WorldWideScience

Sample records for genetic algorithm technique

  1. DNA Technique, cryptography, bit exchange, Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Meenakshi Moza

    2016-07-01

    Full Text Available Internet reliability and performance is based mostly on the underlying routing protocols. The current traffic load has to be taken into account for computation of paths in routing protocols. Addressing the selection of path, from a known source to destination is the basic aim of this paper. Making use of multipoint crossover and mutation is done for optimum and when required alternate path determination. Network scenario which consists of nodes that are fixed and limited to the known size of topology, comprises the population size. This paper proposes a simple method of calculating the shortest path for a network using Genetic Algorithm (GA, which is capable of giving an efficient, dynamic and consistent solution in spite of, what topology, changes in link and node happen and volume of the network. GA is used in this paper for optimization of routing. It helps us in enhancing the performance of the routers.

  2. SNMP Based Network Optimization Technique Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    M. Mohamed Surputheen

    2012-03-01

    Full Text Available Genetic Algorithms (GAs has innumerable applications through the optimization techniques and network optimization is one of them. SNMP (Simple Network Management Protocol is used as the basic network protocol for monitoring the network activities health of the systems. This paper deals with adding Intelligence to the various aspects of SNMP by adding optimization techniques derived out of genetic algorithms, which enhances the performance of SNMP processes like routing.

  3. Performance Analyses on Population Seeding Techniques for Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    P. Victer Paul

    2013-06-01

    Full Text Available In Genetic Algorithm (GA, the fitness or quality of individual solutions in the initial population plays a significant part in determining the final optimal solution. The traditional GA withrandom population seeding technique is simple and proficient however the generated population may contain poor fitness individuals, which take long time to converge to the optimal solution. On the otherhand, the hybrid population seeding techniques, which have the benefits of generating good fitness individuals and fast convergence to the optimal solution. Researchers have proposed several populationseeding techniques using the background knowledge on the problem taken to solve. In this paper, we analyse the performance of different population seeding techniques for the permutation coded genetic algorithm based on the quality of the individuals generated. Experiments are carried out using the famous Travelling Salesman Problem (TSP benchmark instances obtained from the TSPLIB, which isthe standard library for TSP problems. The experimental results show the order of performance of different population seeding techniques in terms of Convergence Rate (% and Error Rate (%.

  4. Resizing Technique-Based Hybrid Genetic Algorithm for Optimal Drift Design of Multistory Steel Frame Buildings

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2014-01-01

    Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.

  5. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  6. A New Genetic Algorithm Based on Niche Technique and Local Search Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genetic algorithm has been widely used in many fields as an easy robust global search and optimization method. In this paper, a new genetic algorithm based on niche technique and local search method is presented under the consideration of inadequacies of the simple genetic algorithm. In order to prove the adaptability and validity of the improved genetic algorithm, optimization problems of multimodal functions with equal peaks, unequal peaks and complicated peak distribution are discussed. The simulation results show that compared to other niching methods, this improved genetic algorithm has obvious potential on many respects, such as convergence speed, solution accuracy, ability of global optimization, etc.

  7. Efficient Feedforward Linearization Technique Using Genetic Algorithms for OFDM Systems

    Directory of Open Access Journals (Sweden)

    García Paloma

    2010-01-01

    Full Text Available Feedforward is a linearization method that simultaneously offers wide bandwidth and good intermodulation distortion suppression; so it is a good choice for Orthogonal Frequency Division Multiplexing (OFDM systems. Feedforward structure consists of two loops, being necessary an accurate adjustment between them along the time, and when temperature, environmental, or operating changes are produced. Amplitude and phase imbalances of the circuit elements in both loops produce mismatched effects that lead to degrade its performance. A method is proposed to compensate these mismatches, introducing two complex coefficients calculated by means of a genetic algorithm. A full study is carried out to choose the optimal parameters of the genetic algorithm applied to wideband systems based on OFDM technologies, which are very sensitive to nonlinear distortions. The method functionality has been verified by means of simulation.

  8. New Optimal DWT Domain Image Watermarking Technique via Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHONG Ning; KUANG Jing-ming; HE Zun-wen

    2007-01-01

    A novel optimal image watermarking scheme is proposed in which the genetic algor ithm (GA) is employed to obtain the improvement of algorithm performance. Arnold transform is utilized to obtain the scrambled watermark, and then the embedding and extraction of watermark are implemented in digital wavelet transform (DWT) domain. During the watermarking process, GA is employed to search optimal parame ters of embedding strength and times of Arnold transform to gain the optimization of watermarking performance. Simulation results show that the proposed method can improve the quality of watermarked image and give almost the same robustness of the watermark.

  9. A Hybrid Neural Network-Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2001-01-01

    In this paper, a model-based diagnostic method, which utilizes Neural Networks and Genetic Algorithms, is investigated. Neural networks are applied to estimate the engine internal health, and Genetic Algorithms are applied for sensor bias detection and estimation. This hybrid approach takes advantage of the nonlinear estimation capability provided by neural networks while improving the robustness to measurement uncertainty through the application of Genetic Algorithms. The hybrid diagnostic technique also has the ability to rank multiple potential solutions for a given set of anomalous sensor measurements in order to reduce false alarms and missed detections. The performance of the hybrid diagnostic technique is evaluated through some case studies derived from a turbofan engine simulation. The results show this approach is promising for reliable diagnostics of aircraft engines.

  10. Comparative Analysis of Rank Aggregation Techniques for Metasearch Using Genetic Algorithm

    Science.gov (United States)

    Kaur, Parneet; Singh, Manpreet; Singh Josan, Gurpreet

    2017-01-01

    Rank Aggregation techniques have found wide applications for metasearch along with other streams such as Sports, Voting System, Stock Markets, and Reduction in Spam. This paper presents the optimization of rank lists for web queries put by the user on different MetaSearch engines. A metaheuristic approach such as Genetic algorithm based rank…

  11. An adaptive laser beam shaping technique based on a genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Ping Yang; Yuan Liu; Wei Yang; Minwu Ao; Shijie Hu; Bing Xu; Wenhan Jiang

    2007-01-01

    @@ A new adaptive beam intensity shaping technique based on the combination of a 19-element piezo-electricity deformable mirror (DM) and a global genetic algorithm is presented. This technique can adaptively adjust the voltages of the 19 actuators on the DM to reduce the difference between the target beam shape and the actual beam shape. Numerical simulations and experimental results show that within the stroke range of the DM, this technique can be well used to create the given beam intensity profiles on the focal plane.

  12. A Detailed look of Audio Steganography Techniques using LSB and Genetic Algorithm Approach

    OpenAIRE

    Gunjan Nehru; Puja Dhar

    2012-01-01

    This paper is the study of various techniques of audio steganography using different algorithmis like genetic algorithm approach and LSB approach. We have tried some approaches that helps in audio steganography. As we know it is the art and science of writing hidden messages in such a way that no one, apart from the sender and intended recipient, suspects the existence of the message, a form of security through obscurity. In steganography, the message used to hide secret message is called hos...

  13. Dynamic Bandwidth Allocation Technique in ATM Networks Based on Fuzzy Neural Networks and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZhangLiangjie; LiYanda; 等

    1997-01-01

    In this paper,a dynamic bandwidth allocation technique based on fuzz neural networks(FNNs) and genetic algorithm(GA)is proposed for preventive congestion control in ATM network.The traffic model based on FNN does not need the descriptive traffic parameters in detail,which greatly depend on the user's terminal.Genetic algorithm is used to predict the equivalent bandwidth of the accepted traffic in real-time.Thus,the proposed scheme can estimate the dynamic bandwidth of the network in the time scale from the call arrival to the call admission/rejection due to the fuzzy-tech and GA hardware implementation.Simulation results show that the scheme can perform accurate dynamic bandwidth allocation to DN/OFF bursty traffic in accordance with the required quality of service(QOS),and the bandwidth utilization is improved from the overall point of view.

  14. Multi-Criterion Optimal Design of Automotive Door Based on Metamodeling Technique and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A method for optimizing automotive doors under multiple criteria involving the side impact,stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques, i. e. polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application.

  15. Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Rayner Alfred

    2010-01-01

    Full Text Available Problem statement: In solving a classification problem in relational data mining, traditional methods, for example, the C4.5 and its variants, usually require data transformations from datasets stored in multiple tables into a single table. Unfortunately, we may loss some information when we join tables with a high degree of one-to-many association. Therefore, data transformation becomes a tedious trial-and-error work and the classification result is often not very promising especially when the number of tables and the degree of one-to-many association are large. Approach: We proposed a genetic semi-supervised clustering technique as a means of aggregating data stored in multiple tables to facilitate the task of solving a classification problem in relational database. This algorithm is suitable for classification of datasets with a high degree of one-to-many associations. It can be used in two ways. One is user-controlled clustering, where the user may control the result of clustering by varying the compactness of the spherical cluster. The other is automatic clustering, where a non-overlap clustering strategy is applied. In this study, we use the latter method to dynamically cluster multiple instances, as a means of aggregating them and illustrate the effectiveness of this method using the semi-supervised genetic algorithm-based clustering technique. Results: It was shown in the experimental results that using the reciprocal of Davies-Bouldin Index for cluster dispersion and the reciprocal of Gini Index for cluster purity, as the fitness function in the Genetic Algorithm (GA, finds solutions with much greater accuracy. The results obtained in this study showed that automatic clustering (seeding, by optimizing the cluster dispersion or cluster purity alone using GA, provides one with good results compared to the traditional k-means clustering. However, the best result can be achieved by optimizing the combination values of both the cluster

  16. A genetic algorithm technique to optimize the configuration of heat storage in DH networks

    Directory of Open Access Journals (Sweden)

    Amru Rizal Razani

    2016-12-01

    Full Text Available The technical and economical evaluation of heat storage layout and configuration in the DH network is one of important aspect for optimizing the heat production from the heat supplier’s point of view in one side as well as to satisfy the heat customer demand in the other side. Generally, the state of the art technique has considered three optional planning layouts for DH network. A classical network with centralized heat storage at Combined Heat and Power (CHP plant, decentralized storages in the network, and decentralized small storages at the substations or in the customer building. In this paper, through the use of genetic algorithm technique, comparison of three different scenarios is presented to evaluate the optimal planning of heat storage layout in CHP based DH supply system according to economical and technical aspects in the network.

  17. Application of Genetic Algorithm and Particle Swarm Optimization techniques for improved image steganography systems

    Directory of Open Access Journals (Sweden)

    Jude Hemanth Duraisamy

    2016-01-01

    Full Text Available Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA and Particle Swarm Optimization (PSO have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT and Finite Ridgelet Transform (FRIT are used in combination with GA and PSO to improve the efficiency of the image steganography system.

  18. Application of Genetic Algorithm and Particle Swarm Optimization techniques for improved image steganography systems

    Science.gov (United States)

    Jude Hemanth, Duraisamy; Umamaheswari, Subramaniyan; Popescu, Daniela Elena; Naaji, Antoanela

    2016-01-01

    Image steganography is one of the ever growing computational approaches which has found its application in many fields. The frequency domain techniques are highly preferred for image steganography applications. However, there are significant drawbacks associated with these techniques. In transform based approaches, the secret data is embedded in random manner in the transform coefficients of the cover image. These transform coefficients may not be optimal in terms of the stego image quality and embedding capacity. In this work, the application of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) have been explored in the context of determining the optimal coefficients in these transforms. Frequency domain transforms such as Bandelet Transform (BT) and Finite Ridgelet Transform (FRIT) are used in combination with GA and PSO to improve the efficiency of the image steganography system.

  19. Near infrared spectrometric technique for testing fruit quality: optimisation of regression models using genetic algorithms

    Science.gov (United States)

    Isingizwe Nturambirwe, J. Frédéric; Perold, Willem J.; Opara, Umezuruike L.

    2016-02-01

    Near infrared (NIR) spectroscopy has gained extensive use in quality evaluation. It is arguably one of the most advanced spectroscopic tools in non-destructive quality testing of food stuff, from measurement to data analysis and interpretation. NIR spectral data are interpreted through means often involving multivariate statistical analysis, sometimes associated with optimisation techniques for model improvement. The objective of this research was to explore the extent to which genetic algorithms (GA) can be used to enhance model development, for predicting fruit quality. Apple fruits were used, and NIR spectra in the range from 12000 to 4000 cm-1 were acquired on both bruised and healthy tissues, with different degrees of mechanical damage. GAs were used in combination with partial least squares regression methods to develop bruise severity prediction models, and compared to PLS models developed using the full NIR spectrum. A classification model was developed, which clearly separated bruised from unbruised apple tissue. GAs helped improve prediction models by over 10%, in comparison with full spectrum-based models, as evaluated in terms of error of prediction (Root Mean Square Error of Cross-validation). PLS models to predict internal quality, such as sugar content and acidity were developed and compared to the versions optimized by genetic algorithm. Overall, the results highlighted the potential use of GA method to improve speed and accuracy of fruit quality prediction.

  20. A high-resolution neutron spectra unfolding method using the Genetic Algorithm technique

    CERN Document Server

    Mukherjee, B

    2002-01-01

    The Bonner sphere spectrometers (BSS) are commonly used to determine the neutron spectra within various nuclear facilities. Sophisticated mathematical tools are used to unfold the neutron energy distribution from the output data of the BSS. This paper highlights a novel high-resolution neutron spectra-unfolding method using the Genetic Algorithm (GA) technique. The GA imitates the biological evolution process prevailing in the nature to solve complex optimisation problems. The GA method was utilised to evaluate the neutron energy distribution, average energy, fluence and equivalent dose rates at important work places of a DIDO class research reactor and a high-energy superconducting heavy ion cyclotron. The spectrometer was calibrated with a sup 2 sup 4 sup 1 Am/Be (alpha,n) neutron standard source. The results of the GA method agreed satisfactorily with the results obtained by using the well-known BUNKI neutron spectra unfolding code.

  1. A Detailed look of Audio Steganography Techniques using LSB and Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Gunjan Nehru

    2012-01-01

    Full Text Available This paper is the study of various techniques of audio steganography using different algorithmis like genetic algorithm approach and LSB approach. We have tried some approaches that helps in audio steganography. As we know it is the art and science of writing hidden messages in such a way that no one, apart from the sender and intended recipient, suspects the existence of the message, a form of security through obscurity. In steganography, the message used to hide secret message is called host message or cover message. Once the contents of the host message or cover message are modified, the resultant message is known as stego message. In other words, stego message is combination of host message and secret message. Audio steganography requires a text or audio secret message to be embedded within a cover audio message. Due to availability of redundancy, the cover audio message before steganography, stego message after steganography remains same. for information hiding.

  2. Integrated inversion of ground deformation and magnetic data at Etna volcano using a genetic algorithm technique

    Directory of Open Access Journals (Sweden)

    G. Ganci

    2007-06-01

    Full Text Available Geodetic and magnetic investigations have been playing an increasingly important role in studies on Mt. Etna eruptive processes. During ascent, magma interacts with surrounding rocks and fluids, and inevitably crustal deformation and disturbances in the local magnetic field are produced. These effects are generally interpreted separately from each other and consistency of interpretations obtained from different methods is qualitatively checked only a posteriori. In order to make the estimation of source parameters more robust we propose an integrated inversion from deformation and magnetic data that leads to the best possible understanding of the underlying geophysical process. The inversion problem was formulated following a global optimization approach based on the use of genetic algorithms. The proposed modeling inversion technique was applied on field data sets recorded during the onset of the 2002-2003 Etna flank eruption. The deformation pattern and the magnetic anomalies were consistent with a piezomagnetic effect caused by a dyke intrusion propagating along the NE direction.

  3. A New Technique to Manage Big Bioinformatics Data Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Huda Jalil Dikhil

    2016-10-01

    Full Text Available The continuous growth of data, mainly the medical data at laboratories becomes very complex to use and to manage by using traditional ways. So, the researchers start studying genetic information field which increased in the past thirty years in bioinformatics domain (the computer science field, genetic biology field, and DNA. This growth of data becomes known as big bioinformatics data. Thus, efficient algorithms such as Genetic Algorithms are needed to deal with this big and vast amount of bioinformatics data in genetic laboratories. So the researchers proposed two models to manage the big bioinformatics data in addition to the traditional model. The first model by applying Genetic Algorithms before MapReduce, the second model by applying Genetic Algorithms after the MapReduce, and the original or the traditional model by applying only MapReduce without using Genetic Algorithms. The three models were implemented and evaluated using big bioinformatics data collected from the Duchenne Muscular Dystrophy (DMD disorder. The researchers conclude that the second model is the best one among the three models in reducing the size of the data, in execution time, and in addition to the ability to manage and summarize big bioinformatics data. Finally by comparing the percentage errors of the second model with the first model and the traditional model, the researchers obtained the following results 1.136%, 10.227%, and 11.363% respectively. So the second model is the most accurate model with the less percentage error.

  4. Software For Genetic Algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steve E.

    1992-01-01

    SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.

  5. A genetic algorithm optimization technique for compact high intensity cooler design

    Energy Technology Data Exchange (ETDEWEB)

    Schmit, T.S.; Dhingra, A.K.; Landis, F.; Kojasoy, G. [Univ. of Wisconsin, Milwaukee, WI (United States). Dept. of Mechanical Engineering

    1995-12-31

    This paper initially reviews the operation and design criteria for a compact high intensity cooler (CHIC) unit as used in avionic equipment. Here high heat loads are dissipated via multiple impinging jets fed sequentially through a series of fins connected with a bus bar to the heat source. The analytical basis for the heat transfer design, most of which has been published previously, is shown to predict the performance of CHIC units to a high degree of accuracy. This then permits an approach at optimizing the design. Most optimization techniques depend on continuous variables, while in the design of a CHIC unit many of the critical geometrical variables must assume discrete values. A genetic algorithm, generally not well known in engineering circles, that looks for an optimum by simulating an evolutionary process was found to be satisfactory for this problem with its mixture of discrete and continuous variables. It is also shown that in an actual optimization problem, where the fluid pressure drop across the unit has to be balanced against a low overall thermal resistance, an optimum geometrical design can be determined. This design is an improvement over the empirical best design previously reported the literature.

  6. Hybrid Neural-Network: Genetic Algorithm Technique for Aircraft Engine Performance Diagnostics Developed and Demonstrated

    Science.gov (United States)

    Kobayashi, Takahisa; Simon, Donald L.

    2002-01-01

    As part of the NASA Aviation Safety Program, a unique model-based diagnostics method that employs neural networks and genetic algorithms for aircraft engine performance diagnostics has been developed and demonstrated at the NASA Glenn Research Center against a nonlinear gas turbine engine model. Neural networks are applied to estimate the internal health condition of the engine, and genetic algorithms are used for sensor fault detection, isolation, and quantification. This hybrid architecture combines the excellent nonlinear estimation capabilities of neural networks with the capability to rank the likelihood of various faults given a specific sensor suite signature. The method requires a significantly smaller data training set than a neural network approach alone does, and it performs the combined engine health monitoring objectives of performance diagnostics and sensor fault detection and isolation in the presence of nominal and degraded engine health conditions.

  7. Performance enhancement for crystallization unit of a sugar plant using genetic algorithm technique

    Science.gov (United States)

    Tewari, P. C.; Khanduja, Rajiv; Gupta, Mahesh

    2012-05-01

    This paper deals with the performance enhancement for crystallization unit of a sugar plant using genetic algorithm. The crystallization unit of a sugar industry has three main subsystems arranged in series. Considering exponential distribution for the probable failures and repairs, the mathematical formulation of the problem is done using probabilistic approach, and differential equations are developed on the basis of Markov birth-death process. These equations are then solved using normalizing conditions so as to determine the steady-state availability of the crystallization unit. The performance of each subsystem of crystallization unit in a sugar plant has also been optimized using genetic algorithm. Thus, the findings of the present paper will be highly useful to the plant management for the timely execution of proper maintenance decisions and, hence, to enhance the system performance.

  8. Modified Genetic Algorithm for DNA Sequence Assembly by Shotgun and Hybridization Sequencing Techniques

    Directory of Open Access Journals (Sweden)

    Prof.Narayan Kumar Sahu

    2012-09-01

    Full Text Available Since the advent of rapid DNA sequencing methods in 1976, scientists have had the problem of inferring DNA sequences from sequenced fragments. Shotgun sequencing is a well-established biological and computational method used in practice. Many conventional algorithms for shotgun sequencing are based on the notion of pair wise fragment overlap. While shotgun sequencing infers a DNA sequence given the sequences of overlapping fragments, a recent and complementary method, called sequencing by hybridization (SBH, infers a DNA sequence given the set of oligomers that represents all sub words of some fixed length, k. In this paper, we propose a new computer algorithm for DNA sequence assembly that combines in a novel way the techniques of both shotgun and SBH methods. Based on our preliminary investigations, the algorithm promises- to be very fast and practical for DNA sequence assembly [1].

  9. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    Science.gov (United States)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And

  10. Techniques based on genetic algorithms for large deflection analysis of beams

    Indian Academy of Sciences (India)

    Rajesh Kumar; L S Ramachandra; D Roy

    2004-12-01

    A couple of non-convex search strategies, based on the genetic algorithm, are suggested and numerically explored in the context of large-deflection analysis of planar, elastic beams. The first of these strategies is based on the stationarity of the energy functional in the equilibrium state and may therefore be considered weak. The second approach, on the other hand, attempts to directly solve the governing differential equation within an optimisation framework and such a solution may be thought of as strong. Several numerical illustrations and verifications with ‘exact’ solutions, if available, are provided.

  11. Scheduling and sequencing in four machines robotic cell: Application of genetic algorithm and enumeration techniques

    Directory of Open Access Journals (Sweden)

    M.M.S. Abdulkader

    2013-09-01

    Full Text Available The introduction of robotic cells to manufacturing systems improved the efficiency, productivity and reliability of the system. The main objective of the scheduling problem of multi-item multi-machine robotic cells is the identification of the optimum robot cycle/s and jobs sequencing for certain processing conditions which yield the higher possible production rate. The objective of this work is to solve the scheduling problem in four-machine blocking robotic cells producing identical and different part types while minimizing the cycle time. A genetic algorithm is developed to find the parts sequence that minimizes the robot-moves cycle time for each robot cycle. The results showed that the developed genetic algorithm yields competitive results compared to the results of the full enumeration of all possible parts sequences. The results show also that the ratio between the average processing time of all parts and the robot travel time determines the cycle having the optimal robot-moves.

  12. Excursion-Set-Mediated Genetic Algorithm

    Science.gov (United States)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    Excursion-set-mediated genetic algorithm (ESMGA) is embodiment of method of searching for and optimizing computerized mathematical models. Incorporates powerful search and optimization techniques based on concepts analogous to natural selection and laws of genetics. In comparison with other genetic algorithms, this one achieves stronger condition for implicit parallelism. Includes three stages of operations in each cycle, analogous to biological generation.

  13. Excursion-Set-Mediated Genetic Algorithm

    Science.gov (United States)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    Excursion-set-mediated genetic algorithm (ESMGA) is embodiment of method of searching for and optimizing computerized mathematical models. Incorporates powerful search and optimization techniques based on concepts analogous to natural selection and laws of genetics. In comparison with other genetic algorithms, this one achieves stronger condition for implicit parallelism. Includes three stages of operations in each cycle, analogous to biological generation.

  14. Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability.

    Science.gov (United States)

    Santos, José; Monteagudo, Ángel

    2017-03-27

    The canonical code, although prevailing in complex genomes, is not universal. It was shown the canonical genetic code superior robustness compared to random codes, but it is not clearly determined how it evolved towards its current form. The error minimization theory considers the minimization of point mutation adverse effect as the main selection factor in the evolution of the code. We have used simulated evolution in a computer to search for optimized codes, which helps to obtain information about the optimization level of the canonical code in its evolution. A genetic algorithm searches for efficient codes in a fitness landscape that corresponds with the adaptability of possible hypothetical genetic codes. The lower the effects of errors or mutations in the codon bases of a hypothetical code, the more efficient or optimal is that code. The inclusion of the fitness sharing technique in the evolutionary algorithm allows the extent to which the canonical genetic code is in an area corresponding to a deep local minimum to be easily determined, even in the high dimensional spaces considered. The analyses show that the canonical code is not in a deep local minimum and that the fitness landscape is not a multimodal fitness landscape with deep and separated peaks. Moreover, the canonical code is clearly far away from the areas of higher fitness in the landscape. Given the non-presence of deep local minima in the landscape, although the code could evolve and different forces could shape its structure, the fitness landscape nature considered in the error minimization theory does not explain why the canonical code ended its evolution in a location which is not an area of a localized deep minimum of the huge fitness landscape.

  15. IMPLEMENTATION OF SPACE VECTOR PULSE WIDTH MODULATION TECHNIQUE WITH GENETIC ALGORITHM TO OPTIMIZE UNIFIED POWER QUALITY CONDITIONER

    Directory of Open Access Journals (Sweden)

    M. Shankar

    2014-01-01

    Full Text Available This study proposes a novel control design of Unified Power Quality Conditioner (UPQC. This design is enabled by a control framework that employs Genetic Algorithm which determines optimum points and angle for filtering and Space Vector Pulse Width Modulation Technique (SVPWM to offer significant flexibility to optimize waveform. In addition the same framework integrates the major functions of the UPQC with ease to unify the treatments of several power quality problems including system harmonics in the supply voltage and load current, sags/swells in the supply voltage, variations in the load demands and poor power factor at the supply side. Simulation studies on a three phase power distribution system are used to verify the performance and implementation of this control design with the UPQC.

  16. Wireless communications algorithmic techniques

    CERN Document Server

    Vitetta, Giorgio; Colavolpe, Giulio; Pancaldi, Fabrizio; Martin, Philippa A

    2013-01-01

    This book introduces the theoretical elements at the basis of various classes of algorithms commonly employed in the physical layer (and, in part, in MAC layer) of wireless communications systems. It focuses on single user systems, so ignoring multiple access techniques. Moreover, emphasis is put on single-input single-output (SISO) systems, although some relevant topics about multiple-input multiple-output (MIMO) systems are also illustrated.Comprehensive wireless specific guide to algorithmic techniquesProvides a detailed analysis of channel equalization and channel coding for wi

  17. Dynamic Route Guidance Using Improved Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Zhanke Yu

    2013-01-01

    Full Text Available This paper presents an improved genetic algorithm (IGA for dynamic route guidance algorithm. The proposed IGA design a vicinity crossover technique and a greedy backward mutation technique to increase the population diversity and strengthen local search ability. The steady-state reproduction is introduced to protect the optimized genetic individuals. Furthermore the junction delay is introduced to the fitness function. The simulation results show the effectiveness of the proposed algorithm.

  18. Genetic Algorithms and Local Search

    Science.gov (United States)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  19. Fluid Genetic Algorithm (FGA

    Directory of Open Access Journals (Sweden)

    Ruholla Jafari-Marandi

    2017-04-01

    Full Text Available Genetic Algorithm (GA has been one of the most popular methods for many challenging optimization problems when exact approaches are too computationally expensive. A review of the literature shows extensive research attempting to adapt and develop the standard GA. Nevertheless, the essence of GA which consists of concepts such as chromosomes, individuals, crossover, mutation, and others rarely has been the focus of recent researchers. In this paper method, Fluid Genetic Algorithm (FGA, some of these concepts are changed, removed, and furthermore, new concepts are introduced. The performance of GA and FGA are compared through seven benchmark functions. FGA not only shows a better success rate and better convergence control, but it can be applied to a wider range of problems including multi-objective and multi-level problems. Also, the application of FGA for a real engineering problem, Quadric Assignment Problem (AQP, is shown and experienced.

  20. Foundations of genetic algorithms 1991

    CERN Document Server

    1991-01-01

    Foundations of Genetic Algorithms 1991 (FOGA 1) discusses the theoretical foundations of genetic algorithms (GA) and classifier systems.This book compiles research papers on selection and convergence, coding and representation, problem hardness, deception, classifier system design, variation and recombination, parallelization, and population divergence. Other topics include the non-uniform Walsh-schema transform; spurious correlations and premature convergence in genetic algorithms; and variable default hierarchy separation in a classifier system. The grammar-based genetic algorithm; condition

  1. A Robust Computational Technique for Model Order Reduction of Two-Time-Scale Discrete Systems via Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Othman M. K. Alsmadi

    2015-01-01

    Full Text Available A robust computational technique for model order reduction (MOR of multi-time-scale discrete systems (single input single output (SISO and multi-input multioutput (MIMO is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.

  2. A robust computational technique for model order reduction of two-time-scale discrete systems via genetic algorithms.

    Science.gov (United States)

    Alsmadi, Othman M K; Abo-Hammour, Zaer S

    2015-01-01

    A robust computational technique for model order reduction (MOR) of multi-time-scale discrete systems (single input single output (SISO) and multi-input multioutput (MIMO)) is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA) with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements of B, C, and D matrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.

  3. Genetic algorithms for protein threading.

    Science.gov (United States)

    Yadgari, J; Amir, A; Unger, R

    1998-01-01

    Despite many years of efforts, a direct prediction of protein structure from sequence is still not possible. As a result, in the last few years researchers have started to address the "inverse folding problem": Identifying and aligning a sequence to the fold with which it is most compatible, a process known as "threading". In two meetings in which protein folding predictions were objectively evaluated, it became clear that threading as a concept promises a real breakthrough, but that much improvement is still needed in the technique itself. Threading is a NP-hard problem, and thus no general polynomial solution can be expected. Still a practical approach with demonstrated ability to find optimal solutions in many cases, and acceptable solutions in other cases, is needed. We applied the technique of Genetic Algorithms in order to significantly improve the ability of threading algorithms to find the optimal alignment of a sequence to a structure, i.e. the alignment with the minimum free energy. A major progress reported here is the design of a representation of the threading alignment as a string of fixed length. With this representation validation of alignments and genetic operators are effectively implemented. Appropriate data structure and parameters have been selected. It is shown that Genetic Algorithm threading is effective and is able to find the optimal alignment in a few test cases. Furthermore, the described algorithm is shown to perform well even without pre-definition of core elements. Existing threading methods are dependent on such constraints to make their calculations feasible. But the concept of core elements is inherently arbitrary and should be avoided if possible. While a rigorous proof is hard to submit yet an, we present indications that indeed Genetic Algorithm threading is capable of finding consistently good solutions of full alignments in search spaces of size up to 10(70).

  4. Genetic algorithm essentials

    CERN Document Server

    Kramer, Oliver

    2017-01-01

    This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.

  5. Genetic Programming and Genetic Algorithms for Propositions

    Directory of Open Access Journals (Sweden)

    Nabil M. HEWAHI

    2012-01-01

    Full Text Available In this paper we propose a mechanism to discover the compound proposition solutions for a given truth table without knowing the compound propositions that lead to the truth table results. The approach is based on two proposed algorithms, the first is called Producing Formula (PF algorithm which is based on the genetic programming idea, to find out the compound proposition solutions for the given truth table. The second algorithm is called the Solutions Optimization (SO algorithm which is based on genetic algorithms idea, to find a list of the optimum compound propositions that can solve the truth table. The obtained list will depend on the solutions obtained from the PF algorithm. Various types of genetic operators have been introduced to obtain the solutions either within the PF algorithm or SO algorithm.

  6. Optimizing an Industrial Scale Naphtha Catalytic Reforming Plant Using a Hybrid Artificial Neural Network and Genetic Algorithm Technique

    Directory of Open Access Journals (Sweden)

    Sepehr Sadighi

    2015-07-01

    Full Text Available In this paper, a hybrid model for estimating the activity of a commercial Pt-Re/Al2O3 catalyst in an industrial scale heavy naphtha catalytic-reforming unit (CRU is presented. This model is also capable of predicting research octane number (RON and yield of gasoline. In the proposed model, called DANN, the decay function of heterogeneous catalysts is combined with a recurrent-layer artificial neural network. During a life cycle (919 days, fifty-eight points are selected for building and training the DANN (60%, nineteen data points for testing (20%, and the remained ones for validating steps. Results show that DANN can acceptably estimate the activity of catalyst during its life in consideration of all process variables. Moreover, it is confirmed that the proposed model is capable of predicting RON and yield of gasoline for unseen (validating data with AAD% (average absolute deviation of 0.272% and 0.755%, respectively. After validating the model, the octane barrel level (OCB of the plant is maximized by manipulating the inlet temperature of reactors, and hydrogen to hydrocarbon molar ratio whilst all process limitations are taken into account. During a complete life cycle results show that the decision variables, generated by the optimization program, can increase the RON, process yield and OCB of CRU to about 1.15%, 3.21%, and 4.56%, respectively. © 2015 BCREC UNDIP. All rights reserved.Received: 27th July 2014; Revised: 31st May 2015; Accepted: 31th May 2015 How to Cite: Sadighi, S., Mohaddecy, R.S., Norouzian, A. (2015. Optimizing an Industrial Scale Naphtha Catalytic Reforming Plant Using a Hybrid Artificial Neural Network and Genetic Algorithm Technique. Bulletin of Chemical Reaction Engineering & Catalysis, 10(2: 210-220. (doi:10.9767/bcrec.10.2.7171.210-220 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.10.2.7171.210-220  

  7. Solving Maximal Clique Problem through Genetic Algorithm

    Science.gov (United States)

    Rajawat, Shalini; Hemrajani, Naveen; Menghani, Ekta

    2010-11-01

    Genetic algorithm is one of the most interesting heuristic search techniques. It depends basically on three operations; selection, crossover and mutation. The outcome of the three operations is a new population for the next generation. Repeating these operations until the termination condition is reached. All the operations in the algorithm are accessible with today's molecular biotechnology. The simulations show that with this new computing algorithm, it is possible to get a solution from a very small initial data pool, avoiding enumerating all candidate solutions. For randomly generated problems, genetic algorithm can give correct solution within a few cycles at high probability.

  8. A genetic engineering approach to genetic algorithms.

    Science.gov (United States)

    Gero, J S; Kazakov, V

    2001-01-01

    We present an extension to the standard genetic algorithm (GA), which is based on concepts of genetic engineering. The motivation is to discover useful and harmful genetic materials and then execute an evolutionary process in such a way that the population becomes increasingly composed of useful genetic material and increasingly free of the harmful genetic material. Compared to the standard GA, it provides some computational advantages as well as a tool for automatic generation of hierarchical genetic representations specifically tailored to suit certain classes of problems.

  9. Evolving evolutionary algorithms using linear genetic programming.

    Science.gov (United States)

    Oltean, Mihai

    2005-01-01

    A new model for evolving Evolutionary Algorithms is proposed in this paper. The model is based on the Linear Genetic Programming (LGP) technique. Every LGP chromosome encodes an EA which is used for solving a particular problem. Several Evolutionary Algorithms for function optimization, the Traveling Salesman Problem and the Quadratic Assignment Problem are evolved by using the considered model. Numerical experiments show that the evolved Evolutionary Algorithms perform similarly and sometimes even better than standard approaches for several well-known benchmarking problems.

  10. A hybrid color space for skin detection using genetic algorithm heuristic search and principal component analysis technique.

    Directory of Open Access Journals (Sweden)

    Mahdi Maktabdar Oghaz

    Full Text Available Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications.

  11. A hybrid color space for skin detection using genetic algorithm heuristic search and principal component analysis technique.

    Science.gov (United States)

    Maktabdar Oghaz, Mahdi; Maarof, Mohd Aizaini; Zainal, Anazida; Rohani, Mohd Foad; Yaghoubyan, S Hadi

    2015-01-01

    Color is one of the most prominent features of an image and used in many skin and face detection applications. Color space transformation is widely used by researchers to improve face and skin detection performance. Despite the substantial research efforts in this area, choosing a proper color space in terms of skin and face classification performance which can address issues like illumination variations, various camera characteristics and diversity in skin color tones has remained an open issue. This research proposes a new three-dimensional hybrid color space termed SKN by employing the Genetic Algorithm heuristic and Principal Component Analysis to find the optimal representation of human skin color in over seventeen existing color spaces. Genetic Algorithm heuristic is used to find the optimal color component combination setup in terms of skin detection accuracy while the Principal Component Analysis projects the optimal Genetic Algorithm solution to a less complex dimension. Pixel wise skin detection was used to evaluate the performance of the proposed color space. We have employed four classifiers including Random Forest, Naïve Bayes, Support Vector Machine and Multilayer Perceptron in order to generate the human skin color predictive model. The proposed color space was compared to some existing color spaces and shows superior results in terms of pixel-wise skin detection accuracy. Experimental results show that by using Random Forest classifier, the proposed SKN color space obtained an average F-score and True Positive Rate of 0.953 and False Positive Rate of 0.0482 which outperformed the existing color spaces in terms of pixel wise skin detection accuracy. The results also indicate that among the classifiers used in this study, Random Forest is the most suitable classifier for pixel wise skin detection applications.

  12. Improved genetic operator for genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    林峰; 杨启文

    2002-01-01

    The mutation operator has been seldom improved because researchers ha rdly suspect its ability to prevent genetic algorithm (GA) from converging prema turely. Due to its i mportance to GA, the authors of this paper study its influence on the diversity of genes in the same locus, and point out that traditional mutation, to some ext ent, can result in premature convergence of genes (PCG) in the same locus. The a bove drawback of the traditional mutation operator causes the loss of critical a lleles. Inspired by digital technique, we introduce two kinds of boolean operati on into GA to develop a novel mutation operator and discuss its contribution to preventing the loss of critical alleles. The experimental results of function op timization show that the improved mutation operator can effectively prevent prem ature convergence, and can provide a wide selection range of control parameters for GA.

  13. Improved genetic operator for genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    林峰; 杨启文

    2002-01-01

    The mutation operator has been seldom improved because ressearchers hardly suspect its ability to prevent genetic algorithm(GA) from converging prematurely.Due to its importance to GA,the authors of this paper study influence on the diversity of genes in the same locus,and point out that traditional mutation,to some extent,can result in premature convergence of genes(PCG) in the same locus.The above drawback of the traditional mutation operator causes the loss of critical alleles.Inspired by digital technique,we introduce two kinds of boolean operation into GA to develop a novel mutation operator and discuss its contribution of preventing the loss of critical alleles.The experimental results of function optimizatioin show that the improved mutation operator can effectively prevent premature convegence,and can provide a wide selection range of control parameters for GA.

  14. Filter selection using genetic algorithms

    Science.gov (United States)

    Patel, Devesh

    1996-03-01

    Convolution operators act as matched filters for certain types of variations found in images and have been extensively used in the analysis of images. However, filtering through a bank of N filters generates N filtered images, consequently increasing the amount of data considerably. Moreover, not all these filters have the same discriminatory capabilities for the individual images, thus making the task of any classifier difficult. In this paper, we use genetic algorithms to select a subset of relevant filters. Genetic algorithms represent a class of adaptive search techniques where the processes are similar to natural selection of biological evolution. The steady state model (GENITOR) has been used in this paper. The reduction of filters improves the performance of the classifier (which in this paper is the multi-layer perceptron neural network) and furthermore reduces the computational requirement. In this study we use the Laws filters which were proposed for the analysis of texture images. Our aim is to recognize the different textures on the images using the reduced filter set.

  15. Adaptive Genetic Algorithm Model for Intrusion Detection

    Directory of Open Access Journals (Sweden)

    K. S. Anil Kumar

    2012-09-01

    Full Text Available Intrusion detection systems are intelligent systems designed to identify and prevent the misuse of computer networks and systems. Various approaches to Intrusion Detection are currently being used, but they are relatively ineffective. Thus the emerging network security systems need be part of the life system and this ispossible only by embedding knowledge into the network. The Adaptive Genetic Algorithm Model - IDS comprising of K-Means clustering Algorithm, Genetic Algorithm and Neural Network techniques. Thetechnique is tested using multitude of background knowledge sets in DARPA network traffic datasets.

  16. Genetic algorithm optimization of entanglement

    CERN Document Server

    Navarro-Munoz, J C; Rosu, H C; Navarro-Munoz, Jorge C.

    2006-01-01

    We present an application of a genetic algorithmic computational method to the optimization of the concurrence measure of entanglement for the cases of one dimensional chains, as well as square and triangular lattices in a simple tight-binding approach

  17. Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm

    Science.gov (United States)

    Jiang, Zhi Hao; Bossard, Jeremy A.; Wang, Xiande; Werner, Douglas H.

    2011-01-01

    In this paper, we present a method to retrieve the effective electromagnetic parameters of a slab of anisotropic metamaterial from reflection and transmission coefficients (or scattering parameters). In this retrieval method, calculated or measured scattering parameters are employed for plane waves incident obliquely on a metamaterial slab at different angles. Useful analytical expressions are derived for extracting the homogeneous anisotropic medium parameters of a metamaterial. To validate the method, the effective permittivity and permeability tensor parameters for a composite split-ring resonator-wire array are retrieved and shown to be consistent with observations previously reported in the literature. This retrieval method is further incorporated into a genetic algorithm (GA) to synthesize an infrared zero-index-metamaterial with a wide field-of-view, demonstrating the utility of the new design approach. The anisotropic parameter retrieval algorithm, when combined with a robust optimizer such as GA, can provide a powerful design tool for exploiting the anisotropic properties in metamaterials to achieve specific angle dependant or independent responses.

  18. Nurse Scheduling Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Komgrit Leksakul

    2014-01-01

    Full Text Available This study applied engineering techniques to develop a nurse scheduling model that, while maintaining the highest level of service, simultaneously minimized hospital-staffing costs and equitably distributed overtime pay. In the mathematical model, the objective function was the sum of the overtime payment to all nurses and the standard deviation of the total overtime payment that each nurse received. Input data distributions were analyzed in order to formulate a simulation model to determine the optimal demand for nurses that met the hospital’s service standards. To obtain the optimal nurse schedule with the number of nurses acquired from the simulation model, we proposed a genetic algorithm (GA with two-point crossover and random mutation. After running the algorithm, we compared the expenses and number of nurses between the existing and our proposed nurse schedules. For January 2013, the nurse schedule obtained by GA could save 12% in staffing expenses per month and 13% in number of nurses when compare with the existing schedule, while more equitably distributing overtime pay between all nurses.

  19. New Hybrid Genetic Algorithm for Vertex Cover Problems

    Institute of Scientific and Technical Information of China (English)

    霍红卫; 许进

    2003-01-01

    This paper presents a new hybrid genetic algorithm for the vertex cover problems in which scan-repair and local improvement techniques are used for local optimization. With the hybrid approach, genetic algorithms are used to perform global exploration in a population, while neighborhood search methods are used to perform local exploitation around the chromosomes. The experimental results indicate that hybrid genetic algorithms can obtain solutions of excellent quality to the problem instances with different sizes. The pure genetic algorithms are outperformed by the neighborhood search heuristics procedures combined with genetic algorithms.

  20. Voice Matching Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Abhishek Bal

    2014-03-01

    Full Text Available In this paper, the use of Genetic Algorithm (GA for voice recognition is described. The practical application of Genetic Algorithm (GA to the solution of engineering problem is a rapidly emerging approach in the field of control engineering and signal processing. Genetic algorithms are useful for searching a space in multi-directional way from large spaces and poorly defined space. Voice is a signal of infinite information. Digital processing of voice signal is very important for automatic voice recognition technology. Nowadays, voice processing is very much important in security mechanism due to mimicry characteristic. So studying the voice feature extraction in voice processing is very necessary in military, hospital, telephone system, investigation bureau and etc. In order to extract valuable information from the voice signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. In this paper, if the instant voice is not matched with same person’s reference voices in the database, then Genetic Algorithm (GA is applied between two randomly chosen reference voices. Again the instant voice is compared with the result of Genetic Algorithm (GA which is used, including its three main steps: selection, crossover and mutation. We illustrate our approach with different sample of voices from human in our institution.

