 single nucleotide polymorphisms on refractive error among 8461 adults from five studies including ethnic Chinese, Malay and Indian residents of Singapore. Three genetic loci SHISA6-DNAH9, GJD2 and ZMAT4-SFRP1 exhibited a strong association with myopic refractive error in individuals with higher secondary or university education (SHISA6-DNAH9: rs2969180 A allele, β = −0.33 D, P = 3.6 × 10–6; GJD2: rs524952 A allele, β = −0.31 D, P = 1.68 × 10−5; ZMAT4-SFRP1: rs2137277 A allele, β = −0.47 D, P = 1.68 × 10−4), whereas the association at these loci was non-significant or of borderline significance in those with lower secondary education or below (P for interaction: 3.82 × 10−3–4.78 × 10−4). The evidence for interaction was strengthened when combining the genetic effects of these three loci (P for interaction = 4.40 × 10−8), and significant interactions with education were also observed for axial length and myopia. Our study shows that low level of education may attenuate the effect of risk alleles on myopia. These findings further underline the role of gene–environment interactions in the pathophysiology of myopia. PMID:24014484

  6. Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin) Content Revealed by Genome-Wide Association Analysis.

    Science.gov (United States)

    Chen, Pingli; Shen, Zhikang; Ming, Luchang; Li, Yibo; Dan, Wenhan; Lou, Guangming; Peng, Bo; Wu, Bian; Li, Yanhua; Zhao, Da; Gao, Guanjun; Zhang, Qinglu; Xiao, Jinghua; Li, Xianghua; Wang, Gongwei; He, Yuqing

    2018-01-01

    Rice seed storage protein (SSP) is an important source of nutrition and energy. Understanding the genetic basis of SSP content and mining favorable alleles that control it will be helpful for breeding new improved cultivars. An association analysis for SSP content was performed to identify underlying genes using 527 diverse Oryza sativa accessions grown in two environments. We identified more than 107 associations for five different traits, including the contents of albumin (Alb), globulin (Glo), prolamin (Pro), glutelin (Glu), and total SSP (Total). A total of 28 associations were located at previously reported QTLs or intervals. A lead SNP sf0709447538, associated for Glu content in the indica subpopulation in 2015, was further validated in near isogenic lines NIL(Zhenshan97) and NIL(Delong208), and the Glu phenotype had significantly difference between two NILs. The association region could be target for map-based cloning of the candidate genes. There were 13 associations in regions close to grain-quality-related genes; five lead single nucleotide polymorphisms (SNPs) were located less than 20 kb upstream from grain-quality-related genes ( PG5a , Wx , AGPS2a , RP6 , and, RM1 ). Several starch-metabolism-related genes ( AGPS2a , OsACS6 , PUL , GBSSII , and ISA2 ) were also associated with SSP content. We identified favorable alleles of functional candidate genes, such as RP6 , RM1 , Wx , and other four candidate genes by haplotype analysis and expression pattern. Genotypes of RP6 and RM1 with higher Pro were not identified in japonica and exhibited much higher expression levels in indica group. The lead SNP sf0601764762, repeatedly detected for Alb content in 2 years in the whole association population, was located in the Wx locus that controls the synthesis of amylose. And Alb content was significantly and negatively correlated with amylose content and the level of 2.3 kb Wx pre-mRNA examined in this study. The associations or candidate genes identified would

  7. Genetic Basis of Variation in Rice Seed Storage Protein (Albumin, Globulin, Prolamin, and Glutelin Content Revealed by Genome-Wide Association Analysis

    Directory of Open Access Journals (Sweden)

    Pingli Chen

    2018-05-01

    Full Text Available Rice seed storage protein (SSP is an important source of nutrition and energy. Understanding the genetic basis of SSP content and mining favorable alleles that control it will be helpful for breeding new improved cultivars. An association analysis for SSP content was performed to identify underlying genes using 527 diverse Oryza sativa accessions grown in two environments. We identified more than 107 associations for five different traits, including the contents of albumin (Alb, globulin (Glo, prolamin (Pro, glutelin (Glu, and total SSP (Total. A total of 28 associations were located at previously reported QTLs or intervals. A lead SNP sf0709447538, associated for Glu content in the indica subpopulation in 2015, was further validated in near isogenic lines NIL(Zhenshan97 and NIL(Delong208, and the Glu phenotype had significantly difference between two NILs. The association region could be target for map-based cloning of the candidate genes. There were 13 associations in regions close to grain-quality-related genes; five lead single nucleotide polymorphisms (SNPs were located less than 20 kb upstream from grain-quality-related genes (PG5a, Wx, AGPS2a, RP6, and, RM1. Several starch-metabolism-related genes (AGPS2a, OsACS6, PUL, GBSSII, and ISA2 were also associated with SSP content. We identified favorable alleles of functional candidate genes, such as RP6, RM1, Wx, and other four candidate genes by haplotype analysis and expression pattern. Genotypes of RP6 and RM1 with higher Pro were not identified in japonica and exhibited much higher expression levels in indica group. The lead SNP sf0601764762, repeatedly detected for Alb content in 2 years in the whole association population, was located in the Wx locus that controls the synthesis of amylose. And Alb content was significantly and negatively correlated with amylose content and the level of 2.3 kb Wx pre-mRNA examined in this study. The associations or candidate genes identified would provide

  8. Genetic and Non-genetic Factors Associated With Constipation in Cancer Patients Receiving Opioids

    Science.gov (United States)

    Laugsand, Eivor A; Skorpen, Frank; Kaasa, Stein; Sabatowski, Rainer; Strasser, Florian; Fayers, Peter; Klepstad, Pål

    2015-01-01

    Objectives: To examine whether the inter-individual variation in constipation among patients receiving opioids for cancer pain is associated with genetic or non-genetic factors. Methods: Cancer patients receiving opioids were included from 17 centers in 11 European countries. Intensity of constipation was reported by 1,568 patients on a four-point categorical scale. Non-genetic factors were included as covariates in stratified regression analyses on the association between constipation and 75 single-nucleotide polymorphisms (SNPs) within 15 candidate genes related to opioid- or constipation-signaling pathways (HTR3E, HTR4, HTR2A, TPH1, ADRA2A, CHRM3, TACR1, CCKAR, KIT, ARRB2, GHRL, ABCB1, COMT, OPRM1, and OPRD1). Results: The non-genetic factors significantly associated with constipation were type of laxative, mobility and place of care among patients receiving laxatives (N=806), in addition to Karnofsky performance status and presence of metastases among patients not receiving laxatives (N=762) (P<0.01). Age, gender, body mass index, cancer diagnosis, time on opioids, opioid dose, and type of opioid did not contribute to the inter-individual differences in constipation. Five SNPs, rs1800532 in TPH1, rs1799971 in OPRM1, rs4437575 in ABCB1, rs10802789 in CHRM3, and rs2020917 in COMT were associated with constipation (P<0.01). Only rs2020917 in COMT passed the Benjamini–Hochberg criterion for a 10% false discovery rate. Conclusions: Type of laxative, mobility, hospitalization, Karnofsky performance status, presence of metastases, and five SNPs within TPH1, OPRM1, ABCB1, CHRM3, and COMT may contribute to the variability in constipation among cancer patients treated with opioids. Knowledge of these factors may help to develop new therapies and to identify patients needing a more individualized approach to treatment. PMID:26087058

  9. The Genetic Association Between Neocortical Volume and General Cognitive Ability Is Driven by Global Surface Area Rather Than Thickness.

    Science.gov (United States)

    Vuoksimaa, Eero; Panizzon, Matthew S; Chen, Chi-Hua; Fiecas, Mark; Eyler, Lisa T; Fennema-Notestine, Christine; Hagler, Donald J; Fischl, Bruce; Franz, Carol E; Jak, Amy; Lyons, Michael J; Neale, Michael C; Rinker, Daniel A; Thompson, Wesley K; Tsuang, Ming T; Dale, Anders M; Kremen, William S

    2015-08-01

    Total gray matter volume is associated with general cognitive ability (GCA), an association mediated by genetic factors. It is expectable that total neocortical volume should be similarly associated with GCA. Neocortical volume is the product of thickness and surface area, but global thickness and surface area are unrelated phenotypically and genetically in humans. The nature of the genetic association between GCA and either of these 2 cortical dimensions has not been examined. Humans possess greater cognitive capacity than other species, and surface area increases appear to be the primary driver of the increased size of the human cortex. Thus, we expected neocortical surface area to be more strongly associated with cognition than thickness. Using multivariate genetic analysis in 515 middle-aged twins, we demonstrated that both the phenotypic and genetic associations between neocortical volume and GCA are driven primarily by surface area rather than thickness. Results were generally similar for each of 4 specific cognitive abilities that comprised the GCA measure. Our results suggest that emphasis on neocortical surface area, rather than thickness, could be more fruitful for elucidating neocortical-GCA associations and identifying specific genes underlying those associations. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    NARCIS (Netherlands)

    J.F. Felix (Janine); J.P. Bradfield (Jonathan); C. Monnereau; R.J.P. van der Valk (Ralf); E. Stergiakouli (Evie); A. Chesi (Alessandra); R. Gaillard (Romy); B. Feenstra (Bjarke); E. Thiering (Elisabeth); E. Kreiner-Møller (Eskil); A. Mahajan (Anubha); Niina Pitkänen; R. Joro (Raimo); A. Cavadino (Alana); V. Huikari (Ville); S. Franks (Steve); M. Groen-Blokhuis (Maria); D.L. Cousminer (Diana); J.A. Marsh (Julie); T. Lehtimäki (Terho); J.A. Curtin (John); J. Vioque (Jesus); T.S. Ahluwalia (Tarunveer Singh); R. Myhre (Ronny); T.S. Price (Thomas); Natalia Vilor-Tejedor; L. Yengo (Loic); N. Grarup (Niels); I. Ntalla (Ioanna); W.Q. Ang (Wei); M. Atalay (Mustafa); H. Bisgaard (Hans); A.I.F. Blakemore (Alexandra); A. Bonnefond (Amélie); L. Carstensen (Lisbeth); J.G. Eriksson (Johan G.); C. Flexeder (Claudia); L. Franke (Lude); F. Geller (Frank); M. Geserick (Mandy); A.L. Hartikainen; C.M.A. Haworth (Claire M.); J.N. Hirschhorn (Joel N.); A. Hofman (Albert); J.-C. Holm (Jens-Christian); M. Horikoshi (Momoko); J.J. Hottenga (Jouke Jan); J. Huang (Jian); H.N. Kadarmideen (Haja N.); M. Kähönen (Mika); W. Kiess (Wieland); T.A. Lakka (Timo); T.A. Lakka (Timo); A. Lewin (Alex); L. Liang (Liming); L.-P. Lyytikäinen (Leo-Pekka); B. Ma (Baoshan); P. Magnus (Per); S.E. McCormack (Shana E.); G. Mcmahon (George); F.D. Mentch (Frank); C.M. Middeldorp (Christel); C.S. Murray (Clare S.); K. Pahkala (Katja); T.H. Pers (Tune); R. Pfäffle (Roland); D.S. Postma (Dirkje); C. Power (Christine); A. Simpson (Angela); V. Sengpiel (Verena); C. Tiesler (Carla); M. Torrent (Maties); A.G. Uitterlinden (André); J.B.J. van Meurs (Joyce); R. Vinding (Rebecca); J. Waage (Johannes); J. Wardle (Jane); E. Zeggini (Eleftheria); B.S. Zemel (Babette S.); G.V. Dedoussis (George); O. Pedersen (Oluf); P. Froguel (Philippe); J. Sunyer (Jordi); R. Plomin (Robert); B. Jacobsson (Bo); T. Hansen (Torben); J.R. Gonzalez (Juan R.); A. Custovic; O.T. Raitakari (Olli T.); C.E. Pennell (Craig); Elisabeth Widén; D.I. Boomsma (Dorret); G.H. Koppelman (Gerard); S. Sebert (Sylvain); M.-R. Jarvelin (Marjo-Riitta); E. Hypponen (Elina); M.I. McCarthy (Mark); V. Lindi (Virpi); N. Harri (Niinikoski); A. Körner (Antje); K. Bønnelykke (Klaus); J. Heinrich (Joachim); M. Melbye (Mads); F. Rivadeneira Ramirez (Fernando); H. Hakonarson (Hakon); S.M. Ring (Susan); G.D. Smith; T.I.A. Sørensen (Thorkild I.A.); N.J. Timpson (Nicholas); S.F.A. Grant (Struan); V.W.V. Jaddoe (Vincent); H.J. Kalkwarf (Heidi J.); J.M. Lappe (Joan M.); V. Gilsanz (Vicente); S.E. Oberfield (Sharon E.); J.A. Shepherd (John A.); A. Kelly (Andrea)

    2016-01-01

    textabstractA large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown.We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation

  11. Genetic Architecture of Aluminum Tolerance in Rice (Oryza sativa) Determined through Genome-Wide Association Analysis and QTL Mapping

    Science.gov (United States)

    Famoso, Adam N.; Zhao, Keyan; Clark, Randy T.; Tung, Chih-Wei; Wright, Mark H.; Bustamante, Carlos; Kochian, Leon V.; McCouch, Susan R.

    2011-01-01

    Aluminum (Al) toxicity is a primary limitation to crop productivity on acid soils, and rice has been demonstrated to be significantly more Al tolerant than other cereal crops. However, the mechanisms of rice Al tolerance are largely unknown, and no genes underlying natural variation have been reported. We screened 383 diverse rice accessions, conducted a genome-wide association (GWA) study, and conducted QTL mapping in two bi-parental populations using three estimates of Al tolerance based on root growth. Subpopulation structure explained 57% of the phenotypic variation, and the mean Al tolerance in Japonica was twice that of Indica. Forty-eight regions associated with Al tolerance were identified by GWA analysis, most of which were subpopulation-specific. Four of these regions co-localized with a priori candidate genes, and two highly significant regions co-localized with previously identified QTLs. Three regions corresponding to induced Al-sensitive rice mutants (ART1, STAR2, Nrat1) were identified through bi-parental QTL mapping or GWA to be involved in natural variation for Al tolerance. Haplotype analysis around the Nrat1 gene identified susceptible and tolerant haplotypes explaining 40% of the Al tolerance variation within the aus subpopulation, and sequence analysis of Nrat1 identified a trio of non-synonymous mutations predictive of Al sensitivity in our diversity panel. GWA analysis discovered more phenotype–genotype associations and provided higher resolution, but QTL mapping identified critical rare and/or subpopulation-specific alleles not detected by GWA analysis. Mapping using Indica/Japonica populations identified QTLs associated with transgressive variation where alleles from a susceptible aus or indica parent enhanced Al tolerance in a tolerant Japonica background. This work supports the hypothesis that selectively introgressing alleles across subpopulations is an efficient approach for trait enhancement in plant breeding programs and

  12. Significant Locus and Metabolic Genetic Correlations Revealed in Genome-Wide Association Study of Anorexia Nervosa.

    Science.gov (United States)

    Duncan, Laramie; Yilmaz, Zeynep; Gaspar, Helena; Walters, Raymond; Goldstein, Jackie; Anttila, Verneri; Bulik-Sullivan, Brendan; Ripke, Stephan; Thornton, Laura; Hinney, Anke; Daly, Mark; Sullivan, Patrick F; Zeggini, Eleftheria; Breen, Gerome; Bulik, Cynthia M

    2017-09-01

    The authors conducted a genome-wide association study of anorexia nervosa and calculated genetic correlations with a series of psychiatric, educational, and metabolic phenotypes. Following uniform quality control and imputation procedures using the 1000 Genomes Project (phase 3) in 12 case-control cohorts comprising 3,495 anorexia nervosa cases and 10,982 controls, the authors performed standard association analysis followed by a meta-analysis across cohorts. Linkage disequilibrium score regression was used to calculate genome-wide common variant heritability (single-nucleotide polymorphism [SNP]-based heritability [h 2 SNP ]), partitioned heritability, and genetic correlations (r g ) between anorexia nervosa and 159 other phenotypes. Results were obtained for 10,641,224 SNPs and insertion-deletion variants with minor allele frequencies >1% and imputation quality scores >0.6. The h 2 SNP of anorexia nervosa was 0.20 (SE=0.02), suggesting that a substantial fraction of the twin-based heritability arises from common genetic variation. The authors identified one genome-wide significant locus on chromosome 12 (rs4622308) in a region harboring a previously reported type 1 diabetes and autoimmune disorder locus. Significant positive genetic correlations were observed between anorexia nervosa and schizophrenia, neuroticism, educational attainment, and high-density lipoprotein cholesterol, and significant negative genetic correlations were observed between anorexia nervosa and body mass index, insulin, glucose, and lipid phenotypes. Anorexia nervosa is a complex heritable phenotype for which this study has uncovered the first genome-wide significant locus. Anorexia nervosa also has large and significant genetic correlations with both psychiatric phenotypes and metabolic traits. The study results encourage a reconceptualization of this frequently lethal disorder as one with both psychiatric and metabolic etiology.

  13. [Hypothetical link between endometriosis and xenobiotics-associated genetically modified food].

    Science.gov (United States)

    Aris, A; Paris, K

    2010-12-01

    Endometriosis is an oestrogen-dependent inflammatory disease affecting 10 % of reproductive-aged women. Often accompanied by chronic pelvic pain and infertility, endometriosis rigorously interferes with women's quality of life. Although the pathophysiology of endometriosis remains unclear, a growing body of evidence points to the implication of environmental toxicants. Over the last decade, an increase in the incidence of endometriosis has been reported and coincides with the introduction of genetically modified foods in our diet. Even though assessments of genetically modified food risk have not indicated any hazard on human health, xenobiotics-associated genetically modified food, such as pesticides residues and xenoproteins, could be harmful in the long-term. The "low-dose hypothesis", accumulation and biotransformation of pesticides-associated genetically modified food and the multiplied toxicity of pesticides-formulation adjuvants support this hypothesis. This review summarizes toxic effects (in vitro and on animal models) of some xenobiotics-associated genetically modified food, such as glyphosate and Cry1Ab protein, and extrapolates on their potential role in the pathophysiology of endometriosis. Their roles as immune toxicants, pro-oxidants, endocrine disruptors and epigenetic modulators are discussed. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  14. Inherited Disease Genetics Improves the Identification of Cancer-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Boyang Zhao

    2016-06-01

    Full Text Available The identification of biologically significant variants in cancer genomes is critical to therapeutic discovery, but it is limited by the statistical power needed to discern driver from passenger. Independent biological data can be used to filter cancer exomes and increase statistical power. Large genetic databases for inherited diseases are uniquely suited to this task because they contain specific amino acid alterations with known pathogenicity and molecular mechanisms. However, no rigorous method to overlay this information onto the cancer exome exists. Here, we present a computational methodology that overlays any variant database onto the somatic mutations in all cancer exomes. We validate the computation experimentally and identify novel associations in a re-analysis of 7362 cancer exomes. This analysis identified activating SOS1 mutations associated with Noonan syndrome as significantly altered in melanoma and the first kinase-activating mutations in ACVR1 associated with adult tumors. Beyond a filter, significant variants found in both rare cancers and rare inherited diseases increase the unmet medical need for therapeutics that target these variants and may bootstrap drug discovery efforts in orphan indications.

  15. Association of genetic and phenotypic variability with geography and climate in three southern California oaks.

    Science.gov (United States)

    Riordan, Erin C; Gugger, Paul F; Ortego, Joaquín; Smith, Carrie; Gaddis, Keith; Thompson, Pam; Sork, Victoria L

    2016-01-01

    Geography and climate shape the distribution of organisms, their genotypes, and their phenotypes. To understand historical and future evolutionary and ecological responses to climate, we compared the association of geography and climate of three oak species (Quercus engelmannii, Quercus berberidifolia, and Quercus cornelius-mulleri) in an environmentally heterogeneous region of southern California at three organizational levels: regional species distributions, genetic variation, and phenotypic variation. We identified climatic variables influencing regional distribution patterns using species distribution models (SDMs), and then tested whether those individual variables are important in shaping genetic (microsatellite) and phenotypic (leaf morphology) variation. We estimated the relative contributions of geography and climate using multivariate redundancy analyses (RDA) with variance partitioning. The modeled distribution of each species was influenced by climate differently. Our analysis of genetic variation using RDA identified small but significant associations between genetic variation with climate and geography in Q. engelmannii and Q. cornelius-mulleri, but not in Q. berberidifolia, and climate explained more of the variation. Our analysis of phenotypic variation in Q. engelmannii indicated that climate had more impact than geography, but not in Q. berberidifolia. Throughout our analyses, we did not find a consistent pattern in effects of individual climatic variables. Our comparative analysis illustrates that climate influences tree response at all organizational levels, but the important climate factors vary depending on the level and on the species. Because of these species-specific and level-specific responses, today's sympatric species are unlikely to have similar distributions in the future. © 2016 Botanical Society of America.

  16. Identification of autophagosome-associated proteins and regulators by quantitative proteomic analysis and genetic screens

    DEFF Research Database (Denmark)

    Dengjel, Jörn; Høyer-Hansen, Maria; Nielsen, Maria

    2012-01-01

    Autophagy is one of the major intracellular catabolic pathways, but little is known about the composition of autophagosomes. To study the associated proteins, we isolated autophagosomes from human breast cancer cells using two different biochemical methods and three stimulus types: amino acid dep...... regulators of autophagy, including subunits of the retromer complex. The combined spatiotemporal proteomic and genetic data sets presented here provide a basis for further characterization of autophagosome biogenesis and cargo selection....

  17. A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits

    DEFF Research Database (Denmark)

    Volkov, Petr; Olsson, Anders H; Gillberg, Linn

    2016-01-01

    Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, w...... and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)metabolic traits associated with the development of obesity and diabetes.......Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men......, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5...

  18. Analysis of genetic diversity inpigeonpeagermplasm using ...

    Indian Academy of Sciences (India)

    Navya

    2016-11-25

    Nov 25, 2016 ... accessions from Orissa (105) and AP (15) do not group with any Indian accessions. ... In the present work, comparison between SSAP and REMAP revealed ... (sequence-specific amplified polymorphism) for genetic analysis of sweet potato. ... Sharma,V.and Nandinemi, M.R. 2014 Assessment of genetic ...

  19. Genome-wide association study identifies genetic loci associated with iron deficiency.

    Directory of Open Access Journals (Sweden)

    Christine E McLaren

    2011-03-01

    Full Text Available The existence of multiple inherited disorders of iron metabolism in man, rodents and other vertebrates suggests genetic contributions to iron deficiency. To identify new genomic locations associated with iron deficiency, a genome-wide association study (GWAS was performed using DNA collected from white men aged≥25 y and women≥50 y in the Hemochromatosis and Iron Overload Screening (HEIRS Study with serum ferritin (SF≤12 µg/L (cases and iron replete controls (SF>100 µg/L in men, SF>50 µg/L in women. Regression analysis was used to examine the association between case-control status (336 cases, 343 controls and quantitative serum iron measures and 331,060 single nucleotide polymorphism (SNP genotypes, with replication analyses performed in a sample of 71 cases and 161 controls from a population of white male and female veterans screened at a US Veterans Affairs (VA medical center. Five SNPs identified in the GWAS met genome-wide statistical significance for association with at least one iron measure, rs2698530 on chr. 2p14; rs3811647 on chr. 3q22, a known SNP in the transferrin (TF gene region; rs1800562 on chr. 6p22, the C282Y mutation in the HFE gene; rs7787204 on chr. 7p21; and rs987710 on chr. 22q11 (GWAS observed P<1.51×10(-7 for all. An association between total iron binding capacity and SNP rs3811647 in the TF gene (GWAS observed P=7.0×10(-9, corrected P=0.012 was replicated within the VA samples (observed P=0.012. Associations with the C282Y mutation in the HFE gene also were replicated. The joint analysis of the HEIRS and VA samples revealed strong associations between rs2698530 on chr. 2p14 and iron status outcomes. These results confirm a previously-described TF polymorphism and implicate one potential new locus as a target for gene identification.

  20. Molecular evaluation of genetic diversity and association studies in ...

    Indian Academy of Sciences (India)

    Molecular evaluation of genetic diversity and association studies in rice. (Oryza sativa L.) C. Vanniarajan, K. K. Vinod and Andy Pereira. J. Genet. 91, 9–19. Table 1. Chromosome-wise distribution of SSR alleles and their number (k), polymorphic information content (PIC) and allele discrimination index (Dm). Chromosome.

  1. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression.

    Science.gov (United States)

    Wray, Naomi R; Ripke, Stephan; Mattheisen, Manuel; Trzaskowski, Maciej; Byrne, Enda M; Abdellaoui, Abdel; Adams, Mark J; Agerbo, Esben; Air, Tracy M; Andlauer, Till M F; Bacanu, Silviu-Alin; Bækvad-Hansen, Marie; Beekman, Aartjan F T; Bigdeli, Tim B; Binder, Elisabeth B; Blackwood, Douglas R H; Bryois, Julien; Buttenschøn, Henriette N; Bybjerg-Grauholm, Jonas; Cai, Na; Castelao, Enrique; Christensen, Jane Hvarregaard; Clarke, Toni-Kim; Coleman, Jonathan I R; Colodro-Conde, Lucía; Couvy-Duchesne, Baptiste; Craddock, Nick; Crawford, Gregory E; Crowley, Cheynna A; Dashti, Hassan S; Davies, Gail; Deary, Ian J; Degenhardt, Franziska; Derks, Eske M; Direk, Nese; Dolan, Conor V; Dunn, Erin C; Eley, Thalia C; Eriksson, Nicholas; Escott-Price, Valentina; Kiadeh, Farnush Hassan Farhadi; Finucane, Hilary K; Forstner, Andreas J; Frank, Josef; Gaspar, Héléna A; Gill, Michael; Giusti-Rodríguez, Paola; Goes, Fernando S; Gordon, Scott D; Grove, Jakob; Hall, Lynsey S; Hannon, Eilis; Hansen, Christine Søholm; Hansen, Thomas F; Herms, Stefan; Hickie, Ian B; Hoffmann, Per; Homuth, Georg; Horn, Carsten; Hottenga, Jouke-Jan; Hougaard, David M; Hu, Ming; Hyde, Craig L; Ising, Marcus; Jansen, Rick; Jin, Fulai; Jorgenson, Eric; Knowles, James A; Kohane, Isaac S; Kraft, Julia; Kretzschmar, Warren W; Krogh, Jesper; Kutalik, Zoltán; Lane, Jacqueline M; Li, Yihan; Li, Yun; Lind, Penelope A; Liu, Xiaoxiao; Lu, Leina; MacIntyre, Donald J; MacKinnon, Dean F; Maier, Robert M; Maier, Wolfgang; Marchini, Jonathan; Mbarek, Hamdi; McGrath, Patrick; McGuffin, Peter; Medland, Sarah E; Mehta, Divya; Middeldorp, Christel M; Mihailov, Evelin; Milaneschi, Yuri; Milani, Lili; Mill, Jonathan; Mondimore, Francis M; Montgomery, Grant W; Mostafavi, Sara; Mullins, Niamh; Nauck, Matthias; Ng, Bernard; Nivard, Michel G; Nyholt, Dale R; O'Reilly, Paul F; Oskarsson, Hogni; Owen, Michael J; Painter, Jodie N; Pedersen, Carsten Bøcker; Pedersen, Marianne Giørtz; Peterson, Roseann E; Pettersson, Erik; Peyrot, Wouter J; Pistis, Giorgio; Posthuma, Danielle; Purcell, Shaun M; Quiroz, Jorge A; Qvist, Per; Rice, John P; Riley, Brien P; Rivera, Margarita; Saeed Mirza, Saira; Saxena, Richa; Schoevers, Robert; Schulte, Eva C; Shen, Ling; Shi, Jianxin; Shyn, Stanley I; Sigurdsson, Engilbert; Sinnamon, Grant B C; Smit, Johannes H; Smith, Daniel J; Stefansson, Hreinn; Steinberg, Stacy; Stockmeier, Craig A; Streit, Fabian; Strohmaier, Jana; Tansey, Katherine E; Teismann, Henning; Teumer, Alexander; Thompson, Wesley; Thomson, Pippa A; Thorgeirsson, Thorgeir E; Tian, Chao; Traylor, Matthew; Treutlein, Jens; Trubetskoy, Vassily; Uitterlinden, André G; Umbricht, Daniel; Van der Auwera, Sandra; van Hemert, Albert M; Viktorin, Alexander; Visscher, Peter M; Wang, Yunpeng; Webb, Bradley T; Weinsheimer, Shantel Marie; Wellmann, Jürgen; Willemsen, Gonneke; Witt, Stephanie H; Wu, Yang; Xi, Hualin S; Yang, Jian; Zhang, Futao; Arolt, Volker; Baune, Bernhard T; Berger, Klaus; Boomsma, Dorret I; Cichon, Sven; Dannlowski, Udo; de Geus, E C J; DePaulo, J Raymond; Domenici, Enrico; Domschke, Katharina; Esko, Tõnu; Grabe, Hans J; Hamilton, Steven P; Hayward, Caroline; Heath, Andrew C; Hinds, David A; Kendler, Kenneth S; Kloiber, Stefan; Lewis, Glyn; Li, Qingqin S; Lucae, Susanne; Madden, Pamela F A; Magnusson, Patrik K; Martin, Nicholas G; McIntosh, Andrew M; Metspalu, Andres; Mors, Ole; Mortensen, Preben Bo; Müller-Myhsok, Bertram; Nordentoft, Merete; Nöthen, Markus M; O'Donovan, Michael C; Paciga, Sara A; Pedersen, Nancy L; Penninx, Brenda W J H; Perlis, Roy H; Porteous, David J; Potash, James B; Preisig, Martin; Rietschel, Marcella; Schaefer, Catherine; Schulze, Thomas G; Smoller, Jordan W; Stefansson, Kari; Tiemeier, Henning; Uher, Rudolf; Völzke, Henry; Weissman, Myrna M; Werge, Thomas; Winslow, Ashley R; Lewis, Cathryn M; Levinson, Douglas F; Breen, Gerome; Børglum, Anders D; Sullivan, Patrick F

    2018-05-01

    Major depressive disorder (MDD) is a common illness accompanied by considerable morbidity, mortality, costs, and heightened risk of suicide. We conducted a genome-wide association meta-analysis based in 135,458 cases and 344,901 controls and identified 44 independent and significant loci. The genetic findings were associated with clinical features of major depression and implicated brain regions exhibiting anatomical differences in cases. Targets of antidepressant medications and genes involved in gene splicing were enriched for smaller association signal. We found important relationships of genetic risk for major depression with educational attainment, body mass, and schizophrenia: lower educational attainment and higher body mass were putatively causal, whereas major depression and schizophrenia reflected a partly shared biological etiology. All humans carry lesser or greater numbers of genetic risk factors for major depression. These findings help refine the basis of major depression and imply that a continuous measure of risk underlies the clinical phenotype.

  2. Large-scale association analysis identifies new lung cancer susceptibility loci and heterogeneity in genetic susceptibility across histological subtypes

    Science.gov (United States)

    McKay, James D.; Hung, Rayjean J.; Han, Younghun; Zong, Xuchen; Carreras-Torres, Robert; Christiani, David C.; Caporaso, Neil E.; Johansson, Mattias; Xiao, Xiangjun; Li, Yafang; Byun, Jinyoung; Dunning, Alison; Pooley, Karen A.; Qian, David C.; Ji, Xuemei; Liu, Geoffrey; Timofeeva, Maria N.; Bojesen, Stig E.; Wu, Xifeng; Le Marchand, Loic; Albanes, Demetrios; Bickeböller, Heike; Aldrich, Melinda C.; Bush, William S.; Tardon, Adonina; Rennert, Gad; Teare, M. Dawn; Field, John K.; Kiemeney, Lambertus A.; Lazarus, Philip; Haugen, Aage; Lam, Stephen; Schabath, Matthew B.; Andrew, Angeline S.; Shen, Hongbing; Hong, Yun-Chul; Yuan, Jian-Min; Bertazzi, Pier Alberto; Pesatori, Angela C.; Ye, Yuanqing; Diao, Nancy; Su, Li; Zhang, Ruyang; Brhane, Yonathan; Leighl, Natasha; Johansen, Jakob S.; Mellemgaard, Anders; Saliba, Walid; Haiman, Christopher A.; Wilkens, Lynne R.; Fernandez-Somoano, Ana; Fernandez-Tardon, Guillermo; van der Heijden, Henricus F.M.; Kim, Jin Hee; Dai, Juncheng; Hu, Zhibin; Davies, Michael PA; Marcus, Michael W.; Brunnström, Hans; Manjer, Jonas; Melander, Olle; Muller, David C.; Overvad, Kim; Trichopoulou, Antonia; Tumino, Rosario; Doherty, Jennifer A.; Barnett, Matt P.; Chen, Chu; Goodman, Gary E.; Cox, Angela; Taylor, Fiona; Woll, Penella; Brüske, Irene; Wichmann, H.-Erich; Manz, Judith; Muley, Thomas R.; Risch, Angela; Rosenberger, Albert; Grankvist, Kjell; Johansson, Mikael; Shepherd, Frances A.; Tsao, Ming-Sound; Arnold, Susanne M.; Haura, Eric B.; Bolca, Ciprian; Holcatova, Ivana; Janout, Vladimir; Kontic, Milica; Lissowska, Jolanta; Mukeria, Anush; Ognjanovic, Simona; Orlowski, Tadeusz M.; Scelo, Ghislaine; Swiatkowska, Beata; Zaridze, David; Bakke, Per; Skaug, Vidar; Zienolddiny, Shanbeh; Duell, Eric J.; Butler, Lesley M.; Koh, Woon-Puay; Gao, Yu-Tang; Houlston, Richard S.; McLaughlin, John; Stevens, Victoria L.; Joubert, Philippe; Lamontagne, Maxime; Nickle, David C.; Obeidat, Ma’en; Timens, Wim; Zhu, Bin; Song, Lei; Kachuri, Linda; Artigas, María Soler; Tobin, Martin D.; Wain, Louise V.; Rafnar, Thorunn; Thorgeirsson, Thorgeir E.; Reginsson, Gunnar W.; Stefansson, Kari; Hancock, Dana B.; Bierut, Laura J.; Spitz, Margaret R.; Gaddis, Nathan C.; Lutz, Sharon M.; Gu, Fangyi; Johnson, Eric O.; Kamal, Ahsan; Pikielny, Claudio; Zhu, Dakai; Lindströem, Sara; Jiang, Xia; Tyndale, Rachel F.; Chenevix-Trench, Georgia; Beesley, Jonathan; Bossé, Yohan; Chanock, Stephen; Brennan, Paul; Landi, Maria Teresa; Amos, Christopher I.

    2017-01-01

    Summary While several lung cancer susceptibility loci have been identified, much of lung cancer heritability remains unexplained. Here, 14,803 cases and 12,262 controls of European descent were genotyped on the OncoArray and combined with existing data for an aggregated GWAS analysis of lung cancer on 29,266 patients and 56,450 controls. We identified 18 susceptibility loci achieving genome wide significance, including 10 novel loci. The novel loci highlighted the striking heterogeneity in genetic susceptibility across lung cancer histological subtypes, with four loci associated with lung cancer overall and six with lung adenocarcinoma. Gene expression quantitative trait analysis (eQTL) in 1,425 normal lung tissues highlighted RNASET2, SECISBP2L and NRG1 as candidate genes. Other loci include genes such as a cholinergic nicotinic receptor, CHRNA2, and the telomere-related genes, OFBC1 and RTEL1. Further exploration of the target genes will continue to provide new insights into the etiology of lung cancer. PMID:28604730

  3. What Ideas Do Students Associate with "Biotechnology" and "Genetic Engineering"?

    Science.gov (United States)

    Hill, Ruaraidh; Stanisstreet, Martin; Boyes, Edward

    2000-01-01

    Explores the ideas that students aged 16-19 associate with the terms 'biotechnology' and 'genetic engineering'. Indicates that some students see biotechnology as risky whereas genetic engineering was described as ethically wrong. (Author/ASK)

  4. Challenges in reproducibility of genetic association studies: lessons learned from the obesity field.

    Science.gov (United States)

    Li, A; Meyre, D

    2013-04-01

    A robust replication of initial genetic association findings has proved to be difficult in human complex diseases and more specifically in the obesity field. An obvious cause of non-replication in genetic association studies is the initial report of a false positive result, which can be explained by a non-heritable phenotype, insufficient sample size, improper correction for multiple testing, population stratification, technical biases, insufficient quality control or inappropriate statistical analyses. Replication may, however, be challenging even when the original study describes a true positive association. The reasons include underpowered replication samples, gene × gene, gene × environment interactions, genetic and phenotypic heterogeneity and subjective interpretation of data. In this review, we address classic pitfalls in genetic association studies and provide guidelines for proper discovery and replication genetic association studies with a specific focus on obesity.

  5. [Wolfram syndrome: clinical and genetic analysis in two sisters].

    Science.gov (United States)

    Conart, J-B; Maalouf, T; Jonveaux, P; Guerci, B; Angioi, K

    2011-10-01

    Wolfram syndrome is a severe genetic disorder defined by the association of diabetes mellitus, optic atrophy, deafness, and diabetes insipidus. Two sisters complained of progressive visual loss. Fundus examination evidenced optic atrophy. Their past medical history revealed diabetes mellitus and deafness since childhood. The association of these symptoms made the diagnosis of Wolfram syndrome possible. It was confirmed by molecular analysis, which evidenced composite WFS1 heterozygous mutations inherited from both their mother and father. Ophthalmologists should be aware of the possibility of Wolfram syndrome when diagnosing optic atrophy in diabetic children. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  6. Recommendations for using standardised phenotypes in genetic association studies

    Directory of Open Access Journals (Sweden)

    Naylor Melissa G

    2009-07-01

    Full Text Available Abstract Genetic association studies of complex traits often rely on standardised quantitative phenotypes, such as percentage of predicted forced expiratory volume and body mass index to measure an underlying trait of interest (eg lung function, obesity. These phenotypes are appealing because they provide an easy mechanism for comparing subjects, although such standardisations may not be the best way to control for confounders and other covariates. We recommend adjusting raw or standardised phenotypes within the study population via regression. We illustrate through simulation that optimal power in both population- and family-based association tests is attained by using the residuals from within-study adjustment as the complex trait phenotype. An application of family-based association analysis of forced expiratory volume in one second, and obesity in the Childhood Asthma Management Program data, illustrates that power is maintained or increased when adjusted phenotype residuals are used instead of typical standardised quantitative phenotypes.

  7. Insight into the Genetic Components of Community Genetics: QTL Mapping of Insect Association in a Fast-Growing Forest Tree

    NARCIS (Netherlands)

    DeWoody, J.; Viger, M.; Lakatos, F.; Tuba, K.; Taylor, G.; Smulders, M.J.M.

    2013-01-01

    Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL) analyses conducted on data from a common

  8. Prevotella as a Hub for Vaginal Microbiota under the Influence of Host Genetics and Their Association with Obesity.

    Science.gov (United States)

    Si, Jiyeon; You, Hyun Ju; Yu, Junsun; Sung, Joohon; Ko, GwangPyo

    2017-01-11

    While the vaginal ecosystem is maintained through mutualistic relationships between the host and the vaginal bacteria, the effect of host genetics on the vaginal microbiota has not been well characterized. We examined the heritability of vaginal microbiota and its association with obesity in 542 Korean females, including 222 monozygotic and 56 dizygotic twins. The vaginal microbiota significantly varied depending on host menopausal status and bacterial vaginosis. Lactobacillus and Prevotella, whose relative abundances are strongly associated with bacterial vaginosis, were the most heritable bacteria among the beneficial and potentially pathogenic vaginal microbiota, respectively. Candidate gene analysis revealed an association between genetic variants of interleukin-5 and the abundance of Prevotella sp. Furthermore, host obesity significantly increased the diversity of the vaginal microbiota in association with Prevotella. Our results provide insight into the effect of host genetics on the vaginal microbiota and their association with both vaginal and non-vaginal health. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Identification of genetic factors associated with susceptibility to angiotensin-converting enzyme inhibitors-induced cough.

    Science.gov (United States)

    Grilo, Antonio; Sáez-Rosas, María P; Santos-Morano, Juan; Sánchez, Elena; Moreno-Rey, Concha; Real, Luis M; Ramírez-Lorca, Reposo; Sáez, María E

    2011-01-01

    Angiotensin-converting enzyme inhibitors (ACEi) are the first selected drugs for hypertensive patients because of its protective properties against heart and kidney diseases. Persistent cough is a common adverse reaction associated with ACEi, which can bind to the treatment cessation, but its etiology remains an unresolved issue. The most accepted mechanism is that the inhibition of ACEi increases kinins levels, resulting in the activation of proinflammatory mechanisms and nitric oxide generation. However, relatively little is known about the genetic susceptibility to ACEi-induced cough in hypertensive patients. We carried out a monogenic association analysis of 39 polymorphisms and haplotypes in genes encoding key proteins related to ACEi activity with the occurrence of ACEi-induced cough. We also carried out a digenic association analysis and investigated the existence of epistatic interactions between the analyzed polymorphisms using a logistic regression procedure. Finally, we investigated the predictive value of the identified associations for ACEi-induced cough. We found that genetic polymorphisms in MME [rs2016848, P=0.002, odds ratio (OR)=1.795], BDKRB2 (rs8012552, P=0.012, OR=1.609), PTGER3 (rs11209716, P=0.002, OR=0.565), and ACE (rs4344) genes are associated with ACEi-related cough. For the latter, the effect is sex specific, having a protective effect in males (P=0.027, OR=0.560) and increasing the risk in females (P=0.031, OR=1.847). In addition, genetic interactions between peptidases involved in kinins levels (CPN1 and XPNPEP1) and proteins related to prostaglandin metabolism (PTGIS and PTGIR) strongly modify the risk of ACEi-induced cough presentation (0.102≤OR≤0.384 for protective combinations and 2.732≤OR≤7.216 for risk combinations). These results are consistent with the hypothesis that the mechanism of cough is related to the accumulation of bradykinin, substance P, and prostaglandins.

  10. Heritability and confirmation of genetic association studies for childhood asthma in twins.

    Science.gov (United States)

    Ullemar, V; Magnusson, P K E; Lundholm, C; Zettergren, A; Melén, E; Lichtenstein, P; Almqvist, C

    2016-02-01

    Although the genetics of asthma has been extensively studied using both quantitative and molecular genetic analysis methods, both approaches lack studies specific to the childhood phenotype and including other allergic diseases. This study aimed to give specific estimates for the heritability of childhood asthma and other allergic diseases, to attempt to replicate findings from genomewide association studies (GWAS) for childhood asthma and to test the same variants against other allergic diseases. In a cohort of 25 306 Swedish twins aged 9 or 12 years, data on asthma were available from parental interviews and population-based registers. The interviews also inquired about wheeze, hay fever, eczema, and food allergy. Through structural equation modeling, the heritability of all phenotypes was calculated. A subset of 10 075 twins was genotyped for 16 single nucleotide polymorphisms (SNPs) selected from previous GWAS; these were first tested for association with asthma and significant findings also against the other allergic diseases. The heritability of any childhood asthma was 0.82 (95% CI 0.79-0.85). For the other allergic diseases, the range was approximately 0.60-0.80. Associations for six SNPs with asthma were replicated, including rs2305480 in the GSDMB gene (OR 0.80, 95% CI 0.74-0.86, P = 1.5*10(-8) ; other significant associations all below P = 3.5*10(-4) ). Of these, only rs3771180 in IL1RL1 was associated with any other allergic disease (for hay fever, OR 0.64, 95% CI 0.53-0.77, P = 2.5*10(-6) ). Asthma and allergic diseases of childhood are highly heritable, and these high-risk genetic variants associated specifically with childhood asthma, except for one SNP shared with hay fever. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Genetic variability, heritability, character association and path analysis in F/sub 1/ hybrids of tomato

    International Nuclear Information System (INIS)

    Saleem, M.Y.; Iqbal, Q.; Asghar, M.

    2013-01-01

    Twenty-five F/sub 1/ hybrids generated from 5*5 diallel crosses were evaluated to study the quantitative genetics of yield and some yield related traits during 2009-10. Worth of room was realized for improvement due to highly significant genetic variations among all traits studied. The highest estimates of genotypic and phenotypic coefficients of variability were recorded for number of fruits per plant while fruit width was the most heritable trait. Plant height, number of fruits per plant and fruit weight revealed significant positive genotypic and phenotypic association along with direct positive effect on fruit yield per plant. It is therefore, recommended that fruit weight, number of fruits per plant and plant height should be given due importance in selection of promising crosses to develop commercial hybrid variety in tomato. (author)

  12. The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis.

    Science.gov (United States)

    Schuller, Dorit; Casal, Margarida

    2007-02-01

    From the analysis of six polymorphic microsatellite loci performed in 361 Saccharomyces cerevisiae isolates, 93 alleles were identified, 52 of them being described for the first time. All these isolates have a distinct mtDNA RFLP pattern. They are derived from a pool of 1620 isolates obtained from spontaneous fermentations of grapes collected in three vineyards of the Vinho Verde Region in Portugal, during the 2001-2003 harvest seasons. For all loci analyzed, observed heterozygosity was 3-4 times lower than the expected value supposing a Hardy-Weinberg equilibrium (random mating and no evolutionary mechanisms acting), indicating a clonal structure and strong populational substructuring. Genetic differences among S. cerevisiae populations were apparent mainly from gradations in allele frequencies rather than from distinctive "diagnostic" genotypes, and the accumulation of small allele-frequency differences across six loci allowed the identification of population structures. Genetic differentiation in the same vineyard in consecutive years was of the same order of magnitude as the differences verified among the different vineyards. Correlation of genetic differentiation with the distance between sampling points within a vineyard suggested a pattern of isolation-by-distance, where genetic divergence in a vineyard increased with size. The continuous use of commercial yeasts has a limited influence on the autochthonous fermentative yeast population collected from grapes and may just slightly change populational structures of strains isolated from sites very close to the winery where they have been used. The present work is the first large-scale approach using microsatellite typing allowing a very fine resolution of indigenous S. cerevisiae populations isolated from vineyards.

  13. Novel genetic loci associated with hippocampal volume

    OpenAIRE

    Hibar, Derrek P.; Adams, Hieab H. H.; Jahanshad, Neda; Chauhan, Ganesh; Stein, Jason L.; Hofer, Edith; Renteria, Miguel E.; Bis, Joshua C.; Arias-Vasquez, Alejandro; Ikram, M. Kamran; Desrivieres, Sylvane; Vernooij, Meike W.; Abramovic, Lucija; Alhusaini, Saud; Amin, Najaf

    2017-01-01

    International audience; The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal ...

  14. FGWAS: Functional genome wide association analysis.

    Science.gov (United States)

    Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu

    2017-10-01

    Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test

    KAUST Repository

    Cai, T.

    2012-06-25

    In recent years, genome-wide association studies (GWAS) and gene-expression profiling have generated a large number of valuable datasets for assessing how genetic variations are related to disease outcomes. With such datasets, it is often of interest to assess the overall effect of a set of genetic markers, assembled based on biological knowledge. Genetic marker-set analyses have been advocated as more reliable and powerful approaches compared with the traditional marginal approaches (Curtis and others, 2005. Pathways to the analysis of microarray data. TRENDS in Biotechnology 23, 429-435; Efroni and others, 2007. Identification of key processes underlying cancer phenotypes using biologic pathway analysis. PLoS One 2, 425). Procedures for testing the overall effect of a marker-set have been actively studied in recent years. For example, score tests derived under an Empirical Bayes (EB) framework (Liu and others, 2007. Semiparametric regression of multidimensional genetic pathway data: least-squares kernel machines and linear mixed models. Biometrics 63, 1079-1088; Liu and others, 2008. Estimation and testing for the effect of a genetic pathway on a disease outcome using logistic kernel machine regression via logistic mixed models. BMC bioinformatics 9, 292-2; Wu and others, 2010. Powerful SNP-set analysis for case-control genome-wide association studies. American Journal of Human Genetics 86, 929) have been proposed as powerful alternatives to the standard Rao score test (Rao, 1948. Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Mathematical Proceedings of the Cambridge Philosophical Society, 44, 50-57). The advantages of these EB-based tests are most apparent when the markers are correlated, due to the reduction in the degrees of freedom. In this paper, we propose an adaptive score test which up- or down-weights the contributions from each member of the marker-set based on the Z-scores of

  16. Genetic and Environmental Associations Between Procrastination and Internalizing/Externalizing Psychopathology.

    Science.gov (United States)

    Gustavson, Daniel E; du Pont, Alta; Hatoum, Alexander S; Hyun Rhee, Soo; Kremen, William S; Hewitt, John K; Friedman, Naomi P

    2017-09-01

    Recent work on procrastination has begun to unravel the genetic and environmental correlates of this problematic behavior. However, little is known about how strongly procrastination is associated with internalizing and externalizing psychopathology, and the extent to which shared genetic/environmental factors or relevant personality constructs (e.g., fear of failure, impulsivity, and neuroticism) can inform the structure of these associations. The current study examined data from 764 young adult twins who completed questionnaires assessing procrastination and personality and structured interviews regarding psychopathology symptoms. Results indicated that procrastination was positively correlated with both internalizing and externalizing latent variables, and that these correlations were driven by shared genetic influences. Moreover, the association between procrastination and internalizing was accounted for by fear of failure and neuroticism, whereas the association between procrastination and externalizing was primarily explained by impulsivity. The role of procrastination in psychopathology is discussed using a framework that highlights common and broadband-specific variance.

  17. A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order.

    Science.gov (United States)

    Ramasamy, Adaikalavan; Curjuric, Ivan; Coin, Lachlan J; Kumar, Ashish; McArdle, Wendy L; Imboden, Medea; Leynaert, Benedicte; Kogevinas, Manolis; Schmid-Grendelmeier, Peter; Pekkanen, Juha; Wjst, Matthias; Bircher, Andreas J; Sovio, Ulla; Rochat, Thierry; Hartikainen, Anna-Liisa; Balding, David J; Jarvelin, Marjo-Riitta; Probst-Hensch, Nicole; Strachan, David P; Jarvis, Deborah L

    2011-11-01

    Hay fever or seasonal allergic rhinitis (AR) is a chronic disorder associated with IgE sensitization to grass. The underlying genetic variants have not been studied comprehensively. There is overwhelming evidence that those who have older siblings have less AR, although the mechanism for this remains unclear. We sought to identify common genetic variant associations with prevalent AR and grass sensitization using existing genome-wide association study (GWAS) data and to determine whether genetic variants modify the protective effect of older siblings. Approximately 2.2 million genotyped or imputed single nucleotide polymorphisms were investigated in 4 large European adult cohorts for AR (3,933 self-reported cases vs 8,965 control subjects) and grass sensitization (2,315 cases vs 10,032 control subjects). Three loci reached genome-wide significance for either phenotype. The HLA variant rs7775228, which cis-regulates HLA-DRB4, was strongly associated with grass sensitization and weakly with AR (P(grass) = 1.6 × 10(-9); P(AR) = 8.0 × 10(-3)). Variants in a locus near chromosome 11 open reading frame 30 (C11orf30) and leucine-rich repeat containing 32 (LRRC32), which was previously associated with atopic dermatitis and eczema, were also strongly associated with both phenotypes (rs2155219; P(grass) = 9.4 × 10(-9); P(AR) = 3.8 × 10(-8)). The third genome-wide significant variant was rs17513503 (P(grass) = 1.2 × 10(-8); PAR = 7.4 × 10(-7)) which was located near transmembrane protein 232 (TMEM232) and solute carrier family 25, member 46 (SLC25A46). Twelve further loci with suggestive associations were also identified. Using a candidate gene approach, where we considered variants within 164 genes previously thought to be important, we found variants in 3 further genes that may be of interest: thymic stromal lymphopoietin (TSLP), Toll-like receptor 6 (TLR6) and nucleotide-binding oligomerization domain containing 1 (NOD1/CARD4). We found no evidence for variants

  18. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum.

