WorldWideScience

Sample records for genetic algorithm based

  1. Genetic algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steven E.

    1991-01-01

    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.

  2. Function Optimization Based on Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ying Sun

    2014-01-01

    Full Text Available Optimization method is important in engineering design and application. Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on. It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed, which is called Variable-boundary-coded Quantum Genetic Algorithm (vbQGA in which qubit chromosomes are collapsed into variable-boundary-coded chromosomes instead of binary-coded chromosomes. Therefore much shorter chromosome strings can be gained. The method of encoding and decoding of chromosome is first described before a new adaptive selection scheme for angle parameters used for rotation gate is put forward based on the core ideas and principles of quantum computation. Eight typical functions are selected to optimize to evaluate the effectiveness and performance of vbQGA against standard Genetic Algorithm (sGA and Genetic Quantum Algorithm (GQA. The simulation results show that vbQGA is significantly superior to sGA in all aspects and outperforms GQA in robustness and solving velocity, especially for multidimensional and complicated functions.

  3. Multicast Routing Based on Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    CAO Yuan-da; CAI Gui

    2005-01-01

    A new multicast routing algorithm based on the hybrid genetic algorithm (HGA) is proposed. The coding pattern based on the number of routing paths is used. A fitness function that is computed easily and makes algorithm quickly convergent is proposed. A new approach that defines the HGA's parameters is provided. The simulation shows that the approach can increase largely the convergent ratio, and the fitting values of the parameters of this algorithm are different from that of the original algorithms. The optimal mutation probability of HGA equals 0.50 in HGA in the experiment, but that equals 0.07 in SGA. It has been concluded that the population size has a significant influence on the HGA's convergent ratio when it's mutation probability is bigger. The algorithm with a small population size has a high average convergent rate. The population size has little influence on HGA with the lower mutation probability.

  4. Function Optimization Based on Quantum Genetic Algorithm

    OpenAIRE

    Ying Sun; Hegen Xiong

    2014-01-01

    Optimization method is important in engineering design and application. Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on. It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed, which is called Variable-boundary-coded Quantum Genetic Algorithm (vbQGA) in which qubit chromosomes are collapsed into variable-boundary-coded chromosomes instead of binary-coded c...

  5. Function Optimization Based on Quantum Genetic Algorithm

    OpenAIRE

    Ying Sun; Yuesheng Gu; Hegen Xiong

    2013-01-01

    Quantum genetic algorithm has the characteristics of good population diversity, rapid convergence and good global search capability and so on.It combines quantum algorithm with genetic algorithm. A novel quantum genetic algorithm is proposed ,which is called variable-boundary-coded quantum genetic algorithm (vbQGA) in which qubit chromosomes are collapsed into variableboundary- coded chromosomes instead of binary-coded chromosomes. Therefore much shorter chromosome strings can be gained.The m...

  6. Web Based Genetic Algorithm Using Data Mining

    OpenAIRE

    Ashiqur Rahman; Asaduzzaman Noman; Md. Ashraful Islam; Al-Amin Gaji

    2016-01-01

    This paper presents an approach for classifying students in order to predict their final grade based on features extracted from logged data in an education web-based system. A combination of multiple classifiers leads to a significant improvement in classification performance. Through weighting the feature vectors using a Genetic Algorithm we can optimize the prediction accuracy and get a marked improvement over raw classification. It further shows that when the number of features is few; fea...

  7. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang

    2010-01-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.

  8. Cognitive radio resource allocation based on coupled chaotic genetic algorithm

    Science.gov (United States)

    Zu, Yun-Xiao; Zhou, Jie; Zeng, Chang-Chang

    2010-11-01

    A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed.

  9. Asian Option Pricing Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    YunzhongLiu; HuiyuXuan

    2004-01-01

    The cross-fertilization between artificial intelligence and computational finance has resulted in some of the most active research areas in financial engineering. One direction is the application of machine learning techniques to pricing financial products, which is certainly one of the most complex issues in finance. In the literature, when the interest rate,the mean rate of return and the volatility of the underlying asset follow general stochastic processes, the exact solution is usually not available. In this paper, we shall illustrate how genetic algorithms (GAs), as a numerical approach, can be potentially helpful in dealing with pricing. In particular, we test the performance of basic genetic algorithms by using it to the determination of prices of Asian options, whose exact solutions is known from Black-Scholesoption pricing theory. The solutions found by basic genetic algorithms are compared with the exact solution, and the performance of GAs is ewluated accordingly. Based on these ewluations, some limitations of GAs in option pricing are examined and possible extensions to future works are also proposed.

  10. A Genetic Algorithm-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Babatunde Oluleye

    2014-07-01

    Full Text Available This article details the exploration and application of Genetic Algorithm (GA for feature selection. Particularly a binary GA was used for dimensionality reduction to enhance the performance of the concerned classifiers. In this work, hundred (100 features were extracted from set of images found in the Flavia dataset (a publicly available dataset. The extracted features are Zernike Moments (ZM, Fourier Descriptors (FD, Lengendre Moments (LM, Hu 7 Moments (Hu7M, Texture Properties (TP and Geometrical Properties (GP. The main contributions of this article are (1 detailed documentation of the GA Toolbox in MATLAB and (2 the development of a GA-based feature selector using a novel fitness function (kNN-based classification error which enabled the GA to obtain a combinatorial set of feature giving rise to optimal accuracy. The results obtained were compared with various feature selectors from WEKA software and obtained better results in many ways than WEKA feature selectors in terms of classification accuracy

  11. Web Based Genetic Algorithm Using Data Mining

    Directory of Open Access Journals (Sweden)

    Ashiqur Rahman

    2016-09-01

    Full Text Available This paper presents an approach for classifying students in order to predict their final grade based on features extracted from logged data in an education web-based system. A combination of multiple classifiers leads to a significant improvement in classification performance. Through weighting the feature vectors using a Genetic Algorithm we can optimize the prediction accuracy and get a marked improvement over raw classification. It further shows that when the number of features is few; feature weighting is works better than just feature selection. Many leading educational institutions are working to establish an online teaching and learning presence. Several systems with different capabilities and approaches have been developed to deliver online education in an academic setting. In particular, Michigan State University (MSU has pioneered some of these systems to provide an infrastructure for online instruction. The research presented here was performed on a part of the latest online educational system developed at MSU, the Learning Online Network with Computer-Assisted Personalized Approach (LON-CAPA

  12. OPTIMIZATION BASED ON LMPROVED REAL—CODED GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    ShiYu; YuShenglin

    2002-01-01

    An improved real-coded genetic algorithm is pro-posed for global optimization of functionsl.The new algo-rithm is based om the judgement of the searching perfor-mance of basic real-coded genetic algorithm.The opera-tions of basic real-coded genetic algorithm are briefly dis-cussed and selected.A kind of chaos sequence is described in detail and added in the new algorithm ad a disturbance factor.The strategy of field partition is also used to im-prove the strcture of the new algorithm.Numerical ex-periment shows that the mew genetic algorithm can find the global optimum of complex funtions with satistaiting precision.

  13. Topology control based on quantum genetic algorithm in sensor networks

    Institute of Scientific and Technical Information of China (English)

    SUN Lijuan; GUO Jian; LU Kai; WANG Ruchuan

    2007-01-01

    Nowadays,two trends appear in the application of sensor networks in which both multi-service and quality of service (QoS)are supported.In terms of the goal of low energy consumption and high connectivity,the control on topology is crucial.The algorithm of topology control based on quantum genetic algorithm in sensor networks is proposed.An advantage of the quantum genetic algorithm over the conventional genetic algorithm is demonstrated in simulation experiments.The goals of high connectivity and low consumption of energy are reached.

  14. Edge Crossing Minimization Algorithm for Hierarchical Graphs Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    We present an edge crossing minimization algorithm forhierarchical gr aphs based on genetic algorithms, and comparing it with some heuristic algorithm s. The proposed algorithm is more efficient and has the following advantages: th e frame of the algorithms is unified, the method is simple, and its implementati on and revision are easy.

  15. New Iris Localization Method Based on Chaos Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Jia Dongli; Muhammad Khurram Khan; Zhang Jiashu

    2005-01-01

    This paper present a new method based on Chaos Genetic Algorithm (CGA) to localize the human iris in a given image. First, the iris image is preprocessed to estimate the range of the iris localization, and then CGA is used to extract the boundary of the iris. Simulation results show that the proposed algorithms is efficient and robust, and can achieve sub pixel precision. Because Genetic Algorithms (GAs) can search in a large space, the algorithm does not need accurate estimation of iris center for subsequent localization, and hence can lower the requirement for original iris image processing. On this point, the present localization algirithm is superior to Daugmans algorithm.

  16. Genetic Algorithm Based Microscale Vehicle Emissions Modelling

    Directory of Open Access Journals (Sweden)

    Sicong Zhu

    2015-01-01

    Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.

  17. Warehouse Optimization Model Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Guofeng Qin

    2013-01-01

    Full Text Available This paper takes Bao Steel logistics automated warehouse system as an example. The premise is to maintain the focus of the shelf below half of the height of the shelf. As a result, the cost time of getting or putting goods on the shelf is reduced, and the distance of the same kind of goods is also reduced. Construct a multiobjective optimization model, using genetic algorithm to optimize problem. At last, we get a local optimal solution. Before optimization, the average cost time of getting or putting goods is 4.52996 s, and the average distance of the same kinds of goods is 2.35318 m. After optimization, the average cost time is 4.28859 s, and the average distance is 1.97366 m. After analysis, we can draw the conclusion that this model can improve the efficiency of cargo storage.

  18. Mobile robot dynamic path planning based on improved genetic algorithm

    Science.gov (United States)

    Wang, Yong; Zhou, Heng; Wang, Ying

    2017-08-01

    In dynamic unknown environment, the dynamic path planning of mobile robots is a difficult problem. In this paper, a dynamic path planning method based on genetic algorithm is proposed, and a reward value model is designed to estimate the probability of dynamic obstacles on the path, and the reward value function is applied to the genetic algorithm. Unique coding techniques reduce the computational complexity of the algorithm. The fitness function of the genetic algorithm fully considers three factors: the security of the path, the shortest distance of the path and the reward value of the path. The simulation results show that the proposed genetic algorithm is efficient in all kinds of complex dynamic environments.

  19. Restart-Based Genetic Algorithm for the Quadratic Assignment Problem

    Science.gov (United States)

    Misevicius, Alfonsas

    The power of genetic algorithms (GAs) has been demonstrated for various domains of the computer science, including combinatorial optimization. In this paper, we propose a new conceptual modification of the genetic algorithm entitled a "restart-based genetic algorithm" (RGA). An effective implementation of RGA for a well-known combinatorial optimization problem, the quadratic assignment problem (QAP), is discussed. The results obtained from the computational experiments on the QAP instances from the publicly available library QAPLIB show excellent performance of RGA. This is especially true for the real-life like QAPs.

  20. A Hybrid Algorithm for Satellite Data Transmission Schedule Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Yun-feng; WU Xiao-yue

    2008-01-01

    A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission. At first, based on description of satellite data transmission request, satellite data transmission task modal and satellite data transmission scheduling problem model are established. Secondly, the conflicts in scheduling are discussed. According to the meaning of possible conflict, the method to divide possible conflict task set is given. Thirdly, a hybrid algorithm which consists of genetic algorithm and heuristic information is presented. The heuristic information comes from two concepts, conflict degree and conflict number. Finally, an example shows the algorithm's feasibility and performance better than other traditional algorithms.

  1. Optimal design of steel portal frames based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Yue CHEN; Kai HU

    2008-01-01

    As for the optimal design of steel portal frames, due to both the complexity of cross selections of beams and columns and the discreteness of design variables, it is difficult to obtain satisfactory results by traditional optimization. Based on a set of constraints of the Technical Specification for Light-weighted Steel Portal Frames of China, a genetic algorithm (GA) optimization program for portal frames, written in MATLAB code, was proposed in this paper. The graph user interface (GUI) is also developed for this optimal program, so that it can be used much more conveniently. Finally, some examples illustrate the effectiveness and efficiency of the genetic-algorithm-based optimal program.

  2. Method of stereo matching based on genetic algorithm

    Science.gov (United States)

    Lu, Chaohui; An, Ping; Zhang, Zhaoyang

    2003-09-01

    A new stereo matching scheme based on image edge and genetic algorithm (GA) is presented to improve the conventional stereo matching method in this paper. In order to extract robust edge feature for stereo matching, infinite symmetric exponential filter (ISEF) is firstly applied to remove the noise of image, and nonlinear Laplace operator together with local variance of intensity are then used to detect edges. Apart from the detected edge, the polarity of edge pixels is also obtained. As an efficient search method, genetic algorithm is applied to find the best matching pair. For this purpose, some new ideas are developed for applying genetic algorithm to stereo matching. Experimental results show that the proposed methods are effective and can obtain good results.

  3. Stellar Population Analysis of Galaxies based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    Abdel-Fattah Attia; H.A.Ismail; I.M.Selim; A.M.Osman; I.A.Isaa; M.A.Marie; A.A.Shaker

    2005-01-01

    We present a new method for determining the age and relative contribution of different stellar populations in galaxies based on the genetic algorithm.We apply this method to the barred spiral galaxy NGC 3384, using CCD images in U, B, V, R and I bands. This analysis indicates that the galaxy NGC 3384 is mainly inhabited by old stellar population (age > 109 yr). Some problems were encountered when numerical simulations are used for determining the contribution of different stellar populations in the integrated color of a galaxy. The results show that the proposed genetic algorithm can search efficiently through the very large space of the possible ages.

  4. Optimizing Combination of Units Commitment Based on Improved Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    LAI Yifei; ZHANG Qianhua; JIA Junping

    2007-01-01

    GAs are general purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms, such as natural selection, genetic recombination and survival of the fittest. By use of coding betterment, the dynamic changes of the mutation rate and the crossover probability, the dynamic choice of subsistence, the reservation of the optimal fitness value, a modified genetic algorithm for optimizing combination of units in thermal power plants is proposed.And through taking examples, test result are analyzed and compared with results of some different algorithms. Numerical results show available value for the unit commitment problem with examples.

  5. Identification of Hammerstein Model Based on Quantum Genetic Algorithm

    OpenAIRE

    Zhang Hai Li

    2013-01-01

    Nonlinear system identification is a main topic of modern identification. A new method for nonlinear system identification is presented by using Quantum Genetic Algorithm(QGA).The problems of nonlinear system identification are cast as function optimization overprameter space,and the Quantum Genetic Algorithm is adopted to solve the optimization problem. Simulation experiments show that: compared with the genetic algorithm, quantum genetic algorithm is an effective swarm intelligence algorith...

  6. Manipulator Neural Network Control Based on Fuzzy Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The three-layer forward neural networks are used to establish the inverse kinem a tics models of robot manipulators. The fuzzy genetic algorithm based on the line ar scaling of the fitness value is presented to update the weights of neural net works. To increase the search speed of the algorithm, the crossover probability and the mutation probability are adjusted through fuzzy control and the fitness is modified by the linear scaling method in FGA. Simulations show that the propo sed method improves considerably the precision of the inverse kinematics solutio ns for robot manipulators and guarantees a rapid global convergence and overcome s the drawbacks of SGA and the BP algorithm.

  7. Optimization of unit commitment based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    蔡兴国; 初壮

    2002-01-01

    How to solve unit commitment and load dispatch of power system by genetic algorithms is discussed in this paper. A combination encoding scheme of binary encoding and floating number encoding and corresponding genetic operators are developed. Meanwhile a contract mapping genetic algorithm is used to enhance traditional GA' s convergence. The result of a practical example shows that this algorithm is effective.

  8. Haplotyping a single triploid individual based on genetic algorithm.

    Science.gov (United States)

    Wu, Jingli; Chen, Xixi; Li, Xianchen

    2014-01-01

    The minimum error correction model is an important combinatorial model for haplotyping a single individual. In this article, triploid individual haplotype reconstruction problem is studied by using the model. A genetic algorithm based method GTIHR is presented for reconstructing the triploid individual haplotype. A novel coding method and an effectual hill-climbing operator are introduced for the GTIHR algorithm. This relatively short chromosome code can lead to a smaller solution space, which plays a positive role in speeding up the convergence process. The hill-climbing operator ensures algorithm GTIHR converge at a good solution quickly, and prevents premature convergence simultaneously. The experimental results prove that algorithm GTIHR can be implemented efficiently, and can get higher reconstruction rate than previous algorithms.

  9. Genetic algorithm-based evaluation of spatial straightness error

    Institute of Scientific and Technical Information of China (English)

    崔长彩; 车仁生; 黄庆成; 叶东; 陈刚

    2003-01-01

    A genetic algorithm ( GA ) -based approach is proposed to evaluate the straightness error of spatial lines. According to the mathematical definition of spatial straightness, a verification model is established for straightness error, and the fitness function of GA is then given and the implementation techniques of the proposed algorithm is discussed in detail. The implementation techniques include real number encoding, adaptive variable range choosing, roulette wheel and elitist combination selection strategies, heuristic crossover and single point mutation schemes etc. An application example is quoted to validate the proposed algorithm. The computation result shows that the GA-based approach is a superior nonlinear parallel optimization method. The performance of the evolution population can be improved through genetic operations such as reproduction, crossover and mutation until the optimum goal of the minimum zone solution is obtained. The quality of the solution is better and the efficiency of computation is higher than other methods.

  10. Genetic Algorithm based PID controller for Frequency Regulation Ancillary services

    Directory of Open Access Journals (Sweden)

    Sandeep Bhongade

    2010-12-01

    Full Text Available In this paper, the parameters of Proportional, Integral and Derivative (PID controller for Automatic Generation Control (AGC suitable in restructured power system is tuned according to Generic Algorithms (GAs based performance indices. The key idea of the proposed method is to use the fitness function based on Area Control Error (ACE. The functioning of the proposed Genetic Algorithm based PID (GAPID controller has been demonstrated on a 75-bus Indian power system network and the results have been compared with those obtained by using Least Square Minimization method.

  11. A New Genetic Algorithm Methodology for Design Optimization of Truss Structures: Bipopulation-Based Genetic Algorithm with Enhanced Interval Search

    Directory of Open Access Journals (Sweden)

    Tugrul Talaslioglu

    2009-01-01

    Full Text Available A new genetic algorithm (GA methodology, Bipopulation-Based Genetic Algorithm with Enhanced Interval Search (BGAwEIS, is introduced and used to optimize the design of truss structures with various complexities. The results of BGAwEIS are compared with those obtained by the sequential genetic algorithm (SGA utilizing a single population, a multipopulation-based genetic algorithm (MPGA proposed for this study and other existing approaches presented in literature. This study has two goals: outlining BGAwEIS's fundamentals and evaluating the performances of BGAwEIS and MPGA. Consequently, it is demonstrated that MPGA shows a better performance than SGA taking advantage of multiple populations, but BGAwEIS explores promising solution regions more efficiently than MPGA by exploiting the feasible solutions. The performance of BGAwEIS is confirmed by better quality degree of its optimal designations compared to algorithms proposed here and described in literature.

  12. NOVEL QUANTUM-INSPIRED GENETIC ALGORITHM BASED ON IMMUNITY

    Institute of Scientific and Technical Information of China (English)

    Li Ying; Zhao Rongchun; Zhang Yanning; Jiao Licheng

    2005-01-01

    A novel algorithm, the Immune Quantum-inspired Genetic Algorithm (IQGA), is proposed by introducing immune concepts and methods into Quantum-inspired Genetic Algorithm (QGA). With the condition of preserving QGA's advantages, IQGA utilizes the characteristics and knowledge in the pending problems for restraining the repeated and ineffective operations during evolution, so as to improve the algorithm efficiency. The experimental results of the knapsack problem show that the performance of IQGA is superior to the Conventional Genetic Algorithm (CGA), the Immune Genetic Algorithm (IGA) and QGA.