  1. Genetic Algorithms for Digital Quantum Simulations.

    Science.gov (United States)

    Las Heras, U; Alvarez-Rodriguez, U; Solano, E; Sanz, M

    2016-06-10

    We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors.

  2. Applying a Genetic Algorithm to Reconfigurable Hardware

    Science.gov (United States)

    Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim

    2004-01-01

    This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.

  3. Genetic Algorithms for Digital Quantum Simulations

    Science.gov (United States)

    Las Heras, U.; Alvarez-Rodriguez, U.; Solano, E.; Sanz, M.

    2016-06-01

    We propose genetic algorithms, which are robust optimization techniques inspired by natural selection, to enhance the versatility of digital quantum simulations. In this sense, we show that genetic algorithms can be employed to increase the fidelity and optimize the resource requirements of digital quantum simulation protocols while adapting naturally to the experimental constraints. Furthermore, this method allows us to reduce not only digital errors but also experimental errors in quantum gates. Indeed, by adding ancillary qubits, we design a modular gate made out of imperfect gates, whose fidelity is larger than the fidelity of any of the constituent gates. Finally, we prove that the proposed modular gates are resilient against different gate errors.

  4. A Test of Genetic Algorithms in Relevance Feedback.

    Science.gov (United States)

    Lopez-Pujalte, Cristina; Guerrero Bote, Vicente P.; Moya Anegon, Felix de

    2002-01-01

    Discussion of information retrieval, query optimization techniques, and relevance feedback focuses on genetic algorithms, which are derived from artificial intelligence techniques. Describes an evaluation of different genetic algorithms using a residual collection method and compares results with the Ide dec-hi method (Salton and Buckley, 1990…

  5. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    Science.gov (United States)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  6. Simultaneous stabilization using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Benson, R.W.; Schmitendorf, W.E. (California Univ., Irvine, CA (USA). Dept. of Mechanical Engineering)

    1991-01-01

    This paper considers the problem of simultaneously stabilizing a set of plants using full state feedback. The problem is converted to a simple optimization problem which is solved by a genetic algorithm. Several examples demonstrate the utility of this method. 14 refs., 8 figs.

  7. Function Optimization Based on Quantum Genetic Algorithm

    OpenAIRE

    Ying Sun; Hegen Xiong

    2014-01-01

    Optimization method is important in engineering design and application. Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on. It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed, which is called Variable-boundary-coded Quantum Genetic Algorithm (vbQGA) in which qubit chromosomes are collapsed into variable-boundary-coded chromosomes instead of binary-coded c...

  8. Function Optimization Based on Quantum Genetic Algorithm

    OpenAIRE

    Ying Sun; Yuesheng Gu; Hegen Xiong

    2013-01-01

    Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on.It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed ,which is called variable-boundary-coded quantum genetic algorithm (vbQGA) in which qubit chromosomes are collapsed into variableboundary- coded chromosomes instead of binary-coded chromosomes. Therefore much shorter chromosome strings can be gained.The m...

  9. Training product unit neural networks with genetic algorithms

    Science.gov (United States)

    Janson, D. J.; Frenzel, J. F.; Thelen, D. C.

    1991-01-01

    The training of product neural networks using genetic algorithms is discussed. Two unusual neural network techniques are combined; product units are employed instead of the traditional summing units and genetic algorithms train the network rather than backpropagation. As an example, a neural netork is trained to calculate the optimum width of transistors in a CMOS switch. It is shown how local minima affect the performance of a genetic algorithm, and one method of overcoming this is presented.

  10. Hybrid Genetic Algorithms for University Course Timetabling

    Directory of Open Access Journals (Sweden)

    Meysam Shahvali Kohshori

    2012-03-01

    Full Text Available University course timetabling is one of the important and time consuming issues that each University is involved with it at the beginning of each. This problem is in class of NP-hard problem and is very difficult to solve by classic algorithms. Therefore optimization techniques are used to solve them and produce optimal or near optimal feasible solutions instead of exact solutions. Genetic algorithms, because of multidirectional search property of them, are considered as an efficient approach for solving this type of problems. In this paper three new hybrid genetic algorithms for solving the university course timetabling problem (UCTP are proposed: FGARI, FGASA and FGATS. In proposed algorithms, fuzzy logic is used to measure violation of soft constraints in fitness function to deal with inherent uncertainly and vagueness involved in real life data. Also, randomized iterative local search, simulated annealing and tabu search are applied, respectively, to improve exploitive search ability and prevent genetic algorithm to be trapped in local optimum. The experimental results indicate that the proposed algorithms are able to produce promising results for the UCTP.

  11. Stego-audio Using Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    V. Santhi

    2014-06-01

    Full Text Available With the rapid development of digital multimedia applications, the secure data transmission becomes the main issue in data communication system. So the multimedia data hiding techniques have been developed to ensure the secured data transfer. Steganography is an art of hiding a secret message within an image/audio/video file in such a way that the secret message cannot be perceived by hacker/intruder. In this study, we use RSA encryption algorithm to encrypt the message and Genetic Algorithm (GA to encode the message in the audio file. This study presents a method to access the negative audio bytes and includes the negative audio bytes in the message encoding and position embedding process. This increases the capacity of encoding message in the audio file. The use of GA operators in Genetic Algorithm reduces the noise distortions.

  12. Results of Evolution Supervised by Genetic Algorithms

    CERN Document Server

    Jäntschi, Lorentz; Bălan, Mugur C; Sestraş, Radu E

    2010-01-01

    A series of results of evolution supervised by genetic algorithms with interest to agricultural and horticultural fields are reviewed. New obtained original results from the use of genetic algorithms on structure-activity relationships are reported.

  13. Application of Modified Genetic Algorithm to Optimal Design of Supporting Structure

    Institute of Scientific and Technical Information of China (English)

    ZHOU Rui-zhong; PAN Shi-wei

    2003-01-01

    The modified genetic algorithm was used for the optimal design of supporting structure in deep pits.Based on the common genetic algorithm, using niche technique and reserving the optimum individual the modified genetic algorithm was presented. By means of the practical engineering, the modified genetic algorithm not only has more expedient convergence, but also can enhance security and operation efficiency.

  14. Nurse Rostering with Genetic Algorithms

    CERN Document Server

    Aickelin, Uwe

    2010-01-01

    In recent years genetic algorithms have emerged as a useful tool for the heuristic solution of complex discrete optimisation problems. In particular there has been considerable interest in their use in tackling problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle constraints and successful implementations usually require some sort of modification to enable the search to exploit problem specific knowledge in order to overcome this shortcoming. This paper is concerned with the development of a family of genetic algorithms for the solution of a nurse rostering problem at a major UK hospital. The hospital is made up of wards of up to 30 nurses. Each ward has its own group of nurses whose shifts have to be scheduled on a weekly basis. In addition to fulfilling the minimum demand for staff over three daily shifts, nurses' wishes and qualifications have to be taken into account. The schedules must also be seen to be fair, in tha...

  15. A Comparison between Memetic algorithm and Genetic algorithm for the cryptanalysis of Simplified Data Encryption Standard algorithm

    CERN Document Server

    Garg, Poonam

    2010-01-01

    Genetic algorithms are a population-based Meta heuristics. They have been successfully applied to many optimization problems. However, premature convergence is an inherent characteristic of such classical genetic algorithms that makes them incapable of searching numerous solutions of the problem domain. A memetic algorithm is an extension of the traditional genetic algorithm. It uses a local search technique to reduce the likelihood of the premature convergence. The cryptanalysis of simplified data encryption standard can be formulated as NP-Hard combinatorial problem. In this paper, a comparison between memetic algorithm and genetic algorithm were made in order to investigate the performance for the cryptanalysis on simplified data encryption standard problems(SDES). The methods were tested and various experimental results show that memetic algorithm performs better than the genetic algorithms for such type of NP-Hard combinatorial problem. This paper represents our first effort toward efficient memetic algo...

  16. Research on Innovating, Applying Multiple Paths Routing Technique Based on Fuzzy Logic and Genetic Algorithm for Routing Messages in Service - Oriented Routing

    Directory of Open Access Journals (Sweden)

    Nguyen Thanh Long

    2015-02-01

    Full Text Available MANET (short for Mobile Ad-Hoc Network consists of a set of mobile network nodes, network configuration changes very fast. In content based routing, data is transferred from source node to request nodes is not based on destination addresses. Therefore, it is very flexible and reliable, because source node does not need to know destination nodes. If We can find multiple paths that satisfies bandwidth requirement, split the original message into multiple smaller messages to transmit concurrently on these paths. On destination nodes, combine separated messages into the original message. Hence it can utilize better network resources, causes data transfer rate to be higher, load balancing, failover. Service Oriented Routing is inherited from the model of content based routing (CBR, combined with several advanced techniques such as Multicast, multiple path routing, Genetic algorithm to increase the data rate, and data encryption to ensure information security. Fuzzy logic is a logical field study evaluating the accuracy of the results based on the approximation of the components involved, make decisions based on many factors relative accuracy based on experimental or mathematical proof. This article presents some techniques to support multiple path routing from one network node to a set of nodes with guaranteed quality of service. By using these techniques can decrease the network load, congestion, use network resources efficiently.

  17. Genetic Algorithm for Hierarchical Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Sajid Hussain

    2007-09-01

    Full Text Available Large scale wireless sensor networks (WSNs can be used for various pervasive and ubiquitous applications such as security, health-care, industry automation, agriculture, environment and habitat monitoring. As hierarchical clusters can reduce the energy consumption requirements for WSNs, we investigate intelligent techniques for cluster formation and management. A genetic algorithm (GA is used to create energy efficient clusters for data dissemination in wireless sensor networks. The simulation results show that the proposed intelligent hierarchical clustering technique can extend the network lifetime for different network deployment environments.

  18. Predicting mining activity with parallel genetic algorithms

    Science.gov (United States)

    Talaie, S.; Leigh, R.; Louis, S.J.; Raines, G.L.; Beyer, H.G.; O'Reilly, U.M.; Banzhaf, Arnold D.; Blum, W.; Bonabeau, C.; Cantu-Paz, E.W.; ,; ,

    2005-01-01

    We explore several different techniques in our quest to improve the overall model performance of a genetic algorithm calibrated probabilistic cellular automata. We use the Kappa statistic to measure correlation between ground truth data and data predicted by the model. Within the genetic algorithm, we introduce a new evaluation function sensitive to spatial correctness and we explore the idea of evolving different rule parameters for different subregions of the land. We reduce the time required to run a simulation from 6 hours to 10 minutes by parallelizing the code and employing a 10-node cluster. Our empirical results suggest that using the spatially sensitive evaluation function does indeed improve the performance of the model and our preliminary results also show that evolving different rule parameters for different regions tends to improve overall model performance. Copyright 2005 ACM.

  19. Genetic Algorithm for Optimization: Preprocessor and Algorithm

    Science.gov (United States)

    Sen, S. K.; Shaykhian, Gholam A.

    2006-01-01

    Genetic algorithm (GA) inspired by Darwin's theory of evolution and employed to solve optimization problems - unconstrained or constrained - uses an evolutionary process. A GA has several parameters such the population size, search space, crossover and mutation probabilities, and fitness criterion. These parameters are not universally known/determined a priori for all problems. Depending on the problem at hand, these parameters need to be decided such that the resulting GA performs the best. We present here a preprocessor that achieves just that, i.e., it determines, for a specified problem, the foregoing parameters so that the consequent GA is a best for the problem. We stress also the need for such a preprocessor both for quality (error) and for cost (complexity) to produce the solution. The preprocessor includes, as its first step, making use of all the information such as that of nature/character of the function/system, search space, physical/laboratory experimentation (if already done/available), and the physical environment. It also includes the information that can be generated through any means - deterministic/nondeterministic/graphics. Instead of attempting a solution of the problem straightway through a GA without having/using the information/knowledge of the character of the system, we would do consciously a much better job of producing a solution by using the information generated/created in the very first step of the preprocessor. We, therefore, unstintingly advocate the use of a preprocessor to solve a real-world optimization problem including NP-complete ones before using the statistically most appropriate GA. We also include such a GA for unconstrained function optimization problems.

  20. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    Science.gov (United States)

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  1. Application of Genetic Algorithm in the Layout of Fixture Components

    Institute of Scientific and Technical Information of China (English)

    焦黎; 孙厚芳

    2003-01-01

    Automation in the layout of fixture components is important to achieve efficiency and flexibility in computer aided fixture design. Based on basic genetic algorithm and particulars of different fixture components, a method of layout space division is presented. Such techniques as suitable crossover rate, mutation rate and selection arithmetic element are adopted in the genetic operation. The results show that genetic algorithm can effectively be applied in the automatic layout of fixture components.

  2. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    Science.gov (United States)

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  3. Learning Intelligent Genetic Algorithms Using Japanese Nonograms

    Science.gov (United States)

    Tsai, Jinn-Tsong; Chou, Ping-Yi; Fang, Jia-Cen

    2012-01-01

    An intelligent genetic algorithm (IGA) is proposed to solve Japanese nonograms and is used as a method in a university course to learn evolutionary algorithms. The IGA combines the global exploration capabilities of a canonical genetic algorithm (CGA) with effective condensed encoding, improved fitness function, and modified crossover and…

  4. Incremental multiple objective genetic algorithms.

    Science.gov (United States)

    Chen, Qian; Guan, Sheng-Uei

    2004-06-01

    This paper presents a new genetic algorithm approach to multiobjective optimization problems--incremental multiple objective genetic algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages. First, an independent population is evolved to optimize one specific objective. Second, the better-performing individuals from the single-objecive population evolved in the above stage and the multiobjective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multiobjective population, to which a multiobjective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA, and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better.

  5. Bisection technique for designing synchronous parallel algorithms

    Institute of Scientific and Technical Information of China (English)

    王能超

    1995-01-01

    A basic technique for designing synchronous parallel algorithms, the so-called bisection technique, is proposed. The basic pattern of designing parallel algorithms is described. The relationship between the designing idea and I Ching (principles of change) is discussed.

  6. Asian Option Pricing Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    YunzhongLiu; HuiyuXuan

    2004-01-01

    The cross-fertilization between artificial intelligence and computational finance has resulted in some of the most active research areas in financial engineering. One direction is the application of machine learning techniques to pricing financial products, which is certainly one of the most complex issues in finance. In the literature, when the interest rate,the mean rate of return and the volatility of the underlying asset follow general stochastic processes, the exact solution is usually not available. In this paper, we shall illustrate how genetic algorithms (GAs), as a numerical approach, can be potentially helpful in dealing with pricing. In particular, we test the performance of basic genetic algorithms by using it to the determination of prices of Asian options, whose exact solutions is known from Black-Scholesoption pricing theory. The solutions found by basic genetic algorithms are compared with the exact solution, and the performance of GAs is ewluated accordingly. Based on these ewluations, some limitations of GAs in option pricing are examined and possible extensions to future works are also proposed.

  7. Application of Genetic Algorithms in Seismic Tomography

    Science.gov (United States)

    Soupios, Pantelis; Akca, Irfan; Mpogiatzis, Petros; Basokur, Ahmet; Papazachos, Constantinos

    2010-05-01

    In the earth sciences several inverse problems that require data fitting and parameter estimation are nonlinear and can involve a large number of unknown parameters. Consequently, the application of analytical inversion or optimization techniques may be quite restrictive. In practice, most analytical methods are local in nature and rely on a linearized form of the problem in question, adopting an iterative procedure using partial derivatives to improve an initial model. This approach can lead to a dependence of the final model solution on the starting model and is prone to entrapment in local misfit minima. Moreover, the calculation of derivatives can be computationally inefficient and create instabilities when numerical approximations are used. In contrast to these local minimization methods, global techniques that do not rely on partial derivatives, are independent of the form of the data misfit criterion, and are computationally robust. Such methods often use random processes to sample a selected wider span of the model space. In this situation, randomly generated models are assessed in terms of their data-fitting quality and the process may be stopped after a certain number of acceptable models is identified or continued until a satisfactory data fit is achieved. A new class of methods known as genetic algorithms achieves the aforementioned approximation through novel model representation and manipulations. Genetic algorithms (GAs) were originally developed in the field of artificial intelligence by John Holland more than 20 years ago, but even in this field it is less than a decade that the methodology has been more generally applied and only recently did the methodology attract the attention of the earth sciences community. Applications have been generally concentrated in geophysics and in particular seismology. As awareness of genetic algorithms grows there surely will be many more and varied applications to earth science problems. In the present work, the

  8. Genetic Algorithms: Basic Concept and Applications

    Directory of Open Access Journals (Sweden)

    Ms. Amninder Kaur

    2013-07-01

    Full Text Available Genetic algorithms are a part of evolutionary computing, which is a rapidly growing area of artificial intelligence. Genetic algorithms have been applied to a wide range of practical problems often with valuable results. Genetic algorithms are often viewed as function optimizer, although the range of problems to which genetic algorithms have been applied are quite broad. This paper covers the basic concepts of genetic algorithms and their applications to a variety of fields. It also tries to give a solution to the problem of economic load dispatch using Genetic Algorithms. An attempt has been made to explain when and why GA should be used as an optimization tool. Finally, the paper points to future directions

  9. Genetic algorithms and fuzzy multiobjective optimization

    CERN Document Server

    Sakawa, Masatoshi

    2002-01-01

    Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a w...

  10. A case study of a multiobjective recombinative genetic algorithm with coevolutionary sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  11. A Case Study of a Multiobjective Elitist Recombinative Genetic Algorithm with Coevolutionary Sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  12. A Case Study of a Multiobjective Elitist Recombinative Genetic Algorithm with Coevolutionary Sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  13. A case study of a multiobjective recombinative genetic algorithm with coevolutionary sharing

    NARCIS (Netherlands)

    Neef, R.M.; Thierens, D.; Arciszewski, H.F.R.

    1999-01-01

    We present a multiobjective genetic algorithm that incorporates various genetic algorithm techniques that have been proven to be efficient and robust in their problem domain. More specifically, we integrate rank based selection, adaptive niching through coevolutionary sharing, elitist recombination,

  14. Application of Chaos in Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    YANG Li-Jiang; CHEN Tian-Lun

    2002-01-01

    Through replacing Gaussian mutation operator in real-coded genetic algorithm with a chaotic mapping, wepresent a genetic algorithm with chaotic mutation. To examine this new algorithm, we applied our algorithm to functionoptimization problems and obtained good results. Furthermore the orbital points' distribution of chaotic mapping andthe effects of chaotic mutation with different parameters were studied in order to make the chaotic mutation mechanismbe utilized efficiently.

  15. Multi-objective optimization of in-situ bioremediation of groundwater using a hybrid metaheuristic technique based on differential evolution, genetic algorithms and simulated annealing

    Directory of Open Access Journals (Sweden)

    Kumar Deepak

    2015-12-01

    Full Text Available Groundwater contamination due to leakage of gasoline is one of the several causes which affect the groundwater environment by polluting it. In the past few years, In-situ bioremediation has attracted researchers because of its ability to remediate the contaminant at its site with low cost of remediation. This paper proposed the use of a new hybrid algorithm to optimize a multi-objective function which includes the cost of remediation as the first objective and residual contaminant at the end of the remediation period as the second objective. The hybrid algorithm was formed by combining the methods of Differential Evolution, Genetic Algorithms and Simulated Annealing. Support Vector Machines (SVM was used as a virtual simulator for biodegradation of contaminants in the groundwater flow. The results obtained from the hybrid algorithm were compared with Differential Evolution (DE, Non Dominated Sorting Genetic Algorithm (NSGA II and Simulated Annealing (SA. It was found that the proposed hybrid algorithm was capable of providing the best solution. Fuzzy logic was used to find the best compromising solution and finally a pumping rate strategy for groundwater remediation was presented for the best compromising solution. The results show that the cost incurred for the best compromising solution is intermediate between the highest and lowest cost incurred for other non-dominated solutions.

  16. Biomimetic use of genetic algorithms

    CERN Document Server

    Dessalles, Jean-Louis

    2011-01-01

    Genetic algorithms are considered as an original way to solve problems, probably because of their generality and of their "blind" nature. But GAs are also unusual since the features of many implementations (among all that could be thought of) are principally led by the biological metaphor, while efficiency measurements intervene only afterwards. We propose here to examine the relevance of these biomimetic aspects, by pointing out some fundamental similarities and divergences between GAs and the genome of living beings shaped by natural selection. One of the main differences comes from the fact that GAs rely principally on the so-called implicit parallelism, while giving to the mutation/selection mechanism the second role. Such differences could suggest new ways of employing GAs on complex problems, using complex codings and starting from nearly homogeneous populations.

  17. The genetic algorithm for a signal enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Karimova, L. [Laboratory of Computer Modelling, Institute of Mathematics, Pushkin Street 125, 480100 Almaty (Kazakhstan)]. E-mail: karimova@math.kz; Kuadykov, E. [Laboratory of Computer Modelling, Institute of Mathematics, Pushkin Street 125, 480100 Almaty (Kazakhstan); Makarenko, N. [Laboratory of Computer Modelling, Institute of Mathematics, Pushkin Street 125, 480100 Almaty (Kazakhstan)

    2004-11-21

    The paper is devoted to the problem of time series enhancement, which is based on the analysis of local regularity. The model construction using this analysis does not require any a priori assumption on the structure of the noise and the functional relationship between original signal and noise. The signal itself may be nowhere differentiable with rapidly varying local regularity, what is overcome with the help of the new technique of increasing the local Hoelder regularity of the signal under research. A new signal with prescribed regularity is constructed using the genetic algorithm. This approach is applied to enhancement of time series in the paleoclimatology, solar physics, dendrochronology, meteorology and hydrology.

  18. Grouping genetic algorithms advances and applications

    CERN Document Server

    Mutingi, Michael

    2017-01-01

    This book presents advances and innovations in grouping genetic algorithms, enriched with new and unique heuristic optimization techniques. These algorithms are specially designed for solving industrial grouping problems where system entities are to be partitioned or clustered into efficient groups according to a set of guiding decision criteria. Examples of such problems are: vehicle routing problems, team formation problems, timetabling problems, assembly line balancing, group maintenance planning, modular design, and task assignment. A wide range of industrial grouping problems, drawn from diverse fields such as logistics, supply chain management, project management, manufacturing systems, engineering design and healthcare, are presented. Typical complex industrial grouping problems, with multiple decision criteria and constraints, are clearly described using illustrative diagrams and formulations. The problems are mapped into a common group structure that can conveniently be used as an input scheme to spe...

  19. Mobile transporter path planning using a genetic algorithm approach

    Science.gov (United States)

    Baffes, Paul; Wang, Lui

    1988-01-01

    The use of an optimization technique known as a genetic algorithm for solving the mobile transporter path planning problem is investigated. The mobile transporter is a traveling robotic vehicle proposed for the Space Station which must be able to reach any point of the structure autonomously. Specific elements of the genetic algorithm are explored in both a theoretical and experimental sense. Recent developments in genetic algorithm theory are shown to be particularly effective in a path planning problem domain, though problem areas can be cited which require more research. However, trajectory planning problems are common in space systems and the genetic algorithm provides an attractive alternative to the classical techniques used to solve these problems.

  20. Mobile robot dynamic path planning based on improved genetic algorithm

    Science.gov (United States)

    Wang, Yong; Zhou, Heng; Wang, Ying

    2017-08-01

    In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.

  1. Saving Resources with Plagues in Genetic Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    de Vega, F F; Cantu-Paz, E; Lopez, J I; Manzano, T

    2004-06-15

    The population size of genetic algorithms (GAs) affects the quality of the solutions and the time required to find them. While progress has been made in estimating the population sizes required to reach a desired solution quality for certain problems, in practice the sizing of populations is still usually performed by trial and error. These trials might lead to find a population that is large enough to reach a satisfactory solution, but there may still be opportunities to optimize the computational cost by reducing the size of the population. This paper presents a technique called plague that periodically removes a number of individuals from the population as the GA executes. Recently, the usefulness of the plague has been demonstrated for genetic programming. The objective of this paper is to extend the study of plagues to genetic algorithms. We experiment with deceptive trap functions, a tunable difficult problem for GAs, and the experiments show that plagues can save computational time while maintaining solution quality and reliability.

  2. Genetic algorithms in seasonal demand forecasting

    OpenAIRE

    Chodak, Grzegorz; Kwaśnicki, Witold

    2000-01-01

    The method of forecasting seasonal demand applying genetic algorithm is presented. Specific form of used demand function is shown in the first section of the article. Next the method of identification of the function parameters using genetic algorithms is discussed. In the final section an example of applying proposed method to forecast real demand process is shown.

  3. An adaptive genetic algorithm for solving bilevel linear programming problem

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bilevel linear programming, which consists of the objective functions of the upper level and lower level, is a useful tool for modeling decentralized decision problems.Various methods are proposed for solving this problem. Of all the algorithms, the genetic algorithm is an alternative to conventional approaches to find the solution of the bilevel linear programming. In this paper, we describe an adaptive genetic algorithm for solving the bilevel linear programming problem to overcome the difficulty of determining the probabilities of crossover and mutation. In addition, some techniques are adopted not only to deal with the difficulty that most of the chromosomes may be infeasible in solving constrained optimization problem with genetic algorithm but also to improve the efficiency of the algorithm. The performance of this proposed algorithm is illustrated by the examples from references.

  4. Genetic algorithms for route discovery.

    Science.gov (United States)

    Gelenbe, Erol; Liu, Peixiang; Lainé, Jeremy

    2006-12-01

    Packet routing in networks requires knowledge about available paths, which can be either acquired dynamically while the traffic is being forwarded, or statically (in advance) based on prior information of a network's topology. This paper describes an experimental investigation of path discovery using genetic algorithms (GAs). We start with the quality-of-service (QoS)-driven routing protocol called "cognitive packet network" (CPN), which uses smart packets (SPs) to dynamically select routes in a distributed autonomic manner based on a user's QoS requirements. We extend it by introducing a GA at the source routers, which modifies and filters the paths discovered by the CPN. The GA can combine the paths that were previously discovered to create new untested but valid source-to-destination paths, which are then selected on the basis of their "fitness." We present an implementation of this approach, where the GA runs in background mode so as not to overload the ingress routers. Measurements conducted on a network test bed indicate that when the background-traffic load of the network is light to medium, the GA can result in improved QoS. When the background-traffic load is high, it appears that the use of the GA may be detrimental to the QoS experienced by users as compared to CPN routing because the GA uses less timely state information in its decision making.

  5. Predicting Protein Structure Using Parallel Genetic Algorithms.

    Science.gov (United States)

    1994-12-01

    34 IEEE Transactions on Systems, Man and Cybernetics, 10(9) (September 1980). 16. De Jong, Kenneth A. "On Using Genetic Algoriths to Search Program...By " Predicting rotein Structure D istribticfiar.. ................ Using Parallel Genetic Algorithms ,Avaiu " ’ •"... Dist THESIS I IGeorge H...iiLite-d Approved for public release; distribution unlimited AFIT/ GCS /ENG/94D-03 Predicting Protein Structure Using Parallel Genetic Algorithms

  6. A HEURISTIC MOVING VEHICLE LOCATION PREDICTION TECHNIQUE VIA OPTIMAL PATHS SELECTION WITH AID OF GENETIC ALGORITHM AND FEED FORWARD BACK PROPAGATION NEURAL NETWORK

    Directory of Open Access Journals (Sweden)

    K. Duraiswamy

    2012-01-01

    Full Text Available The moving object or vehicle location prediction based on their spatial and temporal information is an important task in many applications. Different methods were utilized for performing the vehicle movement detection and prediction process. In such works, there is a lack of analysis in predicting the vehicles location in current as well as in future. Moreover, such methods compute the vehicles movement by finding the topological relationships among trajectories and locations, whereas the representative GPS points are determined by the 30 m circular window. Due to this process, the performance of the method is degraded because such 30 m circular window is selected by calculating the error range in the given input image and such error range may vary from image to image. To reduce the drawback presented in the existing method, in this study a heuristic moving vehicle location prediction algorithm is proposed. The proposed heuristic algorithm mainly comprises two techniques namely, optimization GA algorithm and FFBNN. In this proposed technique, initially the vehicles frequent paths are collected by monitoring all the vehicles movement in a specific period. Among the frequent paths, the vehicles optimal paths are computed by the GA algorithm. The selected optimal paths for each vehicle are utilized to train the FFBNN. The well trained FFBNN is then utilized to find the vehicle movement from the current location. By combining the proposed heuristic algorithm with GA and FFBNN, the vehicles location is predicted efficiently. The implementation result shows the effectiveness of the proposed heuristic algorithm in predicting the vehicles future location from the current location. The performance of the heuristic algorithm is evaluated by comparing the result with the RBF classifier. The comparison result shows our proposed technique acquires an accurate vehicle location prediction ratio than the RBF prediction ratio, in terms of accuracy.

  7. A GREEDY GENETIC ALGORITHM FOR UNCONSTRAINED GLOBAL OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xinchao

    2005-01-01

    The greedy algorithm is a strong local searching algorithm. The genetica lgorithm is generally applied to the global optimization problems. In this paper, we combine the greedy idea and the genetic algorithm to propose the greedy genetic algorithm which incorporates the global exploring ability of the genetic algorithm and the local convergent ability of the greedy algorithm. Experimental results show that greedy genetic algorithm gives much better results than the classical genetic algorithm.

  8. Constrained minimization of smooth functions using a genetic algorithm

    Science.gov (United States)

    Moerder, Daniel D.; Pamadi, Bandu N.

    1994-01-01

    The use of genetic algorithms for minimization of differentiable functions that are subject to differentiable constraints is considered. A technique is demonstrated for converting the solution of the necessary conditions for a constrained minimum into an unconstrained function minimization. This technique is extended as a global constrained optimization algorithm. The theory is applied to calculating minimum-fuel ascent control settings for an energy state model of an aerospace plane.

  9. Cognitive Radio — Genetic Algorithm Approach

    Science.gov (United States)

    Reddy, Y. B.

    2005-03-01

    Cognitive Radio (CR) is relatively a new technology, which intelligently detects a particular segment of the radio spectrum currently in use and selects unused spectrum quickly without interfering the transmission of authorized users. Cognitive Radios can learn about current use of spectrum in their operating area, make intelligent decisions, and react to immediate changes in the use of spectrum by other authorized users. The goal of CR technology is to relieve radio spectrum overcrowding, which actually translates to a lack of access to full radio spectrum utilization. Due to this adaptive behavior, the CR can easily avoid the interference of signals in a crowded radio frequency spectrum. In this research, we discuss the possible application of genetic algorithms (GA) to create a CR that can respond intelligently in changing and unanticipated circumstances and in the presence of hostile jammers and interferers. Genetic algorithms are problem solving techniques based on evolution and natural selection. GA models adapt Charles Darwin's evolutionary theory for analysis of data and interchanging design elements in hundreds of thousands of different combinations. Only the best-performing combinations are permitted to survive, and those combinations "reproduce" further, progressively yielding better and better results.

  10. Genetic Algorithm for Solving Simple Mathematical Equality Problem

    OpenAIRE

    Hermawanto, Denny

    2013-01-01

    This paper explains genetic algorithm for novice in this field. Basic philosophy of genetic algorithm and its flowchart are described. Step by step numerical computation of genetic algorithm for solving simple mathematical equality problem will be briefly explained

  11. Function Optimization Based on Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2014-01-01

    Full Text Available Optimization method is important in engineering design and application. Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on. It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed, which is called Variable-boundary-coded Quantum Genetic Algorithm (vbQGA in which qubit chromosomes are collapsed into variable-boundary-coded chromosomes instead of binary-coded chromosomes. Therefore much shorter chromosome strings can be gained. The method of encoding and decoding of chromosome is first described before a new adaptive selection scheme for angle parameters used for rotation gate is put forward based on the core ideas and principles of quantum computation. Eight typical functions are selected to optimize to evaluate the effectiveness and performance of vbQGA against standard Genetic Algorithm (sGA and Genetic Quantum Algorithm (GQA. The simulation results show that vbQGA is significantly superior to sGA in all aspects and outperforms GQA in robustness and solving velocity, especially for multidimensional and complicated functions.

  12. Evolving aerodynamic airfoils for wind turbines through a genetic algorithm

    Science.gov (United States)

    Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI

    2017-01-01

    Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.

  13. Fuzzy Control of Chaotic System with Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-an; GUO Zhao-xia; SHAO Shi-huang

    2002-01-01

    A novel approach to control the unpredictable behavior of chaotic systems is presented. The control algorithm is based on fuzzy logic control technique combined with genetic algorithm. The use of fuzzy logic allows for the implementation of human "rule-of-thumb" approach to decision making by employing linguistic variables. An improved Genetic Algorithm (GA) is used to learn to optimally select the fuzzy membership functions of the linguistic labels in the condition portion of each rule,and to automatically generate fuzzy control actions under each condition. Simulation results show that such an approach for the control of chaotic systems is both effective and robust.

  14. Chemometrics: From classical to genetic algorithms

    Directory of Open Access Journals (Sweden)

    Leardi, Riccardo

    2002-03-01

    Full Text Available In this paper the fundamentals of Chemometrics are presented, by means of a quick overview of the most relevant techniques for data display, classification, modeling and calibration. Two emerging techniques such as Genetic Algorithms and Artificial Neural Networks will also be presented. Goal of the paper is to make people aware of the great superiority of multivariate analysis over the commonly used univariate approach. Mathematical and algorithmical details are not presented, since the paper is mainly focused on the general problems to which Chemometrics can be successfully applied in the field of Food Chemistry.En este artículo se muestran los aspectos fundamentales de la Quimiometria por medio de una revisión rápida de las técnicas más relevantes para mostrar los datos, modelar y calibrar. Se describen dos técnicas emergentes como los algoritmos genéticos y las redes neuronales. El objetivo del articulo es que la comunidad científica tome conciencia de la gran superioridad del análisis multivariante sobre el análisis univariante. No se describen los detalles matemáticos y algorítmicos porque el articulo está dirigido a problemas genéricos en los que la Quimiometría puede ser aplicada con éxito dentro del campo de la Química Analítica.

  15. Genetic algorithms at UC Davis/LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Vemuri, V.R. [comp.

    1993-12-31

    A tutorial introduction to genetic algorithms is given. This brief tutorial should serve the purpose of introducing the subject to the novice. The tutorial is followed by a brief commentary on the term project reports that follow.

  16. Hybrid Genetic Algorithms with Fuzzy Logic Controller

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper.``

  17. GARD: a genetic algorithm for recombination detection

    National Research Council Canada - National Science Library

    Kosakovsky Pond, Sergei L; Posada, David; Gravenor, Michael B; Woelk, Christopher H; Frost, Simon D W

    2006-01-01

    .... We developed a likelihood-based model selection procedure that uses a genetic algorithm to search multiple sequence alignments for evidence of recombination breakpoints and identify putative recombinant sequences...

  18. Anisotropic selection in cellular genetic algorithms

    CERN Document Server

    Simoncini, David; Collard, Philippe; Clergue, Manuel

    2008-01-01

    In this paper we introduce a new selection scheme in cellular genetic algorithms (cGAs). Anisotropic Selection (AS) promotes diversity and allows accurate control of the selective pressure. First we compare this new scheme with the classical rectangular grid shapes solution according to the selective pressure: we can obtain the same takeover time with the two techniques although the spreading of the best individual is different. We then give experimental results that show to what extent AS promotes the emergence of niches that support low coupling and high cohesion. Finally, using a cGA with anisotropic selection on a Quadratic Assignment Problem we show the existence of an anisotropic optimal value for which the best average performance is observed. Further work will focus on the selective pressure self-adjustment ability provided by this new selection scheme.

  19. ATM cash management using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Ahmadreza Ghodrati

    2013-07-01

    Full Text Available Automatic teller machine (ATM is one of the most popular banking facilities to do daily financial transactions. People use ATM services to pay bills, transfer funds and withdraw cash. Therefore, we can treat ATM as a tradition inventory problem and use simulation technique to analysis the amount of cash required on different occasions such as regular days, holidays, etc. The proposed model of this paper uses genetic algorithm to determine the replenishment cash strategy for each ATM. The survey uses all transactions accomplished during the fiscal years of 2011-2012 on one of Iranian banks named Ayande. The study categorizes various ATM based on the average daily transactions into three groups of low, medium and high levels. The preliminary results of our survey indicate that it is possible to do setup different strategies to manage cash in various banks, optimally.

  20. Genetic Algorithm Approaches to Prebiobiotic Chemistry Modeling

    Science.gov (United States)

    Lohn, Jason; Colombano, Silvano

    1997-01-01

    We model an artificial chemistry comprised of interacting polymers by specifying two initial conditions: a distribution of polymers and a fixed set of reversible catalytic reactions. A genetic algorithm is used to find a set of reactions that exhibit a desired dynamical behavior. Such a technique is useful because it allows an investigator to determine whether a specific pattern of dynamics can be produced, and if it can, the reaction network found can be then analyzed. We present our results in the context of studying simplified chemical dynamics in theorized protocells - hypothesized precursors of the first living organisms. Our results show that given a small sample of plausible protocell reaction dynamics, catalytic reaction sets can be found. We present cases where this is not possible and also analyze the evolved reaction sets.

  1. Genetic Algorithms, Floating Point Numbers and Applications

    Science.gov (United States)

    Hardy, Yorick; Steeb, Willi-Hans; Stoop, Ruedi

    The core in most genetic algorithms is the bitwise manipulations of bit strings. We show that one can directly manipulate the bits in floating point numbers. This means the main bitwise operations in genetic algorithm mutations and crossings are directly done inside the floating point number. Thus the interval under consideration does not need to be known in advance. For applications, we consider the roots of polynomials and finding solutions of linear equations.

  2. Quantum Genetic Algorithms for Computer Scientists

    OpenAIRE

    Rafael Lahoz-Beltra

    2016-01-01

    Genetic algorithms (GAs) are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data) has led to a new class of GAs known as “Quantum Geneti...

  3. On the practical usage of genetic algorithms in ecology and evolution

    National Research Council Canada - National Science Library

    Hamblin, Steven; Hansen, Thomas

    2013-01-01

    Genetic algorithms are a heuristic global optimisation technique mimicking the action of natural selection to solve hard optimisation problems, which has enjoyed growing usage in evolution and ecology...

  4. A Survey of Association Rule Mining Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Anubha Sharma

    2012-08-01

    Full Text Available Data mining is the analysis step of the "Knowledge Discovery in Databases" process, or KDD. It is the process that results in the discovery of new patterns in large data sets. It utilizes methods at the intersection of artificial intelligence, machine learning, statistics, and database systems. The overall goal of the data mining process is to extract knowledge from an existing data set and transform it into a human-understandable structure. In data mining, association rule learning is a popular and well researched method for discovering interesting relations between variables in large databases. Association rules are usually required to satisfy a user-specified minimum support and a user-specified minimum confidence at the same time. Genetic algorithm (GA is a search heuristic that mimics the process of natural evolution. This heuristic is routinely used to generate useful solutions to optimization and search problems. Genetic algorithms belong to the larger class of evolutionary algorithms, which generate solutions to optimization problems using techniques inspired by natural evolution, such as inheritance, mutation, selection, and crossover. In previous, many researchers have proposed Genetic Algorithms for mining interesting association rules from quantitative data. In this paper we represent a survey of Association Rule Mining Using Genetic Algorithm. The techniques are categorized based upon different approaches. This paper provides the major advancement in the approaches for association rule mining using genetic algorithms.

  5. Naturally selecting solutions: the use of genetic algorithms in bioinformatics.

    Science.gov (United States)

    Manning, Timmy; Sleator, Roy D; Walsh, Paul

    2013-01-01

    For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.

  6. GAMPMS: Genetic algorithm managed peptide mutant screening.

    Science.gov (United States)

    Long, Thomas; McDougal, Owen M; Andersen, Tim

    2015-06-30

    The prominence of endogenous peptide ligands targeted to receptors makes peptides with the desired binding activity good molecular scaffolds for drug development. Minor modifications to a peptide's primary sequence can significantly alter its binding properties with a receptor, and screening collections of peptide mutants is a useful technique for probing the receptor-ligand binding domain. Unfortunately, the combinatorial growth of such collections can limit the number of mutations which can be explored using structure-based molecular docking techniques. Genetic algorithm managed peptide mutant screening (GAMPMS) uses a genetic algorithm to conduct a heuristic search of the peptide's mutation space for peptides with optimal binding activity, significantly reducing the computational requirements of the virtual screening. The GAMPMS procedure was implemented and used to explore the binding domain of the nicotinic acetylcholine receptor (nAChR) α3β2-isoform with a library of 64,000 α-conotoxin (α-CTx) MII peptide mutants. To assess GAMPMS's performance, it was compared with a virtual screening procedure that used AutoDock to predict the binding affinity of each of the α-CTx MII peptide mutants with the α3β2-nAChR. The GAMPMS implementation performed AutoDock simulations for as few as 1140 of the 64,000 α-CTx MII peptide mutants and could consistently identify a set of 10 peptides with an aggregated binding energy that was at least 98% of the aggregated binding energy of the 10 top peptides from the exhaustive AutoDock screening.

  7. Optimization of Antennas using a Hybrid Genetic-Algorithm Space-Mapping Algorithm

    DEFF Research Database (Denmark)

    Pantoja, M.F.; Bretones, A.R.; Meincke, Peter;

    2006-01-01

    A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a Genetic Algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...

  8. Analog Module Placement Design Using Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper presents a novel genetic algorithm for analog module placement based on ageneralization of the two-dimensional bin packing problem. The genetic encoding and operators assure that allproblem constraints are always satisfied. Thus the potential problems of adding penalty terms to the costfunction are eliminated so that the search configuration space is drastically decreased. The dedicated costfunction is based on the special requirements of analog integrated circuits. A fractional factorial experimentwas conducted using an orthogonal array to study the algorithm parameters. A meta GA was applied todetermine the optimal parameter values. The algorithm was tested with several local benchmark circuits. Theexperimental results show that the algorithm has better performance than the simulated annealing approachwith satisfactory results comparable to manual placement. This study demonstrates the effectiveness of thegenetic algorithm in the analog module placement problem. The algorithm has been successfully used in alayout synthesis tool.

  9. A New Fuzzy Adaptive Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FANG Lei; ZHANG Huan-chun; JING Ya-zhi

    2005-01-01

    Multiple genetic algorithms (GAs) need a large population size, which will take a long time for evolution.A new fuzzy adaptive GA is proposed in this paper. This algorithm is more effective in global search while keeping the overall population size constant. The simulation results of function optimization show that with the proposed algorithm, the phenomenon of premature convergence can be overcome effectively, and a satisfying optimization result is obtained.

  10. Genetic techniques for the archaea.

    Science.gov (United States)

    Farkas, Joel A; Picking, Jonathan W; Santangelo, Thomas J

    2013-01-01

    Genetic techniques for the Archaea have undergone a rapid expansion in complexity, resulting in increased exploration of the role of Archaea in the environment and detailed analyses of the molecular physiology and information-processing systems in the third domain of life. Complementary gains in describing the ever-increasing diversity of archaeal organisms have allowed these techniques to be leveraged in new and imaginative ways to elucidate shared and unique aspects of archaeal diversity and metabolism. In this review, we introduce the four archaeal clades for which advanced genetic techniques are available--the methanogens, halophiles, Sulfolobales, and Thermococcales--with the aim of providing an overall profile of the advantages and disadvantages of working within each clade, as essentially all of the genetically accessible archaeal organisms require unique culturing techniques that present real challenges. We discuss the full repertoire of techniques possible within these clades while highlighting the recent advances that have been made by taking advantage of the most prominent techniques and approaches.