    Science.gov (United States)

    Mallick, Prashant K; Sutton, Patrick L; Singh, Ruchi; Singh, Om P; Dash, Aditya P; Singh, Ashok K; Carlton, Jane M; Bhasin, Virendra K

    2013-10-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite's acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST=0.253, Pstructure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation at both neutral and adaptive loci across India. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Understanding Salesforce Behavior using Genetic Association Studies

    NARCIS (Netherlands)

    W.E. van den Berg (Wouter)

    2014-01-01

    markdownabstract__Abstract__ Using genetic association studies, this thesis aims to investigate the drivers of successful customer-salesperson interactions in a context where knowledge development has become crucial to the value creation process. Central to this thesis is the developing role of

  20. Psoriasis and cardiometabolic traits: modest association but distinct genetic architectures

    Science.gov (United States)

    Koch, Manja; Baurecht, Hansjörg; Ried, Janina S.; Rodriguez, Elke; Schlesinger, Sabrina; Volks, Natalie; Gieger, Christian; Rückert, Ina-Maria; Heinrich, Luise; Willenborg, Christina; Smith, Catherine; Peters, Annette; Thorand, Barbara; Koenig, Wolfgang; Lamina, Claudia; Jansen, Henning; Kronenberg, Florian; Seissler, Jochen; Thiery, Joachim; Rathmann, Wolfgang; Schunkert, Heribert; Erdmann, Jeanette; Barker, Jonathan; Nair, Rajan P; Tsoi, Lam C; Elder, James T; Mrowietz, Ulrich; Weichenthal, Michael; Mucha, Sören; Schreiber, Stefan; Franke, Andre; Schmitt, Jochen; Lieb, Wolfgang; Weidinger, Stephan

    2015-01-01

    Psoriasis has been linked to cardiometabolic diseases, but epidemiological findings are inconsistent. We investigated the association between psoriasis and cardiometabolic outcomes in a German cross-sectional study (n=4.185) and a prospective cohort of German Health Insurance beneficiaries (n=1.811.098). A potential genetic overlap was explored using genome-wide data from >22.000 coronary artery disease (CAD) and >4.000 psoriasis cases, and with a dense genotyping study of cardiometabolic risk loci on 927 psoriasis cases and 3.717 controls. Controlling for major confounders, in the cross-sectional analysis psoriasis was significantly associated with type 2 diabetes (T2D, adjusted odd’s ratio OR=2.36; 95% confidence interval CI=1.26–4.41) and myocardial infarction (MI, OR=2.26, 95% CI=1.03–4.96). In the longitudinal study, psoriasis slightly increased the risk for incident T2D (adjusted relative risk RR=1.11; 95%CI=1.08–1.14) and MI (RR=1.14; 95%CI=1.06–1.22), with highest risk increments in systemically treated psoriasis, which accounted for 11 and 17 excess cases of T2D and MI per 10,000 person-years. Except for weak signals from within the MHC, there was no evidence for genetic risk loci shared between psoriasis and cardiometabolic traits. Our findings suggest that psoriasis, in particular severe psoriasis, increases risk for T2D and MI, and that the genetic architecture of psoriasis and cardiometabolic traits is largely distinct. PMID:25599394

  1. An Evaluation of Factors Associated With Pathogenic PRSS1, SPINK1, CTFR, and/or CTRC Genetic Variants in Patients With Idiopathic Pancreatitis.

    Science.gov (United States)

    Jalaly, Niloofar Y; Moran, Robert A; Fargahi, Farshid; Khashab, Mouen A; Kamal, Ayesha; Lennon, Anne Marie; Walsh, Christi; Makary, Martin A; Whitcomb, David C; Yadav, Dhiraj; Cebotaru, Liudmila; Singh, Vikesh K

    2017-08-01

    We evaluated factors associated with pathogenic genetic variants in patients with idiopathic pancreatitis. Genetic testing (PRSS1, CFTR, SPINK1, and CTRC) was performed in all eligible patients with idiopathic pancreatitis between 2010 to 2015. Patients were classified into the following groups based on a review of medical records: (1) acute recurrent idiopathic pancreatitis (ARIP) with or without underlying chronic pancreatitis; (2) idiopathic chronic pancreatitis (ICP) without a history of ARP; (3) an unexplained first episode of acute pancreatitis (AP)pancreatitis. Logistic regression analysis was used to determine the factors associated with pathogenic genetic variants. Among 197 ARIP and/or ICP patients evaluated from 2010 to 2015, 134 underwent genetic testing. A total of 88 pathogenic genetic variants were found in 64 (47.8%) patients. Pathogenic genetic variants were identified in 58, 63, and 27% of patients with ARIP, an unexplained first episode of AP <35 years of age, and ICP without ARP, respectively. ARIP (OR: 18.12; 95% CI: 2.16-151.87; P=0.008) and an unexplained first episode of AP<35 years of age (OR: 2.46; 95% CI: 1.18-5.15; P=0.017), but not ICP, were independently associated with pathogenic genetic variants in the adjusted analysis. Pathogenic genetic variants are most likely to be identified in patients with ARIP and an unexplained first episode of AP<35 years of age. Genetic testing in these patient populations may delineate an etiology and prevent unnecessary diagnostic testing and procedures.

  2. Genetic loci associated with plasma phospholipid N-3 fatty acids: A Meta-Analysis of Genome-Wide association studies from the charge consortium

    NARCIS (Netherlands)

    R.N. Lemaitre (Rozenn); T. Tanaka (Toshiko); W. Tang (Weihong); A. Manichaikul (Ani); M. Foy (Millennia); E.K. Kabagambe (Edmond); J.A. Nettleton (Jennifer ); I.B. King (Irena); L.-C. Weng; S. Bhattacharya (Sayanti); S. Bandinelli (Stefania); J.C. Bis (Joshua); S.S. Rich (Stephen); D.R. Jacobs (David); A. Cherubini (Antonio); B. McKnight (Barbara); S. Liang (Shuang); X. Gu (Xiangjun); K.M. Rice (Kenneth); C.C. Laurie (Cathy); T. Lumley (Thomas); B.L. Browning (Brian); B.M. Psaty (Bruce); Y.D.I. Chen (Yii-Der Ida); Y. Friedlander (Yechiel); L. Djousse (Luc); J.H.Y. Wu (Jason); D.S. Siscovick (David); A.G. Uitterlinden (André); L. Ferrucci (Luigi); M. Fornage (Myriam); M.Y. Tsai (Michael); D. Mozaffarian (Dariush); L.M. Steffen (Lyn); D.K. Arnett (Donna)

    2011-01-01

    textabstractLong-chain n-3 polyunsaturated fatty acids (PUFAs) can derive from diet or from α-linolenic acid (ALA) by elongation and desaturation. We investigated the association of common genetic variation with plasma phospholipid levels of the four major n-3 PUFAs by performing genome-wide

  3. Genetic diversity of disease-associated loci in Turkish population.

    Science.gov (United States)

    Karaca, Sefayet; Cesuroglu, Tomris; Karaca, Mehmet; Erge, Sema; Polimanti, Renato

    2015-04-01

    Many consortia and international projects have investigated the human genetic variation of a large number of ethno-geographic groups. However, populations with peculiar genetic features, such as the Turkish population, are still absent in publically available datasets. To explore the genetic predisposition to health-related traits of the Turkish population, we analyzed 34 genes associated with different health-related traits (for example, lipid metabolism, cardio-vascular diseases, hormone metabolism, cellular detoxification, aging and energy metabolism). We observed relevant differences between the Turkish population and populations with non-European ancestries (that is, Africa and East Asia) in some of the investigated genes (that is, AGT, APOE, CYP1B1, GNB3, IL10, IL6, LIPC and PON1). As most complex traits are highly polygenic, we developed polygenic scores associated with different health-related traits to explore the genetic diversity of the Turkish population with respect to other human groups. This approach showed significant differences between the Turkish population and populations with non-European ancestries, as well as between Turkish and Northern European individuals. This last finding is in agreement with the genetic structure of European and Middle East populations, and may also agree with epidemiological evidences about the health disparities of Turkish communities in Northern European countries.

  4. Multiple Genetic Associations with Irish Wolfhound Dilated Cardiomyopathy.

    Science.gov (United States)

    Simpson, Siobhan; Dunning, Mark D; Brownlie, Serena; Patel, Janika; Godden, Megan; Cobb, Malcolm; Mongan, Nigel P; Rutland, Catrin S

    2016-01-01

    Cardiac disease is a leading cause of morbidity and mortality in dogs and humans, with dilated cardiomyopathy being a large contributor to this. The Irish Wolfhound (IWH) is one of the most commonly affected breeds and one of the few breeds with genetic loci associated with the disease. Mutations in more than 50 genes are associated with human dilated cardiomyopathy (DCM), yet very few are also associated with canine DCM. Furthermore, none of the identified canine loci explain many cases of the disease and previous work has indicated that genotypes at multiple loci may act together to influence disease development. In this study, loci previously associated with DCM in IWH were tested for associations in a new cohort both individually and in combination. We have identified loci significantly associated with the disease individually, but no genotypes individually or in pairs conferred a significantly greater risk of developing DCM than the population risk. However combining three loci together did result in the identification of a genotype which conferred a greater risk of disease than the overall population risk. This study suggests multiple rather than individual genetic factors, cooperating to influence DCM risk in IWH.

  5. Multiple Genetic Associations with Irish Wolfhound Dilated Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Siobhan Simpson

    2016-01-01

    Full Text Available Cardiac disease is a leading cause of morbidity and mortality in dogs and humans, with dilated cardiomyopathy being a large contributor to this. The Irish Wolfhound (IWH is one of the most commonly affected breeds and one of the few breeds with genetic loci associated with the disease. Mutations in more than 50 genes are associated with human dilated cardiomyopathy (DCM, yet very few are also associated with canine DCM. Furthermore, none of the identified canine loci explain many cases of the disease and previous work has indicated that genotypes at multiple loci may act together to influence disease development. In this study, loci previously associated with DCM in IWH were tested for associations in a new cohort both individually and in combination. We have identified loci significantly associated with the disease individually, but no genotypes individually or in pairs conferred a significantly greater risk of developing DCM than the population risk. However combining three loci together did result in the identification of a genotype which conferred a greater risk of disease than the overall population risk. This study suggests multiple rather than individual genetic factors, cooperating to influence DCM risk in IWH.

  6. Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis

    Science.gov (United States)

    Matschegewski, Claudia; Zetzsche, Holger; Hasan, Yaser; Leibeguth, Lena; Briggs, William; Ordon, Frank; Uptmoor, Ralf

    2015-01-01

    Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars. PMID:26442034

  7. The UDP-glucuronate decarboxylase gene family in Populus: structure, expression, and association genetics.

    Directory of Open Access Journals (Sweden)

    Qingzhang Du

    Full Text Available In woody crop plants, the oligosaccharide components of the cell wall are essential for important traits such as bioenergy content, growth, and structural wood properties. UDP-glucuronate decarboxylase (UXS is a key enzyme in the synthesis of UDP-xylose for the formation of xylans during cell wall biosynthesis. Here, we isolated a multigene family of seven members (PtUXS1-7 encoding UXS from Populus tomentosa, the first investigation of UXSs in a tree species. Analysis of gene structure and phylogeny showed that the PtUXS family could be divided into three groups (PtUXS1/4, PtUXS2/5, and PtUXS3/6/7, consistent with the tissue-specific expression patterns of each PtUXS. We further evaluated the functional consequences of nucleotide polymorphisms in PtUXS1. In total, 243 single-nucleotide polymorphisms (SNPs were identified, with a high frequency of SNPs (1/18 bp and nucleotide diversity (πT = 0.01033, θw = 0.01280. Linkage disequilibrium (LD analysis showed that LD did not extend over the entire gene (r (2<0.1, P<0.001, within 700 bp. SNP- and haplotype-based association analysis showed that nine SNPs (Q <0.10 and 12 haplotypes (P<0.05 were significantly associated with growth and wood property traits in the association population (426 individuals, with 2.70% to 12.37% of the phenotypic variation explained. Four significant single-marker associations (Q <0.10 were validated in a linkage mapping population of 1200 individuals. Also, RNA transcript accumulation varies among genotypic classes of SNP10 was further confirmed in the association population. This is the first comprehensive study of the UXS gene family in woody plants, and lays the foundation for genetic improvements of wood properties and growth in trees using genetic engineering or marker-assisted breeding.

  8. Data analysis in the post-genome-wide association study era

    Directory of Open Access Journals (Sweden)

    Qiao-Ling Wang

    2016-12-01

    Full Text Available Since the first report of a genome-wide association study (GWAS on human age-related macular degeneration, GWAS has successfully been used to discover genetic variants for a variety of complex human diseases and/or traits, and thousands of associated loci have been identified. However, the underlying mechanisms for these loci remain largely unknown. To make these GWAS findings more useful, it is necessary to perform in-depth data mining. The data analysis in the post-GWAS era will include the following aspects: fine-mapping of susceptibility regions to identify susceptibility genes for elucidating the biological mechanism of action; joint analysis of susceptibility genes in different diseases; integration of GWAS, transcriptome, and epigenetic data to analyze expression and methylation quantitative trait loci at the whole-genome level, and find single-nucleotide polymorphisms that influence gene expression and DNA methylation; genome-wide association analysis of disease-related DNA copy number variations. Applying these strategies and methods will serve to strengthen GWAS data to enhance the utility and significance of GWAS in improving understanding of the genetics of complex diseases or traits and translate these findings for clinical applications. Keywords: Genome-wide association study, Data mining, Integrative data analysis, Polymorphism, Copy number variation

  9. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy.

    Directory of Open Access Journals (Sweden)

    Olga Gorlova

    2011-07-01

    Full Text Available The aim of this study was to determine, through a genome-wide association study (GWAS, the genetic components contributing to different clinical sub-phenotypes of systemic sclerosis (SSc. We considered limited (lcSSc and diffuse (dcSSc cutaneous involvement, and the relationships with presence of the SSc-specific auto-antibodies, anti-centromere (ACA, and anti-topoisomerase I (ATA. Four GWAS cohorts, comprising 2,296 SSc patients and 5,171 healthy controls, were meta-analyzed looking for associations in the selected subgroups. Eighteen polymorphisms were further tested in nine independent cohorts comprising an additional 3,175 SSc patients and 4,971 controls. Conditional analysis for associated SNPs in the HLA region was performed to explore their independent association in antibody subgroups. Overall analysis showed that non-HLA polymorphism rs11642873 in IRF8 gene to be associated at GWAS level with lcSSc (P = 2.32×10(-12, OR = 0.75. Also, rs12540874 in GRB10 gene (P = 1.27 × 10(-6, OR = 1.15 and rs11047102 in SOX5 gene (P = 1.39×10(-7, OR = 1.36 showed a suggestive association with lcSSc and ACA subgroups respectively. In the HLA region, we observed highly associated allelic combinations in the HLA-DQB1 locus with ACA (P = 1.79×10(-61, OR = 2.48, in the HLA-DPA1/B1 loci with ATA (P = 4.57×10(-76, OR = 8.84, and in NOTCH4 with ACA P = 8.84×10(-21, OR = 0.55 and ATA (P = 1.14×10(-8, OR = 0.54. We have identified three new non-HLA genes (IRF8, GRB10, and SOX5 associated with SSc clinical and auto-antibody subgroups. Within the HLA region, HLA-DQB1, HLA-DPA1/B1, and NOTCH4 associations with SSc are likely confined to specific auto-antibodies. These data emphasize the differential genetic components of subphenotypes of SSc.

  10. Microsatellite analysis of chloroquine resistance associated alleles and neutral loci reveal genetic structure of Indian Plasmodium falciparum

    Science.gov (United States)

    Mallick, Prashant K.; Sutton, Patrick L.; Singh, Ruchi; Singh, Om P.; Dash, Aditya P.; Singh, Ashok K.; Carlton, Jane M.; Bhasin, Virendra K.

    2013-01-01

    Efforts to control malignant malaria caused by Plasmodium falciparum are hampered by the parasite’s acquisition of resistance to antimalarial drugs, e.g., chloroquine. This necessitates evaluating the spread of chloroquine resistance in any malaria-endemic area. India displays highly variable malaria epidemiology and also shares porous international borders with malaria-endemic Southeast Asian countries having multi-drug resistant malaria. Malaria epidemiology in India is believed to be affected by two major factors: high genetic diversity and evolving drug resistance in P. falciparum. How transmission intensity of malaria can influence the genetic structure of chloroquine-resistant P. falciparum population in India is unknown. Here, genetic diversity within and among P. falciparum populations is analyzed with respect to their prevalence and chloroquine resistance observed in 13 different locations in India. Microsatellites developed for P. falciparum, including three putatively neutral and seven microsatellites thought to be under a hitchhiking effect due to chloroquine selection were used. Genetic hitchhiking is observed in five of seven microsatellites flanking the gene responsible for chloroquine resistance. Genetic admixture analysis and F-statistics detected genetically distinct groups in accordance with transmission intensity of different locations and the probable use of chloroquine. A large genetic break between the chloroquine-resistant parasite of the Northeast-East-Island group and Southwest group (FST = 0.253, P<0.001) suggests a long period of isolation or a possibility of different origin between them. A pattern of significant isolation by distance was observed in low transmission areas (r = 0.49, P=0.003, N = 83, Mantel test). An unanticipated pattern of spread of hitchhiking suggests genetic structure for Indian P. falciparum population. Overall, the study suggests that transmission intensity can be an efficient driver for genetic differentiation

  11. Multilevel Association Rule Mining for Bridge Resource Management Based on Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Ou

    2014-01-01

    Full Text Available This paper is concerned with the problem of multilevel association rule mining for bridge resource management (BRM which is announced by IMO in 2010. The goal of this paper is to mine the association rules among the items of BRM and the vessel accidents. However, due to the indirect data that can be collected, which seems useless for the analysis of the relationship between items of BIM and the accidents, the cross level association rules need to be studied, which builds the relation between the indirect data and items of BRM. In this paper, firstly, a cross level coding scheme for mining the multilevel association rules is proposed. Secondly, we execute the immune genetic algorithm with the coding scheme for analyzing BRM. Thirdly, based on the basic maritime investigation reports, some important association rules of the items of BRM are mined and studied. Finally, according to the results of the analysis, we provide the suggestions for the work of seafarer training, assessment, and management.

  12. Association of a body mass index genetic risk score with growth throughout childhood and adolescence.

    Directory of Open Access Journals (Sweden)

    Nicole M Warrington

    Full Text Available While the number of established genetic variants associated with adult body mass index (BMI is growing, the relationships between these variants and growth during childhood are yet to be fully characterised. We examined the association between validated adult BMI associated single nucleotide polymorphisms (SNPs and growth trajectories across childhood. We investigated the timing of onset of the genetic effect and whether it was sex specific.Children from the ALSPAC and Raine birth cohorts were used for analysis (n = 9,328. Genotype data from 32 adult BMI associated SNPs were investigated individually and as an allelic score. Linear mixed effects models with smoothing splines were used for longitudinal modelling of the growth parameters and measures of adiposity peak and rebound were derived.The allelic score was associated with BMI growth throughout childhood, explaining 0.58% of the total variance in BMI in females and 0.44% in males. The allelic score was associated with higher BMI at the adiposity peak (females  =  0.0163 kg/m(2 per allele, males  =  0.0123 kg/m(2 per allele and earlier age (-0.0362 years per allele in males and females and higher BMI (0.0332 kg/m(2 per allele in females and 0.0364 kg/m(2 per allele in males at the adiposity rebound. No gene:sex interactions were detected for BMI growth.This study suggests that known adult genetic determinants of BMI have observable effects on growth from early childhood, and is consistent with the hypothesis that genetic determinants of adult susceptibility to obesity act from early childhood and develop over the life course.

  13. Quantitative genetic analysis of total glucosinolate, oil and protein ...

    African Journals Online (AJOL)

    Quantitative genetic analysis of total glucosinolate, oil and protein contents in Ethiopian mustard ( Brassica carinata A. Braun) ... Seeds were analyzed using HPLC (glucosinolates), NMR (oil) and NIRS (protein). Analyses of variance, Hayman's method of diallel analysis and a mixed linear model of genetic analysis were ...

  14. Identification of Genetic Loci Associated with Quality Traits in Almond via Association Mapping.

    Directory of Open Access Journals (Sweden)

    Carolina Font i Forcada

    Full Text Available To design an appropriate association study, we need to understand population structure and the structure of linkage disequilibrium within and among populations as well as in different regions of the genome in an organism. In this study, we have used a total of 98 almond accessions, from five continents located and maintained at the Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA; Spain, and 40 microsatellite markers. Population structure analysis performed in 'Structure' grouped the accessions into two principal groups; the Mediterranean (Western-Europe and the non-Mediterranean, with K = 3, being the best fit for our data. There was a strong subpopulation structure with linkage disequilibrium decaying with increasing genetic distance resulting in lower levels of linkage disequilibrium between more distant markers. A significant impact of population structure on linkage disequilibrium in the almond cultivar groups was observed. The mean r2 value for all intra-chromosomal loci pairs was 0.040, whereas, the r2 for the inter-chromosomal loci pairs was 0.036. For analysis of association between the markers and phenotypic traits, five models comprising both general linear models and mixed linear models were selected to test the marker trait associations. The mixed linear model (MLM approach using co-ancestry values from population structure and kinship estimates (K model as covariates identified a maximum of 16 significant associations for chemical traits and 12 for physical traits. This study reports for the first time the use of association mapping for determining marker-locus trait associations in a world-wide almond germplasm collection. It is likely that association mapping will have the most immediate and largest impact on the tier of crops such as almond with the greatest economic value.

  15. A genome-wide association study demonstrates significant genetic variation for fracture risk in Thoroughbred racehorses

    Science.gov (United States)

    2014-01-01

    Background Thoroughbred racehorses are subject to non-traumatic distal limb bone fractures that occur during racing and exercise. Susceptibility to fracture may be due to underlying disturbances in bone metabolism which have a genetic cause. Fracture risk has been shown to be heritable in several species but this study is the first genetic analysis of fracture risk in the horse. Results Fracture cases (n = 269) were horses that sustained catastrophic distal limb fractures while racing on UK racecourses, necessitating euthanasia. Control horses (n = 253) were over 4 years of age, were racing during the same time period as the cases, and had no history of fracture at the time the study was carried out. The horses sampled were bred for both flat and National Hunt (NH) jump racing. 43,417 SNPs were employed to perform a genome-wide association analysis and to estimate the proportion of genetic variance attributable to the SNPs on each chromosome using restricted maximum likelihood (REML). Significant genetic variation associated with fracture risk was found on chromosomes 9, 18, 22 and 31. Three SNPs on chromosome 18 (62.05 Mb – 62.15 Mb) and one SNP on chromosome 1 (14.17 Mb) reached genome-wide significance (p fracture than cases, p = 1 × 10-4), while a second haplotype increases fracture risk (cases at 3.39 times higher risk of fracture than controls, p = 0.042). Conclusions Fracture risk in the Thoroughbred horse is a complex condition with an underlying genetic basis. Multiple genomic regions contribute to susceptibility to fracture risk. This suggests there is the potential to develop SNP-based estimators for genetic risk of fracture in the Thoroughbred racehorse, using methods pioneered in livestock genetics such as genomic selection. This information would be useful to racehorse breeders and owners, enabling them to reduce the risk of injury in their horses. PMID:24559379

  16. Genetic and cytokine changes associated with symptomatic stages of CLL.

    Science.gov (United States)

    Agarwal, Amit; Cooke, Lawrence; Riley, Christopher; Qi, Wenqing; Mount, David; Mahadevan, Daruka

    2014-09-01

    The pathogenesis and drug resistance of symptomatic CLL patients involves genetic changes associated with the CLL clone as well as changes within the microenvironment. To further understand these processes, we compared early stage CLL to symptomatic late stage using gene expression and serum cytokine profiling to gain insight of the genetic and microenvironment changes associated with the most severe form of the disease. Patients were classified into low stage (Rai stage 0/I/II) and high stage (Rai stage III/IV). Gene expression profiles were obtained on pretreatment samples using the HG-U133A 2.0 Affymetrix platform. A comparison of low versus high stage CLL revealed a set of 21 genes differentially expressed genes. 15 genes were up regulated in the high stage compared to low stage while 6 genes were down regulated. Analysis of GO molecular function revealed 9 of 21 genes were involved in transcription factor activity. Serum cytokine profiles showed six cytokines to be significantly different in high stage patients. Two chemokines, SDF-1/CXCL12 and uPAR known to be involved in stem cell mobilization and homing were increased in serum of high stage patients. This study has identified therapeutic targets for symptomatic CLL patients. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A functional data analysis approach for genetic association studies

    OpenAIRE

    Reimherr, Matthew; Nicolae, Dan

    2014-01-01

    We present a new method based on Functional Data Analysis (FDA) for detecting associations between one or more scalar covariates and a longitudinal response, while correcting for other variables. Our methods exploit the temporal structure of longitudinal data in ways that are otherwise difficult with a multivariate approach. Our procedure, from an FDA perspective, is a departure from more established methods in two key aspects. First, the raw longitudinal phenotypes are assembled into functio...

  18. A cross-species genetic analysis identifies candidate genes for mouse anxiety and human bipolar disorder

    Directory of Open Access Journals (Sweden)

    David G Ashbrook

    2015-07-01

    Full Text Available Bipolar disorder (BD is a significant neuropsychiatric disorder with a lifetime prevalence of ~1%. To identify genetic variants underlying BD genome-wide association studies (GWAS have been carried out. While many variants of small effect associated with BD have been identified few have yet been confirmed, partly because of the low power of GWAS due to multiple comparisons being made. Complementary mapping studies using murine models have identified genetic variants for behavioral traits linked to BD, often with high power, but these identified regions often contain too many genes for clear identification of candidate genes. In the current study we have aligned human BD GWAS results and mouse linkage studies to help define and evaluate candidate genes linked to BD, seeking to use the power of the mouse mapping with the precision of GWAS. We use quantitative trait mapping for open field test and elevated zero maze data in the largest mammalian model system, the BXD recombinant inbred mouse population, to identify genomic regions associated with these BD-like phenotypes. We then investigate these regions in whole genome data from the Psychiatric Genomics Consortium’s bipolar disorder GWAS to identify candidate genes associated with BD. Finally we establish the biological relevance and pathways of these genes in a comprehensive systems genetics analysis.We identify four genes associated with both mouse anxiety and human BD. While TNR is a novel candidate for BD, we can confirm previously suggested associations with CMYA5, MCTP1 and RXRG. A cross-species, systems genetics analysis shows that MCTP1, RXRG and TNR coexpress with genes linked to psychiatric disorders and identify the striatum as a potential site of action. CMYA5, MCTP1, RXRG and TNR are associated with mouse anxiety and human BD. We hypothesize that MCTP1, RXRG and TNR influence intercellular signaling in the striatum.

  19. Genetic analysis and QTL mapping of maize yield and associate ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-17

    Jun 17, 2008 ... strongly influenced by both genotype and environment, and the interaction of ... associated with yield components as well as secondary ... QTLs that control grain yield under drought ... statistical analysis (ANOVA etc) of phenotypic traits was carried out .... which means that the loci had stable heredity.

  20. Association of SSR markers with contents of fatty acids in olive oil and genetic diversity analysis of an olive core collection.

    Science.gov (United States)

    Ipek, M; Ipek, A; Seker, M; Gul, M K

    2015-03-27

    The purpose of this research was to characterize an olive core collection using some agronomic characters and simple sequence repeat (SSR) markers and to determine SSR markers associated with the content of fatty acids in olive oil. SSR marker analysis demonstrated the presence of a high amount of genetic variation between the olive cultivars analyzed. A UPGMA dendrogram demonstrated that olive cultivars did not cluster on the basis of their geographic origin. Fatty acid components of olive oil in these cultivars were determined. The results also showed that there was a great amount of variation between the olive cultivars in terms of fatty acid composition. For example, oleic acid content ranged from 57.76 to 76.9% with standard deviation of 5.10%. Significant correlations between fatty acids of olive oil were observed. For instance, a very high negative correlation (-0.812) between oleic and linoleic acids was detected. A structured association analysis between the content of fatty acids in olive oil and SSR markers was performed. STRUCTURE analysis assigned olive cultivars to two gene pools (K = 2). Assignment of olive cultivars to these gene pools was not based on geographical origin. Association between fatty acid traits and SSR markers was evaluated using the general linear model of TASSEL. Significant associations were determined between five SSR markers and stearic, oleic, linoleic, and linolenic acids of olive oil. Very high associations (P < 0.001) between ssrOeUA-DCA14 and stearic acid and between GAPU71B and oleic acid indicated that these markers could be used for marker-assisted selection in olive.

  1. Genetic variants of CD209 associated with Kawasaki disease susceptibility.

    Directory of Open Access Journals (Sweden)

    Ho-Chang Kuo

    Full Text Available BACKGROUND: Kawasaki disease (KD is a systemic vasculitis with unknown etiology mainly affecting children in Asian countries. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN, CD209 in humans was showed to trigger an anti-inflammatory cascade and associated with KD susceptibility. This study was conducted to investigate the association between genetic polymorphisms of CD209 and the risk KD. METHODS: A total of 948 subjects (381 KD and 567 controls were recruited. Nine tagging SNPs (rs8112310, rs4804800, rs11465421, rs1544766, rs4804801, rs2287886, rs735239, rs735240, rs4804804 were selected for TaqMan allelic discrimination assay. Clinical phenotypes, coronary artery lesions (CAL and intravenous immunoglobulin (IVIG treatment outcomes were collected for analysis. RESULTS: Significant associations were found between CD209 polymorphisms (rs4804800, rs2287886, rs735240 and the risk of KD. Haplotype analysis for CD209 polymorphisms showed that A/A/G haplotype (P = 0.0002, OR = 1.61 and G/A/G haplotype (P = 0.0365, OR = 1.52 had higher risk of KD as compared with G/G/A haplotype in rs2287886/rs735239/rs735240 pairwise allele analysis. There were no significant association in KD with regards to CAL formation and IVIG treatment responses. CONCLUSION: CD209 polymorphisms were responsible for the susceptibility of KD, but not CAL formation and IVIG treatment responsiveness.

  2. Genetic Variants of CD209 Associated with Kawasaki Disease Susceptibility

    Science.gov (United States)

    Kuo, Ho-Chang; Huang, Ying-Hsien; Chien, Shu-Chen; Yu, Hong-Ren; Hsieh, Kai-Sheng; Hsu, Yu-Wen; Chang, Wei-Chiao

    2014-01-01

    Background Kawasaki disease (KD) is a systemic vasculitis with unknown etiology mainly affecting children in Asian countries. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN, CD209) in humans was showed to trigger an anti-inflammatory cascade and associated with KD susceptibility. This study was conducted to investigate the association between genetic polymorphisms of CD209 and the risk KD. Methods A total of 948 subjects (381 KD and 567 controls) were recruited. Nine tagging SNPs (rs8112310, rs4804800, rs11465421, rs1544766, rs4804801, rs2287886, rs735239, rs735240, rs4804804) were selected for TaqMan allelic discrimination assay. Clinical phenotypes, coronary artery lesions (CAL) and intravenous immunoglobulin (IVIG) treatment outcomes were collected for analysis. Results Significant associations were found between CD209 polymorphisms (rs4804800, rs2287886, rs735240) and the risk of KD. Haplotype analysis for CD209 polymorphisms showed that A/A/G haplotype (P = 0.0002, OR = 1.61) and G/A/G haplotype (P = 0.0365, OR = 1.52) had higher risk of KD as compared with G/G/A haplotype in rs2287886/rs735239/rs735240 pairwise allele analysis. There were no significant association in KD with regards to CAL formation and IVIG treatment responses. Conclusion CD209 polymorphisms were responsible for the susceptibility of KD, but not CAL formation and IVIG treatment responsiveness. PMID:25148534

  3. Support of positive association in family-based genetic analysis between COL27A1 and Tourette syndrome.

    Science.gov (United States)

    Liu, Shiguo; Yu, Xiaoxia; Xu, Quanchen; Cui, Jiajia; Yi, Mingji; Zhang, Xinhua; Ge, Yinlin; Ma, Xu

    2015-08-03

    Recently, a genome-wide association study has indicated associations between single nucleotide polymorphisms in the Collagen Type XXVII Alpha 1 gene (COL27A1) and Tourette syndrome in several ethnic populations. To clarify the global relevance of the previously identified SNPs in the development of Tourette syndrome, the associations between polymorphisms in COL27A1 and Tourette syndrome were assessed in Chinese trios. PCR-directed sequencing was used to evaluate the genetic contributions of three SNPs in COL27A1(rs4979356, rs4979357 and rs7868992) using haplotype relative risk (HRR) and transmission disequilibrium tests (TDT) with a total of 260 Tourette syndrome trios. The family-based association was significant between Tourette syndrome and rs4979356 (TDT: χ2 = 4.804, P = 0.033; HRR = 1.75, P = 0.002; HHRR = 1.32, P = 0.027), and transmission disequilibrium was suspected for rs4979357 (TDT: χ2 = 3.969, P = 0.053; HRR = 1.84, P = 0.001; HHRR = 1.29, P = 0.044). No statistically significant allele transfer was found for rs7868992 (TDT: χ2 = 2.177, P = 0.158). Although the TDT results did not remain significant after applying the conservative Bonferroni correction (p = 0.005), the significant positive HRR analysis confirmed the possibility of showing transmission disequilibrium, which provides evidence for an involvement of COL27A1in the development of TS. However, these results need to be verified with larger datasets from different populations.

  4. Signature of genetic associations in oral cancer.

    Science.gov (United States)

    Sharma, Vishwas; Nandan, Amrita; Sharma, Amitesh Kumar; Singh, Harpreet; Bharadwaj, Mausumi; Sinha, Dhirendra Narain; Mehrotra, Ravi

    2017-10-01

    Oral cancer etiology is complex and controlled by multi-factorial events including genetic events. Candidate gene studies, genome-wide association studies, and next-generation sequencing identified various chromosomal loci to be associated with oral cancer. There is no available review that could give us the comprehensive picture of genetic loci identified to be associated with oral cancer by candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based approaches. A systematic literature search was performed in the PubMed database to identify the loci associated with oral cancer by exclusive candidate gene studies-based, genome-wide association studies-based, and next-generation sequencing-based study approaches. The information of loci associated with oral cancer is made online through the resource "ORNATE." Next, screening of the loci validated by candidate gene studies and next-generation sequencing approach or by two independent studies within candidate gene studies or next-generation sequencing approaches were performed. A total of 264 loci were identified to be associated with oral cancer by candidate gene studies, genome-wide association studies, and next-generation sequencing approaches. In total, 28 loci, that is, 14q32.33 (AKT1), 5q22.2 (APC), 11q22.3 (ATM), 2q33.1 (CASP8), 11q13.3 (CCND1), 16q22.1 (CDH1), 9p21.3 (CDKN2A), 1q31.1 (COX-2), 7p11.2 (EGFR), 22q13.2 (EP300), 4q35.2 (FAT1), 4q31.3 (FBXW7), 4p16.3 (FGFR3), 1p13.3 (GSTM1-GSTT1), 11q13.2 (GSTP1), 11p15.5 (H-RAS), 3p25.3 (hOGG1), 1q32.1 (IL-10), 4q13.3 (IL-8), 12p12.1 (KRAS), 12q15 (MDM2), 12q13.12 (MLL2), 9q34.3 (NOTCH1), 17p13.1 (p53), 3q26.32 (PIK3CA), 10q23.31 (PTEN), 13q14.2 (RB1), and 5q14.2 (XRCC4), were validated to be associated with oral cancer. "ORNATE" gives a snapshot of genetic loci associated with oral cancer. All 28 loci were validated to be linked to oral cancer for which further fine-mapping followed by gene-by-gene and gene

  5. The genetic aetiology of cannabis use initiation: A meta-analysis of genome-wide association studies and a SNP-based heritability estimation

    NARCIS (Netherlands)

    Verweij, K.J.H.; Vinkhuyzen, A.A.E.; Benyamin, B.; Lynskey, M.T.; Quaye, L.; Agrawal, A.; Gordon, S.D.; Montgomery, G.W.; Madden, P.A.F.; Heath, A.C.; Spector, T.D.; Martin, N.G.; Medland, S.E.

    2013-01-01

    While initiation of cannabis use is around 40% heritable, not much is known about the underlying genetic aetiology. Here, we meta-analysed two genome-wide association studies of initiation of cannabis use with >10000 individuals. None of the genetic variants reached genome-wide significance. We also

  6. The genetic etiology of cannabis use initiation: a meta-analysis of genome-wide association studies, and a SNP-based heritability estimation.

    NARCIS (Netherlands)

    Verweij, K.J.H.; Vinkhuyzen, A.A.E.; Benyamin, B.; Lynskey, M.T.; Quaye, L.; Agrawal, A.; Gordon, S.D.; Montgomery, G.W.; Madden, P.A.F.; Heath, A.C.; Spector, T.D.; Martin, N.G.; Medland, S.E.

    2013-01-01

    While initiation of cannabis use is around 40% heritable, not much is known about the underlying genetic aetiology. Here, we meta-analysed two genome-wide association studies of initiation of cannabis use with > 10 000 individuals. None of the genetic variants reached genome-wide significance. We

  7. A genome-wide association study of autism using the Simons Simplex Collection: Does reducing phenotypic heterogeneity in autism increase genetic homogeneity?

    Science.gov (United States)

    Chaste, Pauline; Klei, Lambertus; Sanders, Stephan J; Hus, Vanessa; Murtha, Michael T; Lowe, Jennifer K; Willsey, A Jeremy; Moreno-De-Luca, Daniel; Yu, Timothy W; Fombonne, Eric; Geschwind, Daniel; Grice, Dorothy E; Ledbetter, David H; Mane, Shrikant M; Martin, Donna M; Morrow, Eric M; Walsh, Christopher A; Sutcliffe, James S; Lese Martin, Christa; Beaudet, Arthur L; Lord, Catherine; State, Matthew W; Cook, Edwin H; Devlin, Bernie

    2015-05-01

    Phenotypic heterogeneity in autism has long been conjectured to be a major hindrance to the discovery of genetic risk factors, leading to numerous attempts to stratify children based on phenotype to increase power of discovery studies. This approach, however, is based on the hypothesis that phenotypic heterogeneity closely maps to genetic variation, which has not been tested. Our study examines the impact of subphenotyping of a well-characterized autism spectrum disorder (ASD) sample on genetic homogeneity and the ability to discover common genetic variants conferring liability to ASD. Genome-wide genotypic data of 2576 families from the Simons Simplex Collection were analyzed in the overall sample and phenotypic subgroups defined on the basis of diagnosis, IQ, and symptom profiles. We conducted a family-based association study, as well as estimating heritability and evaluating allele scores for each phenotypic subgroup. Association analyses revealed no genome-wide significant association signal. Subphenotyping did not increase power substantially. Moreover, allele scores built from the most associated single nucleotide polymorphisms, based on the odds ratio in the full sample, predicted case status in subsets of the sample equally well and heritability estimates were very similar for all subgroups. In genome-wide association analysis of the Simons Simplex Collection sample, reducing phenotypic heterogeneity had at most a modest impact on genetic homogeneity. Our results are based on a relatively small sample, one with greater homogeneity than the entire population; if they apply more broadly, they imply that analysis of subphenotypes is not a productive path forward for discovering genetic risk variants in ASD. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  8. High-throughput genetic analysis in a cohort of patients with Ocular Developmental Anomalies

    Directory of Open Access Journals (Sweden)

    Suganya Kandeeban

    2017-10-01

    Full Text Available Anophthalmia and microphthalmia (A/M are developmental ocular malformations in which the eye fails to form or is smaller than normal with both genetic and environmental etiology. Microphthalmia is often associated with additional ocular anomalies, most commonly coloboma or cataract [1, 2]. A/M has a combined incidence between 1-3.2 cases per 10,000 live births in Caucasians [3, 4]. The spectrum of genetic abnormalities (chromosomal and molecular associated with these ocular developmental defects are being investigated in the current study. A detailed pedigree analysis and ophthalmic examination have been documented for the enrolled patients followed by blood collection and DNA extraction. The strategies for genetic analysis included chromosomal analysis by conventional and array based (affymetrix cytoscan HD array methods, targeted re-sequencing of the candidate genes and whole exome sequencing (WES in Illumina HiSEQ 2500. WES was done in families excluded for mutations in candidate genes. Twenty four samples (Microphthalmia (M-5, Anophthalmia (A-7,Coloboma-2, M&A-1, microphthalmia and coloboma / other ocular features-9 were initially analyzed using conventional Geimsa Trypsin Geimsa banding of which 4 samples revealed gross chromosomal aberrations (deletions in 3q26.3-28, 11p13 (N=2 and 11q23 regions. Targeted re sequencing of candidate genes showed mutations in CHX10, PAX6, FOXE3, ABCB6 and SHH genes in 6 samples. High throughput array based chromosomal analysis revealed aberrations in 4 samples (17q21dup (n=2, 8p11del (n=2. Overall, genetic alterations in known candidate genes are seen in 50% of the study subjects. Whole exome sequencing was performed in samples that were excluded for mutations in candidate genes and the results are discussed.

  9. Genome-Wide Association Analysis of Young-Onset Stroke Identifies a Locus on Chromosome 10q25 Near HABP2.

    Science.gov (United States)

    Cheng, Yu-Ching; Stanne, Tara M; Giese, Anne-Katrin; Ho, Weang Kee; Traylor, Matthew; Amouyel, Philippe; Holliday, Elizabeth G; Malik, Rainer; Xu, Huichun; Kittner, Steven J; Cole, John W; O'Connell, Jeffrey R; Danesh, John; Rasheed, Asif; Zhao, Wei; Engelter, Stefan; Grond-Ginsbach, Caspar; Kamatani, Yoichiro; Lathrop, Mark; Leys, Didier; Thijs, Vincent; Metso, Tiina M; Tatlisumak, Turgut; Pezzini, Alessandro; Parati, Eugenio A; Norrving, Bo; Bevan, Steve; Rothwell, Peter M; Sudlow, Cathie; Slowik, Agnieszka; Lindgren, Arne; Walters, Matthew R; Jannes, Jim; Shen, Jess; Crosslin, David; Doheny, Kimberly; Laurie, Cathy C; Kanse, Sandip M; Bis, Joshua C; Fornage, Myriam; Mosley, Thomas H; Hopewell, Jemma C; Strauch, Konstantin; Müller-Nurasyid, Martina; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Meisinger, Christine; Ikram, M Arfan; Longstreth, W T; Meschia, James F; Seshadri, Sudha; Sharma, Pankaj; Worrall, Bradford; Jern, Christina; Levi, Christopher; Dichgans, Martin; Boncoraglio, Giorgio B; Markus, Hugh S; Debette, Stephanie; Rolfs, Arndt; Saleheen, Danish; Mitchell, Braxton D

    2016-02-01

    Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a 2-stage meta-analysis of genome-wide association studies, focusing on stroke cases with an age of onset genetic variants at loci with association Pstroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the discovery and follow-up stages (rs11196288; odds ratio =1.41; P=9.5×10(-9)). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that 2 single nucleotide polymorphisms in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke. © 2016 American Heart Association, Inc.

  10. Developments in statistical analysis in quantitative genetics

    DEFF Research Database (Denmark)

    Sorensen, Daniel

    2009-01-01

    of genetic means and variances, models for the analysis of categorical and count data, the statistical genetics of a model postulating that environmental variance is partly under genetic control, and a short discussion of models that incorporate massive genetic marker information. We provide an overview......A remarkable research impetus has taken place in statistical genetics since the last World Conference. This has been stimulated by breakthroughs in molecular genetics, automated data-recording devices and computer-intensive statistical methods. The latter were revolutionized by the bootstrap...... and by Markov chain Monte Carlo (McMC). In this overview a number of specific areas are chosen to illustrate the enormous flexibility that McMC has provided for fitting models and exploring features of data that were previously inaccessible. The selected areas are inferences of the trajectories over time...

  11. CRY2 genetic variants associate with dysthymia.

    Directory of Open Access Journals (Sweden)

    Leena Kovanen

    Full Text Available People with mood disorders often have disruptions in their circadian rhythms. Recent molecular genetics has linked circadian clock genes to mood disorders. Our objective was to study two core circadian clock genes, CRY1 and CRY2 as well as TTC1 that interacts with CRY2, in relation to depressive and anxiety disorders. Of these three genes, 48 single-nucleotide polymorphisms (SNPs whose selection was based on the linkage disequilibrium and potential functionality were genotyped in 5910 individuals from a nationwide population-based sample. The diagnoses of major depressive disorder, dysthymia and anxiety disorders were assessed with a structured interview (M-CIDI. In addition, the participants filled in self-report questionnaires on depressive and anxiety symptoms. Logistic and linear regression models were used to analyze the associations of the SNPs with the phenotypes. Four CRY2 genetic variants (rs10838524, rs7121611, rs7945565, rs1401419 associated significantly with dysthymia (false discovery rate q<0.05. This finding together with earlier CRY2 associations with winter depression and with bipolar type 1 disorder supports the view that CRY2 gene has a role in mood disorders.

  12. The association of XRCC3 Thr241Met genetic variant with risk of ...

    African Journals Online (AJOL)

    genetic variant could be potentially associated with the risk of prostate cancer. However ... Results: Overall, significant associations were detected in the heterozygote comparison genetic model. (CT versus (vs.) ..... Quantifying hetero- geneity in ...

  13. Diversity of Wolbachia pipientis strain wPip in a genetically admixtured, above-ground Culex pipiens (Diptera: Culicidae) population: association with form molestus ancestry and host selection patterns.

    Science.gov (United States)

    Morningstar, Rebecca J; Hamer, Gabriel L; Goldberg, Tony L; Huang, Shaoming; Andreadis, Theodore G; Walker, Edward D

    2012-05-01

    Analysis of molecular genetic diversity in nine marker regions of five genes within the bacteriophage WO genomic region revealed high diversity of the Wolbachia pipentis strain wPip in a population of Culex pipiens L. sampled in metropolitan Chicago, IL. From 166 blood fed females, 50 distinct genetic profiles of wPip were identified. Rarefaction analysis suggested a maximum of 110 profiles out of a possible 512 predicted by combinations of the nine markers. A rank-abundance curve showed that few strains were common and most were rare. Multiple regression showed that markers associated with gene Gp2d, encoding a partial putative capsid protein, were significantly associated with ancestry of individuals either to form molestus or form pipiens, as determined by prior microsatellite allele frequency analysis. None of the other eight markers was associated with ancestry to either form, nor to ancestry to Cx. quinquefasciatus Say. Logistic regression of host choice (mammal vs. avian) as determined by bloodmeal analysis revealed that significantly fewer individuals that had fed on mammals had the Gp9a genetic marker (58.5%) compared with avian-fed individuals (88.1%). These data suggest that certain wPip molecular genetic types are associated with genetic admixturing in the Cx. pipiens complex of metropolitan Chicago, IL, and that the association extends to phenotypic variation related to host preference.

  14. Genome-wide meta-analysis associates HLA-DQA1/DRB1 and LPA and lifestyle factors with human longevity

    DEFF Research Database (Denmark)

    Joshi, Peter K; Pirastu, Nicola; Kentistou, Katherine A

    2017-01-01

    Genomic analysis of longevity offers the potential to illuminate the biology of human aging. Here, using genome-wide association meta-analysis of 606,059 parents' survival, we discover two regions associated with longevity (HLA-DQA1/DRB1 and LPA). We also validate previous suggestions that APOE...... that an increase of one body mass index unit reduces lifespan by 7 months while 1 year of education adds 11 months to expected lifespan.Variability in human longevity is genetically influenced. Using genetic data of parental lifespan, the authors identify associations at HLA-DQA/DRB1 and LPA and find that genetic...

  15. Association study of common genetic variants and HIV-1 acquisition in 6,300 infected cases and 7,200 controls

    DEFF Research Database (Denmark)

    McLaren, Paul J; Coulonges, Cédric; Ripke, Stephan

    2013-01-01

    Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although...... of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6 × 10(-11)). However, restricting analysis to individuals with a known date of seroconversion suggested...... no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size....

  16. A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits.

    Directory of Open Access Journals (Sweden)

    Petr Volkov

    Full Text Available Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI, lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-density lipoprotein (HDL, hemoglobin A1c (HbA1c and homeostatic model assessment of insulin resistance (HOMA-IR via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dysmetabolic traits associated with the development of

  17. Distinguishing Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia-Associated Mutations From Background Genetic Noise

    NARCIS (Netherlands)

    Kapplinger, Jamie D.; Landstrom, Andrew P.; Salisbury, Benjamin A.; Callis, Thomas E.; Pollevick, Guido D.; Tester, David J.; Cox, Moniek G. P. J.; Bhuiyan, Zahir; Bikker, Hennie; Wiesfeld, Ans C. P.; Hauer, Richard N. W.; van Tintelen, J. Peter; Jongbloed, Jan D. H.; Calkins, Hugh; Judge, Daniel P.; Wilde, Arthur A. M.; Ackerman, Michael J.

    2011-01-01

    Objectives The aims of this study were to determine the spectrum and prevalence of "background genetic noise" in the arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC) genetic test and to determine genetic associations that can guide the interpretation of a positive test result.

  18. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers.

    Science.gov (United States)

    Filippi, Carla V; Aguirre, Natalia; Rivas, Juan G; Zubrzycki, Jeremias; Puebla, Andrea; Cordes, Diego; Moreno, Maria V; Fusari, Corina M; Alvarez, Daniel; Heinz, Ruth A; Hopp, Horacio E; Paniego, Norma B; Lia, Veronica V

    2015-02-13

    Argentina has a long tradition of sunflower breeding, and its germplasm is a valuable genetic resource worldwide. However, knowledge of the genetic constitution and variability levels of the Argentinean germplasm is still scarce, rendering the global map of cultivated sunflower diversity incomplete. In this study, 42 microsatellite loci and 384 single nucleotide polymorphisms (SNPs) were used to characterize the first association mapping population used for quantitative trait loci mapping in sunflower, along with a selection of allied open-pollinated and composite populations from the germplasm bank of the National Institute of Agricultural Technology of Argentina. The ability of different kinds of markers to assess genetic diversity and population structure was also evaluated. The analysis of polymorphism in the set of sunflower accessions studied here showed that both the microsatellites and SNP markers were informative for germplasm characterization, although to different extents. In general, the estimates of genetic variability were moderate. The average genetic diversity, as quantified by the expected heterozygosity, was 0.52 for SSR loci and 0.29 for SNPs. Within SSR markers, those derived from non-coding regions were able to capture higher levels of diversity than EST-SSR. A significant correlation was found between SSR and SNP- based genetic distances among accessions. Bayesian and multivariate methods were used to infer population structure. Evidence for the existence of three different genetic groups was found consistently across data sets (i.e., SSR, SNP and SSR + SNP), with the maintainer/restorer status being the most prevalent characteristic associated with group delimitation. The present study constitutes the first report comparing the performance of SSR and SNP markers for population genetics analysis in cultivated sunflower. We show that the SSR and SNP panels examined here, either used separately or in conjunction, allowed consistent

  19. Genetic susceptibility markers for a breast-colorectal cancer phenotype: Exploratory results from genome-wide association studies

    Science.gov (United States)

    Joon, Aron; Brewster, Abenaa M.; Chen, Wei V.; Eng, Cathy; Shete, Sanjay; Casey, Graham; Schumacher, Fredrick; Lin, Yi; Harrison, Tabitha A.; White, Emily; Ahsan, Habibul; Andrulis, Irene L.; Whittemore, Alice S.; Ko Win, Aung; Schmidt, Daniel F.; Kapuscinski, Miroslaw K.; Ochs-Balcom, Heather M.; Gallinger, Steven; Jenkins, Mark A.; Newcomb, Polly A.; Lindor, Noralane M.; Peters, Ulrike; Amos, Christopher I.; Lynch, Patrick M.

    2018-01-01

    Background Clustering of breast and colorectal cancer has been observed within some families and cannot be explained by chance or known high-risk mutations in major susceptibility genes. Potential shared genetic susceptibility between breast and colorectal cancer, not explained by high-penetrance genes, has been postulated. We hypothesized that yet undiscovered genetic variants predispose to a breast-colorectal cancer phenotype. Methods To identify variants associated with a breast-colorectal cancer phenotype, we analyzed genome-wide association study (GWAS) data from cases and controls that met the following criteria: cases (n = 985) were women with breast cancer who had one or more first- or second-degree relatives with colorectal cancer, men/women with colorectal cancer who had one or more first- or second-degree relatives with breast cancer, and women diagnosed with both breast and colorectal cancer. Controls (n = 1769), were unrelated, breast and colorectal cancer-free, and age- and sex- frequency-matched to cases. After imputation, 6,220,060 variants were analyzed using the discovery set and variants associated with the breast-colorectal cancer phenotype at Pcolorectal cancer phenotype in the discovery and replication data (most significant; rs7430339, Pdiscovery = 1.2E-04; rs7429100, Preplication = 2.8E-03). In meta-analysis of the discovery and replication data, the most significant association remained at rs7429100 (P = 1.84E-06). Conclusion The results of this exploratory analysis did not find clear evidence for a susceptibility locus with a pleiotropic effect on hereditary breast and colorectal cancer risk, although the suggestive association of genetic variation in the region of ROBO1, a potential tumor suppressor gene, merits further investigation. PMID:29698419

  20. Genetic Determinants of Metabolism and Benign Prostate Enlargement: Associations with Prostate Volume.

    Directory of Open Access Journals (Sweden)

    Ayush Giri

    Full Text Available Prostate enlargement leading to clinical benign prostatic hyperplasia (BPH is associated with metabolic dysregulation and obesity. The genetic basis of this association is unclear. Our objective was to evaluate whether single nucleotide polymorphisms (SNPs previously associated with metabolic disorders are also associated with prostate volume (PV. Participants included 876 men referred for prostate biopsy and found to be prostate cancer free. PV was measured by transrectal ultrasound. Samples were genotyped using the Illumina Cardio-MetaboChip platform. Multivariable adjusted linear regression models were used to evaluate SNPs (additive coding in relation to natural-log transformed (log PV. We compared SNP-PV results from biopsy-negative men to 442 men with low-grade prostate cancer with similar levels of obesity and PV. Beta-coefficients from the discovery and replication samples were then aggregated with fixed effects inverse variance weighted meta-analysis. SNP rs11736129 (near the pseudo-gene LOC100131429 was significantly associated with log-PV (beta: 0.16, p-value 1.16x10(-8 after adjusting for multiple testing. Other noteworthy SNPs that were nominally associated (p-value < 1x10(-4 with log-PV included rs9583484 (intronic SNP in COL4A2, rs10146527 (intronic SNP in NRXN3, rs9909466 (SNP near RPL32P31, and rs2241606 (synonymous SNP in SLC12A7. We found several SNPs in metabolic loci associated with PV. Further studies are needed to confirm our results and elucidate the mechanism between these genetic loci, PV, and clinical BPH.