  13. Identification of Hammerstein Model Based on Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhang Hai Li

    2013-07-01

    Full Text Available Nonlinear system identification is a main topic of modern identification. A new method for nonlinear system identification is presented by using Quantum Genetic Algorithm(QGA.The problems of nonlinear system identification are cast as function optimization overprameter space,and the Quantum Genetic Algorithm is adopted to solve the optimization problem. Simulation experiments show that: compared with the genetic algorithm, quantum genetic algorithm is an effective swarm intelligence algorithm, its salient features of the algorithm parameters, small population size, and the use of Quantum gate update populations, greatly improving the recognition in the optimization of speed and accuracy. Simulation results show the effectiveness of the proposed method.

  14. Efficient Satellite Scheduling Based on Improved Vector Evaluated Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tengyue Mao

    2012-03-01

    Full Text Available Satellite scheduling is a typical multi-peak, many-valley, nonlinear multi-objective optimization problem. How to effectively implement the satellite scheduling is a crucial research in space areas.This paper mainly discusses the performance of VEGA (Vector Evaluated Genetic Algorithm based on the study of basic principles of VEGA algorithm, algorithm realization and test function, and then improves VEGA algorithm through introducing vector coding, new crossover and mutation operators, new methods to assign fitness and hold good individuals. As a result, the diversity and convergence of improved VEGA algorithm of improved VEGA algorithm have been significantly enhanced and will be applied to Earth-Mars orbit optimization. At the same time, this paper analyzes the results of the improved VEGA, whose results of performance analysis and evaluation show that although VEGA has a profound impact upon multi-objective evolutionary research,  multi-objective evolutionary algorithm on the basis of Pareto seems to be a more effective method to get the non-dominated solutions from the perspective of diversity and convergence of experimental result. Finally, based on Visual C + + integrated development environment, we have implemented improved vector evaluation algorithm in the satellite scheduling.

  15. Application of genetic algorithm to hexagon-based motion estimation.

    Science.gov (United States)

    Kung, Chih-Ming; Cheng, Wan-Shu; Jeng, Jyh-Horng

    2014-01-01

    With the improvement of science and technology, the development of the network, and the exploitation of the HDTV, the demands of audio and video become more and more important. Depending on the video coding technology would be the solution for achieving these requirements. Motion estimation, which removes the redundancy in video frames, plays an important role in the video coding. Therefore, many experts devote themselves to the issues. The existing fast algorithms rely on the assumption that the matching error decreases monotonically as the searched point moves closer to the global optimum. However, genetic algorithm is not fundamentally limited to this restriction. The character would help the proposed scheme to search the mean square error closer to the algorithm of full search than those fast algorithms. The aim of this paper is to propose a new technique which focuses on combing the hexagon-based search algorithm, which is faster than diamond search, and genetic algorithm. Experiments are performed to demonstrate the encoding speed and accuracy of hexagon-based search pattern method and proposed method.

  16. Genetic Algorithms, Neural Networks, and Time Effectiveness Algorithm Based Air Combat Intelligence Simulation System

    Institute of Scientific and Technical Information of China (English)

    曾宪钊; 成冀; 安欣; 方礼明

    2002-01-01

    This paper introduces a new Air Combat Intelligence Simulation System (ACISS) in a 32 versus 32 air combat, describes three methods: Genetic Algorithms (GA) in the multi-targeting decision and Evading Missile Rule Base learning, Neural Networks (NN) in the maneuvering decision, and Time Effectiveness Algorithm (TEA) in the adjudicating an air combat and the evaluating evading missile effectiveness.

  17. A dynamic fuzzy clustering method based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan; ZHOU Chunguang; LIANG Yanchun; GUO Dongwei

    2003-01-01

    A dynamic fuzzy clustering method is presented based on the genetic algorithm. By calculating the fuzzy dissimilarity between samples the essential associations among samples are modeled factually. The fuzzy dissimilarity between two samples is mapped into their Euclidean distance, that is, the high dimensional samples are mapped into the two-dimensional plane. The mapping is optimized globally by the genetic algorithm, which adjusts the coordinates of each sample, and thus the Euclidean distance, to approximate to the fuzzy dissimilarity between samples gradually. A key advantage of the proposed method is that the clustering is independent of the space distribution of input samples, which improves the flexibility and visualization. This method possesses characteristics of a faster convergence rate and more exact clustering than some typical clustering algorithms. Simulated experiments show the feasibility and availability of the proposed method.

  18. Immune and Genetic Algorithm Based Assembly Sequence Planning

    Institute of Scientific and Technical Information of China (English)

    YANG Jian-guo; LI Bei-zhi; YU Lei; JIN Yu-song

    2004-01-01

    In this paper an assembly sequence planning model inspired by natural immune and genetic algorithm (ASPIG) based on the part degrees of freedom matrix (PDFM) is proposed, and a proto system - DSFAS based on the ASPIG is introduced to solve assembly sequence problem. The concept and generation of PDFM and DSFAS are also discussed. DSFAS can prevent premature convergence, and promote population diversity, and can accelerate the learning and convergence speed in behavior evolution problem.

  19. Application layer multicast routing solution based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Peng CHENG; Qiufeng WU; Qionghai DAI

    2009-01-01

    Application layer multicast routing is a multi-objective optimization problem.Three routing con-straints,tree's cost,tree's balance and network layer load distribution are analyzed in this paper.The three fitness functions are used to evaluate a multicast tree on the three indexes respectively and one general fitness function is generated.A novel approach based on genetic algorithms is proposed.Numerical simulations show that,compared with geometrical routing rules,the proposed algorithm improve all three indexes,especially on cost and network layer load distribution indexes.

  20. Genetic Algorithm Based Hybrid Fuzzy System for Assessing Morningness

    Directory of Open Access Journals (Sweden)

    Animesh Biswas

    2014-01-01

    Full Text Available This paper describes a real life case example on the assessment process of morningness of individuals using genetic algorithm based hybrid fuzzy system. It is observed that physical and mental performance of human beings in different time slots of a day are majorly influenced by morningness orientation of those individuals. To measure the morningness of people various self-reported questionnaires were developed by different researchers in the past. Among them reduced version of Morningness-Eveningness Questionnaire is mostly accepted. Almost all of the linguistic terms used in questionnaires are fuzzily defined. So, assessing them in crisp environments with their responses does not seem to be justifiable. Fuzzy approach based research works for assessing morningness of people are very few in the literature. In this paper, genetic algorithm is used to tune the parameters of a Mamdani fuzzy inference model to minimize error with their predicted outputs for assessing morningness of people.

  1. Genetic algorithm for network cost minimization using threshold based discounting

    Directory of Open Access Journals (Sweden)

    Hrvoje Podnar

    2003-01-01

    Full Text Available We present a genetic algorithm for heuristically solving a cost minimization problem applied to communication networks with threshold based discounting. The network model assumes that every two nodes can communicate and offers incentives to combine flow from different sources. Namely, there is a prescribed threshold on every link, and if the total flow on a link is greater than the threshold, the cost of this flow is discounted by a factor α. A heuristic algorithm based on genetic strategy is developed and applied to a benchmark set of problems. The results are compared with former branch and bound results using the CPLEX® solver. For larger data instances we were able to obtain improved solutions using less CPU time, confirming the effectiveness of our heuristic approach.

  2. A novel pipeline based FPGA implementation of a genetic algorithm

    Science.gov (United States)

    Thirer, Nonel

    2014-05-01

    To solve problems when an analytical solution is not available, more and more bio-inspired computation techniques have been applied in the last years. Thus, an efficient algorithm is the Genetic Algorithm (GA), which imitates the biological evolution process, finding the solution by the mechanism of "natural selection", where the strong has higher chances to survive. A genetic algorithm is an iterative procedure which operates on a population of individuals called "chromosomes" or "possible solutions" (usually represented by a binary code). GA performs several processes with the population individuals to produce a new population, like in the biological evolution. To provide a high speed solution, pipelined based FPGA hardware implementations are used, with a nstages pipeline for a n-phases genetic algorithm. The FPGA pipeline implementations are constraints by the different execution time of each stage and by the FPGA chip resources. To minimize these difficulties, we propose a bio-inspired technique to modify the crossover step by using non identical twins. Thus two of the chosen chromosomes (parents) will build up two new chromosomes (children) not only one as in classical GA. We analyze the contribution of this method to reduce the execution time in the asynchronous and synchronous pipelines and also the possibility to a cheaper FPGA implementation, by using smaller populations. The full hardware architecture for a FPGA implementation to our target ALTERA development card is presented and analyzed.

  3. Parameter Optimization of Linear Quadratic Controller Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Jimin; SHANG Chaoxuan; ZOU Minghu

    2007-01-01

    The selection of weighting matrix in design of the linear quadratic optimal controller is an important topic in the control theory. In this paper, an approach based on genetic algorithm is presented for selecting the weighting matrix for the optimal controller. Genetic algorithm is adaptive heuristic search algorithm premised on the evolutionary ideas of natural selection and genetic. In this algorithm, the fitness function is used to evaluate individuals and reproductive success varies with fitness. In the design of the linear quadratic optimal controller, the fitness function has relation to the anticipated step response of the system. Not only can the controller designed by this approach meet the demand of the performance indexes of linear quadratic controller, but also satisfy the anticipated step response of close-loop system. The method possesses a higher calculating efficiency and provides technical support for the optimal controller in engineering application. The simulation of a three-order single-input single-output (SISO) system has demonstrated the feasibility and validity of the approach.

  4. A new automatic alignment technology for single mode fiber-waveguide based on improved genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yu; CHEN Zhuang-zhuang; LI Ya-juan; DUAN Jian

    2009-01-01

    A novel automatic alignment algorithm of single mode fiber-waveguide based on improved genetic algorithm is proposed. The genetic searching is based on the dynamic crossover operator and the adaptive mutation operator to solve the premature convergence of simple genetic algorithm The improved genetic algorithm combines with hill-climbing method and pattern searching algorithm, to solve low precision of simple genetic algorithm in later searching. The simulation results indicate that the improved genetic algorithm can rise the alignment precision and reach the coupling loss of 0.01 dB when platform moves near 207 space points averagely.

  5. Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos

    Directory of Open Access Journals (Sweden)

    Jian Wang

    2016-01-01

    Full Text Available In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext attack in the process of pixel position scrambling, we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusion of encryption algorithm. By introduction in the process of diffusion to encrypt plaintext feedback mechanism, it improves sensitivity of plaintext, algorithm selection plaintext, and ciphertext attack resistance. At the same time, it also makes full use of the characteristics of image information. Finally, experimental simulation and theoretical analysis show that our proposed algorithm can not only effectively resist plaintext (ciphertext attack, statistical attack, and information entropy attack but also effectively improve the efficiency of image encryption, which is a relatively secure and effective way of image communication.

  6. Healing Temperature of Hybrid Structures Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    赵中伟; 陈志华; 刘红波

    2016-01-01

    The healing temperature of suspen-dome with stacked arches(SDSA)and arch-supported single-layer lattice shell structures was investigated based on the genetic algorithm. The temperature field of arch under solar radiation was derived by FLUENT to investigate the influence of solar radiation on the determination of the healing temperature. Moreover, a multi-scale model was established to apply the complex temperature field under solar radiation. The change in the mechanical response of these two kinds of structures with the healing temperature was discussed. It can be concluded that solar radiation has great influence on the healing temperature, and the genetic algorithm can be effectively used in the optimization of the healing temperature for hybrid structures.

  7. A meta-learning system based on genetic algorithms

    Science.gov (United States)

    Pellerin, Eric; Pigeon, Luc; Delisle, Sylvain

    2004-04-01

    The design of an efficient machine learning process through self-adaptation is a great challenge. The goal of meta-learning is to build a self-adaptive learning system that is constantly adapting to its specific (and dynamic) environment. To that end, the meta-learning mechanism must improve its bias dynamically by updating the current learning strategy in accordance with its available experiences or meta-knowledge. We suggest using genetic algorithms as the basis of an adaptive system. In this work, we propose a meta-learning system based on a combination of the a priori and a posteriori concepts. A priori refers to input information and knowledge available at the beginning in order to built and evolve one or more sets of parameters by exploiting the context of the system"s information. The self-learning component is based on genetic algorithms and neural Darwinism. A posteriori refers to the implicit knowledge discovered by estimation of the future states of parameters and is also applied to the finding of optimal parameters values. The in-progress research presented here suggests a framework for the discovery of knowledge that can support human experts in their intelligence information assessment tasks. The conclusion presents avenues for further research in genetic algorithms and their capability to learn to learn.

  8. Family genetic algorithms based on gene exchange and its application

    Institute of Scientific and Technical Information of China (English)

    Li Jianhua; Ding Xiangqian; Wang Sunan; Yu Qing

    2006-01-01

    Genetic Algorithms (GA) are a search techniques based on mechanics of nature selection and have already been successfully applied in many diverse areas. However, increasing samples show that GA's performance is not as good as it was expected to be. Criticism of this algorithm includes the slow speed and premature result during convergence procedure. In order to improve the performance, the population size and individuals' space is emphatically described. The influence of individuals' space and population size on the operators is analyzed. And a novel family genetic algorithm (FGA) is put forward based on this analysis. In this novel algorithm, the optimum solution families closed to quality individuals is constructed, which is exchanged found by a search in the world space. Search will be done in this microspace. The family that can search better genes in a limited period of time would win a new life. At the same time, the best gene of this micro space with the basic population in the world space is exchanged. Finally, the FGA is applied to the function optimization and image matching through several experiments. The results show that the FGA possessed high performance.

  9. Feature Selection for Image Retrieval based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Preeti Kushwaha

    2016-12-01

    Full Text Available This paper describes the development and implementation of feature selection for content based image retrieval. We are working on CBIR system with new efficient technique. In this system, we use multi feature extraction such as colour, texture and shape. The three techniques are used for feature extraction such as colour moment, gray level co- occurrence matrix and edge histogram descriptor. To reduce curse of dimensionality and find best optimal features from feature set using feature selection based on genetic algorithm. These features are divided into similar image classes using clustering for fast retrieval and improve the execution time. Clustering technique is done by k-means algorithm. The experimental result shows feature selection using GA reduces the time for retrieval and also increases the retrieval precision, thus it gives better and faster results as compared to normal image retrieval system. The result also shows precision and recall of proposed approach compared to previous approach for each image class. The CBIR system is more efficient and better performs using feature selection based on Genetic Algorithm.

  10. Genetic based optimization for multicast routing algorithm for MANET

    Indian Academy of Sciences (India)

    C Rajan; N Shanthi

    2015-12-01

    Mobile Ad hoc Network (MANET) is established for a limited period, for special extemporaneous services related to mobile applications. This ad hoc network is set up for a limited period, in environments that change with the application. While in Internet the TCP/IP protocol suite supports a wide range of application, in MANETs protocols are tuned to specific customer/application. Multicasting is emerging as a popular communication format where the same packet is sent to multiple nodes in a network. Routing in multicasting involves maintaining routes and finding new node locations in a group and is NP-complete due to the dynamic nature of the network. In this paper, a Hybrid Genetic Based Optimization for Multicast Routing algorithm is proposed. The proposed algorithm uses the best features of Genetic Algorithm (GA) and particle swarm optimization (PSO) to improve the solution. Simulations were conducted by varying number of mobile nodes and results compared with Multicast AODV (MAODV) protocol, PSO based and GA based solution. The proposed optimization improves jitter, end to end delay and Packet Delivery Ratio (PDR) with faster convergence.

  11. Genetic Algorithm Based Proportional Integral Controller Design for Induction Motor

    Directory of Open Access Journals (Sweden)

    Mohanasundaram Kuppusamy

    2011-01-01

    Full Text Available Problem statement: This study has expounded the application of evolutionary computation method namely Genetic Algorithm (GA for estimation of feedback controller parameters for induction motor. GA offers certain advantages such as simple computational steps, derivative free optimization, reduced number of iterations and assured near global optima. The development of the method is well documented and computed and measured results are presented. Approach: The design of PI controller parameter for three phase induction motor drives was done using Genetic Algorithm. The objective function of motor current reduction, using PI controller, at starting is formulated as an optimization problem and solved with Genetic Algorithm. Results: The results showed the selected values of PI controller parameter using genetic algorithm approach, with objective of induction motor starting current reduction. Conclusions/Recommendation: The results proved the robustness and easy implementation of genetic algorithm selection of PI parameters for induction motor starting.

  12. Support Vector Machine Ensemble Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LI Ye; YIN Ru-po; CAI Yun-ze; XU Xiao-ming

    2006-01-01

    Support vector machines (SVMs) have been introduced as effective methods for solving classification problems.However, due to some limitations in practical applications,their generalization performance is sometimes far from the expected level. Therefore, it is meaningful to study SVM ensemble learning. In this paper, a novel genetic algorithm based ensemble learning method, namely Direct Genetic Ensemble (DGE), is proposed. DGE adopts the predictive accuracy of ensemble as the fitness function and searches a good ensemble from the ensemble space. In essence, DGE is also a selective ensemble learning method because the base classifiers of the ensemble are selected according to the solution of genetic algorithm. In comparison with other ensemble learning methods, DGE works on a higher level and is more direct. Different strategies of constructing diverse base classifiers can be utilized in DGE.Experimental results show that SVM ensembles constructed by DGE can achieve better performance than single SVMs,bagged and boosted SVM ensembles. In addition, some valuable conclusions are obtained.

  13. Genetic Algorithm based Decentralized PI Type Controller: Load Frequency Control

    Science.gov (United States)

    Dwivedi, Atul; Ray, Goshaidas; Sharma, Arun Kumar

    2016-12-01

    This work presents a design of decentralized PI type Linear Quadratic (LQ) controller based on genetic algorithm (GA). The proposed design technique allows considerable flexibility in defining the control objectives and it does not consider any knowledge of the system matrices and moreover it avoids the solution of algebraic Riccati equation. To illustrate the results of this work, a load-frequency control problem is considered. Simulation results reveal that the proposed scheme based on GA is an alternative and attractive approach to solve load-frequency control problem from both performance and design point of views.

  14. Seasonal Time Series Analysis Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Pattern discovery from the seasonal time-series is of importance. Traditionally, most of the algorithms of pattern discovery in time series are similar. A novel mode of time series is proposed which integrates the Genetic Algorithm (GA) for the actual problem. The experiments on the electric power yield sequence models show that this algorithm is practicable and effective.

  15. An improved localization algorithm based on genetic algorithm in wireless sensor networks.

    Science.gov (United States)

    Peng, Bo; Li, Lei

    2015-04-01

    Wireless sensor network (WSN) are widely used in many applications. A WSN is a wireless decentralized structure network comprised of nodes, which autonomously set up a network. The node localization that is to be aware of position of the node in the network is an essential part of many sensor network operations and applications. The existing localization algorithms can be classified into two categories: range-based and range-free. The range-based localization algorithm has requirements on hardware, thus is expensive to be implemented in practice. The range-free localization algorithm reduces the hardware cost. Because of the hardware limitations of WSN devices, solutions in range-free localization are being pursued as a cost-effective alternative to more expensive range-based approaches. However, these techniques usually have higher localization error compared to the range-based algorithms. DV-Hop is a typical range-free localization algorithm utilizing hop-distance estimation. In this paper, we propose an improved DV-Hop algorithm based on genetic algorithm. Simulation results show that our proposed algorithm improves the localization accuracy compared with previous algorithms.