  11. Robot path planning using genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents a strategy for soccer robot path planning using genetic algorithms for which, real number coding method is used, to overcome the defects of binary coding method, and the double crossover operation a dopted, to avoid the common defect of early convergence and converge faster than the standard genetic algo rithms concludes from simulation results that the method is effective for robot path planning.

  12. Application of genetic algorithms to hydrogenated silicon clusters

    Indian Academy of Sciences (India)

    N Chakraborti; R Prasad

    2003-01-01

    We discuss the application of biologically inspired genetic algorithms to determine the ground state structures of a number of Si–H clusters. The total energy of a given configuration of a cluster has been obtained by using a non-orthogonal tight-binding model and the energy minimization has been carried out by using genetic algorithms and their recent variant differential evolution. Our results for ground state structures and cohesive energies for Si–H clusters are in good agreement with the earlier work conducted using the simulated annealing technique. We find that the results obtained by genetic algorithms turn out to be comparable and often better than the results obtained by the simulated annealing technique.

  13. Genetic Algorithms for multiple objective vehicle routing

    CERN Document Server

    Geiger, Martin Josef

    2008-01-01

    The talk describes a general approach of a genetic algorithm for multiple objective optimization problems. A particular dominance relation between the individuals of the population is used to define a fitness operator, enabling the genetic algorithm to adress even problems with efficient, but convex-dominated alternatives. The algorithm is implemented in a multilingual computer program, solving vehicle routing problems with time windows under multiple objectives. The graphical user interface of the program shows the progress of the genetic algorithm and the main parameters of the approach can be easily modified. In addition to that, the program provides powerful decision support to the decision maker. The software has proved it's excellence at the finals of the European Academic Software Award EASA, held at the Keble college/ University of Oxford/ Great Britain.

  14. Genetic algorithms as global random search methods

    Science.gov (United States)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  15. Dynamic airspace configuration by genetic algorithm

    Directory of Open Access Journals (Sweden)

    Marina Sergeeva

    2017-06-01

    Full Text Available With the continuous air traffic growth and limits of resources, there is a need for reducing the congestion of the airspace systems. Nowadays, several projects are launched, aimed at modernizing the global air transportation system and air traffic management. In recent years, special interest has been paid to the solution of the dynamic airspace configuration problem. Airspace sector configurations need to be dynamically adjusted to provide maximum efficiency and flexibility in response to changing weather and traffic conditions. The main objective of this work is to automatically adapt the airspace configurations according to the evolution of traffic. In order to reach this objective, the airspace is considered to be divided into predefined 3D airspace blocks which have to be grouped or ungrouped depending on the traffic situation. The airspace structure is represented as a graph and each airspace configuration is created using a graph partitioning technique. We optimize airspace configurations using a genetic algorithm. The developed algorithm generates a sequence of sector configurations for one day of operation with the minimized controller workload. The overall methodology is implemented and successfully tested with air traffic data taken for one day and for several different airspace control areas of Europe.

  16. Interactive Genetic Algorithms with Fitness Adjustment

    Institute of Scientific and Technical Information of China (English)

    GUO Guang-song; GONG Dun-wei; HAO Guo-sheng; ZHANG Yong

    2006-01-01

    Noises widely exist in interactive genetic algorithms. However, there is no effective method to solve this problem up to now. There are two kinds of noises, one is the noise existing in visual systems and the other is resulted from user's preference mechanisms. Characteristics of the two noises are presented aiming at the application of interactive genetic algorithms in dealing with images. The evolutionary phases of interactive genetic algorithms are determined according to differences in the same individual's fitness among different generations. Models for noises in different phases are established and the corresponding strategies for reducing noises are given. The algorithm proposed in this paper has been applied to fashion design, which is a typical example of image processing. The results show that the strategies can reduce noises in interactive genetic algorithms and improve the algorithm's performance effectively. However, a further study is needed to solve the problem of determining the evolution phase by using suitable objective methods so as to find out an effective method to decrease noises.

  17. An Introduction to Genetic Algorithms and to Their Use in Information Retrieval.

    Science.gov (United States)

    Jones, Gareth; And Others

    1994-01-01

    Genetic algorithms, a class of nondeterministic algorithms in which the role of chance makes the precise nature of a solution impossible to guarantee, seem to be well suited to combinatorial-optimization problems in information retrieval. Provides an introduction to techniques and characteristics of genetic algorithms and illustrates their…

  18. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    Due to the unknown dead-time coefficient, the time-delay system identification turns to be a non-convex optimization problem. This paper investigates the identification of a simple time-delay system, named First-Order-Plus-Dead-Time (FOPDT), by using the Genetic Algorithm (GA) technique...

  19. An investigation of messy genetic algorithms

    Science.gov (United States)

    Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley

    1990-01-01

    Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.

  20. Multicast Routing Based on Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAO Yuan-da; CAI Gui

    2005-01-01

    A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.

  1. Computer animation algorithms and techniques

    CERN Document Server

    Parent, Rick

    2012-01-01

    Driven by the demands of research and the entertainment industry, the techniques of animation are pushed to render increasingly complex objects with ever-greater life-like appearance and motion. This rapid progression of knowledge and technique impacts professional developers, as well as students. Developers must maintain their understanding of conceptual foundations, while their animation tools become ever more complex and specialized. The second edition of Rick Parent's Computer Animation is an excellent resource for the designers who must meet this challenge. The first edition establ

  2. Lunar Habitat Optimization Using Genetic Algorithms

    Science.gov (United States)

    SanScoucie, M. P.; Hull, P. V.; Tinker, M. L.; Dozier, G. V.

    2007-01-01

    Long-duration surface missions to the Moon and Mars will require bases to accommodate habitats for the astronauts. Transporting the materials and equipment required to build the necessary habitats is costly and difficult. The materials chosen for the habitat walls play a direct role in protection against each of the mentioned hazards. Choosing the best materials, their configuration, and the amount required is extremely difficult due to the immense size of the design region. Clearly, an optimization method is warranted for habitat wall design. Standard optimization techniques are not suitable for problems with such large search spaces; therefore, a habitat wall design tool utilizing genetic algorithms (GAs) has been developed. GAs use a "survival of the fittest" philosophy where the most fit individuals are more likely to survive and reproduce. This habitat design optimization tool is a multiobjective formulation of up-mass, heat loss, structural analysis, meteoroid impact protection, and radiation protection. This Technical Publication presents the research and development of this tool as well as a technique for finding the optimal GA search parameters.

  3. OPC recipe optimization using genetic algorithm

    Science.gov (United States)

    Asthana, Abhishek; Wilkinson, Bill; Power, Dave

    2016-03-01

    Optimization of OPC recipes is not trivial due to multiple parameters that need tuning and their correlation. Usually, no standard methodologies exist for choosing the initial recipe settings, and in the keyword development phase, parameters are chosen either based on previous learning, vendor recommendations, or to resolve specific problems on particular special constructs. Such approaches fail to holistically quantify the effects of parameters on other or possible new designs, and to an extent are based on the keyword developer's intuition. In addition, when a quick fix is needed for a new design, numerous customization statements are added to the recipe, which make it more complex. The present work demonstrates the application of Genetic Algorithm (GA) technique for optimizing OPC recipes. GA is a search technique that mimics Darwinian natural selection and has applications in various science and engineering disciplines. In this case, GA search heuristic is applied to two problems: (a) an overall OPC recipe optimization with respect to selected parameters and, (b) application of GA to improve printing and via coverage at line end geometries. As will be demonstrated, the optimized recipe significantly reduced the number of ORC violations for case (a). For case (b) line end for various features showed significant printing and filling improvement.

  4. Multiobjective Genetic Algorithm applied to dengue control.

    Science.gov (United States)

    Florentino, Helenice O; Cantane, Daniela R; Santos, Fernando L P; Bannwart, Bettina F

    2014-12-01

    Dengue fever is an infectious disease caused by a virus of the Flaviridae family and transmitted to the person by a mosquito of the genus Aedes aegypti. This disease has been a global public health problem because a single mosquito can infect up to 300 people and between 50 and 100 million people are infected annually on all continents. Thus, dengue fever is currently a subject of research, whether in the search for vaccines and treatments for the disease or efficient and economical forms of mosquito control. The current study aims to study techniques of multiobjective optimization to assist in solving problems involving the control of the mosquito that transmits dengue fever. The population dynamics of the mosquito is studied in order to understand the epidemic phenomenon and suggest strategies of multiobjective programming for mosquito control. A Multiobjective Genetic Algorithm (MGA_DENGUE) is proposed to solve the optimization model treated here and we discuss the computational results obtained from the application of this technique.

  5. Genetic Algorithm Approaches for Actuator Placement

    Science.gov (United States)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  6. Solving the Vehicle Routing Problem using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Abdul Kadar Muhammad Masum

    2011-08-01

    Full Text Available The main goal of this research is to find a solution of Vehicle Routing Problem using genetic algorithms. The Vehicle Routing Problem (VRP is a complex combinatorial optimization problem that belongs to the NP-complete class. Due to the nature of the problem it is not possible to use exact methods for large instances of the VRP. Genetic algorithms provide a search technique used in computing to find true or approximate solution to optimization and search problems. However we used some heuristic in addition during crossover or mutation for tuning the system to obtain better result.

  7. Genetic Algorithm Optimisation of a Ship Navigation System

    Directory of Open Access Journals (Sweden)

    E. Alfaro-Cid

    2001-01-01

    Full Text Available The optimisation of the PID controllers' gains for separate propulsion and heading control systems of CyberShip I, a scale model of an oil platform supply ship, using Genetic Algorithms is considered. During the initial design process both PID controllers have been manually tuned to improve their performance. However this tuning approach is a tedious and time consuming process. A solution to this problem is the use of optimisation techniques based on Genetic Algorithms to optimise the controllers' gain values. This investigation has been carried out through computer-generated simulations based on a non-linear hydrodynamic model of CyberShip I.

  8. Optimizing Combination of Units Commitment Based on Improved Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    LAI Yifei; ZHANG Qianhua; JIA Junping

    2007-01-01

    GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms, such as natural selection, genetic recombination and survival of the fittest. By use of coding betterment, the dynamic changes of the mutation rate and the crossover probability, the dynamic choice of subsistence, the reservation of the optimal fitness value, a modified genetic algorithm for optimizing combination of units in thermal power plants is proposed.And through taking examples, test result are analyzed and compared with results of some different algorithms. Numerical results show available value for the unit commitment problem with examples.

  9. Genetic warfarin dosing: tables versus algorithms.

    Science.gov (United States)

    Finkelman, Brian S; Gage, Brian F; Johnson, Julie A; Brensinger, Colleen M; Kimmel, Stephen E

    2011-02-01

    The aim of this study was to compare the accuracy of genetic tables and formal pharmacogenetic algorithms for warfarin dosing. Pharmacogenetic algorithms based on regression equations can predict warfarin dose, but they require detailed mathematical calculations. A simpler alternative, recently added to the warfarin label by the U.S. Food and Drug Administration, is to use genotype-stratified tables to estimate warfarin dose. This table may potentially increase the use of pharmacogenetic warfarin dosing in clinical practice; however, its accuracy has not been quantified. A retrospective cohort study of 1,378 patients from 3 anticoagulation centers was conducted. Inclusion criteria were stable therapeutic warfarin dose and complete genetic and clinical data. Five dose prediction methods were compared: 2 methods using only clinical information (empiric 5 mg/day dosing and a formal clinical algorithm), 2 genetic tables (the new warfarin label table and a table based on mean dose stratified by genotype), and 1 formal pharmacogenetic algorithm, using both clinical and genetic information. For each method, the proportion of patients whose predicted doses were within 20% of their actual therapeutic doses was determined. Dosing methods were compared using McNemar's chi-square test. Warfarin dose prediction was significantly more accurate (all p algorithm (52%) than with all other methods: empiric dosing (37%; odds ratio [OR]: 2.2), clinical algorithm (39%; OR: 2.2), warfarin label (43%; OR: 1.8), and genotype mean dose table (44%; OR: 1.9). Although genetic tables predicted warfarin dose better than empiric dosing, formal pharmacogenetic algorithms were the most accurate. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  10. Genetic algorithm for neural networks optimization

    Science.gov (United States)

    Setyawati, Bina R.; Creese, Robert C.; Sahirman, Sidharta

    2004-11-01

    This paper examines the forecasting performance of multi-layer feed forward neural networks in modeling a particular foreign exchange rates, i.e. Japanese Yen/US Dollar. The effects of two learning methods, Back Propagation and Genetic Algorithm, in which the neural network topology and other parameters fixed, were investigated. The early results indicate that the application of this hybrid system seems to be well suited for the forecasting of foreign exchange rates. The Neural Networks and Genetic Algorithm were programmed using MATLAB«.

  11. Using an Adaptive Genetic Algorithm to Improve Finance Decision

    Institute of Scientific and Technical Information of China (English)

    FaliangGui; TiesongHu

    2004-01-01

    Optimising both qualitative and quantitative factors is a key challenge in solving construction finance decisions. The semi-structured nature of construction finance optimisation problems precludes conventional optimisation techniques. With a desire to improve the performance of the canonical genetic algorithm (CCA) which is characterised by static crossover and mutation probability, and to provide contractors with a profit-risk trade-off curve and cash flow prediction, an adaptive genetic algorithm (AGA) model is developed. Ten projects being undertaken by a major construction firm in Hong Kong were used as case studies to evaluate the performance of the genetic algorithm (CA). The results of case study reveal that the ACA outperformed the CGA both in terms of its quality of solutions and the computational time required for a certain level of accuracy. The results also indicate that there is a potential for using the GA for modelling financial decisions should both quantitative and qualitative factors be optimised simultaneously.

  12. The Applications of Genetic Algorithms in Medicine

    Directory of Open Access Journals (Sweden)

    Ali Ghaheri

    2015-11-01

    Full Text Available A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.

  13. The Applications of Genetic Algorithms in Medicine

    Science.gov (United States)

    Ghaheri, Ali; Shoar, Saeed; Naderan, Mohammad; Hoseini, Sayed Shahabuddin

    2015-01-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algorithms are not known by physicians who may well benefit by applying them to solve complex medical problems. Therefore, in this paper, we introduce the genetic algorithm and its applications in medicine. The use of the genetic algorithm has promising implications in various medical specialties including radiology, radiotherapy, oncology, pediatrics, cardiology, endocrinology, surgery, obstetrics and gynecology, pulmonology, infectious diseases, orthopedics, rehabilitation medicine, neurology, pharmacotherapy, and health care management. This review introduces the applications of the genetic algorithm in disease screening, diagnosis, treatment planning, pharmacovigilance, prognosis, and health care management, and enables physicians to envision possible applications of this metaheuristic method in their medical career.] PMID:26676060

  14. Improved Runtime Analysis of the Simple Genetic Algorithm

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2013-01-01

    A runtime analysis of the Simple Genetic Algorithm (SGA) for the OneMax problem has recently been presented proving that the algorithm requires exponential time with overwhelming probability. This paper presents an improved analysis which overcomes some limitations of our previous one. Firstly...... improvement towards the reusability of the techniques in future systematic analyses of GAs. Finally, we consider the more natural SGA using selection with replacement rather than without replacement although the results hold for both algorithmic versions. Experiments are presented to explore the limits...

  15. Improved time complexity analysis of the Simple Genetic Algorithm

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2015-01-01

    A runtime analysis of the Simple Genetic Algorithm (SGA) for the OneMax problem has recently been presented proving that the algorithm with population size μ≤n1/8−ε requires exponential time with overwhelming probability. This paper presents an improved analysis which overcomes some limitations...... this is a major improvement towards the reusability of the techniques in future systematic analyses of GAs. Finally, we consider the more natural SGA using selection with replacement rather than without replacement although the results hold for both algorithmic versions. Experiments are presented to explore...

  16. Big Data Clustering Using Genetic Algorithm On Hadoop Mapreduce

    Directory of Open Access Journals (Sweden)

    Nivranshu Hans

    2015-04-01

    Full Text Available Abstract Cluster analysis is used to classify similar objects under same group. It is one of the most important data mining methods. However it fails to perform well for big data due to huge time complexity. For such scenarios parallelization is a better approach. Mapreduce is a popular programming model which enables parallel processing in a distributed environment. But most of the clustering algorithms are not naturally parallelizable for instance Genetic Algorithms. This is so due to the sequential nature of Genetic Algorithms. This paper introduces a technique to parallelize GA based clustering by extending hadoop mapreduce. An analysis of proposed approach to evaluate performance gains with respect to a sequential algorithm is presented. The analysis is based on a real life large data set.

  17. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang

    2010-01-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.

  18. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    Science.gov (United States)

    Zu, Yun-Xiao; Zhou, Jie; Zeng, Chang-Chang

    2010-11-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.

  19. Multiprocessor Scheduling Using Parallel Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nourah Al-Angari

    2012-07-01

    Full Text Available Tasks scheduling is the most challenging problem in the parallel computing. Hence, the inappropriate scheduling will reduce or even abort the utilization of the true potential of the parallelization. Genetic algorithm (GA has been successfully applied to solve the scheduling problem. The fitness evaluation is the most time consuming GA operation for the CPU time, which affect the GA performance. The proposed synchronous master-slave algorithm outperforms the sequential algorithm in case of complex and high number of generations problem.

  20. Genetic algorithm-based evaluation of spatial straightness error

    Institute of Scientific and Technical Information of China (English)

    崔长彩; 车仁生; 黄庆成; 叶东; 陈刚

    2003-01-01

    A genetic algorithm ( GA ) -based approach is proposed to evaluate the straightness error of spatial lines. According to the mathematical definition of spatial straightness, a verification model is established for straightness error, and the fitness function of GA is then given and the implementation techniques of the proposed algorithm is discussed in detail. The implementation techniques include real number encoding, adaptive variable range choosing, roulette wheel and elitist combination selection strategies, heuristic crossover and single point mutation schemes etc. An application example is quoted to validate the proposed algorithm. The computation result shows that the GA-based approach is a superior nonlinear parallel optimization method. The performance of the evolution population can be improved through genetic operations such as reproduction, crossover and mutation until the optimum goal of the minimum zone solution is obtained. The quality of the solution is better and the efficiency of computation is higher than other methods.

  1. Nested Genetic Algorithm for Resolving Overlapped Spectral Bands

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A nested genetic algorithm, including genetic parameter level and genetic implemented level for peak parameters, was proposed and applied for resolving overlapped spectral bands. By the genetic parameter level, parameters of genetic algorithm were optimized; moreover, the number of overlapped peaks was determined simultaneously. Then parameters of individual peaks were computed with the genetic implemented level.

  2. Combinations of Estimation of Distribution Algorithms and Other Techniques

    Institute of Scientific and Technical Information of China (English)

    Qingfu Zhang; Jianyong Sun; Edward Tsang

    2007-01-01

    This paper summaries our recent work on combining estimation of distribution algorithms (EDA) and other techniques for solving hard search and optimization problems: a) guided mutation, an offspring generator in which the ideas from EDAs and genetic algorithms are combined together, we have shown that an evolutionary algorithm with guided mutation outperforms the best GA for the maximum clique problem, b) evolutionary algorithms refining a heuristic, we advocate a strategy for solving a hard optimization problem with complicated data structure, and c) combination of two different local search techniques and EDA for numerical global optimization problems, its basic idea is that not all the new generated points are needed to be improved by an expensive local search.

  3. MULTIOBJECTIVE PARALLEL GENETIC ALGORITHM FOR WASTE MINIMIZATION

    Science.gov (United States)

    In this research we have developed an efficient multiobjective parallel genetic algorithm (MOPGA) for waste minimization problems. This MOPGA integrates PGAPack (Levine, 1996) and NSGA-II (Deb, 2000) with novel modifications. PGAPack is a master-slave parallel implementation of a...

  4. Predicting complex mineral structures using genetic algorithms.

    Science.gov (United States)

    Mohn, Chris E; Kob, Walter

    2015-10-28

    We show that symmetry-adapted genetic algorithms are capable of finding the ground state of a range of complex crystalline phases including layered- and incommensurate super-structures. This opens the way for the atomistic prediction of complex crystal structures of functional materials and mineral phases.

  5. Genetic Algorithm for Chinese Postman Problems

    Institute of Scientific and Technical Information of China (English)

    Jiang Hua; Kang Li-shan

    2003-01-01

    Chinese Postman Problem is an unsettled graphic problem. It was approached seldom by evolutionary computation. Now we use genetic algorithm to solve Chinese Postman Problem in undirected graph and get good results. It could be extended to solve Chinese postman problem in directed graph. We make these efforts for exploring in optimizing the mixed Chinese postman problem.

  6. Proposed genetic algorithms for construction site layout

    NARCIS (Netherlands)

    Mawdesley, Michael J.; Al-Jibouri, Saad H.

    2003-01-01

    The positioning of temporary facilities on a construction site is an area of research which has been recognised as important but which has received relatively little attention. In this paper, a genetic algorithm is proposed to solve the problem in which m facilities are to be positioned to n availab

  7. Boosting Principal Component Analysis by Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Divya Somvanshi

    2010-07-01

    Full Text Available This paper presents a new method of feature extraction by combining principal component analysis and genetic algorithm. Use of multiple pre-processors in combination with principal component analysis generates alternate feature spaces for data representation. The present method works out the fusion of these multiple spaces to create higher dimensionality feature vectors. The fused feature vectors are given chromosome representation by taking feature components to be genes. Then these feature vectors are allowed to undergo genetic evolution individually. For genetic algorithm, initial population is created by calculating probability distance matrix, and by applying a probability distance metric such that all the genes which lie farther than a defined threshold are tripped to zero. The genetic evolution of fused feature vector brings out most significant feature components (genes as survivours. A measure of significance is adapted on the basis of frequency of occurrence of the surviving genes in the current population. Finally, the feature vector is obtained by weighting the original feature components in proportion to their significance. The present algorithm is validated in combination with a neural network classifier based on error backpropagation algorithm, and by analysing a number of benchmark datasets available in the open sources.Defence Science Journal, 2010, 60(4, pp.392-398, DOI:http://dx.doi.org/10.14429/dsj.60.495

  8. Focused Crawler Optimization Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hartanto Kusuma Wardana

    2011-12-01

    Full Text Available As the size of the Web continues to grow, searching it for useful information has become more difficult. Focused crawler intends to explore the Web conform to a specific topic. This paper discusses the problems caused by local searching algorithms. Crawler can be trapped within a limited Web community and overlook suitable Web pages outside its track. A genetic algorithm as a global searching algorithm is modified to address the problems. The genetic algorithm is used to optimize Web crawling and to select more suitable Web pages to be fetched by the crawler. Several evaluation experiments are conducted to examine the effectiveness of the approach. The crawler delivers collections consist of 3396 Web pages from 5390 links which had been visited, or filtering rate of Roulette-Wheel selection at 63% and precision level at 93% in 5 different categories. The result showed that the utilization of genetic algorithm had empowered focused crawler to traverse the Web comprehensively, despite it relatively small collections. Furthermore, it brought up a great potential for building an exemplary collections compared to traditional focused crawling methods.

  9. A New Method for Medical Image Clustering Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Akbar Shahrzad Khashandarag

    2013-01-01

    Full Text Available Segmentation is applied in medical images when the brightness of the images becomes weaker so that making different in recognizing the tissues borders. Thus, the exact segmentation of medical images is an essential process in recognizing and curing an illness. Thus, it is obvious that the purpose of clustering in medical images is the recognition of damaged areas in tissues. Different techniques have been introduced for clustering in different fields such as engineering, medicine, data mining and so on. However, there is no standard technique of clustering to present ideal results for all of the imaging applications. In this paper, a new method combining genetic algorithm and k-means algorithm is presented for clustering medical images. In this combined technique, variable string length genetic algorithm (VGA is used for the determination of the optimal cluster centers. The proposed algorithm has been compared with the k-means clustering algorithm. The advantage of the proposed method is the accuracy in selecting the optimal cluster centers compared with the above mentioned technique.

  10. Evolving Quantum Circuits using Genetic Algorithms

    CERN Document Server

    Prashant

    2005-01-01

    This paper describes an application of genetic algorithm for evolving quantum computing circuits. The circuits use reversible one qubit and two qubit gates which are applied on a multi-qubit system having some initial state. The genetic algorithm automatically searches the space and comes out with the appropriate circuit design, which yields desired output state. The fitness function used matches the output with desired output and the search stops when it is found. The fitness value becomes higher if the output is close to the desired output. The paper briefly discusses the operation of a quantum gate over the multi-qubit system. The paper also demonstrates some examples of the evolved circuits using the algorithm.

  11. Genetic algorithm optimization for finned channel performance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Compared to a smooth channel, a finned channel provides a higher heat transfer coefficient; increasing the fin height enhances the heat transfer. However, this heat transfer enhancement is associated with an increase in the pressure drop. This leads to an increased pumping power requirement so that one may seek an optimum design for such systems. The main goal of this paper is to define the exact location and size of fins in such a way that a minimal pressure drop coincides with an optimal heat transfer based on the genetic algorithm. Each fin arrangement is considered a solution to the problem(an individual for genetic algorithm). An initial population is generated randomly at the first step. Then the algorithm has been searched among these solutions and made new solutions iteratively by its functions to find an optimum design as reported in this article.

  12. Learning Bayesian networks using genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Chen Fei; Wang Xiufeng; Rao Yimei

    2007-01-01

    A new method to evaluate the fitness of the Bayesian networks according to the observed data is provided. The main advantage of this criterion is that it is suitable for both the complete and incomplete cases while the others not.Moreover it facilitates the computation greatly. In order to reduce the search space, the notation of equivalent class proposed by David Chickering is adopted. Instead of using the method directly, the novel criterion, variable ordering, and equivalent class are combined,moreover the proposed mthod avoids some problems caused by the previous one. Later, the genetic algorithm which allows global convergence, lack in the most of the methods searching for Bayesian network is applied to search for a good model in thisspace. To speed up the convergence, the genetic algorithm is combined with the greedy algorithm. Finally, the simulation shows the validity of the proposed approach.

  13. Quantum Genetic Algorithms for Computer Scientists

    Directory of Open Access Journals (Sweden)

    Rafael Lahoz-Beltra

    2016-10-01

    Full Text Available Genetic algorithms (GAs are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data has led to a new class of GAs known as “Quantum Genetic Algorithms” (QGAs. In this review, we present a discussion, future potential, pros and cons of this new class of GAs. The review will be oriented towards computer scientists interested in QGAs “avoiding” the possible difficulties of quantum-mechanical phenomena.

  14. Surface/Surface Intersection Using Simulated Annealing Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The genetic algorithm and marching method are integrated into a novel algorithm to solve the surface intersection problem. By combining genetic algorithm with local searching method the efficiency of evolution is greatly improved. By fully utilizing the global searching ability and instinct attribute for parallel computation of genetic algorithm and the local rapid convergency of marching method, the algorithm can compute the intersection robustly and generate correct topology of intersection curves. The details of the new algorithm are discussed here.

  15. Genetic algorithms for the vehicle routing problem

    Science.gov (United States)

    Volna, Eva

    2016-06-01

    The Vehicle Routing Problem (VRP) is one of the most challenging combinatorial optimization tasks. This problem consists in designing the optimal set of routes for fleet of vehicles in order to serve a given set of customers. Evolutionary algorithms are general iterative algorithms for combinatorial optimization. These algorithms have been found to be very effective and robust in solving numerous problems from a wide range of application domains. This problem is known to be NP-hard; hence many heuristic procedures for its solution have been suggested. For such problems it is often desirable to obtain approximate solutions, so they can be found fast enough and are sufficiently accurate for the purpose. In this paper we have performed an experimental study that indicates the suitable use of genetic algorithms for the vehicle routing problem.

  16. Multi Population Hybrid Genetic Algorithms for University Course Timetabling Problem

    Directory of Open Access Journals (Sweden)

    Leila Jadidi

    2012-06-01

    Full Text Available University course timetabling is one of the important and time consuming issues that each University is involved with it at the beginning of each. This problem is in class of NP-hard problem and is very difficult to solve by classic algorithms. Therefore optimization techniques are used to solve them and produce optimal or near optimal feasible solutions instead of exact solutions. Genetic algorithms, because of multidirectional search property of them, are considered as an efficient approach for solving this type of problems. In this paper three new hybrid genetic algorithms for solving the university course timetabling problem (UCTP are proposed: FGARI, FGASA and FGATS. In proposed algorithms, fuzzy logic is used to measure violation of soft constraints in fitness function to deal with inherent uncertainly and vagueness involved in real life data. Also, randomized iterative local search, simulated annealing and tabu search are applied, respectively, to improve exploitive search ability and prevent genetic algorithm to be trapped in local optimum. The experimental results indicate that the proposed algorithms are able to produce promising results for the UCTP.

  17. Multi Population Hybrid Genetic Algorithms for University Course Timetabling

    Directory of Open Access Journals (Sweden)

    Mehrnaz Shirani LIRI

    2012-08-01

    Full Text Available University course timetabling is one of the important and time consuming issues that each University is involved with at the beginning of each university year. This problem is in class of NP-hard problem and is very difficult to solve by classic algorithms. Therefore optimization techniques are used to solve them and produce optimal or almost optimal feasible solutions instead of exact solutions. Genetic algorithms, because of their multidirectional search property, are considered as an efficient approach for solving this type of problems. In this paper three new hybrid genetic algorithms for solving the university course timetabling problem (UCTP are proposed: FGARI, FGASA and FGATS. In the proposed algorithms, fuzzy logic is used to measure violation of soft constraints in fitness function to deal with inherent uncertainty and vagueness involved in real life data. Also, randomized iterative local search, simulated annealing and tabu search are applied, respectively, to improve exploitive search ability and prevent genetic algorithm to be trapped in local optimum. The experimental results indicate that the proposed algorithms are able to produce promising results for the UCTP

  18. Strain gage selection in loads equations using a genetic algorithm

    Science.gov (United States)

    1994-01-01

    Traditionally, structural loads are measured using strain gages. A loads calibration test must be done before loads can be accurately measured. In one measurement method, a series of point loads is applied to the structure, and loads equations are derived via the least squares curve fitting algorithm using the strain gage responses to the applied point loads. However, many research structures are highly instrumented with strain gages, and the number and selection of gages used in a loads equation can be problematic. This paper presents an improved technique using a genetic algorithm to choose the strain gages used in the loads equations. Also presented are a comparison of the genetic algorithm performance with the current T-value technique and a variant known as the Best Step-down technique. Examples are shown using aerospace vehicle wings of high and low aspect ratio. In addition, a significant limitation in the current methods is revealed. The genetic algorithm arrived at a comparable or superior set of gages with significantly less human effort, and could be applied in instances when the current methods could not.

  19. Adaptive Genetic Algorithm for Sensor Coarse Signal Processing

    Directory of Open Access Journals (Sweden)

    Xuan Huang

    2014-03-01

    Full Text Available As with the development of computer technology and informatization, network technique, sensor technique and communication technology become three necessary components of information industry. As the core technique of sensor application, signal processing mainly determines the sensor performances. For this reason, study on signal processing mode is very important to sensors and the application of sensor network. In this paper, we introduce a new sensor coarse signal processing mode based on adaptive genetic algorithm. This algorithm selects crossover, mutation probability adaptively and compensates multiple operators commutatively to optimize the search process, so that we can obtain the global optimum solution. Based on the proposed algorithm, using auto-correlative characteristic parameter extraction method, it achieves smaller test error in sensor coarse signal processing mode of processing interference signal. We evaluate the proposed approach on a set of data. The experimental results show that, the proposed approach is able to improve the performance in different experimental setting

  20. An Adaptive Immune Genetic Algorithm for Edge Detection

    Science.gov (United States)

    Li, Ying; Bai, Bendu; Zhang, Yanning

    An adaptive immune genetic algorithm (AIGA) based on cost minimization technique method for edge detection is proposed. The proposed AIGA recommends the use of adaptive probabilities of crossover, mutation and immune operation, and a geometric annealing schedule in immune operator to realize the twin goals of maintaining diversity in the population and sustaining the fast convergence rate in solving the complex problems such as edge detection. Furthermore, AIGA can effectively exploit some prior knowledge and information of the local edge structure in the edge image to make vaccines, which results in much better local search ability of AIGA than that of the canonical genetic algorithm. Experimental results on gray-scale images show the proposed algorithm perform well in terms of quality of the final edge image, rate of convergence and robustness to noise.

  1. Niche Genetic Algorithm with Accurate Optimization Performance

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-hua; YAN De-kun

    2005-01-01

    Based on crowding mechanism, a novel niche genetic algorithm was proposed which can record evolutionary direction dynamically during evolution. After evolution, the solutions's precision can be greatly improved by means of the local searching along the recorded direction. Simulation shows that this algorithm can not only keep population diversity but also find accurate solutions. Although using this method has to take more time compared with the standard GA, it is really worth applying to some cases that have to meet a demand for high solution precision.

  2. Analysis of six stages supply chain management in inventory optimization for warehouse with artificial bee colony algorithm using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Ajay Singh Yadav

    2017-09-01

    Full Text Available The purpose of the proposed study is to give a new dimension on warehouse with Artificial bee colony algorithm using genetic algorithm processes in six stages - 11 member supply chain in inventory optimization to describe the certain and uncertain market demand which is based on supply reliability and to develop more realistic and more flexible models. we hope that the proposed study has a great potential to solve various practical tribulations related to the warehouse using genetic algorithm processes in six stages - 11 member supply chain in inventory optimization and also provide a general review for the application of soft computing techniques like genetic algorithms to use for improve the effectiveness and efficiency for various aspect of warehouse with Artificial bee colony algorithm using genetic algorithm.

  3. Routine Discovery of Complex Genetic Models using Genetic Algorithms.

    Science.gov (United States)

    Moore, Jason H; Hahn, Lance W; Ritchie, Marylyn D; Thornton, Tricia A; White, Bill C

    2004-02-01

    Simulation studies are useful in various disciplines for a number of reasons including the development and evaluation of new computational and statistical methods. This is particularly true in human genetics and genetic epidemiology where new analytical methods are needed for the detection and characterization of disease susceptibility genes whose effects are complex, nonlinear, and partially or solely dependent on the effects of other genes (i.e. epistasis or gene-gene interaction). Despite this need, the development of complex genetic models that can be used to simulate data is not always intuitive. In fact, only a few such models have been published. We have previously developed a genetic algorithm approach to discovering complex genetic models in which two single nucleotide polymorphisms (SNPs) influence disease risk solely through nonlinear interactions. In this paper, we extend this approach for the discovery of high-order epistasis models involving three to five SNPs. We demonstrate that the genetic algorithm is capable of routinely discovering interesting high-order epistasis models in which each SNP influences risk of disease only through interactions with the other SNPs in the model. This study opens the door for routine simulation of complex gene-gene interactions among SNPs for the development and evaluation of new statistical and computational approaches for identifying common, complex multifactorial disease susceptibility genes.

  4. Compression Techniques for Improved Algorithm Computational Performance

    Science.gov (United States)

    Zalameda, Joseph N.; Howell, Patricia A.; Winfree, William P.

    2005-01-01

    Analysis of thermal data requires the processing of large amounts of temporal image data. The processing of the data for quantitative information can be time intensive especially out in the field where large areas are inspected resulting in numerous data sets. By applying a temporal compression technique, improved algorithm performance can be obtained. In this study, analysis techniques are applied to compressed and non-compressed thermal data. A comparison is made based on computational speed and defect signal to noise.

  5. TIP: protein backtranslation aided by genetic algorithms.

    Science.gov (United States)

    Moreira, Andrés; Maass, Alejandro

    2004-09-01

    Several applications require the backtranslation of a protein sequence into a nucleic acid sequence. The degeneracy of the genetic code makes this process ambiguous; moreover, not every translation is equally viable. The usual answer is to mimic the codon usage of the target species; however, this does not capture all the relevant features of the 'genomic styles' from different taxa. The program TIP ' Traducción Inversa de Proteínas') applies genetic algorithms to improve the backtranslation, by minimizing the difference of some coding statistics with respect to their average value in the target. http://www.cmm.uchile.cl/genoma/tip/

  6. Fashion sketch design by interactive genetic algorithms

    Science.gov (United States)

    Mok, P. Y.; Wang, X. X.; Xu, J.; Kwok, Y. L.

    2012-11-01

    Computer aided design is vitally important for the modern industry, particularly for the creative industry. Fashion industry faced intensive challenges to shorten the product development process. In this paper, a methodology is proposed for sketch design based on interactive genetic algorithms. The sketch design system consists of a sketch design model, a database and a multi-stage sketch design engine. First, a sketch design model is developed based on the knowledge of fashion design to describe fashion product characteristics by using parameters. Second, a database is built based on the proposed sketch design model to define general style elements. Third, a multi-stage sketch design engine is used to construct the design. Moreover, an interactive genetic algorithm (IGA) is used to accelerate the sketch design process. The experimental results have demonstrated that the proposed method is effective in helping laypersons achieve satisfied fashion design sketches.

  7. Genetic algorithms and aquifer parameter identification

    Institute of Scientific and Technical Information of China (English)

    LI Jing-sheng(李竞生); YAO Lei-hua(姚磊华); LI Yang(李杨)

    2003-01-01

    In order to identify aquifer parameter,authors develops an improved combinatorial method called best chromosome clone plus younger generation chromosome prepotency genetic algorithm (BCC-YGCP-GA), based on a decimal system simple genetic algorithm (SGA). The paper takes unsteady state flows in a two-dimensional, inhomogeneous, confined aquifer for a ideal model, and utilizes SGA and BCC-YGCP-GA coupled to finite element method for identifying aquifer hydraulic conductivity K1,K2,K3 and storage S1,S2,S3, respectively. It is shown from the result that GSA does not reach convergence with 100 generations, whereas convergence rate of BCC-YGCD-GA is very fast. Objective function value calculated by BCC-YGCD-GA is 0.001 29 with 100 generations, and hydraulic conductivity and storage of three zones are almost equal to the "true" values of ideal model.

  8. Genetic algorithms for minimal source reconstructions

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P.S.; Mosher, J.C.

    1993-12-01

    Under-determined linear inverse problems arise in applications in which signals must be estimated from insufficient data. In these problems the number of potentially active sources is greater than the number of observations. In many situations, it is desirable to find a minimal source solution. This can be accomplished by minimizing a cost function that accounts from both the compatibility of the solution with the observations and for its ``sparseness``. Minimizing functions of this form can be a difficult optimization problem. Genetic algorithms are a relatively new and robust approach to the solution of difficult optimization problems, providing a global framework that is not dependent on local continuity or on explicit starting values. In this paper, the authors describe the use of genetic algorithms to find minimal source solutions, using as an example a simulation inspired by the reconstruction of neural currents in the human brain from magnetoencephalographic (MEG) measurements.

  9. A New Neuro-Fuzzy Adaptive Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHU Lili; ZHANG Huanchun; JING Yazhi

    2003-01-01

    Novel neuro-fuzzy techniques are used to dynamically control parameter settings of genetic algorithms (GAs). The benchmark routine is an adaptive genetic algorithm (AGA) that uses a fuzzy knowledge-based system to control GA parameters. The self-learning ability of the cerebellar model ariculation controller(CMAC) neural network makes it possible for on-line learning the knowledge on GAs throughout the run. Automatically designing and tuning the fuzzy knowledge-base system, neurofuzzy techniques based on CMAC can find the optimized fuzzy system for AGA by the renhanced learning method. The Results from initial experiments show a Dynamic Parametric AGA system designed by the proposed automatic method and indicate the general applicability of the neuro-fuzzy AGA to a wide range of combinatorial optimization.

  10. Interleaver Design Method for Turbo Codes Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Tan Ying; Sun Hong; Zhou Huai-bei

    2004-01-01

    This paper describes a new interleaver construction technique for turbo code. The technique searches as much as possible pseudo-random interleaving patterns under a certain condition using genetic algorithms(GAs). The new interleavers have the superiority of the S-random interleavers and this interleaver construction technique can reduce the time taken to generate pseudo-random interleaving patterns under a certain condition. Tbe results obtained indicate that the new interleavers yield an equal to or better performance than the Srandom interleavers. Compared to the S-random interleaver,this design requires a lower level of computational complexity.

  11. Identification of Hammerstein Model Based on Quantum Genetic Algorithm

    OpenAIRE

    Zhang Hai Li

    2013-01-01

    Nonlinear system identification is a main topic of modern identification. A new method for nonlinear system identification is presented by using Quantum Genetic Algorithm(QGA).The problems of nonlinear system identification are cast as function optimization overprameter space,and the Quantum Genetic Algorithm is adopted to solve the optimization problem. Simulation experiments show that: compared with the genetic algorithm, quantum genetic algorithm is an effective swarm intelligence algorith...

  12. A novel pipeline based FPGA implementation of a genetic algorithm

    Science.gov (United States)

    Thirer, Nonel

    2014-05-01

    To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.

  13. Design of hyperbolic metamaterials by genetic algorithm

    Science.gov (United States)

    Goforth, Ian A.; Alisafaee, Hossein; Fullager, Daniel B.; Rosenbury, Chris; Fiddy, Michael A.

    2014-09-01

    We explain the design of one dimensional Hyperbolic Metamaterials (HMM) using a genetic algorithm (GA) and provide sample applications including the realization of negative refraction. The design method is a powerful optimization approach to find the optimal performance of such structures, which "naturally" finds HMM structures that are globally optimized for specific applications. We explain how a fitness function can be incorporated into the GA for different metamaterial properties.

  14. Designing quantum gates using the genetic algorithm

    Science.gov (United States)

    Kumar, Karthikeyan S.; Paraoanu, G. S.

    2012-12-01

    We demonstrate the usage of Genetic Algorithm (GA) to tailor the radio frequency pulses for producing unitary transformations in qubit systems. We find that the initial population converges to the optimal solution after 10 generations, for a one segment pulse corresponding to single qubit Hadamard gate. For a two qubit CNOT gate, we see the population convergence for a two segment pulse after 150 generations. This demonstrates that the method is suitable for designing quantum gates.

  15. Web Based Genetic Algorithm Using Data Mining

    OpenAIRE

    Ashiqur Rahman; Asaduzzaman Noman; Md. Ashraful Islam; Al-Amin Gaji

    2016-01-01

    This paper presents an approach for classifying students in order to predict their final grade based on features extracted from logged data in an education web-based system. A combination of multiple classifiers leads to a significant improvement in classification performance. Through weighting the feature vectors using a Genetic Algorithm we can optimize the prediction accuracy and get a marked improvement over raw classification. It further shows that when the number of features is few; fea...

  16. Genetic algorithms in computer aided inductor design

    OpenAIRE

    Jean Fivaz; Willem A. Cronjé

    2004-01-01

    The goal of this investigation is to determine the advantages of using genetic algorithms in computer-aided design as applied to inductors.  These advantages are exploited in design problems with a number of specifications and constraints, as encountered in power electronics during practical inductor design. The design tool should be able to select components, such as cores and wires, from databases of available components, and evaluate these choices based on the components’ characteristic d...