  1. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits

    DEFF Research Database (Denmark)

    Speliotes, Elizabeth K; Yerges-Armstrong, Laura M; Wu, Jun

    2011-01-01

    steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (~26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n¿=¿880 to 3,070). By carrying out a fixed-effects meta......-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ~2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome......Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic...

  2. Efficient Integrative Multi-SNP Association Analysis via Deterministic Approximation of Posteriors.

    Science.gov (United States)

    Wen, Xiaoquan; Lee, Yeji; Luca, Francesca; Pique-Regi, Roger

    2016-06-02

    With the increasing availability of functional genomic data, incorporating genomic annotations into genetic association analysis has become a standard procedure. However, the existing methods often lack rigor and/or computational efficiency and consequently do not maximize the utility of functional annotations. In this paper, we propose a rigorous inference procedure to perform integrative association analysis incorporating genomic annotations for both traditional GWASs and emerging molecular QTL mapping studies. In particular, we propose an algorithm, named deterministic approximation of posteriors (DAP), which enables highly efficient and accurate joint enrichment analysis and identification of multiple causal variants. We use a series of simulation studies to highlight the power and computational efficiency of our proposed approach and further demonstrate it by analyzing the cross-population eQTL data from the GEUVADIS project and the multi-tissue eQTL data from the GTEx project. In particular, we find that genetic variants predicted to disrupt transcription factor binding sites are enriched in cis-eQTLs across all tissues. Moreover, the enrichment estimates obtained across the tissues are correlated with the cell types for which the annotations are derived. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Genetic association of FTO/IRX region with obesity and overweight in the Polish population.

    Directory of Open Access Journals (Sweden)

    Marta Sobalska-Kwapis

    Full Text Available Genome-wide association studies (GWAS have identified many loci associated with body mass index (BMI in many different populations. Variants in the FTO locus are reported to be one of the strongest genetic predictors of obesity. Recent publications pointed also to a topologically associated domain (TAD which is identified as a novel region affecting BMI. The TAD area encompasses the IRXB cluster (IRX3, IRX5, IRX6, FTO and RPGRIP1L genes.In this study, we investigated the relationship between variation of the FTO and IRX genes and obesity in Poles. We presented a case-control association analysis (normal versus overweight and/or obesity group of Polish adult individuals (N = 5418. We determined whether or not the chromosomal region 16:53 500 000-55 500 000 contains polymorphic variants which are correlated with BMI in Polish population, including sex and age stratified analysis.The obtained results showed that the problem of weight-height abnormalities differently affects populations of Polish women and men (χ2 = 187.1; p0.98, r2>0.80. We confirmed presence of the genetic susceptibility loci located in intron 1 of the FTO gene, which were correlated with BMI in our study group. For the first time, our analyses revealed strong association of FTO intronic variants (block 8 with overweight in group of men only. We have also identified association of the IRX region with overweight and/or obesity in Polish individuals.Our study demonstrated how tested SNPs make differential contributions to obesity and overweight risk. We revealed sex dependent differences in the distribution of tested loci which are associated with BMI in the population of Poles.

  4. Genome-wide association analysis of young onset stroke identifies a locus on chromosome 10q25 near HABP2

    Science.gov (United States)

    Cheng, Yu-Ching; Stanne, Tara M.; Giese, Anne-Katrin; Ho, Weang Kee; Traylor, Matthew; Amouyel, Philippe; Holliday, Elizabeth G.; Malik, Rainer; Xu, Huichun; Kittner, Steven J.; Cole, John W.; O’Connell, Jeffrey R.; Danesh, John; Rasheed, Asif; Zhao, Wei; Engelter, Stefan; Grond-Ginsbach, Caspar; Kamatani, Yoichiro; Lathrop, Mark; Leys, Didier; Thijs, Vincent; Metso, Tiina M.; Tatlisumak, Turgut; Pezzini, Alessandro; Parati, Eugenio A.; Norrving, Bo; Bevan, Steve; Rothwell, Peter M; Sudlow, Cathie; Slowik, Agnieszka; Lindgren, Arne; Walters, Matthew R; Jannes, Jim; Shen, Jess; Crosslin, David; Doheny, Kimberly; Laurie, Cathy C.; Kanse, Sandip M.; Bis, Joshua C.; Fornage, Myriam; Mosley, Thomas H.; Hopewell, Jemma C.; Strauch, Konstantin; Müller-Nurasyid, Martina; Gieger, Christian; Waldenberger, Melanie; Peters, Annette; Meisinger, Christine; Ikram, M. Arfan; Longstreth, WT; Meschia, James F.; Seshadri, Sudha; Sharma, Pankaj; Worrall, Bradford; Jern, Christina; Levi, Christopher; Dichgans, Martin; Boncoraglio, Giorgio B.; Markus, Hugh S.; Debette, Stephanie; Rolfs, Arndt; Saleheen, Danish; Mitchell, Braxton D.

    2015-01-01

    Background and Purpose Although a genetic contribution to ischemic stroke is well recognized, only a handful of stroke loci have been identified by large-scale genetic association studies to date. Hypothesizing that genetic effects might be stronger for early- versus late-onset stroke, we conducted a two-stage meta-analysis of genome-wide association studies (GWAS), focusing on stroke cases with an age of onset genetic variants at loci with association Pstroke susceptibility locus at 10q25 reached genome-wide significance in the combined analysis of all samples from the Discovery and Follow-up Stages (rs11196288, OR=1.41, P=9.5×10−9). The associated locus is in an intergenic region between TCF7L2 and HABP2. In a further analysis in an independent sample, we found that two SNPs in high linkage disequilibrium with rs11196288 were significantly associated with total plasma factor VII-activating protease levels, a product of HABP2. Conclusions HABP2, which encodes an extracellular serine protease involved in coagulation, fibrinolysis, and inflammatory pathways, may be a genetic susceptibility locus for early-onset stroke. PMID:26732560

  5. Genetic susceptibility to bone and soft tissue sarcomas: a field synopsis and meta-analysis.

    Science.gov (United States)

    Benna, Clara; Simioni, Andrea; Pasquali, Sandro; De Boni, Davide; Rajendran, Senthilkumar; Spiro, Giovanna; Colombo, Chiara; Virgone, Calogero; DuBois, Steven G; Gronchi, Alessandro; Rossi, Carlo Riccardo; Mocellin, Simone

    2018-04-06

    The genetic architecture of bone and soft tissue sarcomas susceptibility is yet to be elucidated. We aimed to comprehensively collect and meta-analyze the current knowledge on genetic susceptibility in these rare tumors. We conducted a systematic review and meta-analysis of the evidence on the association between DNA variation and risk of developing sarcomas through searching PubMed, The Cochrane Library, Scopus and Web of Science databases. To evaluate result credibility, summary evidence was graded according to the Venice criteria and false positive report probability (FPRP) was calculated to further validate result noteworthiness. Integrative analysis of genetic and eQTL (expression quantitative trait locus) data was coupled with network and pathway analysis to explore the hypothesis that specific cell functions are involved in sarcoma predisposition. We retrieved 90 eligible studies comprising 47,796 subjects (cases: 14,358, 30%) and investigating 1,126 polymorphisms involving 320 distinct genes. Meta-analysis identified 55 single nucleotide polymorphisms (SNPs) significantly associated with disease risk with a high (N=9), moderate (N=38) and low (N=8) level of evidence, findings being classified as noteworthy basically only when the level of evidence was high. The estimated joint population attributable risk for three independent SNPs (rs11599754 of ZNF365/EGR2 , rs231775 of CTLA4 , and rs454006 of PRKCG ) was 37.2%. We also identified 53 SNPs significantly associated with sarcoma risk based on single studies.Pathway analysis enabled us to propose that sarcoma predisposition might be linked especially to germline variation of genes whose products are involved in the function of the DNA repair machinery. We built the first knowledgebase on the evidence linking DNA variation to sarcomas susceptibility, which can be used to generate mechanistic hypotheses and inform future studies in this field of oncology.

  6. Association analysis between genetic variants in interleukin genes among different populations with hyperuricemia in Xinjiang Autonomous Region

    Science.gov (United States)

    Zhang, Bei; Sun, Yuping; Li, Yuanyuan; Yu, Jiahui; Wang, Tingting; Xia, He; Li, Changgui; Liu, Shiguo; Yao, Hua

    2015-01-01

    To investigate whether functional variants of five interleukin genes (IL-1β, IL-10, IL-8, IL-18 and IL-18RAP) are associated with susceptibility to hyperuricemia among different nationalities (including Uygur, Kazak and Han populations) in the Xinjiang Autonomous Region of China. A total of 884 hyperuricemia patients and 1316 matched controls were recruited from the First Affiliated Hospital of Xinjiang Medical University in Urumqi. After genotyping of rs4073 in IL-8, rs16944 in IL-1, rs187238 in IL-18, rs1800871 in IL-10 and rs13015714 in IL-18RAP by TaqMan allele discrimination assays, an association analysis was performed using the χ2 test as well as a genotype-phenotype analysis. For the Uygur population, IL-8 rs4073, IL-18 rs187238 and IL-18RAP rs130154 polymorphisms were all associated with hyperuricemia (P<0.001 by genotype and P=0.008, OR 0.802 by allele for IL-8; P=0.01 by genotype and P=0.006, OR 1.332 by allele for IL-18 rs187238; P=0.007 by genotype and P=0.005, OR 1.27 by allele for IL-18RAP rs130154). For the Kazak population, only IL-18 rs187238 showed statistical significance with hyperuricemia (P=0.002 by genotype and P=0.007, OR 1.823 by allele). However, no differences were found between the five SNPs and hyperuricemia among the Han population. This study demonstrated genetic polymorphisms of different interleukin genes related to hyperuricemia vary in different nationalities in the Xinjiang Autonomous Region because of different geographical environments. IL-8, IL-1RL1 and IL-18 might be involved in the development of hyperuricemia in the Uygur population, whereas only IL-18 might be involved in the Kazak population. PMID:26722554

  7. Contribution of Large Region Joint Associations to Complex Traits Genetics

    Science.gov (United States)

    Paré, Guillaume; Asma, Senay; Deng, Wei Q.

    2015-01-01

    A polygenic model of inheritance, whereby hundreds or thousands of weakly associated variants contribute to a trait’s heritability, has been proposed to underlie the genetic architecture of complex traits. However, relatively few genetic variants have been positively identified so far and they collectively explain only a small fraction of the predicted heritability. We hypothesized that joint association of multiple weakly associated variants over large chromosomal regions contributes to complex traits variance. Confirmation of such regional associations can help identify new loci and lead to a better understanding of known ones. To test this hypothesis, we first characterized the ability of commonly used genetic association models to identify large region joint associations. Through theoretical derivation and simulation, we showed that multivariate linear models where multiple SNPs are included as independent predictors have the most favorable association profile. Based on these results, we tested for large region association with height in 3,740 European participants from the Health and Retirement Study (HRS) study. Adjusting for SNPs with known association with height, we demonstrated clustering of weak associations (p = 2x10-4) in regions extending up to 433.0 Kb from known height loci. The contribution of regional associations to phenotypic variance was estimated at 0.172 (95% CI 0.063-0.279; p < 0.001), which compared favorably to 0.129 explained by known height variants. Conversely, we showed that suggestively associated regions are enriched for known height loci. To extend our findings to other traits, we also tested BMI, HDLc and CRP for large region associations, with consistent results for CRP. Our results demonstrate the presence of large region joint associations and suggest these can be used to pinpoint weakly associated SNPs. PMID:25856144

  8. GWAMA: software for genome-wide association meta-analysis

    Directory of Open Access Journals (Sweden)

    Mägi Reedik

    2010-05-01

    Full Text Available Abstract Background Despite the recent success of genome-wide association studies in identifying novel loci contributing effects to complex human traits, such as type 2 diabetes and obesity, much of the genetic component of variation in these phenotypes remains unexplained. One way to improving power to detect further novel loci is through meta-analysis of studies from the same population, increasing the sample size over any individual study. Although statistical software analysis packages incorporate routines for meta-analysis, they are ill equipped to meet the challenges of the scale and complexity of data generated in genome-wide association studies. Results We have developed flexible, open-source software for the meta-analysis of genome-wide association studies. The software incorporates a variety of error trapping facilities, and provides a range of meta-analysis summary statistics. The software is distributed with scripts that allow simple formatting of files containing the results of each association study and generate graphical summaries of genome-wide meta-analysis results. Conclusions The GWAMA (Genome-Wide Association Meta-Analysis software has been developed to perform meta-analysis of summary statistics generated from genome-wide association studies of dichotomous phenotypes or quantitative traits. Software with source files, documentation and example data files are freely available online at http://www.well.ox.ac.uk/GWAMA.

  9. Genetic variation in the raptor gene is associated with overweight but not hypertension in American men of Japanese ancestry.

    Science.gov (United States)

    Morris, Brian J; Carnes, Bruce A; Chen, Randi; Donlon, Timothy A; He, Qimei; Grove, John S; Masaki, Kamal H; Elliott, Ayako; Willcox, Donald C; Allsopp, Richard; Willcox, Bradley J

    2015-04-01

    The mechanistic target of rapamycin (mTOR) pathway is pivotal for cell growth. Regulatory associated protein of mTOR complex I (Raptor) is a unique component of this pro-growth complex. The present study tested whether variation across the raptor gene (RPTOR) is associated with overweight and hypertension. We tested 61 common (allele frequency ≥ 0.1) tagging single nucleotide polymorphisms (SNPs) that captured most of the genetic variation across RPTOR in 374 subjects of normal lifespan and 439 subjects with a lifespan exceeding 95 years for association with overweight/obesity, essential hypertension, and isolated systolic hypertension. Subjects were drawn from the Honolulu Heart Program, a homogeneous population of American men of Japanese ancestry, well characterized for phenotypes relevant to conditions of aging. Hypertension status was ascertained when subjects were 45-68 years old. Statistical evaluation involved contingency table analysis, logistic regression, and the powerful method of recursive partitioning. After analysis of RPTOR genotypes by each statistical approach, we found no significant association between genetic variation in RPTOR and either essential hypertension or isolated systolic hypertension. Models generated by recursive partitioning analysis showed that RPTOR SNPs significantly enhanced the ability of the model to accurately assign individuals to either the overweight/obese or the non-overweight/obese groups (P = 0.008 by 1-tailed Z test). Common genetic variation in RPTOR is associated with overweight/obesity but does not discernibly contribute to either essential hypertension or isolated systolic hypertension in the population studied. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Genetic Variants Associated with Circulating Parathyroid Hormone.

    Science.gov (United States)

    Robinson-Cohen, Cassianne; Lutsey, Pamela L; Kleber, Marcus E; Nielson, Carrie M; Mitchell, Braxton D; Bis, Joshua C; Eny, Karen M; Portas, Laura; Eriksson, Joel; Lorentzon, Mattias; Koller, Daniel L; Milaneschi, Yuri; Teumer, Alexander; Pilz, Stefan; Nethander, Maria; Selvin, Elizabeth; Tang, Weihong; Weng, Lu-Chen; Wong, Hoi Suen; Lai, Dongbing; Peacock, Munro; Hannemann, Anke; Völker, Uwe; Homuth, Georg; Nauk, Matthias; Murgia, Federico; Pattee, Jack W; Orwoll, Eric; Zmuda, Joseph M; Riancho, Jose Antonio; Wolf, Myles; Williams, Frances; Penninx, Brenda; Econs, Michael J; Ryan, Kathleen A; Ohlsson, Claes; Paterson, Andrew D; Psaty, Bruce M; Siscovick, David S; Rotter, Jerome I; Pirastu, Mario; Streeten, Elizabeth; März, Winfried; Fox, Caroline; Coresh, Josef; Wallaschofski, Henri; Pankow, James S; de Boer, Ian H; Kestenbaum, Bryan

    2017-05-01

    Parathyroid hormone (PTH) is a primary calcium regulatory hormone. Elevated serum PTH concentrations in primary and secondary hyperparathyroidism have been associated with bone disease, hypertension, and in some studies, cardiovascular mortality. Genetic causes of variation in circulating PTH concentrations are incompletely understood. We performed a genome-wide association study of serum PTH concentrations among 29,155 participants of European ancestry from 13 cohort studies ( n =22,653 and n =6502 in discovery and replication analyses, respectively). We evaluated the association of single nucleotide polymorphisms (SNPs) with natural log-transformed PTH concentration adjusted for age, sex, season, study site, and principal components of ancestry. We discovered associations of SNPs from five independent regions with serum PTH concentration, including the strongest association with rs6127099 upstream of CYP24A1 ( P =4.2 × 10 -53 ), a gene that encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-dihydroxyvitamin D. Each additional copy of the minor allele at this SNP associated with 7% higher serum PTH concentration. The other SNPs associated with serum PTH concentration included rs4074995 within RGS14 ( P =6.6 × 10 -17 ), rs219779 adjacent to CLDN14 ( P =3.5 × 10 -16 ), rs4443100 near RTDR1 ( P =8.7 × 10 -9 ), and rs73186030 near CASR ( P =4.8 × 10 -8 ). Of these five SNPs, rs6127099, rs4074995, and rs219779 replicated. Thus, common genetic variants located near genes involved in vitamin D metabolism and calcium and renal phosphate transport associated with differences in circulating PTH concentrations. Future studies could identify the causal variants at these loci, and the clinical and functional relevance of these variants should be pursued. Copyright © 2017 by the American Society of Nephrology.

  11. Lack of Association of CD55 Receptor Genetic Variants and Severe Malaria in Ghanaian Children

    Directory of Open Access Journals (Sweden)

    Kathrin Schuldt

    2017-03-01

    Full Text Available In a recent report, the cellular receptor CD55 was identified as a molecule essential for the invasion of human erythrocytes by Plasmodium falciparum, the causal agent of the most severe form of malaria. As this invasion process represents a critical step during infection with the parasite, it was hypothesized that genetic variants in the gene could affect severe malaria (SM susceptibility. We performed high-resolution variant discovery of rare and common genetic variants in the human CD55 gene. Association testing of these variants in over 1700 SM cases and unaffected control individuals from the malaria-endemic Ashanti Region in Ghana, West Africa, were performed on the basis of single variants, combined rare variant analyses, and reconstructed haplotypes. A total of 26 genetic variants were detected in coding and regulatory regions of CD55. Five variants were previously unknown. None of the single variants, rare variants, or haplotypes showed evidence for association with SM or P. falciparum density. Here, we present the first comprehensive analysis of variation in the CD55 gene in the context of SM and show that genetic variants present in a Ghanaian study group appear not to influence susceptibility to the disease.

  12. Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome?

    DEFF Research Database (Denmark)

    Benyamin, B.; Sørensen, T.I.A.; Schousboe, K.

    2007-01-01

    and environmental factors influencing this cluster in a general population of twin pairs. MATERIALS AND METHODS: A multivariate genetic analysis was performed on nine endophenotypes associated with the metabolic syndrome from 625 adult twin pairs of the GEMINAKAR study of the Danish Twin Registry. RESULTS: All......AIMS/HYPOTHESIS: The cluster of obesity, insulin resistance, dyslipidaemia and hypertension, called the metabolic syndrome, has been suggested as a risk factor for cardiovascular disease and type 2 diabetes. The aim of the present study was to evaluate whether there are common genetic...... endophenotypes showed moderate to high heritability (0.31-0.69) and small common environmental variance (0.05-0.21). In general, genetic and phenotypic correlations between the endophenotypes were strong only within sets of physiologically similar endophenotypes, but weak to moderate for other pairs...

  13. A Follow-up Association Study of Genetic Variants for Bone Mineral Density in a Korean Population

    Directory of Open Access Journals (Sweden)

    Seokjin Ham

    2014-09-01

    Full Text Available Bone mineral density (BMD is one of the quantitative traits that are genetically inherited and affected by various factors. Over the past years, genome-wide association studies (GWASs have searched for many genetic loci that influence BMD. A recent meta-analysis of 17 GWASs for BMD of the femoral neck and lumbar spine is the largest GWAS for BMD to date and offers 64 single-nucleotide polymorphisms (SNPs in 56 associated loci. We investigated these BMD loci in a Korean population called Korea Association REsource (KARE to identify their validity in an independent study. The KARE population contains genotypes from 8,842 individuals, and their BMD levels were measured at the distal radius (BMD-RT and midshaft tibia (BMD-TT. Thirteen genomic loci among 56 loci were significantly associated with BMD variations, and 3 loci were involved in known biological pathways related to BMD. In order to find putative functional variants, nearby SNPs in relation to linkage equilibrium were annotated, and their possible functional effects were predicted. These findings reveal that tens of variants, not a single factor, may contribute to the genetic architecture of BMD; have an important role regardless of ethnic group; and may highlight the importance of a replication study in GWASs to validate genuine loci for BMD variation.

  14. 'Smoking genes': a genetic association study.

    Directory of Open Access Journals (Sweden)

    Zoraida Verde

    Full Text Available Some controversy exists on the specific genetic variants that are associated with nicotine dependence and smoking-related phenotypes. The purpose of this study was to analyse the association of smoking status and smoking-related phenotypes (included nicotine dependence with 17 candidate genetic variants: CYP2A6*1×2, CYP2A6*2 (1799T>A [rs1801272], CYP2A6*9 (-48T>G [rs28399433], CYP2A6*12, CYP2A13*2 (3375C>T [rs8192789], CYP2A13*3 (7520C>G, CYP2A13*4 (579G>A, CYP2A13*7 (578C>T [rs72552266], CYP2B6*4 (785A>G, CYP2B6*9 (516G>T, CHRNA3 546C>T [rs578776], CHRNA5 1192G>A [rs16969968], CNR1 3764C>G [rs6928499], DRD2-ANKK1 2137G>A (Taq1A [rs1800497], 5HTT LPR, HTR2A -1438A>G [rs6311] and OPRM1 118A>G [rs1799971]. We studied the genotypes of the aforementioned polymorphisms in a cohort of Spanish smokers (cases, N = 126 and ethnically matched never smokers (controls, N = 80. The results showed significant between-group differences for CYP2A6*2 and CYP2A6*12 (both PA (Taq1A polymorphisms was 3.60 (95%CI: 1.75, 7.44 and 2.63 (95%CI: 1.41, 4.89 respectively. Compared with the wild-type genotype, the OR for being a non-smoker in carriers of the minor CYP2A6*2 allele was 1.80 (95%CI: 1.24, 2.65. We found a significant genotype effect (all P≤0.017 for the following smoking-related phenotypes: (i cigarettes smoked per day and CYP2A13*3; (ii pack years smoked and CYP2A6*2, CYP2A6*1×2, CYP2A13*7, CYP2B6*4 and DRD2-ANKK1 2137G>A (Taq1A; (iii nicotine dependence (assessed with the Fagestrom test and CYP2A6*9. Overall, our results suggest that genetic variants potentially involved in nicotine metabolization (mainly, CYP2A6 polymorphisms are those showing the strongest association with smoking-related phenotypes, as opposed to genetic variants influencing the brain effects of nicotine, e.g., through nicotinic acetylcholine (CHRNA5, serotoninergic (HTR2A, opioid (OPRM1 or cannabinoid receptors (CNR1.

  15. Common genetic variation and susceptibility to partial epilepsies: a genome-wide association study.

    Science.gov (United States)

    Kasperaviciūte, Dalia; Catarino, Claudia B; Heinzen, Erin L; Depondt, Chantal; Cavalleri, Gianpiero L; Caboclo, Luis O; Tate, Sarah K; Jamnadas-Khoda, Jenny; Chinthapalli, Krishna; Clayton, Lisa M S; Shianna, Kevin V; Radtke, Rodney A; Mikati, Mohamad A; Gallentine, William B; Husain, Aatif M; Alhusaini, Saud; Leppert, David; Middleton, Lefkos T; Gibson, Rachel A; Johnson, Michael R; Matthews, Paul M; Hosford, David; Heuser, Kjell; Amos, Leslie; Ortega, Marcos; Zumsteg, Dominik; Wieser, Heinz-Gregor; Steinhoff, Bernhard J; Krämer, Günter; Hansen, Jörg; Dorn, Thomas; Kantanen, Anne-Mari; Gjerstad, Leif; Peuralinna, Terhi; Hernandez, Dena G; Eriksson, Kai J; Kälviäinen, Reetta K; Doherty, Colin P; Wood, Nicholas W; Pandolfo, Massimo; Duncan, John S; Sander, Josemir W; Delanty, Norman; Goldstein, David B; Sisodiya, Sanjay M

    2010-07-01

    Partial epilepsies have a substantial heritability. However, the actual genetic causes are largely unknown. In contrast to many other common diseases for which genetic association-studies have successfully revealed common variants associated with disease risk, the role of common variation in partial epilepsies has not yet been explored in a well-powered study. We undertook a genome-wide association-study to identify common variants which influence risk for epilepsy shared amongst partial epilepsy syndromes, in 3445 patients and 6935 controls of European ancestry. We did not identify any genome-wide significant association. A few single nucleotide polymorphisms may warrant further investigation. We exclude common genetic variants with effect sizes above a modest 1.3 odds ratio for a single variant as contributors to genetic susceptibility shared across the partial epilepsies. We show that, at best, common genetic variation can only have a modest role in predisposition to the partial epilepsies when considered across syndromes in Europeans. The genetic architecture of the partial epilepsies is likely to be very complex, reflecting genotypic and phenotypic heterogeneity. Larger meta-analyses are required to identify variants of smaller effect sizes (odds ratio<1.3) or syndrome-specific variants. Further, our results suggest research efforts should also be directed towards identifying the multiple rare variants likely to account for at least part of the heritability of the partial epilepsies. Data emerging from genome-wide association-studies will be valuable during the next serious challenge of interpreting all the genetic variation emerging from whole-genome sequencing studies.

  16. Human MTHFR-G1793A transition may be a protective mutation against male infertility: a genetic association study and in silico analysis.

    Science.gov (United States)

    Karimian, Mohammad; Hosseinzadeh Colagar, Abasalt

    2018-06-01

    In this paper, we evaluate the association of the human methylenetetrahydrofolate reductase (MTHFR)-G1793A transition with male infertility using a case-control study, a meta-analysis and an in silico analysis. In the case-control study, 308 blood samples (169 infertile and 139 fertile men) were collected. MTHFR-G1793A genotyping was performed by PCR-RFLP. The study revealed a significant protective association between the GA genotype (OR: 0.3737, 95%CI: 0.1874-0.7452, p = 0.0052) and A allele (OR: 0.4266, 95%CI: 0.2267-0.8030, p = 0.0083) with male infertility. Meta-analysis showed that the G1793A transition might be a protective mutation against male infertility in both A vs. G (OR: 0.608, 95%CI: 0.466-0.792, p silico-analysis revealed that although G1793A could not make fundamental changes in the function and structure of MTHFR, it could modify the structure of the mRNA (Distance =0.1809, p = 0.1095; p < 0.2 is significant). The results suggest that G1793A substitution might be a protective genetic factor against male infertility. However, further case-control studies are required to provide a more robust conclusion.

  17. Analysis of genetic structure and relationship among nine ...

    Indian Academy of Sciences (India)

    These results indicated that the clustering analysis using the Structure program might provide an ..... of the current genetic relations among the breeds, and con- tribute to ... sis of the genetic structure of the Canary goat populations using.

  18. Genetically distinct subsets within ANCA-associated vasculitis.

    LENUS (Irish Health Repository)

    Lyons, Paul A

    2012-07-19

    Antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis is a severe condition encompassing two major syndromes: granulomatosis with polyangiitis (formerly known as Wegener\\'s granulomatosis) and microscopic polyangiitis. Its cause is unknown, and there is debate about whether it is a single disease entity and what role ANCA plays in its pathogenesis. We investigated its genetic basis.

  19. Network-assisted crop systems genetics: network inference and integrative analysis.

    Science.gov (United States)

    Lee, Tak; Kim, Hyojin; Lee, Insuk

    2015-04-01

    Although next-generation sequencing (NGS) technology has enabled the decoding of many crop species genomes, most of the underlying genetic components for economically important crop traits remain to be determined. Network approaches have proven useful for the study of the reference plant, Arabidopsis thaliana, and the success of network-based crop genetics will also require the availability of a genome-scale functional networks for crop species. In this review, we discuss how to construct functional networks and elucidate the holistic view of a crop system. The crop gene network then can be used for gene prioritization and the analysis of resequencing-based genome-wide association study (GWAS) data, the amount of which will rapidly grow in the field of crop science in the coming years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Timing Analysis of Genetic Logic Circuits using D-VASim

    DEFF Research Database (Denmark)

    Baig, Hasan; Madsen, Jan

    and propagation delay analysis of single as well as cascaded geneticlogic circuits can be performed. D-VASim allows user to change the circuit parameters during runtime simulation to observe its effectson circuit’s timing behavior. The results obtained from D-VASim can be used not only to characterize the timing...... delay analysis may play a very significant role in the designing of genetic logic circuits. In thisdemonstration, we present the capability of D-VASim (Dynamic Virtual Analyzer and Simulator) to perform the timing and propagationdelay analysis of genetic logic circuits. Using D-VASim, the timing...... behavior of geneticlogic circuits but also to analyze the timing constraints of cascaded genetic logic circuits....

  1. A robust statistical method for association-based eQTL analysis.

    Directory of Open Access Journals (Sweden)

    Ning Jiang

    Full Text Available It has been well established that theoretical kernel for recently surging genome-wide association study (GWAS is statistical inference of linkage disequilibrium (LD between a tested genetic marker and a putative locus affecting a disease trait. However, LD analysis is vulnerable to several confounding factors of which population stratification is the most prominent. Whilst many methods have been proposed to correct for the influence either through predicting the structure parameters or correcting inflation in the test statistic due to the stratification, these may not be feasible or may impose further statistical problems in practical implementation.We propose here a novel statistical method to control spurious LD in GWAS from population structure by incorporating a control marker into testing for significance of genetic association of a polymorphic marker with phenotypic variation of a complex trait. The method avoids the need of structure prediction which may be infeasible or inadequate in practice and accounts properly for a varying effect of population stratification on different regions of the genome under study. Utility and statistical properties of the new method were tested through an intensive computer simulation study and an association-based genome-wide mapping of expression quantitative trait loci in genetically divergent human populations.The analyses show that the new method confers an improved statistical power for detecting genuine genetic association in subpopulations and an effective control of spurious associations stemmed from population structure when compared with other two popularly implemented methods in the literature of GWAS.

  2. Genetic Analysis of Micro-environmental Plasticity in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Morgante, Fabio; Sorensen, Daniel A; Sørensen, Peter

    Quantitative genetic models recognize the potential for genotype by environment interaction, whereby different genotypes have different plastic responses to changes in macro-environmental conditions. Recently, it has been recognized that micro-environmental plasticity (‘residual’ variance) may also...... be genetically variable. This study utilized the Drosophila Genetic Reference Panel (DGRP) to accurately estimate the genetic variance of micro-environmental plasticity for chill coma recovery time and startle response. Estimates of broad sense heritabilities for both traits are substantial (from 0.51 to 0.......77), of the same order as the heritability at the level of the trait mean for startle response and even larger for chill coma recovery. Genome wide association analyses identified molecular variants (from 15 to 31 depending on the sex and the trait) associated with micro-environmental plasticity. These findings...

  3. Genetic and genomic analysis modeling of germline c-MYC overexpression and cancer susceptibility

    Directory of Open Access Journals (Sweden)

    Nunes Virginia

    2008-01-01

    Full Text Available Abstract Background Germline genetic variation is associated with the differential expression of many human genes. The phenotypic effects of this type of variation may be important when considering susceptibility to common genetic diseases. Three regions at 8q24 have recently been identified to independently confer risk of prostate cancer. Variation at 8q24 has also recently been associated with risk of breast and colorectal cancer. However, none of the risk variants map at or relatively close to known genes, with c-MYC mapping a few hundred kilobases distally. Results This study identifies cis-regulators of germline c-MYC expression in immortalized lymphocytes of HapMap individuals. Quantitative analysis of c-MYC expression in normal prostate tissues suggests an association between overexpression and variants in Region 1 of prostate cancer risk. Somatic c-MYC overexpression correlates with prostate cancer progression and more aggressive tumor forms, which was also a pathological variable associated with Region 1. Expression profiling analysis and modeling of transcriptional regulatory networks predicts a functional association between MYC and the prostate tumor suppressor KLF6. Analysis of MYC/Myc-driven cell transformation and tumorigenesis substantiates a model in which MYC overexpression promotes transformation by down-regulating KLF6. In this model, a feedback loop through E-cadherin down-regulation causes further transactivation of c-MYC. Conclusion This study proposes that variation at putative 8q24 cis-regulator(s of transcription can significantly alter germline c-MYC expression levels and, thus, contribute to prostate cancer susceptibility by down-regulating the prostate tumor suppressor KLF6 gene.

  4. Genetic analysis of Mexican Criollo cattle populations.

    Science.gov (United States)

    Ulloa-Arvizu, R; Gayosso-Vázquez, A; Ramos-Kuri, M; Estrada, F J; Montaño, M; Alonso, R A

    2008-10-01

    The objective of this study was to evaluate the genetic structure of Mexican Criollo cattle populations using microsatellite genetic markers. DNA samples were collected from 168 animals from four Mexican Criollo cattle populations, geographically isolated in remote areas of Sierra Madre Occidental (West Highlands). Also were included samples from two breeds with Iberian origin: the fighting bull (n = 24) and the milking central American Criollo (n = 24) and one Asiatic breed: Guzerat (n = 32). Genetic analysis consisted of the estimation of the genetic diversity in each population by the allele number and the average expected heterozygosity found in nine microsatellite loci. Furthermore, genetic relationships among the populations were defined by their genetic distances. Our data shows that Mexican cattle populations have a relatively high level of genetic diversity based either on the mean number of alleles (10.2-13.6) and on the expected heterozygosity (0.71-0.85). The degree of observed homozygosity within the Criollo populations was remarkable and probably caused by inbreeding (reduced effective population size) possibly due to reproductive structure within populations. Our data shows that considerable genetic differentiation has been occurred among the Criollo cattle populations in different regions of Mexico.

  5. DNA degradation and genetic analysis of empty puparia: genetic identification limits in forensic entomology.

    Science.gov (United States)

    Mazzanti, Morena; Alessandrini, Federica; Tagliabracci, Adriano; Wells, Jeffrey D; Campobasso, Carlo P

    2010-02-25

    Puparial cases are common remnants of necrophagous flies in crime investigations. They usually represent the longest developmental time and, therefore, they can be very useful for the estimation of the post-mortem interval (PMI). However, before any PMI estimate, it is crucial to identify the species of fly eclosed from each puparium associated with the corpse. Morphological characteristics of the puparium are often distinctive enough to permit a species identification. But, even an accurate morphological analysis of empty puparia cannot discriminate among different species of closely related flies. Furthermore, morphological identification may be impossible if the fly puparia are poorly preserved or in fragments. This study explores the applicability of biomolecular techniques on empty puparia and their fragments for identification purposes. A total of 63 empty puparia of necrophagous Diptera resulting from forensic casework were examined. Samples were divided into three groups according to size, type and time of eclosion in order to verify whether the physical characteristics and puparia weathering can influence the amount of DNA extraction. The results suggest that a reliable genetic identification of forensically important flies may also be performed from empty puparia and/or their fragments. However, DNA degradation can deeply compromise the genetic analysis since the older the fly puparia, the smaller are the amplified fragments. 2009 Elsevier Ireland Ltd. All rights reserved.

  6. Methodology for single-cell genetic analysis of planktonic foraminifera for studies of protist diversity and evolution

    Directory of Open Access Journals (Sweden)

    Agnes Katharina Maria Weiner

    2016-12-01

    Full Text Available Single-cell genetic analysis is an essential method to investigate the biodiversity and evolutionary ecology of marine protists. In protist groups that do not reproduce under laboratory conditions, this approach provides the only means to directly associate molecular sequences with cell morphology. The resulting unambiguous taxonomic identification of the DNA sequences is a prerequisite for barcoding and analyses of environmental metagenomic data. Extensive single-cell genetic studies have been carried out on planktonic foraminifera over the past 20 years to elucidate their phylogeny, cryptic diversity, biogeography and the relationship between genetic and morphological variability. In the course of these investigations, it has become evident that genetic analysis at the individual specimen level is confronted by innumerable challenges ranging from the negligible amount of DNA present in the single cell to the substantial amount of DNA contamination introduced by endosymbionts or food particles. Consequently, a range of methods has been developed and applied throughout the years for the genetic analysis of planktonic foraminifera in order to enhance DNA amplification success rates. Yet, the description of these methods in the literature rarely occurred with equivalent levels of detail and the different approaches have never been compared in terms of their efficiency and reproducibility. Here, aiming at a standardization of methods, we provide a comprehensive review of all methods that have been employed for the single-cell genetic analysis of planktonic foraminifera. We compile data on success rates of DNA amplification and use these to evaluate the effects of key parameters associated with the methods of sample collection, storage and extraction of single-cell DNA. We show that the chosen methods influence the success rates of single-cell genetic studies, but the differences between them are not sufficient to hinder comparisons between studies

  7. A meta-analysis of genome-wide association studies of follicular lymphoma

    Directory of Open Access Journals (Sweden)

    Skibola Christine F

    2012-10-01

    Full Text Available Abstract Background B-cell non-Hodgkin lymphoma represents a diverse group of hematological malignancies, of which follicular lymphoma (FL is one of the most common subtypes. Family and epidemiological studies suggest an important genetic role in the etiology of FL. In recent genome-wide association studies (GWAS of FL, several genetic susceptibility loci have been identified on chromosome 6p21.33 (rs6457327 and 6p21.32 (rs10484561, rs2647012 in the human leukocyte antigen class I and class II regions. To identify new genetic variants and further elucidate the genetic basis of FL, a meta-analysis was performed of the top 1000 SNPs associated with FL risk from two GWAS in the US, Denmark and Sweden (592 cases, 1541 controls, with independent validation in 107 cases and 681 controls. Results rs9275517 and rs3117222 in the HLA class II region were validated and inversely associated with FL risk (rs9275517: OR = 0.63, 95% CI = 0.55-0.73, p = 4.03 × 10-11; rs3117222: OR = 0.66, 95% CI = 0.57-0.77, p = 1.45 × 10-7. rs9275517, which is in high linkage disequilibrium with rs2647012 (r2 = 0.9, was no longer associated with FL after conditioning on rs2647012. The rs3117222 association was independent of established FL SNPs, but not of the HLA-DPB1*0301 allele. Using publicly available gene expression profiles with matching genotype information, we found that rs3117222 also was significantly correlated with increased HLA-DPB1 expression. Conclusions By performing a meta-analysis of two GWAS of FL, we further validated the relevance of HLA-DPB1*0301 as a protective allele in the pathogenesis of FL. Moreover, the protective rs3117222 A allele correlated with increased levels of HLA-DPB1, suggesting a possible disease mechanism involving HLA-DPB1 expression regulation. Our results add further support to the major role of HLA genetic variation in the pathogenesis of FL.

  8. Phenotypic and genetic associations between reading and attention-deficit/hyperactivity disorder dimensions in adolescence.

    Science.gov (United States)

    Plourde, Vickie; Boivin, Michel; Brendgen, Mara; Vitaro, Frank; Dionne, Ginette

    2017-10-01

    Multiple studies have shown that reading abilities and attention-deficit/hyperactivity disorder symptoms, mainly inattention symptoms, are phenotypically and genetically associated during childhood. However, few studies have looked at these associations during adolescence to investigate possible developmental changes. The aim of the study is to examine the genetic and environmental etiology of the associations between inattention and hyperactivity reported by parents, and reading accuracy, reading speed, and word reading in a population-based twin sample (Quebec Newborn Twin Study). Participants were between 14 and 15 years of age at the time of testing (N = 668-837). Phenotypic results showed that when nonverbal and verbal abilities were controlled, inattention, but not hyperactivity/impulsivity, was a modest and significant predictor of reading accuracy, reading speed, and word reading. The associations between inattention and all reading abilities were partly explained by genetic and unique environmental factors. However, the genetic correlations were no longer significant after controlling for verbal abilities. In midadolescence, inattention is the attention-deficit/hyperactivity disorder dimension associated with reading abilities, but they could also share genetic factors with general verbal skills.

  9. Population genetic analysis of Enterocytozoon bieneusi in humans.

    Science.gov (United States)

    Li, Wei; Cama, Vitaliano; Feng, Yaoyu; Gilman, Robert H; Bern, Caryn; Zhang, Xichen; Xiao, Lihua

    2012-01-01

    Genotyping based on sequence analysis of the ribosomal internal transcribed spacer has revealed significant genetic diversity in Enterocytozoonbieneusi. Thus far, the population genetics of E. bieneusi and its significance in the epidemiology of microsporidiosis have not been examined. In this study, a multilocus sequence typing of E. bieneusi in AIDS patients in Lima, Peru was conducted, using 72 specimens previously genotyped as A, D, IV, EbpC, WL11, Peru7, Peru8, Peru10 and Peru11 at the internal transcribed spacer locus. Altogether, 39 multilocus genotypes were identified among the 72 specimens. The observation of strong intragenic linkage disequilibria and limited genetic recombination among markers were indicative of an overall clonal population structure of E. bieneusi. Measures of pair-wise intergenic linkage disequilibria and a standardised index of association (IAS) based on allelic profile data further supported this conclusion. Both sequence-based and allelic profile-based phylogenetic analyses showed the presence of two genetically isolated groups in the study population, one (group 1) containing isolates of the anthroponotic internal transcribed spacer genotype A, and the other (group 2) containing isolates of multiple internal transcribed spacer genotypes (mainly genotypes D and IV) with zoonotic potential. The measurement of linkage disequilibria and recombination indicated group 2 had a clonal population structure, whereas group 1 had an epidemic population structure. The formation of the two sub-populations was confirmed by STRUCTURE and Wright's fixation index (FST) analyses. The data highlight the power of MLST in understanding the epidemiology of E. bieneusi. Published by Elsevier Ltd.

  10. Genome-wide analysis of adolescent psychotic-like experiences shows genetic overlap with psychiatric disorders.

    Science.gov (United States)

    Pain, Oliver; Dudbridge, Frank; Cardno, Alastair G; Freeman, Daniel; Lu, Yi; Lundstrom, Sebastian; Lichtenstein, Paul; Ronald, Angelica

    2018-03-31

    This study aimed to test for overlap in genetic influences between psychotic-like experience traits shown by adolescents in the community, and clinically-recognized psychiatric disorders in adulthood, specifically schizophrenia, bipolar disorder, and major depression. The full spectra of psychotic-like experience domains, both in terms of their severity and type (positive, cognitive, and negative), were assessed using self- and parent-ratings in three European community samples aged 15-19 years (Final N incl. siblings = 6,297-10,098). A mega-genome-wide association study (mega-GWAS) for each psychotic-like experience domain was performed. Single nucleotide polymorphism (SNP)-heritability of each psychotic-like experience domain was estimated using genomic-relatedness-based restricted maximum-likelihood (GREML) and linkage disequilibrium- (LD-) score regression. Genetic overlap between specific psychotic-like experience domains and schizophrenia, bipolar disorder, and major depression was assessed using polygenic risk score (PRS) and LD-score regression. GREML returned SNP-heritability estimates of 3-9% for psychotic-like experience trait domains, with higher estimates for less skewed traits (Anhedonia, Cognitive Disorganization) than for more skewed traits (Paranoia and Hallucinations, Parent-rated Negative Symptoms). Mega-GWAS analysis identified one genome-wide significant association for Anhedonia within IDO2 but which did not replicate in an independent sample. PRS analysis revealed that the schizophrenia PRS significantly predicted all adolescent psychotic-like experience trait domains (Paranoia and Hallucinations only in non-zero scorers). The major depression PRS significantly predicted Anhedonia and Parent-rated Negative Symptoms in adolescence. Psychotic-like experiences during adolescence in the community show additive genetic effects and partly share genetic influences with clinically-recognized psychiatric disorders, specifically schizophrenia and

  11. Genetics of Infectious and Inflammatory Diseases: Overlapping Discoveries from Association and Exome-Sequencing Studies.

    Science.gov (United States)

    Langlais, David; Fodil, Nassima; Gros, Philippe

    2017-04-26

    Genome technologies have defined a complex genetic architecture in major infectious, inflammatory, and autoimmune disorders. High density marker arrays and Immunochips have powered genome-wide association studies (GWAS) that have mapped nearly 450 genetic risk loci in 22 major inflammatory diseases, including a core of common genes that play a central role in pathological inflammation. Whole-exome and whole-genome sequencing have identified more than 265 genes in which mutations cause primary immunodeficiencies and rare forms of severe inflammatory bowel disease. Combined analysis of inflammatory disease GWAS and primary immunodeficiencies point to shared proteins and pathways that are required for immune cell development and protection against infections and are also associated with pathological inflammation. Finally, sequencing of chromatin immunoprecipitates containing specific transcription factors, with parallel RNA sequencing, has charted epigenetic regulation of gene expression by proinflammatory transcription factors in immune cells, providing complementary information to characterize morbid genes at infectious and inflammatory disease loci.

  12. Genetic relatedness and recombination analysis of Allorhizobium vitis strains associated with grapevine crown gall outbreaks in Europe.

    Science.gov (United States)

    Kuzmanović, N; Biondi, E; Bertaccini, A; Obradović, A

    2015-09-01

    To analyse genetic diversity and epidemiological relationships among 54 strains of Allorhizobium vitis isolated in Europe during an 8-year period and to assess the relative contribution of mutation and recombination in shaping their diversity. By using random amplified polymorphic DNA (RAPD) PCR, strains studied were distributed into 12 genetic groups. Sequence analysis of dnaK, gyrB and recA housekeeping genes was employed to characterize a representative subcollection of 28 strains. A total of 15 different haplotypes were found. Nucleotide sequence analysis suggested the presence of recombination events in A. vitis, particularly affecting dnaK locus. Although prevalence of mutation over recombination was found, impact of recombination was about two times greater than mutation in the evolution of the housekeeping genes analysed. The RAPD analysis indicated high degree of genetic diversity among the strains. However, the most abundant RAPD group was composed of 35 strains, which could lead to the conclusion that they share a common origin and were distributed by the movement of infected grapevine planting material as a most common way of crossing long distances. Furthermore, it seems that recombination is acting as an important driving force in the evolution of A. vitis. As no substantial evidence of recombination was detected within recA gene fragment, this phylogenetic marker could be reliable to characterize phylogenetic relationships among A. vitis strains. We demonstrated clear epidemiological relationship between majority of strains studied, suggesting a need for more stringent phytosanitary measures in international trade. Moreover, this is the first study to report recombination in A. vitis. © 2015 The Society for Applied Microbiology.

  13. Are there common genetic and environmental factors behind the endophenotypes associated with the metabolic syndrome?

    DEFF Research Database (Denmark)

    Benyamin, B; Sørensen, T I A; Schousboe, K

    2007-01-01

    and environmental factors influencing this cluster in a general population of twin pairs. MATERIALS AND METHODS: A multivariate genetic analysis was performed on nine endophenotypes associated with the metabolic syndrome from 625 adult twin pairs of the GEMINAKAR study of the Danish Twin Registry. RESULTS: All......AIMS/HYPOTHESIS: The cluster of obesity, insulin resistance, dyslipidaemia and hypertension, called the metabolic syndrome, has been suggested as a risk factor for cardiovascular disease and type 2 diabetes. The aim of the present study was to evaluate whether there are common genetic...... endophenotypes showed moderate to high heritability (0.31-0.69) and small cial environmental background...

  14. Examination of association to autism of common genetic variationin genes related to dopamine.

    Science.gov (United States)

    Anderson, B M; Schnetz-Boutaud, N; Bartlett, J; Wright, H H; Abramson, R K; Cuccaro, M L; Gilbert, J R; Pericak-Vance, M A; Haines, J L

    2008-12-01

    Autism is a severe neurodevelopmental disorder characterized by a triad of complications. Autistic individuals display significant disturbances in language and reciprocal social interactions, combined with repetitive and stereotypic behaviors. Prevalence studies suggest that autism is more common than originally believed, with recent estimates citing a rate of one in 150. Although multiple genetic linkage and association studies have yielded multiple suggestive genes or chromosomal regions, a specific risk locus has yet to be identified and widely confirmed. Because many etiologies have been suggested for this complex syndrome, we hypothesize that one of the difficulties in identifying autism genes is that multiple genetic variants may be required to significantly increase the risk of developing autism. Thus, we took the alternative approach of examining 14 prominent dopamine pathway candidate genes for detailed study by genotyping 28 single nucleotide polymorphisms. Although we did observe a nominally significant association for rs2239535 (P=0.008) on chromosome 20, single-locus analysis did not reveal any results as significant after correction for multiple comparisons. No significant interaction was identified when Multifactor Dimensionality Reduction was employed to test specifically for multilocus effects. Although genome-wide linkage scans in autism have provided support for linkage to various loci along the dopamine pathway, our study does not provide strong evidence of linkage or association to any specific gene or combination of genes within the pathway. These results demonstrate that common genetic variation within the tested genes located within this pathway at most play a minor to moderate role in overall autism pathogenesis.

  15. Genetic characteristics of mitochondrial DNA was associated with colorectal carcinogenesis and its prognosis.

    Directory of Open Access Journals (Sweden)

    Jae-Ho Lee

    Full Text Available Clinical value of mitochondrial DNA has been described in colorectal cancer (CRC. To clarify its role in colorectal carcinogenesis, mitochondrial microsatellite instability (mtMSI and other markers were investigated in CRCs and their precancerous lesions, as a multitier genetic study. DNA was isolated from paired normal and tumoral tissues in 78 tubular adenomas (TAs, 34 serrated polyps (SPs, and 100 CRCs. mtMSI, nucleus microsatellite instability (nMSI, KRAS mutation, and BRAF mutation were investigated in these tumors and their statistical analysis was performed. mtMSI was found in 30% of CRCs and 21.4% of precancerous lesions. Mitochondrial copy number was higher in SPs than TAs and it was associated with mtMSI in low grade TAs. KRAS and BRAF mutations were mutually exclusive in TAs and SPs. CRCs with mtMSI showed shorter overall survival times than the patients without mtMSI. In CRCs without nMSI or BRAF mutation, mtMSI was a more accurate marker for predicting prognosis. The genetic change of mitochondrial DNA is an early and independent event in colorectal precancerous lesions and mtMSI and mitochondrial contents are associated with the tubular adenoma-carcinoma sequence, resulting in poor prognosis. This result suggested that the genetic change in mitochondrial DNA appears to be a possible prognosis marker in CRC.

  16. Prothrombin G20210A mutation is associated with young-onset stroke: the genetics of early-onset stroke study and meta-analysis.

    Science.gov (United States)

    Jiang, Baijia; Ryan, Kathleen A; Hamedani, Ali; Cheng, Yuching; Sparks, Mary J; Koontz, Deborah; Bean, Christopher J; Gallagher, Margaret; Hooper, W Craig; McArdle, Patrick F; O'Connell, Jeffrey R; Stine, O Colin; Wozniak, Marcella A; Stern, Barney J; Mitchell, Braxton D; Kittner, Steven J; Cole, John W

    2014-04-01

    Although the prothrombin G20210A mutation has been implicated as a risk factor for venous thrombosis, its role in arterial ischemic stroke is unclear, particularly among young adults. To address this issue, we examined the association between prothrombin G20210A and ischemic stroke in a white case-control population and additionally performed a meta-analysis. From the population-based Genetics of Early Onset Stroke (GEOS) study, we identified 397 individuals of European ancestry aged 15 to 49 years with first-ever ischemic stroke and 426 matched controls. Logistic regression was used to calculate odds ratios (ORs) in the entire population and for subgroups stratified by sex, age, oral contraceptive use, migraine, and smoking status. A meta-analysis of 17 case-control studies (n=2305 cases ischemic stroke did not achieve statistical significance (OR=2.5; 95% confidence interval [CI]=0.9-6.5; P=0.07). However, among adults aged 15 to 42 years (younger than median age), cases were significantly more likely than controls to have the mutation (OR=5.9; 95% CI=1.2-28.1; P=0.03), whereas adults aged 42 to 49 years were not (OR=1.4; 95% CI=0.4-5.1; P=0.94). In our meta-analysis, the mutation was associated with significantly increased stroke risk in adults ≤55 years (OR=1.4; 95% CI=1.1-1.9; P=0.02), with significance increasing with addition of the GEOS results (OR=1.5; 95% CI=1.1-2.0; P=0.005). The prothrombin G20210A mutation is associated with ischemic stroke in young adults and may have an even stronger association among those with earlier onset strokes. Our finding of a stronger association in the younger young adult population requires replication.