  16. Key Frames Extraction Based on the Improved Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dong-sheng; JIANG Wei; YI Peng-fei; LIURui

    2014-01-01

    In order toovercomethe poor local search ability of genetic algorithm, resulting in the basic genetic algorithm is time-consuming, and low search abilityin the late evolutionary, we use thegray coding instead ofbinary codingatthebeginning of the coding;we use multi-point crossoverto replace the originalsingle-point crossoveroperation.Finally, theexperimentshows that the improved genetic algorithmnot only has a strong search capability, but also thestability has been effectively improved.

  17. Resizing Technique-Based Hybrid Genetic Algorithm for Optimal Drift Design of Multistory Steel Frame Buildings

    Directory of Open Access Journals (Sweden)

    Hyo Seon Park

    2014-01-01

    Full Text Available Since genetic algorithm-based optimization methods are computationally expensive for practical use in the field of structural optimization, a resizing technique-based hybrid genetic algorithm for the drift design of multistory steel frame buildings is proposed to increase the convergence speed of genetic algorithms. To reduce the number of structural analyses required for the convergence, a genetic algorithm is combined with a resizing technique that is an efficient optimal technique to control the drift of buildings without the repetitive structural analysis. The resizing technique-based hybrid genetic algorithm proposed in this paper is applied to the minimum weight design of three steel frame buildings. To evaluate the performance of the algorithm, optimum weights, computational times, and generation numbers from the proposed algorithm are compared with those from a genetic algorithm. Based on the comparisons, it is concluded that the hybrid genetic algorithm shows clear improvements in convergence properties.

  18. Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm

    Directory of Open Access Journals (Sweden)

    Jianyong Liu

    2015-01-01

    Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.

  19. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Zu Yun-Xiao; Zhou Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed,and a fitness function is provided.Simulations are conducted using the adaptive niche immune genetic algorithm,the simulated annealing algorithm,the quantum genetic algorithm and the simple genetic algorithm,respectively.The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation,and has quick convergence speed and strong global searching capability,which effectively reduces the system power consumption and bit error rate.

  20. Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm

    Science.gov (United States)

    Zu, Yun-Xiao; Zhou, Jie

    2012-01-01

    Multi-user cognitive radio network resource allocation based on the adaptive niche immune genetic algorithm is proposed, and a fitness function is provided. Simulations are conducted using the adaptive niche immune genetic algorithm, the simulated annealing algorithm, the quantum genetic algorithm and the simple genetic algorithm, respectively. The results show that the adaptive niche immune genetic algorithm performs better than the other three algorithms in terms of the multi-user cognitive radio network resource allocation, and has quick convergence speed and strong global searching capability, which effectively reduces the system power consumption and bit error rate.

  1. Improved Adaptive LSB Steganography Based on Chaos and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yu Lifang

    2010-01-01

    Full Text Available We propose a novel steganographic method in JPEG images with high performance. Firstly, we propose improved adaptive LSB steganography, which can achieve high capacity while preserving the first-order statistics. Secondly, in order to minimize visual degradation of the stego image, we shuffle bits-order of the message based on chaos whose parameters are selected by the genetic algorithm. Shuffling message's bits-order provides us with a new way to improve the performance of steganography. Experimental results show that our method outperforms classical steganographic methods in image quality, while preserving characteristics of histogram and providing high capacity.

  2. Recognition of digital characteristics based new improved genetic algorithm

    Science.gov (United States)

    Wang, Meng; Xu, Guoqiang; Lin, Zihao

    2017-08-01

    In the field of digital signal processing, Estimating the characteristics of signal modulation parameters is an significant research direction. The paper determines the set of eigenvalue which can show the difference of the digital signal modulation based on the deep research of the new improved genetic algorithm. Firstly take them as the best gene pool; secondly, The best gene pool will be changed in the genetic evolvement by selecting, overlapping and eliminating each other; Finally, Adapting the strategy of futher enhance competition and punishment to more optimizer the gene pool and ensure each generation are of high quality gene. The simulation results show that this method not only has the global convergence, stability and faster convergence speed.

  3. SNMP Based Network Optimization Technique Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    M. Mohamed Surputheen

    2012-03-01

    Full Text Available Genetic Algorithms (GAs has innumerable applications through the optimization techniques and network optimization is one of them. SNMP (Simple Network Management Protocol is used as the basic network protocol for monitoring the network activities health of the systems. This paper deals with adding Intelligence to the various aspects of SNMP by adding optimization techniques derived out of genetic algorithms, which enhances the performance of SNMP processes like routing.

  4. Optimal Design of Materials for DJMP Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FENG Zhong-ren; WANG Xiong-jiang

    2004-01-01

    The genetic algorithm was used in optimal design of deep jet method pile. The cost of deep jetmethod pile in one unit area of foundation was taken as the objective function. All the restrains were listed followingthe corresponding specification. Suggestions were proposed and the modified. The real-coded Genetic Algorithm wasgiven to deal with the problems of excessive computational cost and premature convergence. Software system of opti-mal design of deep jet method pile was developed.

  5. Parallel Genetic Algorithm Based on the MPI Environment

    OpenAIRE

    2012-01-01

    Current genetic algorithm require both management of huge amounts of data and heavy computation, fulfilling these requirements calls for simple ways to implement parallel computing. In this paper, serial genetic algorithm was designed to parallel GA; this technology appears to be particularly well adapted to this task. Here we introduce two related mechanism: elite reserve strategy and MPI. The first can increase the possible to get the optimal solution of the population, while the message pa...

  6. Neural Network Control Optimization based on Improved Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zhaoyin Zhang

    2013-08-01

    Full Text Available To clearly find the effect of factors in network classification, the classification process of PNN is analyzed in detail. The XOR problem is described by PNN and the elements in PNN are also studied. Through simulations and combined with genetic algorithm, a novel PNN supervised learning algorithm is proposed. This algorithm introduces the classification accuracy of training samples to the network parameter learning. It adopts genetic algorithm to train the PNN smoothing parameter and hidden centric vector. Then the effects of hidden neuron number, hidden centric vector and smoothing parameter in PNN are verified in the experiments. It is shown that this algorithm is superior to other PNN learning algorithms on classification effect.

  7. Multiple Query Evaluation Based on an Enhanced Genetic Algorithm.

    Science.gov (United States)

    Tamine, Lynda; Chrisment, Claude; Boughanem, Mohand

    2003-01-01

    Explains the use of genetic algorithms to combine results from multiple query evaluations to improve relevance in information retrieval. Discusses niching techniques, relevance feedback techniques, and evolution heuristics, and compares retrieval results obtained by both genetic multiple query evaluation and classical single query evaluation…

  8. Parallel Genetic Algorithm Based on the MPI Environment

    Directory of Open Access Journals (Sweden)

    Wen-Juan Liu

    2012-11-01

    Full Text Available Current genetic algorithm require both management of huge amounts of data and heavy computation, fulfilling these requirements calls for simple ways to implement parallel computing. In this paper, serial genetic algorithm was designed to parallel GA; this technology appears to be particularly well adapted to this task. Here we introduce two related mechanism: elite reserve strategy and MPI. The first can increase the possible to get the optimal solution of the population, while the message passing interface MPI support is adding to form a new coarse-grain model of distributed parallel genetic algorithm. This new algorithm is tested by the classical and effective Knapsack problem, analysis shows that, the introduction of the parallel strategies can reduce the communication between different machines and the scheduling time of the heterogeneous system, thereby accelerate the traditional genetic algorithm search process, ultimately concluded that the parallel genetic algorithm is very promising and this framework could have a wide range of applications while maintaining good computational efficiency, scalability and ease of maintenance.

  9. Composite multiobjective optimization beamforming based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Shi Jing; Meng Weixiao; Zhang Naitong; Wang Zheng

    2006-01-01

    All thc parameters of beamforming are usually optimized simultaneously in implementing the optimization of antenna array pattern with multiple objectives and parameters by genetic algorithms (GAs).Firstly, this paper analyzes the performance of fitness functions of previous algorithms. It shows that original algorithms make the fitness functions too complex leading to large amount of calculation, and also the selection of the weight of parameters very sensitive due to many parameters optimized simultaneously. This paper proposes a kind of algorithm of composite beamforming, which detaches the antenna array into two parts corresponding to optimization of different objective parameters respectively. New algorithm substitutes the previous complex fitness function with two simpler functions. Both theoretical analysis and simulation results show that this method simplifies the selection of weighting parameters and reduces the complexity of calculation. Furthermore, the algorithm has better performance in lowering side lobe and interferences in comparison with conventional algorithms of beamforming in the case of slightly widening the main lobe.

  10. The Effective Clustering Partition Algorithm Based on the Genetic Evolution

    Institute of Scientific and Technical Information of China (English)

    LIAO Qin; LI Xi-wen

    2006-01-01

    To the problem that it is hard to determine the clustering number and the abnormal points by using the clustering validity function, an effective clustering partition model based on the genetic algorithm is built in this paper. The solution to the problem is formed by the combination of the clustering partition and the encoding samples, and the fitness function is defined by the distances among and within clusters. The clustering number and the samples in each cluster are determined and the abnormal points are distinguished by implementing the triple random crossover operator and the mutation. Based on the known sample data, the results of the novel method and the clustering validity function are compared. Numerical experiments are given and the results show that the novel method is more effective.

  11. Voidage measurement based on genetic algorithm and electrical capacitance tomography

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-wei; WANG Bao-liang; HUANG Zhi-yao; LI Hai-qing

    2005-01-01

    A new voidage measurement method based on electrical capacitance tomography (ECT) technique, Genetic Algorithm (GA) and Partial Least Square (PLS) method was proposed. The voidage measurement model, linear capacitance combination, was developed to measure on-line voidage. GA and PLS method were used to determine the coefficients of the voidage measurement model. GA was used to explore the optimal capacitance combination which gave significant contribution to the voidage measurement. PLS method was applied to determine the weight coefficient of the contribution of each capacitance to the voidage measurement. Flow pattern identification result was introduced to improve the voidage measurement accuracy. Experimental results showed that the proposed voidage measurement method is effective and that the measurement accuracy is satisfactory.

  12. FRACTIONAL ORDER SYSTEM IDENTIFICATION BASED ON GENETIC ALGORITHMS

    Directory of Open Access Journals (Sweden)

    MAZIN Z. OTHMAN

    2013-12-01

    Full Text Available System identification deals with estimating the plant parameters under control using input-output measuring data. Most of practical plants have fractional order dynamic properties which are based on integration and differentiation of noninteger order. In this work the structure and the parameters of fractional order unknown transfer function are estimated using input-output data. Integer order Least Squares identification is used first to confirm the structure (order of the unknown transfer function. Then, Genetic Algorithms (GAs is followed to find the most accurate fractional order estimate that represents the system. Illustrative examples are presented in which fractional order transfer functions are identified in a way that faithfully estimates the dynamics of the unknown plants.

  13. GENETIC ALGORITHM BASED CONCEPT DESIGN TO OPTIMIZE NETWORK LOAD BALANCE

    Directory of Open Access Journals (Sweden)

    Ashish Jain

    2012-07-01

    Full Text Available Multiconstraints optimal network load balancing is an NP-hard problem and it is an important part of traffic engineering. In this research we balance the network load using classical method (brute force approach and dynamic programming is used but result shows the limitation of this method but at a certain level we recognized that the optimization of balanced network load with increased number of nodes and demands is intractable using the classical method because the solution set increases exponentially. In such case the optimization techniques like evolutionary techniques can employ for optimizing network load balance. In this paper we analyzed proposed classical algorithm and evolutionary based genetic approach is devise as well as proposed in this paper for optimizing the balance network load.

  14. Extended Range Guided Munition Parameter Optimization Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Many factors influencing range of extended range guided munition (ERGM) are analyzed. The definition domain of the most important three parameters are ascertained by preparatory mathematical simulation, the optimized mathematical model of ERGM maximum range with boundary conditions is created, and parameter optimization based on genetic algorithm (GA) is adopted. In the GA design, three-point crossover is used and the best chromosome is kept so that the convergence speed becomes rapid. Simulation result shows that GA is feasible, the result is good and it can be easy to attain global optimization solution, especially when the objective function is not the convex one for independent variables and it is a multi-parameter problem.

  15. Fuzzy Genetic Algorithm Based on Principal Operation and Inequity Degree

    Science.gov (United States)

    Li, Fachao; Jin, Chenxia

    In this paper, starting from the structure of fuzzy information, by distinguishing principal indexes and assistant indexes, give comparison of fuzzy information on synthesizing effect and operation of fuzzy optimization on principal indexes transformation, further, propose axiom system of fuzzy inequity degree from essence of constraint, and give an instructive metric method; Then, combining genetic algorithm, give fuzzy optimization methods based on principal operation and inequity degree (denoted by BPO&ID-FGA, for short); Finally, consider its convergence using Markov chain theory and analyze its performance through an example. All these indicate, BPO&ID-FGA can not only effectively merge decision consciousness into the optimization process, but possess better global convergence, so it can be applied to many fuzzy optimization problems.

  16. Optimization of transmission system design based on genetic algorithm

    Directory of Open Access Journals (Sweden)

    Xianbing Chen

    2016-05-01

    Full Text Available Transmission system is a crucial precision mechanism for twin-screw chemi-mechanical pulping equipment. The structure of the system designed by traditional method is not optimal because the structure designed by the traditional methods is easy to fall into the local optimum. To achieve the global optimum, this article applies the genetic algorithm which has grown in recent years in the field of structure optimization. The article uses the volume of transmission system as the objective function to optimize the structure designed by traditional method. Compared to the simulation results, the original structure is not optimal, and the optimized structure is tighter and more reasonable. Based on the optimized results, the transmission shafts in the transmission system are designed and checked, and the parameters of the twin screw are selected and calculated. The article provided an effective method to design the structure of transmission system.

  17. Access Network Selection Based on Fuzzy Logic and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Mohammed Alkhawlani

    2008-01-01

    Full Text Available In the next generation of heterogeneous wireless networks (HWNs, a large number of different radio access technologies (RATs will be integrated into a common network. In this type of networks, selecting the most optimal and promising access network (AN is an important consideration for overall networks stability, resource utilization, user satisfaction, and quality of service (QoS provisioning. This paper proposes a general scheme to solve the access network selection (ANS problem in the HWN. The proposed scheme has been used to present and design a general multicriteria software assistant (SA that can consider the user, operator, and/or the QoS view points. Combined fuzzy logic (FL and genetic algorithms (GAs have been used to give the proposed scheme the required scalability, flexibility, and simplicity. The simulation results show that the proposed scheme and SA have better and more robust performance over the random-based selection.

  18. A New Genetic Algorithm Based on Niche Technique and Local Search Method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genetic algorithm has been widely used in many fields as an easy robust global search and optimization method. In this paper, a new genetic algorithm based on niche technique and local search method is presented under the consideration of inadequacies of the simple genetic algorithm. In order to prove the adaptability and validity of the improved genetic algorithm, optimization problems of multimodal functions with equal peaks, unequal peaks and complicated peak distribution are discussed. The simulation results show that compared to other niching methods, this improved genetic algorithm has obvious potential on many respects, such as convergence speed, solution accuracy, ability of global optimization, etc.

  19. Combinatorial optimization problem solution based on improved genetic algorithm

    Science.gov (United States)

    Zhang, Peng

    2017-08-01

    Traveling salesman problem (TSP) is a classic combinatorial optimization problem. It is a simplified form of many complex problems. In the process of study and research, it is understood that the parameters that affect the performance of genetic algorithm mainly include the quality of initial population, the population size, and crossover probability and mutation probability values. As a result, an improved genetic algorithm for solving TSP problems is put forward. The population is graded according to individual similarity, and different operations are performed to different levels of individuals. In addition, elitist retention strategy is adopted at each level, and the crossover operator and mutation operator are improved. Several experiments are designed to verify the feasibility of the algorithm. Through the experimental results analysis, it is proved that the improved algorithm can improve the accuracy and efficiency of the solution.

  20. Genetic algorithm-based wide-band deterministic maximum likelihood direction finding algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The wide-band direction finding is one of hit and difficult task in array signal processing. This paper generalizes narrow-band deterministic maximum likelihood direction finding algorithm to the wideband case, and so constructions an object function, then utilizes genetic algorithm for nonlinear global optimization. Direction of arrival is estimated without preprocessing of array data and so the algorithm eliminates the effect of pre-estimate on the final estimation. The algorithm is applied on uniform linear array and extensive simulation results prove the efficacy of the algorithm. In the process of simulation, we obtain the relation between estimation error and parameters of genetic algorithm.

  1. Genetic Algorithm Based Production Planning for Alternative Process Production

    Institute of Scientific and Technical Information of China (English)

    ZHANG Fa-ping; SUN Hou-fang; SHAHID I. Butt

    2009-01-01

    Production planning under flexible job shop environment is studied. A mathematic model is formulated to help improve alternative process production. This model, in which genetic algorithm is used, is expected to result in better production planning, hence towards the aim of minimizing production cost under the constraints of delivery time and other scheduling conditions. By means of this algorithm, all planning schemes which could meet all requirements of the constraints within the whole solution space are exhaustively searched so as to find the optimal one. Also, a case study is given in the end to support and validate this model. Our results show that genetic algorithm is capable of locating feasible process routes to reduce production cost for certain tasks.

  2. Genetic Algorithm-based Affine Parameter Estimation for Shape Recognition

    Directory of Open Access Journals (Sweden)

    Yuxing Mao

    2014-06-01

    Full Text Available Shape recognition is a classically difficult problem because of the affine transformation between two shapes. The current study proposes an affine parameter estimation method for shape recognition based on a genetic algorithm (GA. The contributions of this study are focused on the extraction of affine-invariant features, the individual encoding scheme, and the fitness function construction policy for a GA. First, the affine-invariant characteristics of the centroid distance ratios (CDRs of any two opposite contour points to the barycentre are analysed. Using different intervals along the azimuth angle, the different numbers of CDRs of two candidate shapes are computed as representations of the shapes, respectively. Then, the CDRs are selected based on predesigned affine parameters to construct the fitness function. After that, a GA is used to search for the affine parameters with optimal matching between candidate shapes, which serve as actual descriptions of the affine transformation between the shapes. Finally, the CDRs are resampled based on the estimated parameters to evaluate the similarity of the shapes for classification. The experimental results demonstrate the robust performance of the proposed method in shape recognition with translation, scaling, rotation and distortion.

  3. A tuning algorithm for model predictive controllers based on genetic algorithms and fuzzy decision making.

    Science.gov (United States)

    van der Lee, J H; Svrcek, W Y; Young, B R

    2008-01-01

    Model Predictive Control is a valuable tool for the process control engineer in a wide variety of applications. Because of this the structure of an MPC can vary dramatically from application to application. There have been a number of works dedicated to MPC tuning for specific cases. Since MPCs can differ significantly, this means that these tuning methods become inapplicable and a trial and error tuning approach must be used. This can be quite time consuming and can result in non-optimum tuning. In an attempt to resolve this, a generalized automated tuning algorithm for MPCs was developed. This approach is numerically based and combines a genetic algorithm with multi-objective fuzzy decision-making. The key advantages to this approach are that genetic algorithms are not problem specific and only need to be adapted to account for the number and ranges of tuning parameters for a given MPC. As well, multi-objective fuzzy decision-making can handle qualitative statements of what optimum control is, in addition to being able to use multiple inputs to determine tuning parameters that best match the desired results. This is particularly useful for multi-input, multi-output (MIMO) cases where the definition of "optimum" control is subject to the opinion of the control engineer tuning the system. A case study will be presented in order to illustrate the use of the tuning algorithm. This will include how different definitions of "optimum" control can arise, and how they are accounted for in the multi-objective decision making algorithm. The resulting tuning parameters from each of the definition sets will be compared, and in doing so show that the tuning parameters vary in order to meet each definition of optimum control, thus showing the generalized automated tuning algorithm approach for tuning MPCs is feasible.