  17. Assembly line balancing using genetic algorithms

    OpenAIRE

    Tanyer, Muzaffer

    1997-01-01

    Ankara : Department of Industrial Engineering and Institute of Engineering and Sciences, Bilkent Univ., 1997. Thesis (Master's) -- Bilkent University, 1997. Includes bibliographical references leaves 69-73 For the last few decades, the genetic algorithms (GAs) have been used as a kind of heuristic in many areas of manufacturing. Facility layout, scheduling, process planning, and assembly line balancing are some of the areas where GAs are already popular. GAs are more efficie...

  18. Quantum-Inspired Genetic Algorithm or Quantum Genetic Algorithm: Which Is It?

    Science.gov (United States)

    Jones, Erika

    2015-04-01

    Our everyday work focuses on genetic algorithms (GAs) related to quantum computing where we call ``related'' algorithms those falling into one of two classes: (1) GAs run on classical computers but making use of quantum mechanical (QM) constructs and (2) GAs run on quantum hardware. Though convention has yet to be set with respect to usage of the accepted terms quantum-inspired genetic algorithm (QIGA) and quantum genetic algorithm (QGA), we find the two terms highly suitable respectively as labels for the aforementioned classes. With these specific definitions in mind, the difference between the QIGA and QGA is greater than might first be appreciated, particularly by those coming from a perspective emphasizing GA use as a general computational tool irrespective of QM aspects (1) suggested by QIGAs and (2) inherent in QGAs. We offer a theoretical standpoint highlighting key differences-both obvious, and more significantly, subtle-to be considered in general design of a QIGA versus that of a QGA.

  19. Optimization of reliability allocation strategies through use of genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J.E.; Painton, L.A.

    1996-08-01

    This paper examines a novel optimization technique called genetic algorithms and its application to the optimization of reliability allocation strategies. Reliability allocation should occur in the initial stages of design, when the objective is to determine an optimal breakdown or allocation of reliability to certain components or subassemblies in order to meet system specifications. The reliability allocation optimization is applied to the design of a cluster tool, a highly complex piece of equipment used in semiconductor manufacturing. The problem formulation is presented, including decision variables, performance measures and constraints, and genetic algorithm parameters. Piecewise ``effort curves`` specifying the amount of effort required to achieve a certain level of reliability for each component of subassembly are defined. The genetic algorithm evolves or picks those combinations of ``effort`` or reliability levels for each component which optimize the objective of maximizing Mean Time Between Failures while staying within a budget. The results show that the genetic algorithm is very efficient at finding a set of robust solutions. A time history of the optimization is presented, along with histograms or the solution space fitness, MTBF, and cost for comparative purposes.

  20. Genetic Algorithms for Multiple-Choice Problems

    CERN Document Server

    Aickelin, Uwe

    2010-01-01

    This thesis investigates the use of problem-specific knowledge to enhance a genetic algorithm approach to multiple-choice optimisation problems.It shows that such information can significantly enhance performance, but that the choice of information and the way it is included are important factors for success.Two multiple-choice problems are considered.The first is constructing a feasible nurse roster that considers as many requests as possible.In the second problem, shops are allocated to locations in a mall subject to constraints and maximising the overall income.Genetic algorithms are chosen for their well-known robustness and ability to solve large and complex discrete optimisation problems.However, a survey of the literature reveals room for further research into generic ways to include constraints into a genetic algorithm framework.Hence, the main theme of this work is to balance feasibility and cost of solutions.In particular, co-operative co-evolution with hierarchical sub-populations, problem structur...

  1. Emergence of Algorithmic Languages in Genetic Systems

    CERN Document Server

    Angeles, O; Waelbroeck, H

    1997-01-01

    In genetic systems there is a non-trivial interface between the sequence of symbols which constitutes the chromosome, or ``genotype'', and the products which this sequence encodes --- the ``phenotype''. This interface can be thought of as a ``computer''. In this case the chromosome is viewed as an algorithm and the phenotype as the result of the computation. In general only a small fraction of all possible sequences of symbols makes any sense for a given computer. The difficulty of finding meaningful algorithms by random mutation is known as the brittleness problem. In this paper we show that mutation and crossover favour the emergence of an algorithmic language which facilitates the production of meaningful sequences following random mutations of the genotype. We base our conclusions on an analysis of the population dynamics of a variant of Kitano's neurogenetic model wherein the chromosome encodes the rules for cellular division and the phenotype is a 16-cell organism interpreted as a connectivity matrix fo...

  2. A genetic algorithm approach to routine gamma spectra analysis

    Energy Technology Data Exchange (ETDEWEB)

    Carlevaro, C M [Instituto de FIsica de LIquidos y Sistemas Biologicos, Calle 59 No 789, B1900BTE La Plata (Argentina); Wilkinson, M V [Autoridad Regulatoria Nuclear, Avda. del Libertador 8250, C1429BNP Buenos Aires (Argentina); Barrios, L A [Autoridad Regulatoria Nuclear, Avda. del Libertador 8250, C1429BNP Buenos Aires (Argentina)

    2008-01-15

    In this work we present an alternative method for performing routine gamma spectra analysis based on genetic algorithm techniques. The main idea is to search for patterns of single nuclide spectra obtained by simulation in a sample spectrum targeted for analysis. We show how this approach is applied to the analysis of simulated and real target spectra, and also to the study of interference resolution.

  3. Eddy current testing probe optimization using a parallel genetic algorithm

    Directory of Open Access Journals (Sweden)

    Dolapchiev Ivaylo

    2008-01-01

    Full Text Available This paper uses the developed parallel version of Michalewicz's Genocop III Genetic Algorithm (GA searching technique to optimize the coil geometry of an eddy current non-destructive testing probe (ECTP. The electromagnetic field is computed using FEMM 2D finite element code. The aim of this optimization was to determine coil dimensions and positions that improve ECTP sensitivity to physical properties of the tested devices.

  4. Using Genetic Algorithms on Manufacturing Facilities Layout Problems

    Institute of Scientific and Technical Information of China (English)

    王克胜; EspenGunnarsen; 袁庆丰

    2004-01-01

    Traditionally, the objective of a manufacturing facility layout problem is to minimize the material handling cost of the manufacturing systems. Because of the combination of the facility layout problems, the genetic algorithms (GA) technique is the most promising approach for solving practical layout problems. Much of the previous work has been done for identical problems, where all departments are equal in area. In this paper, non-identical problems are dealt with. A new coding approach - the Comer Attachmer Structure (CAS) is introduced.

  5. Optimal Sensors and Actuators Placement for Large-Scale Unstable Systems via Restricted Genetic Algorithm

    DEFF Research Database (Denmark)

    Seyyed Sakha, Masoud; Shaker, Hamid Reza

    2017-01-01

    expensive. The computational burden is significant in particular for large-scale systems. In this paper, we develop a new technique for placing sensor and actuator in large-scale systems by using Restricted Genetic Algorithm (RGA). The RGA is a kind of genetic algorithm which is developed specifically...

  6. Optimization of unit commitment based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    蔡兴国; 初壮

    2002-01-01

    How to solve unit commitment and load dispatch of power system by genetic algorithms is discussed in this paper. A combination encoding scheme of binary encoding and floating number encoding and corresponding genetic operators are developed. Meanwhile a contract mapping genetic algorithm is used to enhance traditional GA' s convergence. The result of a practical example shows that this algorithm is effective.

  7. Diagnosis support using Fuzzy Cognitive Maps combined with Genetic Algorithms.

    Science.gov (United States)

    Georgopoulos, Voula C; Stylios, Chrysotomos D

    2009-01-01

    A new hybrid modeling methodology to support medical diagnosis decisions is developed here. It extends previous work on Competitive Fuzzy Cognitive Maps for Medical Diagnosis Support Systems by complementing them with Genetic Algorithms Methods for concept interaction. The synergy of these methodologies is accomplished by a new proposed algorithm that leads to more dependable Advanced Medical Diagnosis Support Systems that are suitable to handle situations where the decisions are not clearly distinct. The technique developed here is applied successfully to model and test a differential diagnosis problem from the speech pathology area for the diagnosis of language impairments.

  8. A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)

    Science.gov (United States)

    Cantó, J.; Curiel, S.; Martínez-Gómez, E.

    2009-07-01

    Context: Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims: We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (asexual genetic algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two examples: the orbits of exoplanets by taking a set of radial velocity data, and the spectral energy distribution (SED) observed towards a YSO (Young Stellar Object). Methods: The algorithm AGA may also be called genetic, although it differs from standard genetic algorithms in two main aspects: a) the initial population is not encoded; and b) the new generations are constructed by asexual reproduction. Results: Applying our algorithm in optimizing some complicated functions, we find the global maxima within a few iterations. For model fitting to the orbits of exoplanets and the SED of a YSO, we estimate the parameters and their associated errors.

  9. Explicit filtering of building blocks for genetic algorithms

    NARCIS (Netherlands)

    Kemenade, C.H.M. van

    1996-01-01

    Genetic algorithms are often applied to building block problems. We have developed a simple filtering algorithm that can locate building blocks within a bit-string, and does not make assumptions regarding the linkage of the bits. A comparison between the filtering algorithm and genetic algorithms re

  10. Application of genetic algorithm to hexagon-based motion estimation.

    Science.gov (United States)

    Kung, Chih-Ming; Cheng, Wan-Shu; Jeng, Jyh-Horng

    2014-01-01

    With the improvement of science and technology, the development of the network, and the exploitation of the HDTV, the demands of audio and video become more and more important. Depending on the video coding technology would be the solution for achieving these requirements. Motion estimation, which removes the redundancy in video frames, plays an important role in the video coding. Therefore, many experts devote themselves to the issues. The existing fast algorithms rely on the assumption that the matching error decreases monotonically as the searched point moves closer to the global optimum. However, genetic algorithm is not fundamentally limited to this restriction. The character would help the proposed scheme to search the mean square error closer to the algorithm of full search than those fast algorithms. The aim of this paper is to propose a new technique which focuses on combing the hexagon-based search algorithm, which is faster than diamond search, and genetic algorithm. Experiments are performed to demonstrate the encoding speed and accuracy of hexagon-based search pattern method and proposed method.

  11. Magnetic Flux Leakage Signal Inversion of Corrosive Flaws Based on Modified Genetic Local Search Algorithm

    Institute of Scientific and Technical Information of China (English)

    HAN Wen-hua; FANG Ping; XIA Fei; XUE Fang

    2009-01-01

    In this paper, a modified genetic local search algorithm (MGLSA) is proposed. The proposed algorithm is resulted from employing the simulated annealing technique to regulate the variance of the Gaussian mutation of the genetic local search algorithm (GLSA). Then, an MGLSA-based inverse algorithm is proposed for magnetic flux leakage (MFL) signal inversion of corrosive flaws, in which the MGLSA is used to solve the optimization problem in the MFL inverse problem. Experimental results demonstrate that the MGLSA-based inverse algorithm is more robust than GLSA-based inverse algorithm in the presence of noise in the measured MFL signals.

  12. An improved localization algorithm based on genetic algorithm in wireless sensor networks.

    Science.gov (United States)

    Peng, Bo; Li, Lei

    2015-04-01

    Wireless sensor network (WSN) are widely used in many applications. A WSN is a wireless decentralized structure network comprised of nodes, which autonomously set up a network. The node localization that is to be aware of position of the node in the network is an essential part of many sensor network operations and applications. The existing localization algorithms can be classified into two categories: range-based and range-free. The range-based localization algorithm has requirements on hardware, thus is expensive to be implemented in practice. The range-free localization algorithm reduces the hardware cost. Because of the hardware limitations of WSN devices, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. However, these techniques usually have higher localization error compared to the range-based algorithms. DV-Hop is a typical range-free localization algorithm utilizing hop-distance estimation. In this paper, we propose an improved DV-Hop algorithm based on genetic algorithm. Simulation results show that our proposed algorithm improves the localization accuracy compared with previous algorithms.

  13. Star identification methods, techniques and algorithms

    CERN Document Server

    Zhang, Guangjun

    2017-01-01

    This book summarizes the research advances in star identification that the author’s team has made over the past 10 years, systematically introducing the principles of star identification, general methods, key techniques and practicable algorithms. It also offers examples of hardware implementation and performance evaluation for the star identification algorithms. Star identification is the key step for celestial navigation and greatly improves the performance of star sensors, and as such the book include the fundamentals of star sensors and celestial navigation, the processing of the star catalog and star images, star identification using modified triangle algorithms, star identification using star patterns and using neural networks, rapid star tracking using star matching between adjacent frames, as well as implementation hardware and using performance tests for star identification. It is not only valuable as a reference book for star sensor designers and researchers working in pattern recognition and othe...

  14. NOVEL QUANTUM-INSPIRED GENETIC ALGORITHM BASED ON IMMUNITY

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Zhao Rongchun; Zhang Yanning; Jiao Licheng

    2005-01-01

    A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's advantages, IQGA utilizes the characteristics and knowledge in the pending problems for restraining the repeated and ineffective operations during evolution, so as to improve the algorithm efficiency. The experimental results of the knapsack problem show that the performance of IQGA is superior to the Conventional Genetic Algorithm (CGA), the Immune Genetic Algorithm (IGA) and QGA.

  15. Identification of Hammerstein Model Based on Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Hai Li

    2013-07-01

    Full Text Available Nonlinear system identification is a main topic of modern identification. A new method for nonlinear system identification is presented by using Quantum Genetic Algorithm(QGA.The problems of nonlinear system identification are cast as function optimization overprameter space,and the Quantum Genetic Algorithm is adopted to solve the optimization problem. Simulation experiments show that: compared with the genetic algorithm, quantum genetic algorithm is an effective swarm intelligence algorithm, its salient features of the algorithm parameters, small population size, and the use of Quantum gate update populations, greatly improving the recognition in the optimization of speed and accuracy. Simulation results show the effectiveness of the proposed method.

  16. Improved Quantum Genetic Algorithm in Application of Scheduling Engineering Personnel

    Directory of Open Access Journals (Sweden)

    Huaixiao Wang

    2014-01-01

    Full Text Available To verify the availability of the improved quantum genetic algorithm in solving the scheduling engineering personnel problem, the following work has been carried out: the characteristics of the scheduling engineering personnel problem are analyzed, the quantum encoding method is proposed, and an improved quantum genetic algorithm is applied to address the issue. Taking the low efficiency and the bad performance of the conventional quantum genetic algorithm into account, a universal improved quantum genetic algorithm is introduced to solve the scheduling engineering personnel problem. Finally, the examples are applied to verify the effectiveness and superiority of the improved quantum genetic algorithm and the rationality of the encoding method.

  17. Genetic Algorithms and Genetic Programming Modern Concepts and Practical Applications

    CERN Document Server

    Affenzeller, Michael

    2009-01-01

    Describes several generic algorithmic concepts that can be used in various kinds of GA or with evolutionary optimization techniques. This title provides a better understanding of the basic workflow of GAs and GP, encouraging readers to establish new bionic, problem-independent theoretical concepts.

  18. A Fuzzy Genetic Algorithm Based on Binary Encoding for Solving Multidimensional Knapsack Problems

    Directory of Open Access Journals (Sweden)

    M. Jalali Varnamkhasti

    2012-01-01

    Full Text Available The fundamental problem in genetic algorithms is premature convergence, and it is strongly related to the loss of genetic diversity of the population. This study aims at proposing some techniques to tackle the premature convergence by controlling the population diversity. Firstly, a sexual selection mechanism which utilizes the mate chromosome during selection is used. The second technique focuses on controlling the genetic parameters by applying the fuzzy logic controller. Computational experiments are conducted on the proposed techniques and the results are compared with other genetic operators, heuristics, and local search algorithms commonly used for solving multidimensional 0/1 knapsack problems published in the literature.

  19. Interactive segmentation techniques algorithms and performance evaluation

    CERN Document Server

    He, Jia; Kuo, C-C Jay

    2013-01-01

    This book focuses on interactive segmentation techniques, which have been extensively studied in recent decades. Interactive segmentation emphasizes clear extraction of objects of interest, whose locations are roughly indicated by human interactions based on high level perception. This book will first introduce classic graph-cut segmentation algorithms and then discuss state-of-the-art techniques, including graph matching methods, region merging and label propagation, clustering methods, and segmentation methods based on edge detection. A comparative analysis of these methods will be provided

  20. Genetic Algorithm Tuned Fuzzy Logic for Gliding Return Trajectories

    Science.gov (United States)

    Burchett, Bradley T.

    2003-01-01

    The problem of designing and flying a trajectory for successful recovery of a reusable launch vehicle is tackled using fuzzy logic control with genetic algorithm optimization. The plant is approximated by a simplified three degree of freedom non-linear model. A baseline trajectory design and guidance algorithm consisting of several Mamdani type fuzzy controllers is tuned using a simple genetic algorithm. Preliminary results show that the performance of the overall system is shown to improve with genetic algorithm tuning.

  1. Using Genetic Algorithms in Secured Business Intelligence Mobile Applications

    OpenAIRE

    Silvia TRIF

    2011-01-01

    The paper aims to assess the use of genetic algorithms for training neural networks used in secured Business Intelligence Mobile Applications. A comparison is made between classic back-propagation method and a genetic algorithm based training. The design of these algorithms is presented. A comparative study is realized for determining the better way of training neural networks, from the point of view of time and memory usage. The results show that genetic algorithms based training offer bette...

  2. Hydrogenerator system identification using a simple genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wrate, C.A.; Wozniak, L. [Univ. of Illinois, Urbana, IL (United States)

    1997-03-01

    This paper investigates an identification procedure for a hydrogenerator plant using an adaptive technique. The procedure operates on field data consisting of sampled gate position and electrical frequency. The field data was recorded while the plant was operating under various load conditions. The procedure adapted to ongoing plant changes by continuously updating the identification results. It is shown that the adaptive technique, in this case genetic algorithm based, was capable of identifying the hydrogenerator system and following plant parameter changes while the plant operated under conditions of sufficient frequency excursions. These conditions include off-line and isolated network operation where effective control is critical.

  3. Novel Quantum Genetic Algorithm and Its Applications

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ge-xiang; LI Na; JIN Wei-dong; HU Lai-zhao

    2006-01-01

    By introducing strong parallelism of quantum computing into evolutionary algorithm,a novel quantum genetic algorithm (NQGA) is proposed.In NQGA,a novel approach for updating the rotation angles of quantum logic gates and a strategy for enhancing search capability and avoiding premature convergence are adopted.Several typical complex continuous functions are chosen to test the performance of NQGA.Also,NQGA is applied in selecting the best feature subset from a large number of features in radar emitter signal recognition.The testing and experimental results of feature selection show that NQGA presents good search capability,rapid convergence,short computing time,and ability to avoid premature convergence effectively.

  4. Implementation of Genetic Algorithm in Predicting Diabetes

    Directory of Open Access Journals (Sweden)

    S.Sapna

    2012-01-01

    Full Text Available Data Mining aims at discovering knowledge out of data and presenting it in a form that is easily compressible to humans. Data Mining represents a process developed to examine large amounts of data routinely collected. The term also refers to a collection of tools used to perform the process. One of the useful applications in the field of medicine is the incurable chronic disease diabetes. Data Mining algorithm is used for testing the accuracy in predicting diabetic status. Fuzzy Systems are been used for solving a wide range of problems in different application domain Genetic Algorithm for designing. Fuzzy systems allows in introducing the learning and adaptation capabilities. Neural Networks are efficiently used for learning membership functions. Diabetes occurs throughout the world, but Type 2 is more common in the most developed countries. The greater increase in prevalence is however expected in Asia and Africa where most patients will likely be found by 2030.

  5. A genetic algorithm for finding pulse sequences for NMR quantum computing

    CERN Document Server

    Rethinam, M J; Behrman, E C; Steck, J E; Skinner, S R

    2004-01-01

    We present a genetic algorithm for finding a set of pulse sequences, or rotations, for a given quantum logic gate, as implemented by NMR. We demonstrate the utility of the method by showing that shorter sequences than have been previously published can be found for both a CNOT and for the central part of Shor's algorithm (for N=15.) Artificial intelligence techniques like the genetic algorithm here presented have an enormous potential for simplifying the implementation of working quantum computers.

  6. Power Transmission System Vulnerability Assessment Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    E. Karimi

    2012-11-01

    Full Text Available Recent blackouts in power systems have shown the necessity of vulnerability assessment. Among all factors, transmission system components have a more important role. Power system vulnerability assessment could capture cascading outages which result in large blackouts and is an effective tool for power system engineers for defining power system bottlenecks and weak points. In this paper a new method based on fault chains concept is developed which uses new measures. Genetic algorithm with an effective structure is used for finding vulnerable branches in a practical power transmission system. Analytic hierarchy process is a technique used to determine the weighting factors in fitness function of genetic algorithm. Finally, the numerical results for Isfahan Regional Electric Company are presented which verifies the effectiveness and precision of the proposed method according to the practical expriments.

  7. Parametric analysis of architectural volumes through genetic algorithms

    Directory of Open Access Journals (Sweden)

    Pedro Salcedo Lagos

    2015-03-01

    Full Text Available During the last time, architectural design has developed partly due to new digital design techniques, which allow the generation of geometries based on the definition of initial parameters and the programming of formal relationship between them. Design processes based on these technologies allow to create shapes with the capacity to modify and adapt to multiple constrains or specific evaluation criteria, which raises the problem of identifying the best architectural solution. Several experiences have set up the utilization of genetic algorithm to face this problem. This paper demonstrates the possibility to implement a parametric analysis of architectural volumes with genetic algorithm, in order to combine functional, environmental and structural requirements, with an effective search method to select a variety of proper solutions through digital technologies.

  8. Load Flow Analysis Using Real Coded Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Himakar Udatha

    2014-02-01

    Full Text Available This paper presents a Real Coded Genetic Algorithm (RCGA for finding the load flow solution of electrical power systems. The proposed method is based on the minimization of the real and reactive power mismatches at various buses. The traditional methods such as Gauss-Seidel method and Newton-Raphson (NR method have certain drawbacks under abnormal operating condition. In order to overcome these problems, the load flow solution based on Real Coded Genetic Algorithm (RCGA is presented in this paper. Two cross over techniques, Arithmetic crossover and heuristic crossover are used to solve the power flow problem. The proposed method is applied for 3-bus, 5-bus and 6-bus systems and the results are presented.

  9. The genetic algorithm: A robust method for stress inversion

    Science.gov (United States)

    Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.

    2017-01-01

    The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.

  10. Evolutionary algorithms in genetic regulatory networks model

    CERN Document Server

    Raza, Khalid

    2012-01-01

    Genetic Regulatory Networks (GRNs) plays a vital role in the understanding of complex biological processes. Modeling GRNs is significantly important in order to reveal fundamental cellular processes, examine gene functions and understanding their complex relationships. Understanding the interactions between genes gives rise to develop better method for drug discovery and diagnosis of the disease since many diseases are characterized by abnormal behaviour of the genes. In this paper we have reviewed various evolutionary algorithms-based approach for modeling GRNs and discussed various opportunities and challenges.

  11. Genetic algorithms in computer aided inductor design

    Directory of Open Access Journals (Sweden)

    Jean Fivaz

    2004-09-01

    Full Text Available The goal of this investigation is to determine the advantages of using genetic algorithms in computer-aided design as applied to inductors.  These advantages are exploited in design problems with a number of specifications and constraints, as encountered in power electronics during practical inductor design. The design tool should be able to select components, such as cores and wires, from databases of available components, and evaluate these choices based on the components’ characteristic data read from a database of manufacturers’ data-sheets.  The proposed design must always be practically realizable, as close to the desired specifications as possible and within any specified constraints.

  12. Parallel Genetic Algorithm for Alpha Spectra Fitting

    Science.gov (United States)

    García-Orellana, Carlos J.; Rubio-Montero, Pilar; González-Velasco, Horacio

    2005-01-01

    We present a performance study of alpha-particle spectra fitting using parallel Genetic Algorithm (GA). The method uses a two-step approach. In the first step we run parallel GA to find an initial solution for the second step, in which we use Levenberg-Marquardt (LM) method for a precise final fit. GA is a high resources-demanding method, so we use a Beowulf cluster for parallel simulation. The relationship between simulation time (and parallel efficiency) and processors number is studied using several alpha spectra, with the aim of obtaining a method to estimate the optimal processors number that must be used in a simulation.

  13. Genetic Algorithms Principles Towards Hidden Markov Model

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2011-10-01

    Full Text Available In this paper we propose a general approach based on Genetic Algorithms (GAs to evolve Hidden Markov Models (HMM. The problem appears when experts assign probability values for HMM, they use only some limited inputs. The assigned probability values might not be accurate to serve in other cases related to the same domain. We introduce an approach based on GAs to find
    out the suitable probability values for the HMM to be mostly correct in more cases than what have been used to assign the probability values.

  14. Feature Selection for Image Retrieval based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Preeti Kushwaha

    2016-12-01

    Full Text Available This paper describes the development and implementation of feature selection for content based image retrieval. We are working on CBIR system with new efficient technique. In this system, we use multi feature extraction such as colour, texture and shape. The three techniques are used for feature extraction such as colour moment, gray level co- occurrence matrix and edge histogram descriptor. To reduce curse of dimensionality and find best optimal features from feature set using feature selection based on genetic algorithm. These features are divided into similar image classes using clustering for fast retrieval and improve the execution time. Clustering technique is done by k-means algorithm. The experimental result shows feature selection using GA reduces the time for retrieval and also increases the retrieval precision, thus it gives better and faster results as compared to normal image retrieval system. The result also shows precision and recall of proposed approach compared to previous approach for each image class. The CBIR system is more efficient and better performs using feature selection based on Genetic Algorithm.

  15. The Integration of Cooperation Model and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In the photogrammetry,some researchers have applied genetic algorithms in aerial image texture classification and reducing hyper-spectrum remote sensing data.Genetic algorithm can rapidly find the solutions which are close to the optimal solution.But it is not easy to find the optimal solution.In order to solve the problem,a cooperative evolution idea integrating genetic algorithm and ant colony algorithm is presented in this paper.On the basis of the advantages of ant colony algorithm,this paper proposes the method integrating genetic algorithms and ant colony algorithm to overcome the drawback of genetic algorithms.Moreover,the paper takes designing texture classification masks of aerial images as an example to illustrate the integration theory and procedures.

  16. Optimal Genetic View Selection Algorithm for Data Warehouse

    Institute of Scientific and Technical Information of China (English)

    Wang Ziqiang; Feng Boqin

    2005-01-01

    To efficiently solve the materialized view selection problem, an optimal genetic algorithm of how to select a set of views to be materialized is proposed so as to achieve both good query performance and low view maintenance cost under a storage space constraint. First, a pre-processing algorithm based on the maximum benefit per unit space is used to generate initial solutions. Then, the initial solutions are improved by the genetic algorithm having the mixture of optimal strategies. Furthermore, the generated infeasible solutions during the evolution process are repaired by loss function. The experimental results show that the proposed algorithm outperforms the heuristic algorithm and canonical genetic algorithm in finding optimal solutions.

  17. Modeling of genetic algorithms with a finite population

    NARCIS (Netherlands)

    Kemenade, C.H.M. van

    1997-01-01

    Cross-competition between non-overlapping building blocks can strongly influence the performance of evolutionary algorithms. The choice of the selection scheme can have a strong influence on the performance of a genetic algorithm. This paper describes a number of different genetic algorithms, all in

  18. Explicit filtering of building blocks for genetic algorithms

    NARCIS (Netherlands)

    C.H.M. van Kemenade

    1996-01-01

    textabstractGenetic algorithms are often applied to building block problems. We have developed a simple filtering algorithm that can locate building blocks within a bit-string, and does not make assumptions regarding the linkage of the bits. A comparison between the filtering algorithm and genetic

  19. Edge Crossing Minimization Algorithm for Hierarchical Graphs Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We present an edge crossing minimization algorithm forhierarchical gr aphs based on genetic algorithms, and comparing it with some heuristic algorithm s. The proposed algorithm is more efficient and has the following advantages: th e frame of the algorithms is unified, the method is simple, and its implementati on and revision are easy.

  20. An improved genetic algorithm with dynamic topology

    Science.gov (United States)

    Cai, Kai-Quan; Tang, Yan-Wu; Zhang, Xue-Jun; Guan, Xiang-Min

    2016-12-01

    The genetic algorithm (GA) is a nature-inspired evolutionary algorithm to find optima in search space via the interaction of individuals. Recently, researchers demonstrated that the interaction topology plays an important role in information exchange among individuals of evolutionary algorithm. In this paper, we investigate the effect of different network topologies adopted to represent the interaction structures. It is found that GA with a high-density topology ends up more likely with an unsatisfactory solution, contrarily, a low-density topology can impede convergence. Consequently, we propose an improved GA with dynamic topology, named DT-GA, in which the topology structure varies dynamically along with the fitness evolution. Several experiments executed with 15 well-known test functions have illustrated that DT-GA outperforms other test GAs for making a balance of convergence speed and optimum quality. Our work may have implications in the combination of complex networks and computational intelligence. Project supported by the National Natural Science Foundation for Young Scientists of China (Grant No. 61401011), the National Key Technologies R & D Program of China (Grant No. 2015BAG15B01), and the National Natural Science Foundation of China (Grant No. U1533119).

  1. Protein complexes predictions within protein interaction networks using genetic algorithms.

    Science.gov (United States)

    Ramadan, Emad; Naef, Ahmed; Ahmed, Moataz

    2016-07-25

    Protein-protein interaction networks are receiving increased attention due to their importance in understanding life at the cellular level. A major challenge in systems biology is to understand the modular structure of such biological networks. Although clustering techniques have been proposed for clustering protein-protein interaction networks, those techniques suffer from some drawbacks. The application of earlier clustering techniques to protein-protein interaction networks in order to predict protein complexes within the networks does not yield good results due to the small-world and power-law properties of these networks. In this paper, we construct a new clustering algorithm for predicting protein complexes through the use of genetic algorithms. We design an objective function for exclusive clustering and overlapping clustering. We assess the quality of our proposed clustering algorithm using two gold-standard data sets. Our algorithm can identify protein complexes that are significantly enriched in the gold-standard data sets. Furthermore, our method surpasses three competing methods: MCL, ClusterOne, and MCODE in terms of the quality of the predicted complexes. The source code and accompanying examples are freely available at http://faculty.kfupm.edu.sa/ics/eramadan/GACluster.zip .

  2. Genetic algorithms and their use in Geophysical Problems

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Paul B. [Univ. of California, Berkeley, CA (United States)

    1999-04-01

    with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.

  3. Order Reduction of Linear Interval Systems Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Dr. Rajendra Prasad

    2010-10-01

    Full Text Available This paper presents an algorithm for order reduction of higher order linear interval system into stable lower order linear interval system by means of Genetic algorithm. In this algorithm the numerator and denominator polynomials are determined by minimizing the Integral square error (ISE using genetic algorithm (GA. The algorithm is simple, rugged and computer oriented. It is shown that the algorithm has several advantages, e.g. the reduced order models retain the steady-state value and stability of the original system. A numerical example illustrates the proposed algorithm.

  4. Tuning Schema Matching Systems using Parallel Genetic Algorithms on GPU

    Directory of Open Access Journals (Sweden)

    Yuting Feng

    2010-11-01

    Full Text Available Most recent schema matching systems combine multiple components, each of which employs a particular matching technique with several knobs. The multi-component nature has brought a tuning problem, that is to determine which components to execute and how to adjust the knobs (e.g., thresholds, weights, etc. of these components for domain users. In this paper, we present an approach to automatically tune schema matching systems using genetic algorithms. We match a given schema S against generated matching scenarios, for which the ground truth matches are known, and find a configuration that effectively improves the performance of matching S against real schemas. To search the huge space of configuration candidates efficiently, we adopt genetic algorithms (GAs during the tuning process. To promote the performance of our approach, we implement parallel genetic algorithms on graphic processing units (GPUs based on NVIDIA’s Compute Unified Device Architecture (CUDA. Experiments over four real-world domains with two main matching systems demonstrate that our approach provides more qualified matches over different domains.

  5. Noise reduction in selective computational ghost imaging using genetic algorithm

    Science.gov (United States)

    Zafari, Mohammad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza

    2017-03-01

    Recently, we have presented a selective computational ghost imaging (SCGI) method as an advanced technique for enhancing the security level of the encrypted ghost images. In this paper, we propose a modified method to improve the ghost image quality reconstructed by SCGI technique. The method is based on background subtraction using genetic algorithm (GA) which eliminates background noise and gives background-free ghost images. Analyzing the universal image quality index by using experimental data proves the advantage of this modification method. In particular, the calculated value of the image quality index for modified SCGI over 4225 realization shows an 11 times improvement with respect to SCGI technique. This improvement is 20 times in comparison to conventional CGI technique.

  6. A simple algorithm for optimization and model fitting: AGA (asexual genetic algorithm)

    CERN Document Server

    Canto, J; Martinez-Gomez, E; 10.1051/0004-6361/200911740

    2009-01-01

    Context. Mathematical optimization can be used as a computational tool to obtain the optimal solution to a given problem in a systematic and efficient way. For example, in twice-differentiable functions and problems with no constraints, the optimization consists of finding the points where the gradient of the objective function is zero and using the Hessian matrix to classify the type of each point. Sometimes, however it is impossible to compute these derivatives and other type of techniques must be employed such as the steepest descent/ascent method and more sophisticated methods such as those based on the evolutionary algorithms. Aims. We present a simple algorithm based on the idea of genetic algorithms (GA) for optimization. We refer to this algorithm as AGA (Asexual Genetic Algorithm) and apply it to two kinds of problems: the maximization of a function where classical methods fail and model fitting in astronomy. For the latter case, we minimize the chi-square function to estimate the parameters in two e...

  7. WWW portal usage analysis using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Ondřej Popelka

    2009-01-01

    Full Text Available The article proposes a new method suitable for advanced analysis of web portal visits. This is part of retrieving information and knowledge from web usage data (web usage mining. Such information is necessary in order to gain better insight into visitor’s needs and generally consumer behaviour. By le­ve­ra­ging this information a company can optimize the organization of its internet presentations and offer a better end-user experience. The proposed approach is using Grammatical evolution which is computational method based on genetic algorithms. Grammatical evolution is using a context-free grammar in order to generate the solution in arbitrary reusable form. This allows us to describe visitors’ behaviour in different manners depending on desired further processing. In this article we use description with a procedural programming language. Web server access log files are used as source data.The extraction of behaviour patterns can currently be solved using statistical analysis – specifically sequential analysis based methods. Our objective is to develop an alternative algorithm.The article further describes the basic algorithms of two-level grammatical evolution; this involves basic Grammatical Evolution and Differential Evolution, which forms the second phase of the computation. Grammatical evolution is used to generate the basic structure of the solution – in form of a part of application code. Differential evolution is used to find optimal parameters for this solution – the specific pages visited by a random visitor. The grammar used to conduct experiments is described along with explanations of the links to the actual implementation of the algorithm. Furthermore the fitness function is described and reasons which yield to its’ current shape. Finally the process of analyzing and filtering the raw input data is described as it is vital part in obtaining reasonable results.

  8. Family genetic algorithms based on gene exchange and its application

    Institute of Scientific and Technical Information of China (English)

    Li Jianhua; Ding Xiangqian; Wang Sunan; Yu Qing

    2006-01-01

    Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not as good as it was expected to be. Criticism of this algorithm includes the slow speed and premature result during convergence procedure. In order to improve the performance, the population size and individuals' space is emphatically described. The influence of individuals' space and population size on the operators is analyzed. And a novel family genetic algorithm (FGA) is put forward based on this analysis. In this novel algorithm, the optimum solution families closed to quality individuals is constructed, which is exchanged found by a search in the world space. Search will be done in this microspace. The family that can search better genes in a limited period of time would win a new life. At the same time, the best gene of this micro space with the basic population in the world space is exchanged. Finally, the FGA is applied to the function optimization and image matching through several experiments. The results show that the FGA possessed high performance.

  9. Locomotive assignment problem with train precedence using genetic algorithm

    Science.gov (United States)

    Noori, Siamak; Ghannadpour, Seyed Farid

    2012-07-01

    This paper aims to study the locomotive assignment problem which is very important for railway companies, in view of high cost of operating locomotives. This problem is to determine the minimum cost assignment of homogeneous locomotives located in some central depots to a set of pre-scheduled trains in order to provide sufficient power to pull the trains from their origins to their destinations. These trains have different degrees of priority for servicing, and the high class of trains should be serviced earlier than others. This problem is modeled using vehicle routing and scheduling problem where trains representing the customers are supposed to be serviced in pre-specified hard/soft fuzzy time windows. A two-phase approach is used which, in the first phase, the multi-depot locomotive assignment is converted to a set of single depot problems, and after that, each single depot problem is solved heuristically by a hybrid genetic algorithm. In the genetic algorithm, various heuristics and efficient operators are used in the evolutionary search. The suggested algorithm is applied to solve the medium sized numerical example to check capabilities of the model and algorithm. Moreover, some of the results are compared with those solutions produced by branch-and-bound technique to determine validity and quality of the model. Results show that suggested approach is rather effective in respect of quality and time.

  10. Improved Quantum Genetic Algorithm in Application of Scheduling Engineering Personnel

    OpenAIRE

    Huaixiao Wang; Ling Li; Jianyong Liu; Yong Wang; Chengqun Fu

    2014-01-01

    To verify the availability of the improved quantum genetic algorithm in solving the scheduling engineering personnel problem, the following work has been carried out: the characteristics of the scheduling engineering personnel problem are analyzed, the quantum encoding method is proposed, and an improved quantum genetic algorithm is applied to address the issue. Taking the low efficiency and the bad performance of the conventional quantum genetic algorithm into account, a universal improved q...

  11. Genetic algorithm and particle swarm optimization combined with Powell method

    Science.gov (United States)

    Bento, David; Pinho, Diana; Pereira, Ana I.; Lima, Rui

    2013-10-01

    In recent years, the population algorithms are becoming increasingly robust and easy to use, based on Darwin's Theory of Evolution, perform a search for the best solution around a population that will progress according to several generations. This paper present variants of hybrid genetic algorithm - Genetic Algorithm and a bio-inspired hybrid algorithm - Particle Swarm Optimization, both combined with the local method - Powell Method. The developed methods were tested with twelve test functions from unconstrained optimization context.

  12. Solving Hitchcock's transportation problem by a genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    CHEN Hai-feng; CHO Joong Rae; LEE Jeong.Tae

    2004-01-01

    Genetic algorithms (GAs) employ the evolutionary process of Darwin's nature selection theory to find the solutions of optimization problems. In this paper, an implementation of genetic algorithm is put forward to solve a classical transportation problem, namely the Hitchcock's Transportation Problem (HTP), and the GA is improved to search for all optimal solutions and identify them automatically. The algorithm is coded with C++ and validated by numerical examples. The computational results show that the algorithm is efficient for solving the Hitchcock's transportation problem.

  13. Solving the Dial-a-Ride Problem using Genetic algorithms

    DEFF Research Database (Denmark)

    Bergvinsdottir, Kristin Berg; Larsen, Jesper; Jørgensen, Rene Munk

    service level constraints (Quality of Service). In this paper we present a genetic algorithm for solving the DARP. The algorithm is based on the classical cluster-first route-second approach, where it alternates between assigning customers to vehicles using a genetic algorithm and solving independent...... routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets....

  14. Solving the Dial-a-Ride Problem using Genetic algorithms

    DEFF Research Database (Denmark)

    Bergvinsdottir, Kristin Berg; Larsen, Jesper; Jørgensen, Rene Munk

    service level constraints (Quality of Service). In this paper we present a genetic algorithm for solving the DARP. The algorithm is based on the classical cluster-first route-second approach, where it alternates between assigning customers to vehicles using a genetic algorithm and solving independent...... routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets....

  15. Using Genetic Algorithms for Building Metrics of Collaborative Systems

    Directory of Open Access Journals (Sweden)

    Cristian CIUREA

    2011-01-01

    Full Text Available he paper objective is to reveal the importance of genetic algorithms in building robust metrics of collaborative systems. The main types of collaborative systems in economy are presented and some characteristics of genetic algorithms are described. A genetic algorithm was implemented in order to determine the local maximum and minimum points of the relative complexity function associated to a collaborative banking system. The intelligent collaborative systems based on genetic algorithms, representing the new generation of collaborative systems, are analyzed and the implementation of auto-adaptive interfaces in a banking application is described.

  16. A Parallel Genetic Simulated Annealing Hybrid Algorithm for Task Scheduling

    Institute of Scientific and Technical Information of China (English)

    SHU Wanneng; ZHENG Shijue

    2006-01-01

    In this paper combined with the advantages of genetic algorithm and simulated annealing, brings forward a parallel genetic simulated annealing hybrid algorithm (PGSAHA) and applied to solve task scheduling problem in grid computing .It first generates a new group of individuals through genetic operation such as reproduction, crossover, mutation, etc, and than simulated anneals independently all the generated individuals respectively.When the temperature in the process of cooling no longer falls, the result is the optimal solution on the whole.From the analysis and experiment result, it is concluded that this algorithm is superior to genetic algorithm and simulated annealing.

  17. Optimization of PID Controllers Using Ant Colony and Genetic Algorithms

    CERN Document Server

    Ünal, Muhammet; Topuz, Vedat; Erdal, Hasan

    2013-01-01

    Artificial neural networks, genetic algorithms and the ant colony optimization algorithm have become a highly effective tool for solving hard optimization problems. As their popularity has increased, applications of these algorithms have grown in more than equal measure. While many of the books available on these subjects only provide a cursory discussion of theory, the present book gives special emphasis to the theoretical background that is behind these algorithms and their applications. Moreover, this book introduces a novel real time control algorithm, that uses genetic algorithm and ant colony optimization algorithms for optimizing PID controller parameters. In general, the present book represents a solid survey on artificial neural networks, genetic algorithms and the ant colony optimization algorithm and introduces novel practical elements related to the application of these methods to  process system control.

  18. Integrating Genetic Algorithm, Tabu Search Approach for Job Shop Scheduling

    CERN Document Server

    Thamilselvan, R

    2009-01-01

    This paper presents a new algorithm based on integrating Genetic Algorithms and Tabu Search methods to solve the Job Shop Scheduling problem. The idea of the proposed algorithm is derived from Genetic Algorithms. Most of the scheduling problems require either exponential time or space to generate an optimal answer. Job Shop scheduling (JSS) is the general scheduling problem and it is a NP-complete problem, but it is difficult to find the optimal solution. This paper applies Genetic Algorithms and Tabu Search for Job Shop Scheduling problem and compares the results obtained by each. With the implementation of our approach the JSS problems reaches optimal solution and minimize the makespan.

  19. A genetic algorithm selection perturbative hyper-heuristic for solving ...

    African Journals Online (AJOL)

    http://dx.doi.org/10.5784/31-1-158. 39 ... in solving other combinatorial optimisation problems, this paper investigates the use of a genetic ...... [16] Goldberg D, 1989, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-.

  20. Transitioning from Targeted to Comprehensive Mass Spectrometry Using Genetic Algorithms

    Science.gov (United States)

    Jaffe, Jacob D.; Feeney, Caitlin M.; Patel, Jinal; Lu, Xiaodong; Mani, D. R.