  17. Genetic variants in MARCO are associated with the susceptibility to pulmonary tuberculosis in Chinese Han population.

    Directory of Open Access Journals (Sweden)

    Mai-Juan Ma

    Full Text Available BACKGROUND: Susceptibility to tuberculosis is not only determined by Mycobacterium tuberculosis infection, but also by the genetic component of the host. Macrophage receptor with a collagenous structure (MARCO is essential components required for toll like receptor-signaling in macrophage response to Mycobacterium tuberculosis, which may contribute to tuberculosis risk. PRINCIPAL FINDINGS: To specifically investigated whether single nucleotide polymorphisms (SNPs in MARCO gene are associated with pulmonary tuberculosis in Chinese Han population. By selecting tagging SNPs in MARCO gene, 17 tag SNPs were identified and genotyped in 923 pulmonary tuberculosis patients and 1033 healthy control subjects using a hospital based case-control association study. Single-point and haplotype analysis revealed an association in intron and exon region of MARCO gene. One SNP (rs17009726 was associated with susceptibility to pulmonary tuberculosis, where the carriers of the G allele had a 1.65 fold (95% CI = 1.32-2.05, p(corrected = 9.27E-5 increased risk of pulmonary tuberculosis. Haplotype analysis revealed that haplotype GC containing G allele of 17009726 and haplotype TGCC (rs17795618T/A, rs1371562G/T, rs6761637T/C, rs2011839C/T were also associated with susceptibility to pulmonary tuberculosis (p(corrected = 0.0001 and 0.029, respectively. CONCLUSIONS: Our study suggested that genetic variants in MARCO gene were associated with pulmonary tuberculosis susceptibility in Chinese Han population, and the findings emphasize the importance of MARCO mediated immune responses in the pathogenesis of tuberculosis.

  18. Genetic variability, trait association and path analysis of yield and yield components in mungbean (vigna radiata (L.) wilczek)

    International Nuclear Information System (INIS)

    Tabasum, A.; Saleem, M.; Aziz, I.

    2010-01-01

    Genetic variability, heritability along with genetic advance of traits, their association and direct and indirect effects on yield are essential for crop improvement. Ten mungbean genotypes were studied to assess variability and degree to which various plant traits associate with seed yield. Primary and secondary branches, pods per cluster and pod length showed lesser variability while clusters per plant, 100 seed weight and harvest index exhibited intermediate range of variability. Sufficient genetic variability was observed for plant height, pods per plant, total plant weight and seed yield. Moderate to high heritability estimates were found for all traits. Primary and secondary branches per plant, pod length and 100-seed weight exhibited negative and non significant genotypic and phenotypic correlations with seed yield. Plant height showed positive non-significant and significant genotypic and phenotypic correlation. Pods per cluster correlated significantly negative with seed yield. Clusters per plant, pods per plant, total plant weight and harvest index showed positive significant genotypic and phenotypic correlations with seed yield. Positive direct effects were exerted through secondary branches, pods per plant, pod length, 100 seed weight, total plant weight and harvest index while primary branches, plant height, clusters per plant and pods per cluster had negative direct effects. The present findings could be useful for establishing selection criteria for high seed yield in the mungbean breeding. (author)

  19. Genetic variability and inter-character associations in the mutants of Indian mustard

    International Nuclear Information System (INIS)

    Labana, K.S.; Chaurasia, B.D.; Singh, Balwant

    1980-01-01

    To study the genetic variability and the inter-character associations in Indian mustard [Brassica juncea (Linn.)Czern. and Coss. subsp. juncea Linn.], 104 radiation-induced mutants (including 'RLM 198') and 'RL 18' were grown during winter season of 1976-77 at the experimental farm of the Punjab Agricultural University. Analysis of variance revealed significant differences between the mutant genotypes for all the characters under study except for the primary branch number and siliqua number of main shoot, which were non-significant. High estimates of phenotypic coefficients of variation (pcv) and genetic coefficients of variation (gcv) were observed for secondary branch number, seed yield/plant, main shoot length and seed number/siliqua. In general, pcv estimates were higher than gcv estimates. The high estimates of both heritability and genetic advance were recorded in similar order for the plant height, seed number/siliqua, main shoot length and seed yield, in which the genetic progress could be achieved through mass selection. Seed yield was positively correlated with the primary branch number, the secondary branch number and the siliqua number of main shoot and negatively with the plant height. Shorter plant height w;.th more number of primary and secondary branches and more siliquae on main shoot were found to be good selection criteria for isolating high-yielding strains. (auth.)

  20. Replication of genetic associations as pseudoreplication due to shared genealogy.

    Science.gov (United States)

    Rosenberg, Noah A; Vanliere, Jenna M

    2009-09-01

    The genotypes of individuals in replicate genetic association studies have some level of correlation due to shared descent in the complete pedigree of all living humans. As a result of this genealogical sharing, replicate studies that search for genotype-phenotype associations using linkage disequilibrium between marker loci and disease-susceptibility loci can be considered as "pseudoreplicates" rather than true replicates. We examine the size of the pseudoreplication effect in association studies simulated from evolutionary models of the history of a population, evaluating the excess probability that both of a pair of studies detect a disease association compared to the probability expected under the assumption that the two studies are independent. Each of nine combinations of a demographic model and a penetrance model leads to a detectable pseudoreplication effect, suggesting that the degree of support that can be attributed to a replicated genetic association result is less than that which can be attributed to a replicated result in a context of true independence.

  1. SNP-based pathway enrichment analysis for genome-wide association studies

    Directory of Open Access Journals (Sweden)

    Potkin Steven G

    2011-04-01

    Full Text Available Abstract Background Recently we have witnessed a surge of interest in using genome-wide association studies (GWAS to discover the genetic basis of complex diseases. Many genetic variations, mostly in the form of single nucleotide polymorphisms (SNPs, have been identified in a wide spectrum of diseases, including diabetes, cancer, and psychiatric diseases. A common theme arising from these studies is that the genetic variations discovered by GWAS can only explain a small fraction of the genetic risks associated with the complex diseases. New strategies and statistical approaches are needed to address this lack of explanation. One such approach is the pathway analysis, which considers the genetic variations underlying a biological pathway, rather than separately as in the traditional GWAS studies. A critical challenge in the pathway analysis is how to combine evidences of association over multiple SNPs within a gene and multiple genes within a pathway. Most current methods choose the most significant SNP from each gene as a representative, ignoring the joint action of multiple SNPs within a gene. This approach leads to preferential identification of genes with a greater number of SNPs. Results We describe a SNP-based pathway enrichment method for GWAS studies. The method consists of the following two main steps: 1 for a given pathway, using an adaptive truncated product statistic to identify all representative (potentially more than one SNPs of each gene, calculating the average number of representative SNPs for the genes, then re-selecting the representative SNPs of genes in the pathway based on this number; and 2 ranking all selected SNPs by the significance of their statistical association with a trait of interest, and testing if the set of SNPs from a particular pathway is significantly enriched with high ranks using a weighted Kolmogorov-Smirnov test. We applied our method to two large genetically distinct GWAS data sets of schizophrenia, one

  2. Assessment of genetically modified soybean crops and different cultivars by Fourier transform infrared spectroscopy and chemometric analysis

    Directory of Open Access Journals (Sweden)

    Glaucia Braz Alcantara

    2010-06-01

    Full Text Available This paper describes the potentiality of Fourier transform infrared (FT-IR spectroscopy associated to chemometric analysis for assessment of conventional and genetically modified soybean crops. Recently, genetically modified organisms have been queried about their influence on the environment and their safety as food/feed. In this regard, chemical investigations are ever more required. Thus three different soybean cultivars distributed in transgenic Roundup ReadyTM soybean and theirs conventional counterparts were directly investigated by FT-IR spectroscopy and chemometric analysis. The application of PCA and KNN methods permitted the discrimination and classification of the genetically modified samples from conventional ones when they were separately analysed. The analyses showed the chemical variation according to genetic modification. Furthermore, this methodology was efficient for cultivar grouping and highlights cultivar dependence for discrimination between transgenic and non-transgenic samples. According to this study, FT-IR and chemometrics could be used as a quick, easy and low cost tool to assess the chemical composition variation in genetically modified organisms.

  3. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease

    DEFF Research Database (Denmark)

    Amin Al Olama, Ali; Kote-Jarai, Zsofia; Schumacher, Fredrick R

    2013-01-01

    Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS inc...

  4. Consumption of meat is associated with higher fasting glucose and insulin concentrations regardless of glucose and insulin genetic risk scores: a meta-analysis of 50,345 Caucasians12

    Science.gov (United States)

    Fretts, Amanda M; Follis, Jack L; Nettleton, Jennifer A; Lemaitre, Rozenn N; Ngwa, Julius S; Wojczynski, Mary K; Kalafati, Ioanna Panagiota; Varga, Tibor V; Frazier-Wood, Alexis C; Houston, Denise K; Lahti, Jari; Ericson, Ulrika; van den Hooven, Edith H; Mikkilä, Vera; Kiefte-de Jong, Jessica C; Mozaffarian, Dariush; Rice, Kenneth; Renström, Frida; North, Kari E; McKeown, Nicola M; Feitosa, Mary F; Kanoni, Stavroula; Smith, Caren E; Garcia, Melissa E; Tiainen, Anna-Maija; Sonestedt, Emily; Manichaikul, Ani; van Rooij, Frank JA; Dimitriou, Maria; Raitakari, Olli; Pankow, James S; Djoussé, Luc; Province, Michael A; Hu, Frank B; Lai, Chao-Qiang; Keller, Margaux F; Perälä, Mia-Maria; Rotter, Jerome I; Hofman, Albert; Graff, Misa; Kähönen, Mika; Mukamal, Kenneth; Johansson, Ingegerd; Ordovas, Jose M; Liu, Yongmei; Männistö, Satu; Uitterlinden, André G; Deloukas, Panos; Seppälä, Ilkka; Psaty, Bruce M; Cupples, L Adrienne; Borecki, Ingrid B; Franks, Paul W; Arnett, Donna K; Nalls, Mike A; Eriksson, Johan G; Orho-Melander, Marju; Franco, Oscar H; Lehtimäki, Terho; Dedoussis, George V; Meigs, James B; Siscovick, David S

    2015-01-01

    Background: Recent studies suggest that meat intake is associated with diabetes-related phenotypes. However, whether the associations of meat intake and glucose and insulin homeostasis are modified by genes related to glucose and insulin is unknown. Objective: We investigated the associations of meat intake and the interaction of meat with genotype on fasting glucose and insulin concentrations in Caucasians free of diabetes mellitus. Design: Fourteen studies that are part of the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium participated in the analysis. Data were provided for up to 50,345 participants. Using linear regression within studies and a fixed-effects meta-analysis across studies, we examined 1) the associations of processed meat and unprocessed red meat intake with fasting glucose and insulin concentrations; and 2) the interactions of processed meat and unprocessed red meat with genetic risk score related to fasting glucose or insulin resistance on fasting glucose and insulin concentrations. Results: Processed meat was associated with higher fasting glucose, and unprocessed red meat was associated with both higher fasting glucose and fasting insulin concentrations after adjustment for potential confounders [not including body mass index (BMI)]. For every additional 50-g serving of processed meat per day, fasting glucose was 0.021 mmol/L (95% CI: 0.011, 0.030 mmol/L) higher. Every additional 100-g serving of unprocessed red meat per day was associated with a 0.037-mmol/L (95% CI: 0.023, 0.051-mmol/L) higher fasting glucose concentration and a 0.049–ln-pmol/L (95% CI: 0.035, 0.063–ln-pmol/L) higher fasting insulin concentration. After additional adjustment for BMI, observed associations were attenuated and no longer statistically significant. The association of processed meat and fasting insulin did not reach statistical significance after correction for multiple comparisons. Observed associations were not modified by genetic

  5. The Prothrombin G20210A Mutation is Associated with Young-Onset Stroke: The Genetics of Early Onset Stroke Study and Meta-Analysis

    Science.gov (United States)

    Jiang, Baijia; Ryan, Kathleen A.; Hamedani, Ali; Cheng, Yuching; Sparks, Mary J.; Koontz, Deborah; Bean, Christopher J.; Gallagher, Margaret; Hooper, W. Craig; McArdle, Patrick F.; O'Connell, Jeffrey R.; Stine, O. Colin; Wozniak, Marcella A.; Stern, Barney J.; Mitchell, Braxton D.; Kittner, Steven J.; Cole, John W.

    2014-01-01

    Background and Purpose Although the prothrombin G20210A mutation has been implicated as a risk factor for venous thrombosis, its role in arterial ischemic stroke is unclear, particularly among young-adults. To address this issue, we examined the association between prothrombin G20210A and ischemic stroke in a Caucasian case-control population and additionally performed a meta-analysis Methods From the population-based Genetics of Early Onset Stroke (GEOS) study we identified 397 individuals of European ancestry aged 15-49 years with first-ever ischemic stroke and 426 matched-controls. Logistic regression was used to calculate odds ratios in the entire population and for subgroups stratified by gender, age, oral contraceptive use, migraine and smoking status. A meta-analysis of 17 case-control studies (n=2305 cases ischemic stroke did not achieve statistical significance (OR=2.5,95%CI=0.9-6.5,p=0.07). However, among adults aged 15-42 (younger than median age), cases were significantly more likely than controls to have the mutation (OR=5.9,95%CI=1.2-28.1,p=0.03), whereas adults ages 42-49 were not (OR=1.4,95%CI=0.4-5.1,p=0.94). In our meta-analysis, the mutation was associated with significantly increased stroke risk in adults ischemic stroke in young-adults and may have an even stronger association among those with earlier onset strokes. Our finding of a stronger association in the younger-young adult population requires replication. PMID:24619398

  6. Unexpected high genetic diversity in small populations suggests maintenance by associative overdominance

    DEFF Research Database (Denmark)

    Schou, Mads F.; Loeschcke, Volker; Bechsgaard, Jesper

    2017-01-01

    fragmented populations. More genetic diversity was retained in areas of low recombination, suggesting that associative overdominance, driven by disfavoured homozygosity of recessive deleterious alleles, is responsible for the maintenance of genetic diversity in smaller populations. Consistent...

  7. Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949)

    Science.gov (United States)

    Davies, G; Armstrong, N; Bis, J C; Bressler, J; Chouraki, V; Giddaluru, S; Hofer, E; Ibrahim-Verbaas, C A; Kirin, M; Lahti, J; van der Lee, S J; Le Hellard, S; Liu, T; Marioni, R E; Oldmeadow, C; Postmus, I; Smith, A V; Smith, J A; Thalamuthu, A; Thomson, R; Vitart, V; Wang, J; Yu, L; Zgaga, L; Zhao, W; Boxall, R; Harris, S E; Hill, W D; Liewald, D C; Luciano, M; Adams, H; Ames, D; Amin, N; Amouyel, P; Assareh, A A; Au, R; Becker, J T; Beiser, A; Berr, C; Bertram, L; Boerwinkle, E; Buckley, B M; Campbell, H; Corley, J; De Jager, P L; Dufouil, C; Eriksson, J G; Espeseth, T; Faul, J D; Ford, I; Scotland, Generation; Gottesman, R F; Griswold, M E; Gudnason, V; Harris, T B; Heiss, G; Hofman, A; Holliday, E G; Huffman, J; Kardia, S L R; Kochan, N; Knopman, D S; Kwok, J B; Lambert, J-C; Lee, T; Li, G; Li, S-C; Loitfelder, M; Lopez, O L; Lundervold, A J; Lundqvist, A; Mather, K A; Mirza, S S; Nyberg, L; Oostra, B A; Palotie, A; Papenberg, G; Pattie, A; Petrovic, K; Polasek, O; Psaty, B M; Redmond, P; Reppermund, S; Rotter, J I; Schmidt, H; Schuur, M; Schofield, P W; Scott, R J; Steen, V M; Stott, D J; van Swieten, J C; Taylor, K D; Trollor, J; Trompet, S; Uitterlinden, A G; Weinstein, G; Widen, E; Windham, B G; Jukema, J W; Wright, A F; Wright, M J; Yang, Q; Amieva, H; Attia, J R; Bennett, D A; Brodaty, H; de Craen, A J M; Hayward, C; Ikram, M A; Lindenberger, U; Nilsson, L-G; Porteous, D J; Räikkönen, K; Reinvang, I; Rudan, I; Sachdev, P S; Schmidt, R; Schofield, P R; Srikanth, V; Starr, J M; Turner, S T; Weir, D R; Wilson, J F; van Duijn, C; Launer, L; Fitzpatrick, A L; Seshadri, S; Mosley, T H; Deary, I J

    2015-01-01

    General cognitive function is substantially heritable across the human life course from adolescence to old age. We investigated the genetic contribution to variation in this important, health- and well-being-related trait in middle-aged and older adults. We conducted a meta-analysis of genome-wide association studies of 31 cohorts (N=53 949) in which the participants had undertaken multiple, diverse cognitive tests. A general cognitive function phenotype was tested for, and created in each cohort by principal component analysis. We report 13 genome-wide significant single-nucleotide polymorphism (SNP) associations in three genomic regions, 6q16.1, 14q12 and 19q13.32 (best SNP and closest gene, respectively: rs10457441, P=3.93 × 10−9, MIR2113; rs17522122, P=2.55 × 10−8, AKAP6; rs10119, P=5.67 × 10−9, APOE/TOMM40). We report one gene-based significant association with the HMGN1 gene located on chromosome 21 (P=1 × 10−6). These genes have previously been associated with neuropsychiatric phenotypes. Meta-analysis results are consistent with a polygenic model of inheritance. To estimate SNP-based heritability, the genome-wide complex trait analysis procedure was applied to two large cohorts, the Atherosclerosis Risk in Communities Study (N=6617) and the Health and Retirement Study (N=5976). The proportion of phenotypic variation accounted for by all genotyped common SNPs was 29% (s.e.=5%) and 28% (s.e.=7%), respectively. Using polygenic prediction analysis, ~1.2% of the variance in general cognitive function was predicted in the Generation Scotland cohort (N=5487; P=1.5 × 10−17). In hypothesis-driven tests, there was significant association between general cognitive function and four genes previously associated with Alzheimer's disease: TOMM40, APOE, ABCG1 and MEF2C. PMID:25644384

  8. On coding genotypes for genetic markers with multiple alleles in genetic association study of quantitative traits

    Directory of Open Access Journals (Sweden)

    Wang Tao

    2011-09-01

    Full Text Available Abstract Background In genetic association study of quantitative traits using F∞ models, how to code the marker genotypes and interpret the model parameters appropriately is important for constructing hypothesis tests and making statistical inferences. Currently, the coding of marker genotypes in building F∞ models has mainly focused on the biallelic case. A thorough work on the coding of marker genotypes and interpretation of model parameters for F∞ models is needed especially for genetic markers with multiple alleles. Results In this study, we will formulate F∞ genetic models under various regression model frameworks and introduce three genotype coding schemes for genetic markers with multiple alleles. Starting from an allele-based modeling strategy, we first describe a regression framework to model the expected genotypic values at given markers. Then, as extension from the biallelic case, we introduce three coding schemes for constructing fully parameterized one-locus F∞ models and discuss the relationships between the model parameters and the expected genotypic values. Next, under a simplified modeling framework for the expected genotypic values, we consider several reduced one-locus F∞ models from the three coding schemes on the estimability and interpretation of their model parameters. Finally, we explore some extensions of the one-locus F∞ models to two loci. Several fully parameterized as well as reduced two-locus F∞ models are addressed. Conclusions The genotype coding schemes provide different ways to construct F∞ models for association testing of multi-allele genetic markers with quantitative traits. Which coding scheme should be applied depends on how convenient it can provide the statistical inferences on the parameters of our research interests. Based on these F∞ models, the standard regression model fitting tools can be used to estimate and test for various genetic effects through statistical contrasts with the

  9. A cluster analysis on road traffic accidents using genetic algorithms

    Science.gov (United States)

    Saharan, Sabariah; Baragona, Roberto

    2017-04-01

    The analysis of traffic road accidents is increasingly important because of the accidents cost and public road safety. The availability or large data sets makes the study of factors that affect the frequency and severity accidents are viable. However, the data are often highly unbalanced and overlapped. We deal with the data set of the road traffic accidents recorded in Christchurch, New Zealand, from 2000-2009 with a total of 26440 accidents. The data is in a binary set and there are 50 factors road traffic accidents with four level of severity. We used genetic algorithm for the analysis because we are in the presence of a large unbalanced data set and standard clustering like k-means algorithm may not be suitable for the task. The genetic algorithm based on clustering for unknown K, (GCUK) has been used to identify the factors associated with accidents of different levels of severity. The results provided us with an interesting insight into the relationship between factors and accidents severity level and suggest that the two main factors that contributes to fatal accidents are "Speed greater than 60 km h" and "Did not see other people until it was too late". A comparison with the k-means algorithm and the independent component analysis is performed to validate the results.

  10. Genetic association study identifies HSPB7 as a risk gene for idiopathic dilated cardiomyopathy.

    Directory of Open Access Journals (Sweden)

    Klaus Stark

    2010-10-01

    Full Text Available Dilated cardiomyopathy (DCM is a structural heart disease with strong genetic background. Monogenic forms of DCM are observed in families with mutations located mostly in genes encoding structural and sarcomeric proteins. However, strong evidence suggests that genetic factors also affect the susceptibility to idiopathic DCM. To identify risk alleles for non-familial forms of DCM, we carried out a case-control association study, genotyping 664 DCM cases and 1,874 population-based healthy controls from Germany using a 50K human cardiovascular disease bead chip covering more than 2,000 genes pre-selected for cardiovascular relevance. After quality control, 30,920 single nucleotide polymorphisms (SNP were tested for association with the disease by logistic regression adjusted for gender, and results were genomic-control corrected. The analysis revealed a significant association between a SNP in HSPB7 gene (rs1739843, minor allele frequency 39% and idiopathic DCM (p = 1.06 × 10⁻⁶, OR  = 0.67 [95% CI 0.57-0.79] for the minor allele T. Three more SNPs showed p < 2.21 × 10⁻⁵. De novo genotyping of these four SNPs was done in three independent case-control studies of idiopathic DCM. Association between SNP rs1739843 and DCM was significant in all replication samples: Germany (n =564, n = 981 controls, p = 2.07 × 10⁻³, OR = 0.79 [95% CI 0.67-0.92], France 1 (n = 433 cases, n = 395 controls, p =3.73 × 10⁻³, OR  = 0.74 [95% CI 0.60-0.91], and France 2 (n = 249 cases, n = 380 controls, p = 2.26 × 10⁻⁴, OR  = 0.63 [95% CI 0.50-0.81]. The combined analysis of all four studies including a total of n = 1,910 cases and n = 3,630 controls showed highly significant evidence for association between rs1739843 and idiopathic DCM (p = 5.28 × 10⁻¹³, OR= 0.72 [95% CI 0.65-0.78]. None of the other three SNPs showed significant results in the replication stage.This finding of the HSPB7 gene from a genetic search for idiopathic DCM using

  11. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis

    NARCIS (Netherlands)

    Hobbs, Brian D; de Jong, Kim; Lamontagne, Maxime; Bossé, Yohan; Shrine, Nick; Artigas, María Soler; Wain, Louise V; Hall, Ian P; Jackson, Victoria E; Wyss, Annah B; London, Stephanie J; North, Kari E; Franceschini, Nora; Strachan, David P; Beaty, Terri H; Hokanson, John E; Crapo, James D; Castaldi, Peter J; Chase, Robert P; Bartz, Traci M; Heckbert, Susan R; Psaty, Bruce M; Gharib, Sina A; Zanen, Pieter; Lammers, Jan W; Oudkerk, Matthijs; Groen, H J; Locantore, Nicholas; Tal-Singer, Ruth; Rennard, Stephen I; Vestbo, Jørgen; Timens, Wim; Paré, Peter D; Latourelle, Jeanne C; Dupuis, Josée; O'Connor, George T; Wilk, Jemma B; Kim, Woo Jin; Lee, Mi Kyeong; Oh, Yeon-Mok; Vonk, Judith M; de Koning, Harry J; Leng, Shuguang; Belinsky, Steven A; Tesfaigzi, Yohannes; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S; Barr, R Graham; Sparrow, David; Litonjua, Augusto A; Bakke, Per; Gulsvik, Amund; Lahousse, Lies; Brusselle, Guy G; Stricker, Bruno H; Uitterlinden, André G; Ampleford, Elizabeth J; Bleecker, Eugene R; Woodruff, Prescott G; Meyers, Deborah A; Qiao, Dandi; Lomas, David A; Yim, Jae-Joon; Kim, Deog Kyeom; Hawrylkiewicz, Iwona; Sliwinski, Pawel; Hardin, Megan; Fingerlin, Tasha E; Schwartz, David A; Postma, Dirkje S; MacNee, William; Tobin, Martin D; Silverman, Edwin K; Boezen, H Marike; Cho, Michael H

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P < 5 × 10(-6)) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we

  12. Analysis of genetic relationships of mulberry (Morus L.) germplasm ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Full Length Research Paper. Analysis of genetic ... Key words: Mulberry, molecular marker, genetic diversity, SRAP. ... Europe, North and South America, and Africa, and it is cultivated ... Xingjiang autonomous region, China.

  13. A functional U-statistic method for association analysis of sequencing data.

    Science.gov (United States)

    Jadhav, Sneha; Tong, Xiaoran; Lu, Qing

    2017-11-01

    Although sequencing studies hold great promise for uncovering novel variants predisposing to human diseases, the high dimensionality of the sequencing data brings tremendous challenges to data analysis. Moreover, for many complex diseases (e.g., psychiatric disorders) multiple related phenotypes are collected. These phenotypes can be different measurements of an underlying disease, or measurements characterizing multiple related diseases for studying common genetic mechanism. Although jointly analyzing these phenotypes could potentially increase the power of identifying disease-associated genes, the different types of phenotypes pose challenges for association analysis. To address these challenges, we propose a nonparametric method, functional U-statistic method (FU), for multivariate analysis of sequencing data. It first constructs smooth functions from individuals' sequencing data, and then tests the association of these functions with multiple phenotypes by using a U-statistic. The method provides a general framework for analyzing various types of phenotypes (e.g., binary and continuous phenotypes) with unknown distributions. Fitting the genetic variants within a gene using a smoothing function also allows us to capture complexities of gene structure (e.g., linkage disequilibrium, LD), which could potentially increase the power of association analysis. Through simulations, we compared our method to the multivariate outcome score test (MOST), and found that our test attained better performance than MOST. In a real data application, we apply our method to the sequencing data from Minnesota Twin Study (MTS) and found potential associations of several nicotine receptor subunit (CHRN) genes, including CHRNB3, associated with nicotine dependence and/or alcohol dependence. © 2017 WILEY PERIODICALS, INC.

  14. AFLP analysis of Cynodon dactylon (L.) Pers. var. dactylon genetic variation.

    Science.gov (United States)

    Wu, Y Q; Taliaferro, C M; Bai, G H; Anderson, M P

    2004-08-01

    Cynodon dactylon (L.) Pers. var. dactylon (common bermudagrass) is geographically widely distributed between about lat 45 degrees N and lat 45 degrees S, penetrating to about lat 53 degrees N in Europe. The extensive variation of morphological and adaptive characteristics of the taxon is substantially documented, but information is lacking on DNA molecular variation in geographically disparate forms. Accordingly, this study was conducted to assess molecular genetic variation and genetic relatedness among 28 C. dactylon var. dactylon accessions originating from 11 countries on 4 continents (Africa, Asia, Australia, and Europe). A fluorescence-labeled amplified fragment length polymorphism (AFLP) DNA profiling method was used to detect the genetic diversity and relatedness. On the basis of 443 polymorphic AFLP fragments from 8 primer combinations, the accessions were grouped into clusters and subclusters associating with their geographic origins. Genetic similarity coefficients (SC) for the 28 accessions ranged from 0.53 to 0.98. Accessions originating from Africa, Australia, Asia, and Europe formed major groupings as indicated by cluster and principal coordinate analysis. Accessions from Australia and Asia, though separately clustered, were relatively closely related and most distantly related to accessions of European origin. African accessions formed two distant clusters and had the greatest variation in genetic relatedness relative to accessions from other geographic regions. Sampling the full extent of genetic variation in C. dactylon var. dactylon would require extensive germplasm collection in the major geographic regions of its distributional range.

  15. Mining Context-Aware Association Rules Using Grammar-Based Genetic Programming.

    Science.gov (United States)

    Luna, Jose Maria; Pechenizkiy, Mykola; Del Jesus, Maria Jose; Ventura, Sebastian

    2017-09-25

    Real-world data usually comprise features whose interpretation depends on some contextual information. Such contextual-sensitive features and patterns are of high interest to be discovered and analyzed in order to obtain the right meaning. This paper formulates the problem of mining context-aware association rules, which refers to the search for associations between itemsets such that the strength of their implication depends on a contextual feature. For the discovery of this type of associations, a model that restricts the search space and includes syntax constraints by means of a grammar-based genetic programming methodology is proposed. Grammars can be considered as a useful way of introducing subjective knowledge to the pattern mining process as they are highly related to the background knowledge of the user. The performance and usefulness of the proposed approach is examined by considering synthetically generated datasets. A posteriori analysis on different domains is also carried out to demonstrate the utility of this kind of associations. For example, in educational domains, it is essential to identify and understand contextual and context-sensitive factors that affect overall and individual student behavior and performance. The results of the experiments suggest that the approach is feasible and it automatically identifies interesting context-aware associations from real-world datasets.

  16. The Generalized Higher Criticism for Testing SNP-Set Effects in Genetic Association Studies

    Science.gov (United States)

    Barnett, Ian; Mukherjee, Rajarshi; Lin, Xihong

    2017-01-01

    It is of substantial interest to study the effects of genes, genetic pathways, and networks on the risk of complex diseases. These genetic constructs each contain multiple SNPs, which are often correlated and function jointly, and might be large in number. However, only a sparse subset of SNPs in a genetic construct is generally associated with the disease of interest. In this article, we propose the generalized higher criticism (GHC) to test for the association between an SNP set and a disease outcome. The higher criticism is a test traditionally used in high-dimensional signal detection settings when marginal test statistics are independent and the number of parameters is very large. However, these assumptions do not always hold in genetic association studies, due to linkage disequilibrium among SNPs and the finite number of SNPs in an SNP set in each genetic construct. The proposed GHC overcomes the limitations of the higher criticism by allowing for arbitrary correlation structures among the SNPs in an SNP-set, while performing accurate analytic p-value calculations for any finite number of SNPs in the SNP-set. We obtain the detection boundary of the GHC test. We compared empirically using simulations the power of the GHC method with existing SNP-set tests over a range of genetic regions with varied correlation structures and signal sparsity. We apply the proposed methods to analyze the CGEM breast cancer genome-wide association study. Supplementary materials for this article are available online. PMID:28736464

  17. Meta-analysis and genome-wide interpretation of genetic susceptibility to drug addiction

    Science.gov (United States)

    2011-01-01

    Background Classical genetic studies provide strong evidence for heritable contributions to susceptibility to developing dependence on addictive substances. Candidate gene and genome-wide association studies (GWAS) have sought genes, chromosomal regions and allelic variants likely to contribute to susceptibility to drug addiction. Results Here, we performed a meta-analysis of addiction candidate gene association studies and GWAS to investigate possible functional mechanisms associated with addiction susceptibility. From meta-data retrieved from 212 publications on candidate gene association studies and 5 GWAS reports, we linked a total of 843 haplotypes to addiction susceptibility. We mapped the SNPs in these haplotypes to functional and regulatory elements in the genome and estimated the magnitude of the contributions of different molecular mechanisms to their effects on addiction susceptibility. In addition to SNPs in coding regions, these data suggest that haplotypes in gene regulatory regions may also contribute to addiction susceptibility. When we compared the lists of genes identified by association studies and those identified by molecular biological studies of drug-regulated genes, we observed significantly higher participation in the same gene interaction networks than expected by chance, despite little overlap between the two gene lists. Conclusions These results appear to offer new insights into the genetic factors underlying drug addiction. PMID:21999673

  18. Genetic Variation and Association Analysis of the SSR Markers Linked to the Major Drought-Yield QTLs of Rice.

    Science.gov (United States)

    Tabkhkar, Narjes; Rabiei, Babak; Samizadeh Lahiji, Habibollah; Hosseini Chaleshtori, Maryam

    2018-02-24

    Drought is one of the major abiotic stresses, which hampers the production of rice worldwide. Informative molecular markers are valuable tools for improving the drought tolerance in various varieties of rice. The present study was conducted to evaluate the informative simple sequence repeat (SSR) markers in a diverse set of rice genotypes. The genetic diversity analyses of the 83 studied rice genotypes were performed using 34 SSR markers closely linked to the major quantitative trait loci (QTLs) of grain yield under drought stress (qDTYs). In general, our results indicated high levels of polymorphism. In addition, we screened these rice genotypes at the reproductive stage under both drought stress and nonstressful conditions. The results of the regression analysis demonstrated a significant relationship between 11 SSR marker alleles and the plant paddy weight under stressful conditions. Under the nonstressful conditions, 16 SSR marker alleles showed a significant correlation with the plant paddy weight. Finally, four markers (RM279, RM231, RM166, and RM231) demonstrated a significant association with the plant paddy weight under both stressful and nonstressful conditions. These informative-associated alleles may be useful for improving the crop yield under both drought stress and nonstressful conditions in breeding programs.

  19. A genetic perspective on the association between exercise and mental health.

    NARCIS (Netherlands)

    de Geus, E.J.C.; de Moor, M.H.M.

    2008-01-01

    Regular exercise is associated with better mental health. This association is widely assumed to reflect causal effects of exercise. In this paper we propose that two additional mechanisms contribute to the association between exercise and mental health in the population-at-large: genetic pleiotropy

  20. A genomic background based method for association analysis in related individuals.

    Directory of Open Access Journals (Sweden)

    Najaf Amin

    Full Text Available BACKGROUND: Feasibility of genotyping of hundreds and thousands of single nucleotide polymorphisms (SNPs in thousands of study subjects have triggered the need for fast, powerful, and reliable methods for genome-wide association analysis. Here we consider a situation when study participants are genetically related (e.g. due to systematic sampling of families or because a study was performed in a genetically isolated population. Of the available methods that account for relatedness, the Measured Genotype (MG approach is considered the 'gold standard'. However, MG is not efficient with respect to time taken for the analysis of genome-wide data. In this context we proposed a fast two-step method called Genome-wide Association using Mixed Model and Regression (GRAMMAR for the analysis of pedigree-based quantitative traits. This method certainly overcomes the drawback of time limitation of the measured genotype (MG approach, but pays in power. One of the major drawbacks of both MG and GRAMMAR, is that they crucially depend on the availability of complete and correct pedigree data, which is rarely available. METHODOLOGY: In this study we first explore type 1 error and relative power of MG, GRAMMAR, and Genomic Control (GC approaches for genetic association analysis. Secondly, we propose an extension to GRAMMAR i.e. GRAMMAR-GC. Finally, we propose application of GRAMMAR-GC using the kinship matrix estimated through genomic marker data, instead of (possibly missing and/or incorrect genealogy. CONCLUSION: Through simulations we show that MG approach maintains high power across a range of heritabilities and possible pedigree structures, and always outperforms other contemporary methods. We also show that the power of our proposed GRAMMAR-GC approaches to that of the 'gold standard' MG for all models and pedigrees studied. We show that this method is both feasible and powerful and has correct type 1 error in the context of genome-wide association analysis

  1. An Efficient Stepwise Statistical Test to Identify Multiple Linked Human Genetic Variants Associated with Specific Phenotypic Traits.

    Directory of Open Access Journals (Sweden)

    Iksoo Huh

    Full Text Available Recent advances in genotyping methodologies have allowed genome-wide association studies (GWAS to accurately identify genetic variants that associate with common or pathological complex traits. Although most GWAS have focused on associations with single genetic variants, joint identification of multiple genetic variants, and how they interact, is essential for understanding the genetic architecture of complex phenotypic traits. Here, we propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for stratified categorical data to identify causal joint multiple genetic variants in GWAS. This method combines the CMH statistic with a stepwise procedure to detect multiple genetic variants associated with specific categorical traits, using a series of associated I × J contingency tables and a null hypothesis of no phenotype association. Through a new stratification scheme based on the sum of minor allele count criteria, we make the method more feasible for GWAS data having sample sizes of several thousands. We also examine the properties of the proposed stepwise method via simulation studies, and show that the stepwise CMH test performs better than other existing methods (e.g., logistic regression and detection of associations by Markov blanket for identifying multiple genetic variants. Finally, we apply the proposed approach to two genomic sequencing datasets to detect linked genetic variants associated with bipolar disorder and obesity, respectively.

  2. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis

    NARCIS (Netherlands)

    Hobbs, Brian D.; de Jong, Kim; Lamontagne, Maxime; Bosse, Yohan; Shrine, Nick; Artigas, Maria Soler; Wain, Louise V.; Hall, Ian P.; Jackson, Victoria E.; Wyss, Annah B.; London, Stephanie J.; North, Kari E.; Franceschini, Nora; Strachan, David P.; Beaty, Terri H.; Hokanson, John E.; Crapo, James D.; Castaldi, Peter J.; Chase, Robert P.; Bartz, Traci M.; Heckbert, Susan R.; Psaty, Bruce M.; Gharib, Sina A.; Zanen, Pieter; Lammers, Jan W.; Oudkerk, Matthijs; Groen, H. J.; Locantore, Nicholas; Tal-Singer, Ruth; Rennard, Stephen I.; Vestbo, Jurgen; Timens, Wim; Pare, Peter D.; Latourelle, Jeanne C.; Dupuis, Josee; O'Connor, George T.; Wilk, Jemma B.; Kim, Woo Jin; Lee, Mi Kyeong; Oh, Yeon-Mok; Vonk, Judith M.; de Koning, Harry J.; Leng, Shuguang; Belinsky, Steven A.; Tesfaigzi, Yohannes; Manichaikul, Ani; Wang, Xin-Qun; Rich, Stephen S.; Postma, Dirkje S.; Boezen, H. Marike

    Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide(1). We performed a genetic association study in 15,256 cases and 47,936 controls, with replication of select top results (P <5 x 10(-6)) in 9,498 cases and 9,748 controls. In the combined meta-analysis, we

  3. Genetics in psychiatry: common variant association studies

    Directory of Open Access Journals (Sweden)

    Buxbaum Joseph D

    2010-03-01

    Full Text Available Abstract Many psychiatric conditions and traits are associated with significant heritability. Genetic risk for psychiatric conditions encompass rare variants, identified due to major effect, as well as common variants, the latter analyzed by association analyses. We review guidelines for common variant association analyses, undertaking after assessing evidence of heritability. We highlight the importance of: suitably large sample sizes; an experimental design that controls for ancestry; careful data cleaning; correction for multiple testing; small P values for positive findings; assessment of effect size for positive findings; and, inclusion of an independent replication sample. We also note the importance of a critical discussion of any prior findings, biological follow-up where possible, and a means of accessing the raw data.

  4. Genome-wide association study to identify common variants associated with brachial circumference: a meta-analysis of 14 cohorts.

    Directory of Open Access Journals (Sweden)

    Vesna Boraska

    Full Text Available Brachial circumference (BC, also known as upper arm or mid arm circumference, can be used as an indicator of muscle mass and fat tissue, which are distributed differently in men and women. Analysis of anthropometric measures of peripheral fat distribution such as BC could help in understanding the complex pathophysiology behind overweight and obesity. The purpose of this study is to identify genetic variants associated with BC through a large-scale genome-wide association scan (GWAS meta-analysis. We used fixed-effects meta-analysis to synthesise summary results across 14 GWAS discovery and 4 replication cohorts comprising overall 22,376 individuals (12,031 women and 10,345 men of European ancestry. Individual analyses were carried out for men, women, and combined across sexes using linear regression and an additive genetic model: adjusted for age and adjusted for age and BMI. We prioritised signals for follow-up in two-stages. We did not detect any signals reaching genome-wide significance. The FTO rs9939609 SNP showed nominal evidence for association (p<0.05 in the age-adjusted strata for men and across both sexes. In this first GWAS meta-analysis for BC to date, we have not identified any genome-wide significant signals and do not observe robust association of previously established obesity loci with BC. Large-scale collaborations will be necessary to achieve higher power to detect loci underlying BC.

  5. Genetic analysis of repeated, biparental, diploid, hydatidiform moles

    DEFF Research Database (Denmark)

    Sunde, Lone; Vejerslev, Lars O.; Jensen, Mie Poulsen

    1993-01-01

    for the abnormal development can be envisaged, environmental as well as genetic. To conform to current ideas of molar pathogenesis, it is suggested that the present conceptuses might have arisen from imbalances in imprinted genomic regions. This could be a consequence of uniparental disomy in critical regions......A woman presented with five consecutive pregnancies displaying molar morphology. In the fifth pregnancy, a non-malformed, liveborn infant was delivered. Genetic analyses (RFLP analysis, cytogenetics, flow cytometry) were performed in pregnancies II-V. It was demonstrated that these pregnancies...... originated in separate conceptions, all conceptuses were diploid, and all had maternally as well as paternally derived genetic markers. By cytogenetic analysis, aberrant heteromorphisms were noted; no other abnormalities were observed in chromosome structure or in DNA sequence. Many different causes...

  6. HLA-DRB1 Analysis Identified a Genetically Unique Subset within Rheumatoid Arthritis and Distinct Genetic Background of Rheumatoid Factor Levels from Anticyclic Citrullinated Peptide Antibodies.

    Science.gov (United States)

    Hiwa, Ryosuke; Ikari, Katsunori; Ohmura, Koichiro; Nakabo, Shuichiro; Matsuo, Keitaro; Saji, Hiroh; Yurugi, Kimiko; Miura, Yasuo; Maekawa, Taira; Taniguchi, Atsuo; Yamanaka, Hisashi; Matsuda, Fumihiko; Mimori, Tsuneyo; Terao, Chikashi

    2018-04-01

    HLA-DRB1 is the most important locus associated with rheumatoid arthritis (RA) and anticitrullinated protein antibodies (ACPA). However, fluctuations of rheumatoid factor (RF) over the disease course have made it difficult to define fine subgroups according to consistent RF positivity for the analyses of genetic background and the levels of RF. A total of 2873 patients with RA and 2008 healthy controls were recruited. We genotyped HLA-DRB1 alleles for the participants and collected consecutive data of RF in the case subjects. In addition to RF+ and RF- subsets, we classified the RF+ subjects into group 1 (constant RF+) and group 2 (seroconversion). We compared HLA-DRB1 alleles between the RA subsets and controls and performed linear regression analysis to identify HLA-DRB1 alleles associated with maximal RF levels. Omnibus tests were conducted to assess important amino acid positions. RF positivity was 88%, and 1372 and 970 RF+ subjects were classified into groups 1 and 2, respectively. RF+ and RF- showed similar genetic associations to ACPA+ and ACPA- RA, respectively. We found that shared epitope (SE) was more enriched in group 2 than 1, p = 2.0 × 10 -5 , and that amino acid position 11 showed a significant association between 1 and 2, p = 2.7 × 10 -5 . These associations were independent of ACPA positivity. SE showed a tendency to be negatively correlated with RF titer (p = 0.012). HLA-DRB1*09:01, which reduces ACPA titer, was not associated with RF levels (p = 0.70). The seroconversion group was shown to have distinct genetic characteristics. The genetic architecture of RF levels is different from that of ACPA.

  7. Genetic diversity of popcorn genotypes using molecular analysis.

    Science.gov (United States)

    Resh, F S; Scapim, C A; Mangolin, C A; Machado, M F P S; do Amaral, A T; Ramos, H C C; Vivas, M

    2015-08-19

    In this study, we analyzed dominant molecular markers to estimate the genetic divergence of 26 popcorn genotypes and evaluate whether using various dissimilarity coefficients with these dominant markers influences the results of cluster analysis. Fifteen random amplification of polymorphic DNA primers produced 157 amplified fragments, of which 65 were monomorphic and 92 were polymorphic. To calculate the genetic distances among the 26 genotypes, the complements of the Jaccard, Dice, and Rogers and Tanimoto similarity coefficients were used. A matrix of Dij values (dissimilarity matrix) was constructed, from which the genetic distances among genotypes were represented in a more simplified manner as a dendrogram generated using the unweighted pair-group method with arithmetic average. Clusters determined by molecular analysis generally did not group material from the same parental origin together. The largest genetic distance was between varieties 17 (UNB-2) and 18 (PA-091). In the identification of genotypes with the smallest genetic distance, the 3 coefficients showed no agreement. The 3 dissimilarity coefficients showed no major differences among their grouping patterns because agreement in determining the genotypes with large, medium, and small genetic distances was high. The largest genetic distances were observed for the Rogers and Tanimoto dissimilarity coefficient (0.74), followed by the Jaccard coefficient (0.65) and the Dice coefficient (0.48). The 3 coefficients showed similar estimations for the cophenetic correlation coefficient. Correlations among the matrices generated using the 3 coefficients were positive and had high magnitudes, reflecting strong agreement among the results obtained using the 3 evaluated dissimilarity coefficients.

  8. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Allison L Weber

    Full Text Available Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.We used 167 wild-derived inbred lines of the Drosophila Genetic Reference Panel for a genome-wide association study of acute oxidative stress resistance to two oxidizing agents, paraquat and menadione sodium bisulfite. We found significant genetic variation for both stressors. Single nucleotide polymorphisms (SNPs associated with variation in oxidative stress resistance were often sex-specific and agent-dependent, with a small subset common for both sexes or treatments. Associated SNPs had moderately large effects, with an inverse relationship between effect size and allele frequency. Linear models with up to 12 SNPs explained 67-79% and 56-66% of the phenotypic variance for resistance to paraquat and menadione sodium bisulfite, respectively. Many genes implicated were novel with no known role in oxidative stress resistance. Bioinformatics analyses revealed a cellular network comprising DNA metabolism and neuronal development, consistent with targets of oxidative stress-inducing agents. We confirmed associations of seven candidate genes associated with natural variation in oxidative stress resistance through mutational analysis.We identified novel candidate genes associated with variation in resistance to oxidative stress that have context-dependent effects. These results form the basis for future translational studies to identify oxidative stress susceptibility/resistance genes that are evolutionary conserved and might play a role in human disease.

  9. Genetic HLA Associations in Complex Regional Pain Syndrome With and Without Dystonia

    NARCIS (Netherlands)

    van Rooijen, D.E.; Roelen, D.L.; Verduijn, W.; Haasnoot, G.W.; Huygen, F.J.P.M.; Perez, R.S.G.M.; Claas, F.H.J.; Marinus, J.; van Hilten, J.J.; van den Maagdenberg, A.M.J.M.

    2012-01-01

    We previously showed evidence for a genetic association of the human leukocyte antigen (HLA) system and complex regional pain syndrome (CRPS) with dystonia. Involvement of the HLA system suggests that CRPS has a genetic component with perturbed regulation of inflammation and neuroplasticity as

  10. Genetics of immune-mediated disorders : from genome-wide association to molecular mechanism

    NARCIS (Netherlands)

    Kumar, Vinod; Wijmenga, Cisca; Xavier, Ramnik J.

    2014-01-01

    Genetic association studies have identified not only hundreds of susceptibility loci to immune-mediated diseases but also pinpointed causal amino-acid variants of HLA genes that contribute to many autoimmune reactions. Majority of non-HLA genetic variants are located within non-coding regulatory

  11. A genome-wide association meta-analysis identifies new childhood obesity loci

    Science.gov (United States)

    Bradfield, Jonathan P.; Taal, H. Rob; Timpson, Nicholas J.; Scherag, André; Lecoeur, Cecile; Warrington, Nicole M.; Hypponen, Elina; Holst, Claus; Valcarcel, Beatriz; Thiering, Elisabeth; Salem, Rany M.; Schumacher, Fredrick R.; Cousminer, Diana L.; Sleiman, Patrick M.A.; Zhao, Jianhua; Berkowitz, Robert I.; Vimaleswaran, Karani S.; Jarick, Ivonne; Pennell, Craig E.; Evans, David M.; St. Pourcain, Beate; Berry, Diane J.; Mook-Kanamori, Dennis O; Hofman, Albert; Rivadeinera, Fernando; Uitterlinden, André G.; van Duijn, Cornelia M.; van der Valk, Ralf J.P.; de Jongste, Johan C.; Postma, Dirkje S.; Boomsma, Dorret I.; Gauderman, William J.; Hassanein, Mohamed T.; Lindgren, Cecilia M.; Mägi, Reedik; Boreham, Colin A.G.; Neville, Charlotte E.; Moreno, Luis A.; Elliott, Paul; Pouta, Anneli; Hartikainen, Anna-Liisa; Li, Mingyao; Raitakari, Olli; Lehtimäki, Terho; Eriksson, Johan G.; Palotie, Aarno; Dallongeville, Jean; Das, Shikta; Deloukas, Panos; McMahon, George; Ring, Susan M.; Kemp, John P.; Buxton, Jessica L.; Blakemore, Alexandra I.F.; Bustamante, Mariona; Guxens, Mònica; Hirschhorn, Joel N.; Gillman, Matthew W.; Kreiner-Møller, Eskil; Bisgaard, Hans; Gilliland, Frank D.; Heinrich, Joachim; Wheeler, Eleanor; Barroso, Inês; O'Rahilly, Stephen; Meirhaeghe, Aline; Sørensen, Thorkild I.A.; Power, Chris; Palmer, Lyle J.; Hinney, Anke; Widen, Elisabeth; Farooqi, I. Sadaf; McCarthy, Mark I.; Froguel, Philippe; Meyre, David; Hebebrand, Johannes; Jarvelin, Marjo-Riitta; Jaddoe, Vincent W.V.; Smith, George Davey; Hakonarson, Hakon; Grant, Struan F.A.

    2012-01-01

    Multiple genetic variants have been associated with adult obesity and a few with severe obesity in childhood; however, less progress has been made to establish genetic influences on common early-onset obesity. We performed a North American-Australian-European collaborative meta-analysis of fourteen studies consisting of 5,530 cases (≥95th percentile of body mass index (BMI)) and 8,318 controls (<50th percentile of BMI) of European ancestry. Taking forward the eight novel signals yielding association with P < 5×10−6 in to nine independent datasets (n = 2,818 cases and 4,083 controls) we observed two loci that yielded a genome wide significant combined P-value, namely near OLFM4 on 13q14 (rs9568856; P=1.82×10−9; OR=1.22) and within HOXB5 on 17q21 (rs9299; P=3.54×10−9; OR=1.14). Both loci continued to show association when including two extreme childhood obesity cohorts (n = 2,214 cases and 2,674 controls). Finally, these two loci yielded directionally consistent associations in the GIANT meta-analysis of adult BMI1. PMID:22484627

  12. Pathway analysis of GWAS provides new insights into genetic susceptibility to 3 inflammatory diseases.

    Directory of Open Access Journals (Sweden)

    Hariklia Eleftherohorinou

    2009-11-01

    Full Text Available Although the introduction of genome-wide association studies (GWAS have greatly increased the number of genes associated with common diseases, only a small proportion of the predicted genetic contribution has so far been elucidated. Studying the cumulative variation of polymorphisms in multiple genes acting in functional pathways may provide a complementary approach to the more common single SNP association approach in understanding genetic determinants of common disease. We developed a novel pathway-based method to assess the combined contribution of multiple genetic variants acting within canonical biological pathways and applied it to data from 14,000 UK individuals with 7 common diseases. We tested inflammatory pathways for association with Crohn's disease (CD, rheumatoid arthritis (RA and type 1 diabetes (T1D with 4 non-inflammatory diseases as controls. Using a variable selection algorithm, we identified variants responsible for the pathway association and evaluated their use for disease prediction using a 10 fold cross-validation framework in order to calculate out-of-sample area under the Receiver Operating Curve (AUC. The generalisability of these predictive models was tested on an independent birth cohort from Northern Finland. Multiple canonical inflammatory pathways showed highly significant associations (p 10(-3-10(-20 with CD, T1D and RA. Variable selection identified on average a set of 205 SNPs (149 genes for T1D, 350 SNPs (189 genes for RA and 493 SNPs (277 genes for CD. The pattern of polymorphisms at these SNPS were found to be highly predictive of T1D (91% AUC and RA (85% AUC, and weakly predictive of CD (60% AUC. The predictive ability of the T1D model (without any parameter refitting had good predictive ability (79% AUC in the Finnish cohort. Our analysis suggests that genetic contribution to common inflammatory diseases operates through multiple genes interacting in functional pathways.

  13. SNP discovery in common bean by restriction-associated DNA (RAD) sequencing for genetic diversity and population structure analysis.