  4. A Gene-Pool Based Genetic Algorithm for TSP

    Institute of Scientific and Technical Information of China (English)

    Yang Hui; Kang Li-shan; Chen Yu-ping

    2003-01-01

    Based on the analysis of previous genetic algo rithms (GAs) for TSP, a novel method called Ge GA is proposed. It combines gene pool and GA so as to direct the evo lution of the whole population. The core of Ge GA is the construction of gene pool and how to apply it to GA. Different from standard GAs, Ge-GA aims to enhance the ability of exploration and exploitation by incorporating global search with local search. On one hand a local search called Ge LocalSearch operator is proposed to improve the solution quality, on the other hand the modified Inver-Over operator called Ge InverOver is considered as a global search mechanism to expand solution space of local minimal. Both of these operators are based on the gene pool. Our algorithm is applied to 11 well-known traveling salesman problems whose numbers of cities are from 70 to 1577 cities. The experiments results indicate that Ge GA has great robustness for TSP. For each test instance, the average value of solution quality, found in accepted time, stays within 0. 001 % from the optimum.

  5. Magnetic Flux Leakage Signal Inversion of Corrosive Flaws Based on Modified Genetic Local Search Algorithm

    Institute of Scientific and Technical Information of China (English)

    HAN Wen-hua; FANG Ping; XIA Fei; XUE Fang

    2009-01-01

    In this paper, a modified genetic local search algorithm (MGLSA) is proposed. The proposed algorithm is resulted from employing the simulated annealing technique to regulate the variance of the Gaussian mutation of the genetic local search algorithm (GLSA). Then, an MGLSA-based inverse algorithm is proposed for magnetic flux leakage (MFL) signal inversion of corrosive flaws, in which the MGLSA is used to solve the optimization problem in the MFL inverse problem. Experimental results demonstrate that the MGLSA-based inverse algorithm is more robust than GLSA-based inverse algorithm in the presence of noise in the measured MFL signals.

  6. Reliability Based Spare Parts Management Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Rahul Upadhyay

    2015-08-01

    Full Text Available Effective and efficient inventory management is the key to the economic sustainability of capital intensive modern industries. Inventory grows exponentially with complexity and size of the equipment fleet. Substantial amount of capital is required for maintaining an inventory and therefore its optimization is beneficial for smooth operation of the project at minimum cost of inventory. The size and hence the cost of the inventory is influenced by a large no of factors. This makes the optimization problem complex. This work presents a model to solve the problem of optimization of spare parts inventory. The novelty of this study lies with the fact that the developed method could tackle not only the artificial test case but also a real-world industrial problem. Various investigators developed several methods and semi-analytical tools for obtaining optimum solutions for this problem. In this study non-traditional optimization tool namely genetic algorithms GA are utilized. Apart from this Coxs regression analysis is also used to incorporate the effect of some environmental factors on the demand of spares. It shows the efficacy of the applicability of non-traditional optimization tool like GA to solve these problems. This research illustrates the proposed model with the analysis of data taken from a fleet of dumper operated in a large surface coal mine. The optimum time schedules so suggested by this GA-based model are found to be cost effective. A sensitivity analysis is also conducted for this industrial problem. Objective function is developed and the factors like the effect of season and production pressure overloading towards financial year-ending is included in the equations. Statistical analysis of the collected operational and performance data were carried out with the help of Easy-Fit Ver-5.5.The analysis gives the shape and scale parameter of theoretical Weibull distribution. The Coxs regression coefficient corresponding to excessive loading

  7. Assigning Task by Parallel Genetic Algorithm Based on PVM

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Genetic algorithm has been proposed to solve the problem of taskassignment. Ho wever, it has some drawbacks, e.g., it often takes a long time to find an optima l solution, and the success rate is low. To overcome these problems, a new coars e-grained parallel genetic algorithm with the scheme of central migration is pr e sented, which exploits isolated sub-populations. The new approach has been impl e mented in the PVM environment and has been evaluated on a workstation network fo r solving the task assignment problem. The results show that it not only signifi cantly improves the result quality but also increases the speed for getting best solution.

  8. Foundations of genetic algorithms 1991

    CERN Document Server

    1991-01-01

    Foundations of Genetic Algorithms 1991 (FOGA 1) discusses the theoretical foundations of genetic algorithms (GA) and classifier systems.This book compiles research papers on selection and convergence, coding and representation, problem hardness, deception, classifier system design, variation and recombination, parallelization, and population divergence. Other topics include the non-uniform Walsh-schema transform; spurious correlations and premature convergence in genetic algorithms; and variable default hierarchy separation in a classifier system. The grammar-based genetic algorithm; condition

  9. A Survey Paper on Deduplication by Using Genetic Algorithm Alongwith Hash-Based Algorithm

    Directory of Open Access Journals (Sweden)

    Miss. J. R. Waykole

    2014-01-01

    Full Text Available In today‟s world, by increasing the volume of information available in digital libraries, most of the system may be affected by the existence of replicas in their warehouses. This is due to the fact that, clean and replica-free warehouse not only allow the retrieval of information which is of higher quality but also lead to more concise data and reduces computational time and resources to process this data. Here, we propose a genetic programming approach along with hash-based similarity i.e, with MD5 and SHA-1 algorithm. This approach removes the replicas data and finds the optimization solution to deduplication of records.

  10. Fuzzy Flexible Resource Constrained Project Scheduling Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    查鸿; 张连营

    2014-01-01

    Both fuzzy temporal constraint and flexible resource constraint are considered in project scheduling. In order to obtain an optimal schedule, we propose a genetic algorithm integrated with concepts on fuzzy set theory as well as specialized coding and decoding mechanism. An example demonstrates that the proposed approach can assist the project managers to obtain the optimal schedule effectively and make the correct decision on skill training before a project begins.

  11. Genetic Algorithm (GA)-Based Inclinometer Layout Optimization.

    Science.gov (United States)

    Liang, Weijie; Zhang, Ping; Chen, Xianping; Cai, Miao; Yang, Daoguo

    2015-04-17

    This paper presents numerical simulation results of an airflow inclinometer with sensitivity studies and thermal optimization of the printed circuit board (PCB) layout for an airflow inclinometer based on a genetic algorithm (GA). Due to the working principle of the gas sensor, the changes of the ambient temperature may cause dramatic voltage drifts of sensors. Therefore, eliminating the influence of the external environment for the airflow is essential for the performance and reliability of an airflow inclinometer. In this paper, the mechanism of an airflow inclinometer and the influence of different ambient temperatures on the sensitivity of the inclinometer will be examined by the ANSYS-FLOTRAN CFD program. The results show that with changes of the ambient temperature on the sensing element, the sensitivity of the airflow inclinometer is inversely proportional to the ambient temperature and decreases when the ambient temperature increases. GA is used to optimize the PCB thermal layout of the inclinometer. The finite-element simulation method (ANSYS) is introduced to simulate and verify the results of our optimal thermal layout, and the results indicate that the optimal PCB layout greatly improves (by more than 50%) the sensitivity of the inclinometer. The study may be useful in the design of PCB layouts that are related to sensitivity improvement of gas sensors.

  12. Genetics algorithm optimization of DWT-DCT based image Watermarking

    Science.gov (United States)

    Budiman, Gelar; Novamizanti, Ledya; Iwut, Iwan

    2017-01-01

    Data hiding in an image content is mandatory for setting the ownership of the image. Two dimensions discrete wavelet transform (DWT) and discrete cosine transform (DCT) are proposed as transform method in this paper. First, the host image in RGB color space is converted to selected color space. We also can select the layer where the watermark is embedded. Next, 2D-DWT transforms the selected layer obtaining 4 subband. We select only one subband. And then block-based 2D-DCT transforms the selected subband. Binary-based watermark is embedded on the AC coefficients of each block after zigzag movement and range based pixel selection. Delta parameter replacing pixels in each range represents embedded bit. +Delta represents bit “1” and –delta represents bit “0”. Several parameters to be optimized by Genetics Algorithm (GA) are selected color space, layer, selected subband of DWT decomposition, block size, embedding range, and delta. The result of simulation performs that GA is able to determine the exact parameters obtaining optimum imperceptibility and robustness, in any watermarked image condition, either it is not attacked or attacked. DWT process in DCT based image watermarking optimized by GA has improved the performance of image watermarking. By five attacks: JPEG 50%, resize 50%, histogram equalization, salt-pepper and additive noise with variance 0.01, robustness in the proposed method has reached perfect watermark quality with BER=0. And the watermarked image quality by PSNR parameter is also increased about 5 dB than the watermarked image quality from previous method.

  13. Design of PID Controller Simulator based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Fahri VATANSEVER

    2013-08-01

    Full Text Available PID (Proportional Integral and Derivative controllers take an important place in the field of system controlling. Various methods such as Ziegler-Nichols, Cohen-Coon, Chien Hrones Reswick (CHR and Wang-Juang-Chan are available for the design of such controllers benefiting from the system time and frequency domain data. These controllers are in compliance with system properties under certain criteria suitable to the system. Genetic algorithms have become widely used in control system applications in parallel to the advances in the field of computer and artificial intelligence. In this study, PID controller designs have been carried out by means of classical methods and genetic algorithms and comparative results have been analyzed. For this purpose, a graphical user interface program which can be used for educational purpose has been developed. For the definite (entered transfer functions, the suitable P, PI and PID controller coefficients have calculated by both classical methods and genetic algorithms and many parameters and responses of the systems have been compared and presented numerically and graphically

  14. Automated Guide Vehicles Dynamic Scheduling Based on Annealing Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zou Gan

    2013-05-01

    Full Text Available Dispatching automated guided vehicles (AGVs is the common approach for AGVs scheduling in practice, the information about load arrivals in advance was not used to optimize the performance of the automated guided vehicles system (AGVsS. According to the characteristics of the AGVsS, the mathematical model of AGVs scheduling was established. A heuristic algorithm called Annealing Genetic Algorithm (AGA was presented to deal with the AGVs scheduling problem,and applied the algorithm dynamically by using it repeatedly under a combined rolling optimization strategy. the performance of the proposed approach for AGVs scheduling was compared with the dispatching rules by simulation. Results showed that the approach performs significantly better than the dispatching rules and proved that it is really effective for AGVsS.

  15. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    H. Laurent

    2008-05-01

    Full Text Available Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  16. Optimization-Based Image Segmentation by Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Rosenberger C

    2008-01-01

    Full Text Available Abstract Many works in the literature focus on the definition of evaluation metrics and criteria that enable to quantify the performance of an image processing algorithm. These evaluation criteria can be used to define new image processing algorithms by optimizing them. In this paper, we propose a general scheme to segment images by a genetic algorithm. The developed method uses an evaluation criterion which quantifies the quality of an image segmentation result. The proposed segmentation method can integrate a local ground truth when it is available in order to set the desired level of precision of the final result. A genetic algorithm is then used in order to determine the best combination of information extracted by the selected criterion. Then, we show that this approach can either be applied for gray-levels or multicomponents images in a supervised context or in an unsupervised one. Last, we show the efficiency of the proposed method through some experimental results on several gray-levels and multicomponents images.

  17. A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning

    Science.gov (United States)

    Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei

    2013-03-01

    In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.

  18. [Non-linear rectification of sensor based on immune genetic algorithm].

    Science.gov (United States)

    Lu, Lirong; Zhou, Jinyang; Niu, Xiaodong

    2014-08-01

    A non-linear rectification based on immune genetic algorithm (IGA) is proposed in this paper, for the shortcoming of the non-linearity rectification. This algorithm introducing the biologic immune mechanism into the genetic algorithm can restrain the disadvantages that the poor precision, slow convergence speed and early maturity of the genetic algorithm. Computer simulations indicated that the algorithm not only keeps population diversity, but also increases the convergent speed, precision and the stability greatly. The results have shown the correctness and effectiveness of the method.

  19. A personification heuristic Genetic Algorithm for Digital Microfluidics-based Biochips Placement

    Directory of Open Access Journals (Sweden)

    Jingsong Yang

    2013-06-01

    Full Text Available A personification heuristic Genetic Algorithm is established for the placement of digital microfluidics-based biochips, in which, the personification heuristic algorithm is used to control the packing process, while the genetic algorithm is designed to be used in multi-objective placement results optimizing. As an example, the process of microfluidic module physical placement in multiplexed in-vitro diagnostics on human physiological fluids is simulated. The experiment results show that personification heuristic genetic algorithm can achieve better results in multi-objective optimization, compare to the parallel recombinative simulated annealing algorithm.

  20. [Non-linear rectification of sensor based on immune genetic Algorithm].

    Science.gov (United States)

    Lu, Lirong; Zhou, Jinyang; Niu, Xiaodong

    2014-08-01

    A non-linear rectification based on immune genetic algorithm (IGA) is proposed in this paper, for the shortcoming of the non-linearity rectification. This algorithm introducing the biologic immune mechanism into the genetic algorithm can restrain the disadvantages that the poor precision, slow convergence speed and early maturity of the genetic algorithm. Computer simulations indicated that the algorithm not only keeps population diversity, but also increases the convergent speed, precision and the stability greatly. The results have shown the correctness and effectiveness of the method.

  1. Weighted K-Nearest Neighbor Classification Algorithm Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuesong Yan

    2013-10-01

    Full Text Available K-Nearest Neighbor (KNN is one of the most popular algorithms for data classification. Many researchers have found that the KNN algorithm accomplishes very good performance in their experiments on different datasets. The traditional KNN text classification algorithm has limitations: calculation complexity, the performance is solely dependent on the training set, and so on. To overcome these limitations, an improved version of KNN is proposed in this paper, we use genetic algorithm combined with weighted KNN to improve its classification performance. and the experiment results shown that our proposed algorithm outperforms the KNN with greater accuracy.

  2. A modified decision tree algorithm based on genetic algorithm for mobile user classification problem.

    Science.gov (United States)

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity.

  3. A weight based genetic algorithm for selecting views

    Science.gov (United States)

    Talebian, Seyed H.; Kareem, Sameem A.

    2013-03-01

    Data warehouse is a technology designed for supporting decision making. Data warehouse is made by extracting large amount of data from different operational systems; transforming it to a consistent form and loading it to the central repository. The type of queries in data warehouse environment differs from those in operational systems. In contrast to operational systems, the analytical queries that are issued in data warehouses involve summarization of large volume of data and therefore in normal circumstance take a long time to be answered. On the other hand, the result of these queries must be answered in a short time to enable managers to make decisions as short time as possible. As a result, an essential need in this environment is in improving the performances of queries. One of the most popular methods to do this task is utilizing pre-computed result of queries. In this method, whenever a new query is submitted by the user instead of calculating the query on the fly through a large underlying database, the pre-computed result or views are used to answer the queries. Although, the ideal option would be pre-computing and saving all possible views, but, in practice due to disk space constraint and overhead due to view updates it is not considered as a feasible choice. Therefore, we need to select a subset of possible views to save on disk. The problem of selecting the right subset of views is considered as an important challenge in data warehousing. In this paper we suggest a Weighted Based Genetic Algorithm (WBGA) for solving the view selection problem with two objectives.

  4. Optimization of Submarine Hydrodynamic Coefficients Based on Immune Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    HU Kun; XU Yi-fan

    2010-01-01

    Aiming at the demand for optimization of hydrodynamic coefficients in submarine's motion equations, an adaptive weight immune genetic algorithm was proposed to optimize hydrodynamic coefficients in motion equations. Some hydrody-namic coefficients of high sensitivity to control and maneuver were chosen as the optimization objects in the algorithm. By using adaptive weight method to determine the weight and target function, the multi-objective optimization could be transla-ted into single-objective optimization. For a certain kind of submarine, three typical maneuvers were chosen to be the objects of study: overshoot maneuver in horizontal plane, overshoot maneuver in vertical plane and turning circle maneuver in horizontal plane. From the results of computer simulations using primal hydrodynamic coefficient and optimized hydrody-namic coefficient, the efficiency of proposed method is proved.

  5. Optimization Route of Food Logistics Distribution Based on Genetic and Graph Cluster Scheme Algorithm

    Directory of Open Access Journals (Sweden)

    Jing Chen

    2015-06-01

    Full Text Available This study takes the concept of food logistics distribution as the breakthrough point, by means of the aim of optimization of food logistics distribution routes and analysis of the optimization model of food logistics route, as well as the interpretation of the genetic algorithm, it discusses the optimization of food logistics distribution route based on genetic and cluster scheme algorithm.

  6. Prediction and Research on Vegetable Price Based on Genetic Algorithm and Neural Network Model

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.

  7. Interleaver Design Method for Turbo Codes Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Tan Ying; Sun Hong; Zhou Huai-bei

    2004-01-01

    This paper describes a new interleaver construction technique for turbo code. The technique searches as much as possible pseudo-random interleaving patterns under a certain condition using genetic algorithms(GAs). The new interleavers have the superiority of the S-random interleavers and this interleaver construction technique can reduce the time taken to generate pseudo-random interleaving patterns under a certain condition. Tbe results obtained indicate that the new interleavers yield an equal to or better performance than the Srandom interleavers. Compared to the S-random interleaver,this design requires a lower level of computational complexity.

  8. Satellite constellation design with genetic algorithms based on system performance

    Institute of Scientific and Technical Information of China (English)

    Xueying Wang; Jun Li; Tiebing Wang; Wei An; Weidong Sheng

    2016-01-01

    Satelite constelation design for space optical sys-tems is essentialy a multiple-objective optimization problem. In this work, to tackle this chalenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks (i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algo-rithm (NSGA) to maximize the system surveilance perfor- mance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved per-formance of the proposed technique over benchmark meth-ods.

  9. Optimization of Actuators in Smart Truss Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Ruizhen Gao

    2012-11-01

    Full Text Available Actuators formed from piezoelectric ceramics were embedded in truss rods to make up active rods. The paper used mechanical knowledge, static stiffness method and the finite element method to analyze the active rod and the smart truss structure and then model them. In order to solve the difficult problem of number optimization, the paper put forward the actuator existence variable and optimized number and locations of actuators at the same time, made the structure have the best output effect, so it can reduce the displacement at the designated location of the truss structure and the structure vibration. It also can improve the truss structure accuracy. Then find the optimal solution by genetic algorithms(GA) and MATLAB programming. The results of the example show that the model this paper builds is correct and genetic algorithms are effective in solving the optimization question.  

  10. Genetic algorithms with memory- and elitism-based immigrants in dynamic environments.

    Science.gov (United States)

    Yang, Shengxiang

    2008-01-01

    In recent years the genetic algorithm community has shown a growing interest in studying dynamic optimization problems. Several approaches have been devised. The random immigrants and memory schemes are two major ones. The random immigrants scheme addresses dynamic environments by maintaining the population diversity while the memory scheme aims to adapt genetic algorithms quickly to new environments by reusing historical information. This paper investigates a hybrid memory and random immigrants scheme, called memory-based immigrants, and a hybrid elitism and random immigrants scheme, called elitism-based immigrants, for genetic algorithms in dynamic environments. In these schemes, the best individual from memory or the elite from the previous generation is retrieved as the base to create immigrants into the population by mutation. This way, not only can diversity be maintained but it is done more efficiently to adapt genetic algorithms to the current environment. Based on a series of systematically constructed dynamic problems, experiments are carried out to compare genetic algorithms with the memory-based and elitism-based immigrants schemes against genetic algorithms with traditional memory and random immigrants schemes and a hybrid memory and multi-population scheme. The sensitivity analysis regarding some key parameters is also carried out. Experimental results show that the memory-based and elitism-based immigrants schemes efficiently improve the performance of genetic algorithms in dynamic environments.