    2016-11-01

    Targeted proteomic assays are becoming increasingly popular because of their robust quantitative applications enabled by internal standardization, and they can be routinely executed on high performance mass spectrometry instrumentation. However, these assays are typically limited to 100s of analytes per experiment. Considerable time and effort are often expended in obtaining and preparing samples prior to targeted analyses. It would be highly desirable to detect and quantify 1000s of analytes in such samples using comprehensive mass spectrometry techniques (e.g., SWATH and DIA) while retaining a high degree of quantitative rigor for analytes with matched internal standards. Experimentally, it is facile to port a targeted assay to a comprehensive data acquisition technique. However, data analysis challenges arise from this strategy concerning agreement of results from the targeted and comprehensive approaches. Here, we present the use of genetic algorithms to overcome these challenges in order to configure hybrid targeted/comprehensive MS assays. The genetic algorithms are used to select precursor-to-fragment transitions that maximize the agreement in quantification between the targeted and the comprehensive methods. We find that the algorithm we used provided across-the-board improvement in the quantitative agreement between the targeted assay data and the hybrid comprehensive/targeted assay that we developed, as measured by parameters of linear models fitted to the results. We also found that the algorithm could perform at least as well as an independently-trained mass spectrometrist in accomplishing this task. We hope that this approach will be a useful tool in the development of quantitative approaches for comprehensive proteomics techniques.

  1. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  2. A Genetic Algorithm-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Babatunde Oluleye

    2014-07-01

    Full Text Available This article details the exploration and application of Genetic Algorithm (GA for feature selection. Particularly a binary GA was used for dimensionality reduction to enhance the performance of the concerned classifiers. In this work, hundred (100 features were extracted from set of images found in the Flavia dataset (a publicly available dataset. The extracted features are Zernike Moments (ZM, Fourier Descriptors (FD, Lengendre Moments (LM, Hu 7 Moments (Hu7M, Texture Properties (TP and Geometrical Properties (GP. The main contributions of this article are (1 detailed documentation of the GA Toolbox in MATLAB and (2 the development of a GA-based feature selector using a novel fitness function (kNN-based classification error which enabled the GA to obtain a combinatorial set of feature giving rise to optimal accuracy. The results obtained were compared with various feature selectors from WEKA software and obtained better results in many ways than WEKA feature selectors in terms of classification accuracy

  3. PDE Nozzle Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Billings, Dana; Turner, James E. (Technical Monitor)

    2000-01-01

    Genetic algorithms, which simulate evolution in natural systems, have been used to find solutions to optimization problems that seem intractable to standard approaches. In this study, the feasibility of using a GA to find an optimum, fixed profile nozzle for a pulse detonation engine (PDE) is demonstrated. The objective was to maximize impulse during the detonation wave passage and blow-down phases of operation. Impulse of each profile variant was obtained by using the CFD code Mozart/2.0 to simulate the transient flow. After 7 generations, the method has identified a nozzle profile that certainly is a candidate for optimum solution. The constraints on the generality of this possible solution remain to be clarified.

  4. Optimized dynamical decoupling via genetic algorithms

    Science.gov (United States)

    Quiroz, Gregory; Lidar, Daniel A.

    2013-11-01

    We utilize genetic algorithms aided by simulated annealing to find optimal dynamical decoupling (DD) sequences for a single-qubit system subjected to a general decoherence model under a variety of control pulse conditions. We focus on the case of sequences with equal pulse intervals and perform the optimization with respect to pulse type and order. In this manner, we obtain robust DD sequences, first in the limit of ideal pulses, then when including pulse imperfections such as finite-pulse duration and qubit rotation (flip-angle) errors. Although our optimization is numerical, we identify a deterministic structure that underlies the top-performing sequences. We use this structure to devise DD sequences which outperform previously designed concatenated DD (CDD) and quadratic DD (QDD) sequences in the presence of pulse errors. We explain our findings using time-dependent perturbation theory and provide a detailed scaling analysis of the optimal sequences.

  5. Optimized Dynamical Decoupling via Genetic Algorithms

    CERN Document Server

    Quiroz, Gregory

    2013-01-01

    We utilize genetic algorithms to find optimal dynamical decoupling (DD) sequences for a single-qubit system subjected to a general decoherence model under a variety of control pulse conditions. We focus on the case of sequences with equal pulse-intervals and perform the optimization with respect to pulse type and order. In this manner we obtain robust DD sequences, first in the limit of ideal pulses, then when including pulse imperfections such as finite pulse duration and qubit rotation (flip-angle) errors. Although our optimization is numerical, we identify a deterministic structure underlies the top-performing sequences. We use this structure to devise DD sequences which outperform previously designed concatenated DD (CDD) and quadratic DD (QDD) sequences in the presence of pulse errors. We explain our findings using time-dependent perturbation theory and provide a detailed scaling analysis of the optimal sequences.

  6. Warehouse Optimization Model Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Guofeng Qin

    2013-01-01

    Full Text Available This paper takes Bao Steel logistics automated warehouse system as an example. The premise is to maintain the focus of the shelf below half of the height of the shelf. As a result, the cost time of getting or putting goods on the shelf is reduced, and the distance of the same kind of goods is also reduced. Construct a multiobjective optimization model, using genetic algorithm to optimize problem. At last, we get a local optimal solution. Before optimization, the average cost time of getting or putting goods is 4.52996 s, and the average distance of the same kinds of goods is 2.35318 m. After optimization, the average cost time is 4.28859 s, and the average distance is 1.97366 m. After analysis, we can draw the conclusion that this model can improve the efficiency of cargo storage.

  7. Multidisciplinary Optimization of Airborne Radome Using Genetic Algorithm

    Science.gov (United States)

    Tang, Xinggang; Zhang, Weihong; Zhu, Jihong

    A multidisciplinary optimization scheme of airborne radome is proposed. The optimization procedure takes into account the structural and the electromagnetic responses simultaneously. The structural analysis is performed with the finite element method using Patran/Nastran, while the electromagnetic analysis is carried out using the Plane Wave Spectrum and Surface Integration technique. The genetic algorithm is employed for the multidisciplinary optimization process. The thicknesses of multilayer radome wall are optimized to maximize the overall transmission coefficient of the antenna-radome system under the constraint of the structural failure criteria. The proposed scheme and the optimization approach are successfully assessed with an illustrative numerical example.

  8. Properties of Nucleon Resonances by means of a Genetic Algorithm

    CERN Document Server

    Fernandez-Ramirez, C; Udias, A; Udias, J M

    2008-01-01

    We present an optimization scheme that employs a Genetic Algorithm (GA) to determine the properties of low-lying nucleon excitations within a realistic photo-pion production model based upon an effective Lagrangian. We show that with this modern optimization technique it is possible to reliably assess the parameters of the resonances and the associated error bars as well as to identify weaknesses in the models. To illustrate the problems the optimization process may encounter, we provide results obtained for the nucleon resonances $\\Delta$(1230) and $\\Delta$(1700). The former can be easily isolated and thus has been studied in depth, while the latter is not as well known experimentally.

  9. A Hybrid Genetic Algorithm for the Multiple Crossdocks Problem

    Directory of Open Access Journals (Sweden)

    Zhaowei Miao

    2012-01-01

    Full Text Available We study a multiple crossdocks problem with supplier and customer time windows, where any violation of time windows will incur a penalty cost and the flows through the crossdock are constrained by fixed transportation schedules and crossdock capacities. We prove this problem to be NP-hard in the strong sense and therefore focus on developing efficient heuristics. Based on the problem structure, we propose a hybrid genetic algorithm (HGA integrating greedy technique and variable neighborhood search method to solve the problem. Extensive experiments under different scenarios were conducted, and results show that HGA outperforms CPLEX solver, providing solutions in realistic timescales.

  10. Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control

    Science.gov (United States)

    Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar

    2016-12-01

    This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.

  11. Synthesis design of artificial magnetic metamaterials using a genetic algorithm.

    Science.gov (United States)

    Chen, P Y; Chen, C H; Wang, H; Tsai, J H; Ni, W X

    2008-08-18

    In this article, we present a genetic algorithm (GA) as one branch of artificial intelligence (AI) for the optimization-design of the artificial magnetic metamaterial whose structure is automatically generated by computer through the filling element methodology. A representative design example, metamaterials with permeability of negative unity, is investigated and the optimized structures found by the GA are presented. It is also demonstrated that our approach is effective for the synthesis of functional magnetic and electric metamaterials with optimal structures. This GA-based optimization-design technique shows great versatility and applicability in the design of functional metamaterials.

  12. Satellite constellation design with genetic algorithms based on system performance

    Institute of Scientific and Technical Information of China (English)

    Xueying Wang; Jun Li; Tiebing Wang; Wei An; Weidong Sheng

    2016-01-01

    Satelite constelation design for space optical sys-tems is essentialy a multiple-objective optimization problem. In this work, to tackle this chalenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks (i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algo-rithm (NSGA) to maximize the system surveilance perfor- mance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved per-formance of the proposed technique over benchmark meth-ods.

  13. Genetic algorithms for dipole location of fetal magnetocardiography.

    Science.gov (United States)

    Escalona-Vargas, D; Murphy, P; Lowery, C L; Eswaran, H

    2016-08-01

    In this paper, we explore the use of Maximum Likelihood (ML) method with Genetic Algorithms (GA) as global optimization procedure for source reconstruction in fetal magnetocardiography (fMCG) data. A multiple equivalent current dipole (ECD) model was used for sources active in different time samples. Inverse solutions across time were obtained for a single-dipole approximation to estimate the trajectory of the dipole position. We compared the GA and SIMPLEX methods in a simulation environment under noise conditions. Methods are applied on a real fMCG data. Results show robust estimators of the cardiac sources when GA is used as optimization technique.

  14. Optimal brushless DC motor design using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rahideh, A. [Department of Engineering, Queen Mary, University of London, London E1 4NS (United Kingdom); Korakianitis, T., E-mail: korakianitis@alum.mit.ed [Department of Engineering, Queen Mary, University of London, London E1 4NS (United Kingdom); Ruiz, P. [Department of Engineering, Queen Mary, University of London, London E1 4NS (United Kingdom); Keeble, T.; Rothman, M.T. [Cardiac Research and Development, Barts and the London NHS Trust, The London Chest Hospital, London E2 9JX (United Kingdom)

    2010-11-15

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using a genetic algorithm. Characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. Electrical and mechanical requirements (i.e. voltage, torque and speed) and other limitations (e.g. upper and lower limits of the motor geometries) are cast into constraints of the optimization problem. One sample case is used to illustrate the design and optimization technique.

  15. Optimal brushless DC motor design using genetic algorithms

    Science.gov (United States)

    Rahideh, A.; Korakianitis, T.; Ruiz, P.; Keeble, T.; Rothman, M. T.

    2010-11-01

    This paper presents a method for the optimal design of a slotless permanent magnet brushless DC (BLDC) motor with surface mounted magnets using a genetic algorithm. Characteristics of the motor are expressed as functions of motor geometries. The objective function is a combination of losses, volume and cost to be minimized simultaneously. Electrical and mechanical requirements (i.e. voltage, torque and speed) and other limitations (e.g. upper and lower limits of the motor geometries) are cast into constraints of the optimization problem. One sample case is used to illustrate the design and optimization technique.

  16. Spacecraft Attitude Maneuver Planning Using Genetic Algorithms

    Science.gov (United States)

    Kornfeld, Richard P.

    2004-01-01

    A key enabling technology that leads to greater spacecraft autonomy is the capability to autonomously and optimally slew the spacecraft from and to different attitudes while operating under a number of celestial and dynamic constraints. The task of finding an attitude trajectory that meets all the constraints is a formidable one, in particular for orbiting or fly-by spacecraft where the constraints and initial and final conditions are of time-varying nature. This approach for attitude path planning makes full use of a priori constraint knowledge and is computationally tractable enough to be executed onboard a spacecraft. The approach is based on incorporating the constraints into a cost function and using a Genetic Algorithm to iteratively search for and optimize the solution. This results in a directed random search that explores a large part of the solution space while maintaining the knowledge of good solutions from iteration to iteration. A solution obtained this way may be used as is or as an initial solution to initialize additional deterministic optimization algorithms. A number of representative case examples for time-fixed and time-varying conditions yielded search times that are typically on the order of minutes, thus demonstrating the viability of this method. This approach is applicable to all deep space and planet Earth missions requiring greater spacecraft autonomy, and greatly facilitates navigation and science observation planning.

  17. A novel mating approach for genetic algorithms.

    Science.gov (United States)

    Galán, Severino F; Mengshoel, Ole J; Pinter, Rafael

    2013-01-01

    Genetic algorithms typically use crossover, which relies on mating a set of selected parents. As part of crossover, random mating is often carried out. A novel approach to parent mating is presented in this work. Our novel approach can be applied in combination with a traditional similarity-based criterion to measure distance between individuals or with a fitness-based criterion. We introduce a parameter called the mating index that allows different mating strategies to be developed within a uniform framework: an exploitative strategy called best-first, an explorative strategy called best-last, and an adaptive strategy called self-adaptive. Self-adaptive mating is defined in the context of the novel algorithm, and aims to achieve a balance between exploitation and exploration in a domain-independent manner. The present work formally defines the novel mating approach, analyzes its behavior, and conducts an extensive experimental study to quantitatively determine its benefits. In the domain of real function optimization, the experiments show that, as the degree of multimodality of the function at hand grows, increasing the mating index improves performance. In the case of the self-adaptive mating strategy, the experiments give strong results for several case studies.

  18. A hybrid genetic algorithm to optimize simple distillation column sequences

    Institute of Scientific and Technical Information of China (English)

    GAN YongSheng; Andreas Linninger

    2004-01-01

    Based on the principles of Genetic Algorithms (GAs), a hybrid genetic algorithm used to optimize simple distillation column sequences was established. A new data structure, a novel arithmetic crossover operator and a dynamic mutation operator were proposed. Together with the feasibility test of distillation columns, they are capable to obtain the optimum simple column sequence at one time without the limitation of the number of mixture components, ideal or non-ideal mixtures and sloppy or sharp splits. Compared with conventional algorithms, this hybrid genetic algorithm avoids solving complicated nonlinear equations and demands less derivative information and computation time. Result comparison between this genetic algorithm and Underwood method and Doherty method shows that this hybrid genetic algorithm is reliable.

  19. Double Exchange Genetic Algorithm for the Synthesis of Linear Array

    Directory of Open Access Journals (Sweden)

    Zhang Jian-Hua

    2012-01-01

    Full Text Available The development of Synthesis of Linear array put forward higher request for complex optimization solutions. This article improves the basic genetic algorithm according to the traditional genetic algorithm easily prematuring convergence and later evolution slow convergence shortcoming. And then, adopt double exchange operator in reproductive strategies and implement dynamic mutation rate in variation operations. Combined characteristics of guarantee to the population diversity based on fitness shared niche while iteration times exponential diminishing, this article creats niche double exchangegenetic algorithm, and applies in pattern synthesis of homogeneous linear array, and simulates multi-objective complex array problem. The result turns out much better in effectively preventing premature and improving the searching efficiency of genetic algorithm than original genetic algorithm and immune genetic algorithm, what will achieve the broad prospect in the antenna array comprehensive field.

  20. OPTIMIZATION BASED ON LMPROVED REAL—CODED GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    ShiYu; YuShenglin

    2002-01-01

    An improved real-coded genetic algorithm is pro-posed for global optimization of functionsl.The new algo-rithm is based om the judgement of the searching perfor-mance of basic real-coded genetic algorithm.The opera-tions of basic real-coded genetic algorithm are briefly dis-cussed and selected.A kind of chaos sequence is described in detail and added in the new algorithm ad a disturbance factor.The strategy of field partition is also used to im-prove the strcture of the new algorithm.Numerical ex-periment shows that the mew genetic algorithm can find the global optimum of complex funtions with satistaiting precision.

  1. An Improved Genetic Algorithm with Quasi-Gradient Crossover

    Institute of Scientific and Technical Information of China (English)

    Xiao-Ling Zhang; Li Du; Guang-Wei Zhang; Qiang Miao; Zhong-Lai Wang

    2008-01-01

    The convergence of genetic algorithm is mainly determined by its core operation crossover operation. When the objective function is a multiple hump function, traditional genetic algorithms are easily trapped into local optimum, which is called premature conver gence. In this paper, we propose a new genetic algorithm with improved arithmetic crossover operation based on gradient method. This crossover operation can generate offspring along quasi-gradient direction which is the Steepest descent direction of the value of objective function. The selection operator is also simplified, every individual in the population is given an opportunity to get evolution to avoid complicated selection algorithm. The adaptive mutation operator and the elitist strategy are also applied in this algorithm. The case 4 indicates this algorithm can faster converge to the global optimum and is more stable than the conventional genetic algorithms.

  2. DIGITAL SPECKLE CORRELATION METHOD IMPROVED BY GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    MaShaopeng; JillGuanchang

    2003-01-01

    The digital speckle correlation method is an important optical metrology for surface displacement and strain measurement. With this technique, the whole field deformation information can be obtained by tracking the geometric points on the speckle images based on a correlation-matching search technique. However, general search techniques suffer from great computational complexity in the processing of speckle images with large deformation and the large random errors in the processing of images of bad quality. In this paper, an advanced approach based on genetic algorithms (GA) for correlation-matching search is developed. Benefiting from the abilities of global optimum and parallelism searching of GA, this new approach can complete the correlation-matching search with less computational consumption and at high accuracy. Two experimental results from the simulated speckle images have proved the efficiency of the new approach.

  3. Hybrid Genetic Algorithm with PSO Effect for Combinatorial Optimisation Problems

    Directory of Open Access Journals (Sweden)

    M. H. Mehta

    2012-12-01

    Full Text Available In engineering field, many problems are hard to solve in some definite interval of time. These problems known as “combinatorial optimisation problems” are of the category NP. These problems are easy to solve in some polynomial time when input size is small but as input size grows problems become toughest to solve in some definite interval of time. Long known conventional methods are not able to solve the problems and thus proper heuristics is necessary. Evolutionary algorithms based on behaviours of different animals and species have been invented and studied for this purpose. Genetic Algorithm is considered a powerful algorithm for solving combinatorial optimisation problems. Genetic algorithms work on these problems mimicking the human genetics. It follows principle of “survival of the fittest” kind of strategy. Particle swarm optimisation is a new evolutionary approach that copies behaviour of swarm in nature. However, neither traditional genetic algorithms nor particle swarm optimisation alone has been completely successful for solving combinatorial optimisation problems. Here a hybrid algorithm is proposed in which strengths of both algorithms are merged and performance of proposed algorithm is compared with simple genetic algorithm. Results show that proposed algorithm works definitely better than the simple genetic algorithm.

  4. Self-calibration of a noisy multiple-sensor system with genetic algorithms

    Science.gov (United States)

    Brooks, Richard R.; Iyengar, S. Sitharama; Chen, Jianhua

    1996-01-01

    This paper explores an image processing application of optimization techniques which entails interpreting noisy sensor data. The application is a generalization of image correlation; we attempt to find the optimal gruence which matches two overlapping gray-scale images corrupted with noise. Both taboo search and genetic algorithms are used to find the parameters which match the two images. A genetic algorithm approach using an elitist reproduction scheme is found to provide significantly superior results. The presentation includes a graphic presentation of the paths taken by tabu search and genetic algorithms when trying to find the best possible match between two corrupted images.

  5. Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms.

    Science.gov (United States)

    Chen, Hsinchun

    1995-01-01

    Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…

  6. Machine Learning for Information Retrieval: Neural Networks, Symbolic Learning, and Genetic Algorithms.

    Science.gov (United States)

    Chen, Hsinchun

    1995-01-01

    Presents an overview of artificial-intelligence-based inductive learning techniques and their use in information science research. Three methods are discussed: the connectionist Hopfield network; the symbolic ID3/ID5R; evolution-based genetic algorithms. The knowledge representations and algorithms of these methods are examined in the context of…

  7. CONSTRAINT INFORMATIVE RULES FOR GENETIC ALGORITHM-BASED WEB PAGE RECOMMENDATION SYSTEM

    Directory of Open Access Journals (Sweden)

    S. Prince Mary

    2013-01-01

    Full Text Available To predict the users navigation using web usage mining is the primary motto of the web page recommendation. Currently, researchers are trying to develop a web page recommendation using pattern mining technique. Here, we propose a technique for web page recommendation using genetic algorithm. It consists of three phases as data preparation, mining of informative rules and recommendation. The data preparation contains data preprocessing and user identification. The genetic algorithm is used to mine the informative rule. The genetic algorithm involves three processes which are calculating the fitness values, crossover and mutation. We use three different constraints as time duration, quality and recent visit to allow the process for next stage after the initial fitness calculation. We have to repeat these processes to find the best solution. To form the recommendation tree, we use the best solution which we obtain by means of genetic algorithm.

  8. A Parallel Genetic Algorithm for Automated Electronic Circuit Design

    Science.gov (United States)

    Long, Jason D.; Colombano, Silvano P.; Haith, Gary L.; Stassinopoulos, Dimitris

    2000-01-01

    Parallelized versions of genetic algorithms (GAs) are popular primarily for three reasons: the GA is an inherently parallel algorithm, typical GA applications are very compute intensive, and powerful computing platforms, especially Beowulf-style computing clusters, are becoming more affordable and easier to implement. In addition, the low communication bandwidth required allows the use of inexpensive networking hardware such as standard office ethernet. In this paper we describe a parallel GA and its use in automated high-level circuit design. Genetic algorithms are a type of trial-and-error search technique that are guided by principles of Darwinian evolution. Just as the genetic material of two living organisms can intermix to produce offspring that are better adapted to their environment, GAs expose genetic material, frequently strings of 1s and Os, to the forces of artificial evolution: selection, mutation, recombination, etc. GAs start with a pool of randomly-generated candidate solutions which are then tested and scored with respect to their utility. Solutions are then bred by probabilistically selecting high quality parents and recombining their genetic representations to produce offspring solutions. Offspring are typically subjected to a small amount of random mutation. After a pool of offspring is produced, this process iterates until a satisfactory solution is found or an iteration limit is reached. Genetic algorithms have been applied to a wide variety of problems in many fields, including chemistry, biology, and many engineering disciplines. There are many styles of parallelism used in implementing parallel GAs. One such method is called the master-slave or processor farm approach. In this technique, slave nodes are used solely to compute fitness evaluations (the most time consuming part). The master processor collects fitness scores from the nodes and performs the genetic operators (selection, reproduction, variation, etc.). Because of dependency

  9. Optimization of Circular Ring Microstrip Antenna Using Genetic Algorithm

    Science.gov (United States)

    Sathi, V.; Ghobadi, Ch.; Nourinia, J.

    2008-10-01

    Circular ring microstrip antennas have several interesting properties that make it attractive in wireless applications. Although several analysis techniques such as cavity model, generalized transmission line model, Fourier-Hankel transform domain and the method of matched asymptotic expansion have been studied by researchers, there is no efficient design tool that has been incorporated with a suitable optimization algorithm. In this paper, the cavity model analysis along with the genetic optimization algorithm is presented for the design of circular ring microstrip antennas. The method studied here is based on the well-known cavity model and the optimization of the dimensions and feed point location of the circular ring antenna is performed via the genetic optimization algorithm, to achieve an acceptable antenna operation around a desired resonance frequency. The antennas designed by this efficient design procedure were realized experimentally, and the results are compared. In addition, these results are also compared to the results obtained by the commercial electromagnetic simulation tool, the FEM based software, HFSS by ANSOFT.

  10. The Genetic Algorithm: A Robust Method for Stress Inversion

    Science.gov (United States)

    Thakur, P.; Srivastava, D. C.; Gupta, P. K.

    2016-12-01

    The knowledge of stress states in Earth`s crust is a fundamental objective in many tectonic, seismological and engineering geological studies. Geologists and geophysicists routinely practice methods for determination of the stress tensor from inversion of observations on the stress indicators, such as faults, earthquakes and calcite twin lamellae. While the stress inversion is essentially a nonlinear problem, it is commonly solved by linearization, under some assumptions, in most existing methods. These algorithms not only oversimplify the problem but are also vulnerable to entrapment of the solution in a local optimum. We propose a nonlinear heuristic technique, the genetic algorithm method, that searches the global optimum without making any linearizing assumption or simplification. The method mimics the natural evolutionary process of selection, crossover, mutation, and minimises the composite misfit function for searching the global optimum, the fittest stress tensor. The validity of the method is successfully tested on synthetic fault-slip observations in different tectonic settings and also in situations where the observations contain noisy data. These results are compared with those obtained from the other common methods. The genetic algorithm method is superior to other common methods, in particular, in the oblique tectonic settings where none of the principal stresses is directed vertically.

  11. Particle swarm optimization and genetic algorithm as feature selection techniques for the QSAR modeling of imidazo[1,5-a]pyrido[3,2-e]pyrazines, inhibitors of phosphodiesterase 10A.

    Science.gov (United States)

    Goodarzi, Mohammad; Saeys, Wouter; Deeb, Omar; Pieters, Sigrid; Vander Heyden, Yvan

    2013-12-01

    Quantitative structure-activity relationship (QSAR) modeling was performed for imidazo[1,5-a]pyrido[3,2-e]pyrazines, which constitute a class of phosphodiesterase 10A inhibitors. Particle swarm optimization (PSO) and genetic algorithm (GA) were used as feature selection techniques to find the most reliable molecular descriptors from a large pool. Modeling of the relationship between the selected descriptors and the pIC50 activity data was achieved by linear [multiple linear regression (MLR)] and non-linear [locally weighted regression (LWR) based on both Euclidean (E) and Mahalanobis (M) distances] methods. In addition, a stepwise MLR model was built using only a limited number of quantum chemical descriptors, selected because of their correlation with the pIC50 . The model was not found interesting. It was concluded that the LWR model, based on the Euclidean distance, applied on the descriptors selected by PSO has the best prediction ability. However, some other models behaved similarly. The root-mean-squared errors of prediction (RMSEP) for the test sets obtained by PSO/MLR, GA/MLR, PSO/LWRE, PSO/LWRM, GA/LWRE, and GA/LWRM models were 0.333, 0.394, 0.313, 0.333, 0.421, and 0.424, respectively. The PSO-selected descriptors resulted in the best prediction models, both linear and non-linear.

  12. Use of Genetic Algorithms for Contrast and Entropy Optimization in ISAR Autofocusing

    Directory of Open Access Journals (Sweden)

    Martorella Marco

    2006-01-01

    Full Text Available Image contrast maximization and entropy minimization are two commonly used techniques for ISAR image autofocusing. When the signal phase history due to the target radial motion has to be approximated with high order polynomial models, classic optimization techniques fail when attempting to either maximize the image contrast or minimize the image entropy. In this paper a solution of this problem is proposed by using genetic algorithms. The performances of the new algorithms that make use of genetic algorithms overcome the problem with previous implementations based on deterministic approaches. Tests on real data of airplanes and ships confirm the insight.

  13. High-Speed General Purpose Genetic Algorithm Processor.

    Science.gov (United States)

    Hoseini Alinodehi, Seyed Pourya; Moshfe, Sajjad; Saber Zaeimian, Masoumeh; Khoei, Abdollah; Hadidi, Khairollah

    2016-07-01

    In this paper, an ultrafast steady-state genetic algorithm processor (GAP) is presented. Due to the heavy computational load of genetic algorithms (GAs), they usually take a long time to find optimum solutions. Hardware implementation is a significant approach to overcome the problem by speeding up the GAs procedure. Hence, we designed a digital CMOS implementation of GA in [Formula: see text] process. The proposed processor is not bounded to a specific application. Indeed, it is a general-purpose processor, which is capable of performing optimization in any possible application. Utilizing speed-boosting techniques, such as pipeline scheme, parallel coarse-grained processing, parallel fitness computation, parallel selection of parents, dual-population scheme, and support for pipelined fitness computation, the proposed processor significantly reduces the processing time. Furthermore, by relying on a built-in discard operator the proposed hardware may be used in constrained problems that are very common in control applications. In the proposed design, a large search space is achievable through the bit string length extension of individuals in the genetic population by connecting the 32-bit GAPs. In addition, the proposed processor supports parallel processing, in which the GAs procedure can be run on several connected processors simultaneously.

  14. Niching genetic algorithms for optimization in electromagnetics - I. Fundamentals

    OpenAIRE

    Sareni, Bruno; Krähenbühl, Laurent; Nicolas, Alain

    1998-01-01

    Niching methods extend genetic algorithms and permit the investigation of multiple optimal solutions in the search space. In this paper, we review and discuss various strategies of niching for optimization in electromagnetics. Traditional mathematical problems and an electromagnetic benchmark are solved using niching genetic algorithms to show their interest in real world optimization.

  15. Application of a Genetic Algorithm to Nearest Neighbour Classification

    NARCIS (Netherlands)

    Simkin, S.; Verwaart, D.; Vrolijk, H.C.J.

    2005-01-01

    This paper describes the application of a genetic algorithm to nearest-neighbour based imputation of sample data into a census data dataset. The genetic algorithm optimises the selection and weights of variables used for measuring distance. The results show that the measure of fit can be improved by

  16. Semiclassical genetic algorithm with quantum crossover and mutation operations

    CERN Document Server

    SaiToh, Akira; Nakahara, Mikio

    2012-01-01

    In order for finding a good individual for a given fitness function in the context of evolutionary computing, we introduce a novel semiclassical quantum genetic algorithm. It has both of quantum crossover and quantum mutation procedures unlike conventional quantum genetic algorithms. A complexity analysis shows a certain improvement over its classical counterpart.

  17. FEATURE SELECTION USING GENETIC ALGORITHMS FOR HANDWRITTEN CHARACTER RECOGNITION

    NARCIS (Netherlands)

    Kim, G.; Kim, S.

    2004-01-01

    A feature selection method using genetic algorithms which are suitable means for selecting appropriate set of features from ones with huge dimension is proposed. SGA (Simple Genetic Algorithm) and its modified methods are applied to improve the recognition speed as well as the recognition accuracy.

  18. Genetic Algorithms in Dynamical Systems Optimisation and Adaptation

    NARCIS (Netherlands)

    Reus, N.M. de; Visser, E.K.; Bruggeman, B.

    1998-01-01

    Both in the design of dynamical systems, ranging from control systems to state estimators as in the adaptation of these systems the use of genetic algorithms is worth studying. This paper presents some approaches for using genetic algorithms in dynamical systems. The layouts and specific uses are di

  19. On the runtime analysis of the Simple Genetic Algorithm

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2014-01-01

    For many years it has been a challenge to analyze the time complexity of Genetic Algorithms (GAs) using stochastic selection together with crossover and mutation. This paper presents a rigorous runtime analysis of the well-known Simple Genetic Algorithm (SGA) for OneMax. It is proved that the SGA...

  20. On the Analysis of the Simple Genetic Algorithm

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2012-01-01

    For many years it has been a challenge to analyze the time complexity of Genetic Algorithms (GAs) using stochastic selection together with crossover and mutation. This paper presents a rigorous runtime analysis of the well-known Simple Genetic Algorithm (SGA) for OneMax. It is proved that the SGA...

  1. Modeling of genetic algorithms with a finite population

    NARCIS (Netherlands)

    C.H.M. van Kemenade

    1997-01-01

    textabstractCross-competition between non-overlapping building blocks can strongly influence the performance of evolutionary algorithms. The choice of the selection scheme can have a strong influence on the performance of a genetic algorithm. This paper describes a number of different genetic

  2. Genetic algorithms principles and perspectives : a guide to GA theory

    CERN Document Server

    Reeves, Colin R; Reeves, Colin R

    2002-01-01

    Genetic Algorithms (GAs) have become a highly effective tool for solving hard optimization problems. This text provides a survey of some important theoretical contributions, many of which have been proposed and developed in the Foundations of Genetic Algorithms series of workshops.

  3. Selfish Gene Algorithm Vs Genetic Algorithm: A Review

    Science.gov (United States)

    Ariff, Norharyati Md; Khalid, Noor Elaiza Abdul; Hashim, Rathiah; Noor, Noorhayati Mohamed

    2016-11-01

    Evolutionary algorithm is one of the algorithms inspired by the nature. Within little more than a decade hundreds of papers have reported successful applications of EAs. In this paper, the Selfish Gene Algorithms (SFGA), as one of the latest evolutionary algorithms (EAs) inspired from the Selfish Gene Theory which is an interpretation of Darwinian Theory ideas from the biologist Richards Dawkins on 1989. In this paper, following a brief introduction to the Selfish Gene Algorithm (SFGA), the chronology of its evolution is presented. It is the purpose of this paper is to present an overview of the concepts of Selfish Gene Algorithm (SFGA) as well as its opportunities and challenges. Accordingly, the history, step involves in the algorithm are discussed and its different applications together with an analysis of these applications are evaluated.

  4. Research on the Technique of Fault Diagnosis Based on Adaptive Genetic Algorithm and BP Neural Network%基于AGA-BP算法的智能故障诊断技术研究

    Institute of Scientific and Technical Information of China (English)

    焦爱红; 袁力哲; 陈燕生

    2011-01-01

    Fault diagnosis algorithm based on adaptive genetic algorithm and BP neural network (AGA-BP) was presented to avoid the defect of tradition BP neural networks. The adaptive genetic algorithm was used to optimize initial weights and thresholds of the BP neural network in earlier stage of iterative calculation, and the error hack propagation algorithm with self study speed was used to improve the network problems of slow convergence speed in the later stage. The AGA-BP algorithm was used to diagnose grinding bum fault. The result was compared with that of the general network algorithm. It testifies the method is correct and valid.%针对传统BP神经网络的不足,提出基于自适应遗传算法的BP神经网络故障诊断算法.在迭代计算前期,采用自适应遗传算法对神经网络的权值和阈值进行全局优化;在迭代计算后期,利用改进的BP算法在近似最优解附近进行局部寻优.将该算法用于磨削烧伤的故障诊断之中,并将结果与基于改进BP网络的诊断结果进行比较,证明该方法的正确性和有效性.

  5. Genetic algorithms and smoothing filters in solving the geophysical inversion problem

    Directory of Open Access Journals (Sweden)

    Šešum Vesna

    2002-01-01

    Full Text Available The combination of genetic algorithms, smoothing filters and geophysical tomography is used in solving the geophysical inversion problem. This hybrid technique is developed to improve the results obtained by using genetic algorithm sonly. The application of smoothing filters can improve the performance of GA implementation for solving the geophysical inversion problem. Some test-examples and the obtained comparative results are presented.

  6. Truss Optimization for a Manned Nuclear Electric Space Vehicle using Genetic Algorithms

    Science.gov (United States)

    Benford, Andrew; Tinker, Michael L.

    2004-01-01

    The purpose of this paper is to utilize the genetic algorithm (GA) optimization method for structural design of a nuclear propulsion vehicle. Genetic algorithms provide a guided, random search technique that mirrors biological adaptation. To verify the GA capabilities, other traditional optimization methods were used to generate results for comparison to the GA results, first for simple two-dimensional structures, and then for full-scale three-dimensional truss designs.

  7. Maximizing the brightness of an electron beam by means of a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Bacci, A.; Maroli, C. [Sezione di Milano INFN, Via Celoria, 16, 20133 Milano (Italy); Petrillo, V. [Universita degli Studi di Milano, Via Celoria, 16, 20133 Milan (Italy)], E-mail: petrillo@mi.infn.it; Rossi, A.; Serafini, L. [Sezione di Milano INFN, Via Celoria, 16, 20133 Milan (Italy)

    2007-10-15

    We present the architecture and some applications of a genetic algorithm developed for solving problems in beam dynamics of high brightness beams, where highly non-linear behaviour of the beam characteristics are optimized through a multi-dimensional variation technique based on genetic evolution criteria.

  8. Topology control based on quantum genetic algorithm in sensor networks

    Institute of Scientific and Technical Information of China (English)

    SUN Lijuan; GUO Jian; LU Kai; WANG Ruchuan

    2007-01-01

    Nowadays,two trends appear in the application of sensor networks in which both multi-service and quality of service (QoS)are supported.In terms of the goal of low energy consumption and high connectivity,the control on topology is crucial.The algorithm of topology control based on quantum genetic algorithm in sensor networks is proposed.An advantage of the quantum genetic algorithm over the conventional genetic algorithm is demonstrated in simulation experiments.The goals of high connectivity and low consumption of energy are reached.

  9. Global annealing genetic algorithm and its convergence analysis

    Institute of Scientific and Technical Information of China (English)

    张讲社; 徐宗本; 梁怡

    1997-01-01

    A new selection mechanism termed global annealing selection (GAnS) is proposed for the genetic algorithm. It is proved that the GAnS genetic algorithm converges to the global optimums if and only if the parents are allowed to compete for reproduction, and that the variance of population’s fitness can be used as a natural stopping criterion. Numerical simulations show that the new algorithm has stronger ability to escape from local maximum and converges more rapidly than canonical genetic algorithm.

  10. Using Genetic Algorithms in Secured Business Intelligence Mobile Applications

    Directory of Open Access Journals (Sweden)

    Silvia TRIF

    2011-01-01

    Full Text Available The paper aims to assess the use of genetic algorithms for training neural networks used in secured Business Intelligence Mobile Applications. A comparison is made between classic back-propagation method and a genetic algorithm based training. The design of these algorithms is presented. A comparative study is realized for determining the better way of training neural networks, from the point of view of time and memory usage. The results show that genetic algorithms based training offer better performance and memory usage than back-propagation and they are fit to be implemented on mobile devices.

  11. Internal lattice reconfiguration for diversity tuning in Cellular Genetic Algorithms.

    Science.gov (United States)

    Morales-Reyes, Alicia; Erdogan, Ahmet T

    2012-01-01

    Cellular Genetic Algorithms (cGAs) have attracted the attention of researchers due to their high performance, ease of implementation and massive parallelism. Maintaining an adequate balance between exploitative and explorative search is essential when studying evolutionary optimization techniques. In this respect, cGAs inherently possess a number of structural configuration parameters that are able to sustain diversity during evolution. In this study, the internal reconfiguration of the lattice is proposed to constantly or adaptively control the exploration-exploitation trade-off. Genetic operators are characterized in their simplest form since algorithmic performance is assessed on implemented reconfiguration mechanisms. Moreover, internal reconfiguration allows the adjacency of individuals to be maintained. Hence, any improvement in performance is only a consequence of topological changes. Two local selection methods presenting opposite selection pressures are used in order to evaluate the influence of the proposed techniques. Problems ranging from continuous to real world and combinatorial are tackled. Empirical results are supported statistically in terms of efficiency and efficacy.

  12. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    non-linearity, so there is no guarantee to find the optimal solution. Moreover, it has generated a great number of variables. Therefore, a heuristic method is required to find near optimal solution with reasonable computation time. For this reason, a genetic algorithm (GA-based procedure is proposed. The proposed procedure then is applied to the same problem as discussed in the basic model. The results indicated that there is significant improvement on hub locations. Flows are successfully consolidated to several big ports as expected. With regards to spoke allocations, however, spokes are not fairly allocated.Keywords: Hub and Spoke Model; Marine Transportation; Genetic Algorithm

  13. Solving Hub Network Problem Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mursyid Hasan Basri

    2012-01-01

    non-linearity, so there is no guarantee to find the optimal solution. Moreover, it has generated a great number of variables. Therefore, a heuristic method is required to find near optimal solution with reasonable computation time. For this reason, a genetic algorithm (GA-based procedure is proposed. The proposed procedure then is applied to the same problem as discussed in the basic model. The results indicated that there is significant improvement on hub locations. Flows are successfully consolidated to several big ports as expected. With regards to spoke allocations, however, spokes are not fairly allocated.Keywords: Hub and Spoke Model; Marine Transportation; Genetic Algorithm

  14. Genetic Algorithm Based Proportional Integral Controller Design for Induction Motor

    Directory of Open Access Journals (Sweden)

    Mohanasundaram Kuppusamy

    2011-01-01

    Full Text Available Problem statement: This study has expounded the application of evolutionary computation method namely Genetic Algorithm (GA for estimation of feedback controller parameters for induction motor. GA offers certain advantages such as simple computational steps, derivative free optimization, reduced number of iterations and assured near global optima. The development of the method is well documented and computed and measured results are presented. Approach: The design of PI controller parameter for three phase induction motor drives was done using Genetic Algorithm. The objective function of motor current reduction, using PI controller, at starting is formulated as an optimization problem and solved with Genetic Algorithm. Results: The results showed the selected values of PI controller parameter using genetic algorithm approach, with objective of induction motor starting current reduction. Conclusions/Recommendation: The results proved the robustness and easy implementation of genetic algorithm selection of PI parameters for induction motor starting.

  15. Improving the Solution of Traveling Salesman Problem Using Genetic, Memetic Algorithm and Edge assembly Crossover

    Directory of Open Access Journals (Sweden)

    Khalid. W. Magld

    2012-07-01

    Full Text Available The Traveling salesman problem (TSP is to find a tour of a given number of cities (visiting each city exactly once where the length of this tour is minimized. Testing every possibility for an N city tour would be N! Math additions. Genetic algorithms (GA and Memetic algorithms (MA are a relatively new optimization technique which can be applied to various problems, including those that are NPhard. The technique does not ensure an optimal solution, however it usually gives good approximations in a reasonable amount of time. They, therefore, would be good algorithms to try on the traveling salesman problem, one of the most famous NP-hard problems. In this paper I have proposed a algorithm to solve TSP using Genetic algorithms (GA and Memetic algorithms (MA with the crossover operator Edge Assembly Crossover (EAX and also analyzed the result on different parameter like group size and mutation percentage and compared the result with other solutions.

  16. Eliciting spatial statistics from geological experts using genetic algorithms

    Science.gov (United States)

    Walker, Matthew; Curtis, Andrew

    2014-07-01

    A new method to obtain the statistics of a geostatistical model is introduced. The method elicits the statistical information from a geological expert directly, by iteratively updating a population of vectors of statistics, based on the expert's subjective opinion of the corresponding geological simulations. Thus, it does not require the expert to have knowledge of the mathematical and statistical details of the model. The process uses a genetic algorithm to generate new vectors. We demonstrate the methodology for a particular geostatistical model used to model rock pore-space, which simulates the spatial distribution of matrix and pores over a 2-D grid, using multipoint statistics specified by conditional probabilities. Experts were asked to use the algorithm to estimate the statistics of a given target pore-space image with known statistics; thus, their numerical rates of convergence could be calculated. Convergence was measured for all experts, showing that the algorithm can be used to find appropriate probabilities given the expert's subjective input. However, considerable and apparently irreducible residual misfit was found between the true statistics and the estimates of statistics obtained by the experts, with the root-mean-square error on the conditional probabilities typically >0.1. This is interpreted as the limit of the experts' abilities to distinguish between realizations of different spatial statistics using the algorithm. More accurate discrimination is therefore likely to require complementary elicitation techniques or sources of information independent of expert opinion.

  17. Modelling Agro-Met Station Observations Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Prashant Kumar

    2014-01-01

    Full Text Available The present work discusses the development of a nonlinear data-fitting technique based on genetic algorithm (GA for the prediction of routine weather parameters using observations from Agro-Met Stations (AMS. The algorithm produces the equations that best describe the temporal evolutions of daily minimum and maximum near-surface (at 2.5-meter height air temperature and relative humidity and daily averaged wind speed (at 10-meter height at selected AMS locations. These enable the forecasts of these weather parameters, which could have possible use in crop forecast models. The forecast equations developed in the present study use only the past observations of the above-mentioned parameters. This approach, unlike other prediction methods, provides explicit analytical forecast equation for each parameter. The predictions up to 3 days in advance have been validated using independent datasets, unknown to the training algorithm, with impressive results. The power of the algorithm has also been demonstrated by its superiority over persistence forecast used as a benchmark.