    Science.gov (United States)

    Valdisser, Paula Arielle M R; Pappas, Georgios J; de Menezes, Ivandilson P P; Müller, Bárbara S F; Pereira, Wendell J; Narciso, Marcelo G; Brondani, Claudio; Souza, Thiago L P O; Borba, Tereza C O; Vianello, Rosana P

    2016-06-01

    Researchers have made great advances into the development and application of genomic approaches for common beans, creating opportunities to driving more real and applicable strategies for sustainable management of the genetic resource towards plant breeding. This work provides useful polymorphic single-nucleotide polymorphisms (SNPs) for high-throughput common bean genotyping developed by RAD (restriction site-associated DNA) sequencing. The RAD tags were generated from DNA pooled from 12 common bean genotypes, including breeding lines of different gene pools and market classes. The aligned sequences identified 23,748 putative RAD-SNPs, of which 3357 were adequate for genotyping; 1032 RAD-SNPs with the highest ADT (assay design tool) score are presented in this article. The RAD-SNPs were structurally annotated in different coding (47.00 %) and non-coding (53.00 %) sequence components of genes. A subset of 384 RAD-SNPs with broad genome distribution was used to genotype a diverse panel of 95 common bean germplasms and revealed a successful amplification rate of 96.6 %, showing 73 % of polymorphic SNPs within the Andean group and 83 % in the Mesoamerican group. A slightly increased He (0.161, n = 21) value was estimated for the Andean gene pool, compared to the Mesoamerican group (0.156, n = 74). For the linkage disequilibrium (LD) analysis, from a group of 580 SNPs (289 RAD-SNPs and 291 BARC-SNPs) genotyped for the same set of genotypes, 70.2 % were in LD, decreasing to 0.10 %in the Andean group and 0.77 % in the Mesoamerican group. Haplotype patterns spanning 310 Mb of the genome (60 %) were characterized in samples from different origins. However, the haplotype frameworks were under-represented for the Andean (7.85 %) and Mesoamerican (5.55 %) gene pools separately. In conclusion, RAD sequencing allowed the discovery of hundreds of useful SNPs for broad genetic analysis of common bean germplasm. From now, this approach provides an excellent panel

  14. Multiple genetic variants associated with posttransplantation diabetes mellitus in Chinese Han populations.

    Science.gov (United States)

    Chen, Jie; Li, Lixin; An, Yunfei; Zhang, Junlong; Liao, Yun; Li, Yi; Wang, Lanlan

    2018-03-01

    Posttransplantation diabetes mellitus (PTDM) is a major complication after solid organ transplantation. This study is to investigate the association of nine genetic variant factors and PTDM in Chinese Han patients. HLA-DP (rs3077, rs9277535), HLA-DQ (rs7453920), signal transducer and activator of transcription 4 (STAT4) (rs7574865), IL-28B (rs12979860, rs8099917, and rs12980275), and IL-18 (rs1946518 and rs187238) were investigated in 260 liver transplant recipients (PTDM vs non-PTDM) by high-resolution melting curve analysis. Serum interleukin (IL)-1β, IL-6, IL-8, IL-17, interferon-γ, inducible protein-10, monocyte chemoattractant protein-1, and macrophage inflammatory protein-1b were analyzed by a Bio-Plex suspension array system (Bio-Plex Multiplex Immunoassays, Bio-Rad, Hercules, CA, USA). Signal transducer and activator of transcription 4 (rs7574865) T allele and IL-18 (rs1946518) A allele increase the risk for insulin resistance and PTDM. Recipients with STAT4 (rs7574865) T allele are associated with an increased concentration of IL-1β, interferon-γ, monocyte chemoattractant protein, and macrophage inflammatory protein-1b. The genetic variants of STAT4 (rs7574865) and IL-18 (rs1946518) may be new important markers for PTDM. © 2017 Wiley Periodicals, Inc.

  15. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean.

    Science.gov (United States)

    Fang, Chao; Ma, Yanming; Wu, Shiwen; Liu, Zhi; Wang, Zheng; Yang, Rui; Hu, Guanghui; Zhou, Zhengkui; Yu, Hong; Zhang, Min; Pan, Yi; Zhou, Guoan; Ren, Haixiang; Du, Weiguang; Yan, Hongrui; Wang, Yanping; Han, Dezhi; Shen, Yanting; Liu, Shulin; Liu, Tengfei; Zhang, Jixiang; Qin, Hao; Yuan, Jia; Yuan, Xiaohui; Kong, Fanjiang; Liu, Baohui; Li, Jiayang; Zhang, Zhiwu; Wang, Guodong; Zhu, Baoge; Tian, Zhixi

    2017-08-24

    Soybean (Glycine max [L.] Merr.) is one of the most important oil and protein crops. Ever-increasing soybean consumption necessitates the improvement of varieties for more efficient production. However, both correlations among different traits and genetic interactions among genes that affect a single trait pose a challenge to soybean breeding. To understand the genetic networks underlying phenotypic correlations, we collected 809 soybean accessions worldwide and phenotyped them for two years at three locations for 84 agronomic traits. Genome-wide association studies identified 245 significant genetic loci, among which 95 genetically interacted with other loci. We determined that 14 oil synthesis-related genes are responsible for fatty acid accumulation in soybean and function in line with an additive model. Network analyses demonstrated that 51 traits could be linked through the linkage disequilibrium of 115 associated loci and these links reflect phenotypic correlations. We revealed that 23 loci, including the known Dt1, E2, E1, Ln, Dt2, Fan, and Fap loci, as well as 16 undefined associated loci, have pleiotropic effects on different traits. This study provides insights into the genetic correlation among complex traits and will facilitate future soybean functional studies and breeding through molecular design.

  16. RESEARCH NOTE Molecular genetic analysis of consanguineous ...

    Indian Academy of Sciences (India)

    Navya

    Molecular genetic analysis of consanguineous families with primary microcephaly ... Translational Research Institute, Academic Health System, Hamad Medical ..... bridging the gap between homozygosity mapping and deep sequencing.

  17. A genetic analysis of Trichuris trichiura and Trichuris suis from Ecuador

    DEFF Research Database (Denmark)

    Meekums, Hayley; Hawash, Mohamed B F; Sparks, Alexandra M

    2015-01-01

    BACKGROUND: Since the nematodes Trichuris trichiura and T. suis are morphologically indistinguishable, genetic analysis is required to assess epidemiological cross-over between people and pigs. This study aimed to clarify the transmission biology of trichuriasis in Ecuador. FINDINGS: Adult...... Trichuris worms were collected during a parasitological survey of 132 people and 46 pigs in Esmeraldas Province, Ecuador. Morphometric analysis of 49 pig worms and 64 human worms revealed significant variation. In discriminant analysis morphometric characteristics correctly classified male worms according...... to genetically analyse Trichuris parasites. Although T. trichiura does not appear to be zoonotic in Ecuador, there is evidence of genetic exchange between T. trichiura and T. suis warranting more detailed genetic sampling....

  18. Genetic correlation analysis suggests association between increased self reported sleep duration in adults and schizophrenia and type 2 diabetes

    NARCIS (Netherlands)

    E.M. Byrne (Enda); P.R. Gehrman (Philip); Trzaskowski, M. (Maciej); H.W. Tiemeier (Henning); Pack, A.I. (Allan I.)

    2016-01-01

    textabstractStudy Objectives: We sought to examine how much of the heritability of self-report sleep duration is tagged by common genetic variation in populations of European ancestry and to test if the common variants contributing to sleep duration are also associated with other diseases and

  19. Genome-wide association study of borderline personality disorder reveals genetic overlap with bipolar disorder, major depression and schizophrenia

    DEFF Research Database (Denmark)

    Witt, S H; Streit, F; Jungkunz, M

    2017-01-01

    Borderline personality disorder (BOR) is determined by environmental and genetic factors, and characterized by affective instability and impulsivity, diagnostic symptoms also observed in manic phases of bipolar disorder (BIP). Up to 20% of BIP patients show comorbidity with BOR. This report...... describes the first case-control genome-wide association study (GWAS) of BOR, performed in one of the largest BOR patient samples worldwide. The focus of our analysis was (i) to detect genes and gene sets involved in BOR and (ii) to investigate the genetic overlap with BIP. As there is considerable genetic...... overlap between BIP, major depression (MDD) and schizophrenia (SCZ) and a high comorbidity of BOR and MDD, we also analyzed the genetic overlap of BOR with SCZ and MDD. GWAS, gene-based tests and gene-set analyses were performed in 998 BOR patients and 1545 controls. Linkage disequilibrium score...

  20. STOPGAP: a database for systematic target opportunity assessment by genetic association predictions.

    Science.gov (United States)

    Shen, Judong; Song, Kijoung; Slater, Andrew J; Ferrero, Enrico; Nelson, Matthew R

    2017-09-01

    We developed the STOPGAP (Systematic Target OPportunity assessment by Genetic Association Predictions) database, an extensive catalog of human genetic associations mapped to effector gene candidates. STOPGAP draws on a variety of publicly available GWAS associations, linkage disequilibrium (LD) measures, functional genomic and variant annotation sources. Algorithms were developed to merge the association data, partition associations into non-overlapping LD clusters, map variants to genes and produce a variant-to-gene score used to rank the relative confidence among potential effector genes. This database can be used for a multitude of investigations into the genes and genetic mechanisms underlying inter-individual variation in human traits, as well as supporting drug discovery applications. Shell, R, Perl and Python scripts and STOPGAP R data files (version 2.5.1 at publication) are available at https://github.com/StatGenPRD/STOPGAP . Some of the most useful STOPGAP fields can be queried through an R Shiny web application at http://stopgapwebapp.com . matthew.r.nelson@gsk.com. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  1. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence.

    Science.gov (United States)

    Sniekers, Suzanne; Stringer, Sven; Watanabe, Kyoko; Jansen, Philip R; Coleman, Jonathan R I; Krapohl, Eva; Taskesen, Erdogan; Hammerschlag, Anke R; Okbay, Aysu; Zabaneh, Delilah; Amin, Najaf; Breen, Gerome; Cesarini, David; Chabris, Christopher F; Iacono, William G; Ikram, M Arfan; Johannesson, Magnus; Koellinger, Philipp; Lee, James J; Magnusson, Patrik K E; McGue, Matt; Miller, Mike B; Ollier, William E R; Payton, Antony; Pendleton, Neil; Plomin, Robert; Rietveld, Cornelius A; Tiemeier, Henning; van Duijn, Cornelia M; Posthuma, Danielle

    2017-07-01

    Intelligence is associated with important economic and health-related life outcomes. Despite intelligence having substantial heritability (0.54) and a confirmed polygenic nature, initial genetic studies were mostly underpowered. Here we report a meta-analysis for intelligence of 78,308 individuals. We identify 336 associated SNPs (METAL P intelligence in childhood (0.45) and adulthood (0.80), we show substantial genetic correlation (r g = 0.89, LD score regression P = 5.4 × 10 -29 ). These findings provide new insight into the genetic architecture of intelligence.

  2. Transcriptome-guided amyloid imaging genetic analysis via a novel structured sparse learning algorithm.

    Science.gov (United States)

    Yan, Jingwen; Du, Lei; Kim, Sungeun; Risacher, Shannon L; Huang, Heng; Moore, Jason H; Saykin, Andrew J; Shen, Li

    2014-09-01

    Imaging genetics is an emerging field that studies the influence of genetic variation on brain structure and function. The major task is to examine the association between genetic markers such as single-nucleotide polymorphisms (SNPs) and quantitative traits (QTs) extracted from neuroimaging data. The complexity of these datasets has presented critical bioinformatics challenges that require new enabling tools. Sparse canonical correlation analysis (SCCA) is a bi-multivariate technique used in imaging genetics to identify complex multi-SNP-multi-QT associations. However, most of the existing SCCA algorithms are designed using the soft thresholding method, which assumes that the input features are independent from one another. This assumption clearly does not hold for the imaging genetic data. In this article, we propose a new knowledge-guided SCCA algorithm (KG-SCCA) to overcome this limitation as well as improve learning results by incorporating valuable prior knowledge. The proposed KG-SCCA method is able to model two types of prior knowledge: one as a group structure (e.g. linkage disequilibrium blocks among SNPs) and the other as a network structure (e.g. gene co-expression network among brain regions). The new model incorporates these prior structures by introducing new regularization terms to encourage weight similarity between grouped or connected features. A new algorithm is designed to solve the KG-SCCA model without imposing the independence constraint on the input features. We demonstrate the effectiveness of our algorithm with both synthetic and real data. For real data, using an Alzheimer's disease (AD) cohort, we examine the imaging genetic associations between all SNPs in the APOE gene (i.e. top AD gene) and amyloid deposition measures among cortical regions (i.e. a major AD hallmark). In comparison with a widely used SCCA implementation, our KG-SCCA algorithm produces not only improved cross-validation performances but also biologically meaningful

  3. Genetics of osteoarthritis.

    Science.gov (United States)

    Rodriguez-Fontenla, Cristina; Gonzalez, Antonio

    2015-01-01

    Osteoarthritis (OA) is a complex disease caused by the interaction of multiple genetic and environmental factors. This review focuses on the studies that have contributed to the discovery of genetic susceptibility factors in OA. The most relevant associations discovered until now are discussed in detail: GDF-5, 7q22 locus, MCF2L, DOT1L, NCOA3 and also some important findings from the arcOGEN study. Moreover, the different approaches that can be used to minimize the specific problems of the study of OA genetics are discussed. These include the study of microsatellites, phenotype standardization and other methods such as meta-analysis of GWAS and gene-based analysis. It is expected that these new approaches contribute to finding new susceptibility genetic factors for OA. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  4. Genome-Wide Association Meta-Analyses to Identify Common Genetic Variants Associated with Hallux Valgus in Caucasian and African Americans

    Science.gov (United States)

    Hsu, Yi-Hsiang; Liu, Youfang; Hannan, Marian T.; Maixner, William; Smith, Shad B.; Diatchenko, Luda; Golightly, Yvonne M.; Menz, Hylton B.; Kraus, Virginia B.; Doherty, Michael; Wilson, A.G.; Jordan, Joanne M.

    2016-01-01

    Objective Hallux valgus (HV) affects ~36% of Caucasian adults. Although considered highly heritable, the underlying genetic determinants are unclear. We conducted the first genome-wide association study (GWAS) aimed to identify genetic variants associated with HV. Methods HV was assessed in 3 Caucasian cohorts (n=2,263, n=915, and n=1,231 participants, respectively). In each cohort, a GWAS was conducted using 2.5M imputed single nucleotide polymorphisms (SNPs). Mixed-effect regression with the additive genetic model adjusted for age, sex, weight and within-family correlations was used for both sex-specific and combined analyses. To combine GWAS results across cohorts, fixed-effect inverse-variance meta-analyses were used. Following meta-analyses, top-associated findings were also examined in an African American cohort (n=327). Results The proportion of HV variance explained by genome-wide genotyped SNPs was 50% in men and 48% in women. A higher proportion of genetic determinants of HV was sex-specific. The most significantly associated SNP in men was rs9675316 located on chr17q23-a24 near the AXIN2 gene (p=5.46×10−7); the most significantly associated SNP in women was rs7996797 located on chr13q14.1-q14.2 near the ESD gene (p=7.21×10−7). Genome-wide significant SNP-by-sex interaction was found for SNP rs1563374 located on chr11p15.1 near the MRGPRX3 gene (interaction p-value =4.1×10−9). The association signals diminished when combining men and women. Conclusion Findings suggest that the potential pathophysiological mechanisms of HV are complex and strongly underlined by sex-specific interactions. The identified genetic variants imply contribution of biological pathways observed in osteoarthritis as well as new pathways, influencing skeletal development and inflammation. PMID:26337638

  5. Reconciling genetic evolution and the associative learning account of mirror neurons through data-acquisition mechanisms.

    Science.gov (United States)

    Lotem, Arnon; Kolodny, Oren

    2014-04-01

    An associative learning account of mirror neurons should not preclude genetic evolution of its underlying mechanisms. On the contrary, an associative learning framework for cognitive development should seek heritable variation in the learning rules and in the data-acquisition mechanisms that construct associative networks, demonstrating how small genetic modifications of associative elements can give rise to the evolution of complex cognition.

  6. Defining the genetic susceptibility to cervical neoplasia-A genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Paul J Leo

    2017-08-01

    Full Text Available A small percentage of women with cervical HPV infection progress to cervical neoplasia, and the risk factors determining progression are incompletely understood. We sought to define the genetic loci involved in cervical neoplasia and to assess its heritability using unbiased unrelated case/control statistical approaches. We demonstrated strong association of cervical neoplasia with risk and protective HLA haplotypes that are determined by the amino-acids carried at positions 13 and 71 in pocket 4 of HLA-DRB1 and position 156 in HLA-B. Furthermore, 36% (standard error 2.4% of liability of HPV-associated cervical pre-cancer and cancer is determined by common genetic variants. Women in the highest 10% of genetic risk scores have approximately >7.1% risk, and those in the highest 5% have approximately >21.6% risk, of developing cervical neoplasia. Future studies should examine genetic risk prediction in assessing the risk of cervical neoplasia further, in combination with other screening methods.

  7. Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia

    NARCIS (Netherlands)

    Berndt, Sonja I; Camp, Nicola J; Skibola, Christine F; Vijai, Joseph; Wang, Zhaoming; Gu, Jian; Nieters, Alexandra; Kelly, Rachel S; Smedby, Karin E; Monnereau, Alain; Cozen, Wendy; Cox, Angela; Wang, Sophia S; Lan, Qing; Teras, Lauren R; Machado, Moara; Yeager, Meredith; Brooks-Wilson, Angela R; Hartge, Patricia; Purdue, Mark P; Birmann, Brenda M; Vajdic, Claire M; Cocco, Pierluigi; Zhang, Yawei; Giles, Graham G; Zeleniuch-Jacquotte, Anne; Lawrence, Charles; Montalvan, Rebecca; Burdett, Laurie; Hutchinson, Amy; Ye, Yuanqing; Call, Timothy G; Shanafelt, Tait D; Novak, Anne J; Kay, Neil E; Liebow, Mark; Cunningham, Julie M; Allmer, Cristine; Hjalgrim, Henrik; Adami, Hans-Olov; Melbye, Mads; Glimelius, Bengt; Chang, Ellen T; Glenn, Martha; Curtin, Karen; Cannon-Albright, Lisa A; Diver, W Ryan; Link, Brian K; Weiner, George J; Conde, Lucia; Bracci, Paige M; Riby, Jacques; Arnett, Donna K; Zhi, Degui; Leach, Justin M; Holly, Elizabeth A; Jackson, Rebecca D; Tinker, Lesley F; Benavente, Yolanda; Sala, Núria; Casabonne, Delphine; Becker, Nikolaus; Boffetta, Paolo; Brennan, Paul; Foretova, Lenka; Maynadie, Marc; McKay, James; Staines, Anthony; Chaffee, Kari G; Achenbach, Sara J; Vachon, Celine M; Goldin, Lynn R; Strom, Sara S; Leis, Jose F; Weinberg, J Brice; Caporaso, Neil E; Norman, Aaron D; De Roos, Anneclaire J; Morton, Lindsay M; Severson, Richard K; Riboli, Elio; Vineis, Paolo; Kaaks, Rudolph; Masala, Giovanna; Weiderpass, Elisabete; Chirlaque, María-Dolores; Vermeulen, Roel C H|info:eu-repo/dai/nl/216532620; Travis, Ruth C; Southey, Melissa C; Milne, Roger L; Albanes, Demetrius; Virtamo, Jarmo; Weinstein, Stephanie; Clavel, Jacqueline; Zheng, Tongzhang; Holford, Theodore R; Villano, Danylo J; Maria, Ann; Spinelli, John J; Gascoyne, Randy D; Connors, Joseph M; Bertrand, Kimberly A; Giovannucci, Edward; Kraft, Peter; Kricker, Anne; Turner, Jenny; Ennas, Maria Grazia; Ferri, Giovanni M; Miligi, Lucia; Liang, Liming; Ma, Baoshan; Huang, Jinyan; Crouch, Simon; Park, Ju-Hyun; Chatterjee, Nilanjan; North, Kari E; Snowden, John A; Wright, Josh; Fraumeni, Joseph F; Offit, Kenneth; Wu, Xifeng; de Sanjose, Silvia; Cerhan, James R; Chanock, Stephen J; Rothman, Nathaniel; Slager, Susan L

    2016-01-01

    Chronic lymphocytic leukemia (CLL) is a common lymphoid malignancy with strong heritability. To further understand the genetic susceptibility for CLL and identify common loci associated with risk, we conducted a meta-analysis of four genome-wide association studies (GWAS) composed of 3,100 cases and

  8. Analysis of genetic structure in Melia volkensii (Gurke.) populations ...

    African Journals Online (AJOL)

    Administrator

    2Farm Forestry Programme, Kenya Forestry Research Institute, P. O. Box 20412, Nairobi, Kenya. Accepted 5 ... were used to estimate genetic distances between populations and for construction of neighbour-joining phenograms. Analysis of Molecular Variance (AMOVA) indicated significant genetic differentiation between ...

  9. A genome-wide association study of social genetic effects in Landrace pigs.

    Science.gov (United States)

    Hong, Joon Ki; Jeong, Yong Dae; Cho, Eun Seok; Choi, Tae Jeong; Kim, Yong Min; Cho, Kyu Ho; Lee, Jae Bong; Lim, Hyun Tae; Lee, Deuk Hwan

    2018-06-01

    The genetic effects of an individual on the phenotypes of its social partners, such as its pen mates, are known as social genetic effects. This study aims to identify the candidate genes for social (pen-mates') average daily gain (ADG) in pigs by using the genome-wide association approach. Social ADG (sADG) was the average ADG of unrelated pen-mates (strangers). We used the phenotype data (16,802 records) after correcting for batch (week), sex, pen, number of strangers (1 to 7 pigs) in the pen, full-sib rate (0% to 80%) within pen, and age at the end of the test. A total of 1,041 pigs from Landrace breeds were genotyped using the Illumina PorcineSNP60 v2 BeadChip panel, which comprised 61,565 single nucleotide polymorphism (SNP) markers. After quality control, 909 individuals and 39,837 markers remained for sADG in genome-wide association study. We detected five new SNPs, all on chromosome 6, which have not been associated with social ADG or other growth traits to date. One SNP was inside the prostaglandin F2α receptor ( PTGFR ) gene, another SNP was located 22 kb upstream of gene interferon-induced protein 44 ( IFI44 ), and the last three SNPs were between 161 kb and 191 kb upstream of the EGF latrophilin and seven transmembrane domain-containing protein 1 ( ELTD1 ) gene. PTGFR, IFI44, and ELTD1 were never associated with social interaction and social genetic effects in any of the previous studies. The identification of several genomic regions, and candidate genes associated with social genetic effects reported here, could contribute to a better understanding of the genetic basis of interaction traits for ADG. In conclusion, we suggest that the PTGFR, IFI44, and ELTD1 may be used as a molecular marker for sADG, although their functional effect was not defined yet. Thus, it will be of interest to execute association studies in those genes.

  10. Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics

    NARCIS (Netherlands)

    Beaumont, R.N. (Robin N.); N.M. Warrington (Nicole); A. Cavadino (Alana); A.W.R. Tyrrell; M. Nodzenski (Michael); M. Horikoshi (Momoko); F. Geller (Frank); R. Myhre (Ronny); R.C. Richmond (Rebecca C.); Paternoster, L. (Lavinia); J.P. Bradfield (Jonathan); E. Kreiner-Møller (Eskil); V. Huikari (Ville); S. Metrustry (Sarah); K.L. Lunetta (Kathryn); J.N. Painter (Jodie N.); J.J. Hottenga (Jouke Jan); C. Allard (Catherine); S.J. Barton (Sheila J.); Espinosa, A. (Ana); J.A. Marsh (Julie); C. Potter (Catherine); Zhang, G. (Ge); W.Q. Ang (Wei); D. Berry (Diane); L. Bouchard (Luigi); S. Das (Shikta); H. Hakonarson (Hakon); J. Heikkinen (Jani); Helgeland, Ø. (Øyvind); B. Hocher (Berthold); A. Hofman (Albert); H.M. Inskip (Hazel); S.E. Jones (Samuel E.); M. Kogevinas (Manolis); P.A. Lind (Penelope); L. Marullo (Letizia); S.E. Medland (Sarah Elizabeth); Murray, A. (Anna); Murray, J.C. (Jeffrey C.); Njølstad, P.R. (Pa l R.); C. Nohr (Christian); C. Reichetzeder (Christoph); S.M. Ring (Susan); K.S. Ruth (Katherine S.); L. Santa-Marina (Loreto); D.M. Scholtens (Denise M.); Sebert, S. (Sylvain); V. Sengpiel (Verena); Tuke, M.A. (Marcus A.); Vaudel, M. (Marc); M.N. Weedon (Michael); G.A.H.M. Willemsen (Gonneke); Wood, A.R. (Andrew R.); Yaghootkar, H. (Hanieh); Muglia, L.J. (Louis J.); M. Bartels (Meike); C.L. Relton (Caroline); C.E. Pennell (Craig); L. Chatzi (Leda); Estivill, X. (Xavier); Holloway, J.W. (John W.); D.I. Boomsma (Dorret); Montgomery, G.W. (Grant W.); J. Murabito (Joanne); T.D. Spector (Timothy); Power, C. (Christine); Järvelin, M.-R. (Marjo-Ritta); Bisgaard, H. (Hans); Grant, S.F.A. (Struan F.A.); Sørensen, T.I.A. (Thorkild I.A.); Jaddoe, V.W. (Vincent W.); B. Jacobsson (Bo); Melbye, M. (Mads); McCarthy, M.I. (Mark I.); A.T. Hattersley (Andrew); Hayes, M.G. (M. Geoffrey); T.M. Frayling (Timothy); M.-F. Hivert (Marie-France); J.F. Felix (Janine); Hyppönen, E. (Elina); Lowe, W.L. (William L.); Evans, D.M. (David M.); Lawlor, D.A. (Debbie A.); B. Feenstra (Bjarke); R.M. Freathy (Rachel)

    2018-01-01

    textabstractGenome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal

  11. Power assessment for genetic association study of human longevity using offspring of long-lived subjects

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, Jing Hua; Li, Shuxia

    2010-01-01

    and the proportional hazard model for generating individual lifespan. Family genotype data is generated using a genetic linkage program for given SNP allele frequency. Power is estimated by setting the type I error rate at 0.05 and by calculating the Armitage's chi-squared test statistic for 200 replicate samples...... the direct approach. It also has low power in detecting non-additive effect genes. Indirect genetic association using offspring from families with both parents as nonagenarians is nearly as powerful as using offspring from families with one centenarian parent. In conclusion, the indirect design can be a good......Recently, an indirect genetic association approach that compares genotype frequencies in offspring of long-lived subjects and offspring from random families has been introduced to study gene-longevity associations. Although the indirect genetic association has certain advantages over the direct...

  12. Mouse-human experimental epigenetic analysis unmasks dietary targets and genetic liability for diabetic phenotypes

    Science.gov (United States)

    Multhaup, Michael L.; Seldin, Marcus; Jaffe, Andrew E.; Lei, Xia; Kirchner, Henriette; Mondal, Prosenjit; Li, Yuanyuan; Rodriguez, Varenka; Drong, Alexander; Hussain, Mehboob; Lindgren, Cecilia; McCarthy, Mark; Näslund, Erik; Zierath, Juleen R.; Wong, G. William; Feinberg, Andrew P.

    2015-01-01

    SUMMARY Using a functional approach to investigate the epigenetics of Type 2 Diabetes (T2D), we combine three lines of evidence – diet-induced epigenetic dysregulation in mouse, epigenetic conservation in humans, and T2D clinical risk evidence – to identify genes implicated in T2D pathogenesis through epigenetic mechanisms related to obesity. Beginning with dietary manipulation of genetically homogeneous mice, we identify differentially DNA-methylated genomic regions. We then replicate these results in adipose samples from lean and obese patients pre- and post-Roux-en-Y gastric bypass, identifying regions where both the location and direction of methylation change is conserved. These regions overlap with 27 genetic T2D risk loci, only one of which was deemed significant by GWAS alone. Functional analysis of genes associated with these regions revealed four genes with roles in insulin resistance, demonstrating the potential general utility of this approach for complementing conventional human genetic studies by integrating cross-species epigenomics and clinical genetic risk. PMID:25565211

  13. Analysis of Case-Control Association Studies: SNPs, Imputation and Haplotypes

    KAUST Repository

    Chatterjee, Nilanjan; Chen, Yi-Hau; Luo, Sheng; Carroll, Raymond J.

    2009-01-01

    Although prospective logistic regression is the standard method of analysis for case-control data, it has been recently noted that in genetic epidemiologic studies one can use the "retrospective" likelihood to gain major power by incorporating various population genetics model assumptions such as Hardy-Weinberg-Equilibrium (HWE), gene-gene and gene-environment independence. In this article we review these modern methods and contrast them with the more classical approaches through two types of applications (i) association tests for typed and untyped single nucleotide polymorphisms (SNPs) and (ii) estimation of haplotype effects and haplotype-environment interactions in the presence of haplotype-phase ambiguity. We provide novel insights to existing methods by construction of various score-tests and pseudo-likelihoods. In addition, we describe a novel two-stage method for analysis of untyped SNPs that can use any flexible external algorithm for genotype imputation followed by a powerful association test based on the retrospective likelihood. We illustrate applications of the methods using simulated and real data. © Institute of Mathematical Statistics, 2009.

  14. Analysis of Case-Control Association Studies: SNPs, Imputation and Haplotypes

    KAUST Repository

    Chatterjee, Nilanjan

    2009-11-01

    Although prospective logistic regression is the standard method of analysis for case-control data, it has been recently noted that in genetic epidemiologic studies one can use the "retrospective" likelihood to gain major power by incorporating various population genetics model assumptions such as Hardy-Weinberg-Equilibrium (HWE), gene-gene and gene-environment independence. In this article we review these modern methods and contrast them with the more classical approaches through two types of applications (i) association tests for typed and untyped single nucleotide polymorphisms (SNPs) and (ii) estimation of haplotype effects and haplotype-environment interactions in the presence of haplotype-phase ambiguity. We provide novel insights to existing methods by construction of various score-tests and pseudo-likelihoods. In addition, we describe a novel two-stage method for analysis of untyped SNPs that can use any flexible external algorithm for genotype imputation followed by a powerful association test based on the retrospective likelihood. We illustrate applications of the methods using simulated and real data. © Institute of Mathematical Statistics, 2009.

  15. Association study of functional genetic variants of innate immunity related genes in celiac disease

    Directory of Open Access Journals (Sweden)

    Martín J

    2005-08-01

    Full Text Available Abstract Background Recent evidence suggest that the innate immune system is implicated in the early events of celiac disease (CD pathogenesis. In this work for the first time we have assessed the relevance of different proinflammatory mediators typically related to innate immunity in CD predisposition. Methods We performed a familial study in which 105 celiac families characterized by the presence of an affected child with CD were genotyped for functional polymorphisms located at regulatory regions of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes. Familial data was analysed with a transmission disequilibrium test (TDT that revealed no statistically significant differences in the transmission pattern of the different genetic markers considered. Results The TDT analysis for IL-1α, IL-1β, IL-1RN, IL-18, and MCP-1 genes genetic variants did not reveal biased transmission to the affected offspring. Only a borderline association of RANTES promoter genetic variants with CD predisposition was observed. Conclusion Our results suggest that the analysed polymorphisms of IL-1α, IL-1β, IL-1RN, IL-18, RANTES and MCP-1 genes do not seem to play a major role in CD genetic predisposition in our population.

  16. Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese.

    Science.gov (United States)

    Lubitz, Steven A; Lunetta, Kathryn L; Lin, Honghuang; Arking, Dan E; Trompet, Stella; Li, Guo; Krijthe, Bouwe P; Chasman, Daniel I; Barnard, John; Kleber, Marcus E; Dörr, Marcus; Ozaki, Kouichi; Smith, Albert V; Müller-Nurasyid, Martina; Walter, Stefan; Agarwal, Sunil K; Bis, Joshua C; Brody, Jennifer A; Chen, Lin Y; Everett, Brendan M; Ford, Ian; Franco, Oscar H; Harris, Tamara B; Hofman, Albert; Kääb, Stefan; Mahida, Saagar; Kathiresan, Sekar; Kubo, Michiaki; Launer, Lenore J; MacFarlane, Peter W; Magnani, Jared W; McKnight, Barbara; McManus, David D; Peters, Annette; Psaty, Bruce M; Rose, Lynda M; Rotter, Jerome I; Silbernagel, Guenther; Smith, Jonathan D; Sotoodehnia, Nona; Stott, David J; Taylor, Kent D; Tomaschitz, Andreas; Tsunoda, Tatsuhiko; Uitterlinden, Andre G; Van Wagoner, David R; Völker, Uwe; Völzke, Henry; Murabito, Joanne M; Sinner, Moritz F; Gudnason, Vilmundur; Felix, Stephan B; März, Winfried; Chung, Mina; Albert, Christine M; Stricker, Bruno H; Tanaka, Toshihiro; Heckbert, Susan R; Jukema, J Wouter; Alonso, Alvaro; Benjamin, Emelia J; Ellinor, Patrick T

    2014-04-01

    This study sought to identify nonredundant atrial fibrillation (AF) genetic susceptibility signals and examine their cumulative relations with AF risk. AF-associated loci span broad genomic regions that may contain multiple susceptibility signals. Whether multiple signals exist at AF loci has not been systematically explored. We performed association testing conditioned on the most significant, independently associated genetic markers at 9 established AF loci using 2 complementary techniques in 64,683 individuals of European ancestry (3,869 incident and 3,302 prevalent AF cases). Genetic risk scores were created and tested for association with AF in Europeans and an independent sample of 11,309 individuals of Japanese ancestry (7,916 prevalent AF cases). We observed at least 4 distinct AF susceptibility signals on chromosome 4q25 upstream of PITX2, but not at the remaining 8 AF loci. A multilocus score comprised 12 genetic markers demonstrated an estimated 5-fold gradient in AF risk. We observed a similar spectrum of risk associated with these markers in Japanese. Regions containing AF signals on chromosome 4q25 displayed a greater degree of evolutionary conservation than the remainder of the locus, suggesting that they may tag regulatory elements. The chromosome 4q25 AF locus is architecturally complex and harbors at least 4 AF susceptibility signals in individuals of European ancestry. Similar polygenic AF susceptibility exists between Europeans and Japanese. Future work is necessary to identify causal variants, determine mechanisms by which associated loci predispose to AF, and explore whether AF susceptibility signals classify individuals at risk for AF and related morbidity. Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies.

    Science.gov (United States)

    Mocellin, Simone; Tropea, Saveria; Benna, Clara; Rossi, Carlo Riccardo

    2018-02-19

    Dysfunction of the circadian clock and single polymorphisms of some circadian genes have been linked to cancer susceptibility, although data are scarce and findings inconsistent. We aimed to investigate the association between circadian pathway genetic variation and risk of developing common cancers based on the findings of genome-wide association studies (GWASs). Single nucleotide polymorphisms (SNPs) of 17 circadian genes reported by three GWAS meta-analyses dedicated to breast (Discovery, Biology, and Risk of Inherited Variants in Breast Cancer (DRIVE) Consortium; cases, n = 15,748; controls, n = 18,084), prostate (Elucidating Loci Involved in Prostate Cancer Susceptibility (ELLIPSE) Consortium; cases, n = 14,160; controls, n = 12,724) and lung carcinoma (Transdisciplinary Research In Cancer of the Lung (TRICL) Consortium; cases, n = 12,160; controls, n = 16,838) in patients of European ancestry were utilized to perform pathway analysis by means of the adaptive rank truncated product (ARTP) method. Data were also available for the following subgroups: estrogen receptor negative breast cancer, aggressive prostate cancer, squamous lung carcinoma and lung adenocarcinoma. We found a highly significant statistical association between circadian pathway genetic variation and the risk of breast (pathway P value = 1.9 × 10 -6 ; top gene RORA, gene P value = 0.0003), prostate (pathway P value = 4.1 × 10 -6 ; top gene ARNTL, gene P value = 0.0002) and lung cancer (pathway P value = 6.9 × 10 -7 ; top gene RORA, gene P value = 2.0 × 10 -6 ), as well as all their subgroups. Out of 17 genes investigated, 15 were found to be significantly associated with the risk of cancer: four genes were shared by all three malignancies (ARNTL, CLOCK, RORA and RORB), two by breast and lung cancer (CRY1 and CRY2) and three by prostate and lung cancer (NPAS2, NR1D1 and PER3), whereas four genes were specific for lung cancer

  18. Genetic variants associated with susceptibility to idiopathic pulmonary fibrosis in people of European ancestry : A genome-wide association study

    NARCIS (Netherlands)

    Allen, Richard J; Porte, Joanne; Braybrooke, Rebecca; Flores, Carlos; Fingerlin, Tasha E; Oldham, Justin M; Guillen-Guio, Beatriz; Ma, Shwu-Fan; Okamoto, Tsukasa; John, Alison E; Obeidat, Ma'en; Yang, Ivana V; Henry, Amanda; Hubbard, Richard B; Navaratnam, Vidya; Saini, Gauri; Thompson, Norma; Booth, Helen L; Hart, Simon P; Hill, Mike R; Hirani, Nik; Maher, Toby M; McAnulty, Robin J; Millar, Ann B; Molyneaux, Philip L; Parfrey, Helen; Rassl, Doris M; Whyte, Moira K B; Fahy, William A; Marshall, Richard P; Oballa, Eunice; Bossé, Yohan; Nickle, David C; Sin, Don D; Timens, Wim; Shrine, Nick; Sayers, Ian; Hall, Ian P; Noth, Imre; Schwartz, David A; Tobin, Martin D; Wain, Louise V; Jenkins, R Gisli

    2017-01-01

    Background: Idiopathic pulmonary fibrosis (IPF) is a chronic progressive lung disease with high mortality, uncertain cause, and few treatment options. Studies have identified a significant genetic risk associated with the development of IPF; however, mechanisms by which genetic risk factors promote

  19. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility

    DEFF Research Database (Denmark)

    Mahajan, Anubha; Go, Min Jin; Zhang, Weihua

    2014-01-01

    To further understanding of the genetic basis of type 2 diabetes (T2D) susceptibility, we aggregated published meta-analyses of genome-wide association studies (GWAS), including 26,488 cases and 83,964 controls of European, east Asian, south Asian and Mexican and Mexican American ancestry. We obs...... and characterization of complex trait loci and emphasize an exciting opportunity to extend insight into the genetic architecture and pathogenesis of human diseases across populations of diverse ancestry....... observed a significant excess in the directional consistency of T2D risk alleles across ancestry groups, even at SNPs demonstrating only weak evidence of association. By following up the strongest signals of association from the trans-ethnic meta-analysis in an additional 21,491 cases and 55,647 controls...

  20. Novel probabilistic models of spatial genetic ancestry with applications to stratification correction in genome-wide association studies.

    Science.gov (United States)

    Bhaskar, Anand; Javanmard, Adel; Courtade, Thomas A; Tse, David

    2017-03-15

    Genetic variation in human populations is influenced by geographic ancestry due to spatial locality in historical mating and migration patterns. Spatial population structure in genetic datasets has been traditionally analyzed using either model-free algorithms, such as principal components analysis (PCA) and multidimensional scaling, or using explicit spatial probabilistic models of allele frequency evolution. We develop a general probabilistic model and an associated inference algorithm that unify the model-based and data-driven approaches to visualizing and inferring population structure. Our spatial inference algorithm can also be effectively applied to the problem of population stratification in genome-wide association studies (GWAS), where hidden population structure can create fictitious associations when population ancestry is correlated with both the genotype and the trait. Our algorithm Geographic Ancestry Positioning (GAP) relates local genetic distances between samples to their spatial distances, and can be used for visually discerning population structure as well as accurately inferring the spatial origin of individuals on a two-dimensional continuum. On both simulated and several real datasets from diverse human populations, GAP exhibits substantially lower error in reconstructing spatial ancestry coordinates compared to PCA. We also develop an association test that uses the ancestry coordinates inferred by GAP to accurately account for ancestry-induced correlations in GWAS. Based on simulations and analysis of a dataset of 10 metabolic traits measured in a Northern Finland cohort, which is known to exhibit significant population structure, we find that our method has superior power to current approaches. Our software is available at https://github.com/anand-bhaskar/gap . abhaskar@stanford.edu or ajavanma@usc.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved

  1. A genetic variant in SLC28A3, rs56350726, is associated with progression to castration-resistant prostate cancer in a Korean population with metastatic prostate cancer.

    Science.gov (United States)

    Jo, Jung Ku; Oh, Jong Jin; Kim, Yong Tae; Moon, Hong Sang; Choi, Hong Yong; Park, Seunghyun; Ho, Jin-Nyoung; Yoon, Sungroh; Park, Hae Young; Byun, Seok-Soo

    2017-11-14

    Genetic variation which related with progression to castration-resistant prostate cancer (CRPC) during androgen-deprivation therapy (ADT) has not been elucidated in patients with metastatic prostate cancer (mPCa). Therefore, we assessed the association between genetic variats in mPCa and progession to CRPC. Analysis of exome genotypes revealed that 42 SNPs were significantly associated with mPCa. The top five polymorphisms were statistically significantly associated with metastatic disease. In addition, one of these SNPs, rs56350726, was significantly associated with time to CRPC in Kaplan-Meier analysis (Log-rank test, p = 0.011). In multivariable Cox regression, rs56350726 was strongly associated with progression to CRPC (HR = 4.172 95% CI = 1.223-14.239, p = 0.023). We assessed genetic variation among 1000 patients with PCa with or without metastasis, using 242,221 single nucleotide polymorphisms (SNPs) on the custom HumanExome BeadChip v1.0 (Illuminam Inc.). We analyzed the time to CRPC in 110 of the 1000 patients who were treated with ADT. Genetic data were analyzed using unconditional logistic regression and odds ratios calculated as estimates of relative risk of metastasis. We identified SNPs associated with metastasis and analyzed the relationship between these SNPs and time to CRPC in mPCa. Based on a genetic variation, the five top SNPs were observed to associate with mPCa. And one (SLC28A3, rs56350726) of five SNP was found the association with the progression to CRPC in patients with mPCa.

  2. Borderline personality traits and adult attention-deficit hyperactivity disorder symptoms: a genetic analysis of comorbidity.

    Science.gov (United States)

    Distel, Marijn A; Carlier, Angela; Middeldorp, Christel M; Derom, Catherine A; Lubke, Gitta H; Boomsma, Dorret I

    2011-12-01

    Previous research has established the comorbidity of adult Attention-Deficit Hyperactivity Disorder (ADHD) with different personality disorders including Borderline Personality Disorder (BPD). The association between adult ADHD and BPD has primarily been investigated at the phenotypic level and not yet at the genetic level. The present study investigates the genetic and environmental contributions to the association between borderline personality traits (BPT) and ADHD symptoms in a sample of 7,233 twins and siblings (aged 18-90 years) registered with the Netherlands Twin Register and the East Flanders Prospective Twin Survey (EFPTS) . Participants completed the Conners' Adult ADHD Rating Scales (CAARS-S:SV) and the Personality Assessment Inventory-Borderline Features Scale (PAI-BOR). A bivariate genetic analysis was performed to determine the extent to which genetic and environmental factors influence variation in BPT and ADHD symptoms and the covariance between them. The heritability of BPT and ADHD symptoms was estimated at 45 and 36%, respectively. The remaining variance in BPT and ADHD symptoms was explained by unique environmental influences. The phenotypic correlation between BPT and ADHD symptoms was estimated at r = 0.59, and could be explained for 49% by genetic factors and 51% by environmental factors. The genetic and environmental correlations between BPT and ADHD symptoms were 0.72 and 0.51, respectively. The shared etiology between BPT and ADHD symptoms is thus a likely cause for the comorbidity of the two disorders. Copyright © 2011 Wiley-Liss, Inc.

  3. No increase in autism-associated genetic events in children conceived by assisted reproduction.

    Science.gov (United States)

    Ackerman, Sean; Wenegrat, Julia; Rettew, David; Althoff, Robert; Bernier, Raphael

    2014-08-01

    To understand the rate of genetic events in patients with autism spectrum disorder (ASD) who were exposed to assisted reproduction. Case control study using genetics data. Twelve collaborating data collection sites across North America as part of the Simons Simplex Collection. 2,760 children with ASD, for whom 1,994 had published copy number variation data and 424 had published gene mutation status available. None. Rates of autism-associated genetic events in children with ASD conceived with assisted reproduction versus those conceived naturally. No statistically significant differences in copy number variations or autism-associated gene-disrupting events were found when comparing ASD patients exposed to assisted reproduction with those not exposed to assisted reproduction. This is the first large genetic association to concurrently examine the genotype of individuals with ASD in relation to their exposure to ART versus natural conception, and it adds reassuring evidence to the argument that ART does not increase the risk of ASD. Copyright © 2014 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  4. Identification of novel risk genes associated with type 1 diabetes mellitus using a genome-wide gene-based association analysis.

    Science.gov (United States)

    Qiu, Ying-Hua; Deng, Fei-Yan; Li, Min-Jing; Lei, Shu-Feng

    2014-11-01

    Type 1 diabetes mellitus is a serious disorder characterized by destruction of pancreatic β-cells, culminating in absolute insulin deficiency. Genetic factors contribute to the susceptibility of type 1 diabetes mellitus. The aim of the present study was to identify more susceptibility genes of type 1 diabetes mellitus. We carried out an initial gene-based genome-wide association study in a total of 4,075 type 1 diabetes mellitus cases and 2,604 controls by using the Gene-based Association Test using Extended Simes procedure. Furthermore, we carried out replication studies, differential expression analysis and functional annotation clustering analysis to support the significance of the identified susceptibility genes. We identified 452 genes associated with type 1 diabetes mellitus, even after adapting the genome-wide threshold for significance (P diabetes mellitus, which were ignored in single-nucleotide polymorphism-based association analysis and were not previously reported. We found that 53 genes have supportive evidence from replication studies and/or differential expression studies. In particular, seven genes including four non-human leukocyte antigen (HLA) genes (RASIP1, STRN4, BCAR1 and MYL2) are replicated in at least one independent population and also differentially expressed in peripheral blood mononuclear cells or monocytes. Furthermore, the associated genes tend to enrich in immune-related pathways or Gene Ontology project terms. The present results suggest the high power of gene-based association analysis in detecting disease-susceptibility genes. Our findings provide more insights into the genetic basis of type 1 diabetes mellitus.

  5. Observational and Genetic Associations of Resting Heart Rate With Aortic Valve Calcium.

    Science.gov (United States)

    Whelton, Seamus P; Mauer, Andreas C; Pencina, Karol M; Massaro, Joseph M; D'Agostino, Ralph B; Fox, Caroline S; Hoffmann, Udo; Michos, Erin D; Peloso, Gina M; Dufresne, Line; Engert, James C; Kathiresan, Sekar; Budoff, Matthew; Post, Wendy S; Thanassoulis, George; O'Donnell, Christopher J

    2018-05-15

    It is unknown if lifelong exposure to increased hemodynamic stress from an elevated resting heart rate (HR) may contribute to aortic valve calcium (AVC). We performed multivariate regression analyses using data from 1,266 Framingham Heart Study (FHS) Offspring cohort participants and 6,764 Multi-Ethnic Study of Atherosclerosis (MESA) participants. We constructed a genetic risk score (GRS) for HR using summary-level data in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) AVC Consortium to investigate if there was evidence in favor of a causal relation. AVC was present in 39% of FHS Offspring cohort participants and in 13% of MESA cohort participants. In multivariate adjusted models, participants in the highest resting HR quartiles had significantly greater prevalence of AVC, with a prevalence ratio of 1.19 (95% confidence interval [CI] 0.99 to 1.44) for the FHS Offspring cohort and 1.32 (95% CI 1.12 to 1.63) for the MESA cohort, compared with those in the lowest quartile. There was a similar increase in the prevalence of AVC per standard deviation increase in resting HR in both FHS Offspring (prevalence ratio 1.08, 95% CI 1.01 to 1.15) and MESA (1.10, 95% CI 1.03 to 1.17). In contrast with these observational findings, a HR associated GRS was not significantly associated with AVC. Although our observational analysis indicates that a higher resting HR is associated with AVC, our genetic results do not support a causal relation. Unmeasured environmental and/or lifestyle factors associated with both increased resting HR and AVC that are not fully explained by covariates in our observational models may account for the association between resting HR and AVC. Copyright © 2018. Published by Elsevier Inc.

  6. A genetic risk score is associated with polycystic ovary syndrome-related traits.

    Science.gov (United States)

    Lee, Hyejin; Oh, Jee-Young; Sung, Yeon-Ah; Chung, Hye Won

    2016-01-01

    Is a genetic risk score (GRS) associated with polycystic ovary syndrome (PCOS) and its related clinical features? The GRS calculated by genome-wide association studies (GWASs) was significantly associated with PCOS status and its related clinical features. PCOS is a heterogeneous disorder and is characterized by oligomenorrhea, hyperandrogenism and polycystic ovary morphology. Although recent GWASs have identified multiple genes associated with PCOS, a comprehensive genetic risk study of these loci with PCOS and related traits (e.g. free testosterone, menstruation number/year and ovarian morphology) has not been performed. This study was designed as a cross-sectional case-control study. We recruited 862 women with PCOS and 860 controls. Women with PCOS were divided into four subgroups: (1) oligomenorrhea + hyperandrogenism + polycystic ovary, (2) oligomenorrhea + hyperandrogenism, (3) oligomenorrhea + polycystic ovary and (4) hyperandrogenism + polycystic ovary. Genomic DNA was genotyped for the PCOS susceptibility loci using the HumanOmni1-Quad v1 array. Venous blood was drawn in the early follicular phase to measure baseline metabolic and hormonal parameters. A GRS was calculated by summing the number of risk alleles from 11 single-nucleotide polymorphisms (SNPs) that were identified in previous GWASs on PCOS. A weighted GRS (wGRS) was calculated by multiplying the number of risk alleles for each SNP by its estimated effect (beta) obtained from the association analysis. The GRS was higher in women with PCOS than in controls (8.8 versus 8.2, P treatment approaches, which could potentially improve health outcomes. None of the authors have any conflicts of interest to declare. No funding was obtained for the study. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Chromosome 15q25.1 genetic markers associated with level of response to alcohol in humans.

    Science.gov (United States)

    Joslyn, Geoff; Brush, Gerry; Robertson, Margaret; Smith, Tom L; Kalmijn, Jelger; Schuckit, Marc; White, Raymond L

    2008-12-23

    As with other genetically complex common psychiatric and medical conditions, multiple genetic and environmental components contribute to alcohol use disorders (AUDs), which can confound attempts to identify genetic components. Intermediate phenotypes are often more closely correlated with underlying biology and have often proven invaluable in genetic studies. Level of response (LR) to alcohol is an intermediate phenotype for AUDs, and individuals with a low LR are at increased risk. A high rate of concurrent alcohol and nicotine use and dependence suggests that these conditions may share biochemical and genetic mechanisms. Genetic association studies indicate that a genetic locus, which includes the CHRNA5-CHRNA3-CHRNB4 gene cluster, plays a role in nicotine consumption and dependence. Genetic association with alcohol dependence was also recently shown. We show here that two of the markers from the nicotine studies also show an association (multiple testing corrected P a sample of 367 siblings. Additional markers in the region were analyzed and shown to be located in a 250-kb expanse of high linkage disequilibrium containing three additional genes. These findings indicate that LR intermediate phenotypes have utility in genetic approaches to AUDs and will prove valuable in the identification of other genetic loci conferring susceptibility to AUDs.

  8. Genetic Variations Associated with Vitamin A Status and Vitamin A Bioavailability

    Directory of Open Access Journals (Sweden)

    Patrick Borel

    2017-03-01

    Full Text Available Blood concentration of vitamin A (VA, which is present as different molecules, i.e., mainly retinol and provitamin A carotenoids, plus retinyl esters in the postprandial period after a VA-containing meal, is affected by numerous factors: dietary VA intake, VA absorption efficiency, efficiency of provitamin A carotenoid conversion to VA, VA tissue uptake, etc. Most of these factors are in turn modulated by genetic variations in genes encoding proteins involved in VA metabolism. Genome-wide association studies (GWAS and candidate gene association studies have identified single nucleotide polymorphisms (SNPs associated with blood concentrations of retinol and β-carotene, as well as with β-carotene bioavailability. These genetic variations likely explain, at least in part, interindividual variability in VA status and in VA bioavailability. However, much work remains to be done to identify all of the SNPs involved in VA status and bioavailability and to assess the possible involvement of other kinds of genetic variations, e.g., copy number variants and insertions/deletions, in these phenotypes. Yet, the potential usefulness of this area of research is exciting regarding the proposition of more personalized dietary recommendations in VA, particularly in populations at risk of VA deficiency.