  11. Software For Genetic Algorithms

    Science.gov (United States)

    Wang, Lui; Bayer, Steve E.

    1992-01-01

    SPLICER computer program is genetic-algorithm software tool used to solve search and optimization problems. Provides underlying framework and structure for building genetic-algorithm application program. Written in Think C.

  12. An Adaptive Filtering Algorithm Based on Genetic Algorithm-Backpropagation Network

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2013-01-01

    Full Text Available A new image filtering algorithm is proposed. GA-BPN algorithm uses genetic algorithm (GA to decide weights in a back propagation neural network (BPN. It has better global optimal characteristics than traditional optimal algorithm. In this paper, we used GA-BPN to do image noise filter researching work. Firstly, this paper uses training samples to train GA-BPN as the noise detector. Then, we utilize the well-trained GA-BPN to recognize noise pixels in target image. And at last, an adaptive weighted average algorithm is used to recover noise pixels recognized by GA-BPN. Experiment data shows that this algorithm has better performance than other filters.

  13. Strawberry Maturity Neural Network Detectng System Based on Genetic Algorithm

    Science.gov (United States)

    Xu, Liming

    The quick and non-detective detection of agriculture product is one of the measures to increase the precision and productivity of harvesting and grading. Having analyzed H frequency of different maturities in different light intensities, the results show that H frequency for the same maturity has little influence in different light intensities; Under the same light intensity, three strawberry maturities are changing in order. After having confirmed the H frequency section to distinguish the different strawberry maturity, the triplelayer feed-forward neural network system to detect strawberry maturity was designed by using genetic algorithm. The test results show that the detecting precision ratio is 91.7%, it takes 160ms to distinguish one strawberry. Therefore, the online non-detective detecting the strawberry maturity could be realized.

  14. Shape Design of Lifting body Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yongyuan Li

    2010-11-01

    Full Text Available This paper briefly introduces the concept and history of lifting body, and puts forward a new method for the optimization of lifting body. This method has drawn lessons from the die line design of airplane is used to parametric numerical modeling for the lifting body, and extract the characterization of shape parameters as design variables, a combination of lifting body reentry vehicle aerodynamic conditions, aerodynamic heating, volumetric Rate and the stability of performance. Multi-objective hybrid genetic algorithm is adopted to complete the aerodynamic shape optimization and design of hypersonic lifting body vehicle when under more variable and constrained condition in order to obtain the Pareto optimal solution of Common Aero Vehicle shape.

  15. A Genetic Algorithms Based Approach for Group Multicast Routing

    Directory of Open Access Journals (Sweden)

    Luca Sanna Randaccio

    2006-08-01

    Full Text Available Whereas multicast transmission in one-to-many communications allows the operator to drastically save network resources, it also makes the routing of the traffic flows more complex then in unicast transmissions. A huge amount of possible trees have to be considered and analyzed to find the appropriate routing paths. To address this problem, we propose the use of the genetic algorithms (GA, which considerably reduce the number of solutions to be evaluated. A heuristic procedure is first used to discern a set of possible trees for each multicast session in isolation. Then, the GA are applied to find the appropriate combination of the trees to comply with the bandwidth needs of the group of multicast sessions simultaneously. The goodness of each solution is assessed by means of an expression that weights both network bandwidth allocation and one-way delay. The resulting cost function is guided by few parameters that can be easily tuned during traffic engineering operations; an appropriate setting of these parameters allows the operator to configure the desired balance between network resource utilization and provided quality of service. Simulations have been performed to compare the proposed algorithm with alternative solutions in terms of bandwidth utilization and transmission delay.

  16. Genetic Programming and Genetic Algorithms for Propositions

    Directory of Open Access Journals (Sweden)

    Nabil M. HEWAHI

    2012-01-01

    Full Text Available In this paper we propose a mechanism to discover the compound proposition solutions for a given truth table without knowing the compound propositions that lead to the truth table results. The approach is based on two proposed algorithms, the first is called Producing Formula (PF algorithm which is based on the genetic programming idea, to find out the compound proposition solutions for the given truth table. The second algorithm is called the Solutions Optimization (SO algorithm which is based on genetic algorithms idea, to find a list of the optimum compound propositions that can solve the truth table. The obtained list will depend on the solutions obtained from the PF algorithm. Various types of genetic operators have been introduced to obtain the solutions either within the PF algorithm or SO algorithm.

  17. An Efficient Soft Decoder of Block Codes Based on Compact Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmed Azouaoui

    2012-09-01

    Full Text Available Soft-decision decoding is an NP-hard problem with great interest to developers of communication systems. We present an efficient soft-decision decoder of linear block codes based on compact genetic algorithm (cGA and compare its performances with various other decoding algorithms including Shakeel algorithm. The proposed algorithm uses the dual code in contrast to Shakeel algorithm which uses the code itself. Hence, this new approach reduces the decoding complexity of high rates codes. The complexity and an optimized version of this new algorithm are also presented and discussed.

  18. A pipelined FPGA implementation of an encryption algorithm based on genetic algorithm

    Science.gov (United States)

    Thirer, Nonel

    2013-05-01

    With the evolution of digital data storage and exchange, it is essential to protect the confidential information from every unauthorized access. High performance encryption algorithms were developed and implemented by software and hardware. Also many methods to attack the cipher text were developed. In the last years, the genetic algorithm has gained much interest in cryptanalysis of cipher texts and also in encryption ciphers. This paper analyses the possibility to use the genetic algorithm as a multiple key sequence generator for an AES (Advanced Encryption Standard) cryptographic system, and also to use a three stages pipeline (with four main blocks: Input data, AES Core, Key generator, Output data) to provide a fast encryption and storage/transmission of a large amount of data.

  19. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Directory of Open Access Journals (Sweden)

    Wensheng Guo

    Full Text Available In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  20. A parallel attractor-finding algorithm based on Boolean satisfiability for genetic regulatory networks.

    Science.gov (United States)

    Guo, Wensheng; Yang, Guowu; Wu, Wei; He, Lei; Sun, Mingyu

    2014-01-01

    In biological systems, the dynamic analysis method has gained increasing attention in the past decade. The Boolean network is the most common model of a genetic regulatory network. The interactions of activation and inhibition in the genetic regulatory network are modeled as a set of functions of the Boolean network, while the state transitions in the Boolean network reflect the dynamic property of a genetic regulatory network. A difficult problem for state transition analysis is the finding of attractors. In this paper, we modeled the genetic regulatory network as a Boolean network and proposed a solving algorithm to tackle the attractor finding problem. In the proposed algorithm, we partitioned the Boolean network into several blocks consisting of the strongly connected components according to their gradients, and defined the connection between blocks as decision node. Based on the solutions calculated on the decision nodes and using a satisfiability solving algorithm, we identified the attractors in the state transition graph of each block. The proposed algorithm is benchmarked on a variety of genetic regulatory networks. Compared with existing algorithms, it achieved similar performance on small test cases, and outperformed it on larger and more complex ones, which happens to be the trend of the modern genetic regulatory network. Furthermore, while the existing satisfiability-based algorithms cannot be parallelized due to their inherent algorithm design, the proposed algorithm exhibits a good scalability on parallel computing architectures.

  1. Modelling and genetic algorithm based optimisation of inverse supply chain

    Science.gov (United States)

    Bányai, T.

    2009-04-01

    (Recycling of household appliances with emphasis on reuse options). The purpose of this paper is the presentation of a possible method for avoiding the unnecessary environmental risk and landscape use through unprovoked large supply chain of collection systems of recycling processes. In the first part of the paper the author presents the mathematical model of recycling related collection systems (applied especially for wastes of electric and electronic products) and in the second part of the work a genetic algorithm based optimisation method will be demonstrated, by the aid of which it is possible to determine the optimal structure of the inverse supply chain from the point of view economical, ecological and logistic objective functions. The model of the inverse supply chain is based on a multi-level, hierarchical collection system. In case of this static model it is assumed that technical conditions are permanent. The total costs consist of three parts: total infrastructure costs, total material handling costs and environmental risk costs. The infrastructure-related costs are dependent only on the specific fixed costs and the specific unit costs of the operation points (collection, pre-treatment, treatment, recycling and reuse plants). The costs of warehousing and transportation are represented by the material handling related costs. The most important factors determining the level of environmental risk cost are the number of out of time recycled (treated or reused) products, the number of supply chain objects and the length of transportation routes. The objective function is the minimization of the total cost taking into consideration the constraints. However a lot of research work discussed the design of supply chain [8], but most of them concentrate on linear cost functions. In the case of this model non-linear cost functions were used. The non-linear cost functions and the possible high number of objects of the inverse supply chain leaded to the problem of choosing a

  2. Chaotic migration-based pseudo parallel genetic algorithm and its application in inventory optimization

    Institute of Scientific and Technical Information of China (English)

    Chen Xiaofang; Gui Weihua; Wang Yalin

    2005-01-01

    Considering premature convergence in the searching process of genetic algorithm, a chaotic migration-based pseudo parallel genetic algorithm (CMPPGA) is proposed, which applies the idea of isolated evolution and information exchanging in distributed Parallel Genetic Algorithm by serial program structure to solve optimization problem of low real-time demand. In this algorithm,asynchronic migration of individuals during parallel evolution is guided by a chaotic migration sequence. Infcrmation exchanging among sub-populations is ensured to be efficient and sufficient due to that the sequence is ergodic and stochastic. Simulation study of CMPPGA shows its strong global search ability, superiority to standard genetic algorithm and high immunity against premature convergence. According to the practice of raw material supply, an inventory prcgramming model is set up and solved by CMPPGA with satisfactory results returned.

  3. A Genetic-Algorithms-Based Approach for Programming Linear and Quadratic Optimization Problems with Uncertainty

    Directory of Open Access Journals (Sweden)

    Weihua Jin

    2013-01-01

    Full Text Available This paper proposes a genetic-algorithms-based approach as an all-purpose problem-solving method for operation programming problems under uncertainty. The proposed method was applied for management of a municipal solid waste treatment system. Compared to the traditional interactive binary analysis, this approach has fewer limitations and is able to reduce the complexity in solving the inexact linear programming problems and inexact quadratic programming problems. The implementation of this approach was performed using the Genetic Algorithm Solver of MATLAB (trademark of MathWorks. The paper explains the genetic-algorithms-based method and presents details on the computation procedures for each type of inexact operation programming problems. A comparison of the results generated by the proposed method based on genetic algorithms with those produced by the traditional interactive binary analysis method is also presented.

  4. GENETIC ALGORITHM BASED PARAMETER TUNING OF PID CONTROLLER FOR COMPOSITION CONTROL SYSTEM

    Directory of Open Access Journals (Sweden)

    Bhawna Tandon

    2011-08-01

    Full Text Available A Composition control system is discussed in this paper in which the PID controller is tuned using Genetic Algorithm & Ziegler-Nichols Tuning Criteria. Tuning methods for PID controllers are very importantfor the process industries. Traditional methods such as Ziegler-Nichols method often do not provide adequate tuning. Genetic Algorithm (GA as an intelligent approach has also been widely used to tune the parameters of PID. Genetic algorithms are used to create an objective function that can evaluate the optimum PID gains based on the controlled systems overall error.

  5. Self-learning Fuzzy Controllers Based On a Real-time Reinforcement Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    FANG Jian-an; MIAO Qing-ying; GUO Zhao-xia; SHAO Shi-huang

    2002-01-01

    This paper presents a novel method for constructing fuzzy controllers based on a real time reinforcement genetic algorithm. This methodology introduces the real-time learning capability of neural networks into globally searching process of genetic algorithm, aiming to enhance the convergence rate and real-time learning ability of genetic algorithm, which is then used to construct fuzzy controllers for complex dynamic systems without any knowledge about system dynamics and prior control experience. The cart-pole system is employed as a test bed to demonstrate the effectiveness of the proposed control scheme, and the robustness of the acquired fuzzy controller with comparable result.

  6. Classification of hyperspectral remote sensing images based on simulated annealing genetic algorithm and multiple instance learning

    Institute of Scientific and Technical Information of China (English)

    高红民; 周惠; 徐立中; 石爱业

    2014-01-01

    A hybrid feature selection and classification strategy was proposed based on the simulated annealing genetic algorithm and multiple instance learning (MIL). The band selection method was proposed from subspace decomposition, which combines the simulated annealing algorithm with the genetic algorithm in choosing different cross-over and mutation probabilities, as well as mutation individuals. Then MIL was combined with image segmentation, clustering and support vector machine algorithms to classify hyperspectral image. The experimental results show that this proposed method can get high classification accuracy of 93.13%at small training samples and the weaknesses of the conventional methods are overcome.

  7. Mining Interesting Positive and Negative Association Rule Based on Improved Genetic Algorithm (MIPNAR_GA

    Directory of Open Access Journals (Sweden)

    Nikky Suryawanshi Rai

    2014-01-01

    Full Text Available Association Rule mining is very efficient technique for finding strong relation between correlated data. The correlation of data gives meaning full extraction process. For the mining of positive and negative rules, a variety of algorithms are used such as Apriori algorithm and tree based algorithm. A number of algorithms are wonder performance but produce large number of negative association rule and also suffered from multi-scan problem. The idea of this paper is to eliminate these problems and reduce large number of negative rules. Hence we proposed an improved approach to mine interesting positive and negative rules based on genetic and MLMS algorithm. In this method we used a multi-level multiple support of data table as 0 and 1. The divided process reduces the scanning time of database. The proposed algorithm is a combination of MLMS and genetic algorithm. This paper proposed a new algorithm (MIPNAR_GA for mining interesting positive and negative rule from frequent and infrequent pattern sets. The algorithm is accomplished in to three phases: a.Extract frequent and infrequent pattern sets by using apriori method b.Efficiently generate positive and negative rule. c.Prune redundant rule by applying interesting measures. The process of rule optimization is performed by genetic algorithm and for evaluation of algorithm conducted the real world dataset such as heart disease data and some standard data used from UCI machine learning repository.

  8. Optimal design of hydraulic manifold blocks based on niching genetic simulated annealing algorithm

    Institute of Scientific and Technical Information of China (English)

    Jia Chunqiang; Yu Ling; Tian Shujun; Gao Yanming

    2007-01-01

    To solve the combinatorial optimization problem of outer layout and inner connection integrated schemes in the design of hydraulic manifold blocks(HMB),a hybrid genetic simulated annealing algorithm based on niche technology is presented.This hybrid algorithm,which combines genetic algorithm,simulated annealing algorithm and niche technology,has a strong capability in global and local search,and all extrema can be found in a short time without strict requests for preferences.For the complex restricted solid spatial layout problems in HMB,the optimizing mathematical model is presented.The key technologies in the integrated layout and connection design of HMB,including the realization of coding,annealing operation and genetic operation,are discussed.The framework of HMB optimal design system based on hybrid optimization strategy is proposed.An example is given to testify the effectiveness and feasibility of the algorithm.

  9. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    Science.gov (United States)

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  10. Design Genetic Algorithm Optimization Education Software Based Fuzzy Controller for a Tricopter Fly Path Planning

    Science.gov (United States)

    Tran, Huu-Khoa; Chiou, Juing -Shian; Peng, Shou-Tao

    2016-01-01

    In this paper, the feasibility of a Genetic Algorithm Optimization (GAO) education software based Fuzzy Logic Controller (GAO-FLC) for simulating the flight motion control of Unmanned Aerial Vehicles (UAVs) is designed. The generated flight trajectories integrate the optimized Scaling Factors (SF) fuzzy controller gains by using GAO algorithm. The…

  11. Reactive power and voltage control based on general quantum genetic algorithms

    DEFF Research Database (Denmark)

    Vlachogiannis, Ioannis (John); Østergaard, Jacob

    2009-01-01

    This paper presents an improved evolutionary algorithm based on quantum computing for optima l steady-state performance of power systems. However, the proposed general quantum genetic algorithm (GQ-GA) can be applied in various combinatorial optimization problems. In this study the GQ-GA determines...... techniques such as enhanced GA, multi-objective evolutionary algorithm and particle swarm optimization algorithms, as well as the classical primal-dual interior-point optimal power flow algorithm. The comparison demonstrates the ability of the GQ-GA in reaching more optimal solutions....

  12. Genetic Algorithm Based on Duality Principle for Bilevel Programming Problem in Steel-making Production

    Institute of Scientific and Technical Information of China (English)

    Shuo Lin; Fangjun Luan; Zhonghua Han; Xisheng Lü; Xiaofeng Zhou; Wei Liu

    2014-01-01

    Steel-making and continuous/ingot casting are the key processes of modern iron and steel enterprises. Bilevel programming problems (BLPPs) are the optimization problems with hierarchical structure. In steel-making pro-duction, the plan is not only decided by the steel-making scheduling, but also by the transportation equipment. This paper proposes a genetic algorithm to solve continuous and ingot casting scheduling problems. Based on the characteristics of the problems involved, a genetic algorithm is proposed for solving the bilevel programming problem in steel-making production. Furthermore, based on the simplex method, a new crossover operator is designed to improve the efficiency of the genetic algorithm. Finally, the convergence is analyzed. Using actual data the validity of the proposed algorithm is proved and the application results in the steel plant are analyzed.

  13. A quantum-inspired genetic algorithm based on probabilistic coding for multiple sequence alignment.

    Science.gov (United States)

    Huo, Hong-Wei; Stojkovic, Vojislav; Xie, Qiao-Luan

    2010-02-01

    Quantum parallelism arises from the ability of a quantum memory register to exist in a superposition of base states. Since the number of possible base states is 2(n), where n is the number of qubits in the quantum memory register, one operation on a quantum computer performs what an exponential number of operations on a classical computer performs. The power of quantum algorithms comes from taking advantages of quantum parallelism. Quantum algorithms are exponentially faster than classical algorithms. Genetic optimization algorithms are stochastic search algorithms which are used to search large, nonlinear spaces where expert knowledge is lacking or difficult to encode. QGMALIGN--a probabilistic coding based quantum-inspired genetic algorithm for multiple sequence alignment is presented. A quantum rotation gate as a mutation operator is used to guide the quantum state evolution. Six genetic operators are designed on the coding basis to improve the solution during the evolutionary process. The experimental results show that QGMALIGN can compete with the popular methods, such as CLUSTALX and SAGA, and performs well on the presenting biological data. Moreover, the addition of genetic operators to the quantum-inspired algorithm lowers the cost of overall running time.

  14. Identification Simulation for Dynamical System Based on Genetic Algorithm and Recurrent Multilayer Neural Network

    Institute of Scientific and Technical Information of China (English)

    鄢田云; 张翠芳; 靳蕃

    2003-01-01

    Identification simulation for dynamical system which is based on genetic algorithm (GA) and recurrent multilayer neural network (RMNN) is presented. In order to reduce the inputs of the model, RMNN which can remember and store some previous parameters is used for identifier. And for its high efficiency and optimization, genetic algorithm is introduced into training RMNN. Simulation results show the effectiveness of the proposed scheme. Under the same training algorithm, the identification performance of RMNN is superior to that of nonrecurrent multilayer neural network (NRMNN).