  18. Efficient Genetic Algorithm sets for optimizing constrained building design problem

    National Research Council Canada - National Science Library

    Wright, Jonathan; Alajmi, Ali

    2016-01-01

    .... This requires trying large possible solutions which need heuristic optimization algorithms. A comparison between several heuristic optimization algorithms showed that Genetic Algorithm (GA) is robust on getting the optimum(s) simulation ( Wetter and Wright, 2004; Brownlee et al., 2011; Bichiou and Krarti, 2011; Sahu et al., 2012 ) while the building simulat...

  19. Seasonal Time Series Analysis Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pattern discovery from the seasonal time-series is of importance. Traditionally, most of the algorithms of pattern discovery in time series are similar. A novel mode of time series is proposed which integrates the Genetic Algorithm (GA) for the actual problem. The experiments on the electric power yield sequence models show that this algorithm is practicable and effective.

  20. New Iris Localization Method Based on Chaos Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jia Dongli; Muhammad Khurram Khan; Zhang Jiashu

    2005-01-01

    This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the iris. Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugmans algorithm.

  1. Transonic Wing Shape Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  2. Higher-Order Quantum-Inspired Genetic Algorithms

    OpenAIRE

    Nowotniak, Robert; Kucharski, Jacek

    2014-01-01

    This paper presents a theory and an empirical evaluation of Higher-Order Quantum-Inspired Genetic Algorithms. Fundamental notions of the theory have been introduced, and a novel Order-2 Quantum-Inspired Genetic Algorithm (QIGA2) has been presented. Contrary to all QIGA algorithms which represent quantum genes as independent qubits, in higher-order QIGAs quantum registers are used to represent genes strings which allows modelling of genes relations using quantum phenomena. Performance comparis...

  3. Advanced optimization of permanent magnet wigglers using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Hajima, Ryoichi [Univ. of Tokyo (Japan)

    1995-12-31

    In permanent magnet wigglers, magnetic imperfection of each magnet piece causes field error. This field error can be reduced or compensated by sorting magnet pieces in proper order. We showed a genetic algorithm has good property for this sorting scheme. In this paper, this optimization scheme is applied to the case of permanent magnets which have errors in the direction of field. The result shows the genetic algorithm is superior to other algorithms.

  4. A Hybrid Algorithm for Satellite Data Transmission Schedule Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; WU Xiao-yue

    2008-01-01

    A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission. At first, based on description of satellite data transmission request, satellite data transmission task modal and satellite data transmission scheduling problem model are established. Secondly, the conflicts in scheduling are discussed. According to the meaning of possible conflict, the method to divide possible conflict task set is given. Thirdly, a hybrid algorithm which consists of genetic algorithm and heuristic information is presented. The heuristic information comes from two concepts, conflict degree and conflict number. Finally, an example shows the algorithm's feasibility and performance better than other traditional algorithms.

  5. Genetic algorithm-based wide-band deterministic maximum likelihood direction finding algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The wide-band direction finding is one of hit and difficult task in array signal processing. This paper generalizes narrow-band deterministic maximum likelihood direction finding algorithm to the wideband case, and so constructions an object function, then utilizes genetic algorithm for nonlinear global optimization. Direction of arrival is estimated without preprocessing of array data and so the algorithm eliminates the effect of pre-estimate on the final estimation. The algorithm is applied on uniform linear array and extensive simulation results prove the efficacy of the algorithm. In the process of simulation, we obtain the relation between estimation error and parameters of genetic algorithm.

  6. Investigation of Web Mining Optimization Using Microbial Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Dipali Tungar

    2014-02-01

    Full Text Available In today's modern internet era peopleneed searching on the web and finding relevant information on the web to be efficient and fast. But traditional search engines like Google suppose to be more intelligent, still use the traditional crawling algorithms to find data relevant to the search query. But most of the times it returns irrelevant data as well which becomes confusing for the user. In a normal XML data the user inputs the search query in terms of a keyword or a question and the answer to the search query should be more precise and more relevant. So, using the traditional crawling algorithms over XML data would lead to irrelevant results. Genetic algorithms are the modern algorithms which replicates the Darwinian theory of the natural evolution. The genetic algorithms are best suited for the traditional search problem as the genetic algorithms always tend to return quality as solution for any domain data. It would be a good approach to investigate how the genetic algorithms would be suitable for the search over the XML data of different domains. So, this system implements a steady state tournament selection Microbial Genetic Algorithm over the XML data of the different domains. This would be an investigation of how the genetic algorithm would return accurate results over XML data of different domains.

  7. Genetic Algorithms for Satellite Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Fatos Xhafa

    2012-01-01

    Full Text Available Recently there has been a growing interest in mission operations scheduling problem. The problem, in a variety of formulations, arises in management of satellite/space missions requiring efficient allocation of user requests to make possible the communication between operations teams and spacecraft systems. Not only large space agencies, such as ESA (European Space Agency and NASA, but also smaller research institutions and universities can establish nowadays their satellite mission, and thus need intelligent systems to automate the allocation of ground station services to space missions. In this paper, we present some relevant formulations of the satellite scheduling viewed as a family of problems and identify various forms of optimization objectives. The main complexities, due highly constrained nature, windows accessibility and visibility, multi-objectives and conflicting objectives are examined. Then, we discuss the resolution of the problem through different heuristic methods. In particular, we focus on the version of ground station scheduling, for which we present computational results obtained with Genetic Algorithms using the STK simulation toolkit.

  8. Closed Loop System Identification with Genetic Algorithms

    Science.gov (United States)

    Whorton, Mark S.

    2004-01-01

    High performance control design for a flexible space structure is challenging since high fidelity plant models are di.cult to obtain a priori. Uncertainty in the control design models typically require a very robust, low performance control design which must be tuned on-orbit to achieve the required performance. Closed loop system identi.cation is often required to obtain a multivariable open loop plant model based on closed-loop response data. In order to provide an accurate initial plant model to guarantee convergence for standard local optimization methods, this paper presents a global parameter optimization method using genetic algorithms. A minimal representation of the state space dynamics is employed to mitigate the non-uniqueness and over-parameterization of general state space realizations. This control-relevant system identi.cation procedure stresses the joint nature of the system identi.cation and control design problem by seeking to obtain a model that minimizes the di.erence between the predicted and actual closed-loop performance.

  9. Robot path planning using a genetic algorithm

    Science.gov (United States)

    Cleghorn, Timothy F.; Baffes, Paul T.; Wang, Liu

    1988-01-01

    Robot path planning can refer either to a mobile vehicle such as a Mars Rover, or to an end effector on an arm moving through a cluttered workspace. In both instances there may exist many solutions, some of which are better than others, either in terms of distance traversed, energy expended, or joint angle or reach capabilities. A path planning program has been developed based upon a genetic algorithm. This program assumes global knowledge of the terrain or workspace, and provides a family of good paths between the initial and final points. Initially, a set of valid random paths are constructed. Successive generations of valid paths are obtained using one of several possible reproduction strategies similar to those found in biological communities. A fitness function is defined to describe the goodness of the path, in this case including length, slope, and obstacle avoidance considerations. It was found that with some reproduction strategies, the average value of the fitness function improved for successive generations, and that by saving the best paths of each generation, one could quite rapidly obtain a collection of good candidate solutions.

  10. Web Based Genetic Algorithm Using Data Mining

    Directory of Open Access Journals (Sweden)

    Ashiqur Rahman

    2016-09-01

    Full Text Available This paper presents an approach for classifying students in order to predict their final grade based on features extracted from logged data in an education web-based system. A combination of multiple classifiers leads to a significant improvement in classification performance. Through weighting the feature vectors using a Genetic Algorithm we can optimize the prediction accuracy and get a marked improvement over raw classification. It further shows that when the number of features is few; feature weighting is works better than just feature selection. Many leading educational institutions are working to establish an online teaching and learning presence. Several systems with different capabilities and approaches have been developed to deliver online education in an academic setting. In particular, Michigan State University (MSU has pioneered some of these systems to provide an infrastructure for online instruction. The research presented here was performed on a part of the latest online educational system developed at MSU, the Learning Online Network with Computer-Assisted Personalized Approach (LON-CAPA

  11. Key Frames Extraction Based on the Improved Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-sheng; JIANG Wei; YI Peng-fei; LIURui

    2014-01-01

    In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved.

  12. Synthesis of optimal digital shapers with arbitrary noise using a genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Regadío, Alberto, E-mail: regadioca@inta.es [Department of Computer Engineering, Space Research Group, Universidad de Alcalá, 28805 Alcalá de Henares (Spain); Electronic Technology Area, Instituto Nacional de Técnica Aeroespacial, 28850 Torrejón de Ardoz (Spain); Sánchez-Prieto, Sebastián, E-mail: sebastian.sanchez@uah.es [Department of Computer Engineering, Space Research Group, Universidad de Alcalá, 28805 Alcalá de Henares (Spain); Tabero, Jesús, E-mail: taberogj@inta.es [Electronic Technology Area, Instituto Nacional de Técnica Aeroespacial, 28850 Torrejón de Ardoz (Spain); González-Castaño, Diego M., E-mail: diego.gonzalez@usc.es [Radiation Physics Laboratory, Universidad de Santiago, 15782 Santiago de Compostela (Spain)

    2015-09-21

    This paper presents structure, design and implementation of a novel technique for determining the optimal shaping, in time-domain, for spectrometers by means of a Genetic Algorithm (GA) specifically designed for this purpose. The proposed algorithm is able to adjust automatically the coefficients for shaping an input signal. Results of this experiment have been compared to a previous simulated annealing algorithm. Finally, its performance and capabilities were tested using simulation data and a real particle detector, as a scintillator.

  13. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  14. Coordinating Exploration and Exploitation To Construct Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    江瑞; 罗予频; 胡东成; 司徒国业

    2002-01-01

    A new genetic algorithm is proposed based on the careful coordination of the exploration in the solution space of the given problem and the exploitation of the information from the previous search. In the new algorithm architecture, the population in each generation consists of three sub-populations: a preserved part, a reproduced part, and a randomized part. Two parameters are incorporated into the algorithm to efficiently control the percentage of each sub-population to achieve good balance between the exploration and exploitation processes during the optimization. By modeling the algorithm as a homogeneous finite Markov chain, the new genetic algorithm is shown to converge towards the global optimum of the problem at hand. Experiments were designed to test the algorithm using the Rastrigin function, the Griewangk function, and the Schaffer function. Data analyses using the average success ratio, the average objective calculating number, the average first passage time to solution, and the standard deviation of the first passage time were compared with those of the canonical genetic algorithm, the elitist genetic algorithm, and the steady genetic algorithm. The results show strong evidence that our algorithm is superior in performance in terms of economy, robustness and efficiency.

  15. A Parallel Genetic Algorithm Based on Spark for Pairwise Test Suite Generation

    Institute of Scientific and Technical Information of China (English)

    Rong-Zhi Qi; Zhi-Jian Wang; Shui-Yan Li

    2016-01-01

    Pairwise testing is an effective test generation technique that requires all pairs of parameter values to be covered by at least one test case. It has been proven that generating minimum test suite is an NP-complete problem. Genetic algorithms have been used for pairwise test suite generation by researchers. However, it is always a time-consuming process, which leads to significant limitations and obstacles for practical use of genetic algorithms towards large-scale test problems. Parallelism will be an effective way to not only enhance the computation performance but also improve the quality of the solutions. In this paper, we use Spark, a fast and general parallel computing platform, to parallelize the genetic algorithm to tackle the problem. We propose a two-phase parallelization algorithm including fitness evaluation parallelization and genetic operation parallelization. Experimental results show that our algorithm outperforms the sequential genetic algorithm and competes with other approaches in both test suite size and computational performance. As a result, our algorithm is a promising improvement of the genetic algorithm for pairwise test suite generation.

  16. Reactive power and voltage control based on general quantum genetic algorithms

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John); Østergaard, Jacob

    2009-01-01

    This paper presents an improved evolutionary algorithm based on quantum computing for optima l steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines...... techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions....

  17. Application of Genetic Algorithms for Parameter Estimation in Liquid Chromatography

    Directory of Open Access Journals (Sweden)

    Orestes Llanes Santiago

    2011-11-01

    Full Text Available Normal 0 21 false false false ES X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} In chromatography, complex inverse problems related to the parameters estimation and process optimization are presented. Metaheuristics methods are known as general purpose approximated algorithms which seek and hopefully find good solutions at a reasonable computational cost. These methods are iterative process to perform a robust search of a solution space. Genetic algorithms are optimization techniques based on the principles of genetics and natural selection. They have demonstrated very good performance as global optimizers in many types of applications, including inverse problems. In this work, the effectiveness of genetic algorithms is investigated to estimate parameters in liquid chromatography.

  18. A genetic algorithm for solving supply chain network design model

    Science.gov (United States)

    Firoozi, Z.; Ismail, N.; Ariafar, S. H.; Tang, S. H.; Ariffin, M. K. M. A.

    2013-09-01

    Network design is by nature costly and optimization models play significant role in reducing the unnecessary cost components of a distribution network. This study proposes a genetic algorithm to solve a distribution network design model. The structure of the chromosome in the proposed algorithm is defined in a novel way that in addition to producing feasible solutions, it also reduces the computational complexity of the algorithm. Computational results are presented to show the algorithm performance.

  19. A Software Pattern of the Genetic Algorithm -a Study on Reusable Object Model of Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Genetic Algorithm (GA) has been a pop research field, butthere is little concern on GA in view of Software Engineering and this result in a serie s of problems. In this paper, we extract a GA's software pattern, draw a model d iagram of the reusable objects, analyze the advantages and disadvantages of the pattern, and give a sample code at the end. We are then able to improve the reus ability and expansibility of GA. The results make it easier to program a new GA code by using some existing successful operators, thereby reducing the difficult ies and workload of programming a GA's code, and facilitate the GA application.

  20. A Genetic Algorithm for the Segmentation of Known Touching Objects

    Directory of Open Access Journals (Sweden)

    Edgar Scavino

    2009-01-01

    Full Text Available Problem statement: Segmentation is the first and fundamental step in the process of computer vision and object classification. However, complicate or similar colour pattern add complexity to the segmentation of touching objects. The objective of this study was to develop a robust technique for the automatic segmentation and classification of touching plastic bottles, whose features were previously stored in a database. Approach: Our technique was based on the possibility to separate the two objects by means of a segment of straight line, whose position was determined by a genetic approach. The initial population of the genetic algorithm was heuristically determined among a large set of cutting lines, while further generations were selected based on the likelihood of the two objects with the images stored in the database. Results: Extensive testing, which was performed on random couples out of a population of 50 bottles, showed that the correct segmentation could be achieved in success rates above 90% with only a limited number of both chromosomes and iterations, thus reducing the computing time. Conclusion: These findings proved the effectiveness of our method as far as touching plastic bottles are concerned. This technique, being absolutely general, can be extended to any situation in which the properties of single objects were previously stored in a database.

  1. A Hybrid Genetic-Algorithm Space-Mapping Tool for the Optimization of Antennas

    DEFF Research Database (Denmark)

    Pantoja, Mario Fernández; Meincke, Peter; Bretones, Amelia Rubio

    2007-01-01

    A hybrid global-local optimization technique for the design of antennas is presented. It consists of the subsequent application of a genetic algorithm (GA) that employs coarse models in the simulations and a space mapping (SM) that refines the solution found in the previous stage. The technique...

  2. Hybrid genetic algorithm in the Hopfield network for maximum 2-satisfiability problem

    Science.gov (United States)

    Kasihmuddin, Mohd Shareduwan Mohd; Sathasivam, Saratha; Mansor, Mohd. Asyraf

    2017-08-01

    Heuristic method was designed for finding optimal solution more quickly compared to classical methods which are too complex to comprehend. In this study, a hybrid approach that utilizes Hopfield network and genetic algorithm in doing maximum 2-Satisfiability problem (MAX-2SAT) was proposed. Hopfield neural network was used to minimize logical inconsistency in interpretations of logic clauses or program. Genetic algorithm (GA) has pioneered the implementation of methods that exploit the idea of combination and reproduce a better solution. The simulation incorporated with and without genetic algorithm will be examined by using Microsoft Visual 2013 C++ Express software. The performance of both searching techniques in doing MAX-2SAT was evaluate based on global minima ratio, ratio of satisfied clause and computation time. The result obtained form the computer simulation demonstrates the effectiveness and acceleration features of genetic algorithm in doing MAX-2SAT in Hopfield network.

  3. A GENETIC ALGORITHM USING THE LOCAL SEARCH HEURISTIC IN FACILITIES LAYOUT PROBLEM: A MEMETİC ALGORİTHM APPROACH

    Directory of Open Access Journals (Sweden)

    Orhan TÜRKBEY

    2002-02-01

    Full Text Available Memetic algorithms, which use local search techniques, are hybrid structured algorithms like genetic algorithms among evolutionary algorithms. In this study, for Quadratic Assignment Problem (QAP, a memetic structured algorithm using a local search heuristic like 2-opt is developed. Developed in the algorithm, a crossover operator that has not been used before for QAP is applied whereas, Eshelman procedure is used in order to increase thesolution variability. The developed memetic algorithm is applied on test problems taken from QAP-LIB, the results are compared with the present techniques in the literature.

  4. Chaotic genetic algorithm for gene selection and classification problems.

    Science.gov (United States)

    Chuang, Li-Yeh; Yang, Cheng-San; Li, Jung-Chike; Yang, Cheng-Hong

    2009-10-01

    Pattern recognition techniques suffer from a well-known curse, the dimensionality problem. The microarray data classification problem is a classical complex pattern recognition problem. Selecting relevant genes from microarray data poses a formidable challenge to researchers due to the high-dimensionality of features, multiclass categories being involved, and the usually small sample size. The goal of feature (gene) selection is to select those subsets of differentially expressed genes that are potentially relevant for distinguishing the sample classes. In this paper, information gain and chaotic genetic algorithm are proposed for the selection of relevant genes, and a K-nearest neighbor with the leave-one-out crossvalidation method serves as a classifier. The chaotic genetic algorithm is modified by using the chaotic mutation operator to increase the population diversity. The enhanced population diversity expands the GA's search ability. The proposed approach is tested on 10 microarray data sets from the literature. The experimental results show that the proposed method not only effectively reduced the number of gene expression levels, but also achieved lower classification error rates than other methods.

  5. A genetic algorithm approach to recognition and data mining

    Energy Technology Data Exchange (ETDEWEB)

    Punch, W.F.; Goodman, E.D.; Min, Pei [Michigan State Univ., East Lansing, MI (United States)] [and others

    1996-12-31

    We review here our use of genetic algorithm (GA) and genetic programming (GP) techniques to perform {open_quotes}data mining,{close_quotes} the discovery of particular/important data within large datasets, by finding optimal data classifications using known examples. Our first experiments concentrated on the use of a K-nearest neighbor algorithm in combination with a GA. The GA selected weights for each feature so as to optimize knn classification based on a linear combination of features. This combined GA-knn approach was successfully applied to both generated and real-world data. We later extended this work by substituting a GP for the GA. The GP-knn could not only optimize data classification via linear combinations of features but also determine functional relationships among the features. This allowed for improved performance and new information on important relationships among features. We review the effectiveness of the overall approach on examples from biology and compare the effectiveness of the GA and GP.

  6. Restart-Based Genetic Algorithm for the Quadratic Assignment Problem

    Science.gov (United States)

    Misevicius, Alfonsas

    The power of genetic algorithms (GAs) has been demonstrated for various domains of the computer science, including combinatorial optimization. In this paper, we propose a new conceptual modification of the genetic algorithm entitled a "restart-based genetic algorithm" (RGA). An effective implementation of RGA for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP), is discussed. The results obtained from the computational experiments on the QAP instances from the publicly available library QAPLIB show excellent performance of RGA. This is especially true for the real-life like QAPs.

  7. A NEW GENETIC SIMULATED ANNEALING ALGORITHM FOR FLOOD ROUTING MODEL

    Institute of Scientific and Technical Information of China (English)

    KANG Ling; WANG Cheng; JIANG Tie-bing

    2004-01-01

    In this paper, a new approach, the Genetic Simulated Annealing (GSA), was proposed for optimizing the parameters in the Muskingum routing model. By integrating the simulated annealing method into the genetic algorithm, the hybrid method could avoid some troubles of traditional methods, such as arduous trial-and-error procedure, premature convergence in genetic algorithm and search blindness in simulated annealing. The principle and implementing procedure of this algorithm were described. Numerical experiments show that the GSA can adjust the optimization population, prevent premature convergence and seek the global optimal result.Applications to the Nanyunhe River and Qingjiang River show that the proposed approach is of higher forecast accuracy and practicability.

  8. Aerodynamic Optimum Design of Transonic Turbine Cascades Using Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper presents an aerodynamic optimum design method for transonic turbine cascades based on the Genetic Algorithms coupled to the inviscid flow Euler Solver and the boundary-layer calculation.The Genetic Algorithms control the evolution of a population of cascades towards an optimum design.The fitness value of each string is evaluated using the flow solver.The design procedure has been developed and the behavior of the genetic algorithms has been tested.The objective functions of the design examples are the minimum mean-square deviation between the aimed pressure and computed pressure and the minimum amount of user expertise.

  9. Support Vector Machine Optimized by Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xiang Chang Sheng

    2013-07-01

    Full Text Available Parameters of support vector machines (SVM which is optimized by standard genetic algorithm is easy to trap into the local minimum, in order to get the optimal parameters of support vector machine, this paper proposed a parameters optimization method for support vector machines based on improved genetic algorithm, the simulation experiment is carried out on 5 benchmark datasets. The simulation show that the proposed method not only can assure the classification precision, but also can reduce training time markedly compared with standard genetic algorithm.

  10. Design Optimization of Tilting-Pad Journal Bearing Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hamit Saruhan

    2004-01-01

    Full Text Available This article focuses on the use of genetic algorithms in developing an efficient optimum design method for tilting pad bearings. The approach optimizes based on minimum film thickness, power loss, maximum film temperature, and a global objective. Results for a five tilting-pad preloaded bearing are presented to provide a comparison with more traditional optimum design methods such as the gradient-based global criterion method, and also to provide insight into the potential of genetic algorithms in the design of rotor bearings. Genetic algorithms are efficient search techniques based on the idea of natural selection and genetics. These robust methods have gained recognition as general problem solving techniques in many applications.

  11. Mining Interesting Positive and Negative Association Rule Based on Improved Genetic Algorithm (MIPNAR_GA

    Directory of Open Access Journals (Sweden)

    Nikky Suryawanshi Rai

    2014-01-01

    Full Text Available Association Rule mining is very efficient technique for finding strong relation between correlated data. The correlation of data gives meaning full extraction process. For the mining of positive and negative rules, a variety of algorithms are used such as Apriori algorithm and tree based algorithm. A number of algorithms are wonder performance but produce large number of negative association rule and also suffered from multi-scan problem. The idea of this paper is to eliminate these problems and reduce large number of negative rules. Hence we proposed an improved approach to mine interesting positive and negative rules based on genetic and MLMS algorithm. In this method we used a multi-level multiple support of data table as 0 and 1. The divided process reduces the scanning time of database. The proposed algorithm is a combination of MLMS and genetic algorithm. This paper proposed a new algorithm (MIPNAR_GA for mining interesting positive and negative rule from frequent and infrequent pattern sets. The algorithm is accomplished in to three phases: a.Extract frequent and infrequent pattern sets by using apriori method b.Efficiently generate positive and negative rule. c.Prune redundant rule by applying interesting measures. The process of rule optimization is performed by genetic algorithm and for evaluation of algorithm conducted the real world dataset such as heart disease data and some standard data used from UCI machine learning repository.

  12. A New Genetic Algorithm Methodology for Design Optimization of Truss Structures: Bipopulation-Based Genetic Algorithm with Enhanced Interval Search

    Directory of Open Access Journals (Sweden)

    Tugrul Talaslioglu

    2009-01-01

    Full Text Available A new genetic algorithm (GA methodology, Bipopulation-Based Genetic Algorithm with Enhanced Interval Search (BGAwEIS, is introduced and used to optimize the design of truss structures with various complexities. The results of BGAwEIS are compared with those obtained by the sequential genetic algorithm (SGA utilizing a single population, a multipopulation-based genetic algorithm (MPGA proposed for this study and other existing approaches presented in literature. This study has two goals: outlining BGAwEIS's fundamentals and evaluating the performances of BGAwEIS and MPGA. Consequently, it is demonstrated that MPGA shows a better performance than SGA taking advantage of multiple populations, but BGAwEIS explores promising solution regions more efficiently than MPGA by exploiting the feasible solutions. The performance of BGAwEIS is confirmed by better quality degree of its optimal designations compared to algorithms proposed here and described in literature.

  13. Genetic tools and techniques for Chlamydomonas reinhardtii.

    Science.gov (United States)

    Mussgnug, Jan H

    2015-07-01

    The development of tools has always been a major driving force for the advancement of science. Optical microscopes were the first instruments that allowed discovery and descriptive studies of the subcellular features of microorganisms. Although optical and electron microscopes remained at the forefront of microbiological research tools since their inventions, the advent of molecular genetics brought about questions which had to be addressed with new "genetic tools". The unicellular green microalgal genus Chlamydomonas, especially the most prominent species C. reinhardtii, has become a frequently used model organism for many diverse fields of research and molecular genetic analyses of C. reinhardtii, as well as the available genetic tools and techniques, have become increasingly sophisticated throughout the last decades. The aim of this review is to provide an overview of the molecular key features of C. reinhardtii and summarize the progress related to the development of tools and techniques for genetic engineering of this organism, from pioneering DNA transformation experiments to state-of-the-art techniques for targeted nuclear genome editing and high-throughput screening approaches.

  14. An Evaluation of Potentials of Genetic Algorithm in Shortest Path Problem

    Science.gov (United States)

    Hassany Pazooky, S.; Rahmatollahi Namin, Sh; Soleymani, A.; Samadzadegan, F.

    2009-04-01

    One of the most typical issues considered in combinatorial systems in transportation networks, is the shortest path problem. In such networks, routing has a significant impact on the network's performance. Due to natural complexity in transportation networks and strong impact of routing in different fields of decision making, such as traffic management and vehicle routing problem (VRP), appropriate solutions to solve this problem are crucial to be determined. During last years, in order to solve the shortest path problem, different solutions are proposed. These techniques are divided into two categories of classic and evolutionary approaches. Two well-known classic algorithms are Dijkstra and A*. Dijkstra is known as a robust, but time consuming algorithm in finding the shortest path problem. A* is also another algorithm very similar to Dijkstra, less robust but with a higher performance. On the other hand, Genetic algorithms are introduced as most applicable evolutionary algorithms. Genetic Algorithm uses a parallel search method in several parts of the domain and is not trapped in local optimums. In this paper, the potentiality of Genetic algorithm for finding the shortest path is evaluated by making a comparison between this algorithm and classic algorithms (Dijkstra and A*). Evaluation of the potential of these techniques on a transportation network in an urban area shows that due to the problem of classic methods in their small search space, GA had a better performance in finding the shortest path.

  15. An Improved Particle Swarm Optimization Algorithm Based on Ensemble Technique

    Institute of Scientific and Technical Information of China (English)

    SHI Yan; HUANG Cong-ming

    2006-01-01

    An improved particle swarm optimization (PSO) algorithm based on ensemble technique is presented. The algorithm combines some previous best positions (pbest) of the particles to get an ensemble position (Epbest), which is used to replace the global best position (gbest). It is compared with the standard PSO algorithm invented by Kennedy and Eberhart and some improved PSO algorithms based on three different benchmark functions. The simulation results show that the improved PSO based on ensemble technique can get better solutions than the standard PSO and some other improved algorithms under all test cases.

  16. Robust reactor power control system design by genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yoon Joon; Cho, Kyung Ho; Kim, Sin [Cheju National University, Cheju (Korea, Republic of)

    1997-12-31

    The H{sub {infinity}} robust controller for the reactor power control system is designed by use of the mixed weight sensitivity. The system is configured into the typical two-port model with which the weight functions are augmented. Since the solution depends on the weighting functions and the problem is of nonconvex, the genetic algorithm is used to determine the weighting functions. The cost function applied in the genetic algorithm permits the direct control of the power tracking performances. In addition, the actual operating constraints such as rod velocity and acceleration can be treated as design parameters. Compared with the conventional approach, the controller designed by the genetic algorithm results in the better performances with the realistic constraints. Also, it is found that the genetic algorithm could be used as an effective tool in the robust design. 4 refs., 6 figs. (Author)

  17. PM Synchronous Motor Dynamic Modeling with Genetic Algorithm ...

    African Journals Online (AJOL)

    Adel

    intelligence like neural network, genetic algorithm, etc (El Shahat and El Shewy, ..... maximum power factor has the most powerful effect on all various machine .... Artificial Intelligence, Renewable Energy, Power System, Control Systems, PV ...

  18. Multiscale modeling for classification of SAR imagery using hybrid EM algorithm and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Xianbin Wen; Hua Zhang; Jianguang Zhang; Xu Jiao; Lei Wang

    2009-01-01

    A novel method that hybridizes genetic algorithm (GA) and expectation maximization (EM) algorithm for the classification of syn-thetic aperture radar (SAR) imagery is proposed by the finite Gaussian mixtures model (GMM) and multiscale autoregressive (MAR)model. This algorithm is capable of improving the global optimality and consistency of the classification performance. The experiments on the SAR images show that the proposed algorithm outperforms the standard EM method significantly in classification accuracy.

  19. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    Science.gov (United States)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  20. Chiral metamaterial design using optimized pixelated inclusions with genetic algorithm

    Science.gov (United States)

    Akturk, Cemal; Karaaslan, Muharrem; Ozdemir, Ersin; Ozkaner, Vedat; Dincer, Furkan; Bakir, Mehmet; Ozer, Zafer

    2015-03-01

    Chiral metamaterials have been a research area for many researchers due to their polarization rotation properties on electromagnetic waves. However, most of the proposed chiral metamaterials are designed depending on experience or time-consuming inefficient simulations. A method is investigated for designing a chiral metamaterial with a strong and natural chirality admittance by optimizing a grid of metallic pixels through both sides of a dielectric sheet placed perpendicular to the incident wave by using a genetic algorithm (GA) technique based on finite element method solver. The effective medium parameters are obtained by using constitutive equations and S parameters. The proposed methodology is very efficient for designing a chiral metamaterial with the desired effective medium parameters. By using GA-based topology, it is proven that a chiral metamaterial can be designed and manufactured more easily and with a low cost.

  1. GENETIC ALGORITHM ON GENERAL PURPOSE GRAPHICS PROCESSING UNIT: PARALLELISM REVIEW

    Directory of Open Access Journals (Sweden)

    A.J. Umbarkar

    2013-01-01

    Full Text Available Genetic Algorithm (GA is effective and robust method for solving many optimization problems. However, it may take more runs (iterations and time to get optimal solution. The execution time to find the optimal solution also depends upon the niching-technique applied to evolving population. This paper provides the information about how various authors, researchers, scientists have implemented GA on GPGPU (General purpose Graphics Processing Units with and without parallelism. Many problems have been solved on GPGPU using GA. GA is easy to parallelize because of its SIMD nature and therefore can be implemented well on GPGPU. Thus, speedup can definitely be achieved if bottleneck in GAs are identified and implemented effectively on GPGPU. Paper gives review of various applications solved using GAs on GPGPU with the future scope in the area of optimization.

  2. Integer programming model for optimizing bus timetable using genetic algorithm

    Science.gov (United States)

    Wihartiko, F. D.; Buono, A.; Silalahi, B. P.

    2017-01-01

    Bus timetable gave an information for passengers to ensure the availability of bus services. Timetable optimal condition happened when bus trips frequency could adapt and suit with passenger demand. In the peak time, the number of bus trips would be larger than the off-peak time. If the number of bus trips were more frequent than the optimal condition, it would make a high operating cost for bus operator. Conversely, if the number of trip was less than optimal condition, it would make a bad quality service for passengers. In this paper, the bus timetabling problem would be solved by integer programming model with modified genetic algorithm. Modification was placed in the chromosomes design, initial population recovery technique, chromosomes reconstruction and chromosomes extermination on specific generation. The result of this model gave the optimal solution with accuracy 99.1%.

  3. Voidage measurement based on genetic algorithm and electrical capacitance tomography

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-wei; WANG Bao-liang; HUANG Zhi-yao; LI Hai-qing

    2005-01-01

    A new voidage measurement method based on electrical capacitance tomography (ECT) technique, Genetic Algorithm (GA) and Partial Least Square (PLS) method was proposed. The voidage measurement model, linear capacitance combination, was developed to measure on-line voidage. GA and PLS method were used to determine the coefficients of the voidage measurement model. GA was used to explore the optimal capacitance combination which gave significant contribution to the voidage measurement. PLS method was applied to determine the weight coefficient of the contribution of each capacitance to the voidage measurement. Flow pattern identification result was introduced to improve the voidage measurement accuracy. Experimental results showed that the proposed voidage measurement method is effective and that the measurement accuracy is satisfactory.

  4. A Framework for Deep Web Crawler Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    K.F.Bharati

    2013-03-01

    Full Text Available The Web has become one of the largest and most readily accessible repositories of human knowledge. The traditional search engines index only surface Web whose pages are easily found. The focus has now been moved to invisible Web or hidden Web, which consists of a large warehouse of useful data such as images, sounds, presentations and many other types of media. To use such data, there is a need for specialized technique to locate those sites as we do with search engines. This paper focuses on an effective design of a Hidden Web Crawler that can automatically discover pages from the Hidden Web by employing multi- agent Web mining system. A framework for deep web with genetic algorithm is used to discover the resource discovery problem and the results show the improvement in the crawling strategy and harvest rate.

  5. E-mail Spam Filtering Using Adaptive Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jitendra Nath Shrivastava

    2014-01-01

    Full Text Available Now a day’s everybody email inbox is full with spam mails. The problem with spam mails is that they are not malicious in nature so generally don’t get blocked with firewall or filters etc., however, they are unwanted mails received by any internet users. In 2012, more that 50% emails of the total emails were spam emails. In this paper, a genetic algorithm based method for spam email filtering is discussed with its advantages and dis-advantages. The results presented in the paper are promising and suggested that GA can be a good option in conjunction with other e-mail filtering techniques can provide more robust solution.

  6. Optimal Design Of Existng Water Distribution Network Using Genetics Algorithms.

    Directory of Open Access Journals (Sweden)

    A Saminu

    2016-07-01

    Full Text Available In this study EPANET, a widely used water distribution package was linked to OptiGa, a Visual Basic ActiveX control for implementation of genetic algorithm, through Visual Basic programming technique, to modify the computer software called OptiNetwork. OptiNetwork in its modifications, introduced means of selecting options for advanced genetic algorithm parameters (Top mate; Roulette cost; Random; Tournament methods; and one point crossover; two points crossover; uniform crossover methods and random seed number. Using Badarawa/Malali existing water distribution network consisting of 96 pipes of different materials, 75junctions, two tanks, and one overhead reservoir, and a source reservoir (i.e treatment plant from which water is pumped through a pumping main to the overhead reservoir and later distributed to the network by gravity .The modified software optiNetwork was applied to Badarawa / Malali networks distribution designs. The results obtained were compared with those obtained using commercial software package (OptiDesigner, The modified software has been able to obtained almost equal result with OptiDesigner software for the first optimization i.e before the application of advance GA, after the application of Advance GA It was observed that the least-cost design of $195,200.00 that satisfies the constraints requirements was obtained using optiNetwork, which is much lower than $435,118.00 obtained from OptiDesigner software. The results obtained show that the introduction of the advanced genetic parameters of OptiNetwork is justified. This is because, it has been able to improve the search method in terms of achieving the “least-cost” designed water distribution system that will supply sufficient water quantities at adequate pressure to the consumers.

  7. Genetic-Algorithm Tool For Search And Optimization

    Science.gov (United States)

    Wang, Lui; Bayer, Steven

    1995-01-01

    SPLICER computer program used to solve search and optimization problems. Genetic algorithms adaptive search procedures (i.e., problem-solving methods) based loosely on processes of natural selection and Darwinian "survival of fittest." Algorithms apply genetically inspired operators to populations of potential solutions in iterative fashion, creating new populations while searching for optimal or nearly optimal solution to problem at hand. Written in Think C.

  8. Building Blocks Propagation in Quantum-Inspired Genetic Algorithm

    OpenAIRE

    Nowotniak, Robert; Kucharski, Jacek

    2010-01-01

    This paper presents an analysis of building blocks propagation in Quantum-Inspired Genetic Algorithm, which belongs to a new class of metaheuristics drawing their inspiration from both biological evolution and unitary evolution of quantum systems. The expected number of quantum chromosomes matching a schema has been analyzed and a random variable corresponding to this issue has been introduced. The results have been compared with Simple Genetic Algorithm. Also, it has been presented how selec...

  9. A novel genetic algorithm for k-LCS

    Science.gov (United States)

    Zheng, Li; Yang, Guoyu; Zhang, Rui

    2017-08-01

    A new fitness function model is designed, which considers that the outstanding sequence must be a common subsequence and the longer the better. However, the sequence which is not a common subsequence should be eliminated. Then, a novel genetic algorithm is proposed and described in details. Finally, the experimental results show that the new fitness function associated with the novel genetic algorithm can find out better solution.

  10. Optimal Design of Materials for DJMP Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FENG Zhong-ren; WANG Xiong-jiang

    2004-01-01

    The genetic algorithm was used in optimal design of deep jet method pile. The cost of deep jetmethod pile in one unit area of foundation was taken as the objective function. All the restrains were listed followingthe corresponding specification. Suggestions were proposed and the modified. The real-coded Genetic Algorithm wasgiven to deal with the problems of excessive computational cost and premature convergence. Software system of opti-mal design of deep jet method pile was developed.

  11. Parallel Genetic Algorithm Based on the MPI Environment

    OpenAIRE

    2012-01-01

    Current genetic algorithm require both management of huge amounts of data and heavy computation, fulfilling these requirements calls for simple ways to implement parallel computing. In this paper, serial genetic algorithm was designed to parallel GA; this technology appears to be particularly well adapted to this task. Here we introduce two related mechanism: elite reserve strategy and MPI. The first can increase the possible to get the optimal solution of the population, while the message pa...

  12. A Hybrid Genetic Algorithm for the Job Shop Scheduling Problem

    OpenAIRE

    Gonçalves, José Fernando; Mendes, J. J. M.; Resende, Maurício G. C.

    2005-01-01

    This paper presents a hybrid genetic algorithm for the Job Shop Scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a priority rule in which the priorities are defined by the genetic algorithm. Schedules are constructed using a procedure that generates parameterized active schedules. After a schedule is obtained a local search heuristic is applied to improve the solution. The approach is tested on a set o...

  13. Comparison Performance of Genetic Algorithm and Ant Colony Optimization in Course Scheduling Optimizing

    Directory of Open Access Journals (Sweden)

    Imam Ahmad Ashari

    2016-11-01

    Full Text Available Scheduling problems at the university is a complex type of scheduling problems. The scheduling process should be carried out at every turn of the semester's. The core of the problem of scheduling courses at the university is that the number of components that need to be considered in making the schedule, some of the components was made up of students, lecturers, time and a room with due regard to the limits and certain conditions so that no collision in the schedule such as mashed room, mashed lecturer and others. To resolve a scheduling problem most appropriate technique used is the technique of optimization. Optimization techniques can give the best results desired. Metaheuristic algorithm is an algorithm that has a lot of ways to solve the problems to the very limit the optimal solution. In this paper, we use a genetic algorithm and ant colony optimization algorithm is an algorithm metaheuristic to solve the problem of course scheduling. The two algorithm will be tested and compared to get performance is the best. The algorithm was tested using data schedule courses of the university in Semarang. From the experimental results we conclude that the genetic algorithm has better performance than the ant colony optimization  algorithm in solving the case of course scheduling.

  14. Comparison Performance of Genetic Algorithm and Ant Colony Optimization in Course Scheduling Optimizing

    Directory of Open Access Journals (Sweden)

    Imam Ahmad Ashari

    2016-11-01

    Full Text Available Scheduling problems at the university is a complex type of scheduling problems. The scheduling process should be carried out at every turn of the semester's. The core of the problem of scheduling courses at the university is that the number of components that need to be considered in making the schedule, some of the components was made up of students, lecturers, time and a room with due regard to the limits and certain conditions so that no collision in the schedule such as mashed room, mashed lecturer and others. To resolve a scheduling problem most appropriate technique used is the technique of optimization. Optimization techniques can give the best results desired. Metaheuristic algorithm is an algorithm that has a lot of ways to solve the problems to the very limit the optimal solution. In this paper, we use a genetic algorithm and ant colony optimization algorithm is an algorithm metaheuristic to solve the problem of course scheduling. The two algorithm will be tested and compared to get performance is the best. The algorithm was tested using data schedule courses of the university in Semarang. From the experimental results we conclude that the genetic algorithm has better performance than the ant colony optimization  algorithm in solving the case of course scheduling.

  15. Development of hybrid genetic algorithms for product line designs.

    Science.gov (United States)

    Balakrishnan, P V Sundar; Gupta, Rakesh; Jacob, Varghese S

    2004-02-01

    In this paper, we investigate the efficacy of artificial intelligence (AI) based meta-heuristic techniques namely genetic algorithms (GAs), for the product line design problem. This work extends previously developed methods for the single product design problem. We conduct a large scale simulation study to determine the effectiveness of such an AI based technique for providing good solutions and bench mark the performance of this against the current dominant approach of beam search (BS). We investigate the potential advantages of pursuing the avenue of developing hybrid models and then implement and study such hybrid models using two very distinct approaches: namely, seeding the initial GA population with the BS solution, and employing the BS solution as part of the GA operator's process. We go on to examine the impact of two alternate string representation formats on the quality of the solutions obtained by the above proposed techniques. We also explicitly investigate a critical managerial factor of attribute importance in terms of its impact on the solutions obtained by the alternate modeling procedures. The alternate techniques are then evaluated, using statistical analysis of variance, on a fairy large number of data sets, as to the quality of the solutions obtained with respect to the state-of-the-art benchmark and in terms of their ability to provide multiple, unique product line options.

  16. Multi-objective Genetic Algorithm for Association Rule Mining Using a Homogeneous Dedicated Cluster of Workstations

    Directory of Open Access Journals (Sweden)

    S. Dehuri

    2006-01-01

    Full Text Available This study presents a fast and scalable multi-objective association rule mining technique using genetic algorithm from large database. The objective functions such as confidence factor, comprehensibility and interestingness can be thought of as different objectives of our association rule-mining problem and is treated as the basic input to the genetic algorithm. The outcomes of our algorithm are the set of non-dominated solutions. However, in data mining the quantity of data is growing rapidly both in size and dimensions. Furthermore, the multi-objective genetic algorithm (MOGA tends to be slow in comparison with most classical rule mining methods. Hence, to overcome these difficulties we propose a fast and scalability technique using the inherent parallel processing nature of genetic algorithm and a homogeneous dedicated network of workstations (NOWs. Our algorithm exploit both data and control parallelism by distributing the data being mined and the population of individuals across all available processors. The experimental result shows that the algorithm has been found suitable for large database with an encouraging speed up.