  9. First successful trial of preimplantation genetic diagnosis for pantothenate kinase-associated neurodegeneration.

    Science.gov (United States)

    Trachoo, Objoon; Satirapod, Chonthicha; Panthan, Bhakbhoom; Sukprasert, Matchuporn; Charoenyingwattana, Angkana; Chantratita, Wasun; Choktanasiri, Wicharn; Hongeng, Suradej

    2017-01-01

    We aim to present a case of a healthy infant born after intracytoplasmic sperm injection-in vitro fertilization (ICSI-IVF) with a preimplantation genetic diagnosis (PGD) for pantothenate kinase-associated neurodegeneration (PKAN) due to PANK2 mutation. ICSI-IVF was performed on a Thai couple, 34-year-old female and 33-year-old male, with a family history of PKAN in their first child. Following fertilization, each of the embryos were biopsied in the cleavage stage and subsequently processed for whole-genome amplification. Genetic status of the embryos was diagnosed by linkage analysis and direct mutation testing using primer extension-based mini-sequencing. Comprehensive chromosomal aneuploidy screening was performed using a next-generation sequencing-based strategy. Only a single cycle of ICSI-IVF was processed. There were seven embryos from this couple-two were likely affected, three were likely carriers, one was likely unaffected, and one failed in target genome amplification. Aneuploidy screening was performed before making a decision on embryo transfer, and only one unaffected embryo passed the screening. That embryo was transferred in a frozen thawed cycle, and the pregnancy was successful. The diagnosis was confirmed by amniocentesis, which presented with a result consistent with PGD. At 38 weeks of gestational age, a healthy male baby was born. Postnatal genetic confirmation was also consistent with PGD and the prenatal results. At the age of 24 months, the baby presented with normal growth and development lacking any neurological symptoms. We report the first successful trial of PGD for PKAN in a developing country using linkage analysis and mini-sequencing in cleavage stage embryos.

  10. Host-associated genetic differentiation in the goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis (Lepidoptera: Gelechiidae).

    Science.gov (United States)

    Nason, John D; Heard, Stephen B; Williams, Frederick R

    2002-07-01

    Careful study of apparently generalist phytophagous insects often reveals that they instead represent complexes of genetically differentiated host races or cryptic species. The goldenrod elliptical-gall moth, Gnorimoschema gallaesolidaginis, attacks two goldenrods in the Solidago canadensis complex: S. altissima and S. gigantea (Asteraceae). We tested for host-associated genetic differentiation in G. gallaesolidaginis via analysis of variation at 12 allozyme loci among larvae collected at six sites in Iowa, Minnesota, and Nebraska. Gnorimoschema gallaesolidaginis from each host are highly polymorphic (3.6-4.7 alleles/locus and expected heterozygosity 0.28-0.38 within site-host combinations). Although there were no fixed differences between larvae from S. altissima and S. gigantea at any site, these represent well differentiated host forms, with 11 of 12 loci showing significantly different allele frequencies between host-associated collections at one or more sites. Host plant has a larger effect on genetic structure among populations than does location (Wright's FST = 0.16 between host forms vs. F(ST) = 0.061 and 0.026 among altissima and gigantea populations, respectively). The estimated F(ST) between host forms suggests that the historical effective rate of gene flow has been low (N(e)m approximately 1.3). Consistent with this historical estimate is the absence of detectable recombinant (hybrid and introgressant between host form) individuals in contemporary populations (none of 431 genotyped individuals). Upper 95% confidence limits for the frequency of recombinant individuals range from 5% to 9%. Host association is tight, but imperfect, with only one likely example of a host mismatch (a larva galling the wrong host species). Our inferences about hybridization and host association are based on new maximum-likelihood methods for estimating frequencies of genealogical classes (in this case, two parental classes, F1 and F2 hybrids, and backcrosses) in a population

  11. Meta-analysis of susceptibility of woody plants to loss of genetic diversity through habitat fragmentation.

    Science.gov (United States)

    Vranckx, Guy; Jacquemyn, Hans; Muys, Bart; Honnay, Olivier

    2012-04-01

    Shrubs and trees are assumed less likely to lose genetic variation in response to habitat fragmentation because they have certain life-history characteristics such as long lifespans and extensive pollen flow. To test this assumption, we conducted a meta-analysis with data on 97 woody plant species derived from 98 studies of habitat fragmentation. We measured the weighted response of four different measures of population-level genetic diversity to habitat fragmentation with Hedge's d and Spearman rank correlation. We tested whether the genetic response to habitat fragmentation was mediated by life-history traits (longevity, pollination mode, and seed dispersal vector) and study characteristics (genetic marker and plant material used). For both tests of effect size habitat fragmentation was associated with a substantial decrease in expected heterozygosity, number of alleles, and percentage of polymorphic loci, whereas the population inbreeding coefficient was not associated with these measures. The largest proportion of variation among effect sizes was explained by pollination mechanism and by the age of the tissue (progeny or adult) that was genotyped. Our primary finding was that wind-pollinated trees and shrubs appeared to be as likely to lose genetic variation as insect-pollinated species, indicating that severe habitat fragmentation may lead to pollen limitation and limited gene flow. In comparison with results of previous meta-analyses on mainly herbaceous species, we found trees and shrubs were as likely to have negative genetic responses to habitat fragmentation as herbaceous species. We also found that the genetic variation in offspring was generally less than that of adult trees, which is evidence of a genetic extinction debt and probably reflects the genetic diversity of the historical, less-fragmented landscape. ©2011 Society for Conservation Biology.

  12. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.

    KAUST Repository

    Doan, Ryan; Cohen, Noah D; Sawyer, Jason; Ghaffari, Noushin; Johnson, Charlie D; Dindot, Scott V

    2012-01-01

    BACKGROUND: The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. RESULTS: Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse's genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. CONCLUSIONS: This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.

  13. Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.

    KAUST Repository

    Doan, Ryan

    2012-02-17

    BACKGROUND: The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. RESULTS: Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse\\'s genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. CONCLUSIONS: This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.

  14. Pantoea ananatis Genetic Diversity Analysis Reveals Limited Genomic Diversity as Well as Accessory Genes Correlated with Onion Pathogenicity

    Directory of Open Access Journals (Sweden)

    Shaun P. Stice

    2018-02-01

    Full Text Available Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA and repetitive extragenic palindrome repeat (rep-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.

  15. Conserved genetic pathways associated with microphthalmia, anophthalmia, and coloboma.

    Science.gov (United States)

    Reis, Linda M; Semina, Elena V

    2015-06-01

    The human eye is a complex organ whose development requires extraordinary coordination of developmental processes. The conservation of ocular developmental steps in vertebrates suggests possible common genetic mechanisms. Genetic diseases involving the eye represent a leading cause of blindness in children and adults. During the last decades, there has been an exponential increase in genetic studies of ocular disorders. In this review, we summarize current success in identification of genes responsible for microphthalmia, anophthalmia, and coloboma (MAC) phenotypes, which are associated with early defects in embryonic eye development. Studies in animal models for the orthologous genes identified overlapping phenotypes for most factors, confirming the conservation of their function in vertebrate development. These animal models allow for further investigation of the mechanisms of MAC, integration of various identified genes into common developmental pathways and finally, provide an avenue for the development and testing of therapeutic interventions. © 2015 Wiley Periodicals, Inc.

  16. Using the longest significance run to estimate region-specific p-values in genetic association mapping studies

    Directory of Open Access Journals (Sweden)

    Yang Hsin-Chou

    2008-05-01

    Full Text Available Abstract Background Association testing is a powerful tool for identifying disease susceptibility genes underlying complex diseases. Technological advances have yielded a dramatic increase in the density of available genetic markers, necessitating an increase in the number of association tests required for the analysis of disease susceptibility genes. As such, multiple-tests corrections have become a critical issue. However the conventional statistical corrections on locus-specific multiple tests usually result in lower power as the number of markers increases. Alternatively, we propose here the application of the longest significant run (LSR method to estimate a region-specific p-value to provide an index for the most likely candidate region. Results An advantage of the LSR method relative to procedures based on genotypic data is that only p-value data are needed and hence can be applied extensively to different study designs. In this study the proposed LSR method was compared with commonly used methods such as Bonferroni's method and FDR controlling method. We found that while all methods provide good control over false positive rate, LSR has much better power and false discovery rate. In the authentic analysis on psoriasis and asthma disease data, the LSR method successfully identified important candidate regions and replicated the results of previous association studies. Conclusion The proposed LSR method provides an efficient exploratory tool for the analysis of sequences of dense genetic markers. Our results show that the LSR method has better power and lower false discovery rate comparing with the locus-specific multiple tests.

  17. Association Study of Common Genetic Variants and HIV-1 Acquisition in 6,300 Infected Cases and 7,200 Controls

    Science.gov (United States)

    Ripke, Stephan; van den Berg, Leonard; Buchbinder, Susan; Carrington, Mary; Cossarizza, Andrea; Dalmau, Judith; Deeks, Steven G.; Delaneau, Olivier; De Luca, Andrea; Goedert, James J.; Haas, David; Herbeck, Joshua T.; Kathiresan, Sekar; Kirk, Gregory D.; Lambotte, Olivier; Luo, Ma; Mallal, Simon; van Manen, Daniëlle; Martinez-Picado, Javier; Meyer, Laurence; Miro, José M.; Mullins, James I.; Obel, Niels; O'Brien, Stephen J.; Pereyra, Florencia; Plummer, Francis A.; Poli, Guido; Qi, Ying; Rucart, Pierre; Sandhu, Manj S.; Shea, Patrick R.; Schuitemaker, Hanneke; Theodorou, Ioannis; Vannberg, Fredrik; Veldink, Jan; Walker, Bruce D.; Weintrob, Amy; Winkler, Cheryl A.; Wolinsky, Steven; Telenti, Amalio; Goldstein, David B.; de Bakker, Paul I. W.; Zagury, Jean-François; Fellay, Jacques

    2013-01-01

    Multiple genome-wide association studies (GWAS) have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP) data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1). After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels) for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6×10−11). However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity). Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size. PMID:23935489

  18. Association study of common genetic variants and HIV-1 acquisition in 6,300 infected cases and 7,200 controls.

    Directory of Open Access Journals (Sweden)

    Paul J McLaren

    Full Text Available Multiple genome-wide association studies (GWAS have been performed in HIV-1 infected individuals, identifying common genetic influences on viral control and disease course. Similarly, common genetic correlates of acquisition of HIV-1 after exposure have been interrogated using GWAS, although in generally small samples. Under the auspices of the International Collaboration for the Genomics of HIV, we have combined the genome-wide single nucleotide polymorphism (SNP data collected by 25 cohorts, studies, or institutions on HIV-1 infected individuals and compared them to carefully matched population-level data sets (a list of all collaborators appears in Note S1 in Text S1. After imputation using the 1,000 Genomes Project reference panel, we tested approximately 8 million common DNA variants (SNPs and indels for association with HIV-1 acquisition in 6,334 infected patients and 7,247 population samples of European ancestry. Initial association testing identified the SNP rs4418214, the C allele of which is known to tag the HLA-B*57:01 and B*27:05 alleles, as genome-wide significant (p = 3.6 × 10⁻¹¹. However, restricting analysis to individuals with a known date of seroconversion suggested that this association was due to the frailty bias in studies of lethal diseases. Further analyses including testing recessive genetic models, testing for bulk effects of non-genome-wide significant variants, stratifying by sexual or parenteral transmission risk and testing previously reported associations showed no evidence for genetic influence on HIV-1 acquisition (with the exception of CCR5Δ32 homozygosity. Thus, these data suggest that genetic influences on HIV acquisition are either rare or have smaller effects than can be detected by this sample size.

  19. Clinical and genetic factors associated with suicide in mood disorder patients.

    Science.gov (United States)

    Antypa, Niki; Souery, Daniel; Tomasini, Mario; Albani, Diego; Fusco, Federica; Mendlewicz, Julien; Serretti, Alessandro

    2016-03-01

    Suicidality is a continuum ranging from ideation to attempted and completed suicide, with a complex etiology involving both genetic heritability and environmental factors. The majority of suicide events occur in the context of psychiatric conditions, preeminently major depression and bipolar disorder. The present study investigates clinical factors associated with suicide in a sample of 553 mood disorder patients, recruited within the 'Psy Pluriel' center, Centre Européen de Psychologie Médicale, and the Department of Psychiatry of Erasme Hospital (Brussels). Furthermore, genetic association analyses examining polymorphisms within COMT, BDNF, MAPK1 and CREB1 genes were performed in a subsample of 259 bipolar patients. The presence or absence of a previous suicide attempt and of current suicide risk were assessed. A positive association with suicide attempt was reported for younger patients, females, lower educated, smokers, those with higher scores on depressive symptoms and higher functional disability and those with anxiety comorbidity and familial history of suicidality in first- and second-degree relatives. Anxiety disorder comorbidity was the stronger predictor of current suicide risk. No associations were found with polymorphisms within COMT and BDNF genes, whereas significant associations were found with variations in rs13515 (MAPK1) and rs6740584 (CREB1) polymorphisms. From a clinical perspective, our study proposes several clinical characteristics, such as increased depressive symptomatology, anxiety comorbidity, functional disability and family history of suicidality, as correlates associated with suicide. Genetic risk variants in MAPK1 and CREB1 genes might be involved in a dysregulation of inflammatory and neuroplasticity pathways and are worthy of future investigation.

  20. Meta-Analysis of the Association between Mir-196a-2 Polymorphism and Cancer Susceptibility

    International Nuclear Information System (INIS)

    Zhang, Huan; Su, Yu-liang; Yu, Herbert; Qian, Bi-yun

    2012-01-01

    MicroRNA plays a vital role in gene expression, and microRNA dysregulation is involved in carcinogenesis. The miR-196a-2 polymorphism rs11614913 is reportedly associated with cancer susceptibility. This meta-analysis was performed to assess the overall association of miR-196a-2 with cancer risk. A total of 27 independent case-control studies involving 10,435 cases and 12,075 controls were analyzed for the rs11614913 polymorphism. A significant association was found between rs11614913 polymorphism and cancer risk in four genetic models (CT vs. TT, OR=1.15, 95%CI=1.05–1.27; CC vs. TT, OR=1.23, 95%CI=1.08–1.39; Dominant model, OR=1.17, 95%CI=1.06–1.30; Additive model, OR=1.08, 95%CI=1.01–1.14). In the subgroup analysis of different tumor types, the C allele was associated with increased risk of lung, breast, and colorectal cancer, but not with liver, gastric, or esophageal cancer. In the subgroup analysis by ethnicity, a significantly increased risk of cancer was found among Asians in all genetic models, but no associations were found in the Caucasian subgroup. The meta-analysis demonstrated that the miR-196a-2 polymorphism is associated with cancer susceptibility, especially lung cancer, colorectal cancer, and breast cancer among Asian populations

  1. Genetic Variability, Correlation Studies and Path Coefficient Analysis in Gladiolus Alatus Cultivars

    International Nuclear Information System (INIS)

    Ramzan, A.; Nawab, N. N.; Tariq, M. S.; Ikram, S.; Ahad, A.

    2016-01-01

    A study was undertaken to find out the estimates of genetic variability, genetic parameters and character association among different flower traits between three gladiolus cultivars viz: Sancerre, Fado and Advanced Red. The experiment was repeated three times by using RCBD (Randomized complete block design) at Department of Horticulture, PMAS-UAAR, Rawalpindi. The highest genotypic coefficient variation (GCV) and phenotypic coefficient variation (PCV) magnitude was observed for spike length (16.00) and number of florets per spike (14.84) followed by number of leaves (10.00). Among the traits studied the highest heritability estimates was recorded in spike length (99.5 percent) followed by number of florets/spike (99.6 percent) and lowest in plant height (98.2 percent). The genetic advance as percent of mean was ranged from 2.8 percent to 24.75 percent. Genetic advance was highest for floret breadth (24.75 percent) and lowest for plant height (2.8 percent). High heritability combined with high genetic advance was noticed for number of florets per spike, spike length and floret breadth indicating additive gene action which suggested that improvement of these traits would be effective for further selection of superior genotypes. Plant height and number of florets per spike showed highly positive and significant association with spike length, number of leaves, leaf area, floret length and floret breadth while, spike length registered positive and significant correlation with number of leaves and floret breadth. The path coefficient analysis based on spike length, as responsible variable exposed that all of the traits exerted direct positive effect except leaf area and floret length. Spike length imparted maximum positive direct effect on the number of florets per spike. Hence, spike length and number of florets per spike may be considered for further improvement. However, Floret length and floret breadth may also be considered as a criterion for selection. (author)

  2. Insight into the genetic components of community genetics: QTL mapping of insect association in a fast-growing forest tree.

    Directory of Open Access Journals (Sweden)

    Jennifer DeWoody

    Full Text Available Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001 but negatively correlated with skeletonizer damage (P<0.01 in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast

  3. Extended genetic analysis of Brazilian isolates of Bacillus cereus and Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Viviane Zahner

    2013-02-01

    Full Text Available Multiple locus sequence typing (MLST was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR. Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap, encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.

  4. How American Nurses Association Code of Ethics informs genetic/genomic nursing.

    Science.gov (United States)

    Tluczek, Audrey; Twal, Marie E; Beamer, Laura Curr; Burton, Candace W; Darmofal, Leslie; Kracun, Mary; Zanni, Karen L; Turner, Martha

    2018-01-01

    Members of the Ethics and Public Policy Committee of the International Society of Nurses in Genetics prepared this article to assist nurses in interpreting the American Nurses Association (2015) Code of Ethics for Nurses with Interpretive Statements (Code) within the context of genetics/genomics. The Code explicates the nursing profession's norms and responsibilities in managing ethical issues. The nearly ubiquitous application of genetic/genomic technologies in healthcare poses unique ethical challenges for nursing. Therefore, authors conducted literature searches that drew from various professional resources to elucidate implications of the code in genetic/genomic nursing practice, education, research, and public policy. We contend that the revised Code coupled with the application of genomic technologies to healthcare creates moral obligations for nurses to continually refresh their knowledge and capacities to translate genetic/genomic research into evidence-based practice, assure the ethical conduct of scientific inquiry, and continually develop or revise national/international guidelines that protect the rights of individuals and populations within the context of genetics/genomics. Thus, nurses have an ethical responsibility to remain knowledgeable about advances in genetics/genomics and incorporate emergent evidence into their work.

  5. Power Estimation for Gene-Longevity Association Analysis Using Concordant Twins

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, Jing Hua; Kruse, Torben A

    2014-01-01

    Statistical power is one of the major concerns in genetic association studies. Related individuals such as twins are valuable samples for genetic studies because of their genetic relatedness. Phenotype similarity in twin pairs provides evidence of genetic control over the phenotype variation...... in a population. The genetic association study on human longevity, a complex trait that is under control of both genetic and environmental factors, has been confronted by the small sample sizes of longevity subjects which limit statistical power. Twin pairs concordant for longevity have increased probability...... an approximate of 2- to 3-fold increase in sample sizes needed for longevity cutoff at age 90 as compared with that at age 95. Overall, our results showed high value of twins in genetic association studies on human longevity....

  6. Genetic diversity of the Acropora-associated hydrozoans: new insight from the Red Sea

    KAUST Repository

    Maggioni, Davide

    2017-01-21

    To date, four nominal species and several other unidentified species of Zanclea hydrozoans are known to live symbiotically with scleractinians, and recent surveys reported this association also in the Red Sea. Previous molecular studies showed that each coral genus involved in this association hosts only one species or molecular clade of Zanclea, with the only exception being the genus Acropora, which hosts at least two Zanclea species. Moreover, some of the detected genetic lineages were morphologically undistinguishable in the polyp stage, suggesting the presence of cryptic species. In this study, we investigated the morphology and genetic diversity of Acropora-associated Zanclea specimens collected in previous studies in Egypt and Israel, as well as new samples collected in Saudi Arabia. Based on the current data, all the analysed samples were morphologically identical to Zanclea gallii, a species associated with Acropora corals from the Maldives. However, molecular analyses separated the samples collected in the Red Sea from all other coral-associated hydroids. Therefore, phylogenetic reconstructions, haplotype networks, genetic distance analyses and distribution data allowed us to identify a previously unknown cryptic species of Acropora-associated hydroid, here named Zanclea gallii IIa, following a recently proposed molecular nomenclature.

  7. Genetic diversity and environmental associations of sacsaoul ( Haloxylon ammodendron)

    Science.gov (United States)

    Zhang, Linjing; Zhao, Guifang; Yue, Ming; Pan, Xiaoling

    2003-07-01

    Random amplified polymorphic DNA (RAPD) markers were used to assess levels and patterns of genetic diversity in H. ammodendron (Chenopodiaceae). A total of 117 plants from 6 subpopulations on oasis-desert ecotone was analyzed by 16 arbitrarily chosen primers resulting in highly reproducible RAPD bands. The analysis of molecular variance (AMOVA) with distances among individuals showed that most of the variation (74%) occurred among individuals within subpopulations, which is expected for a crossing organism, and 26% of variation among subpopulations. Estimates of Shannon index and Nei"s index from allele frequencies corroborated AMOVA partitioning in H. ammodendron. UPGMA cluster analyses, based on genetic distance, do not revealed grouping of some geographically proximate populations. This is the first report of the partitioning of genetic variability within and between subpopulations of H. ammodendron and provides important baseline data for optimizing sampling strategies and for conserving the genetic resources of this species. The Percentage of polymorphic loci was as high as 96%, presumably being response to oasis-desert ecotone. There were gene flows (Nm=5.38 individuals/generation), based on gene differentiation coefficient (GST was 0.1567) between subpopulations, and strong habitat selection override the gene flow to maintain the subpopulation differentiation. Correlation analyses showed that there was significant relationship between genetic diversity and soil CL ion.

  8. An Adaptive Genetic Association Test Using Double Kernel Machines.

    Science.gov (United States)

    Zhan, Xiang; Epstein, Michael P; Ghosh, Debashis

    2015-10-01

    Recently, gene set-based approaches have become very popular in gene expression profiling studies for assessing how genetic variants are related to disease outcomes. Since most genes are not differentially expressed, existing pathway tests considering all genes within a pathway suffer from considerable noise and power loss. Moreover, for a differentially expressed pathway, it is of interest to select important genes that drive the effect of the pathway. In this article, we propose an adaptive association test using double kernel machines (DKM), which can both select important genes within the pathway as well as test for the overall genetic pathway effect. This DKM procedure first uses the garrote kernel machines (GKM) test for the purposes of subset selection and then the least squares kernel machine (LSKM) test for testing the effect of the subset of genes. An appealing feature of the kernel machine framework is that it can provide a flexible and unified method for multi-dimensional modeling of the genetic pathway effect allowing for both parametric and nonparametric components. This DKM approach is illustrated with application to simulated data as well as to data from a neuroimaging genetics study.

  9. Shared genetics underlying epidemiological association between endometriosis and ovarian cancer

    DEFF Research Database (Denmark)

    Lu, Yi; Cuellar-Partida, Gabriel; Painter, Jodie N

    2015-01-01

    Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer, including clear cell, low-grade serous and endometrioid carcinomas. We aimed to determine whether the observed associations might be due to shared genetic aetiology. To address...... this, we used two endometriosis datasets genotyped on common arrays with full-genome coverage (3194 cases and 7060 controls) and a large ovarian cancer dataset genotyped on the customized Illumina Infinium iSelect (iCOGS) arrays (10 065 cases and 21 663 controls). Previous work has suggested...... that a large number of genetic variants contribute to endometriosis and ovarian cancer (all histotypes combined) susceptibility. Here, using the iCOGS data, we confirmed polygenic architecture for most histotypes of ovarian cancer. This led us to evaluate if the polygenic effects are shared across diseases. We...

  10. Genetic Evaluation of Natural Populations of the Endangered Conifer Thuja koraiensis Using Microsatellite Markers by Restriction-Associated DNA Sequencing

    Directory of Open Access Journals (Sweden)

    Lu Hou

    2018-04-01

    Full Text Available Thuja koraiensis Nakai is an endangered conifer of high economic and ecological value in Jilin Province, China. However, studies on its population structure and conservation genetics have been limited by the lack of genomic data. Here, 37,761 microsatellites (simple sequence repeat, SSR were detected based on 875,792 de novo-assembled contigs using a restriction-associated DNA (RAD approach. Among these SSRs, 300 were randomly selected to test for polymorphisms and 96 obtained loci were able to amplify a fragment of expected size. Twelve polymorphic SSR markers were developed to analyze the genetic diversity and population structure of three natural populations. High genetic diversity (mean NA = 5.481, HE = 0.548 and moderate population differentiation (pairwise Fst = 0.048–0.078, Nm = 2.940–4.958 were found in this species. Molecular variance analysis suggested that most of the variation (83% existed within populations. Combining the results of STRUCTURE, principal coordinate, and neighbor-joining analysis, the 232 individuals were divided into three genetic clusters that generally correlated with their geographical distributions. Finally, appropriate conservation strategies were proposed to protect this species. This study provides genetic information for the natural resource conservation and utilization of T. koraiensis and will facilitate further studies of the evolution and phylogeography of the species.

  11. Genetic Diversity and Geographic Population Structure of Bovine Neospora caninum Determined by Microsatellite Genotyping Analysis

    Science.gov (United States)

    Regidor-Cerrillo, Javier; Díez-Fuertes, Francisco; García-Culebras, Alicia; Moore, Dadín P.; González-Warleta, Marta; Cuevas, Carmen; Schares, Gereon; Katzer, Frank; Pedraza-Díaz, Susana; Mezo, Mercedes; Ortega-Mora, Luis M.

    2013-01-01

    The cyst-forming protozoan parasite Neospora caninum is one of the main causes of bovine abortion worldwide and is of great economic importance in the cattle industry. Recent studies have revealed extensive genetic variation among N . caninum isolates based on microsatellite sequences (MSs). MSs may be suitable molecular markers for inferring the diversity of parasite populations, molecular epidemiology and the basis for phenotypic variations in N . caninum , which have been poorly defined. In this study, we evaluated nine MS markers using a panel of 11 N . caninum -derived reference isolates from around the world and 96 N . caninum bovine clinical samples and one ovine clinical sample collected from four countries on two continents, including Spain, Argentina, Germany and Scotland, over a 10-year period. These markers were used as molecular tools to investigate the genetic diversity, geographic distribution and population structure of N . caninum . Multilocus microsatellite genotyping based on 7 loci demonstrated high levels of genetic diversity in the samples from all of the different countries, with 96 microsatellite multilocus genotypes (MLGs) identified from 108 N . caninum samples. Geographic sub-structuring was present in the country populations according to pairwise F ST. Principal component analysis (PCA) and Neighbor Joining tree topologies also suggested MLG segregation partially associated with geographical origin. An analysis of the MLG relationships, using eBURST, confirmed that the close genetic relationship observed between the Spanish and Argentinean populations may be the result of parasite migration (i.e., the introduction of novel MLGs from Spain to South America) due to cattle movement. The eBURST relationships also revealed genetically different clusters associated with the abortion. The presence of linkage disequilibrium, the co-existence of specific MLGs to individual farms and eBURST MLG relationships suggest a predominant clonal

  12. Genetic association, seasonal infections and autoimmune basis of narcolepsy

    Science.gov (United States)

    Singh, Abinav Kumar; Mahlios, Josh; Mignot, Emmanuel

    2014-01-01

    In recent years, a growing number of potential autoimmune disorders affecting neurons in the central nervous system have been identified, including narcolepsy. Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness with irresistible sleep attacks, cataplexy (sudden bilateral loss of muscle tone), hypnagogic hallucinations, and abnormalities of Rapid Eye Movement sleep. Narcolepsy is generally a sporadic disorder and is caused by the loss of hypocretin (orexin)-producing neurons in the hypothalamus region of the brain. Studies have established that more than 90% of patients have a genetic association with HLA DQB1*06:02. Genome-wide association analysis shows a strong association between narcolepsy and polymorphisms in the TCRα locus and weaker associations within TNFSF4 (also called OX40L), Cathepsin H and the P2RY11-DNMT1 (purinergic receptor subtype P2Y11 to DNMT1, a DNA methytransferase) loci, suggesting an autoimmune basis. Mutations in DNMT1 have also been reported to cause narcolepsy in association with a complex neurological syndrome, suggesting the importance of DNA methylation in the pathology. More recently, narcolepsy was identified in association with seasonal streptococcus, H1N1 infections and following AS03-adjuvanted pH1N1 influenza vaccination in Northern Europe. Potential immunological pathways responsible for the loss of hypocretin producing neurons in these cases may be molecular mimicry or bystander activation. Specific autoantibodies or T cells cross-reactive with hypocretin neurons have not yet been identified, however, thus narcolepsy does not meet Witebsky’s criteria for an autoimmune disease. As the brain is not an easily accessible organ, mechanisms of disease initiation and progression remain a challenge to researchers. PMID:23497937

  13. Event History Analysis in Quantitative Genetics

    DEFF Research Database (Denmark)

    Maia, Rafael Pimentel

    Event history analysis is a clas of statistical methods specially designed to analyze time-to-event characteristics, e.g. the time until death. The aim of the thesis was to present adequate multivariate versions of mixed survival models that properly represent the genetic aspects related to a given...

  14. Epigenome-wide association study of DNA methylation in narcolepsy: an integrated genetic and epigenetic approach.

    Science.gov (United States)

    Shimada, Mihoko; Miyagawa, Taku; Toyoda, Hiromi; Tokunaga, Katsushi; Honda, Makoto

    2018-04-01

    Narcolepsy with cataplexy, which is a hypersomnia characterized by excessive daytime sleepiness and cataplexy, is a multifactorial disease caused by both genetic and environmental factors. Several genetic factors including HLA-DQB1*06:02 have been identified; however, the disease etiology is still unclear. Epigenetic modifications, such as DNA methylation, have been suggested to play an important role in the pathogenesis of complex diseases. Here, we examined DNA methylation profiles of blood samples from narcolepsy and healthy control individuals and performed an epigenome-wide association study (EWAS) to investigate methylation loci associated with narcolepsy. Moreover, data from the EWAS and a previously performed narcolepsy genome-wide association study were integrated to search for methylation loci with causal links to the disease. We found that (1) genes annotated to the top-ranked differentially methylated positions (DMPs) in narcolepsy were associated with pathways of hormone secretion and monocarboxylic acid metabolism. (2) Top-ranked narcolepsy-associated DMPs were significantly more abundant in non-CpG island regions and more than 95 per cent of such sites were hypomethylated in narcolepsy patients. (3) The integrative analysis identified the CCR3 region where both a single methylation site and multiple single-nucleotide polymorphisms were found to be associated with the disease as a candidate region responsible for narcolepsy. The findings of this study suggest the importance of future replication studies, using methylation technologies with wider genome coverage and/or larger number of samples, to confirm and expand on these results.

  15. A genetic epidemiological mega analysis of smoking initiation in adolescents

    NARCIS (Netherlands)

    Maes, H.H.; Prom-Wormley, E.; Eaves, L.J.; Rhee, S.H.; Hewitt, J.K.; Young, S.; Corley, R.; McGue, M.K.; Iacono, W.G.; Legrand, L.; Samek, D.; Murrelle, E.L.; Silberg, J.L.; Miles, D.; Schieken, R.M.; Beunen, G.P.; Thomis, M.; Rose, R.J.; Dick, D.M.; Boomsma, D.I.; Bartels, M.; Vink, J.M.; Lichtenstein, P.; White, V.; Kaprio, J.; Neale, M.C.

    2017-01-01

    Introduction. Previous studies in adolescents were not adequately powered to accurately disentangle genetic and environmental influences on smoking initiation across adolescence. Methods. Mega-analysis of pooled genetically informative data on smoking initiation was performed, with structural

  16. Introns Protect Eukaryotic Genomes from Transcription-Associated Genetic Instability.

    Science.gov (United States)

    Bonnet, Amandine; Grosso, Ana R; Elkaoutari, Abdessamad; Coleno, Emeline; Presle, Adrien; Sridhara, Sreerama C; Janbon, Guilhem; Géli, Vincent; de Almeida, Sérgio F; Palancade, Benoit

    2017-08-17

    Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Genetic variation associated with differential educational attainment in adults has anticipated associations with school performance in children

    NARCIS (Netherlands)

    Ward, M.E.; McMahon, G.; St. Pourcain, B.; Evans, D.M.; Rietveld, C.A.; Benjamin, D.J.; Koellinger, P.D.; Cesarini, D.; Davey Smith, G.; Timpson, N.J.

    2014-01-01

    Genome-wide association study results have yielded evidence for the association of common genetic variants with crude measures of completed educational attainment in adults. Whilst informative, these results do not inform as to the mechanism of these effects or their presence at earlier ages and

  18. Parameter determination for quantitative PIXE analysis using genetic algorithms

    International Nuclear Information System (INIS)

    Aspiazu, J.; Belmont-Moreno, E.

    1996-01-01

    For biological and environmental samples, PIXE technique is in particular advantage for elemental analysis, but the quantitative analysis implies accomplishing complex calculations that require the knowledge of more than a dozen parameters. Using a genetic algorithm, the authors give here an account of the procedure to obtain the best values for the parameters necessary to fit the efficiency for a X-ray detector. The values for some variables involved in quantitative PIXE analysis, were manipulated in a similar way as the genetic information is treated in a biological process. The authors carried out the algorithm until they reproduce, within the confidence interval, the elemental concentrations corresponding to a reference material

  19. Unraveling the genetic etiology of adult antisocial behavior: a genome-wide association study.

    Directory of Open Access Journals (Sweden)

    Jorim J Tielbeek

    Full Text Available Crime poses a major burden for society. The heterogeneous nature of criminal behavior makes it difficult to unravel its causes. Relatively little research has been conducted on the genetic influences of criminal behavior. The few twin and adoption studies that have been undertaken suggest that about half of the variance in antisocial behavior can be explained by genetic factors. In order to identify the specific common genetic variants underlying this behavior, we conduct the first genome-wide association study (GWAS on adult antisocial behavior. Our sample comprised a community sample of 4816 individuals who had completed a self-report questionnaire. No genetic polymorphisms reached genome-wide significance for association with adult antisocial behavior. In addition, none of the traditional candidate genes can be confirmed in our study. While not genome-wide significant, the gene with the strongest association (p-value = 8.7×10(-5 was DYRK1A, a gene previously related to abnormal brain development and mental retardation. Future studies should use larger, more homogeneous samples to disentangle the etiology of antisocial behavior. Biosocial criminological research allows a more empirically grounded understanding of criminal behavior, which could ultimately inform and improve current treatment strategies.

  20. Longitudinal Analysis of Genetic Susceptibility and BMI Throughout Adult Life.

    Science.gov (United States)

    Song, Mingyang; Zheng, Yan; Qi, Lu; Hu, Frank B; Chan, Andrew T; Giovannucci, Edward L

    2018-02-01

    Little is known about the genetic influence on BMI trajectory throughout adulthood. We created a genetic risk score (GRS) comprising 97 adult BMI-associated variants among 9,971 women and 6,405 men of European ancestry. Serial measures of BMI were assessed from 18 (women) or 21 (men) years to 85 years of age. We also examined BMI change in early (from 18 or 21 to 45 years of age), middle (from 45 to 65 years of age), and late adulthood (from 65 to 80 years of age). GRS was positively associated with BMI across all ages, with stronger associations in women than in men. The associations increased from early to middle adulthood, peaked at 45 years of age in men and at 60 years of age in women (0.91 and 1.35 kg/m 2 per 10-allele increment, respectively) and subsequently declined in late adulthood. For women, each 10-allele increment in the GRS was associated with an average BMI gain of 0.54 kg/m 2 in early adulthood, whereas no statistically significant association was found for BMI change in middle or late adulthood or for BMI change in any life period in men. Our findings indicate that genetic predisposition exerts a persistent effect on adiposity throughout adult life and increases early adulthood weight gain in women. © 2017 by the American Diabetes Association.

  1. Genetic analysis of Myanmar Vigna species in responses to salt ...

    African Journals Online (AJOL)

    Genetic analysis of Myanmar Vigna species in responses to salt stress at the ... of reduction was highly dependent on different genotypes and salinity levels. ... the mechanism of salt tolerance and for the provision of genetic resources for ...

  2. Genetic polymorphism of beta-casein gene and its associations with milk traits in Holstein-Friesian cows

    Directory of Open Access Journals (Sweden)

    Teodor Bugeac

    2015-05-01

    Full Text Available In animal breeding finding and using effective genetic markers for improving important traits it is a continuous challenge. In this respect, several genetic markers were associated in cattle with increased milk production or a better milk quality. This proved to be a useful tool for improving certain traits by selecting individuals carriers of allelic variants that have an effect on a desirable trait. In particular, positive associations between certain alleles found at the milk protein loci with some milk production traits convincingly demonstrated in several cattle breeds. Although, in some cases the results obtained in various studies were not in agreement and varied between breeds or populations. Therefore the objective of this study was to establish associations (if any between alleles found at the beta-casein (CSN2 locus and some milk production traits (milk yield and fat, protein, casein and lactose content in a Holstein-Friesian population reared in Romania. Genetic variants at CSN2 locus were identified by isoelectric focusing (IEF of milk samples. In order to determine milk composition the samples were analysed with MilkoScan FT 6000. For the statistical analysis of data SPSS v.19 for Windows was used. At the CSN2 locus four alleles and seven genotypes were identified in the analyzed cattle population. The cows carriers of CSN2 A2 allele produced the highest milk yield and the highest milk protein content, this result being in agreement with other previous studies.

  3. Association of HSPA1B rs6457452 Genetic Variant with Idiopathic Male Infertility

    Directory of Open Access Journals (Sweden)

    Elahe Kohan

    2017-11-01

    Full Text Available Abstract Background: Male infertility is a multifactorial disease resulting from the interaction between the genetic and environmental factors. Spermatogenic Failure accounts for more than half of male infertility cases. Heat shock proteins (HSPs are the molecular chaperones that are involved in different developmental stages of spermatogenesis. The current study was planned to investigate the role of HSPA1B rs6457452 genetic variants in male infertility. Material and Methods: This case control study was conducted on 516 subjects consisted of 308 patients with idiopathic male infertility and 208 control subjects. After DNA extraction from peripheral blood, genotype determination was done by Tetra-ARMS PCR method. Logistic regression analysis was used to estimate the association between the polymorphism and male infertility. Results: A significant difference was observed in genotype distributions between cases and controls. Results showed individuals with TC (OR=1.552, 95%CI: 1.032-2.334, p=0.035 and TT (OR=2.746, 95%CI: 1.153-6.545, p=0.023 genotype had an increased risk of male infertility. Also, there was a significant association between T allele (OR=1.695, 95%CI: 1.220-2.355, p<0.001 and male infertility. Conclusion: This study showed for the first time that HSPA1B rs6457452 polymorphism is associated with infertility risk in Iranian men and the T allele may act as a dominant allele for increasing the risk of male infertility.

  4. Is an Early Age at Illness Onset in Schizophrenia Associated With Increased Genetic Susceptibility?

    DEFF Research Database (Denmark)

    Hilker, Rikke; Helenius, Dorte; Fagerlund, Birgitte

    2017-01-01

    with schizophrenia spectrum) and a subsample of N = 448 (affected with schizophrenia). Survival analysis was applied to investigate the effect of age at illness onset. Findings We found that early age at illness onset compared to later onset in the first diagnosed twin can be considered a major risk factor......Background Early age at illness onset has been viewed as an important liability marker for schizophrenia, which may be associated with an increased genetic vulnerability. A twin approach can be valuable, because it allows for the investigation of specific illness markers in individuals...... with a shared genetic background. Methods We linked nationwide registers to identify a cohort of twin pairs born in Denmark from 1951 to 2000 (N = 31,524 pairs), where one or both twins had a diagnosis in the schizophrenia spectrum. We defined two groups consisting of; N = 788 twin pairs (affected...

  5. Genetic analysis for grain quality traits in pakistani wheat varieties

    International Nuclear Information System (INIS)

    Minhas, N.M.; Ajmal, S.U.; Iqbal, Z.; Munir, M.

    2014-01-01

    A set of eight parental diallel involving seven commercial wheat cultivars and one breeding line was made to investigate the nature of gene action determining inheritance pattern of grain quality characters. Highly significant differences were observed among the genotypes for 1000 grain weight, protein content, wet gluten and lysine content. Adequacy tests were employed to estimate the fitness of data sets to additive dominance model. Both the tests i.e. analysis of uniformity of Wr, Vr and joint regression analysis validated the data of these traits for genetic analysis. Gene actions for grain quality traits were ascertained following Hayman's analysis of variance. Results of the genetic analysis revealed that both additive and dominance genetic components were involved in the manifestation of characters under study. However, additive gene effects were more pronounced in the genetic control of these traits. Non significance of b1, b2 and b3 values revealed the absence of directional dominance, symmetrical distribution of genes among the parental lines and absence of specific genes action respectively in all the traits. Maternal effects were also noted in 1000 grain weight, protein content and wet gluten percentage. It is concluded that additive effects are crucial in the expression of grain quality characters of wheat in germplasm under study and single plant selection may be recommended in segregating generations for effective improvement in these characters. (author)

  6. Influence of genetic variants on toxicity to anti-tubercular agents: a systematic review and meta-analysis (protocol).

    Science.gov (United States)

    Richardson, Marty; Kirkham, Jamie; Dwan, Kerry; Sloan, Derek; Davies, Geraint; Jorgensen, Andrea

    2017-07-13

    Tuberculosis patients receiving anti-tuberculosis treatment may experience serious adverse drug reactions, such as hepatotoxicity. Genetic risk factors, such as polymorphisms of the NAT2, CYP2E1 and GSTM1 genes, may increase the risk of experiencing such toxicity events. Many pharmacogenetic studies have investigated the association between genetic variants and anti-tuberculosis drug-related toxicity events, and several meta-analyses have synthesised data from these studies, although conclusions from these meta-analyses are conflicting. Many meta-analyses also have serious methodological limitations, such as applying restrictive inclusion criteria, or not assessing the quality of included studies. Most also only consider hepatotoxicity outcomes and specific genetic variants. The purpose of this systematic review and meta-analysis is to give a comprehensive evaluation of the evidence base for associations between any genetic variant and anti-tuberculosis drug-related toxicity. We will search for studies in MEDLINE, EMBASE, BIOSIS and Web of Science. We will also hand search reference lists from relevant studies and contact experts in the field. We will include cohort studies, case-control studies and randomised controlled trials that recruited patients with tuberculosis who were either already established on anti-tuberculosis treatment or were commencing treatment and who were genotyped to investigate the effect of genetic variants on any anti-tuberculosis drug-related toxicity outcome. One author will screen abstracts to identify potentially relevant studies and will then obtain the full text for each potentially relevant study in order to assess eligibility. At each of these stages, a second author will independently screen/assess 10% of studies. Two authors will independently extract data and assess the quality of studies using a pre-piloted data extraction form. If appropriate, we will pool estimates of effect for each genotype on each outcome using meta

  7. Genetic determinants of cardiometabolic risk: a proposed model for phenotype association and interaction.

    Science.gov (United States)

    Blackett, Piers R; Sanghera, Dharambir K

    2013-01-01

    This review provides a translational and unifying summary of metabolic syndrome genetics and highlights evidence that genetic studies are starting to unravel and untangle origins of the complex and challenging cluster of disease phenotypes. The associated genes effectively express in the brain, liver, kidney, arterial endothelium, adipocytes, myocytes, and β cells. Progression of syndrome traits has been associated with ectopic lipid accumulation in the arterial wall, visceral adipocytes, myocytes, and liver. Thus, it follows that the genetics of dyslipidemia, obesity, and nonalcoholic fatty liver disease are central in triggering progression of the syndrome to overt expression of disease traits and have become a key focus of interest for early detection and for designing prevention and treatments. To support the "birds' eye view" approach, we provide a road-map depicting commonality and interrelationships between the traits and their genetic and environmental determinants based on known risk factors, metabolic pathways, pharmacologic targets, treatment responses, gene networks, pleiotropy, and association with circadian rhythm. Although only a small portion of the known heritability is accounted for and there is insufficient support for clinical application of gene-based prediction models, there is direction and encouraging progress in a rapidly moving field that is beginning to show clinical relevance. Copyright © 2013 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  8. Genetic diversity analysis in the Hypericum perforatum populations ...

    African Journals Online (AJOL)

    user

    2014-01-01

    Jan 1, 2014 ... 2Cancer Genetics Lab, Department of Biochemistry, Maulana Azad Medical College and Associated ... sciatica and depression (Ghasemi et al., 2013; Barnes et .... environmental factors for each sampling site were also.

  9. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    KAUST Repository

    Hoehndorf, Robert

    2015-06-08

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  10. Analysis of the human diseasome using phenotype similarity between common, genetic, and infectious diseases

    Science.gov (United States)

    Hoehndorf, Robert; Schofield, Paul N.; Gkoutos, Georgios V.

    2015-06-01

    Phenotypes are the observable characteristics of an organism arising from its response to the environment. Phenotypes associated with engineered and natural genetic variation are widely recorded using phenotype ontologies in model organisms, as are signs and symptoms of human Mendelian diseases in databases such as OMIM and Orphanet. Exploiting these resources, several computational methods have been developed for integration and analysis of phenotype data to identify the genetic etiology of diseases or suggest plausible interventions. A similar resource would be highly useful not only for rare and Mendelian diseases, but also for common, complex and infectious diseases. We apply a semantic text-mining approach to identify the phenotypes (signs and symptoms) associated with over 6,000 diseases. We evaluate our text-mined phenotypes by demonstrating that they can correctly identify known disease-associated genes in mice and humans with high accuracy. Using a phenotypic similarity measure, we generate a human disease network in which diseases that have similar signs and symptoms cluster together, and we use this network to identify closely related diseases based on common etiological, anatomical as well as physiological underpinnings.

  11. Assembly of inflammation-related genes for pathway-focused genetic analysis.

    Directory of Open Access Journals (Sweden)

    Matthew J Loza

    2007-10-01

    Full Text Available Recent identifications of associations between novel variants in inflammation-related genes and several common diseases emphasize the need for systematic evaluations of these genes in disease susceptibility. Considering that many genes are involved in the complex inflammation responses and many genetic variants in these genes have the potential to alter the functions and expression of these genes, we assembled a list of key inflammation-related genes to facilitate the identification of genetic associations of diseases with an inflammation-related etiology. We first reviewed various phases of inflammation responses, including the development of immune cells, sensing of danger, influx of cells to sites of insult, activation and functional responses of immune and non-immune cells, and resolution of the immune response. Assisted by the Ingenuity Pathway Analysis, we then identified 17 functional sub-pathways that are involved in one or multiple phases. This organization would greatly increase the chance of detecting gene-gene interactions by hierarchical clustering of genes with their functional closeness in a pathway. Finally, as an example application, we have developed tagging single nucleotide polymorphism (tSNP arrays for populations of European and African descent to capture all the common variants of these key inflammation-related genes. Assays of these tSNPs have been designed and assembled into two Affymetrix ParAllele customized chips, one each for European (12,011 SNPs and African (21,542 SNPs populations. These tSNPs have greater coverage for these inflammation-related genes compared to the existing genome-wide arrays, particularly in the African population. These tSNP arrays can facilitate systematic evaluation of inflammation pathways in disease susceptibility. For additional applications, other genotyping platforms could also be employed. For existing genome-wide association data, this list of key inflammation-related genes and

  12. Genetic dissection of memory for associative and non-associative learning in Caenorhabditis elegans.

    Science.gov (United States)

    Lau, H L; Timbers, T A; Mahmoud, R; Rankin, C H

    2013-03-01

    The distinction between non-associative and associative forms of learning has historically been based on the behavioral training paradigm. Through discovering the molecular mechanisms that mediate learning, we can develop a deeper understanding of the relationships between different forms of learning. Here, we genetically dissect short- and long-term memory for a non-associative form of learning, habituation and an associative form of learning, context conditioning for habituation, in the nematode Caenorhabditis elegans. In short-term chemosensory context conditioning for habituation, worms trained and tested in the presence of either a taste (sodium acetate) or smell (diacetyl) context cue show greater retention of habituation to tap stimuli when compared with animals trained and tested without a salient cue. Long-term memory for olfactory context conditioning was observed 24 h after a training procedure that does not normally induce 24 h memory. Like long-term habituation, this long-term memory was dependent on the transcription factor cyclic AMP-response element-binding protein. Worms with mutations in glr-1 [a non-N-methyl-d-aspartate (NMDA)-type glutamate receptor subunit] showed short-term but not long-term habituation or short- or long-term context conditioning. Worms with mutations in nmr-1 (an NMDA-receptor subunit) showed normal short- and long-term memory for habituation but did not show either short- or long-term context conditioning. Rescue of nmr-1 in the RIM interneurons rescued short- and long-term olfactory context conditioning leading to the hypothesis that these interneurons function to integrate information from chemosensory and mechanosensory systems for associative learning. © 2012 The Authors. Genes, Brain and Behavior © 2012 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.

  13. Efficient replication of over 180 genetic associations with self-reported medical data.

    Science.gov (United States)

    Tung, Joyce Y; Do, Chuong B; Hinds, David A; Kiefer, Amy K; Macpherson, J Michael; Chowdry, Arnab B; Francke, Uta; Naughton, Brian T; Mountain, Joanna L; Wojcicki, Anne; Eriksson, Nicholas

    2011-01-01

    While the cost and speed of generating genomic data have come down dramatically in recent years, the slow pace of collecting medical data for large cohorts continues to hamper genetic research. Here we evaluate a novel online framework for obtaining large amounts of medical information from a recontactable cohort by assessing our ability to replicate genetic associations using these data. Using web-based questionnaires, we gathered self-reported data on 50 medical phenotypes from a generally unselected cohort of over 20,000 genotyped individuals. Of a list of genetic associations curated by NHGRI, we successfully replicated about 75% of the associations that we expected to (based on the number of cases in our cohort and reported odds ratios, and excluding a set of associations with contradictory published evidence). Altogether we replicated over 180 previously reported associations, including many for type 2 diabetes, prostate cancer, cholesterol levels, and multiple sclerosis. We found significant variation across categories of conditions in the percentage of expected associations that we were able to replicate, which may reflect systematic inflation of the effects in some initial reports, or differences across diseases in the likelihood of misdiagnosis or misreport. We also demonstrated that we could improve replication success by taking advantage of our recontactable cohort, offering more in-depth questions to refine self-reported diagnoses. Our data suggest that online collection of self-reported data from a recontactable cohort may be a viable method for both broad and deep phenotyping in large populations.

  14. Association of Genetic Risk for Schizophrenia With Nonparticipation Over Time in a Population-Based Cohort Study.

    Science.gov (United States)

    Martin, Joanna; Tilling, Kate; Hubbard, Leon; Stergiakouli, Evie; Thapar, Anita; Davey Smith, George; O'Donovan, Michael C; Zammit, Stanley

    2016-06-15

    Progress has recently been made in understanding the genetic basis of schizophrenia and other psychiatric disorders. Longitudinal studies are complicated by participant dropout, which could be related to the presence of psychiatric problems and associated genetic risk. We tested whether common genetic variants implicated in schizophrenia were associated with study nonparticipation among 7,867 children and 7,850 mothers from the Avon Longitudinal Study of Parents and Children (ALSPAC; 1991-2007), a longitudinal population cohort study. Higher polygenic risk scores for schizophrenia were consistently associated with noncompletion of questionnaires by study mothers and children and nonattendance at data collection throughout childhood and adolescence (ages 1-15 years). These associations persisted after adjustment for other potential correlates of nonparticipation. Results suggest that persons at higher genetic risk for schizophrenia are likely to be underrepresented in cohort studies, which will underestimate risk of this and related psychiatric, cognitive, and behavioral phenotypes in the population. Statistical power to detect associations with these phenotypes will be reduced, while analyses of schizophrenia-related phenotypes as outcomes may be biased by the nonrandom missingness of these phenotypes, even if multiple imputation is used. Similarly, in complete-case analyses, collider bias may affect associations between genetic risk and other factors associated with missingness. © The Author 2016. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.

  15. Provenance research: investigation of genetic diversity associated with geography

    Science.gov (United States)

    Robert Z. Callaham

    1963-01-01

    Provenance in forestry refers to the population of trees growing at n particular place of origin. Provenance research defines the genetic and environmental components of phenotypic variation associated with geographic source. Information on provenance is important in assuring sources of seed to give well-adapted, productive trees and in directing breeding of...

  16. Genetic data analysis for plant and animal breeding

    Science.gov (United States)

    This book is an advanced textbook covering the application of quantitative genetics theory to analysis of actual data (both trait and DNA marker information) for breeding populations of crops, trees, and animals. Chapter 1 is an introduction to basic software used for trait data analysis. Chapter 2 ...

  17. Genetic diversity patterns of arbuscular mycorrhizal fungi associated with the mycoheterotroph Arachnitis uniflora Phil. (Corsiaceae).

    Science.gov (United States)

    Renny, Mauricio; Acosta, M Cristina; Cofré, Noelia; Domínguez, Laura S; Bidartondo, Martin I; Sérsic, Alicia N

    2017-06-01

    Arachnitis uniflora is a mycoheterotrophic plant that exploits arbuscular mycorrhizal fungi of neighbouring plants. We tested A. uniflora 's specificity towards fungi across its large latitudinal range, as well as the role of historical events and current environmental, geographical and altitudinal variables on fungal genetic diversity. Arachnitis uniflora mycorrhizas were sampled at 25 sites. Fungal phylogenetic relationships were reconstructed, genetic diversity was calculated and the main divergent lineages were dated. Phylogeographical analysis was performed with the main fungal clade. Fungal diversity correlations with environmental factors were investigated. Glomeraceae fungi dominated, with a main clade that likely originated in the Upper Cretaceous and diversified in the Miocene. Two other arbuscular mycorrhizal fungal families not previously known to be targeted by A. uniflora were detected rarely and appear to be facultative associations. High genetic diversity, found in Bolivia and both northern and southern Patagonia, was correlated with temperature, rainfall and soil features. Fungal genetic diversity and its distribution can be explained by the ancient evolutionary history of the target fungi and by micro-scale environmental conditions with a geographical mosaic pattern. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Variable-number-of-tandem-repeats analysis of genetic diversity in Pasteuria ramosa.