  15. A novel method to design S-box based on chaotic map and genetic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yong, E-mail: wangyong_cqupt@163.com [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Wong, Kwok-Wo [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong (Hong Kong); Li, Changbing [Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Li, Yang [Department of Automatic Control and Systems Engineering, The University of Sheffield, Mapping Street, S1 3DJ (United Kingdom)

    2012-01-30

    The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes. -- Highlights: ► The problem of constructing S-box is transformed to a Traveling Salesman Problem. ► We present a new method for designing S-box based on chaos and genetic algorithm. ► The proposed algorithm is effective in generating strong S-boxes.

  16. Grid-Based Pseudo-Parallel Genetic Algorithm and Its Application

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Aimed at the problems of premature and lower convergence of simple genetic algorithms (SGA), three ideas--partition the whole search uniformly, multi-genetic operators and multi-populations evolving independently are introduced, and a grid-based pseudo-parallel genetic algorithms (GPPGA) is put forward. Thereafter, the analysis of premature and convergence of GPPGA is made. In the end, GPPGA is tested by both six-peak camel back function, Rosenbrock function and BP network. The result shows the feasibility and effectiveness of GPPGA in overcoming premature and improving convergence speed and accuracy.

  17. A ROBUST PHASE-ONLY DIRECT DATA DOMAIN ALGORITHM BASED ON GENERALIZED RAYLEIGH QUOTIENT OPTIMIZATION USING HYBRID GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Shao Wei; Qian Zuping; Yuan Feng

    2007-01-01

    A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on generalized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA composed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables.Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is simpler than conventional algorithms when it comes to hardware implementation. Moreover, it processes only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA.

  18. Parameters inversion of high central core rockfill dams based on a novel genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei; LI ShaoLin; MA Gang; CHANG XiaoLin; MA Xing; ZHANG Chao

    2016-01-01

    Parameters identification of rockfill materials is a crucial issue for high rockfill dams.Because of the scale effect,random sampling and sample disturbance,it is difficult to obtain the actual mechanical properties of rockfill from laboratory tests.Parameters inversion based on in situ monitoring data has been proven to be an efficient method for identifying the exact parameters of the rockfill.In this paper,we propose a modified genetic algorithm to solve the high-dimension multimodal and nonlinear optimal parameters inversion problem.A novel crossover operator based on the sum of differences in gene fragments (SoDX) is proposed,inspired by the cloning of superior genes in genetic engineering.The crossover points are selected according to the difference in the gene fragments,defining the adaptive length.The crossover operator increases the speed and accuracy of algorithm convergence by reducing the inbreeding and enhancing the global search capability of the genetic algorithm.This algorithm is compared with two existing crossover operators.The modified genetic algorithm is then used in combination with radial basis function neural networks (RBFNN) to perform the parameters back analysis of a high central earth core rockfill dam.The settlements simulated using the identified parameters show good agreement with the monitoring data,illustrating that the back analysis is reasonable and accurate.The proposed genetic algorithm has considerable superiority for nonlinear multimodal parameter identification problems.

  19. Application of a Genetic Algorithm Based on the Immunity for Flow Shop under Uncertainty

    Institute of Scientific and Technical Information of China (English)

    WANG Luchao; DENG Yongping

    2006-01-01

    The uncertain duration of each job in each machine in flow shop problem was regarded as an independent random variable and was described by mathematical expectation.And then, an immune based partheno-genetic algorithm was proposed by making use of concepts and principles introduced from immune system and genetic system in nature. In this method, processing sequence of products could be expressed by the character encoding and each antibody represents a feasible schedule. Affinity was used to measure the matching degree between antibody and antigen. Then several antibodies producing operators, such as swopping, moving, inverting, etc, were worked out. This algorithm was combined with evolution function of the genetic algorithm and density mechanism in organisms immune system. Promotion and inhibition of antibodies were realized by expected propagation ratio of antibodies, and in this way, premature convergence was improved. The simulation proved that this algorithm is effective.

  20. Welding sequences optimization of box structure based on genetic algorithm method

    Institute of Scientific and Technical Information of China (English)

    CUI Xiao-fang; MA Jun; MENG Kai; ZHAO Wen-zhong; ZHAO Hai-yan

    2006-01-01

    In this article, The genetic algorithm method was proposed, that is, to establish the box structure's nonlinear three-dimension optimization numerical model based on thermo-mechanical coupling algorithm, and the objective function of welding distortion has been utilized to determine an optimum welding sequence by optimization simulation. The validity of genetic algorithm method combining with the thermo-mechanical nonlinear finite element model is verified by comparison with the experimental data where available. By choosing the appropriate objective function for the considered case, an optimum welding sequence is determined by a genetic algorithm. All done in this study indicates that the new method presented in this article will have important practical application for designing the welding technical parameters in the future.

  1. Genetic Algorithm Based Combinatorial Auction Method for Multi-Robot Task Allocation

    Institute of Scientific and Technical Information of China (English)

    GONG Jian-wei; HUANG Wan-ning; XIONG Guang-ming; MAN Yi-ming

    2007-01-01

    An improved genetic algorithm is proposed to solve the problem of bad real-time performance or inability to get a global optimal/better solution when applying single-item auction (SIA) method or combinatorial auction method to multi-robot task allocation.The genetic algorithm based combinatorial auction (GACA) method which combines the basic-genetic algorithm with a new concept of ringed chromosome is used to solve the winner determination problem (WDP) of combinatorial auction.The simulation experiments are conducted in OpenSim, a multi-robot simulator.The results show that GACA can get a satisfying solution in a reasonable shot time, and compared with SIA or parthenogenesis algorithm combinatorial auction (PGACA) method, it is the simplest and has higher search efficiency, also, GACA can get a global better/optimal solution and satisfy the high real-time requirement of multi-robot task allocation.

  2. A Novel Method for Optimum Global Positioning System Satellite Selection Based on a Modified Genetic Algorithm.

    Science.gov (United States)

    Song, Jiancai; Xue, Guixiang; Kang, Yanan

    2016-01-01

    In this paper, a novel method for selecting a navigation satellite subset for a global positioning system (GPS) based on a genetic algorithm is presented. This approach is based on minimizing the factors in the geometric dilution of precision (GDOP) using a modified genetic algorithm (MGA) with an elite conservation strategy, adaptive selection, adaptive mutation, and a hybrid genetic algorithm that can select a subset of the satellites represented by specific numbers in the interval (4 ∼ n) while maintaining position accuracy. A comprehensive simulation demonstrates that the MGA-based satellite selection method effectively selects the correct number of optimal satellite subsets using receiver autonomous integrity monitoring (RAIM) or fault detection and exclusion (FDE). This method is more adaptable and flexible for GPS receivers, particularly for those used in handset equipment and mobile phones.

  3. Genetic algorithm based image binarization approach and its quantitative evaluation via pooling

    Science.gov (United States)

    Hu, Huijun; Liu, Ya; Liu, Maofu

    2015-12-01

    The binarized image is very critical to image visual feature extraction, especially shape feature, and the image binarization approaches have been attracted more attentions in the past decades. In this paper, the genetic algorithm is applied to optimizing the binarization threshold of the strip steel defect image. In order to evaluate our genetic algorithm based image binarization approach in terms of quantity, we propose the novel pooling based evaluation metric, motivated by information retrieval community, to avoid the lack of ground-truth binary image. Experimental results show that our genetic algorithm based binarization approach is effective and efficiency in the strip steel defect images and our quantitative evaluation metric on image binarization via pooling is also feasible and practical.

  4. Using genetic algorithm based simulated annealing penalty function to solve groundwater management model

    Institute of Scientific and Technical Information of China (English)

    吴剑锋; 朱学愚; 刘建立

    1999-01-01

    The genetic algorithm (GA) is a global and random search procedure based on the mechanics of natural selection and natural genetics. A new optimization method of the genetic algorithm-based simulated annealing penalty function (GASAPF) is presented to solve groundwater management model. Compared with the traditional gradient-based algorithms, the GA is straightforward and there is no need to calculate derivatives of the objective function. The GA is able to generate both convex and nonconvex points within the feasible region. It can be sure that the GA converges to the global or at least near-global optimal solution to handle the constraints by simulated annealing technique. Maximum pumping example results show that the GASAPF to solve optimization model is very efficient and robust.

  5. Multi-marker-LD based genetic algorithm for tag SNP selection.

    Science.gov (United States)

    Mouawad, Amer E; Mansour, Nashat

    2014-12-01

    Despite the advances in genotyping technologies which have led to large reduction in genotyping cost, the Tag SNP Selection problem remains an important problem for computational biologists and geneticists. Selecting the smallest subset of tag SNPs that can predict the other SNPs would considerably minimize the complexity of genome-wide or block-based SNP-disease association studies. These studies would lead to better diagnosis and treatment of diseases. In this work, we propose three variations of a genetic algorithm based on two-marker linkage disequilibrium, multi-marker linkage disequilibrium, and a third measure that we denote by prediction power. The performance of the three algorithms are compared with those of a recognized tag SNP selection algorithm using three different real data sets from the HapMap project. The results indicate that the multi-marker linkage disequilibrium based genetic algorithm yields better prediction accuracy.

  6. Elevator Group-Control Policy Based on Neural Network Optimized by Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    SHEN Hong; WAN Jianru; ZHANG Zhichao; LIU Yingpei; LI Guangye

    2009-01-01

    Aiming at the diversity and nonlinearity of the elevator system control target, an effective group method based on a hybrid algorithm of genetic algorithm and neural network is presented in this paper. The genetic algo-rithm is used to search the weight of the neural network. At the same time, the multi-objective-based evaluation function is adopted, in which there are three main indicators including the passenger waiting time, car passengers number and the number of stops. Different weights are given to meet the actual needs. The optimal values of the evaluation function are obtained, and the optimal dispatch control of the elevator group control system based on neural network is realized. By analyzing the running of the elevator group control system, all the processes and steps are presented. The validity of the hybrid algorithm is verified by the dynamic imitation performance.

  7. A Rule-Based Model for Bankruptcy Prediction Based on an Improved Genetic Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2013-01-01

    Full Text Available In this paper, we proposed a hybrid system to predict corporate bankruptcy. The whole procedure consists of the following four stages: first, sequential forward selection was used to extract the most important features; second, a rule-based model was chosen to fit the given dataset since it can present physical meaning; third, a genetic ant colony algorithm (GACA was introduced; the fitness scaling strategy and the chaotic operator were incorporated with GACA, forming a new algorithm—fitness-scaling chaotic GACA (FSCGACA, which was used to seek the optimal parameters of the rule-based model; and finally, the stratified K-fold cross-validation technique was used to enhance the generalization of the model. Simulation experiments of 1000 corporations’ data collected from 2006 to 2009 demonstrated that the proposed model was effective. It selected the 5 most important factors as “net income to stock broker’s equality,” “quick ratio,” “retained earnings to total assets,” “stockholders’ equity to total assets,” and “financial expenses to sales.” The total misclassification error of the proposed FSCGACA was only 7.9%, exceeding the results of genetic algorithm (GA, ant colony algorithm (ACA, and GACA. The average computation time of the model is 2.02 s.

  8. A genetic engineering approach to genetic algorithms.

    Science.gov (United States)

    Gero, J S; Kazakov, V

    2001-01-01

    We present an extension to the standard genetic algorithm (GA), which is based on concepts of genetic engineering. The motivation is to discover useful and harmful genetic materials and then execute an evolutionary process in such a way that the population becomes increasingly composed of useful genetic material and increasingly free of the harmful genetic material. Compared to the standard GA, it provides some computational advantages as well as a tool for automatic generation of hierarchical genetic representations specifically tailored to suit certain classes of problems.

  9. Intelligent Scheduling of Public Traffic Vehicles Based on a Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHANG Feizhou; CAO Xuejun; YANG Dongkai

    2008-01-01

    A genetic algorithm (GA) and a hybrid genetic algorithm (HGA) were used for optimal scheduling of public vehicles based on their actual operational environments.The performance for three kinds of vehicular levels were compared using one-point and two-point crossover operations.The vehicle scheduling times are improved by the intelligent characteristics of the GA.The HGA,which integrates the genetic algorithm with a tabu search,further improves the convergence performance and the optimization by avoiding the premature convergence of the GA.The results show that intelligent scheduling of public vehicles based on the HGA overcomes the shortcomings of traditional scheduling methods.The vehicle operation management efficiency is improved by this essential technology for intelligent scheduling of public vehicles.

  10. Solving Job-Shop Scheduling Problems by Genetic Algorithms Based on Building Block Hypothesis

    Institute of Scientific and Technical Information of China (English)

    CHENG Rong; CHEN You-ping; LI Zhi-gang

    2006-01-01

    In this paper, we propose a new genetic algorithm for job-shop scheduling problems(JSP). The proposed method uses the operation-based representation, based on schema theorem and building block hypothesis, a new crossover is proposed: By selecting short, low order highly fit schemas to genetic operator, the crossover can exchange meaningful ordering information of parents effectively and can search the global optimization. Simulation results on MT benchmark problem coded by C + + show that our genetic operators are very powerful and suitable to job-shop scheduling problems and our method outperforms the previous GA-based approaches.

  11. The Distribution Population-based Genetic Algorithm for Parameter Optimization PID Controller

    Institute of Scientific and Technical Information of China (English)

    CHENQing-Geng; WANGNing; HUANGShao-Feng

    2005-01-01

    Enlightened by distribution of creatures in natural ecology environment, the distribution population-based genetic algorithm (DPGA) is presented in this paper. The searching capability of the algorithm is improved by competition between distribution populations to reduce the search zone.This method is applied to design of optimal parameters of PID controllers with examples, and the simulation results show that satisfactory performances are obtained.

  12. Genetic Algorithm-Based Multi-objective Optimisation for QoS-Aware Web Services Composition

    Science.gov (United States)

    Li, Li; Yang, Pengyi; Ou, Ling; Zhang, Zili; Cheng, Peng

    Finding an optimal solution for QoS-aware Web service composition with various restrictions on qualities is a multi-objective optimisation problem. A popular multi-objective genetic algorithm, NSGA-II, is studied in order to provide a set of optimal solutions for QoS-based service composition. Experiments with different numbers of abstract and concrete services confirm the expected behaviour of the algorithm.

  13. Algorithm for solving the bi-level decision making problem with continuous variables in the upper level based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    XIAO Jian; CHEN Yi-hua

    2005-01-01

    Based on genetic algorithms, a solution algorithm is presented for the bi-level decision making problem with continuous variables in the upper level in accordance with the bi-level decision making principle. The algorithm is compared with Monte Carlo simulated annealing algorithm, and its feasibility and effectiveness are verified with two calculating examples.

  14. Fault Tolerant PLBGSA: Precedence Level Based Genetic Scheduling Algorithm for P2P Grid

    Directory of Open Access Journals (Sweden)

    Piyush Chauhan

    2013-01-01

    Full Text Available Due to monetary limitation, small organizations cannot afford high end supercomputers to solve highly complex tasks. P2P (peer to peer grid computing is being used nowadays to break complex task into subtasks in order to solve them on different grid resources. Workflows are used to represent these complex tasks. Finishing such complex task in a P2P grid requires scheduling subtasks of workflow in an optimized manner. Several factors play their part in scheduling decisions. The genetic algorithm is very useful in scheduling DAG (directed acyclic graph based task. Benefit of a genetic algorithm is that it takes into consideration multiple criteria while scheduling. In this paper, we have proposed a precedence level based genetic algorithm (PLBGSA, which yields schedules for workflows in a decentralized fashion. PLBGSA is compared with existing genetic algorithm based scheduling techniques. Fault tolerance is a desirable trait of a P2P grid scheduling algorithm due to the untrustworthy nature of grid resources. PLBGSA handles faults efficiently.

  15. A probabilistic coding based quantum genetic algorithm for multiple sequence alignment.

    Science.gov (United States)

    Huo, Hongwei; Xie, Qiaoluan; Shen, Xubang; Stojkovic, Vojislav

    2008-01-01

    This paper presents an original Quantum Genetic algorithm for Multiple sequence ALIGNment (QGMALIGN) that combines a genetic algorithm and a quantum algorithm. A quantum probabilistic coding is designed for representing the multiple sequence alignment. A quantum rotation gate as a mutation operator is used to guide the quantum state evolution. Six genetic operators are designed on the coding basis to improve the solution during the evolutionary process. The features of implicit parallelism and state superposition in quantum mechanics and the global search capability of the genetic algorithm are exploited to get efficient computation. A set of well known test cases from BAliBASE2.0 is used as reference to evaluate the efficiency of the QGMALIGN optimization. The QGMALIGN results have been compared with the most popular methods (CLUSTALX, SAGA, DIALIGN, SB_PIMA, and QGMALIGN) results. The QGMALIGN results show that QGMALIGN performs well on the presenting biological data. The addition of genetic operators to the quantum algorithm lowers the cost of overall running time.

  16. A fuzzy rule based genetic algorithm and its application in FMS

    Institute of Scientific and Technical Information of China (English)

    Li Shugang; Wu Zhiming; Pang Xiaohong

    2005-01-01

    Most of the FMS (flexible manufacturing systems) problems belong to NP-hard (non-polynomial hard) problems. The facility layout problem and job-shop schedule problem are such examples. GA (genetic algorithm) is applied to get an optimal solution. However, traditional GAs are usually of low efficiency because of their early convergence. In order to overcome the shortcoming of the GA a fuzzy rule based GA is proposed, in which a fuzzy logical controller is introduced to adjust the value of crossover probability, mutation probability and crossover length. The HGA (hybrid genetic algorithm), which is integrated with a fuzzy logic controller, can avoid premature convergence, and improve the efficiency greatly. Finally, simulation results of the facility layout problem and job-shop schedule problem are given. The results show that the new genetic algorithm integrated with fuzzy logic controller is excellent in searching efficiency.

  17. Chaotic queue-based genetic algorithm for design of a self-tuning fuzzy logic controller

    Science.gov (United States)

    Saini, Sanju; Saini, J. S.

    2012-11-01

    This paper employs a chaotic queue-based method using logistic equation in a non-canonical genetic algorithm for optimizing the performance of a self-tuning Fuzzy Logic Controller, used for controlling a nonlinear double-coupled system. A comparison has been made with a standard canonical genetic algorithm implemented on the same plant. It has been shown that chaotic queue-method brings an improvement in the performance of the FLC for wide range of set point changes by a more profound initial population spread in the search space.

  18. Forward and backward models for fault diagnosis based on parallel genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Yi LIU; Ying LI; Yi-jia CAO; Chuang-xin GUO

    2008-01-01

    In this paper, a mathematical model consisting of forward and backward models is built on parallel genetic algorithms (PGAs) for fault diagnosis in a transmission power system. A new method to reduce the scale of fault sections is developed in the forward model and the message passing interface (MPI) approach is chosen to parallel the genetic algorithms by global sin-gle-population master-slave method (GPGAs). The proposed approach is applied to a sample system consisting of 28 sections, 84 protective relays and 40 circuit breakers. Simulation results show that the new model based on GPGAs can achieve very fast computation in online applications of large-scale power systems.

  19. An Unsupervised Dynamic Image Segmentation using Fuzzy Hopfield Neural Network based Genetic Algorithm

    CERN Document Server

    Halder, Amiya

    2012-01-01

    This paper proposes a Genetic Algorithm based segmentation method that can automatically segment gray-scale images. The proposed method mainly consists of spatial unsupervised grayscale image segmentation that divides an image into regions. The aim of this algorithm is to produce precise segmentation of images using intensity information along with neighborhood relationships. In this paper, Fuzzy Hopfield Neural Network (FHNN) clustering helps in generating the population of Genetic algorithm which there by automatically segments the image. This technique is a powerful method for image segmentation and works for both single and multiple-feature data with spatial information. Validity index has been utilized for introducing a robust technique for finding the optimum number of components in an image. Experimental results shown that the algorithm generates good quality segmented image.