  17. Neural Network Control Optimization based on Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhaoyin Zhang

    2013-08-01

    Full Text Available To clearly find the effect of factors in network classification, the classification process of PNN is analyzed in detail. The XOR problem is described by PNN and the elements in PNN are also studied. Through simulations and combined with genetic algorithm, a novel PNN supervised learning algorithm is proposed. This algorithm introduces the classification accuracy of training samples to the network parameter learning. It adopts genetic algorithm to train the PNN smoothing parameter and hidden centric vector. Then the effects of hidden neuron number, hidden centric vector and smoothing parameter in PNN are verified in the experiments. It is shown that this algorithm is superior to other PNN learning algorithms on classification effect.

  18. Improved time complexity analysis of the Simple Genetic Algorithm

    DEFF Research Database (Denmark)

    Oliveto, Pietro S.; Witt, Carsten

    2015-01-01

    A runtime analysis of the Simple Genetic Algorithm (SGA) for the OneMax problem has recently been presented proving that the algorithm with population size μ≤n1/8−ε requires exponential time with overwhelming probability. This paper presents an improved analysis which overcomes some limitations...

  19. Forecasting stock price using grey-fuzzy technique and portfolio optimization by invasive weed optimization algorithm

    Directory of Open Access Journals (Sweden)

    A. Hajnoori

    2013-07-01

    Full Text Available Portfolio optimization problem follows the calculation of investment income per share, based on return and risk criteria. Since stock risk is achieved by calculating its return, which is itself computed based on stock price, it is essential to forecast the stock price, efficiently. In this paper, in order to predict the stock price, grey fuzzy technique with high efficiency is employed. The proposed study of this paper calculates the return and risk of each asset and portfolio optimization model is developed based on cardinality constraint and investment income per share. To solve the resulted model, Invasive Weed Optimization (IWO algorithm is applied. In an example this algorithm is compared with other metaheuristic algorithms such as Imperialist Competitive Algorithm (ICA, Genetic Algorithm (GA and Particle Swarm Optimization (PSO. The results show that the applied algorithm performs significantly better than other algorithms.

  20. Optimization of genomic selection training populations with a genetic algorithm

    Science.gov (United States)

    In this article, we derive a computationally efficient statistic to measure the reliability of estimates of genetic breeding values for a fixed set of genotypes based on a given training set of genotypes and phenotypes. We adopt a genetic algorithm scheme to find a training set of certain size from ...

  1. Dynamic Uniform Scaling for Multiobjective Genetic Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf; Goldberg, David E.

    2004-01-01

    Before Multiobjective Evolutionary Algorithms (MOEAs) can be used as a widespread tool for solving arbitrary real world problems there are some salient issues which require further investigation. One of these issues is how a uniform distribution of solutions along the Pareto non-dominated front can......, the issue of obtaining a diverse set of solutions for badly scaled objective functions will be investigated and proposed solutions will be implemented using the NSGA-II algorithm....

  2. The Applications of Genetic Algorithms in Medicine

    OpenAIRE

    Ali Ghaheri; Saeed Shoar; Mohammad Naderan; Sayed Shahabuddin Hoseini

    2015-01-01

    A great wealth of information is hidden amid medical research data that in some cases cannot be easily analyzed, if at all, using classical statistical methods. Inspired by nature, metaheuristic algorithms have been developed to offer optimal or near-optimal solutions to complex data analysis and decision-making tasks in a reasonable time. Due to their powerful features, metaheuristic algorithms have frequently been used in other fields of sciences. In medicine, however, the use of these algo...

  3. Dynamic Uniform Scaling for Multiobjective Genetic Algorithms

    DEFF Research Database (Denmark)

    Pedersen, Gerulf; Goldberg, D.E.

    2004-01-01

    Before Multiobjective Evolutionary Algorithms (MOEAs) can be used as a widespread tool for solving arbitrary real world problems there are some salient issues which require further investigation. One of these issues is how a uniform distribution of solutions along the Pareto non-dominated front c......, the issue of obtaining a diverse set of solutions for badly scaled objective functions will be investigated and proposed solutions will be implemented using the NSGA-II algorithm....

  4. Optimal Path Planning for Mobile Robot Using Tailored Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Dong Xiao Xian

    2013-07-01

    Full Text Available During routine inspecting, mobile robot may be requested to visit multiple locations to execute special tasks occasionally. This study aims at optimal path planning for multiple goals visiting task based on tailored genetic algorithm. The proposed algorithm will generate an optimal path that has the least idle time, which is proven to be more effective on evaluating a path in our previous work. In proposed algorithm, customized chromosome representing a path and genetic operators including repair and cut are developed and implemented. Afterwards, simulations are carried out to verify the effectiveness and applicability. Finally, analysis of simulation results is conducted and future work is addressed.

  5. Parallel Genetic Algorithm Based on the MPI Environment

    Directory of Open Access Journals (Sweden)

    Wen-Juan Liu

    2012-11-01

    Full Text Available Current genetic algorithm require both management of huge amounts of data and heavy computation, fulfilling these requirements calls for simple ways to implement parallel computing. In this paper, serial genetic algorithm was designed to parallel GA; this technology appears to be particularly well adapted to this task. Here we introduce two related mechanism: elite reserve strategy and MPI. The first can increase the possible to get the optimal solution of the population, while the message passing interface MPI support is adding to form a new coarse-grain model of distributed parallel genetic algorithm. This new algorithm is tested by the classical and effective Knapsack problem, analysis shows that, the introduction of the parallel strategies can reduce the communication between different machines and the scheduling time of the heterogeneous system, thereby accelerate the traditional genetic algorithm search process, ultimately concluded that the parallel genetic algorithm is very promising and this framework could have a wide range of applications while maintaining good computational efficiency, scalability and ease of maintenance.

  6. Solving Classification Problems Using Genetic Programming Algorithms on GPUs

    Science.gov (United States)

    Cano, Alberto; Zafra, Amelia; Ventura, Sebastián

    Genetic Programming is very efficient in problem solving compared to other proposals but its performance is very slow when the size of the data increases. This paper proposes a model for multi-threaded Genetic Programming classification evaluation using a NVIDIA CUDA GPUs programming model to parallelize the evaluation phase and reduce computational time. Three different well-known Genetic Programming classification algorithms are evaluated using the parallel evaluation model proposed. Experimental results using UCI Machine Learning data sets compare the performance of the three classification algorithms in single and multithreaded Java, C and CUDA GPU code. Results show that our proposal is much more efficient.

  7. Coarse-Grained Parallel Genetic Algorithm to solve the Shortest Path Routing problem using Genetic operators

    Directory of Open Access Journals (Sweden)

    V.PURUSHOTHAM REDDY

    2011-02-01

    Full Text Available In computer networks the routing is based on shortest path routing algorithms. Based on its advantages, an alternative method is used known as Genetic Algorithm based routing algorithm, which is highly scalable and insensitive to variations in network topology. Here we propose a coarse-grained parallel genetic algorithm to solve the shortest path routing problem with the primary goal of computation time reduction along with the use of migration scheme. This algorithm is developed and implemented on an MPI cluster. The effects of migration and its performance is studied in this paper.

  8. Novel hybrid genetic algorithm for progressive multiple sequence alignment.

    Science.gov (United States)

    Afridi, Muhammad Ishaq

    2013-01-01

    The family of evolutionary or genetic algorithms is used in various fields of bioinformatics. Genetic algorithms (GAs) can be used for simultaneous comparison of a large pool of DNA or protein sequences. This article explains how the GA is used in combination with other methods like the progressive multiple sequence alignment strategy to get an optimal multiple sequence alignment (MSA). Optimal MSA get much importance in the field of bioinformatics and some other related disciplines. Evolutionary algorithms evolve and improve their performance. In this optimisation, the initial pair-wise alignment is achieved through a progressive method and then a good objective function is used to select and align more alignments and profiles. Child and subpopulation initialisation is based upon changes in the probability of similarity or the distance matrix of the alignment population. In this genetic algorithm, optimisation of mutation, crossover and migration in the population of candidate solution reflect events of natural organic evolution.

  9. Adaptive interactive genetic algorithms with individual interval fitness

    Institute of Scientific and Technical Information of China (English)

    Dunwei Gong; Guangsong Guo; Li Lu; Hongmei Ma

    2008-01-01

    It is necessary to enhance the performance of interactive genetic algorithms in order to apply them to complicated optimization problems successfully. An adaptive interactive genetic algorithm with individual interval fitness is proposed in this paper in which an individual fitness is expressed by an interval. Through analyzing the fitness, information reflecting the distribution of an evolutionary population is picked up, namely, the difference of evaluating superior individuals and the difference of evaluating a population. Based on these, the adaptive probabilities of crossover and mutation operators of an individual are presented. The algorithm proposed in this paper is applied to a fashion evolutionary design system, and the results show that it can find many satisfactory solutions per generation. The achievement of the paper provides a new approach to enhance the performance of interactive genetic algorithms.

  10. A Multi-Objective Genetic Algorithm for Optimal Portfolio Problems

    Institute of Scientific and Technical Information of China (English)

    林丹; 赵瑞

    2004-01-01

    This paper concerns with modeling and design of an algorithm for the portfolio selection problems with fixed transaction costs and minimum transaction lots. A mean-variance model for the portfolio selection problem is proposed, and the model is formulated as a non-smooth and nonlinear integer programming problem with multiple objective functions. As it has been proven that finding a feasible solution to the problem only is already NP-hard, based on NSGA-II and genetic algorithm for numerical optimization of constrained problems (Genocop), a multi-objective genetic algorithm (MOGA) is designed to solve the model. Its features comprise integer encoding and corresponding operators, and special treatment of constraints conditions. It is illustrated via a numerical example that the genetic algorithm can efficiently solve portfolio selection models proposed in this paper. This approach offers promise for the portfolio problems in practice.

  11. Optimization of a genetic algorithm for searching molecular conformer space

    Science.gov (United States)

    Brain, Zoe E.; Addicoat, Matthew A.

    2011-11-01

    We present two sets of tunings that are broadly applicable to conformer searches of isolated molecules using a genetic algorithm (GA). In order to find the most efficient tunings for the GA, a second GA - a meta-genetic algorithm - was used to tune the first genetic algorithm to reliably find the already known a priori correct answer with minimum computational resources. It is shown that these tunings are appropriate for a variety of molecules with different characteristics, and most importantly that the tunings are independent of the underlying model chemistry but that the tunings for rigid and relaxed surfaces differ slightly. It is shown that for the problem of molecular conformational search, the most efficient GA actually reduces to an evolutionary algorithm.

  12. Stochastic analysis and convergence velocity estimation of genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    郭观七; 喻寿益

    2003-01-01

    Formulizations of mutation and crossover operators independent of representation of solutions are proposed. A kind of precisely quantitative Markov chain of populations of standard genetic algorithms is modeled. It is proved that inadequate parameters of mutation and crossover probabilities degenerate standard genetic algorithm to a class of random search algorithms without selection bias toward any solution based on fitness. After introducing elitist reservation, the stochastic matrix of Markov chain of the best-so-far individual with the highest fitness is derived.The average convergence velocity of genetic algorithms is defined as the mathematical expectation of the mean absorbing time steps that the best-so-far individual transfers from any initial solution to the global optimum. Using the stochastic matrix of the best-so-far individual, a theoretic method and the computing process of estimating the average convergence velocity are proposed.

  13. An Indirect Genetic Algorithm for a Nurse Scheduling Problem

    CERN Document Server

    Aickelin, Uwe

    2008-01-01

    This paper describes a Genetic Algorithms approach to a manpower-scheduling problem arising at a major UK hospital. Although Genetic Algorithms have been successfully used for similar problems in the past, they always had to overcome the limitations of the classical Genetic Algorithms paradigm in handling the conflict between objectives and constraints. The approach taken here is to use an indirect coding based on permutations of the nurses, and a heuristic decoder that builds schedules from these permutations. Computational experiments based on 52 weeks of live data are used to evaluate three different decoders with varying levels of intelligence, and four well-known crossover operators. Results are further enhanced by introducing a hybrid crossover operator and by making use of simple bounds to reduce the size of the solution space. The results reveal that the proposed algorithm is able to find high quality solutions and is both faster and more flexible than a recently published Tabu Search approach.

  14. An Unsupervised Dynamic Image Segmentation using Fuzzy Hopfield Neural Network based Genetic Algorithm

    CERN Document Server

    Halder, Amiya

    2012-01-01

    This paper proposes a Genetic Algorithm based segmentation method that can automatically segment gray-scale images. The proposed method mainly consists of spatial unsupervised grayscale image segmentation that divides an image into regions. The aim of this algorithm is to produce precise segmentation of images using intensity information along with neighborhood relationships. In this paper, Fuzzy Hopfield Neural Network (FHNN) clustering helps in generating the population of Genetic algorithm which there by automatically segments the image. This technique is a powerful method for image segmentation and works for both single and multiple-feature data with spatial information. Validity index has been utilized for introducing a robust technique for finding the optimum number of components in an image. Experimental results shown that the algorithm generates good quality segmented image.

  15. Solving the MDBCS Problem Using the Metaheuric–Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Milena Bogdanovic

    2011-12-01

    Full Text Available The problems degree-limited graph of nodes considering the weight of the vertex or weight of the edges, with the aim to find the optimal weighted graph in terms of certain restrictions on the degree of the vertices in the subgraph. This class of combinatorial problems was extensively studied because of the implementation and application in network design, connection of networks and routing algorithms. It is likely that solution of MDBCS problem will find its place and application in these areas. The paper is given an ILP model to solve the problem MDBCS, as well as the genetic algorithm, which calculates a good enough solution for the input graph with a greater number of nodes. An important feature of the heuristic algorithms is that can approximate, but still good enough to solve the problems of exponential complexity. However, it should solve the problem heuristic algorithms may not lead to a satisfactory solution, and that for some of the problems, heuristic algorithms give relatively poor results. This is particularly true of problems for which no exact polynomial algorithm complexity. Also, heuristic algorithms are not the same, because some parts of heuristic algorithms differ depending on the situation and problems in which they are used. These parts are usually the objective function (transformation, and their definition significantly affects the efficiency of the algorithm. By mode of action, genetic algorithms are among the methods directed random search space solutions are looking for a global optimum.

  16. Composite multiobjective optimization beamforming based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Shi Jing; Meng Weixiao; Zhang Naitong; Wang Zheng

    2006-01-01

    All thc parameters of beamforming are usually optimized simultaneously in implementing the optimization of antenna array pattern with multiple objectives and parameters by genetic algorithms (GAs).Firstly, this paper analyzes the performance of fitness functions of previous algorithms. It shows that original algorithms make the fitness functions too complex leading to large amount of calculation, and also the selection of the weight of parameters very sensitive due to many parameters optimized simultaneously. This paper proposes a kind of algorithm of composite beamforming, which detaches the antenna array into two parts corresponding to optimization of different objective parameters respectively. New algorithm substitutes the previous complex fitness function with two simpler functions. Both theoretical analysis and simulation results show that this method simplifies the selection of weighting parameters and reduces the complexity of calculation. Furthermore, the algorithm has better performance in lowering side lobe and interferences in comparison with conventional algorithms of beamforming in the case of slightly widening the main lobe.

  17. Solving traveling salesman problems by genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The gene section ordering on solving traveling salesman problems is analyzed by numerical experiments. Some improved crossover operations are presented. Several combinations of genetic operations are examined and the functions of these operations are analyzed. The essentiality of the ordering of the gene section and the significance of the evolutionary inversion operation are discussed. Some results and conclusions are obtained and given, which provide useful information for the implementation of the genetic operations for solving the traveling salesman problem.

  18. A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments

    Institute of Scientific and Technical Information of China (English)

    Shengxiang Yang; Renato Tinós

    2007-01-01

    Dynamic optimization problems are a kind of optimization problems that involve changes over time. They pose a serious challenge to traditional optimization methods as well as conventional genetic algorithms since the goal is no longer to search for the optimal solution(s) of a fixed problem but to track the moving optimum over time. Dynamic optimization problems have attracted a growing interest from the genetic algorithm community in recent years. Several approaches have been developed to enhance the performance of genetic algorithms in dynamic environments. One approach is to maintain the diversity of the population via random immigrants. This paper proposes a hybrid immigrants scheme that combines the concepts of elitism, dualism and random immigrants for genetic algorithms to address dynamic optimization problems. In this hybrid scheme, the best individual, i.e., the elite, from the previous generation and its dual individual are retrieved as the bases to create immigrants via traditional mutation scheme. These elitism-based and dualism-based immigrants together with some random immigrants are substituted into the current population, replacing the worst individuals in the population. These three kinds of immigrants aim to address environmental changes of slight, medium and significant degrees respectively and hence efficiently adapt genetic algorithms to dynamic environments that are subject to different severities of changes. Based on a series of systematically constructed dynamic test problems, experiments are carried out to investigate the performance of genetic algorithms with the hybrid immigrants scheme and traditional random immigrants scheme. Experimental results validate the efficiency of the proposed hybrid immigrants scheme for improving the performance of genetic algorithms in dynamic environments.

  19. Multiscale Unsupervised Segmentation of SAR Imagery Using the Genetic Algorithm.

    Science.gov (United States)

    Wen, Xian-Bin; Zhang, Hua; Jiang, Ze-Tao

    2008-03-12

    A valid unsupervised and multiscale segmentation of synthetic aperture radar(SAR) imagery is proposed by a combination GA-EM of the Expectation Maximization(EM) algorith with the genetic algorithm (GA). The mixture multiscale autoregressive(MMAR) model is introduced to characterize and exploit the scale-to-scale statisticalvariations and statistical variations in the same scale in SAR imagery due to radar speckle,and a segmentation method is given by combining the GA algorithm with the EMalgorithm. This algorithm is capable of selecting the number of components of the modelusing the minimum description length (MDL) criterion. Our approach benefits from theproperties of the Genetic and the EM algorithm by combination of both into a singleprocedure. The population-based stochastic search of the genetic algorithm (GA) exploresthe search space more thoroughly than the EM method. Therefore, our algorithm enablesescaping from local optimal solutions since the algorithm becomes less sensitive to itsinitialization. Some experiment results are given based on our proposed approach, andcompared to that of the EM algorithms. The experiments on the SAR images show that theGA-EM outperforms the EM method.

  20. Multiscale Unsupervised Segmentation of SAR Imagery Using the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ze-Tao Jiang

    2008-03-01

    Full Text Available A valid unsupervised and multiscale segmentation of synthetic aperture radar(SAR imagery is proposed by a combination GA-EM of the Expectation Maximization(EM algorith with the genetic algorithm (GA. The mixture multiscale autoregressive(MMAR model is introduced to characterize and exploit the scale-to-scale statisticalvariations and statistical variations in the same scale in SAR imagery due to radar speckle,and a segmentation method is given by combining the GA algorithm with the EMalgorithm. This algorithm is capable of selecting the number of components of the modelusing the minimum description length (MDL criterion. Our approach benefits from theproperties of the Genetic and the EM algorithm by combination of both into a singleprocedure. The population-based stochastic search of the genetic algorithm (GA exploresthe search space more thoroughly than the EM method. Therefore, our algorithm enablesescaping from local optimal solutions since the algorithm becomes less sensitive to itsinitialization. Some experiment results are given based on our proposed approach, andcompared to that of the EM algorithms. The experiments on the SAR images show that theGA-EM outperforms the EM method.

  1. A Genetic Clustering Algorithm for Mean-Residual Vector Quantization

    Institute of Scientific and Technical Information of China (English)

    CHUShuchuan; JohnF.Roddick; CHENTsongyi

    2004-01-01

    Vector quantization (VQ) is a useful tool for data compression and can be applied to compress the data vectors in the database. The quality of the recovered data vector depends on a good codebook. Meanresidual vector quantization (M/R VQ) has been shown to be efficient in the encoding time and it only needs a little storage. In this paper, genetic algorithms in combination with the Generalized lloyd algorithm (GLA) are applied to the codebook design of M/R VQ. The mean codebook and residual codebook are trained using GLA algorithm separately, then Genetic algorithms (GA) are used to evaluate and evolve the combined mean codebook and residual codebook. The parameters used in the proposed algorithm are designed based on experiments and they are robust to the proposed GA based clustering algorithm for M/R VQ. Experimental results demonstrate the proposed genetic clustering algorithm applied to M/R VQ may improve the peak signal to noise ratio of the recovered data vector compared with the GLA algorithm.

  2. An Agent Inspired Reconfigurable Computing Implementation of a Genetic Algorithm

    Science.gov (United States)

    Weir, John M.; Wells, B. Earl

    2003-01-01

    Many software systems have been successfully implemented using an agent paradigm which employs a number of independent entities that communicate with one another to achieve a common goal. The distributed nature of such a paradigm makes it an excellent candidate for use in high speed reconfigurable computing hardware environments such as those present in modem FPGA's. In this paper, a distributed genetic algorithm that can be applied to the agent based reconfigurable hardware model is introduced. The effectiveness of this new algorithm is evaluated by comparing the quality of the solutions found by the new algorithm with those found by traditional genetic algorithms. The performance of a reconfigurable hardware implementation of the new algorithm on an FPGA is compared to traditional single processor implementations.

  3. Adaptive double chain quantum genetic algorithm for constrained optimization problems

    Directory of Open Access Journals (Sweden)

    Kong Haipeng

    2015-02-01

    Full Text Available Optimization problems are often highly constrained and evolutionary algorithms (EAs are effective methods to tackle this kind of problems. To further improve search efficiency and convergence rate of EAs, this paper presents an adaptive double chain quantum genetic algorithm (ADCQGA for solving constrained optimization problems. ADCQGA makes use of double-individuals to represent solutions that are classified as feasible and infeasible solutions. Fitness (or evaluation functions are defined for both types of solutions. Based on the fitness function, three types of step evolution (SE are defined and utilized for judging evolutionary individuals. An adaptive rotation is proposed and used to facilitate updating individuals in different solutions. To further improve the search capability and convergence rate, ADCQGA utilizes an adaptive evolution process (AEP, adaptive mutation and replacement techniques. ADCQGA was first tested on a widely used benchmark function to illustrate the relationship between initial parameter values and the convergence rate/search capability. Then the proposed ADCQGA is successfully applied to solve other twelve benchmark functions and five well-known constrained engineering design problems. Multi-aircraft cooperative target allocation problem is a typical constrained optimization problem and requires efficient methods to tackle. Finally, ADCQGA is successfully applied to solving the target allocation problem.

  4. Use of genetic algorithm for the selection of EEG features

    Science.gov (United States)

    Asvestas, P.; Korda, A.; Kostopoulos, S.; Karanasiou, I.; Ouzounoglou, A.; Sidiropoulos, K.; Ventouras, E.; Matsopoulos, G.

    2015-09-01

    Genetic Algorithm (GA) is a popular optimization technique that can detect the global optimum of a multivariable function containing several local optima. GA has been widely used in the field of biomedical informatics, especially in the context of designing decision support systems that classify biomedical signals or images into classes of interest. The aim of this paper is to present a methodology, based on GA, for the selection of the optimal subset of features that can be used for the efficient classification of Event Related Potentials (ERPs), which are recorded during the observation of correct or incorrect actions. In our experiment, ERP recordings were acquired from sixteen (16) healthy volunteers who observed correct or incorrect actions of other subjects. The brain electrical activity was recorded at 47 locations on the scalp. The GA was formulated as a combinatorial optimizer for the selection of the combination of electrodes that maximizes the performance of the Fuzzy C Means (FCM) classification algorithm. In particular, during the evolution of the GA, for each candidate combination of electrodes, the well-known (Σ, Φ, Ω) features were calculated and were evaluated by means of the FCM method. The proposed methodology provided a combination of 8 electrodes, with classification accuracy 93.8%. Thus, GA can be the basis for the selection of features that discriminate ERP recordings of observations of correct or incorrect actions.

  5. Adaptive double chain quantum genetic algorithm for constrained optimization problems

    Institute of Scientific and Technical Information of China (English)

    Kong Haipeng; Li Ni; Shen Yuzhong

    2015-01-01

    Optimization problems are often highly constrained and evolutionary algorithms (EAs) are effective methods to tackle this kind of problems. To further improve search efficiency and con-vergence rate of EAs, this paper presents an adaptive double chain quantum genetic algorithm (ADCQGA) for solving constrained optimization problems. ADCQGA makes use of double-individuals to represent solutions that are classified as feasible and infeasible solutions. Fitness (or evaluation) functions are defined for both types of solutions. Based on the fitness function, three types of step evolution (SE) are defined and utilized for judging evolutionary individuals. An adaptive rotation is proposed and used to facilitate updating individuals in different solutions. To further improve the search capability and convergence rate, ADCQGA utilizes an adaptive evolution process (AEP), adaptive mutation and replacement techniques. ADCQGA was first tested on a widely used benchmark function to illustrate the relationship between initial parameter values and the convergence rate/search capability. Then the proposed ADCQGA is successfully applied to solve other twelve benchmark functions and five well-known constrained engineering design problems. Multi-aircraft cooperative target allocation problem is a typical constrained optimization problem and requires efficient methods to tackle. Finally, ADCQGA is successfully applied to solving the target allocation problem.

  6. Weighted K-Nearest Neighbor Classification Algorithm Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuesong Yan

    2013-10-01

    Full Text Available K-Nearest Neighbor (KNN is one of the most popular algorithms for data classification. Many researchers have found that the KNN algorithm accomplishes very good performance in their experiments on different datasets. The traditional KNN text classification algorithm has limitations: calculation complexity, the performance is solely dependent on the training set, and so on. To overcome these limitations, an improved version of KNN is proposed in this paper, we use genetic algorithm combined with weighted KNN to improve its classification performance. and the experiment results shown that our proposed algorithm outperforms the KNN with greater accuracy.

  7. Quantum Algorithms and the Genetic Code

    CERN Document Server

    Patel, A D

    2001-01-01

    Replication of DNA and synthesis of proteins are studied from the view-pointof quantum database search. Identification of a base-pairing with a quantumquery gives a natural (and first ever!) explanation of why living organismshave 4 nucleotide bases and 20 amino acids. It is amazing that these numbersarise as solutions to an optimisation problem. Components of the DNA structurewhich implement Grover's algorithm are identified, and a physical scenario ispresented for the execution of the quantum algorithm. It is proposed thatenzymes play a crucial role in maintaining quantum coherence of the process.Experimental tests that can verify this scenario are pointed out.

  8. Solving constrained traveling salesman problems by genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    WU Chunguo; LIANG Yanchun; LEE Heowpueh; LU Chun; LIN Wuzhong

    2004-01-01

    Three kinds of constrained traveling salesman problems (TSP) arising from application problems, namely the open route TSP, the end-fixed TSP, and the path-constrained TSP, are proposed. The corresponding approaches based on modified genetic algorithms (GA) for solving these constrained TSPs are presented. Numerical experiments demonstrate that the algorithm for the open route TSP shows its advantages when the open route is required, the algorithm for the end-fixed TSP can deal with route optimization with constraint of fixed ends effectively, and the algorithm for the path-constraint could benefit the traffic problems where some cities cannot be visited from each other.

  9. Linkage intensity learning approach with genetic algorithm for causality diagram

    Institute of Scientific and Technical Information of China (English)

    WANG Cheng-liang; CHEN Juan-juan

    2007-01-01

    The causality diagram theory, which adopts graphical expression of knowledge and direct intensity of causality, overcomes some shortages in belief network and has evolved into a mixed causality diagram methodology for discrete and continuous variable. But to give linkage intensity of causality diagram is difficult, particularly in many working conditions in which sampling data are limited or noisy. The classic learning algorithm is hard to be adopted. We used genetic algorithm to learn linkage intensity from limited data. The simulation results demonstrate that this algorithm is more suitable than the classic algorithm in the condition of sample shortage such as space shuttle's fault diagnoisis.

  10. A modified decision tree algorithm based on genetic algorithm for mobile user classification problem.

    Science.gov (United States)

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity.

  11. Novel genetic algorithm search procedure for LEED surface structure determination.

    Science.gov (United States)

    Viana, M L; dos Reis, D D; Soares, E A; Van Hove, M A; Moritz, W; de Carvalho, V E

    2014-06-04

    Low Energy Electron Diffraction (LEED) is one of the most powerful experimental techniques for surface structure analysis but until now only a trial-and-error approach has been successful. So far, fitting procedures developed to optimize structural and nonstructural parameters-by minimization of the R-factor-have had a fairly small convergence radius, suitable only for local optimization. However, the identification of the global minimum among the several local minima is essential for complex surface structures. Global optimization methods have been applied to LEED structure determination, but they still require starting from structures that are relatively close to the correct one, in order to find the final structure. For complex systems, the number of trial structures and the resulting computation time increase so rapidly that the task of finding the correct model becomes impractical using the present methodologies. In this work we propose a new search method, based on Genetic Algorithms, which is able to determine the correct structural model starting from completely random structures. This method-called here NGA-LEED for Novel Genetic Algorithm for LEED-utilizes bond lengths and symmetry criteria to select reasonable trial structures before performing LEED calculations. This allows a reduction of the parameter space and, consequently of the calculation time, by several orders of magnitude. A refinement of the parameters by least squares fit of simulated annealing is performed only at some intermediate stages and in the final step. The method was successfully tested for two systems, Ag(1 1 1)(4 × 4)-O and Au(1 1 0)-(1 × 2), both in theory versus theory and in theory versus experiment comparisons. Details of the implementation as well as the results for these two systems are presented.

  12. MICRONEEDLE STRUCTURE DESIGN AND OPTIMIZATION USING GENETIC ALGORITHM

    Directory of Open Access Journals (Sweden)

    N. A. ISMAIL

    2015-07-01

    Full Text Available This paper presents a Genetic Algorithm (GA based microneedle design and analysis. GA is an evolutionary optimization technique that mimics the natural biological evolution. The design of microneedle structure considers the shape of microneedle, material used, size of the array, the base of microneedle, the lumen base, the height of microneedle, the height of the lumen, and the height of the drug container or reservoir. The GA is executed in conjunction with ANSYS simulation system to assess the design specifications. The GA uses three operators which are reproduction, crossover and mutation to manipulate the genetic composition of the population. In this research, the microneedle is designed to meet a number of significant specifications such as nodal displacement, strain energy, equivalent stress and flow rate of the fluid / drug that flow through its channel / lumen. A comparison study is conducted to investigate the design of microneedle structure with and without the implementation of GA model. The results showed that GA is able to optimize the design parameters of microneedle and is capable to achieve the required specifications with better performance.

  13. An Advanced Coupled Genetic Algorithm for Identifying Unknown Moving Loads on Bridge Decks

    Directory of Open Access Journals (Sweden)

    Sang-Youl Lee

    2014-01-01

    Full Text Available This study deals with an inverse method to identify moving loads on bridge decks using the finite element method (FEM and a coupled genetic algorithm (c-GA. We developed the inverse technique using a coupled genetic algorithm that can make global solution searches possible as opposed to classical gradient-based optimization techniques. The technique described in this paper allows us to not only detect the weight of moving vehicles but also find their moving velocities. To demonstrate the feasibility of the method, the algorithm is applied to a bridge deck model with beam elements. In addition, 1D and 3D finite element models are simulated to study the influence of measurement errors and model uncertainty between numerical and real structures. The results demonstrate the excellence of the method from the standpoints of computation efficiency and avoidance of premature convergence.

  14. Scheduling of Automated Guided Vehicle and Flexible Jobshop using Jumping Genes Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    P. Paul Pandian

    2012-01-01

    Full Text Available Problem statement: Now a day’s many researchers try Genetic algorithm based optimization to find near optimal solution for flexible job shop. It is a global search. In Our study in the GA, some changes are made to search locally and globally by adding jumping genes operation. A typical flexible job shop model is considered for this research study. For that layout, five different example problems are formulated for purpose of evaluation. The material flow time for different shop types, processing times of products, waiting times of products, sequences of products are created and given in tabular form. Approach: The one of best evolutionary approach i.e., genetic algorithm with jumping genes operation is applied in this study, to optimize AGV flow time and the performance measures of Flexible Job shop manufacturing system. The non dominated sorting approach is used. Genetic algorithm with jumping genes operator is used to evaluate the method. Results: The AGV flow sequence is found out. Using this flow sequence make span, flow time of products with AGV, completion of the products is minimized. The position of the shop types are calculated for all products. The effectiveness of the proposed method is proved by comparing with Hamed Fazlollahtabar method. Conclusion: It is found that jumping genes genetic algorithm delivered good solutions as like as other evolutionary algorithms. Jumping genes genetic algorithm may applied to Multi objective optimization techniques in future.

  15. Genetic Algorithms, Neural Networks, and Time Effectiveness Algorithm Based Air Combat Intelligence Simulation System

    Institute of Scientific and Technical Information of China (English)

    曾宪钊; 成冀; 安欣; 方礼明

    2002-01-01

    This paper introduces a new Air Combat Intelligence Simulation System (ACISS) in a 32 versus 32 air combat, describes three methods: Genetic Algorithms (GA) in the multi-targeting decision and Evading Missile Rule Base learning, Neural Networks (NN) in the maneuvering decision, and Time Effectiveness Algorithm (TEA) in the adjudicating an air combat and the evaluating evading missile effectiveness.

  16. An improved genetic algorithm for searching for pollution sources

    Directory of Open Access Journals (Sweden)

    Quan-min BU

    2013-10-01

    Full Text Available As an optimization method that has experienced rapid development over the past 20 years, the genetic algorithm has been successfully applied in many fields, but it requires repeated searches based on the characteristics of high-speed computer calculation and conditions of the known relationship between the objective function and independent variables. There are several hundred generations of evolvement, but the functional relationship is unknown in pollution source searches. Therefore, the genetic algorithm cannot be used directly. Certain improvements need to be made based on the actual situation, so that the genetic algorithm can adapt to the actual conditions of environmental problems, and can be used in environmental monitoring and environmental quality assessment. Therefore, a series of methods are proposed for the improvement of the genetic algorithm: (1 the initial generation of individual groups should be artificially set and move from lightly polluted areas to heavily polluted areas; (2 intervention measures should be introduced in the competition between individuals; (3 guide individuals should be added; and (4 specific improvement programs should be put forward. Finally, the scientific rigor and rationality of the improved genetic algorithm are proven through an example.

  17. A parallel genetic algorithm for the set partitioning problem

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D. [Argonne National Lab., IL (United States). Mathematics and Computer Science Division.

    1994-05-01

    In this dissertation the author reports on his efforts to develop a parallel genetic algorithm and apply it to the solution of set partitioning problem -- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. He developed a distributed steady-state genetic algorithm in conjunction with a specialized local search heuristic for solving the set partitioning problem. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. The authors found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulation found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high-quality integer feasible solutions were found for problems with 36,699 and 43,749 integer variables, respectively. A notable limitation they found was the difficulty solving problems with many constraints.

  18. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    Science.gov (United States)

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification.

  19. Optimal approximation of fractional derivatives through discrete-time fractions using genetic algorithms

    Science.gov (United States)

    Tenreiro Machado, J. A.; Galhano, Alexandra M.; Oliveira, Anabela M.; Tar, József K.

    2010-03-01

    This study addresses the optimization of rational fraction approximations for the discrete-time calculation of fractional derivatives. The article starts by analyzing the standard techniques based on Taylor series and Padé expansions. In a second phase the paper re-evaluates the problem in an optimization perspective by tacking advantage of the flexibility of the genetic algorithms.

  20. Impatient Task Mapping in Elastic Cloud using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Nawfal A. Mehdi

    2011-01-01

    Full Text Available Problem statement: Task scheduling is the main factor that determines the performance of any distributed system. Cloud computing comes with a paradigm of distributed datacenters. Each datacenter consists of physical machines that host virtual machines to execute customers’ tasks. Resources allocation on the cloud is different from other paradigms and the mapping algorithms need to be adapted to the new characteristics. This study takes the problem of immediate task scheduling under an intercloud infrastructure using a genetic algorithm. An impatient task needs to be scheduled as soon as it enters the system taking into account the input and output files location and its QoS requirements. Approach: This study proposes an algorithm that can find a fast mapping using genetic algorithms with "exist if satisfy" condition to speed up the mapping process and ensures the respecting of all task deadlines. Cloudsim simulator was used to test the proposed algorithm with real datasets collected as a cloud benchmark. Mapping time and makespan are the performance metrics that are used to evaluate the proposed system. Results: The results show an improvement in the proposed system compared to MCT algorithm as illustrated throughout the study. Conclusion: Batch mapping via genetic algorithms with throughput as a fitness function can be used to map jobs to cloud resources.

  1. G/SPLINES: A hybrid of Friedman's Multivariate Adaptive Regression Splines (MARS) algorithm with Holland's genetic algorithm

    Science.gov (United States)

    Rogers, David

    1991-01-01

    G/SPLINES are a hybrid of Friedman's Multivariable Adaptive Regression Splines (MARS) algorithm with Holland's Genetic Algorithm. In this hybrid, the incremental search is replaced by a genetic search. The G/SPLINE algorithm exhibits performance comparable to that of the MARS algorithm, requires fewer least squares computations, and allows significantly larger problems to be considered.

  2. Quantum algorithms and the genetic code

    Indian Academy of Sciences (India)

    Apoorva Patel

    2001-02-01

    Replication of DNA and synthesis of proteins are studied from the view-point of quantum database search. Identification of a base-pairing with a quantum query gives a natural (and first ever!) explanation of why living organisms have 4 nucleotide bases and 20 amino acids. It is amazing that these numbers arise as solutions to an optimisation problem. Components of the DNA structure which implement Grover’s algorithm are identified, and a physical scenario is presented for the execution of the quantum algorithm. It is proposed that enzymes play a crucial role in maintaining quantum coherence of the process. Experimental tests that can verify this scenario are pointed out.

  3. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    2007-05-01

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  4. Shape Assignment by Genetic Algorithm towards Designing Optimal Areas

    Directory of Open Access Journals (Sweden)

    Ismadi Md Badarudin

    2010-07-01

    Full Text Available This paper presents a preliminary study on space allocation focusing on the rectangular shapes to be assigned into an area with an intention to find optimal combination of shapes. The proposed solution is vital for promoting an optimal planting area and eventually finds the optimal number of trees as the ultimate goal. Thus, the evolutionary algorithm by GA technique was performed to find the objective. GAs by implementing some metaheuristic approaches is one of the most common techniques for handling ambiguous and / or vast possible solutions. The shape assignment strategy by the determined shapes coordinate to be assigned into an area was introduced. The aim of this study is to gauge the capability of GA to solve this problem. Therefore some strategies to determine the chromosome representation and genetic operators are essential for less computational time and result quality. Some areas coordinate were used to generate the optimal solutions. The result indicates the GA is able to fulfill both feasible result and acceptable time.

  5. Improved interpretation of satellite altimeter data using genetic algorithms

    Science.gov (United States)

    Messa, Kenneth; Lybanon, Matthew

    1992-01-01

    Genetic algorithms (GA) are optimization techniques that are based on the mechanics of evolution and natural selection. They take advantage of the power of cumulative selection, in which successive incremental improvements in a solution structure become the basis for continued development. A GA is an iterative procedure that maintains a 'population' of 'organisms' (candidate solutions). Through successive 'generations' (iterations) the population as a whole improves in simulation of Darwin's 'survival of the fittest'. GA's have been shown to be successful where noise significantly reduces the ability of other search techniques to work effectively. Satellite altimetry provides useful information about oceanographic phenomena. It provides rapid global coverage of the oceans and is not as severely hampered by cloud cover as infrared imagery. Despite these and other benefits, several factors lead to significant difficulty in interpretation. The GA approach to the improved interpretation of satellite data involves the representation of the ocean surface model as a string of parameters or coefficients from the model. The GA searches in parallel, a population of such representations (organisms) to obtain the individual that is best suited to 'survive', that is, the fittest as measured with respect to some 'fitness' function. The fittest organism is the one that best represents the ocean surface model with respect to the altimeter data.

  6. Cheating for Problem Solving: A Genetic Algorithm with Social Interactions

    CERN Document Server

    Lahoz-Beltra, Rafeal; Aickelin, Uwe

    2010-01-01

    We propose a variation of the standard genetic algorithm that incorporates social interaction between the individuals in the population. Our goal is to understand the evolutionary role of social systems and its possible application as a non-genetic new step in evolutionary algorithms. In biological populations, ie animals, even human beings and microorganisms, social interactions often affect the fitness of individuals. It is conceivable that the perturbation of the fitness via social interactions is an evolutionary strategy to avoid trapping into local optimum, thus avoiding a fast convergence of the population. We model the social interactions according to Game Theory. The population is, therefore, composed by cooperator and defector individuals whose interactions produce payoffs according to well known game models (prisoner's dilemma, chicken game, and others). Our results on Knapsack problems show, for some game models, a significant performance improvement as compared to a standard genetic algorithm.

  7. Method of stereo matching based on genetic algorithm

    Science.gov (United States)

    Lu, Chaohui; An, Ping; Zhang, Zhaoyang

    2003-09-01

    A new stereo matching scheme based on image edge and genetic algorithm (GA) is presented to improve the conventional stereo matching method in this paper. In order to extract robust edge feature for stereo matching, infinite symmetric exponential filter (ISEF) is firstly applied to remove the noise of image, and nonlinear Laplace operator together with local variance of intensity are then used to detect edges. Apart from the detected edge, the polarity of edge pixels is also obtained. As an efficient search method, genetic algorithm is applied to find the best matching pair. For this purpose, some new ideas are developed for applying genetic algorithm to stereo matching. Experimental results show that the proposed methods are effective and can obtain good results.

  8. Family Competition Pheromone Genetic Algorithm for Comparative Genome Assembly

    Institute of Scientific and Technical Information of China (English)

    Chien-Hao Su; Chien-Shun Chiou; Jung-Che Kuo; Pei-Jen Wang; Cheng-Yan Kao; Hsueh-Ting Chu

    2014-01-01

    Genome assembly is a prerequisite step for analyzing next generation sequencing data and also far from being solved. Many assembly tools have been proposed and used extensively. Majority of them aim to assemble sequencing reads into contigs; however, we focus on the assembly of contigs into scaffolds in this paper. This is called scaffolding, which estimates the relative order of the contigs as well as the size of the gaps between these contigs. Pheromone trail-based genetic algorithm (PGA) was previously proposed and had decent performance according to their paper. From our previous study, we found that family competition mechanism in genetic algorithm is able to further improve the results. Therefore, we propose family competition pheromone genetic algorithm (FCPGA) and demonstrate the improvement over PGA.

  9. Protein fold classification with genetic algorithms and feature selection.

    Science.gov (United States)

    Chen, Peng; Liu, Chunmei; Burge, Legand; Mahmood, Mohammad; Southerland, William; Gloster, Clay

    2009-10-01

    Protein fold classification is a key step to predicting protein tertiary structures. This paper proposes a novel approach based on genetic algorithms and feature selection to classifying protein folds. Our dataset is divided into a training dataset and a test dataset. Each individual for the genetic algorithms represents a selection function of the feature vectors of the training dataset. A support vector machine is applied to each individual to evaluate the fitness value (fold classification rate) of each individual. The aim of the genetic algorithms is to search for the best individual that produces the highest fold classification rate. The best individual is then applied to the feature vectors of the test dataset and a support vector machine is built to classify protein folds based on selected features. Our experimental results on Ding and Dubchak's benchmark dataset of 27-class folds show that our approach achieves an accuracy of 71.28%, which outperforms current state-of-the-art protein fold predictors.