    Science.gov (United States)

    Mouton, L; Ebert, D

    2008-05-01

    Variable-number-of-tandem-repeats (VNTR) markers are increasingly being used in population genetic studies of bacteria. They were recently developed for Pasteuria ramosa, an endobacterium that infects Daphnia species. In the present study, we genotyped P. ramosa in 18 infected hosts from the United Kingdom, Belgium, and two lakes in the United States using seven VNTR markers. Two Daphnia species were collected: D. magna and D. dentifera. Six loci showed length polymorphism, with as many as five alleles identified for a single locus. Similarity coefficient calculations showed that the extent of genetic variation between pairs of isolates within populations differed according to the population, but it was always less than the genetic distances among populations. Analysis of the genetic distances performed using principal component analysis revealed strong clustering by location of origin, but not by host Daphnia species. Our study demonstrated that the VNTR markers available for P. ramosa are informative in revealing genetic differences within and among populations and may therefore become an important tool for providing detailed analysis of population genetics and epidemiology.

  19. Overview of Epidemiology, Genetics, Birth Defects, and Chromosome Abnormalities Associated With CDH

    Science.gov (United States)

    Pober, Barbara R.

    2010-01-01

    Congenital diaphragmatic hernia (CDH) is a common and well-studied birth defect. The etiology of most cases remains unknown but increasing evidence points to genetic causation. The data supporting genetic etiologies which are detailed below include the association of CDH with recurring chromosome abnormalities, the existence of CDH-multiplex families, and the co-occurrence of CDH with additional congenital malformations. PMID:17436298

  20. Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (Cervus nippon in Northeast China Using Double-Digest Restriction Site-Associated DNA Sequencing

    Directory of Open Access Journals (Sweden)

    Hengxing Ba

    2017-09-01

    Full Text Available Sika deer are an economically valuable species owing to their use in traditional Chinese medicine, particularly their velvet antlers. Sika deer in northeast China are mostly farmed in enclosure. Therefore, genetic management of farmed sika deer would benefit from detailed knowledge of their genetic diversity. In this study, we generated over 1.45 billion high-quality paired-end reads (288 Gbp across 42 unrelated individuals using double-digest restriction site-associated DNA sequencing (ddRAD-seq. A total of 96,188 (29.63% putative biallelic SNP loci were identified with an average sequencing depth of 23×. Based on the analysis, we found that the majority of the loci had a deficit of heterozygotes (FIS >0 and low values of Hobs, which could be due to inbreeding and Wahlund effects. We also developed a collection of high-quality SNP probes that will likely be useful in a variety of applications in genotyping for cervid species in the future.

  1. Genome-Wide SNP Discovery and Analysis of Genetic Diversity in Farmed Sika Deer (Cervus nippon) in Northeast China Using Double-Digest Restriction Site-Associated DNA Sequencing.

    Science.gov (United States)

    Ba, Hengxing; Jia, Boyin; Wang, Guiwu; Yang, Yifeng; Kedem, Gilead; Li, Chunyi

    2017-09-07

    Sika deer are an economically valuable species owing to their use in traditional Chinese medicine, particularly their velvet antlers. Sika deer in northeast China are mostly farmed in enclosure. Therefore, genetic management of farmed sika deer would benefit from detailed knowledge of their genetic diversity. In this study, we generated over 1.45 billion high-quality paired-end reads (288 Gbp) across 42 unrelated individuals using double-digest restriction site-associated DNA sequencing (ddRAD-seq). A total of 96,188 (29.63%) putative biallelic SNP loci were identified with an average sequencing depth of 23×. Based on the analysis, we found that the majority of the loci had a deficit of heterozygotes (F IS >0) and low values of H obs , which could be due to inbreeding and Wahlund effects. We also developed a collection of high-quality SNP probes that will likely be useful in a variety of applications in genotyping for cervid species in the future. Copyright © 2017 Ba et al.

  2. Effect of Two Lipoprotein (a-Associated Genetic Variants on Plasminogen Levels and Fibrinolysis

    Directory of Open Access Journals (Sweden)

    Hong Wang

    2016-11-01

    Full Text Available Two genetic variants (rs3798220 and rs10455872 in the apolipoprotein (a gene (LPA have been implicated in cardiovascular disease (CVD, presumably through their association with lipoprotein (a [Lp(a] levels. While Lp(a is recognized as a lipoprotein with atherogenic and thrombogenic characteristics, it is unclear whether or not the two Lp(a-associated genetic variants are also associated with markers of thrombosis (i.e., plasminogen levels and fibrinolysis. In the present study, we genotyped the two genetic variants in 2919 subjects of the Old Order Amish (OOA and recruited 146 subjects according to the carrier and noncarrier status for rs3798220 and rs10455872, and also matched for gender and age. We measured plasma Lp(a and plasminogen levels in these subjects, and found that the concentrations of plasma Lp(a were 2.62- and 1.73-fold higher in minor allele carriers of rs3798220 and rs10455872, respectively, compared with noncarriers (P = 2.04 × 10−17 and P = 1.64 × 10−6, respectively. By contrast, there was no difference in plasminogen concentrations between carriers and noncarriers of rs3798220 and rs10455872. Furthermore, we observed no association between carrier status of rs3798220 or rs10455872 with clot lysis time. Finally, plasminogen mRNA expression in liver samples derived from 76 Caucasian subjects was not significantly different between carriers and noncarriers of these two genetic variants. Our results provide further insight into the mechanism of action behind two genetic variants previously implicated in CVD risk and show that these polymorphisms are not major modulating factors for plasma plasminogen levels and fibrinolysis.

  3. Genetic Factors Associated with Risk and Disability Progression of Multiple Sclerosis in Slovak Population

    Directory of Open Access Journals (Sweden)

    Hanysova Sandra

    2017-08-01

    Full Text Available Objective: The aim of our study was to determine the relation of particular genetic variants in selected genes (GSTM1, GSTT1 null genotypes; rs1695 GSTP1; rs10735781 EVI5 to the risk of multiple sclerosis (MS development and find out the possible association with disease disability progression rate. Material and methods: Our study included 202 MS patients and 174 healthy control volunteers. MS patients were divided according to disability progression rate to three groups - slowly progressing, mid-rate progressing and rapidly progressing. All DNA samples were isolated from venous blood. Genotyping was performed by PCR-RFLP and multiplex PCR. Results: Our analysis showed that GSTT1 null genotype (OR 0.56; 95%CI 0.33 -0.95; p=0.04 and GSTM1, GSTT1 double null genotype (OR 0.32; 95%CI 0.14 - 0.74; p=0.006 are potentially protective in relation to MS. We observed similar result in GSTT1 null genotype in association with mid-rate progression (OR 0.48; 95%CI 0.24 - 0.97; p=0.05. Frequency of GSTM1 and GSTT1 double null genotype is significantly lower in subgroup of MS patients with progression rate defined as slow (OR 0.22; 95%CI 0.05 - 0.98; p=0.05 and middle (OR 0.33; 95%CI 0.11 - 0.99; p=0.045. We did not show any significant association of genetic changes rs1695 in GSTP1 and rs10735781 in EVI5 with MS or rate of disease progression. Conclusions: Genetic basis of multiple sclerosis is still not fully elucidated. Further research may clarify our results and confirm the value of studied factors for clinical practice.

  4. Polyglot programming in applications used for genetic data analysis.

    Science.gov (United States)

    Nowak, Robert M

    2014-01-01

    Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development.

  5. Systems level analysis of systemic sclerosis shows a network of immune and profibrotic pathways connected with genetic polymorphisms.

    Directory of Open Access Journals (Sweden)

    J Matthew Mahoney

    2015-01-01

    Full Text Available Systemic sclerosis (SSc is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6-12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes using a gene-gene interaction network, and place the genetic risk loci in the context of the intrinsic subsets. To identify gene expression modules common to three independent datasets from three different clinical centers, we developed a consensus clustering procedure based on mutual information of partitions, an information theory concept, and performed a meta-analysis of these genome-wide gene expression datasets. We created a gene-gene interaction network of the conserved molecular features across the intrinsic subsets and analyzed their connections with SSc-associated genetic polymorphisms. The network is composed of distinct, but interconnected, components related to interferon activation, M2 macrophages, adaptive immunity, extracellular matrix remodeling, and cell proliferation. The network shows extensive connections between the inflammatory- and fibroproliferative-specific genes. The network also shows connections between these subset-specific genes and 30 SSc-associated polymorphic genes including STAT4, BLK, IRF7, NOTCH4, PLAUR, CSK, IRAK1, and several human leukocyte antigen (HLA genes. Our analyses suggest that the gene expression changes underlying the SSc subsets may be long-lived, but mechanistically interconnected

  6. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update.

    Science.gov (United States)

    Peakall, Rod; Smouse, Peter E

    2012-10-01

    GenAlEx: Genetic Analysis in Excel is a cross-platform package for population genetic analyses that runs within Microsoft Excel. GenAlEx offers analysis of diploid codominant, haploid and binary genetic loci and DNA sequences. Both frequency-based (F-statistics, heterozygosity, HWE, population assignment, relatedness) and distance-based (AMOVA, PCoA, Mantel tests, multivariate spatial autocorrelation) analyses are provided. New features include calculation of new estimators of population structure: G'(ST), G''(ST), Jost's D(est) and F'(ST) through AMOVA, Shannon Information analysis, linkage disequilibrium analysis for biallelic data and novel heterogeneity tests for spatial autocorrelation analysis. Export to more than 30 other data formats is provided. Teaching tutorials and expanded step-by-step output options are included. The comprehensive guide has been fully revised. GenAlEx is written in VBA and provided as a Microsoft Excel Add-in (compatible with Excel 2003, 2007, 2010 on PC; Excel 2004, 2011 on Macintosh). GenAlEx, and supporting documentation and tutorials are freely available at: http://biology.anu.edu.au/GenAlEx. rod.peakall@anu.edu.au.

  7. Chromosome 9p21 genetic variants are associated with myocardial infarction but not with ischemic stroke in a Taiwanese population.

    Science.gov (United States)

    Lin, Hsiu-Fen; Tsai, Pei-Chien; Liao, Yi-Chu; Lin, Tsung-Hsien; Tai, Chih-Ta; Juo, Suh-Hang Hank; Lin, Ruey-Tay

    2011-08-01

    Genetic variants on chromosome 9p21 confer a robust risk for coronary artery disease but inconsistent risk for stroke. This study investigated whether such genetic variants exert differential risks on myocardial infarction (MI) and ischemic stroke in a Taiwanese population. The study recruited 425 MI patients, 687 patients with ischemic stroke, and 1377 healthy controls. Four key single nucleotide polymorphisms (SNPs) on chromosome 9p21 were genotyped. Multivariate permutation analyses demonstrated that the risk T allele of rs1333040 and G allele of rs2383207 were associated with MI (P = 0.045 and 0.002, respectively). Subjects with the rs2383207 GG genotype had a 1.85-fold (P = 0.021) risk for MI when compared with the subjects with the AA genotype. Further analysis showed that significant results only exist in the young MI group (stroke (adjusted P ranged from 0.097 to 0.540). Haplotype analysis showed global P values of 0.032 for MI and 0.290 for stroke. Genetic variations in the 9p21 region are associated with MI but not with stroke in a Taiwanese population. Early-onset MI was more likely to carry the risk genotypes of 9p21 SNPs.

  8. Genetic analysis of bulimia nervosa: methods and sample description.

    Science.gov (United States)

    Kaye, Walter H; Devlin, Bernie; Barbarich, Nicole; Bulik, Cynthia M; Thornton, Laura; Bacanu, Silviu-Alin; Fichter, Manfred M; Halmi, Katherine A; Kaplan, Allan S; Strober, Michael; Woodside, D Blake; Bergen, Andrew W; Crow, Scott; Mitchell, James; Rotondo, Alessandro; Mauri, Mauro; Cassano, Giovanni; Keel, Pamela; Plotnicov, Katherine; Pollice, Christine; Klump, Kelly L; Lilenfeld, Lisa R; Ganjei, J Kelly; Quadflieg, Norbert; Berrettini, Wade H

    2004-05-01

    Twin and family studies suggest that genetic variants contribute to the pathogenesis of bulimia nervosa (BN) and anorexia nervosa (AN). The Price Foundation has supported an international, multisite study of families with these disorders to identify these genetic variations. The current study presents the clinical characteristics of this sample as well as a description of the study methodology. All probands met modified criteria for BN or bulimia nervosa with a history of AN (BAN) as defined in the 4th ed. of the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV; American Psychiatric Association, 1994). All affected relatives met DSM-IV criteria for BN, AN, BAN, or eating disorders not otherwise specified (EDNOS). Probands and affected relatives were assessed diagnostically using both trained-rater and self-report assessments. DNA samples were collected from probands, affected relatives, and available biologic parents. Assessments were obtained from 163 BN probands and 165 BAN probands. Overall, there were 365 relative pairs available for linkage analysis. Of the affected relatives of BN probands, 62 were diagnosed as BN (34.8%), 49 as BAN (27.5%), 35 as AN (19.7%), and 32 as EDNOS (18.0%). For the relatives of BAN probands, 42 were diagnosed as BN (22.5%), 67 as BAN (35.8%), 48 as AN (25.7%), and 30 as EDNOS (16.0%). This study represents the largest genetic study of eating disorders to date. Clinical data indicate that although there are a large number of individuals with BN disorders, a range of eating pathology is represented in the sample, allowing for the examination of several different phenotypes in molecular genetic analyses. Copyright 2004 by Wiley Periodicals, Inc. Int J Eat Disord 35: 556-570, 2004.

  9. Cluster analysis of obsessive-compulsive spectrum disorders in patients with obsessive-compulsive disorder: clinical and genetic correlates.

    Science.gov (United States)

    Lochner, Christine; Hemmings, Sian M J; Kinnear, Craig J; Niehaus, Dana J H; Nel, Daniel G; Corfield, Valerie A; Moolman-Smook, Johanna C; Seedat, Soraya; Stein, Dan J

    2005-01-01

    Comorbidity of certain obsessive-compulsive spectrum disorders (OCSDs; such as Tourette's disorder) in obsessive-compulsive disorder (OCD) may serve to define important OCD subtypes characterized by differing phenomenology and neurobiological mechanisms. Comorbidity of the putative OCSDs in OCD has, however, not often been systematically investigated. The Structured Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition , Axis I Disorders-Patient Version as well as a Structured Clinical Interview for Putative OCSDs (SCID-OCSD) were administered to 210 adult patients with OCD (N = 210, 102 men and 108 women; mean age, 35.7 +/- 13.3). A subset of Caucasian subjects (with OCD, n = 171; control subjects, n = 168), including subjects from the genetically homogeneous Afrikaner population (with OCD, n = 77; control subjects, n = 144), was genotyped for polymorphisms in genes involved in monoamine function. Because the items of the SCID-OCSD are binary (present/absent), a cluster analysis (Ward's method) using the items of SCID-OCSD was conducted. The association of identified clusters with demographic variables (age, gender), clinical variables (age of onset, obsessive-compulsive symptom severity and dimensions, level of insight, temperament/character, treatment response), and monoaminergic genotypes was examined. Cluster analysis of the OCSDs in our sample of patients with OCD identified 3 separate clusters at a 1.1 linkage distance level. The 3 clusters were named as follows: (1) "reward deficiency" (including trichotillomania, Tourette's disorder, pathological gambling, and hypersexual disorder), (2) "impulsivity" (including compulsive shopping, kleptomania, eating disorders, self-injury, and intermittent explosive disorder), and (3) "somatic" (including body dysmorphic disorder and hypochondriasis). Several significant associations were found between cluster scores and other variables; for example, cluster I scores were associated

  10. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Science.gov (United States)

    Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039

  11. Genetic association analysis of 30 genes related to obesity in a European American population.

    Science.gov (United States)

    Li, P; Tiwari, H K; Lin, W-Y; Allison, D B; Chung, W K; Leibel, R L; Yi, N; Liu, N

    2014-05-01

    Obesity, which is frequently associated with diabetes, hypertension and cardiovascular diseases, is primarily the result of a net excess of caloric intake over energy expenditure. Human obesity is highly heritable, but the specific genes mediating susceptibility in non-syndromic obesity remain unclear. We tested candidate genes in pathways related to food intake and energy expenditure for association with body mass index (BMI). We reanalyzed 355 common genetic variants of 30 candidate genes in seven molecular pathways related to obesity in 1982 unrelated European Americans from the New York Cancer Project. Data were analyzed by using a Bayesian hierarchical generalized linear model. The BMIs were log-transformed and then adjusted for covariates, including age, age(2), gender and diabetes status. The single-nucleotide polymorphisms (SNPs) were modeled as additive effects. With the stipulated adjustments, nine SNPs in eight genes were significantly associated with BMI: ghrelin (GHRL; rs35683), agouti-related peptide (AGRP; rs5030980), carboxypeptidase E (CPE; rs1946816 and rs4481204), glucagon-like peptide-1 receptor (GLP1R; rs2268641), serotonin receptors (HTR2A; rs912127), neuropeptide Y receptor (NPY5R;Y5R1c52), suppressor of cytokine signaling 3 (SOCS3; rs4969170) and signal transducer and activator of transcription 3 (STAT3; rs4796793). We also found a gender-by-SNP interaction (rs1745837 in HTR2A), which indicated that variants in the gene HTR2A had a stronger association with BMI in males. In addition, NPY1R was detected as having a significant gene effect even though none of the SNPs in this gene was significant. Variations in genes AGRP, CPE, GHRL, GLP1R, HTR2A, NPY1R, NPY5R, SOCS3 and STAT3 showed modest associations with BMI in European Americans. The pathways in which these genes participate regulate energy intake, and thus these associations are mechanistically plausible in this context.

  12. Dietary fatty acids modulate associations between genetic variants and circulating fatty acids in plasma and erythrocyte membranes: meta-analysis of nine studies in the CHARGE consortium

    Science.gov (United States)

    Scope: Tissue concentrations of omega-3 fatty acids may reduce cardiovascular disease risk, and genetic variants are associated with circulating fatty acids concentrations. Whether dietary fatty acids interact with genetic variants to modify circulating omega-3 fatty acids is unclear. We evaluated i...

  13. PedGenie: an analysis approach for genetic association testing in extended pedigrees and genealogies of arbitrary size

    Directory of Open Access Journals (Sweden)

    Camp Nicola J

    2006-04-01

    Full Text Available Abstract Background We present a general approach to perform association analyses in pedigrees of arbitrary size and structure, which also allows for a mixture of pedigree members and independent individuals to be analyzed together, to test genetic markers and qualitative or quantitative traits. Our software, PedGenie, uses Monte Carlo significance testing to provide a valid test for related individuals that can be applied to any test statistic, including transmission disequilibrium statistics. Single locus at a time, composite genotype tests, and haplotype analyses may all be performed. We illustrate the validity and functionality of PedGenie using simulated and real data sets. For the real data set, we evaluated the role of two tagging-single nucleotide polymorphisms (tSNPs in the DNA repair gene, NBS1, and their association with female breast cancer in 462 cases and 572 controls selected to be BRCA1/2 mutation negative from 139 high-risk Utah breast cancer families. Results The results from PedGenie were shown to be valid both for accurate p-value calculations and consideration of pedigree structure in the simulated data set. A nominally significant association with breast cancer was observed with the NBS1 tSNP rs709816 for carriage of the rare allele (OR = 1.61, 95% CI = 1.10–2.35, p = 0.019. Conclusion PedGenie is a flexible and valid statistical tool that is intuitively simple to understand, makes efficient use of all the data available from pedigrees without requiring trimming, and is flexible to the types of tests to which it can be applied. Further, our analyses of real data indicate NBS1 may play a role in the genetic etiology of heritable breast cancer.

  14. [Genetic relationship analysis of Ephedra intermedia from different habitat in Gansu by ISSR analysis].

    Science.gov (United States)

    Zhu, Tian-Tian; Jin, Ling; Du, Tao; Cui, Zhi-Jia; Zhang, Xian-Fei; Wu, Di

    2013-09-01

    To investigate the genetic relationship of Ephedra intermedia from different habitats in Gansu. The genetic diversity and genetic relationship of E. intermedia from different habitats in Gansu were studied by ISSR molecular marker technique. Twelve ISSR primers were selected from 70 ISSR primers and used for ISSR amplification. Total 112 loci were amplified, in which 81 were polymorphic loci, the average percentage of polymorphie bands (PPB) was 72.32%. Clustering results indicated that the wild species and cultivating species were clustered into different group. The wild species, which had closer distance, were clustered into a group. E. intermedia of different habitats in Gansu have rich genetic diversities among species, it is the reason that E. intermedia has strong adaptability and wide distribution. Further, the genetic distance of E. intermedia is associated with geographical distance, the further distance can hinder the gene flow.

  15. Genome-wide association analysis identifies three new susceptibility loci for childhood body mass index

    Science.gov (United States)

    Felix, Janine F.; Bradfield, Jonathan P.; Monnereau, Claire; van der Valk, Ralf J.P.; Stergiakouli, Evie; Chesi, Alessandra; Gaillard, Romy; Feenstra, Bjarke; Thiering, Elisabeth; Kreiner-Møller, Eskil; Mahajan, Anubha; Pitkänen, Niina; Joro, Raimo; Cavadino, Alana; Huikari, Ville; Franks, Steve; Groen-Blokhuis, Maria M.; Cousminer, Diana L.; Marsh, Julie A.; Lehtimäki, Terho; Curtin, John A.; Vioque, Jesus; Ahluwalia, Tarunveer S.; Myhre, Ronny; Price, Thomas S.; Vilor-Tejedor, Natalia; Yengo, Loïc; Grarup, Niels; Ntalla, Ioanna; Ang, Wei; Atalay, Mustafa; Bisgaard, Hans; Blakemore, Alexandra I.; Bonnefond, Amelie; Carstensen, Lisbeth; Eriksson, Johan; Flexeder, Claudia; Franke, Lude; Geller, Frank; Geserick, Mandy; Hartikainen, Anna-Liisa; Haworth, Claire M.A.; Hirschhorn, Joel N.; Hofman, Albert; Holm, Jens-Christian; Horikoshi, Momoko; Hottenga, Jouke Jan; Huang, Jinyan; Kadarmideen, Haja N.; Kähönen, Mika; Kiess, Wieland; Lakka, Hanna-Maaria; Lakka, Timo A.; Lewin, Alexandra M.; Liang, Liming; Lyytikäinen, Leo-Pekka; Ma, Baoshan; Magnus, Per; McCormack, Shana E.; McMahon, George; Mentch, Frank D.; Middeldorp, Christel M.; Murray, Clare S.; Pahkala, Katja; Pers, Tune H.; Pfäffle, Roland; Postma, Dirkje S.; Power, Christine; Simpson, Angela; Sengpiel, Verena; Tiesler, Carla M. T.; Torrent, Maties; Uitterlinden, André G.; van Meurs, Joyce B.; Vinding, Rebecca; Waage, Johannes; Wardle, Jane; Zeggini, Eleftheria; Zemel, Babette S.; Dedoussis, George V.; Pedersen, Oluf; Froguel, Philippe; Sunyer, Jordi; Plomin, Robert; Jacobsson, Bo; Hansen, Torben; Gonzalez, Juan R.; Custovic, Adnan; Raitakari, Olli T.; Pennell, Craig E.; Widén, Elisabeth; Boomsma, Dorret I.; Koppelman, Gerard H.; Sebert, Sylvain; Järvelin, Marjo-Riitta; Hyppönen, Elina; McCarthy, Mark I.; Lindi, Virpi; Harri, Niinikoski; Körner, Antje; Bønnelykke, Klaus; Heinrich, Joachim; Melbye, Mads; Rivadeneira, Fernando; Hakonarson, Hakon; Ring, Susan M.; Smith, George Davey; Sørensen, Thorkild I.A.; Timpson, Nicholas J.; Grant, Struan F.A.; Jaddoe, Vincent W.V.

    2016-01-01

    A large number of genetic loci are associated with adult body mass index. However, the genetics of childhood body mass index are largely unknown. We performed a meta-analysis of genome-wide association studies of childhood body mass index, using sex- and age-adjusted standard deviation scores. We included 35 668 children from 20 studies in the discovery phase and 11 873 children from 13 studies in the replication phase. In total, 15 loci reached genome-wide significance (P-value < 5 × 10−8) in the joint discovery and replication analysis, of which 12 are previously identified loci in or close to ADCY3, GNPDA2, TMEM18, SEC16B, FAIM2, FTO, TFAP2B, TNNI3K, MC4R, GPR61, LMX1B and OLFM4 associated with adult body mass index or childhood obesity. We identified three novel loci: rs13253111 near ELP3, rs8092503 near RAB27B and rs13387838 near ADAM23. Per additional risk allele, body mass index increased 0.04 Standard Deviation Score (SDS) [Standard Error (SE) 0.007], 0.05 SDS (SE 0.008) and 0.14 SDS (SE 0.025), for rs13253111, rs8092503 and rs13387838, respectively. A genetic risk score combining all 15 SNPs showed that each additional average risk allele was associated with a 0.073 SDS (SE 0.011, P-value = 3.12 × 10−10) increase in childhood body mass index in a population of 1955 children. This risk score explained 2% of the variance in childhood body mass index. This study highlights the shared genetic background between childhood and adult body mass index and adds three novel loci. These loci likely represent age-related differences in strength of the associations with body mass index. PMID:26604143

  16. Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum).

    Science.gov (United States)

    Wen, Tianwang; Wu, Mi; Shen, Chao; Gao, Bin; Zhu, De; Zhang, Xianlong; You, Chunyuan; Lin, Zhongxu

    2018-02-24

    Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine-mapped the brown fibre region, Lc 1 , and dissected it into 2 loci, qBF-A07-1 and qBF-A07-2. The qBF-A07-1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF-A07-1 and qBF-A07-2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF-A07-1 and qBF-A07-2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome-wide association study (GWAS) and found that qBF-A07-2 negatively affects fibre yield and quality through an epistatic interaction with qBF-A07-1. This study sheds light on the genetics of fibre colour and lint-related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  17. Genome-Wide Gene Set Analysis for Identification of Pathways Associated with Alcohol Dependence

    Science.gov (United States)

    Biernacka, Joanna M.; Geske, Jennifer; Jenkins, Gregory D.; Colby, Colin; Rider, David N.; Karpyak, Victor M.; Choi, Doo-Sup; Fridley, Brooke L.

    2013-01-01

    It is believed that multiple genetic variants with small individual effects contribute to the risk of alcohol dependence. Such polygenic effects are difficult to detect in genome-wide association studies that test for association of the phenotype with each single nucleotide polymorphism (SNP) individually. To overcome this challenge, gene set analysis (GSA) methods that jointly test for the effects of pre-defined groups of genes have been proposed. Rather than testing for association between the phenotype and individual SNPs, these analyses evaluate the global evidence of association with a set of related genes enabling the identification of cellular or molecular pathways or biological processes that play a role in development of the disease. It is hoped that by aggregating the evidence of association for all available SNPs in a group of related genes, these approaches will have enhanced power to detect genetic associations with complex traits. We performed GSA using data from a genome-wide study of 1165 alcohol dependent cases and 1379 controls from the Study of Addiction: Genetics and Environment (SAGE), for all 200 pathways listed in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Results demonstrated a potential role of the “Synthesis and Degradation of Ketone Bodies” pathway. Our results also support the potential involvement of the “Neuroactive Ligand Receptor Interaction” pathway, which has previously been implicated in addictive disorders. These findings demonstrate the utility of GSA in the study of complex disease, and suggest specific directions for further research into the genetic architecture of alcohol dependence. PMID:22717047

  18. Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity

    Directory of Open Access Journals (Sweden)

    Vanessa Almendro

    2014-02-01

    Full Text Available Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution.

  19. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity

    International Nuclear Information System (INIS)

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; Van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution

  20. The Genetic and Environmental Contributions to Internet Use and Associations With Psychopathology: A Twin Study.

    Science.gov (United States)

    Long, Elizabeth C; Verhulst, Brad; Neale, Michael C; Lind, Penelope A; Hickie, Ian B; Martin, Nicholas G; Gillespie, Nathan A

    2016-02-01

    Excessive internet use has been linked to psychopathology. Therefore, understanding the genetic and environmental risks underpinning internet use and their relation to psychopathology is important. This study aims to explore the genetic and environmental etiology of internet use measures and their associations with internalizing disorders and substance use disorders. The sample included 2,059 monozygotic (MZ) and dizygotic (DZ) young adult twins from the Brisbane Longitudinal Twin Study (BLTS). Younger participants reported more frequent internet use, while women were more likely to use the internet for interpersonal communication. Familial aggregation in 'frequency of internet use' was entirely explained by additive genetic factors accounting for 41% of the variance. Familial aggregation in 'frequency of use after 11 pm', 'using the internet to contact peers', and 'using the internet primarily to access social networking sites' was attributable to varying combinations of additive genetic and shared environmental factors. In terms of psychopathology, there were no significant associations between internet use measures and major depression (MD), but there were positive significant associations between 'frequency of internet use' and 'frequency of use after 11 pm' with social phobia (SP). 'Using the internet to contact peers' was positively associated with alcohol abuse, whereas 'using the internet to contact peers' and 'using the internet primarily to access social networking sites' were negatively associated with cannabis use disorders and nicotine symptoms. Individual differences in internet use can be attributable to varying degrees of genetic and environmental risks. Despite some significant associations of small effect, variation in internet use appears mostly unrelated to psychopathology.

  1. Variability, heritability and genetic association in vegetable amaranth (Amaranthus tricolor L.)

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, U.; Islam, Md T.; Rabbani, Md G.; Oba, S.

    2015-07-01

    Forty three vegetable amaranth (Amaranthus tricolor L.) genotypes selected from different eco-geographic regions of Bangladesh were evaluated during 3 years (2012-2014) for genetic variability, heritability and genetic association among mineral elements and quality and agronomic traits in randomized complete block design (RCBD) with five replications. The analysis showed that vegetable amaranth is a rich source of K, Ca, Mg, proteins and dietary fibre with average values among the 43 genotypes (1.014%, 2.476%, 2.984, 1.258% and 7.81%, respectively). Six genotypes (VA13, VA14, VA16, VA18, VA26, VA27) showed a biological yield >2000 g/m2 and high mineral, protein and dietary fibre contents; eleven genotypes had high amount of minerals, protein and dietary fibre with above average biological yield; nine genotypes had below average biological yield but were rich in minerals, protein and dietary fibre. Biological yield exhibited a strong positive correlation with leaf area, shoot weight, shoot/root weight and stem base diameter. Insignificant genotypic correlation was observed among mineral, quality and agronomic traits, except K vs. Mg, protein vs. dietary fibre and stem base diameter vs. Ca. Some of these genotypes can be used for improvement of vegetable amaranth regarding mineral, protein and dietary fibre content without compromising yield loss. (Author)

  2. Meta-analysis of Genome-Wide Association Studies Identifies Novel Loci Associated With Optic Disc Morphology

    OpenAIRE

    Springelkamp, Henriët; Mishra, Aniket; Hysi, Pirro G.; Gharahkhani, Puya; Höhn, René; Khor, Chiea-Chuen; Cooke Bailey, Jessica N.; Luo, Xiaoyan; Ramdas, Wishal D.; Vithana, Eranga; Koh, Victor; Yazar, Seyhan; Xu, Liang; Forward, Hannah; Kearns, Lisa S.

    2015-01-01

    Primary open-angle glaucoma is the most common optic neuropathy and an important cause of irreversible blindness worldwide. The optic nerve head or optic disc is divided in two parts: a central cup (without nerve fibers) surrounded by the neuroretinal rim (containing axons of the retinal ganglion cells). The International Glaucoma Genetics Consortium conducted a meta-analysis of genome-wide association studies consisting of 17,248 individuals of European ancestry and 6,841 individuals of Asia...

  3. Sparse Canonical Correlation Analysis via Truncated ℓ1-norm with Application to Brain Imaging Genetics.

    Science.gov (United States)

    Du, Lei; Zhang, Tuo; Liu, Kefei; Yao, Xiaohui; Yan, Jingwen; Risacher, Shannon L; Guo, Lei; Saykin, Andrew J; Shen, Li

    2016-01-01

    Discovering bi-multivariate associations between genetic markers and neuroimaging quantitative traits is a major task in brain imaging genetics. Sparse Canonical Correlation Analysis (SCCA) is a popular technique in this area for its powerful capability in identifying bi-multivariate relationships coupled with feature selection. The existing SCCA methods impose either the ℓ 1 -norm or its variants. The ℓ 0 -norm is more desirable, which however remains unexplored since the ℓ 0 -norm minimization is NP-hard. In this paper, we impose the truncated ℓ 1 -norm to improve the performance of the ℓ 1 -norm based SCCA methods. Besides, we propose two efficient optimization algorithms and prove their convergence. The experimental results, compared with two benchmark methods, show that our method identifies better and meaningful canonical loading patterns in both simulated and real imaging genetic analyse.

  4. Combinations of genetic variants associated with bipolar disorder

    DEFF Research Database (Denmark)

    Mellerup, Erling; Andreassen, Ole A; Bennike, Bente

    2017-01-01

    The main objective of the study was to find genetic variants that in combination are significantly associated with bipolar disorder. In previous studies of bipolar disorder, combinations of three and four single nucleotide polymorphisms (SNP) genotypes taken from 803 SNPs were analyzed, and five...... clusters of combinations were found to be significantly associated with bipolar disorder. In the present study, combinations of ten SNP genotypes taken from the same 803 SNPs were analyzed, and one cluster of combinations was found to be significantly associated with bipolar disorder. Combinations from......, heterozygote or variant homozygote. In the combinations containing 10 SNP genotypes almost all the genotypes were the normal homozygote. Such a finding may indicate that accumulation in the genome of combinations containing few SNP genotypes may be a risk factor for bipolar disorder when those combinations...

  5. Clinical and genetic analysis of Indian patients with NDP-related retinopathies.

    Science.gov (United States)

    Sudha, Dhandayuthapani; Ganapathy, Aparna; Mohan, Puja; Mannan, Ashraf U; Krishna, Shuba; Neriyanuri, Srividya; Swaminathan, Meenakshi; Rishi, Pukhraj; Chidambaram, Subbulakshmi; Arunachalam, Jayamuruga Pandian

    2017-06-10

    NDP-related retinopathies are a group of X-linked disorders characterized by degenerative and proliferative changes of the neuroretina, occasionally accompanied with varying degrees of mental retardation and sensorineural hearing loss. NDP is the predominant gene associated with NDP-related retinopathies. The purpose of this study was to report the clinical and genetic findings in three unrelated patients diagnosed with NDP-related retinopathies. The patients underwent complete ophthalmic examination followed by genetic analyses. NDP gene was screened by direct sequencing approach. Targeted resequencing of several other ocular genes was carried out in patient samples that either indicated NDP gene deletion or tested negative for NDP mutation. Gene quantitation analysis was performed using real-time PCR. The whole NDP gene was deleted in patient I, while a missense NDP mutation, c.205T>C, was identified in patient II, and both had classical Norrie disease ocular phenotype (with no other systemic defects). Patient III who was diagnosed with familial exudative vitreoretinopathy did not show any mutation in the known candidate genes as well as in other ocular genes tested. The patient with whole NDP gene deletion did not exhibit any apparent extraocular defects (like mental retardation or sensorineural hearing loss) during his first decade of life, and this is considered to be a notable finding. Our study also provides evidence emphasizing the need for genetic testing which could eliminate ambiguities in clinical diagnosis and detect carrier status, thereby aiding the patient and family members during genetic counseling.

  6. Comprehensive analysis of schizophrenia-associated loci highlights ion channel pathways and biologically plausible candidate causal genes

    DEFF Research Database (Denmark)

    Pers, Tune H; Timshel, Pascal; Ripke, Stephan

    2016-01-01

    Over 100 associated genetic loci have been robustly associated with schizophrenia. Gene prioritization and pathway analysis have focused on a priori hypotheses and thus may have been unduly influenced by prior assumptions and missed important causal genes and pathways. Using a data-driven approac...

  7. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  8. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  9. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  10. Association and linkage analysis of aluminum tolerance genes in maize.

    Directory of Open Access Journals (Sweden)

    Allison M Krill

    Full Text Available BACKGROUND: Aluminum (Al toxicity is a major worldwide constraint to crop productivity on acidic soils. Al becomes soluble at low pH, inhibiting root growth and severely reducing yields. Maize is an important staple food and commodity crop in acidic soil regions, especially in South America and Africa where these soils are very common. Al exclusion and intracellular tolerance have been suggested as two important mechanisms for Al tolerance in maize, but little is known about the underlying genetics. METHODOLOGY: An association panel of 282 diverse maize inbred lines and three F2 linkage populations with approximately 200 individuals each were used to study genetic variation in this complex trait. Al tolerance was measured as net root growth in nutrient solution under Al stress, which exhibited a wide range of variation between lines. Comparative and physiological genomics-based approaches were used to select 21 candidate genes for evaluation by association analysis. CONCLUSIONS: Six candidate genes had significant results from association analysis, but only four were confirmed by linkage analysis as putatively contributing to Al tolerance: Zea mays AltSB like (ZmASL, Zea mays aluminum-activated malate transporter2 (ALMT2, S-adenosyl-L-homocysteinase (SAHH, and Malic Enzyme (ME. These four candidate genes are high priority subjects for follow-up biochemical and physiological studies on the mechanisms of Al tolerance in maize. Immediately, elite haplotype-specific molecular markers can be developed for these four genes and used for efficient marker-assisted selection of superior alleles in Al tolerance maize breeding programs.

  11. Efficient replication of over 180 genetic associations with self-reported medical data.

    Directory of Open Access Journals (Sweden)

    Joyce Y Tung

    Full Text Available While the cost and speed of generating genomic data have come down dramatically in recent years, the slow pace of collecting medical data for large cohorts continues to hamper genetic research. Here we evaluate a novel online framework for obtaining large amounts of medical information from a recontactable cohort by assessing our ability to replicate genetic associations using these data. Using web-based questionnaires, we gathered self-reported data on 50 medical phenotypes from a generally unselected cohort of over 20,000 genotyped individuals. Of a list of genetic associations curated by NHGRI, we successfully replicated about 75% of the associations that we expected to (based on the number of cases in our cohort and reported odds ratios, and excluding a set of associations with contradictory published evidence. Altogether we replicated over 180 previously reported associations, including many for type 2 diabetes, prostate cancer, cholesterol levels, and multiple sclerosis. We found significant variation across categories of conditions in the percentage of expected associations that we were able to replicate, which may reflect systematic inflation of the effects in some initial reports, or differences across diseases in the likelihood of misdiagnosis or misreport. We also demonstrated that we could improve replication success by taking advantage of our recontactable cohort, offering more in-depth questions to refine self-reported diagnoses. Our data suggest that online collection of self-reported data from a recontactable cohort may be a viable method for both broad and deep phenotyping in large populations.

  12. Physical activity and mortality: is the association explained by genetic selection?

    Science.gov (United States)

    Carlsson, Sofia; Andersson, Tomas; Lichtenstein, Paul; Michaëlsson, Karl; Ahlbom, Anders

    2007-08-01

    Public health recommendations promote physical activity to improve health and longevity. Recent data suggest that the association between physical activity and mortality may be due to genetic selection. Using data on twins, the authors investigated whether genetic selection explains the association between physical activity and mortality. Data were based on a postal questionnaire answered by 13,109 Swedish twin pairs in 1972. The national Cause of Death Register was used for information about all-cause mortality (n=1,800) and cardiovascular disease mortality (n=638) during 1975-2004. The risk of death was reduced by 34% for men (relative risk=0.64, 95% confidence interval: 0.50, 0.83) and by 25% for women (relative risk=0.75, 95% confidence interval: 0.50, 1.14) reporting high physical activity levels. Within-pair comparisons of monozygotic twins showed that, compared with their less active co-twin, the more active twin had a 20% (odds ratio=0.80, 95% confidence interval: 0.65, 0.99) reduced risk of all-cause mortality and a 32% (odds ratio=0.68, 95% confidence interval: 0.49, 0.95) reduced risk of cardiovascular disease mortality. Results indicate that physical activity is associated with a reduced risk of mortality not due to genetic selection. This finding supports a causal link between physical activity and mortality.

  13. A genetic analysis of Trichuris trichiura and Trichuris suis from Ecuador.

    Science.gov (United States)

    Meekums, Hayley; Hawash, Mohamed B F; Sparks, Alexandra M; Oviedo, Yisela; Sandoval, Carlos; Chico, Martha E; Stothard, J Russell; Cooper, Philip J; Nejsum, Peter; Betson, Martha

    2015-03-19

    Since the nematodes Trichuris trichiura and T. suis are morphologically indistinguishable, genetic analysis is required to assess epidemiological cross-over between people and pigs. This study aimed to clarify the transmission biology of trichuriasis in Ecuador. Adult Trichuris worms were collected during a parasitological survey of 132 people and 46 pigs in Esmeraldas Province, Ecuador. Morphometric analysis of 49 pig worms and 64 human worms revealed significant variation. In discriminant analysis morphometric characteristics correctly classified male worms according to host species. In PCR-RFLP analysis of the ribosomal Internal Transcribed Spacer (ITS-2) and 18S DNA (59 pig worms and 82 human worms), nearly all Trichuris exhibited expected restriction patterns. However, two pig-derived worms showed a "heterozygous-type" ITS-2 pattern, with one also having a "heterozygous-type" 18S pattern. Phylogenetic analysis of the mitochondrial large ribosomal subunit partitioned worms by host species. Notably, some Ecuadorian T. suis clustered with porcine Trichuris from USA and Denmark and some with Chinese T. suis. This is the first study in Latin America to genetically analyse Trichuris parasites. Although T. trichiura does not appear to be zoonotic in Ecuador, there is evidence of genetic exchange between T. trichiura and T. suis warranting more detailed genetic sampling.

  14. A markerless protocol for genetic analysis of Aggregatibacter actinomycetemcomitans

    Science.gov (United States)

    Cheng, Ya-An; Jee, Jason; Hsu, Genie; Huang, Yanyan; Chen, Casey; Lin, Chun-Pin

    2015-01-01

    Background/Purpose The genomes of different Aggregatibacter actinomycetemcomitans strains contain many strain-specific genes and genomic islands (defined as DNA found in some but not all strains) of unknown functions. Genetic analysis for the functions of these islands will be constrained by the limited availability of genetic markers and vectors for A. actinomycetemcomitans. In this study we tested a novel genetic approach of gene deletion and restoration in a naturally competent A. actinomycetemcomitans strain D7S-1. Methods Specific genes’ deletion mutants and mutants restored with the deleted genes were constructed by a markerless loxP/Cre system. In mutants with sequential deletion of multiple genes loxP with different spacer regions were used to avoid unwanted recombinations between loxP sites. Results Eight single-gene deletion mutants, four multiple-gene deletion mutants, and two mutants with restored genes were constructed. No unintended non-specific deletion mutants were generated by this protocol. The protocol did not negatively affect the growth and biofilm formation of A. actinomycetemcomitans. Conclusion The protocol described in this study is efficient and specific for genetic manipulation of A. actinomycetemcomitans, and will be amenable for functional analysis of multiple genes in A. actinomycetemcomitans. PMID:24530245

  15. Individual Variations in Inorganic Arsenic Metabolism Associated with AS3MT Genetic Polymorphisms

    Directory of Open Access Journals (Sweden)

    Haruo Takeshita

    2011-04-01

    Full Text Available Individual variations in inorganic arsenic metabolism may influence the toxic effects. Arsenic (+3 oxidation state methyltransferase (AS3MT that can catalyze the transfer of a methyl group from S-adenosyl-L-methionine (AdoMet to trivalent arsenical, may play a role in arsenic metabolism in humans. Since the genetic polymorphisms of AS3MT gene may be associated with the susceptibility to inorganic arsenic toxicity, relationships of several single nucleotide polymorphisms (SNPs in AS3MT with inorganic arsenic metabolism have been investigated. Here, we summarize our recent findings and other previous studies on the inorganic arsenic metabolism and AS3MT genetic polymorphisms in humans. Results of genotype dependent differences in arsenic metabolism for most of SNPs in AS3MT were Inconsistent throughout the studies. Nevertheless, two SNPs, AS3MT 12390 (rs3740393 and 14458 (rs11191439 were consistently related to arsenic methylation regardless of the populations examined for the analysis. Thus, these SNPs may be useful indicators to predict the arsenic metabolism via methylation pathways.

  16. Associated genetic syndromes and extracardiac malformations strongly influence outcomes of fetuses with congenital heart diseases.

    Science.gov (United States)

    Bensemlali, Myriam; Bajolle, Fanny; Ladouceur, Magalie; Fermont, Laurent; Lévy, Marilyne; Le Bidois, Jérôme; Salomon, Laurent J; Bonnet, Damien

    2016-05-01

    Congenital heart disease (CHD) is often associated with extracardiac malformations (ECMs) and genetic syndromes. To determine the effect of cytogenetic anomalies and/or ECMs associated with CHD on parental decision to choose termination of pregnancy (TOP) or compassionate care (CC), as well as on the outcome of children born alive. This 10-year retrospective study included all prenatally diagnosed cases of CHD in a single tertiary referral centre. From January 2002 to December 2011, 2036 consecutive cases of fetal CHD (798 TOPs and 1238 live births, including 59 with postnatal CC) were included. CHD was associated with a known cytogenetic anomaly in 9.8% of cases and a major ECM in 11.7% of cases. The proportion of prenatally identified associated cytogenetic anomalies was significantly lower in the live-birth group than in the TOP plus CC group (4.2% vs 17.5%; P<0.001); this was also true for ECMs (8.1% vs 16.7%; P<0.001). The mortality rate was higher in the group with an associated cytogenetic anomaly or ECM (29.1%) than in cases with isolated CHD; a 2.4-fold increase in the death rate was observed (95% confidence interval 1.34-4.38; P=0.003). These associations remained significant after multivariable analysis, including the severity of the CHD (uni- or biventricular physiology). Prenatal diagnosis of a known cytogenetic anomaly or major ECM strongly influences parental decision to choose TOP or postnatal CC. Genetic syndromes and ECMs are associated with a higher mortality rate, independent of the complexity of the CHD. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. GPFrontend and GPGraphics: graphical analysis tools for genetic association studies.

    Science.gov (United States)

    Uebe, Steffen; Pasutto, Francesca; Krumbiegel, Mandy; Schanze, Denny; Ekici, Arif B; Reis, André

    2010-09-21

    Most software packages for whole genome association studies are non-graphical, purely text based programs originally designed to run with UNIX-like operating systems. Graphical output is often not intended or supposed to be performed with other command line tools, e.g. gnuplot. Using the Microsoft .NET 2.0 platform and Visual Studio 2005, we have created a graphical software package to analyze data from microarray whole genome association studies, both for a DNA-pooling based approach as well as regular single sample data. Part of this package was made to integrate with GenePool 0.8.2, a previously existing software suite for GNU/Linux systems, which we have modified to run in a Microsoft Windows environment. Further modifications cause it to generate some additional data. This enables GenePool to interact with the .NET parts created by us. The programs we developed are GPFrontend, a graphical user interface and frontend to use GenePool and create metadata files for it, and GPGraphics, a program to further analyze and graphically evaluate output of different WGA analysis programs, among them also GenePool. Our programs enable regular MS Windows users without much experience in bioinformatics to easily visualize whole genome data from a variety of sources.

  18. GPFrontend and GPGraphics: graphical analysis tools for genetic association studies

    Directory of Open Access Journals (Sweden)

    Schanze Denny

    2010-09-01

    Full Text Available Abstract Background Most software packages for whole genome association studies are non-graphical, purely text based programs originally designed to run with UNIX-like operating systems. Graphical output is often not intended or supposed to be performed with other command line tools, e.g. gnuplot. Results Using the Microsoft .NET 2.0 platform and Visual Studio 2005, we have created a graphical software package to analyze data from microarray whole genome association studies, both for a DNA-pooling based approach as well as regular single sample data. Part of this package was made to integrate with GenePool 0.8.2, a previously existing software suite for GNU/Linux systems, which we have modified to run in a Microsoft Windows environment. Further modifications cause it to generate some additional data. This enables GenePool to interact with the .NET parts created by us. The programs we developed are GPFrontend, a graphical user interface and frontend to use GenePool and create metadata files for it, and GPGraphics, a program to further analyze and graphically evaluate output of different WGA analysis programs, among them also GenePool. Conclusions Our programs enable regular MS Windows users without much experience in bioinformatics to easily visualize whole genome data from a variety of sources.

  19. Landscape genetics in the subterranean rodent Ctenomys "chasiquensis" associated with highly disturbed habitats from the southeastern Pampas region, Argentina.

    Science.gov (United States)

    Mora, Matías Sebastián; Mapelli, Fernando J; López, Aldana; Gómez Fernández, María Jimena; Mirol, Patricia M; Kittlein, Marcelo J

    2017-12-01

    Studies of genetic differentiation in fragmented environments help us to identify those landscape features that most affect gene flow and dispersal patterns. Particularly, the assessment of the relative significance of intrinsic biological and environmental factors affecting the genetic structure of populations becomes crucial. In this work, we assess the current dispersal patterns and population structure of Ctenomys "chasiquensis", a vulnerable and endemic subterranean rodent distributed on a small area in Central Argentina, using 9 polymorphic microsatellite loci. We use landscape genetics approaches to assess the relationship between genetic connectivity among populations and environmental attributes. Our analyses show that populations of C. "chasiquensis" are moderately to highly structured at a regional level. This pattern is most likely the outcome of substantial gene flow on the more homogeneous sand dune habitat of the Northwest of its distributional range, in conjunction with an important degree of isolation of eastern and southwestern populations, where the optimal habitat is surrounded by a highly fragmented landscape. Landscape genetics analysis suggests that habitat quality and longitude were the environmental factors most strongly associated with genetic differentiation/uniqueness of populations. In conclusion, our results indicate an important genetic structure in this species, even at a small spatial scale, suggesting that contemporary habitat fragmentation increases population differentiation.

  20. In situ genetic association for serotiny, a fire-related trait, in Mediterranean maritime pine (Pinus pinaster).

    Science.gov (United States)

    Budde, Katharina B; Heuertz, Myriam; Hernández-Serrano, Ana; Pausas, Juli G; Vendramin, Giovanni G; Verdú, Miguel; González-Martínez, Santiago C

    2014-01-01

    Wildfire is a major ecological driver of plant evolution. Understanding the genetic basis of plant adaptation to wildfire is crucial, because impending climate change will involve fire regime changes worldwide. We studied the molecular genetic basis of serotiny, a fire-related trait, in Mediterranean maritime pine using association genetics. A single nucleotide polymorphism (SNP) set was used to identify genotype : phenotype associations in situ in an unstructured natural population of maritime pine (eastern Iberian Peninsula) under a mixed-effects model framework. RR-BLUP was used to build predictive models for serotiny in this region. Model prediction power outside the focal region was tested using independent range-wide serotiny data. Seventeen SNPs were potentially associated with serotiny, explaining approximately 29% of the trait phenotypic variation in the eastern Iberian Peninsula. Similar prediction power was found for nearby geographical regions from the same maternal lineage, but not for other genetic lineages. Association genetics for ecologically relevant traits evaluated in situ is an attractive approach for forest trees provided that traits are under strong genetic control and populations are unstructured, with large phenotypic variability. This will help to extend the research focus to ecological keystone non-model species in their natural environments, where polymorphisms acquired their adaptive value. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  1. Genetic markers of a Munc13 protein family member, BAIAP3, are gender specifically associated with anxiety and benzodiazepine abuse in mice and humans.