  20. Underwater vehicle sonar self-noise prediction based on genetic algorithms and neural network

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-guang; SHI Zhong-kun

    2006-01-01

    The factors that influence underwater vehicle sonar self-noise are analyzed, and genetic algorithms and a back propagation (BP) neural network are combined to predict underwater vehicle sonar self-noise. The experimental results demonstrate that underwater vehicle sonar self-noise can be predicted accurately by a GA-BP neural network that is based on actual underwater vehicle sonar data.

  1. DEVELOPMENT OF GENETIC ALGORITHM-BASED METHODOLOGY FOR SCHEDULING OF MOBILE ROBOTS

    DEFF Research Database (Denmark)

    Dang, Vinh Quang

    -time operations of production managers. Hence to deal with large-scale applications, each heuristic based on genetic algorithms is then developed to find near-optimal solutions within a reasonable computation time for each problem. The quality of these solutions is then compared and evaluated by using...

  2. Genetic Algorithm-Based Relevance Feedback for Image Retrieval Using Local Similarity Patterns.

    Science.gov (United States)

    Stejic, Zoran; Takama, Yasufumi; Hirota, Kaoru

    2003-01-01

    Proposes local similarity pattern (LSP) as a new method for computing digital image similarity. Topics include optimizing similarity computation based on genetic algorithm; relevance feedback; and an evaluation of LSP on five databases that showed an increase in retrieval precision over other methods for computing image similarity. (Author/LRW)

  3. A Genetic Algorithms-based Approach for Optimized Self-protection in a Pervasive Service Middleware

    DEFF Research Database (Denmark)

    Zhang, Weishan; Ingstrup, Mads; Hansen, Klaus Marius

    2009-01-01

    the constraints of heterogeneous devices and networks. In this paper, we present a Genetic Algorithms-based approach for obtaining optimized security configurations at run time, supported by a set of security OWL ontologies and an event-driven framework. This approach has been realized as a prototype for self...

  4. Genetic Algorithm-Based Artificial Neural Network for Voltage Stability Assessment

    Directory of Open Access Journals (Sweden)

    Garima Singh

    2011-01-01

    Full Text Available With the emerging trend of restructuring in the electric power industry, many transmission lines have been forced to operate at almost their full capacities worldwide. Due to this, more incidents of voltage instability and collapse are being observed throughout the world leading to major system breakdowns. To avoid these undesirable incidents, a fast and accurate estimation of voltage stability margin is required. In this paper, genetic algorithm based back propagation neural network (GABPNN has been proposed for voltage stability margin estimation which is an indication of the power system's proximity to voltage collapse. The proposed approach utilizes a hybrid algorithm that integrates genetic algorithm and the back propagation neural network. The proposed algorithm aims to combine the capacity of GAs in avoiding local minima and at the same time fast execution of the BP algorithm. Input features for GABPNN are selected on the basis of angular distance-based clustering technique. The performance of the proposed GABPNN approach has been compared with the most commonly used gradient based BP neural network by estimating the voltage stability margin at different loading conditions in 6-bus and IEEE 30-bus system. GA based neural network learns faster, at the same time it provides more accurate voltage stability margin estimation as compared to that based on BP algorithm. It is found to be suitable for online applications in energy management systems.

  5. A novel method to design S-box based on chaotic map and genetic algorithm

    Science.gov (United States)

    Wang, Yong; Wong, Kwok-Wo; Li, Changbing; Li, Yang

    2012-01-01

    The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes.

  6. A Genetic Algorithm-based Antenna Selection Approach for Large-but-Finite MIMO Networks

    KAUST Repository

    Makki, Behrooz

    2016-12-29

    We study the performance of antenna selectionbased multiple-input-multiple-output (MIMO) networks with large but finite number of transmit antennas and receivers. Considering the continuous and bursty communication scenarios with different users’ data request probabilities, we develop an efficient antenna selection scheme using genetic algorithms (GA). As demonstrated, the proposed algorithm is generic in the sense that it can be used in the cases with different objective functions, precoding methods, levels of available channel state information and channel models. Our results show that the proposed GAbased algorithm reaches (almost) the same throughput as the exhaustive search-based optimal approach, with substantially less implementation complexity.

  7. Route Optimization of Stacker in Automatic Warehouse Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Cui Changqing

    2013-11-01

    Full Text Available Today, automatic warehouse system gradually replaced manual labor, and played an important role in the production work, especially in the cargo handling work. It was important to research the time-consuming and efficiency of stacker in the automated warehouse system. This paper researched the path of stacker in automated warehouse and calculated the operation time of stacker working path according to actual working condition, and then put forward a route optimization method of stacker based on genetic algorithm, finally simulated this algorithm by using MATLAB. The simulation results showed that this algorithm could shorten the way of stacker, and increase the working efficiency of the warehouse.

  8. ASMiGA: an archive-based steady-state micro genetic algorithm.

    Science.gov (United States)

    Nag, Kaustuv; Pal, Tandra; Pal, Nikhil R

    2015-01-01

    We propose a new archive-based steady-state micro genetic algorithm (ASMiGA). In this context, a new archive maintenance strategy is proposed, which maintains a set of nondominated solutions in the archive unless the archive size falls below a minimum allowable size. It makes the archive size adaptive and dynamic. We have proposed a new environmental selection strategy and a new mating selection strategy. The environmental selection strategy reduces the exploration in less probable objective spaces. The mating selection increases searching in more probable search regions by enhancing the exploitation of existing solutions. A new crossover strategy DE-3 is proposed here. ASMiGA is compared with five well-known multiobjective optimization algorithms of different types-generational evolutionary algorithms (SPEA2 and NSGA-II), archive-based hybrid scatter search, decomposition-based evolutionary approach, and archive-based micro genetic algorithm. For comparison purposes, four performance measures (HV, GD, IGD, and GS) are used on 33 test problems, of which seven problems are constrained. The proposed algorithm outperforms the other five algorithms.

  9. Text clustering based on fusion of ant colony and genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    Yun ZHANG; Boqin FENG; Shouqiang MA; Lianmeng LIU

    2009-01-01

    Focusing on the problem that the ant colony algorithm gets into stagnation easily and cannot fully search in solution space,a text clustering approach based on the fusion of the ant colony and genetic algorithms is proposed.The four parameters that influence the performance of the ant colony algorithm are encoded as chromosomes,thereby the fitness function,selection,crossover and mutation operator are designed to find the combination of optimal parameters through a number of iteration,and then it is applied to text clustering.The simulation.results show that compared with the classical k-means clustering and the basic ant colony clustering algorithm,the proposed algorithm has better performance and the value of F-Measure is enhanced by 5.69%,48.60% and 69.60%,respectively,in 3 test datasets.Therefore,it is more suitable for processing a larger dataset.

  10. Improvements of real coded genetic algorithms based on differential operators preventing premature convergence

    CERN Document Server

    Hrstka, O; 10.1016/S0965-9978(03)00113-3

    2009-01-01

    This paper presents several types of evolutionary algorithms (EAs) used for global optimization on real domains. The interest has been focused on multimodal problems, where the difficulties of a premature convergence usually occurs. First the standard genetic algorithm (SGA) using binary encoding of real values and its unsatisfactory behavior with multimodal problems is briefly reviewed together with some improvements of fighting premature convergence. Two types of real encoded methods based on differential operators are examined in detail: the differential evolution (DE), a very modern and effective method firstly published by R. Storn and K. Price, and the simplified real-coded differential genetic algorithm SADE proposed by the authors. In addition, an improvement of the SADE method, called CERAF technology, enabling the population of solutions to escape from local extremes, is examined. All methods are tested on an identical set of objective functions and a systematic comparison based on a reliable method...

  11. DBSR: Dynamic base station Repositioning using Genetic algorithm in wireless sensor network

    CERN Document Server

    Mollanejad, Amir; Zeynali, Mohammad

    2010-01-01

    Wireless sensor networks (WSNs) are commonly used in various ubiquitous and pervasive applications. Due to limited power resources, the optimal dynamic base station (BS) replacement could be Prolong the sensor network lifetime. In this paper we'll present a dynamic optimum method for base station replacement so that can save energy in sensors and increases network lifetime. Because positioning problem is a NPhard problem [1], therefore we'll use genetic algorithm to solve positioning problem. We've considered energy and distance parameters for finding BS optimized position. In our represented algorithm base station position is fixed just during each round and its positioning is done at the start of next round then it'll be placed in optimized position. Evaluating our proposed algorithm, we'll execute DBSR algorithm on LEACH & HEED Protocols.

  12. A Genetic Algorithm Based Approach for Solving the Minimum Dominating Set of Queens Problem

    Directory of Open Access Journals (Sweden)

    Saad Alharbi

    2017-01-01

    Full Text Available In the field of computing, combinatorics, and related areas, researchers have formulated several techniques for the Minimum Dominating Set of Queens Problem (MDSQP pertaining to the typical chessboard based puzzles. However, literature shows that limited research has been carried out to solve the MDSQP using bioinspired algorithms. To fill this gap, this paper proposes a simple and effective solution based on genetic algorithms to solve this classical problem. We report results which demonstrate that near optimal solutions have been determined by the GA for different board sizes ranging from 8 × 8 to 11 × 11.

  13. Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a Grid platform

    CERN Document Server

    Arteaga-Sierra, F R; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A

    2014-01-01

    We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.

  14. Design of the Fuzzy Control Systems Based on Genetic Algorithm for Intelligent Robots

    Directory of Open Access Journals (Sweden)

    Gyula Mester

    2014-07-01

    Full Text Available This paper gives the structure optimization of fuzzy control systems based on genetic algorithm in the MATLAB environment. The genetic algorithm is a powerful tool for structure optimization of the fuzzy controllers, therefore, in this paper, integration and synthesis of fuzzy logic and genetic algorithm has been proposed. The genetic algorithms are applied for fuzzy rules set, scaling factors and membership functions optimization. The fuzzy control structure initial consist of the 3 membership functions and 9 rules and after the optimization it is enough for the 4 DOF SCARA Robot control to compensate for structured and unstructured uncertainty. Fuzzy controller with the generalized bell membership functions can provide better dynamic performance of the robot then with the triangular membership functions. The proposed joint-space controller is computationally simple and had adaptability to a sudden change in the dynamics of the robot. Results of the computer simulation applied to the 4 DOF SCARA Robot show the validity of the proposed method.

  15. Self-Organizing Genetic Algorithm Based Method for Constructing Bayesian Networks from Databases

    Institute of Scientific and Technical Information of China (English)

    郑建军; 刘玉树; 陈立潮

    2003-01-01

    The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed.

  16. Cleaner production for continuous digester processes based on hybrid Pareto genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Pulping production process produce large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implement cleaner production by using modeling and optimization technology. This paper studies the model and multi-objective genetic algorithms for continuous digester process. A model is established, in which environmental pollution and saving energy factors are considered. A hybrid genetic algorithm based on Pareto stratum-niche count is designed for finding near-Pareto or Pareto optimal solutions in the problem. A new genetic evaluation and selection mechanism is proposed. Using the real data from a pulp mill shows the results of computer simulation. Through comparing with the practical curve of digester,this method can reduce the pollutant effectively and increase the profit while keeping the pulp quality constant.

  17. Cleaner production for continuous digester processes based on hybrid Pareto genetic algorithm.

    Science.gov (United States)

    Jin, Fu-Jiang; Wang, Hui; Li, Ping

    2003-01-01

    Pulping production process produces a large amount of wastewater and pollutant emitted, which has become one of the main pollution sources in pulp and paper industry. To solve this problem, it is necessary to implement cleaner production by using modeling and optimization technology. This paper studies the modeling and multi-objective genetic algorithms for continuous digester process. First, model is established, in which environmental pollution and saving energy factors are considered. Then hybrid genetic algorithm based on Pareto stratum-nichecount is designed for finding near-Pareto or Pareto optimal solutions in the problem and a new genetic evaluation and selection mechanism is proposed. Finally using the real data from a pulp mill shows the results of computer simulation. Through comparing with the practical curve of digester, this method can reduce the pollutant effectively and increase the profit while keeping the pulp quality unchanged.

  18. Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis

    Institute of Scientific and Technical Information of China (English)

    LIU Bo; WANG Yong; WANG Hong-jian

    2006-01-01

    In the clustering applications field, fuzzy adaptive resonance theory system has been widely applied. But, three parameters of fuzzy adaptive resonance theory need to be adjusted manually for obtaining better clustering. It needs much time to test and does not assure a best result. Genetic algorithm is an optimal mathematical search technique based on the principles of natural selection and genetic recombination. So, to make the fuzzy adaptive resonance theory parameters choosing process automation, an approach incorporating genetic algorithm and fuzzy adaptive resonance theory neural network has been applied. Then, the best clustering result can be obtained.Through experiment, it can be proved that the most appropriate parameters of fuzzy adaptive resonance theory can be gained effectively by this approach.

  19. Deadlock-free genetic scheduling algorithm for automated manufacturing systems based on deadlock control policy.

    Science.gov (United States)

    Xing, KeYi; Han, LiBin; Zhou, MengChu; Wang, Feng

    2012-06-01

    Deadlock-free control and scheduling are vital for optimizing the performance of automated manufacturing systems (AMSs) with shared resources and route flexibility. Based on the Petri net models of AMSs, this paper embeds the optimal deadlock avoidance policy into the genetic algorithm and develops a novel deadlock-free genetic scheduling algorithm for AMSs. A possible solution of the scheduling problem is coded as a chromosome representation that is a permutation with repetition of parts. By using the one-step look-ahead method in the optimal deadlock control policy, the feasibility of a chromosome is checked, and infeasible chromosomes are amended into feasible ones, which can be easily decoded into a feasible deadlock-free schedule. The chromosome representation and polynomial complexity of checking and amending procedures together support the cooperative aspect of genetic search for scheduling problems strongly.

  20. Performance Optimization of Discrete Wavelets Transform Based Image Watermarking Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    A. Al-Haj

    2008-01-01

    Full Text Available The excellent spatial localization, frequency spread and multi-resolution characteristics of the Discrete Wavelets Transform (DWT, which were similar to the theoretical models of the human visual system, facilitated the development of many imperceptible and robust DWT-based watermarking algorithms. There had been extremely few proposed algorithms on optimized DWT-based image watermarking that can simultaneously provide perceptual transparency and robustness since these two watermarking requirements are conflicting, in this study we treat the DWT-based image watermarking problem as an optimization problem and solve it using genetic algorithms. We demonstrate through the experimental results we obtained that optimal DWT-based image watermarking can be achieved only if watermarking has been applied at specific wavelet sub-bands and by using specific watermark-amplification values.

  1. A hybrid genetic algorithm based on mutative scale chaos optimization strategy

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to avoid such problems as low convergent speed and local optimal solution in simple genetic algorithms, a new hybrid genetic algorithm is proposed. In this algorithm, a mutative scale chaos optimization strategy is operated on the population after a genetic operation. And according to the searching process, the searching space of the optimal variables is gradually diminished and the regulating coefficient of the secondary searching process is gradually changed which will lead to the quick evolution of the population. The algorithm has such advantages as fast search, precise results and convenient using etc. The simulation results show that the performance of the method is better than that of simple genetic algorithms.

  2. Double global optimum genetic algorithm-particle swarm optimization-based welding robot path planning

    Science.gov (United States)

    Wang, Xuewu; Shi, Yingpan; Ding, Dongyan; Gu, Xingsheng

    2016-02-01

    Spot-welding robots have a wide range of applications in manufacturing industries. There are usually many weld joints in a welding task, and a reasonable welding path to traverse these weld joints has a significant impact on welding efficiency. Traditional manual path planning techniques can handle a few weld joints effectively, but when the number of weld joints is large, it is difficult to obtain the optimal path. The traditional manual path planning method is also time consuming and inefficient, and cannot guarantee optimality. Double global optimum genetic algorithm-particle swarm optimization (GA-PSO) based on the GA and PSO algorithms is proposed to solve the welding robot path planning problem, where the shortest collision-free paths are used as the criteria to optimize the welding path. Besides algorithm effectiveness analysis and verification, the simulation results indicate that the algorithm has strong searching ability and practicality, and is suitable for welding robot path planning.

  3. An optimization design for evacuation planning based on fuzzy credibility theory and genetic algorithm

    Science.gov (United States)

    Zhang, D.; Zhang, W. Y.

    2017-08-01

    Evacuation planning is an important activity in disaster management. It has to be planned in advance due to the unpredictable occurrence of disasters. It is necessary that the evacuation plans are as close as possible to the real evacuation work. However, the evacuation plan is extremely challenging because of the inherent uncertainty of the required information. There is a kind of vehicle routing problem based on the public traffic evacuation. In this paper, the demand for each evacuation set point is a fuzzy number, and each routing selection of the point is based on the fuzzy credibility preference index. This paper proposes an approximate optimal solution for this problem by the genetic algorithm based on the fuzzy reliability theory. Finally, the algorithm is applied to an optimization model, and the experiment result shows that the algorithm is effective.

  4. Improved NSGA-Ⅱ Multi-objective Genetic Algorithm Based on Hybridization-encouraged Mechanism

    Institute of Scientific and Technical Information of China (English)

    Sun Yijie; Shen Gongzhang

    2008-01-01

    To improve performances of muhi-objective optimization algorithms, such as convergence and diversity, a hybridization-encour-aged mechanism is proposed and realized in elitist nondominated sorting genetic algorithm (NSGA-Ⅱ). This mechanism uses the nor-malized distance to evaluate the difference among genes in a population. Three possible modes of crossover operators--"Max Distance", "Min-Max Distance", and "Neighboring-Max"--are suggested and analyzed. The mode of "Neighboring-Max", which not only takes advantage of hybridization but also improves the distribution of the population near Pareto optimal front, is chosen and used in NSGA-Ⅱ on the basis of bybridization-encouraged mechanism (short for HEM-based NSGA-II). To prove the HEM-based algorithm, several problems are studied by using standard NSGA-Ⅱ and the presented method. Different evaluation criteria are also used to judge these algorithms in terms of distribution of solutions, convergence, diversity, and quality of solutions. The numerical results indicate that the application of hybridization-encouraged mechanism could effectively improve the performances of genetic algorithm. Finally, as an example in engineering practices, the presented method is used to design a longitudinal flight control system, which demonstrates the obtainability of a reasonable and correct Pareto front.

  5. Multiple People Picking Assignment and Routing Optimization Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    孙慧

    2014-01-01

    In order to improve the picking efficiency, reduce the picking time, this paper take artificial picking operation of a certain distribution center which has double-area warehouse as the studying object. Discuss the picking task allocation and routing problems. Establish the TSP model of order-picking system. Create a heuristic algorithm bases on the Genetic Algorithm (GA) which help to solve the task allocating problem and to get the associated order-picking routes. And achieve the simulation experiment with the Visual 6.0C++platform to prove the rationality of the model and the effectiveness of the arithmetic.

  6. Optimal approximation of head-related transfer function's pole-zero model based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jie; MA Hao; WU Zhen-yang

    2006-01-01

    In the research on spatial hearing and virtual auditory space,it is important to effectively model the head-related transfer functions (HRTFs).Based on the analysis of the HRTFs' spectrum and some perspectives of psychoacoustics,this paper applied multiple demes' parallel and real-valued coding genetic algorithm (GA) to approximate the HRTFs' zero-pole model.Using the logarithmic magnitude's error criterion for the human auditory sense,the results show that the performance of the GA is on the average 39% better than that of the traditional Prony method,and 46% better than that of the Yule-Walker algorithm.