  10. A genetic algorithm approach in interface and surface structure optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jian [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    The thesis is divided into two parts. In the first part a global optimization method is developed for the interface and surface structures optimization. Two prototype systems are chosen to be studied. One is Si[001] symmetric tilted grain boundaries and the other is Ag/Au induced Si(111) surface. It is found that Genetic Algorithm is very efficient in finding lowest energy structures in both cases. Not only existing structures in the experiments can be reproduced, but also many new structures can be predicted using Genetic Algorithm. Thus it is shown that Genetic Algorithm is a extremely powerful tool for the material structures predictions. The second part of the thesis is devoted to the explanation of an experimental observation of thermal radiation from three-dimensional tungsten photonic crystal structures. The experimental results seems astounding and confusing, yet the theoretical models in the paper revealed the physics insight behind the phenomena and can well reproduced the experimental results.

  11. OPTIMAL-TUNING OF PID CONTROLLER GAINS USING GENETIC ALGORITHMS

    Directory of Open Access Journals (Sweden)

    Ömer GÜNDOĞDU

    2005-01-01

    Full Text Available This paper presents a method of optimum parameter tuning of a PID controller to be used in driving an inertial load by a dc motor thorough a gearbox. Specifically, the method uses genetic algorithms to determine the optimum controller parameters by minimizing the sum of the integral of the squared error and the squared controller output deviated from its steady state value. The paper suggests the use of Ziegler-Nichols settings to form the intervals for the controller parameters in which the population to be formed. The results obtained from the genetic algorithms are compared with the ones from Ziegler-Nichols in both figures and tabular form. Comparatively better results are obtained in the genetic algorithm case.

  12. Multi-island Genetic Algorithm Opetimization of Suspension System

    Directory of Open Access Journals (Sweden)

    Li-Wei Xu

    2012-11-01

    Full Text Available The suspension and the car's operating stability are closely linked. Through the optimization of the suspension, it can improve the operating stability of vehicle, which is very meaningful to enhance the performance of modern cars. With the development of science and technology, the traditional optimization methods often appear insufficient when it deals with the multi-objective optimization problem of the automotive suspension. As a kind of improved genetic algorithm, the multi-island genetic algorithm can handle the multi-objective problem very well. In order to improve the vehicle handling stability, in this paper, the multi-island genetic algorithm is used to optimize the suspension parameters, combined with the iSight-FD and the Adams/car.

  13. A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection

    Directory of Open Access Journals (Sweden)

    Dalton Meitei Thounaojam

    2016-01-01

    Full Text Available This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter.

  14. A Genetic Algorithm and Fuzzy Logic Approach for Video Shot Boundary Detection.

    Science.gov (United States)

    Thounaojam, Dalton Meitei; Khelchandra, Thongam; Manglem Singh, Kh; Roy, Sudipta

    2016-01-01

    This paper proposed a shot boundary detection approach using Genetic Algorithm and Fuzzy Logic. In this, the membership functions of the fuzzy system are calculated using Genetic Algorithm by taking preobserved actual values for shot boundaries. The classification of the types of shot transitions is done by the fuzzy system. Experimental results show that the accuracy of the shot boundary detection increases with the increase in iterations or generations of the GA optimization process. The proposed system is compared to latest techniques and yields better result in terms of F1score parameter.

  15. A Comparison of Exhaustive, Heuristic and Genetic Algorithm for Travelling Salesman Problem in PROLOG

    Directory of Open Access Journals (Sweden)

    Nur Ariffin Mohd Zin

    2012-01-01

    Full Text Available This paper discusses on a comparative study towards solution for solving Travelling Salesman Problem based on three techniques proposed namely exhaustive, heuristic and genetic algorithm. Each solution  is to cater on finding an optimal path of available 25 contiguous cities in England whereby solution is written in Prolog. Comparisons were made with emphasis against time consumed and closeness to optimal solutions. Based on the experimental, we found that heuristic is very promising in terms of time taken, while on the other hand, Genetic Algorithm manages to be outstanding on big number of traversal by resulting the shortest path among the others.

  16. Genetic algorithms with permutation coding for multiple sequence alignment.

    Science.gov (United States)

    Ben Othman, Mohamed Tahar; Abdel-Azim, Gamil

    2013-08-01

    Multiple sequence alignment (MSA) is one of the topics of bio informatics that has seriously been researched. It is known as NP-complete problem. It is also considered as one of the most important and daunting tasks in computational biology. Concerning this a wide number of heuristic algorithms have been proposed to find optimal alignment. Among these heuristic algorithms are genetic algorithms (GA). The GA has mainly two major weaknesses: it is time consuming and can cause local minima. One of the significant aspects in the GA process in MSA is to maximize the similarities between sequences by adding and shuffling the gaps of Solution Coding (SC). Several ways for SC have been introduced. One of them is the Permutation Coding (PC). We propose a hybrid algorithm based on genetic algorithms (GAs) with a PC and 2-opt algorithm. The PC helps to code the MSA solution which maximizes the gain of resources, reliability and diversity of GA. The use of the PC opens the area by applying all functions over permutations for MSA. Thus, we suggest an algorithm to calculate the scoring function for multiple alignments based on PC, which is used as fitness function. The time complexity of the GA is reduced by using this algorithm. Our GA is implemented with different selections strategies and different crossovers. The probability of crossover and mutation is set as one strategy. Relevant patents have been probed in the topic.

  17. Combinatorial optimization problem solution based on improved genetic algorithm

    Science.gov (United States)

    Zhang, Peng

    2017-08-01

    Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.

  18. Frequency domain simultaneous algebraic reconstruction techniques: algorithm and convergence

    Science.gov (United States)

    Wang, Jiong; Zheng, Yibin

    2005-03-01

    We propose a simultaneous algebraic reconstruction technique (SART) in the frequency domain for linear imaging problems. This algorithm has the advantage of efficiently incorporating pixel correlations in an a priori image model. First it is shown that the generalized SART algorithm converges to the weighted minimum norm solution of a weighted least square problem. Then an implementation in the frequency domain is described. The performance of the new algorithm is demonstrated with fan beam computed tomography (CT) examples. Compared to the traditional SART and its major alternative ART, the new algorithm offers superior image quality and potential application to other modalities.

  19. An application of traveling salesman problem using the improved genetic algorithm on android google maps

    Science.gov (United States)

    Narwadi, Teguh; Subiyanto

    2017-03-01

    The Travelling Salesman Problem (TSP) is one of the best known NP-hard problems, which means that no exact algorithm to solve it in polynomial time. This paper present a new variant application genetic algorithm approach with a local search technique has been developed to solve the TSP. For the local search technique, an iterative hill climbing method has been used. The system is implemented on the Android OS because android is now widely used around the world and it is mobile system. It is also integrated with Google API that can to get the geographical location and the distance of the cities, and displays the route. Therefore, we do some experimentation to test the behavior of the application. To test the effectiveness of the application of hybrid genetic algorithm (HGA) is compare with the application of simple GA in 5 sample from the cities in Central Java, Indonesia with different numbers of cities. According to the experiment results obtained that in the average solution HGA shows in 5 tests out of 5 (100%) is better than simple GA. The results have shown that the hybrid genetic algorithm outperforms the genetic algorithm especially in the case with the problem higher complexity.

  20. Control of Complex Systems Using Bayesian Networks and Genetic Algorithm

    CERN Document Server

    Marwala, Tshilidzi

    2007-01-01

    A method based on Bayesian neural networks and genetic algorithm is proposed to control the fermentation process. The relationship between input and output variables is modelled using Bayesian neural network that is trained using hybrid Monte Carlo method. A feedback loop based on genetic algorithm is used to change input variables so that the output variables are as close to the desired target as possible without the loss of confidence level on the prediction that the neural network gives. The proposed procedure is found to reduce the distance between the desired target and measured outputs significantly.

  1. Acoustic design of rotor blades using a genetic algorithm

    Science.gov (United States)

    Wells, V. L.; Han, A. Y.; Crossley, W. A.

    1995-01-01

    A genetic algorithm coupled with a simplified acoustic analysis was used to generate low-noise rotor blade designs. The model includes thickness, steady loading and blade-vortex interaction noise estimates. The paper presents solutions for several variations in the fitness function, including thickness noise only, loading noise only, and combinations of the noise types. Preliminary results indicate that the analysis provides reasonable assessments of the noise produced, and that genetic algorithm successfully searches for 'good' designs. The results show that, for a given required thrust coefficient, proper blade design can noticeably reduce the noise produced at some expense to the power requirements.

  2. Optimization of multicast optical networks with genetic algorithm

    Science.gov (United States)

    Lv, Bo; Mao, Xiangqiao; Zhang, Feng; Qin, Xi; Lu, Dan; Chen, Ming; Chen, Yong; Cao, Jihong; Jian, Shuisheng

    2007-11-01

    In this letter, aiming to obtain the best multicast performance of optical network in which the video conference information is carried by specified wavelength, we extend the solutions of matrix games with the network coding theory and devise a new method to solve the complex problems of multicast network switching. In addition, an experimental optical network has been testified with best switching strategies by employing the novel numerical solution designed with an effective way of genetic algorithm. The result shows that optimal solutions with genetic algorithm are accordance with the ones with the traditional fictitious play method.

  3. A genetic algorithm for structure-activity relationships: software implementation

    CERN Document Server

    Jantschi, Lorentz

    2009-01-01

    The design and the implementation of a genetic algorithm are described. The applicability domain is on structure-activity relationships expressed as multiple linear regressions and predictor variables are from families of structure-based molecular descriptors. An experiment to compare different selection and survival strategies was designed and realized. The genetic algorithm was run using the designed experiment on a set of 206 polychlorinated biphenyls searching on structure-activity relationships having known the measured octanol-water partition coefficients and a family of molecular descriptors. The experiment shows that different selection and survival strategies create different partitions on the entire population of all possible genotypes.

  4. Optimal design of steel portal frames based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Yue CHEN; Kai HU

    2008-01-01

    As for the optimal design of steel portal frames, due to both the complexity of cross selections of beams and columns and the discreteness of design variables, it is difficult to obtain satisfactory results by traditional optimization. Based on a set of constraints of the Technical Specification for Light-weighted Steel Portal Frames of China, a genetic algorithm (GA) optimization program for portal frames, written in MATLAB code, was proposed in this paper. The graph user interface (GUI) is also developed for this optimal program, so that it can be used much more conveniently. Finally, some examples illustrate the effectiveness and efficiency of the genetic-algorithm-based optimal program.

  5. Building Blocks Propagation in Quantum-Inspired Genetic Algorithm

    CERN Document Server

    Nowotniak, Robert

    2010-01-01

    This paper presents an analysis of building blocks propagation in Quantum-Inspired Genetic Algorithm, which belongs to a new class of metaheuristics drawing their inspiration from both biological evolution and unitary evolution of quantum systems. The expected number of quantum chromosomes matching a schema has been analyzed and a random variable corresponding to this issue has been introduced. The results have been compared with Simple Genetic Algorithm. Also, it has been presented how selected binary quantum chromosomes cover a domain of one-dimensional fitness function.

  6. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    Science.gov (United States)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  7. Improved Genetic Algorithm Application in Textile Defect Detection

    Institute of Scientific and Technical Information of China (English)

    GENG Zhao-feng; Li Bei-bei; ZHAO Zhi-hong

    2007-01-01

    Based on an efficient improved genetic algorithm,a pattern recognition approach is represented for textile defects inspection. An image process is developed to automatically detect the drawbacks on textile caused by three circumstances: break, dual, and jump of yams. By statistic method, some texture feature values of the image with defects points can be achieved. Therefore, the textile defects are classified properly. The advanced process of the defect image is done. Image segmentation is realized by an improved genetic algorithm to detect the defects. This method can be used to automatically classify and detect textile defects. According to different users' requirements, ifferent types of textile material can be detected.

  8. Stellar Population Analysis of Galaxies based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    Abdel-Fattah Attia; H.A.Ismail; I.M.Selim; A.M.Osman; I.A.Isaa; M.A.Marie; A.A.Shaker

    2005-01-01

    We present a new method for determining the age and relative contribution of different stellar populations in galaxies based on the genetic algorithm.We apply this method to the barred spiral galaxy NGC 3384, using CCD images in U, B, V, R and I bands. This analysis indicates that the galaxy NGC 3384 is mainly inhabited by old stellar population (age > 109 yr). Some problems were encountered when numerical simulations are used for determining the contribution of different stellar populations in the integrated color of a galaxy. The results show that the proposed genetic algorithm can search efficiently through the very large space of the possible ages.

  9. Quality of Service Routing Strategy Using Supervised Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Zhaoxia; SUN Yugeng; WANG Zhiyong; SHEN Huayu

    2007-01-01

    A supervised genetic algorithm (SGA) is proposed to solve the quality of service (QoS)routing problems in computer networks. The supervised rules of intelligent concept are introduced into genetic algorithms (GAs) to solve the constraint optimization problem. One of the main characteristics of SGA is its searching space can be limited in feasible regions rather than infeasible regions. The superiority of SGA to other GAs lies in that some supervised search rules in which the information comes from the problems are incorporated into SGA. The simulation results show that SGA improves the ability of searching an optimum solution and accelerates the convergent process up to 20 times.

  10. Genetic Algorithm Modeling with GPU Parallel Computing Technology

    CERN Document Server

    Cavuoti, Stefano; Brescia, Massimo; Pescapé, Antonio; Longo, Giuseppe; Ventre, Giorgio

    2012-01-01

    We present a multi-purpose genetic algorithm, designed and implemented with GPGPU / CUDA parallel computing technology. The model was derived from a multi-core CPU serial implementation, named GAME, already scientifically successfully tested and validated on astrophysical massive data classification problems, through a web application resource (DAMEWARE), specialized in data mining based on Machine Learning paradigms. Since genetic algorithms are inherently parallel, the GPGPU computing paradigm has provided an exploit of the internal training features of the model, permitting a strong optimization in terms of processing performances and scalability.

  11. Optimization of Turning Operations by Using a Hybrid Genetic Algorithm with Sequential Quadratic Programming

    Directory of Open Access Journals (Sweden)

    A. Belloufi*

    2013-01-01

    Full Text Available The determination of optimal cutting parameters is one of the most important elements in any process planning ofmetal parts. In this paper, a new hybrid genetic algorithm by using sequential quadratic programming is used for theoptimization of cutting conditions. It is used for the resolution of a multipass turning optimization case by minimizingthe production cost under a set of machining constraints. The genetic algorithm (GA is the main optimizer of thisalgorithm whereas SQP Is used to fine tune the results obtained from the GA. Furthermore, the convergencecharacteristics and robustness of the proposed method have been explored through comparisons with resultsreported in literature. The obtained results indicate that the proposed hybrid genetic algorithm by using a sequentialquadratic programming is effective compared to other techniques carried out by different researchers.

  12. Stellar Structure Modeling using a Parallel Genetic Algorithm for Objective Global Optimization

    CERN Document Server

    Metcalfe, T S

    2002-01-01

    Genetic algorithms are a class of heuristic search techniques that apply basic evolutionary operators in a computational setting. We have designed a fully parallel and distributed hardware/software implementation of the generalized optimization subroutine PIKAIA, which utilizes a genetic algorithm to provide an objective determination of the globally optimal parameters for a given model against an observational data set. We have used this modeling tool in the context of white dwarf asteroseismology, i.e., the art and science of extracting physical and structural information about these stars from observations of their oscillation frequencies. The efficient, parallel exploration of parameter-space made possible by genetic-algorithm-based numerical optimization led us to a number of interesting physical results: (1) resolution of a hitherto puzzling discrepancy between stellar evolution models and prior asteroseismic inferences of the surface helium layer mass for a DBV white dwarf; (2) precise determination of...

  13. Using genetic algorithm based simulated annealing penalty function to solve groundwater management model

    Institute of Scientific and Technical Information of China (English)

    吴剑锋; 朱学愚; 刘建立

    1999-01-01

    The genetic algorithm (GA) is a global and random search procedure based on the mechanics of natural selection and natural genetics. A new optimization method of the genetic algorithm-based simulated annealing penalty function (GASAPF) is presented to solve groundwater management model. Compared with the traditional gradient-based algorithms, the GA is straightforward and there is no need to calculate derivatives of the objective function. The GA is able to generate both convex and nonconvex points within the feasible region. It can be sure that the GA converges to the global or at least near-global optimal solution to handle the constraints by simulated annealing technique. Maximum pumping example results show that the GASAPF to solve optimization model is very efficient and robust.

  14. Hierarchical Genetic Algorithm Approach to Determine Pulse Sequences in NMR

    CERN Document Server

    Ajoy, Ashok

    2009-01-01

    We develop a new class of genetic algorithm that computationally determines efficient pulse sequences to implement a quantum gate U in a three-qubit system. The method is shown to be quite general, and the same algorithm can be used to derive efficient sequences for a variety of target matrices. We demonstrate this by implementing the inversion-on-equality gate efficiently when the spin-spin coupling constants $J_{12}=J_{23}=J$ and $J_{13}=0$. We also propose new pulse sequences to implement the Parity gate and Fanout gate, which are about 50% more efficient than the previous best efforts. Moreover, these sequences are shown to require significantly less RF power for their implementation. The proposed algorithm introduces several new features in the conventional genetic algorithm framework. We use matrices instead of linear chains, and the columns of these matrices have a well defined hierarchy. The algorithm is a genetic algorithm coupled to a fast local optimizer, and is hence a hybrid GA. It shows fast con...

  15. A Genetic Algorithm for Chromaticity Correction in Diffraction Limited Storage Rings

    CERN Document Server

    Ehrlichman, Michael

    2016-01-01

    An multi-objective genetic algorithm is developed for optimizing nonlinearities in diffraction limited storage rings. This algorithm determines sextupole and octupole strengths for chromaticity correction that deliver optimized dynamic aperture and beam lifetime. The algorithm makes use of dominance constraints to breed desirable properties into the early generations. The momentum aperture is optimized indirectly by constraining the chromatic tune footprint and optimizing the off-energy dynamic aperture. The result is an effective and computationally efficient technique for correcting chromaticity in a storage ring while maintaining optimal dynamic aperture and beam lifetime. This framework was developed for the Swiss Light Source (SLS) upgrade project.

  16. Cellular Genetic Algorithm with Communicating Grids for Assembly Line Balancing Problems

    Directory of Open Access Journals (Sweden)

    BRUDARU, O.

    2010-05-01

    Full Text Available This paper presents a new approach with cellular multigrid genetic algorithms for the "I"-shaped and "U"-shaped assembly line balancing problems, including parallel workstations and compatibility constraints. First, a cellular hybrid genetic algorithm that uses a single grid is described. Appropriate operators for mutation, hypermutation, and crossover and two devoration techniques are proposed for creating and maintaining groups based on similarity. This monogrid algorithm is extended for handling many populations placed on different grids. In the multigrid version, the population of each grid is organized in clusters using the positional information of the chromosomes. A similarity preserving communication protocol between the clusters placed on different grids is introduced. The experimental evaluation shows that the multigrid cellular genetic algorithm with communicating grids is better than the hybrid genetic algorithm used for building it, whereas it dominates the monogrid version in all cases. Absolute performance is evaluated using classical benchmarks. The role of certain components of the cellular algorithm is explained and the effect of some parameters is evaluated.

  17. Genetic Algorithms and Their Application to the Protein Folding Problem

    Science.gov (United States)

    1993-12-01

    mutation, genetic algorithms simulate the Darwin theory of survival of the fittest. The search space is represented by a population of strings upon which... Darwin theory of survival of the fittest by representing the search space as a population of strings upon which genetic operators act to create new...34 International Conference on Tools for Artificial Intelligence, IEEE-TAI 90, 322-7. Cartwright , H. M. & Mott, G. F. (1991). "Looking A:;und: Using Clues

  18. Underground water quality model inversion of genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    MA Ruijie; LI Xin

    2009-01-01

    The underground water quality model with non-linear inversion problem is ill-posed, and boils down to solving the minimum of nonlinear function. Genetic algorithms are adopted in a number of individuals of groups by iterative search to find the optimal solution of the problem, the encoding strings as its operational objective, and achieving the iterative calculations by the genetic operators. It is an effective method of inverse problems of groundwater, with incomparable advantages and practical significances.

  19. A new automatic alignment technology for single mode fiber-waveguide based on improved genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu; CHEN Zhuang-zhuang; LI Ya-juan; DUAN Jian

    2009-01-01

    A novel automatic alignment algorithm of single mode fiber-waveguide based on improved genetic algorithm is proposed. The genetic searching is based on the dynamic crossover operator and the adaptive mutation operator to solve the premature convergence of simple genetic algorithm The improved genetic algorithm combines with hill-climbing method and pattern searching algorithm, to solve low precision of simple genetic algorithm in later searching. The simulation results indicate that the improved genetic algorithm can rise the alignment precision and reach the coupling loss of 0.01 dB when platform moves near 207 space points averagely.

  20. Manipulator Neural Network Control Based on Fuzzy Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The three-layer forward neural networks are used to establish the inverse kinem a tics models of robot manipulators. The fuzzy genetic algorithm based on the line ar scaling of the fitness value is presented to update the weights of neural net works. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the propo sed method improves considerably the precision of the inverse kinematics solutio ns for robot manipulators and guarantees a rapid global convergence and overcome s the drawbacks of SGA and the BP algorithm.

  1. Genetic algorithm for flood detection and evacuation route planning

    Science.gov (United States)

    Gomes, Rahul; Straub, Jeremy

    2017-05-01

    A genetic-type algorithm is presented that uses satellite geospatial data to determine the most probable path to safety for individuals in a disaster area, where a traditional routing system cannot be used. The algorithm uses geological features and disaster information to determine the shortest safe path. It predicts how a flood can change a landform over time and uses this data to predict alternate routes. It also predicts safe routes in rural locations where GPS/map-based routing data is unavailable or inaccurate. Reflectance and a supervised classification algorithm are used and the output is compared with RFPI and PCR-GLOBWB data.

  2. Solving the Dial-a-Ride Problem using Genetic Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Rene Munk; Larsen, Jesper; Bergvinsdottir, Kristin Berg

    2007-01-01

    customer service level constraints (Quality of Service). In this paper, we present a genetic algorithm (GA) for solving the DARP. The algorithm is based on the classical cluster-first, route-second approach, where it alternates between assigning customers to vehicles using a GA and solving independent...... routing problems for the vehicles using a routing heuristic. The algorithm is implemented in Java and tested on publicly available data sets. The new solution method has achieved solutions comparable with the current state-of-the-art methods....

  3. Haplotyping a single triploid individual based on genetic algorithm.

    Science.gov (United States)

    Wu, Jingli; Chen, Xixi; Li, Xianchen

    2014-01-01

    The minimum error correction model is an important combinatorial model for haplotyping a single individual. In this article, triploid individual haplotype reconstruction problem is studied by using the model. A genetic algorithm based method GTIHR is presented for reconstructing the triploid individual haplotype. A novel coding method and an effectual hill-climbing operator are introduced for the GTIHR algorithm. This relatively short chromosome code can lead to a smaller solution space, which plays a positive role in speeding up the convergence process. The hill-climbing operator ensures algorithm GTIHR converge at a good solution quickly, and prevents premature convergence simultaneously. The experimental results prove that algorithm GTIHR can be implemented efficiently, and can get higher reconstruction rate than previous algorithms.

  4. Advancing x-ray scattering metrology using inverse genetic algorithms

    Science.gov (United States)

    Hannon, Adam F.; Sunday, Daniel F.; Windover, Donald; Joseph Kline, R.

    2016-07-01

    We compare the speed and effectiveness of two genetic optimization algorithms to the results of statistical sampling via a Markov chain Monte Carlo algorithm to find which is the most robust method for determining real-space structure in periodic gratings measured using critical dimension small-angle x-ray scattering. Both a covariance matrix adaptation evolutionary strategy and differential evolution algorithm are implemented and compared using various objective functions. The algorithms and objective functions are used to minimize differences between diffraction simulations and measured diffraction data. These simulations are parameterized with an electron density model known to roughly correspond to the real-space structure of our nanogratings. The study shows that for x-ray scattering data, the covariance matrix adaptation coupled with a mean-absolute error log objective function is the most efficient combination of algorithm and goodness of fit criterion for finding structures with little foreknowledge about the underlying fine scale structure features of the nanograting.

  5. Optimized Crossover Genetic Algorithm for Vehicle Routing Problem with Time Windows

    Directory of Open Access Journals (Sweden)

    H. Nazif

    2010-01-01

    Full Text Available Problem statement: In this study, we considered the application of a genetic algorithm to vehicle routing problem with time windows where a set of vehicles with limits on capacity and travel time are available to service a set of customers with demands and earliest and latest time for serving. The objective is to find routes for the vehicles to service all the customers at a minimal cost without violating the capacity and travel time constraints of the vehicles and the time window constraints set by the customers. Approach: We proposed a genetic algorithm using an optimized crossover operator designed by a complete undirected bipartite graph that finds an optimal set of delivery routes satisfying the requirements and giving minimal total cost. Various techniques have also been introduced into the proposed algorithm to further enhance the solutions quality. Results: We tested our algorithm with benchmark instances and compared it with some other heuristics in the literature. The results showed that the proposed algorithm is competitive in terms of the quality of the solutions found. Conclusion/Recommendations: This study presented a genetic algorithm for solving vehicle routing problem with time windows using an optimized crossover operator. From the results, it can be concluded that the proposed algorithm is competitive when compared with other heuristics in the literature.

  6. Neural-Network-Biased Genetic Algorithms for Materials Design: Evolutionary Algorithms That Learn.

    Science.gov (United States)

    Patra, Tarak K; Meenakshisundaram, Venkatesh; Hung, Jui-Hsiang; Simmons, David S

    2017-02-13

    Machine learning has the potential to dramatically accelerate high-throughput approaches to materials design, as demonstrated by successes in biomolecular design and hard materials design. However, in the search for new soft materials exhibiting properties and performance beyond those previously achieved, machine learning approaches are frequently limited by two shortcomings. First, because they are intrinsically interpolative, they are better suited to the optimization of properties within the known range of accessible behavior than to the discovery of new materials with extremal behavior. Second, they require large pre-existing data sets, which are frequently unavailable and prohibitively expensive to produce. Here we describe a new strategy, the neural-network-biased genetic algorithm (NBGA), for combining genetic algorithms, machine learning, and high-throughput computation or experiment to discover materials with extremal properties in the absence of pre-existing data. Within this strategy, predictions from a progressively constructed artificial neural network are employed to bias the evolution of a genetic algorithm, with fitness evaluations performed via direct simulation or experiment. In effect, this strategy gives the evolutionary algorithm the ability to "learn" and draw inferences from its experience to accelerate the evolutionary process. We test this algorithm against several standard optimization problems and polymer design problems and demonstrate that it matches and typically exceeds the efficiency and reproducibility of standard approaches including a direct-evaluation genetic algorithm and a neural-network-evaluated genetic algorithm. The success of this algorithm in a range of test problems indicates that the NBGA provides a robust strategy for employing informatics-accelerated high-throughput methods to accelerate materials design in the absence of pre-existing data.

  7. A Genetic Algorithm on Inventory Routing Problem

    Directory of Open Access Journals (Sweden)

    Nevin Aydın

    2014-03-01

    Full Text Available Inventory routing problem can be defined as forming the routes to serve to the retailers from the manufacturer, deciding on the quantity of the shipment to the retailers and deciding on the timing of the replenishments. The difference of inventory routing problems from vehicle routing problems is the consideration of the inventory positions of retailers and supplier, and making the decision accordingly. Inventory routing problems are complex in nature and they can be solved either theoretically or using a heuristics method. Metaheuristics is an emerging class of heuristics that can be applied to combinatorial optimization problems. In this paper, we provide the relationship between vendor-managed inventory and inventory routing problem. The proposed genetic for solving vehicle routing problem is described in detail.

  8. Generative Algorithmic Techniques for Architectural Design

    DEFF Research Database (Denmark)

    Larsen, Niels Martin

    2012-01-01

    Architectural design methodology is expanded through the ability to create bespoke computational methods as integrated parts of the design process. The rapid proliferation of digital production techniques within building industry provides new means for establishing seamless flows between digital...... form-generation and the realisation process. A tendency in recent practice shows an increased focus on developing unique tectonic solutions as a crucial ingredient in the design solution. These converging trajectories form the contextual basis for this thesis. In architectural design, digital tools....... The principles are further developed to form new modes of articulation in architectural design. Certain methods are contributions, which suggest a potential for future use and development. Thus, a method is directed towards bottom-up generation of surface topology through the use of an agentbased logic. Another...

  9. FPGA Implementation of Parallel Particle Swarm Optimization Algorithm and Compared with Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    BEN AMEUR Mohamed sadek

    2016-08-01

    Full Text Available In this paper, a digital implementation of Particle Swarm Optimization algorithm (PSO is developed for implementation on Field Programmable Gate Array (FPGA. PSO is a recent intelligent heuristic search method in which the mechanism of algorithm is inspired by the swarming of biological populations. PSO is similar to the Genetic Algorithm (GA. In fact, both of them use a combination of deterministic and probabilistic rules. The experimental results of this algorithm are effective to evaluate the performance of the PSO compared to GA and other PSO algorithm. New digital solutions are available to generate a hardware implementation of PSO Algorithms. Thus, we developed a hardware architecture based on Finite state machine (FSM and implemented into FPGA to solve some dispatch computing problems over other circuits based on swarm intelligence. Moreover, the inherent parallelism of these new hardware solutions with a large computational capacity makes the running time negligible regardless the complexity of the processing.

  10. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  11. The multi-niche crowding genetic algorithm: Analysis and applications

    Energy Technology Data Exchange (ETDEWEB)

    Cedeno, Walter [Univ. of California, Davis, CA (United States)

    1995-09-01

    The ability of organisms to evolve and adapt to the environment has provided mother nature with a rich and diverse set of species. Only organisms well adapted to their environment can survive from one generation to the next, transferring on the traits, that made them successful, to their offspring. Competition for resources and the ever changing environment drives some species to extinction and at the same time others evolve to maintain the delicate balance in nature. In this disertation we present the multi-niche crowding genetic algorithm, a computational metaphor to the survival of species in ecological niches in the face of competition. The multi-niche crowding genetic algorithm maintains stable subpopulations of solutions in multiple niches in multimodal landscapes. The algorithm introduces the concept of crowding selection to promote mating among members with qirnilar traits while allowing many members of the population to participate in mating. The algorithm uses worst among most similar replacement policy to promote competition among members with similar traits while allowing competition among members of different niches as well. We present empirical and theoretical results for the success of the multiniche crowding genetic algorithm for multimodal function optimization. The properties of the algorithm using different parameters are examined. We test the performance of the algorithm on problems of DNA Mapping, Aquifer Management, and the File Design Problem. Applications that combine the use of heuristics and special operators to solve problems in the areas of combinatorial optimization, grouping, and multi-objective optimization. We conclude by presenting the advantages and disadvantages of the algorithm and describing avenues for future investigation to answer other questions raised by this study.

  12. Genetic algorithms applied to nonlinear and complex domains

    Energy Technology Data Exchange (ETDEWEB)

    Barash, D; Woodin, A E

    1999-06-01

    The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a ''final'' result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means.

  13. Genetic algorithms applied to nonlinear and complex domains

    Energy Technology Data Exchange (ETDEWEB)

    Barash, D; Woodin, A E

    1999-06-01

    The dissertation, titled ''Genetic Algorithms Applied to Nonlinear and Complex Domains'', describes and then applies a new class of powerful search algorithms (GAS) to certain domains. GAS are capable of solving complex and nonlinear problems where many parameters interact to produce a final result such as the optimization of the laser pulse in the interaction of an atom with an intense laser field. GAS can very efficiently locate the global maximum by searching parameter space in problems which are unsuitable for a search using traditional methods. In particular, the dissertation contains new scientific findings in two areas. First, the dissertation examines the interaction of an ultra-intense short laser pulse with atoms. GAS are used to find the optimal frequency for stabilizing atoms in the ionization process. This leads to a new theoretical formulation, to explain what is happening during the ionization process and how the electron is responding to finite (real-life) laser pulse shapes. It is shown that the dynamics of the process can be very sensitive to the ramp of the pulse at high frequencies. The new theory which is formulated, also uses a novel concept (known as the (t,t') method) to numerically solve the time-dependent Schrodinger equation Second, the dissertation also examines the use of GAS in modeling decision making problems. It compares GAS with traditional techniques to solve a class of problems known as Markov Decision Processes. The conclusion of the dissertation should give a clear idea of where GAS are applicable, especially in the physical sciences, in problems which are nonlinear and complex, i.e. difficult to analyze by other means.

  14. Detection of Defective Sensors in Phased Array Using Compressed Sensing and Hybrid Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shafqat Ullah Khan

    2016-01-01

    Full Text Available A compressed sensing based array diagnosis technique has been presented. This technique starts from collecting the measurements of the far-field pattern. The system linking the difference between the field measured using the healthy reference array and the field radiated by the array under test is solved using a genetic algorithm (GA, parallel coordinate descent (PCD algorithm, and then a hybridized GA with PCD algorithm. These algorithms are applied for fully and partially defective antenna arrays. The simulation results indicate that the proposed hybrid algorithm outperforms in terms of localization of element failure with a small number of measurements. In the proposed algorithm, the slow and early convergence of GA has been avoided by combining it with PCD algorithm. It has been shown that the hybrid GA-PCD algorithm provides an accurate diagnosis of fully and partially defective sensors as compared to GA or PCD alone. Different simulations have been provided to validate the performance of the designed algorithms in diversified scenarios.

  15. Genetic Algorithm with SRM SVM Classifier for Face Verification

    OpenAIRE

    Safiya K.M; Bhuvana, S.; P.TamijeSelvy; R. Radhakrishnan

    2012-01-01

    Face verification is an important problem. The problem of designing and evaluating discriminativeapproaches without explicit age modelling is used. To find the gradient orientation discard magnitudeinformation. Using hierarchical information this representation can be further improved which results inthe use of gradient orientation pyramid. When combined with a structural risk minimization support vectormachine with genetic algorithm, gradient orientation pyramid demonstrate excellent per...

  16. Genetic algorithm for multi-protocol label switching

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A new method for multi-protocol label switching is presented in this study, whose core idea is to construct model for simulating process of accommodating network online loads and then adopt genetic algorithm to optimize the model. Due to the heuristic property of evolutional method, the new method is efficient and effective, which is verified by the experiments.

  17. System control fuzzy neural sewage pumping stations using genetic algorithms

    Directory of Open Access Journals (Sweden)

    Владлен Николаевич Кузнецов

    2015-06-01

    Full Text Available It is considered the system of management of sewage pumping station with regulators based on a neuron network with fuzzy logic. Linguistic rules for the controller based on fuzzy logic, maintaining the level of effluent in the receiving tank within the prescribed limits are developed. The use of genetic algorithms for neuron network training is shown.

  18. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation m

  19. Experiences with the PGAPack Parallel Genetic Algorithm library

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.; Hallstrom, P.; Noelle, D.; Walenz, B.

    1997-07-01

    PGAPack is the first widely distributed parallel genetic algorithm library. Since its release, several thousand copies have been distributed worldwide to interested users. In this paper we discuss the key components of the PGAPack design philosophy and present a number of application examples that use PGAPack.

  20. UAV Cooperative Multiple Task Assignments using Genetic Algorithms

    Science.gov (United States)

    2005-06-01

    vehicle routing problem (VRP). In all of these classical problems the minimum cost assignment is sought where: in the TSP the tour is of one agent...10] Baker, Barrie, M. and Ayechew, M. A., “A Genetic Algorithm for the Vehicle Routing Problem ,” Computers and Operations Research, Vol. 30, 2003

  1. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation m

  2. Waypoint planning with Dubins Curves using Genetic Algorithms

    DEFF Research Database (Denmark)

    Hansen, Karl Damkjær; La Cour-Harbo, Anders

    2016-01-01

    , the kinematics of the aircraft ruins the plan. This work describes an approach that uses a genetic algorithm to solve the waypoint planning problem while considering the kinematics of the aircraft in one single step. This approach entails the addition of a heading and target speed along with the position...

  3. USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES

    Science.gov (United States)

    Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...

  4. Applying Genetic Algorithms To Query Optimization in Document Retrieval.

    Science.gov (United States)

    Horng, Jorng-Tzong; Yeh, Ching-Chang

    2000-01-01

    Proposes a novel approach to automatically retrieve keywords and then uses genetic algorithms to adapt the keyword weights. Discusses Chinese text retrieval, term frequency rating formulas, vector space models, bigrams, the PAT-tree structure for information retrieval, query vectors, and relevance feedback. (Author/LRW)

  5. Optimization of antibacterial peptides by genetic algorithms and cheminformatics

    DEFF Research Database (Denmark)

    Fjell, Christopher D.; Jenssen, Håvard; Cheung, Warren A.

    2011-01-01

    47 of the top rated 50 peptides chosen from an in silico library of nearly 100 000 sequences. Here, we report a method of generating candidate peptide sequences using the heuristic evolutionary programming method of genetic algorithms (GA), which provided a large (19-fold) improvement...

  6. Performance of genetic algorithms in search for water splitting perovskites

    DEFF Research Database (Denmark)

    Jain, A.; Castelli, Ivano Eligio; Hautier, G.

    2013-01-01

    We examine the performance of genetic algorithms (GAs) in uncovering solar water light splitters over a space of almost 19,000 perovskite materials. The entire search space was previously calculated using density functional theory to determine solutions that fulfill constraints on stability, band...

  7. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2013-01-01

    and the pipe friction and heat loss formulations are non-linear. In order to find the optimal district heating network configuration, genetic algorithm which handles the mixed integer nonlinear programming problem is chosen. The network configuration is represented with binary and integer encoding...

  8. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...

  9. A parallel genetic algorithm for the set partitioning problem

    Energy Technology Data Exchange (ETDEWEB)

    Levine, D.

    1996-12-31

    This paper describes a parallel genetic algorithm developed for the solution of the set partitioning problem- a difficult combinatorial optimization problem used by many airlines as a mathematical model for flight crew scheduling. The genetic algorithm is based on an island model where multiple independent subpopulations each run a steady-state genetic algorithm on their own subpopulation and occasionally fit strings migrate between the subpopulations. Tests on forty real-world set partitioning problems were carried out on up to 128 nodes of an IBM SP1 parallel computer. We found that performance, as measured by the quality of the solution found and the iteration on which it was found, improved as additional subpopulations were added to the computation. With larger numbers of subpopulations the genetic algorithm was regularly able to find the optimal solution to problems having up to a few thousand integer variables. In two cases, high- quality integer feasible solutions were found for problems with 36, 699 and 43,749 integer variables, respectively. A notable limitation we found was the difficulty solving problems with many constraints.

  10. Time-Delay System Identification Using Genetic Algorithm

    DEFF Research Database (Denmark)

    Yang, Zhenyu; Seested, Glen Thane

    2013-01-01

    problem through an identification approach using the real coded Genetic Algorithm (GA). The desired FOPDT/SOPDT model is directly identified based on the measured system's input and output data. In order to evaluate the quality and performance of this GA-based approach, the proposed method is compared...

  11. Navigation Constellation Design Using a Multi-Objective Genetic Algorithm

    Science.gov (United States)

    2015-03-26

    the mutation and crossover functions specified that certain design parameters be integer values [17]. Equation 21 represents the variables that...been used to force certain design variables to be integer values. Understanding the MATLAB code for the mutation and crossover functions is not...NAVIGATION CONSTELLATION DESIGN USING A MULTI-OBJECTIVE GENETIC ALGORITHM THESIS MARCH 2015

  12. District Heating Network Design and Configuration Optimization with Genetic Algorithm

    DEFF Research Database (Denmark)

    Li, Hongwei; Svendsen, Svend

    2011-01-01

    the heating plant location is allowed to vary. The connection between the heat generation plant and the end users can be represented with mixed integer and the pipe friction and heat loss formulations are non-linear. In order to find the optimal DH distribution pipeline configuration, the genetic algorithm...

  13. Optimization of composite panels using neural networks and genetic algorithms

    NARCIS (Netherlands)

    Ruijter, W.; Spallino, R.; Warnet, Laurent; de Boer, Andries

    2003-01-01

    The objective of this paper is to present first results of a running study on optimization of aircraft components (composite panels of a typical vertical tail plane) by using Genetic Algorithms (GA) and Neural Networks (NN). The panels considered are standardized to some extent but still there is a

  14. Concrete Plant Operations Optimization Using Combined Simulation and Genetic Algorithms

    NARCIS (Netherlands)

    Cao, Ming; Lu, Ming; Zhang, Jian-Ping

    2004-01-01

    This work presents a new approach for concrete plant operations optimization by combining a ready mixed concrete (RMC) production simulation tool (called HKCONSIM) with a genetic algorithm (GA) based optimization procedure. A revamped HKCONSIM computer system can be used to automate the simulation

  15. Applying Genetic Algorithms To Query Optimization in Document Retrieval.

    Science.gov (United States)

    Horng, Jorng-Tzong; Yeh, Ching-Chang

    2000-01-01

    Proposes a novel approach to automatically retrieve keywords and then uses genetic algorithms to adapt the keyword weights. Discusses Chinese text retrieval, term frequency rating formulas, vector space models, bigrams, the PAT-tree structure for information retrieval, query vectors, and relevance feedback. (Author/LRW)

  16. USING GENETIC ALGORITHMS TO DESIGN ENVIRONMENTALLY FRIENDLY PROCESSES

    Science.gov (United States)

    Genetic algorithm calculations are applied to the design of chemical processes to achieve improvements in environmental and economic performance. By finding the set of Pareto (i.e., non-dominated) solutions one can see how different objectives, such as environmental and economic ...

  17. Finite-time performance analysis for genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Finite-time performance of genetic algorithm with elitist operator in finite solution space is studied, and the relationship between evolution generation and the quality of the solution found best so far is analyzed. The estimating formulations of the expectation value as well as upper bound and lower bound for the evolution generation earliest achieving specific performance are provided.

  18. Dimensional Synthesis of Four Bar Mechanism Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    S. S. Shete

    2015-03-01

    Full Text Available The dimensional synthesis is done by using Genetic Algorithm to achieve a desired trajectory. Three problems are analyzed having different curvature. The program is authored in MATLAB® 2010a. The error is seen to be in the permissible prescribed limit. The prototyping of straight line trajectory analysis is also done in ADAMS®

  19. Transmission function models of finite population genetic algorithms

    NARCIS (Netherlands)

    Kemenade, C.H.M. van; Kok, J.N.; La Poutré, J.A.; Thierens, D.

    1998-01-01

    Infinite population models show a deterministic behaviour. Genetic algorithms with finite populations behave non-deterministicly. For small population sizes, the results obtained with these models differ strongly from the results predicted by the infinite population model. When the population size i

  20. Proposed genetic algorithms for construction site lay out

    NARCIS (Netherlands)

    Mawdesley, Michael J.; Al-Jibouri, Saad H.S.

    2003-01-01

    The positioning of temporary facilities on a construction site is an area of research which has been recognised as important but which has received relatively little attention. In this paper, a genetic algorithm is proposed to solve the problem in which m facilities are to be positioned to n