    Science.gov (United States)

    Wojcik, Sonja M; Tantra, Martesa; Stepniak, Beata; Man, Kwun-Nok M; Müller-Ribbe, Katja; Begemann, Martin; Ju, Anes; Papiol, Sergi; Ronnenberg, Anja; Gurvich, Artem; Shin, Yong; Augustin, Iris; Brose, Nils; Ehrenreich, Hannelore

    2013-07-24

    Anxiety disorders and substance abuse, including benzodiazepine use disorder, frequently occur together. Unfortunately, treatment of anxiety disorders still includes benzodiazepines, and patients with an existing comorbid benzodiazepine use disorder or a genetic susceptibility for benzodiazepine use disorder may be at risk of adverse treatment outcomes. The identification of genetic predictors for anxiety disorders, and especially for benzodiazepine use disorder, could aid the selection of the best treatment option and improve clinical outcomes. The brain-specific angiogenesis inhibitor I-associated protein 3 (Baiap3) is a member of the mammalian uncoordinated 13 (Munc13) protein family of synaptic regulators of neurotransmitter exocytosis, with a striking expression pattern in amygdalae, hypothalamus and periaqueductal gray. Deletion of Baiap3 in mice leads to enhanced seizure propensity and increased anxiety, with the latter being more pronounced in female than in male animals. We hypothesized that genetic variation in human BAIAP3 may also be associated with anxiety. By using a phenotype-based genetic association study, we identified two human BAIAP3 single-nucleotide polymorphism risk genotypes (AA for rs2235632, TT for rs1132358) that show a significant association with anxiety in women and, surprisingly, with benzodiazepine abuse in men. Returning to mice, we found that male, but not female, Baiap3 knockout (KO) mice develop tolerance to diazepam more quickly than control animals. Analysis of cultured Baiap3 KO hypothalamus slices revealed an increase in basal network activity and an altered response to diazepam withdrawal. Thus, Baiap3/BAIAP3 is gender specifically associated with anxiety and benzodiazepine use disorder, and the analysis of Baiap3/BAIAP3-related functions may help elucidate mechanisms underlying the development of both disorders.

  2. Does degree of gyrification underlie the phenotypic and genetic associations between cortical surface area and cognitive ability?

    Science.gov (United States)

    Docherty, Anna R; Hagler, Donald J; Panizzon, Matthew S; Neale, Michael C; Eyler, Lisa T; Fennema-Notestine, Christine; Franz, Carol E; Jak, Amy; Lyons, Michael J; Rinker, Daniel A; Thompson, Wesley K; Tsuang, Ming T; Dale, Anders M; Kremen, William S

    2015-02-01

    The phenotypic and genetic relationship between global cortical size and general cognitive ability (GCA) appears to be driven by surface area (SA) and not cortical thickness (CT). Gyrification (cortical folding) is an important property of the cortex that helps to increase SA within a finite space, and may also improve connectivity by reducing distance between regions. Hence, gyrification may be what underlies the SA-GCA relationship. In previous phenotypic studies, a 3-dimensional gyrification index (3DGI) has been positively associated with cognitive ability and negatively associated with mild cognitive impairment, Alzheimer's disease, and psychiatric disorders affecting cognition. However, the differential genetic associations of 3DGI and SA with GCA are still unclear. We examined the heritability of 3DGI, and the phenotypic, genetic, and environmental associations of 3DGI with SA and GCA in a large sample of adult male twins (N = 512). Nearly 85% of the variance in 3DGI was due to genes, and 3DGI had a strong phenotypic and genetic association with SA. Both 3DGI and total SA had positive phenotypic correlations with GCA. However, the SA-GCA correlation remained significant after controlling for 3DGI, but not the other way around. There was also significant genetic covariance between SA and GCA, but not between 3DGI and GCA. Thus, despite the phenotypic and genetic associations between 3DGI and SA, our results do not support the hypothesis that gyrification underlies the association between SA and GCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Does cortisol moderate the environmental association between peer victimization and depression symptoms? A genetically informed twin study.

    Science.gov (United States)

    Brendgen, Mara; Ouellet-Morin, Isabelle; Lupien, Sonia; Vitaro, Frank; Dionne, Ginette; Boivin, Michel

    2017-10-01

    Many youths who are victimized by peers suffer from depression symptoms. However, not all bullying victims show depression symptoms and individuals' biological sensitivity may play an important moderating role in this regard. In line with this notion, peer victimization has been associated with increased depressive symptoms in youth with higher basal cortisol secretion. It is unclear, however, whether this moderating effect of cortisol really concerns the environmental effect of peer victimization on depression. Indeed, genetic factors can also influence individuals' environmental experiences, including peer victimization, and part of these genetic factors may be those associated with depression. Using a genetically informed design based on 159 monozygotic and 120 dizygotic twin pairs (52% girls) assessed at age 14 years, this study examined whether cortisol secretion moderates the environmental or the genetic association between peer victimization and depression symptoms. Salivary cortisol at awakening was obtained with buccal swabs during four school week days. Peer victimization and depression were assessed via self-reports. Cholesky modeling revealed that peer victimization was associated with depression symptoms via both genetic and environmental pathways. Moreover, the environmental association between peer victimization and depression symptoms steadily increased with increasing levels of morning cortisol. The genetic association between peer victimization and depression symptoms also varied, albeit less, as a function of individuals' cortisol secretion. These findings support the hypothesis that peer victimization increases internalizing psychopathology mainly in youth with heightened biological reactivity to environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Genetic Predisposition to an Impaired Metabolism of the Branched-Chain Amino Acids and Risk of Type 2 Diabetes: A Mendelian Randomisation Analysis.

    Science.gov (United States)

    Lotta, Luca A; Scott, Robert A; Sharp, Stephen J; Burgess, Stephen; Luan, Jian'an; Tillin, Therese; Schmidt, Amand F; Imamura, Fumiaki; Stewart, Isobel D; Perry, John R B; Marney, Luke; Koulman, Albert; Karoly, Edward D; Forouhi, Nita G; Sjögren, Rasmus J O; Näslund, Erik; Zierath, Juleen R; Krook, Anna; Savage, David B; Griffin, Julian L; Chaturvedi, Nishi; Hingorani, Aroon D; Khaw, Kay-Tee; Barroso, Inês; McCarthy, Mark I; O'Rahilly, Stephen; Wareham, Nicholas J; Langenberg, Claudia

    2016-11-01

    Higher circulating levels of the branched-chain amino acids (BCAAs; i.e., isoleucine, leucine, and valine) are strongly associated with higher type 2 diabetes risk, but it is not known whether this association is causal. We undertook large-scale human genetic analyses to address this question. Genome-wide studies of BCAA levels in 16,596 individuals revealed five genomic regions associated at genome-wide levels of significance (p BCAA catabolism. In another analysis, in up to 47,877 cases of type 2 diabetes and 267,694 controls, a genetically predicted difference of 1 SD in amino acid level was associated with an odds ratio for type 2 diabetes of 1.44 (95% CI 1.26-1.65, p = 9.5 × 10-8) for isoleucine, 1.85 (95% CI 1.41-2.42, p = 7.3 × 10-6) for leucine, and 1.54 (95% CI 1.28-1.84, p = 4.2 × 10-6) for valine. Estimates were highly consistent with those from prospective observational studies of the association between BCAA levels and incident type 2 diabetes in a meta-analysis of 1,992 cases and 4,319 non-cases. Metabolome-wide association analyses of BCAA-raising alleles revealed high specificity to the BCAA pathway and an accumulation of metabolites upstream of branched-chain alpha-ketoacid oxidation, consistent with reduced BCKD activity. Limitations of this study are that, while the association of genetic variants appeared highly specific, the possibility of pleiotropic associations cannot be entirely excluded. Similar to other complex phenotypes, genetic scores used in the study captured a limited proportion of the heritability in BCAA levels. Therefore, it is possible that only some of the mechanisms that increase BCAA levels or affect BCAA metabolism are implicated in type 2 diabetes. Evidence from this large-scale human genetic and metabolomic study is consistent with a causal role of BCAA metabolism in the aetiology of type 2 diabetes.

  5. Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations.

    Science.gov (United States)

    Proctor, Michael F; McLellan, Bruce N; Strobeck, Curtis; Barclay, Robert M R

    2005-11-22

    Ecosystem conservation requires the presence of native carnivores, yet in North America, the distributions of many larger carnivores have contracted. Large carnivores live at low densities and require large areas to thrive at the population level. Therefore, if human-dominated landscapes fragment remaining carnivore populations, small and demographically vulnerable populations may result. Grizzly bear range contraction in the conterminous USA has left four fragmented populations, three of which remain along the Canada-USA border. A tenet of grizzly bear conservation is that the viability of these populations requires demographic linkage (i.e. inter-population movement of both sexes) to Canadian bears. Using individual-based genetic analysis, our results suggest this demographic connection has been severed across their entire range in southern Canada by a highway and associated settlements, limiting female and reducing male movement. Two resulting populations are vulnerably small (bear populations may be more threatened than previously thought and that conservation efforts must expand to include international connectivity management. They also demonstrate the ability of genetic analysis to detect gender-specific demographic population fragmentation in recently disturbed systems, a traditionally intractable yet increasingly important ecological measurement worldwide.

  6. Genetic analysis of PAX3 for diagnosis of Waardenburg syndrome type I.

    Science.gov (United States)

    Matsunaga, Tatsuo; Mutai, Hideki; Namba, Kazunori; Morita, Noriko; Masuda, Sawako

    2013-04-01

    PAX3 genetic analysis increased the diagnostic accuracy for Waardenburg syndrome type I (WS1). Analysis of the three-dimensional (3D) structure of PAX3 helped verify the pathogenicity of a missense mutation, and multiple ligation-dependent probe amplification (MLPA) analysis of PAX3 increased the sensitivity of genetic diagnosis in patients with WS1. Clinical diagnosis of WS1 is often difficult in individual patients with isolated, mild, or non-specific symptoms. The objective of the present study was to facilitate the accurate diagnosis of WS1 through genetic analysis of PAX3 and to expand the spectrum of known PAX3 mutations. In two Japanese families with WS1, we conducted a clinical evaluation of symptoms and genetic analysis, which involved direct sequencing, MLPA analysis, quantitative PCR of PAX3, and analysis of the predicted 3D structure of PAX3. The normal-hearing control group comprised 92 subjects who had normal hearing according to pure tone audiometry. In one family, direct sequencing of PAX3 identified a heterozygous mutation, p.I59F. Analysis of PAX3 3D structures indicated that this mutation distorted the DNA-binding site of PAX3. In the other family, MLPA analysis and subsequent quantitative PCR detected a large, heterozygous deletion spanning 1759-2554 kb that eliminated 12-18 genes including a whole PAX3 gene.

  7. Environmental and genetic effects on tomato seed metabolic balance and its association with germination vigor.

    Science.gov (United States)

    Rosental, Leah; Perelman, Adi; Nevo, Noa; Toubiana, David; Samani, Talya; Batushansky, Albert; Sikron, Noga; Saranga, Yehoshua; Fait, Aaron

    2016-12-19

    The metabolite content of a seed and its ability to germinate are determined by genetic makeup and environmental effects during development. The interaction between genetics, environment and seed metabolism and germination was studied in 72 tomato homozygous introgression lines (IL) derived from Solanum pennelli and S. esculentum M82 cultivar. Plants were grown in the field under saline and fresh water irrigation during two consecutive seasons, and collected seeds were subjected to morphological analysis, gas chromatograph-mass spectrometry (GC-MS) metabolic profiling and germination tests. Seed weight was under tight genetic regulation, but it was not related to germination vigor. Salinity significantly reduced seed number but had little influence on seed metabolites, affecting only 1% of the statistical comparisons. The metabolites negatively correlated to germination were simple sugars and most amino acids, while positive correlations were found for several organic acids and the N metabolites urea and dopamine. Germination tests identified putative loci for improved germination as compared to M82 and in response to salinity, which were also characterized by defined metabolic changes in the seed. An integrative analysis of the metabolite and germination data revealed metabolite levels unambiguously associated with germination percentage and rate, mostly conserved in the different tested seed development environments. Such consistent relations suggest the potential for developing a method of germination vigor prediction by metabolic profiling, as well as add to our understanding of the importance of primary metabolic processes in germination.

  8. T-cell receptor variable genes and genetic susceptibility to celiac disease: an association and linkage study.

    Science.gov (United States)

    Roschmann, E; Wienker, T F; Gerok, W; Volk, B A

    1993-12-01

    Genetic susceptibility of celiac disease is primarily associated with a particular combination of and HLA-DQA1/DQB1 gene; however, this does not fully account for the genetic predisposition. Therefore, the aim of this study was to examine whether T-cell receptor (TCR) genes may be susceptibility genes in celiac disease. HLA class II typing was performed by polymerase chain reaction amplification in combination with sequence-specific oligonucleotide hybridization. TCR alpha (TCRA), TCR gamma (TCRG), and TCR beta (TCRB) loci were investigated by restriction fragment length polymorphism analysis. Allelic frequencies of TCRA, TCRG, and TCRB variable genes were compared between patients with celiac disease (n = 53) and control patients (n = 67), and relative risk (RR) estimates were calculated. The RR was 1.67 for allele C1 at TCRA1, 3.35 for allele D2 at TCRA2, 1.66 for allele B2 at TCRG, and 1.35 for allele B at TCRB, showing no significant association. Additionally, linkage analysis was performed in 23 families. The logarithm of odd scores for celiac disease vs. the TCR variable genes at TCRA, TCRG, and TCRB showed no significant linkage. These data suggest that the analyzed TCR variable gene segments V alpha 1.2, V gamma 11, and V beta 8 do not play a major role in susceptibility to celiac disease.

  9. DMPD: The Toll-like receptors: analysis by forward genetic methods. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 16001129 The Toll-like receptors: analysis by forward genetic methods. Beutler B. I...mmunogenetics. 2005 Jul;57(6):385-92. (.png) (.svg) (.html) (.csml) Show The Toll-like receptors: analysis by forwar...d genetic methods. PubmedID 16001129 Title The Toll-like receptors: analysis by forward genetic meth

  10. Genetic Variation in NFKBIE Is Associated With Increased Risk of Pneumococcal Meningitis in Children

    DEFF Research Database (Denmark)

    Lundbo, Lene F; Harboe, Zitta Barrella; Clausen, Louise N

    2016-01-01

    NFKBIA, NFKBIE and NFKBIZ. We aimed to replicate previous findings of genetic variation associated with invasive pneumococcal disease (IPD), and to assess whether similar associations could be found in invasive meningococcal disease (IMD). METHODS: Cases with IPD and IMD and controls were identified......BACKGROUND: Streptococcus pneumoniae and Neisseria meningitidis are frequent pathogens in life-threatening infections. Genetic variation in the immune system may predispose to these infections. Nuclear factor-κB is a key component of the TLR-pathway, controlled by inhibitors, encoded by the genes.......86-1.35). The remaining SNPs were not associated with susceptibility to invasive disease. None of the SNPs were associated with risk of IMD or mortality. CONCLUSIONS: A NFKBIE polymorphism was associated with increased risk of pneumococcal meningitis....

  11. Association and Genetic Identification of Loci for Four Fruit Traits in Tomato Using InDel Markers

    Directory of Open Access Journals (Sweden)

    Xiaoxi Liu

    2017-07-01

    Full Text Available Tomato (Solanum lycopersicum fruit weight (FW, soluble solid content (SSC, fruit shape and fruit color are crucial for yield, quality and consumer acceptability. In this study, a 192 accessions tomato association panel comprising a mixture of wild species, cherry tomato, landraces, and modern varieties collected worldwide was genotyped with 547 InDel markers evenly distributed on 12 chromosomes and scored for FW, SSC, fruit shape index (FSI, and color parameters over 2 years with three replications each year. The association panel was sorted into two subpopulations. Linkage disequilibrium ranged from 3.0 to 47.2 Mb across 12 chromosomes. A set of 102 markers significantly (p < 1.19–1.30 × 10−4 associated with SSC, FW, fruit shape, and fruit color was identified on 11 of the 12 chromosomes using a mixed linear model. The associations were compared with the known gene/QTLs for the same traits. Genetic analysis using F2 populations detected 14 and 4 markers significantly (p < 0.05 associated with SSC and FW, respectively. Some loci were commonly detected by both association and linkage analysis. Particularly, one novel locus for FW on chromosome 4 detected by association analysis was also identified in F2 populations. The results demonstrated that association mapping using limited number of InDel markers and a relatively small population could not only complement and enhance previous QTL information, but also identify novel loci for marker-assisted selection of fruit traits in tomato.

  12. Bayesian meta-analysis of genetic association studies with different sets of markers

    NARCIS (Netherlands)

    Verzilli, Claudio; Shah, Tina; Casas, Juan P.; Chapman, Juliet; Sandhu, Manjinder; Debenham, Sally L.; Boekholdt, Matthijs S.; Khaw, Kay Tee; Wareham, Nicholas J.; Judson, Richard; Benjamin, Emelia J.; Kathiresan, Sekar; Larson, Martin G.; Rong, Jian; Sofat, Reecha; Humphries, Steve E.; Smeeth, Liam; Cavalleri, Gianpiero; Whittaker, John C.; Hingorani, Aroon D.

    2008-01-01

    Robust assessment of genetic effects on quantitative traits or complex-disease risk requires synthesis of evidence from multiple studies. Frequently, studies have genotyped partially overlapping sets of SNPs within a gene or region of interest, hampering attempts to combine all the available data.

  13. Analysis of genetic effects of nuclear-cytoplasmic interaction on quantitative traits: genetic model for diploid plants.

    Science.gov (United States)

    Han, Lide; Yang, Jian; Zhu, Jun

    2007-06-01

    A genetic model was proposed for simultaneously analyzing genetic effects of nuclear, cytoplasm, and nuclear-cytoplasmic interaction (NCI) as well as their genotype by environment (GE) interaction for quantitative traits of diploid plants. In the model, the NCI effects were further partitioned into additive and dominance nuclear-cytoplasmic interaction components. Mixed linear model approaches were used for statistical analysis. On the basis of diallel cross designs, Monte Carlo simulations showed that the genetic model was robust for estimating variance components under several situations without specific effects. Random genetic effects were predicted by an adjusted unbiased prediction (AUP) method. Data on four quantitative traits (boll number, lint percentage, fiber length, and micronaire) in Upland cotton (Gossypium hirsutum L.) were analyzed as a worked example to show the effectiveness of the model.

  14. Genetic analysis of glucosinolate variability in broccoli florets using genome-anchored single nucleotide polymorphisms.

    Science.gov (United States)

    Brown, Allan F; Yousef, Gad G; Reid, Robert W; Chebrolu, Kranthi K; Thomas, Aswathy; Krueger, Christopher; Jeffery, Elizabeth; Jackson, Eric; Juvik, John A

    2015-07-01

    The identification of genetic factors influencing the accumulation of individual glucosinolates in broccoli florets provides novel insight into the regulation of glucosinolate levels in Brassica vegetables and will accelerate the development of vegetables with glucosinolate profiles tailored to promote human health. Quantitative trait loci analysis of glucosinolate (GSL) variability was conducted with a B. oleracea (broccoli) mapping population, saturated with single nucleotide polymorphism markers from a high-density array designed for rapeseed (Brassica napus). In 4 years of analysis, 14 QTLs were associated with the accumulation of aliphatic, indolic, or aromatic GSLs in floret tissue. The accumulation of 3-carbon aliphatic GSLs (2-propenyl and 3-methylsulfinylpropyl) was primarily associated with a single QTL on C05, but common regulation of 4-carbon aliphatic GSLs was not observed. A single locus on C09, associated with up to 40 % of the phenotypic variability of 2-hydroxy-3-butenyl GSL over multiple years, was not associated with the variability of precursor compounds. Similarly, QTLs on C02, C04, and C09 were associated with 4-methylsulfinylbutyl GSL concentration over multiple years but were not significantly associated with downstream compounds. Genome-specific SNP markers were used to identify candidate genes that co-localized to marker intervals and previously sequenced Brassica oleracea BAC clones containing known GSL genes (GSL-ALK, GSL-PRO, and GSL-ELONG) were aligned to the genomic sequence, providing support that at least three of our 14 QTLs likely correspond to previously identified GSL loci. The results demonstrate that previously identified loci do not fully explain GSL variation in broccoli. The identification of additional genetic factors influencing the accumulation of GSL in broccoli florets provides novel insight into the regulation of GSL levels in Brassicaceae and will accelerate development of vegetables with modified or enhanced GSL

  15. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update

    Science.gov (United States)

    Peakall, Rod; Smouse, Peter E.

    2012-01-01

    Summary: GenAlEx: Genetic Analysis in Excel is a cross-platform package for population genetic analyses that runs within Microsoft Excel. GenAlEx offers analysis of diploid codominant, haploid and binary genetic loci and DNA sequences. Both frequency-based (F-statistics, heterozygosity, HWE, population assignment, relatedness) and distance-based (AMOVA, PCoA, Mantel tests, multivariate spatial autocorrelation) analyses are provided. New features include calculation of new estimators of population structure: G′ST, G′′ST, Jost’s Dest and F′ST through AMOVA, Shannon Information analysis, linkage disequilibrium analysis for biallelic data and novel heterogeneity tests for spatial autocorrelation analysis. Export to more than 30 other data formats is provided. Teaching tutorials and expanded step-by-step output options are included. The comprehensive guide has been fully revised. Availability and implementation: GenAlEx is written in VBA and provided as a Microsoft Excel Add-in (compatible with Excel 2003, 2007, 2010 on PC; Excel 2004, 2011 on Macintosh). GenAlEx, and supporting documentation and tutorials are freely available at: http://biology.anu.edu.au/GenAlEx. Contact: rod.peakall@anu.edu.au PMID:22820204

  16. Genetic analysis of variation in human meiotic recombination.

    Directory of Open Access Journals (Sweden)

    Reshmi Chowdhury

    2009-09-01

    Full Text Available The number of recombination events per meiosis varies extensively among individuals. This recombination phenotype differs between female and male, and also among individuals of each gender. In this study, we used high-density SNP genotypes of over 2,300 individuals and their offspring in two datasets to characterize recombination landscape and to map the genetic variants that contribute to variation in recombination phenotypes. We found six genetic loci that are associated with recombination phenotypes. Two of these (RNF212 and an inversion on chromosome 17q21.31 were previously reported in the Icelandic population, and this is the first replication in any other population. Of the four newly identified loci (KIAA1462, PDZK1, UGCG, NUB1, results from expression studies provide support for their roles in meiosis. Each of the variants that we identified explains only a small fraction of the individual variation in recombination. Notably, we found different sequence variants associated with female and male recombination phenotypes, suggesting that they are regulated by different genes. Characterization of genetic variants that influence natural variation in meiotic recombination will lead to a better understanding of normal meiotic events as well as of non-disjunction, the primary cause of pregnancy loss.

  17. Degree of European Genetic Ancestry is Associated with Serum Vitamin D Levelsin African Americans.

    Science.gov (United States)

    Haddad, Stephen A; Ruiz-Narváez, Edward A; Cozier, Yvette C; Gerlovin, Hanna; Rosenberg, Lynn; Palmer, Julie R

    2018-01-30

    Circulating levels of vitamin D are generally lower in African Americans compared to U.S. whites, and one prior analysis in a small number of African Americans suggested that, within this population, vitamin D levels may be related to the degree of genetic admixture. We assessed the association of percent European ancestry with serum vitamin D levels in 2183 African American women from the Black Women's Health Study in 2013-2015, whose DNA had been genotyped for ancestry informative markers. ADMIXMAP software was used to estimate percent European versus African ancestry in each individual. In linear regression analyses with adjustment for genotype batch, age, body mass index, supplemental vitamin D use, UVB flux in state of residence, and season of blood draw, each 10% increase in European ancestry was associated with a 0.672 ng/mL increase in serum vitamin D concentration (95% confidence interval 0.173, 1.170). The association was statistically significant only among women who were not taking vitamin D supplements (beta coefficient for 10% increase in European ancestry 0.855, 95% confidence interval 0.139, 1.571). Among African Americans, use of vitamin D supplementation may help to reduce vitamin D deficiency due to genetic ancestry. © The Author(s) 2018. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Genetic association between selected cytokine genes and glioblastoma in the Han Chinese population

    International Nuclear Information System (INIS)

    Jin, Tianbo; Li, Xiaolan; Zhang, Jiayi; Wang, Hong; Geng, Tingting; Li, Gang; Gao, Guodong; Chen, Chao

    2013-01-01

    Glioblastoma (GBM) is the most malignant brain tumor. Many abnormal secretion and expression of cytokines have been found in GBM, initially speculated that the occurrence of GBM may be involved in these abnormal secretion of cytokines. This study aims to detect the association of cytokine genes with GBM. We selected seven tag single nucleotide polymorphisms (tSNPs) in six cytokine genes, which previously reported to be associated with brain tumors, and analyzed their association with GBM in a Han Chinese population using χ 2 test and genetic model analysis. We found two risk tSNPs and one protective tSNP. By χ 2 test, the rs1801275 in IL-4R showed an increased risk of GBM. In the genetic model analysis, the genotype “TC” of rs20541 in IL-13 gene showed an increased risk of GBM in over-dominant model (OR = 2.00; 95% CI, 1.13-3.54, p = 0.015); the genotype “CT” of rs1800871 in the IL-10 gene showed a decrease risk in the over-dominant model (OR = 0.57; 95% CI, 0.33 – 0.97; p = 0.037). The genotype “AG” of rs1801275 in the IL-4R gene showed an increase risk in over-dominant model (OR = 2.29; 95% CI, 1.20 - 4.35; p = 0.0081) We further analyzed whether the six cytokine genes have a different effect on the disease in gender specific population, and found that the allele “G” of rs2243248 in the IL-4 gene showed a decrease risk of GBM in female (OR = 0.35, 95% CI, 0.13 - 0.94, p = 0.0032), but the allele “T” showed a decrease risk in male (OR = 0.30, 95% CI, 0.17 - 0.53, p = 0.0032). Our findings, combined with previously reported results, suggest that cytokine genes have potential role in GBM development, which may be useful to early prognostics for GBM in the Han Chinese population

  19. EMBO Course “Formal Analysis of Genetic Regulation”

    CERN Document Server

    1979-01-01

    The E M B 0 course on "Formal Analysis of Genetic Regulation" A course entitled "Formal analysis of Genetic Regulation" was held at the University of Brussels from 6 to 16 September 1977 under the auspices of EMBO (European Molecular Biology Organization). As indicated by the title of the book (but not explicitly enough by the title of the course), the main emphasis was put on a dynamic analysis of systems using logical methods, that is, methods in which functions and variables take only a limited number of values - typically two. In this respect, this course was complementary to an EMBO course using continuous methods which was held some months later in Israel by Prof. Segel. People from four very different laboratories took an active part in teaching our course in Brussels : Drs Anne LEUSSLER and Philippe VAN HAM, from the Laboratory of Prof. Jean FLORINE (Laboratoire des Systemes logiques et numeriques, Faculte des Sciences appliquees, Universite Libre de Bruxelles). Dr Stuart KAUFFMAN (Dept. of Biochemist...

  20. Psychosocial and Clinical Factors Associated with Family Communication of Cancer Genetic Test Results among Women Diagnosed with Breast Cancer at a Young Age.

    Science.gov (United States)

    Elrick, Ashley; Ashida, Sato; Ivanovich, Jennifer; Lyons, Sarah; Biesecker, Barbara B; Goodman, Melody S; Kaphingst, Kimberly A

    2017-02-01

    Genetic test results have medical implications beyond the patient that extend to biological family members. We examined psychosocial and clinical factors associated with communication of genetic test results within families. Women (N = 1080) diagnosed with breast cancer at age 40 or younger completed an online survey; 920 women that reported prior cancer genetic testing were included in analysis. We examined the proportion of immediate family members to whom they communicated genetic test results, and built multivariable regression models to examine clinical and psychosocial variables associated with the proportion score. Participants were most likely to communicate test results to their mother (83 %) and least likely to their son (45 %). Participants who carried a BRCA mutation (OR = 1.34; 95 % CI = 1.06, 1.70), had higher interest in genomic information (OR = 1.55; 95 % CI = 1.26, 1.91) and lower genetic worry (OR = 0.91; 95 % CI = 0.86, 0.96) communicated genetic test results to a greater proportion of their immediate family members. Participants with a BRCA1/2 mutation shared their genetic test results with more male family members (OR = 1.72; 95 % CI = 1.02, 2.89). Our findings suggest that patients with high worry about genetic risks, low interest in genomic information, or receive a negative genetic test result will likely need additional support to encourage family communication.

  1. Assessing the impact of a combined analysis of four common low-risk genetic variants on autism risk

    Directory of Open Access Journals (Sweden)

    Carayol Jerome

    2010-02-01

    Full Text Available Abstract Background Autism is a complex disorder characterized by deficits involving communication, social interaction, and repetitive and restrictive patterns of behavior. Twin studies have shown that autism is strongly heritable, suggesting a strong genetic component. In other disease states with a complex etiology, such as type 2 diabetes, cancer and cardiovascular disease, combined analysis of multiple genetic variants in a genetic score has helped to identify individuals at high risk of disease. Genetic scores are designed to test for association of genetic markers with disease. Method The accumulation of multiple risk alleles markedly increases the risk of being affected, and compared with studying polymorphisms individually, it improves the identification of subgroups of individuals at greater risk. In the present study, we show that this approach can be applied to autism by specifically looking at a high-risk population of children who have siblings with autism. A two-sample study design and the generation of a genetic score using multiple independent genes were used to assess the risk of autism in a high-risk population. Results In both samples, odds ratios (ORs increased significantly as a function of the number of risk alleles, with a genetic score of 8 being associated with an OR of 5.54 (95% confidence interval [CI] 2.45 to 12.49. The sensitivities and specificities for each genetic score were similar in both analyses, and the resultant area under the receiver operating characteristic curves were identical (0.59. Conclusions These results suggest that the accumulation of multiple risk alleles in a genetic score is a useful strategy for assessing the risk of autism in siblings of affected individuals, and may be better than studying single polymorphisms for identifying subgroups of individuals with significantly greater risk.

  2. Association analysis of the genetic polymorphisms with leprosy subtypes in Chinese Han population from Northern China.

    Science.gov (United States)

    Wang, Chuan; Wang, Zhenzhen; Wang, Honglei; Pan, Qing; Fu, Xi'an; Liu, Tingting; Yu, Gongqi; Liu, Hong; Zhang, Furen

    2018-03-24

    Leprosy is characterized by a broad spectrum of clinical manifestations that extend from paucibacillary (PB) to multibacillary (MB) depending upon the different immunologic response to the invading of M. leprae 3,4 . It has been widely accepted that genetic predisposition plays the crucial role in the different clinical manifestations. Host susceptibility to leprosy is modified by number of genes via two stages. In the first stage, a group of genes confers susceptibility to leprosy per se; A second group of genes are associated to the type of host immune response and leprosy subtype 5 . This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Phenotypic and molecular genetic analysis of Pyruvate Kinase ...

    African Journals Online (AJOL)

    Phenotypic and molecular genetic analysis of Pyruvate Kinase deficiency in a Tunisian family. Jaouani Mouna, Hamdi Nadia, Chaouch Leila, Kalai Miniar, Mellouli Fethi, Darragi Imen, Boudriga Imen, Chaouachi Dorra, Bejaoui Mohamed, Abbes Salem ...

  4. Children's History of Speech-Language Difficulties: Genetic Influences and Associations with Reading-Related Measures

    Science.gov (United States)

    DeThorne, Laura Segebart; Hart, Sara A.; Petrill, Stephen A.; Deater-Deckard, Kirby; Thompson, Lee Anne; Schatschneider, Chris; Davison, Megan Dunn

    2006-01-01

    Purpose: This study examined (a) the extent of genetic and environmental influences on children's articulation and language difficulties and (b) the phenotypic associations between such difficulties and direct assessments of reading-related skills during early school-age years. Method: Behavioral genetic analyses focused on parent-report data…

  5. A genetic variant within STS previously associated with inattention in boys with attention deficit hyperactivity disorder is associated with enhanced cognition in healthy adult males.

    Science.gov (United States)

    Humby, Trevor; Fisher, Amelia; Allen, Christopher; Reynolds, Meghann; Hartman, Annette; Giegling, Ina; Rujescu, Dan; Davies, William

    2017-03-01

    The enzyme steroid sulfatase (STS) converts sulfated steroids to their non-sulfated forms. Deficiency for this enzyme is associated with inattention but preserved response control. The polymorphism rs17268988 within the X-linked STS gene is associated with inattentive, but not other, symptoms in boys with attention deficit hyperactivity disorder (ADHD). We initially tested whether rs17268988 genotype was associated with attention, response control, and underlying aspects of cognition, using questionnaires and neuropsychological tasks, in two independent cohorts of healthy adult males. In an additional analysis based upon existing data, the performance of mice with genetic or pharmacological manipulations of the STS axis under attentionally demanding conditions was investigated. G-allele carriers at rs17268988 exhibited reduced reaction time, enhanced attention, and reduced reaction time variability relative to C-allele carriers. Mice with genetic or pharmacological manipulations of the STS axis were shown to have perturbed reaction time variability. Our findings provide additional support for an association between rs17268988 genotype and attention, which may be partially mediated by reaction time variability; they also indicate that, in contrast to the situation in boys with ADHD, in healthy men, the G-allele at rs17268988 is associated with enhanced cognition. As reaction time variability is a predictor of well-being, rs17268988 genotype may represent a biomarker for long-term health.

  6. Using Y-Chromosomal Haplogroups in Genetic Association Studies and Suggested Implications.

    Science.gov (United States)

    Erzurumluoglu, A Mesut; Baird, Denis; Richardson, Tom G; Timpson, Nicholas J; Rodriguez, Santiago

    2018-01-22

    Y-chromosomal (Y-DNA) haplogroups are more widely used in population genetics than in genetic epidemiology, although associations between Y-DNA haplogroups and several traits, including cardiometabolic traits, have been reported. In apparently homogeneous populations defined by principal component analyses, there is still Y-DNA haplogroup variation which will result from population history. Therefore, hidden stratification and/or differential phenotypic effects by Y-DNA haplogroups could exist. To test this, we hypothesised that stratifying individuals according to their Y-DNA haplogroups before testing for associations between autosomal single nucleotide polymorphisms (SNPs) and phenotypes will yield difference in association. For proof of concept, we derived Y-DNA haplogroups from 6537 males from two epidemiological cohorts, Avon Longitudinal Study of Parents and Children (ALSPAC) ( n = 5080; 816 Y-DNA SNPs) and the 1958 Birth Cohort ( n = 1457; 1849 Y-DNA SNPs), and studied the robust associations between 32 SNPs and body mass index (BMI), including SNPs in or near Fat Mass and Obesity-associated protein ( FTO ) which yield the strongest effects. Overall, no association was replicated in both cohorts when Y-DNA haplogroups were considered and this suggests that, for BMI at least, there is little evidence of differences in phenotype or SNP association by Y-DNA structure. Further studies using other traits, phenome-wide association studies (PheWAS), other haplogroups and/or autosomal SNPs are required to test the generalisability and utility of this approach.

  7. Statistical power and utility of meta-analysis methods for cross-phenotype genome-wide association studies.

    Science.gov (United States)

    Zhu, Zhaozhong; Anttila, Verneri; Smoller, Jordan W; Lee, Phil H

    2018-01-01

    Advances in recent genome wide association studies (GWAS) suggest that pleiotropic effects on human complex traits are widespread. A number of classic and recent meta-analysis methods have been used to identify genetic loci with pleiotropic effects, but the overall performance of these methods is not well understood. In this work, we use extensive simulations and case studies of GWAS datasets to investigate the power and type-I error rates of ten meta-analysis methods. We specifically focus on three conditions commonly encountered in the studies of multiple traits: (1) extensive heterogeneity of genetic effects; (2) characterization of trait-specific association; and (3) inflated correlation of GWAS due to overlapping samples. Although the statistical power is highly variable under distinct study conditions, we found the superior power of several methods under diverse heterogeneity. In particular, classic fixed-effects model showed surprisingly good performance when a variant is associated with more than a half of study traits. As the number of traits with null effects increases, ASSET performed the best along with competitive specificity and sensitivity. With opposite directional effects, CPASSOC featured the first-rate power. However, caution is advised when using CPASSOC for studying genetically correlated traits with overlapping samples. We conclude with a discussion of unresolved issues and directions for future research.

  8. Fine-Mapping of Common Genetic Variants Associated with Colorectal Tumor Risk Identified Potential Functional Variants.

    Directory of Open Access Journals (Sweden)

    Mengmeng Du

    Full Text Available Genome-wide association studies (GWAS have identified many common single nucleotide polymorphisms (SNPs associated with colorectal cancer risk. These SNPs may tag correlated variants with biological importance. Fine-mapping around GWAS loci can facilitate detection of functional candidates and additional independent risk variants. We analyzed 11,900 cases and 14,311 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium and the Colon Cancer Family Registry. To fine-map genomic regions containing all known common risk variants, we imputed high-density genetic data from the 1000 Genomes Project. We tested single-variant associations with colorectal tumor risk for all variants spanning genomic regions 250-kb upstream or downstream of 31 GWAS-identified SNPs (index SNPs. We queried the University of California, Santa Cruz Genome Browser to examine evidence for biological function. Index SNPs did not show the strongest association signals with colorectal tumor risk in their respective genomic regions. Bioinformatics analysis of SNPs showing smaller P-values in each region revealed 21 functional candidates in 12 loci (5q31.1, 8q24, 11q13.4, 11q23, 12p13.32, 12q24.21, 14q22.2, 15q13, 18q21, 19q13.1, 20p12.3, and 20q13.33. We did not observe evidence of additional independent association signals in GWAS-identified regions. Our results support the utility of integrating data from comprehensive fine-mapping with expanding publicly available genomic databases to help clarify GWAS associations and identify functional candidates that warrant more onerous laboratory follow-up. Such efforts may aid the eventual discovery of disease-causing variant(s.

  9. Investigation of genetic variation in scavenger receptor class B, member 1 (SCARB1) and association with serum carotenoids

    Science.gov (United States)

    McKay, Gareth J; Loane, Edward; Nolan, John M; Patterson, Christopher C; Meyers, Kristin J; Mares, Julie A; Yonova-Doing, Ekaterina; Hammond, Christopher J; Beatty, Stephen; Silvestri, Giuliana

    2013-01-01

    Objective To investigate association of scavenger receptor class B, member 1 (SCARB1) genetic variants with serum carotenoid levels of lutein (L) and zeaxanthin (Z) and macular pigment optical density (MPOD). Design A cross-sectional study of healthy adults aged 20-70. Participants 302 participants recruited following local advertisement. Methods MPOD was measured by customized heterochromatic flicker photometry. Fasting blood samples were taken for serum L and Z measurement by HPLC and lipoprotein analysis by spectrophotometric assay. Forty-seven single nucleotide polymorphisms (SNPs) across SCARB1 were genotyped using Sequenom technology. Association analyses were performed using PLINK to compare allele and haplotype means, with adjustment for potential confounding and correction for multiple comparisons by permutation testing. Replication analysis was performed in the TwinsUK and CAREDS cohorts. Main outcome measures Odds ratios (ORs) for macular pigment optical density area, serum lutein and zeaxanthin concentrations associated with genetic variations in SCARB1 and interactions between SCARB1 and sex. Results Following multiple regression analysis with adjustment for age, body mass index, sex, high-density lipoprotein cholesterol (HDLc), low-density lipoprotein cholesterol (LDLc), triglycerides, smoking, dietary L and Z levels, 5 SNPs were significantly associated with serum L concentration and 1 SNP with MPOD (P<0.01). Only the association between rs11057841 and serum L withstood correction for multiple comparisons by permutation testing (P<0.01) and replicated in the TwinsUK cohort (P=0.014). Independent replication was also observed in the CAREDS cohort with rs10846744 (P=2×10−4), a SNP in high linkage disequilibrium with rs11057841 (r2=0.93). No significant interactions by sex were found. Haplotype analysis revealed no stronger association than obtained with single SNP analyses. Conclusions Our study has identified association between rs11057841 and

  10. A genome-wide analysis of putative functional and exonic variation associated with extremely high intelligence.

    Science.gov (United States)

    Spain, S L; Pedroso, I; Kadeva, N; Miller, M B; Iacono, W G; McGue, M; Stergiakouli, E; Davey Smith, G; Putallaz, M; Lubinski, D; Meaburn, E L; Plomin, R; Simpson, M A

    2016-08-01

    Although individual differences in intelligence (general cognitive ability) are highly heritable, molecular genetic analyses to date have had limited success in identifying specific loci responsible for its heritability. This study is the first to investigate exome variation in individuals of extremely high intelligence. Under the quantitative genetic model, sampling from the high extreme of the distribution should provide increased power to detect associations. We therefore performed a case-control association analysis with 1409 individuals drawn from the top 0.0003 (IQ >170) of the population distribution of intelligence and 3253 unselected population-based controls. Our analysis focused on putative functional exonic variants assayed on the Illumina HumanExome BeadChip. We did not observe any individual protein-altering variants that are reproducibly associated with extremely high intelligence and within the entire distribution of intelligence. Moreover, no significant associations were found for multiple rare alleles within individual genes. However, analyses using genome-wide similarity between unrelated individuals (genome-wide complex trait analysis) indicate that the genotyped functional protein-altering variation yields a heritability estimate of 17.4% (s.e. 1.7%) based on a liability model. In addition, investigation of nominally significant associations revealed fewer rare alleles associated with extremely high intelligence than would be expected under the null hypothesis. This observation is consistent with the hypothesis that rare functional alleles are more frequently detrimental than beneficial to intelligence.

  11. How powerful are summary-based methods for identifying expression-trait associations under different genetic architectures?

    Science.gov (United States)

    Veturi, Yogasudha; Ritchie, Marylyn D

    2018-01-01

    Transcriptome-wide association studies (TWAS) have recently been employed as an approach that can draw upon the advantages of genome-wide association studies (GWAS) and gene expression studies to identify genes associated with complex traits. Unlike standard GWAS, summary level data suffices for TWAS and offers improved statistical power. Two popular TWAS methods include either (a) imputing the cis genetic component of gene expression from smaller sized studies (using multi-SNP prediction or MP) into much larger effective sample sizes afforded by GWAS - TWAS-MP or (b) using summary-based Mendelian randomization - TWAS-SMR. Although these methods have been effective at detecting functional variants, it remains unclear how extensive variability in the genetic architecture of complex traits and diseases impacts TWAS results. Our goal was to investigate the different scenarios under which these methods yielded enough power to detect significant expression-trait associations. In this study, we conducted extensive simulations based on 6000 randomly chosen, unrelated Caucasian males from Geisinger's MyCode population to compare the power to detect cis expression-trait associations (within 500 kb of a gene) using the above-described approaches. To test TWAS across varying genetic backgrounds we simulated gene expression and phenotype using different quantitative trait loci per gene and cis-expression /trait heritability under genetic models that differentiate the effect of causality from that of pleiotropy. For each gene, on a training set ranging from 100 to 1000 individuals, we either (a) estimated regression coefficients with gene expression as the response using five different methods: LASSO, elastic net, Bayesian LASSO, Bayesian spike-slab, and Bayesian ridge regression or (b) performed eQTL analysis. We then sampled with replacement 50,000, 150,000, and 300,000 individuals respectively from the testing set of the remaining 5000 individuals and conducted GWAS on each

  12. Meta-analysis of shared genetic architecture across ten pediatric autoimmune diseases

    Science.gov (United States)

    Li, Yun R; Li, Jin; Zhao, Sihai D; Bradfield, Jonathan P; Mentch, Frank D; Maggadottir, S Melkorka; Hou, Cuiping; Abrams, Debra J; Chang, Diana; Gao, Feng; Guo, Yiran; Wei, Zhi; Connolly, John J; Cardinale, Christopher J; Bakay, Marina; Glessner, Joseph T; Li, Dong; Kao, Charlly; Thomas, Kelly A; Qiu, Haijun; Chiavacci, Rosetta M; Kim, Cecilia E; Wang, Fengxiang; Snyder, James; Richie, Marylyn D; Flatø, Berit; Førre, Øystein; Denson, Lee A; Thompson, Susan D; Becker, Mara L; Guthery, Stephen L; Latiano, Anna; Perez, Elena; Resnick, Elena; Russell, Richard K; Wilson, David C; Silverberg, Mark S; Annese, Vito; Lie, Benedicte A; Punaro, Marilynn; Dubinsky, Marla C; Monos, Dimitri S; Strisciuglio, Caterina; Staiano, Annamaria; Miele, Erasmo; Kugathasan, Subra; Ellis, Justine A; Munro, Jane E; Sullivan, Kathleen E; Wise, Carol A; Chapel, Helen; Cunningham-Rundles, Charlotte; Grant, Struan F A; Orange, Jordan S; Sleiman, Patrick M A; Behrens, Edward M; Griffiths, Anne M; Satsangi, Jack; Finkel, Terri H; Keinan, Alon; Prak, Eline T Luning; Polychronakos, Constantin; Baldassano, Robert N; Li, Hongzhe; Keating, Brendan J; Hakonarson, Hakon

    2016-01-01

    Genome-wide association studies (GWASs) have identified hundreds of susceptibility genes, including shared associations across clinically distinct autoimmune diseases. We performed an inverse χ2 meta-analysis across ten pediatric-age-of-onset autoimmune diseases (pAIDs) in a case-control study including more than 6,035 cases and 10,718 shared population-based controls. We identified 27 genome-wide significant loci associated with one or more pAIDs, mapping to in silico–replicated autoimmune-associated genes (including IL2RA) and new candidate loci with established immunoregulatory functions such as ADGRL2, TENM3, ANKRD30A, ADCY7 and CD40LG. The pAID-associated single-nucleotide polymorphisms (SNPs) were functionally enriched for deoxyribonuclease (DNase)-hypersensitivity sites, expression quantitative trait loci (eQTLs), microRNA (miRNA)-binding sites and coding variants. We also identified biologically correlated, pAID-associated candidate gene sets on the basis of immune cell expression profiling and found evidence of genetic sharing. Network and protein-interaction analyses demonstrated converging roles for the signaling pathways of type 1, 2 and 17 helper T cells (TH1, TH2 and TH17), JAK-STAT, interferon and interleukin in multiple autoimmune diseases. PMID:26301688

  13. Metabolome-genome-wide association study dissects genetic architecture for generating natural variation in rice secondary metabolism

    Science.gov (United States)

    Matsuda, Fumio; Nakabayashi, Ryo; Yang, Zhigang; Okazaki, Yozo; Yonemaru, Jun-ichi; Ebana, Kaworu; Yano, Masahiro; Saito, Kazuki

    2015-01-01

    Plants produce structurally diverse secondary (specialized) metabolites to increase their fitness for survival under adverse environments. Several bioactive compounds for new drugs have been identified through screening of plant extracts. In this study, genome-wide association studies (GWAS) were conducted to investigate the genetic architecture behind the natural variation of rice secondary metabolites. GWAS using the metabolome data of 175 rice accessions successfully identified 323 associations among 143 single nucleotide polymorphisms (SNPs) and 89 metabolites. The data analysis highlighted that levels of many metabolites are tightly associated with a small number of strong quantitative trait loci (QTLs). The tight association may be a mechanism generating strains with distinct metabolic composition through the crossing of two different strains. The results indicate that one plant species produces more diverse phytochemicals than previously expected, and plants still contain many useful compounds for human applications. PMID:25267402

  14. Genetic Association Analysis of Fasting and 1- and 2-Hour Glucose Tolerance Test Data Using a Generalized Index of Dissimilarity Measure for the Korean Population

    Directory of Open Access Journals (Sweden)

    Jaeyong Yee

    2016-12-01

    Full Text Available Glucose tolerance tests have been devised to determine the speed of blood glucose clearance. Diabetes is often tested with the standard oral glucose tolerance test (OGTT, along with fasting glucose level. However, no single test may be sufficient for the diagnosis, and the World Health Organization (WHO/International Diabetes Federation (IDF has suggested composite criteria. Accordingly, a single multi-class trait was constructed with three of the fasting phenotypes and 1- and 2-hour OGTT phenotypes from the Korean Association Resource (KARE project, and the genetic association was investigated. All of the 18 possible combinations made out of the 3 sets of classification for the individual phenotypes were taken into our analysis. These were possible due to a method that was recently developed by us for estimating genomic associations using a generalized index of dissimilarity. Eight single-nucleotide polymorphisms (SNPs that were found to have the strongest main effect are reported with the corresponding genes. Four of them conform to previous reports, located in the CDKAL1 gene, while the other 4 SNPs are new findings. Two-order interacting SNP pairs of are also presented. One pair (rs2328549 and rs6486740 has a prominent association, where the two single-nucleotide polymorphism locations are CDKAL1 and GLT1D1. The latter has not been found to have a strong main effect. New findings may result from the proper construction and analysis of a composite trait.

  15. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses

    OpenAIRE

    Okbay, Aysu; Baselmans, B.M.L. (Bart M.L.); Neve, Jan-Emmanuel; Turley, Patrick; Nivard, Michel; Fontana, M.A. (Mark Alan); Meddens, S.F.W. (S. Fleur W.); Linnér, R.K. (Richard Karlsson); Rietveld, C.A. (Cornelius A); Derringer, J.; Gratten, Jacob; Lee, James J.; Liu, J.Z. (Jimmy Z); Vlaming, Ronald; SAhluwalia, T. (Tarunveer)

    2016-01-01

    textabstractVery few genetic variants have been associated with depression and neuroticism, likely because of limitations on sample size in previous studies. Subjective well-being, a phenotype that is genetically correlated with both of these traits, has not yet been studied with genome-wide data. We conducted genome-wide association studies of three phenotypes: subjective well-being (n = 298,420), depressive symptoms (n = 161,460), and neuroticism (n = 170,911). We identify 3 variants associ...

  16. A novel genetic tool for clonal analysis of fourth chromosome mutations

    OpenAIRE

    Sousa-Neves, Rui; Schinaman, Joseph M.

    2012-01-01

    The fourth chromosome of Drosophila remains one of the most intractable regions of the fly genome to genetic analysis. The main difficulty posed to the genetic analyses of mutations on this chromosome arises from the fact that it does not undergo meiotic recombination, which makes recombination mapping impossible, and also prevents clonal analysis of mutations, a technique which relies on recombination to introduce the prerequisite recessive markers and FLP-recombinase recognition targets (FR...

  17. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. YUNJIAO ZHOU. Articles written in Journal of Genetics. Volume 96 Issue 6 December 2017 pp 993-1003 Research article. Association of lactase 13910 C/T polymorphism with bone mineral density and fracture risk: a meta-analysis · YOUGEN WU YINGHUA LI YUNQING CUI YUNJIAO ...

  18. Genetic high throughput screening in Retinitis Pigmentosa based on high resolution melting (HRM) analysis.

    Science.gov (United States)

    Anasagasti, Ander; Barandika, Olatz; Irigoyen, Cristina; Benitez, Bruno A; Cooper, Breanna; Cruchaga, Carlos; López de Munain, Adolfo; Ruiz-Ederra, Javier

    2013-11-01

    Retinitis Pigmentosa (RP) involves a group of genetically determined retinal diseases caused by a large number of mutations that result in rod photoreceptor cell death followed by gradual death of cone cells. Most cases of RP are monogenic, with more than 80 associated genes identified so far. The high number of genes and variants involved in RP, among other factors, is making the molecular characterization of RP a real challenge for many patients. Although HRM has been used for the analysis of isolated variants or single RP genes, as far as we are concerned, this is the first study that uses HRM analysis for a high-throughput screening of several RP genes. Our main goal was to test the suitability of HRM analysis as a genetic screening technique in RP, and to compare its performance with two of the most widely used NGS platforms, Illumina and PGM-Ion Torrent technologies. RP patients (n = 96) were clinically diagnosed at the Ophthalmology Department of Donostia University Hospital, Spain. We analyzed a total of 16 RP genes that meet the following inclusion criteria: 1) size: genes with transcripts of less than 4 kb; 2) number of exons: genes with up to 22 exons; and 3) prevalence: genes reported to account for, at least, 0.4% of total RP cases worldwide. For comparison purposes, RHO gene was also sequenced with Illumina (GAII; Illumina), Ion semiconductor technologies (PGM; Life Technologies) and Sanger sequencing (ABI 3130xl platform; Applied Biosystems). Detected variants were confirmed in all cases by Sanger sequencing and tested for co-segregation in the family of affected probands. We identified a total of 65 genetic variants, 15 of which (23%) were novel, in 49 out of 96 patients. Among them, 14 (4 novel) are probable disease-causing genetic variants in 7 RP genes, affecting 15 patients. Our HRM analysis-based study, proved to be a cost-effective and rapid method that provides an accurate identification of genetic RP variants. This approach is effective for

  19. Analysis of genetic polymorphism of nine short tandem repeat loci in ...

    African Journals Online (AJOL)

    Yomi

    2012-03-15

    Mar 15, 2012 ... Key words: short tandem repeat, repeat motif, genetic polymorphism, Han population, forensic genetics. INTRODUCTION. Short tandem repeat (STR) is widely .... Data analysis. The exact test of Hardy-Weinberg equilibrium was conducted with. Arlequin version 3.5 software (Computational and Molecular.

  20. Associations between Salivary Testosterone Levels, Androgen‐Related Genetic Polymorphisms, and Self‐Estimated Ejaculation Latency Time

    Directory of Open Access Journals (Sweden)

    Patrick Jern, PhD

    2014-08-01

    Conclusions: We were unable to find support for the hypothesis suggesting an association between T levels and ELT, possibly because of the low number of phenotypically extreme cases (the sample used in the present study was population based. Our results concerning genetic associations should be interpreted with caution until replication studies have been conducted. Jern P, Westberg L, Ankarberg‐Lindgren C, Johansson A, Gunst A, Sandnabba NK, and Santtila P. Associations between salivary testosterone levels, androgen‐related genetic polymorphisms, and self‐estimated ejaculation latency time. Sex Med 2014;2:107–114.