  7. Cluster Based Hybrid Niche Mimetic and Genetic Algorithm for Text Document Categorization

    Directory of Open Access Journals (Sweden)

    A. K. Santra

    2011-09-01

    Full Text Available An efficient cluster based hybrid niche mimetic and genetic algorithm for text document categorization to improve the retrieval rate of relevant document fetching is addressed. The proposal minimizes the processing of structuring the document with better feature selection using hybrid algorithm. In addition restructuring of feature words to associated documents gets reduced, in turn increases document clustering rate. The performance of the proposed work is measured in terms of cluster objects accuracy, term weight, term frequency and inverse document frequency. Experimental results demonstrate that it achieves very good performance on both feature selection and text document categorization, compared to other classifier methods.

  8. Dynamic Bandwidth Allocation Technique in ATM Networks Based on Fuzzy Neural Networks and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZhangLiangjie; LiYanda; 等

    1997-01-01

    In this paper,a dynamic bandwidth allocation technique based on fuzz neural networks(FNNs) and genetic algorithm(GA)is proposed for preventive congestion control in ATM network.The traffic model based on FNN does not need the descriptive traffic parameters in detail,which greatly depend on the user's terminal.Genetic algorithm is used to predict the equivalent bandwidth of the accepted traffic in real-time.Thus,the proposed scheme can estimate the dynamic bandwidth of the network in the time scale from the call arrival to the call admission/rejection due to the fuzzy-tech and GA hardware implementation.Simulation results show that the scheme can perform accurate dynamic bandwidth allocation to DN/OFF bursty traffic in accordance with the required quality of service(QOS),and the bandwidth utilization is improved from the overall point of view.

  9. A target coverage scheduling scheme based on genetic algorithms in directional sensor networks.

    Science.gov (United States)

    Gil, Joon-Min; Han, Youn-Hee

    2011-01-01

    As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime.

  10. Multiple parts process planning in serial–parallel flexible flow lines: part II—solution method based on genetic algorithms with fixed- and variable-length chromosomes

    OpenAIRE

    Musharavati, Farayi; Hamouda, Abdelmagid Salem

    2015-01-01

    Multiple parts process planning (MPPP) is a hard optimization problem that requires the rigor and intensity of metaheuristic-based algorithms such as simulated annealing and genetic algorithms. In this paper, a solution method for this problem is developed based on genetic algorithms. Genetic algorithms solve problems by exploring a given search space. To do this, a landscape over which the search traverses is constructed based on a number of algorithm choices. Key algorithm choices include (...

  11. A new metaheuristic genetic-based placement algorithm for 2D strip packing

    OpenAIRE

    Thomas, Jaya; Chaudhari, Narendra S.

    2014-01-01

    Given a container of fixed width, infinite height and a set of rectangular block, the 2D-strip packing problem consists of orthogonally placing all the rectangles such that the height is minimized. The position is subject to confinement of no overlapping of blocks. The problem is a complex NP-hard combinatorial optimization, thus a heuristic based on genetic algorithm is proposed to solve it. In this paper, we give a hybrid approach which combined genetic encoding and evolution scheme with th...

  12. Rule Extraction from Trained Artificial Neural Network Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Wen-jian; ZHANG Li-xia

    2002-01-01

    This paper discusses how to extract symbolic rules from trained artificial neural network (ANN) in domains involving classification using genetic algorithms (GA). Previous methods based on an exhaustive analysis of network connections and output values have already been demonstrated to be intractable in that the scale-up factor increases with the number of nodes and connections in the network.Some experiments explaining effectiveness of the presented method are given as well.

  13. Genetic algorithm-based multi-objective model for scheduling of linear construction projects

    OpenAIRE

    Senouci, Ahmed B.; Al-Derham, H.R.

    2007-01-01

    This paper presents a genetic algorithm-based multi-objective optimization model for the scheduling of linear construction projects. The model allows construction planners to generate and evaluate optimal/near-optimal construction scheduling plans that minimize both project time and cost. The computations in the present model are organized in three major modules. A scheduling module that develops practical schedules for linear construction projects. A cost module that computes the project's c...

  14. Optimization of Rolling Force Distribution Based on Niche Genetic Algorithm in Continuous Hot Rolling Mills

    Institute of Scientific and Technical Information of China (English)

    LIU Zi-ping; LI Li-xin

    2013-01-01

    Based on the niche genetic algorithm, the intelligent and optimizing model for the rolling force distribution in hot strip mills was put forward. The research showed that the model had many advantages such as fast searching speed, high calculating pre-cision and suiting for on-line calculation. A good strip shape could be achieved by using the model and it is appropriate and practica-ble for rolling producing.

  15. Electric Energy Demand Forecast of Nanchang based on Cellular Genetic Algorithm and BP Neural Network

    OpenAIRE

    Cheng Yugui

    2013-01-01

    A kind of power forecast model combined cellular genetic algorithm with BP neural network was established in this article. Mid-long term power demand in urban areas was done load forecasting and analysis based on material object of the actual power consumption in urban areas of Nanchang. The results show that this method has the characteristic of the minimum training times, the shortest consumption time, the minimum error and the shortest operation time to obtain the best fitting effect.  

  16. OPTIMIZATION DESIGN OF HYDRAU-LIC MANIFOLD BLOCKS BASED ON HUMAN-COMPUTER COOPERATIVE GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Feng Yi; Li Li; Tian Shujun

    2003-01-01

    Optimization design of hydraulic manifold blocks (HMB) is studied as a complex solid spatial layout problem. Based on comprehensive research into structure features and design rules of HMB, an optimal mathematical model for this problem is presented. Using human-computer cooperative genetic algorithm (GA) and its hybrid optimization strategies, integrated layout and connection design schemes of HMB can be automatically optimized. An example is given to testify it.

  17. Genetic Algorithm-Based Artificial Neural Network for Voltage Stability Assessment

    OpenAIRE

    Garima Singh; Laxmi Srivastava

    2011-01-01

    With the emerging trend of restructuring in the electric power industry, many transmission lines have been forced to operate at almost their full capacities worldwide. Due to this, more incidents of voltage instability and collapse are being observed throughout the world leading to major system breakdowns. To avoid these undesirable incidents, a fast and accurate estimation of voltage stability margin is required. In this paper, genetic algorithm based back propagation neural network (GABPNN...

  18. Optimizing Fuzzy Rule Base for Illumination Compensation in Face Recognition using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Bima Sena Bayu Dewantara

    2014-12-01

    Full Text Available Fuzzy rule optimization is a challenging step in the development of a fuzzy model. A simple two inputs fuzzy model may have thousands of combination of fuzzy rules when it deals with large number of input variations. Intuitively and trial‐error determination of fuzzy rule is very difficult. This paper addresses the problem of optimizing Fuzzy rule using Genetic Algorithm to compensate illumination effect in face recognition. Since uneven illumination contributes negative effects to the performance of face recognition, those effects must be compensated. We have developed a novel algorithmbased on a reflectance model to compensate the effect of illumination for human face recognition. We build a pair of model from a single image and reason those modelsusing Fuzzy.Fuzzy rule, then, is optimized using Genetic Algorithm. This approachspendsless computation cost by still keepinga high performance. Based on the experimental result, we can show that our algorithm is feasiblefor recognizing desired person under variable lighting conditions with faster computation time. Keywords: Face recognition, harsh illumination, reflectance model, fuzzy, genetic algorithm

  19. Three-dimensional microscope vision system based on micro laser line scanning and adaptive genetic algorithms

    Science.gov (United States)

    Apolinar, J.; Rodríguez, Muñoz

    2017-02-01

    A microscope vision system to retrieve small metallic surface via micro laser line scanning and genetic algorithms is presented. In this technique, a 36 μm laser line is projected on the metallic surface through a laser diode head, which is placed to a small distance away from the target. The micro laser line is captured by a CCD camera, which is attached to the microscope. The surface topography is computed by triangulation by means of the line position and microscope vision parameters. The calibration of the microscope vision system is carried out by an adaptive genetic algorithm based on the line position. In this algorithm, an objective function is constructed from the microscope geometry to determine the microscope vision parameters. Also, the genetic algorithm provides the search space to calculate the microscope vision parameters with high accuracy in fast form. This procedure avoids errors produced by the missing of references and physical measurements, which are employed by the traditional microscope vision systems. The contribution of the proposed system is corroborated by an evaluation via accuracy and speed of the traditional microscope vision systems, which retrieve micro-scale surface topography.

  20. Predicting Modeling Method of Ship Radiated Noise Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Guohui Li

    2016-01-01

    Full Text Available Because the forming mechanism of underwater acoustic signal is complex, it is difficult to establish the accurate predicting model. In this paper, we propose a nonlinear predicting modeling method of ship radiated noise based on genetic algorithm. Three types of ship radiated noise are taken as real underwater acoustic signal. First of all, a basic model framework is chosen. Secondly, each possible model is done with genetic coding. Thirdly, model evaluation standard is established. Fourthly, the operation of genetic algorithm such as crossover, reproduction, and mutation is designed. Finally, a prediction model of real underwater acoustic signal is established by genetic algorithm. By calculating the root mean square error and signal error ratio of underwater acoustic signal predicting model, the satisfactory results are obtained. The results show that the proposed method can establish the accurate predicting model with high prediction accuracy and may play an important role in the further processing of underwater acoustic signal such as noise reduction and feature extraction and classification.

  1. RESEARCH ON THE MINIMUM ZONE CYLINDRICITY EVALUATION BASED ON GENETIC ALGORITHMS

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A genetic algorithm (GA)-based method is proposed to solve the nonlinear optimization problem of minimum zone cylindricity evaluation.First, the background of the problem is introduced.Then the mathematical model and the fitness function are derived from the mathematical definition of dimensioning and tolerancing principles.Thirdly with the least squares solution as the initial values, the whole implementation process of the algorithm is realized in which some key techniques, for example, variables representing, population initializing and such basic operations as selection, crossover and mutation, are discussed in detail.Finally, examples are quoted to verify the proposed algorithm.The computation results indicate that the GA-based optimization method performs well on cylindricity evaluation.The outstanding advantages conclude high accuracy, high efficiency and capabilities of solving complicated nonlinear and large space problems.

  2. Intelligent Controller Design for DC Motor Speed Control based on Fuzzy Logic-Genetic Algorithms Optimization

    OpenAIRE

    Boumediene ALLAOUA; Laoufi, Abdellah; Brahim GASBAOUI; Nasri, Abdelfatah; Abdessalam ABDERRAHMANI

    2008-01-01

    In this paper, an intelligent controller of the DC (Direct current) Motor drive is designed using fuzzy logic-genetic algorithms optimization. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by genetic algorithms optimization model. Computer MATLAB work space demonstrate that the fuzzy controller associated to the genetic algorithms approach became ve...

  3. Computational fluid dynamics based bulbous bow optimization using a genetic algorithm

    Science.gov (United States)

    Mahmood, Shahid; Huang, Debo

    2012-09-01

    Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship. With the development of fast computers and robust CFD software, CFD has become an important tool for designers and engineers in the ship industry. In this paper, the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool. CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters, automatic generation of mesh, automatic analysis of fluid flow to calculate the required objective/cost function, and finally an optimization tool to evaluate the cost for optimization. In this paper, integration of a genetic algorithm program, written in MATLAB, was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT. Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters. These design variables were optimized to achieve a minimum cost function of "total resistance". Integration of a genetic algorithm with CFD tools proves to be effective for hull form optimization.

  4. Computational Fluid Dynamics Based Bulbous Bow Optimization Using a Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Shahid Mahmood; Debo Huang

    2012-01-01

    Computational fluid dynamics (CFD) plays a major role in predicting the flow behavior of a ship.With the development of fast computers and robust CFD software,CFD has become an important tool for designers and engineers in the ship industry.In this paper,the hull form of a ship was optimized for total resistance using CFD as a calculation tool and a genetic algorithm as an optimization tool.CFD based optimization consists of major steps involving automatic generation of geometry based on design parameters,automatic generation of mesh,automatic analysis of fluid flow to calculate the required objective/cost function,and finally an optimization tool to evaluate the cost for optimization.In this paper,integration of a genetic algorithm program,written in MATLAB,was carried out with the geometry and meshing software GAMBIT and CFD analysis software FLUENT.Different geometries of additive bulbous bow were incorporated in the original hull based on design parameters.These design variables were optimized to achieve a minimum cost function of “total resistance”.Integration of a genetic algorithm with CFD tools proves to be effective for hull form optimization.

  5. Classification of ETM+ Remote Sensing Image Based on Hybrid Algorithm of Genetic Algorithm and Back Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Haisheng Song

    2013-01-01

    Full Text Available The back propagation neural network (BPNN algorithm can be used as a supervised classification in the processing of remote sensing image classification. But its defects are obvious: falling into the local minimum value easily, slow convergence speed, and being difficult to determine intermediate hidden layer nodes. Genetic algorithm (GA has the advantages of global optimization and being not easy to fall into local minimum value, but it has the disadvantage of poor local searching capability. This paper uses GA to generate the initial structure of BPNN. Then, the stable, efficient, and fast BP classification network is gotten through making fine adjustments on the improved BP algorithm. Finally, we use the hybrid algorithm to execute classification on remote sensing image and compare it with the improved BP algorithm and traditional maximum likelihood classification (MLC algorithm. Results of experiments show that the hybrid algorithm outperforms improved BP algorithm and MLC algorithm.

  6. A Hybrid Genetic Algorithm for Reduct of Attributes in Decision System Based on Rough Set Theory

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Knowledge reduction is an important issue when dealing with huge amounts of data. And it has been proved that computing the minimal reduct of decision system is NP-complete. By introducing heuristic information into genetic algorithm, we proposed a heuristic genetic algorithm. In the genetic algorithm, we constructed a new operator to maintaining the classification ability. The experiment shows that our algorithm is efficient and effective for minimal reduct, even for the special example that the simple heuristic algorithm can't get the right result.

  7. GA-DoSLD: Genetic Algorithm Based Denial-of-Sleep Attack Detection in WSN

    Directory of Open Access Journals (Sweden)

    Mahalakshmi Gunasekaran

    2017-01-01

    Full Text Available Denial-of-sleep (DoSL attack is a special category of denial-of-service attack that prevents the battery powered sensor nodes from going into the sleep mode, thus affecting the network performance. The existing schemes used for the DoSL attack detection do not provide an optimal energy conservation and key pairing operation. Hence, in this paper, an efficient Genetic Algorithm (GA based denial-of-sleep attack detection (GA-DoSLD algorithm is suggested for analyzing the misbehaviors of the nodes. The suggested algorithm implements a Modified-RSA (MRSA algorithm in the base station (BS for generating and distributing the key pair among the sensor nodes. Before sending/receiving the packets, the sensor nodes determine the optimal route using Ad Hoc On-Demand Distance Vector Routing (AODV protocol and then ensure the trustworthiness of the relay node using the fitness calculation. The crossover and mutation operations detect and analyze the methods that the attackers use for implementing the attack. On determining an attacker node, the BS broadcasts the blocked information to all the other sensor nodes in the network. Simulation results prove that the suggested algorithm is optimal compared to the existing algorithms such as X-MAC, ZKP, and TE2P schemes.

  8. Intelligent Music Composition using Genetic Algorithm based on Motif Uniform Mutation

    Directory of Open Access Journals (Sweden)

    Faria Nassiri-Mofakham

    2015-03-01

    Full Text Available Nowadays, fields of music and artificial intelligence are closer together through research in both areas. Music composition using artificial intelligence (AI solutions has created a challenging research area. Automatic music composition will not only help researchers understand human’s musical thinking, but also helps composers and musicians improve music theory significantly by using the computing power of computers. In this study, an automatic music composition is presented. The system is implemented by using Markov chain and Lindenmayer systems as well as genetic algorithm. Fitness evaluation of the generated music is achord-based. The evaluations show the fast evolution of the results by genetic algorithm using uniform mutation. Creativity in music composition is beyond the present borders of AI and much work is still ahead in this field.

  9. Surface Defect Target Identification on Copper Strip Based on Adaptive Genetic Algorithm and Feature Saliency

    Directory of Open Access Journals (Sweden)

    Xuewu Zhang

    2013-01-01

    Full Text Available To enhance the stability and robustness of visual inspection system (VIS, a new surface defect target identification method for copper strip based on adaptive genetic algorithm (AGA and feature saliency is proposed. First, the study uses gray level cooccurrence matrix (GLCM and HU invariant moments for feature extraction. Then, adaptive genetic algorithm, which is used for feature selection, is evaluated and discussed. In AGA, total error rates and false alarm rates are integrated to calculate the fitness value, and the probability of crossover and mutation is adjusted dynamically according to the fitness value. At last, the selected features are optimized in accordance with feature saliency and are inputted into a support vector machine (SVM. Furthermore, for comparison, we conduct experiments using the selected optimal feature subsequence (OFS and the total feature sequence (TFS separately. The experimental results demonstrate that the proposed method can guarantee the correct rates of classification and can lower the false alarm rates.

  10. [Determination of Virtual Surgery Mass Point Spring Model Parameters Based on Genetic Algorithms].

    Science.gov (United States)

    Chen, Ying; Hu, Xuyi; Zhu, Qiguang

    2015-12-01

    Mass point-spring model is one of the commonly used models in virtual surgery. However, its model parameters have no clear physical meaning, and it is hard to set the parameter conveniently. We, therefore, proposed a method based on genetic algorithm to determine the mass-spring model parameters. Computer-aided tomography (CAT) data were used to determine the mass value of the particle, and stiffness and damping coefficient were obtained by genetic algorithm. We used the difference between the reference deformation and virtual deformation as the fitness function to get the approximate optimal solution of the model parameters. Experimental results showed that this method could obtain an approximate optimal solution of spring parameters with lower cost, and could accurately reproduce the effect of the actual deformation model as well.

  11. The Parameters Optimization of MCR-WPT System Based on the Improved Genetic Simulated Annealing Algorithm

    Directory of Open Access Journals (Sweden)

    Sheng Lu

    2015-01-01

    Full Text Available To solve the problem of parameter selection during the design of magnetically coupled resonant wireless power transmission system (MCR-WPT, this paper proposed an improved genetic simulated annealing algorithm. Firstly, the equivalent circuit of the system is analysis in this study and a nonlinear programming mathematical model is built. Secondly, in place of the penalty function method in the genetic algorithm, the selection strategy based on the distance between individuals is adopted to select individual. In this way, it reduces the excess empirical parameters. Meanwhile, it can improve the convergence rate and the searching ability by calculating crossover probability and mutation probability according to the variance of population’s fitness. At last, the simulated annealing operator is added to increase local search ability of the method. The simulation shows that the improved method can break the limit of the local optimum solution and get the global optimum solution faster. The optimized system can achieve the practical requirements.

  12. Treatment of multiple network parameter errors through a genetic-based algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Stacchini de Souza, Julio C.; Do Coutto Filho, Milton B.; Meza, Edwin B. Mitacc [Department of Electrical Engineering, Institute of Computing, Fluminense Federal University, Rua Passo da Patria, 156 - Sao Domingos, 24210-240 Niteroi, Rio de Janeiro (Brazil)

    2009-11-15

    This paper proposes a genetic algorithm-based methodology for network parameter estimation and correction. Network parameter errors may come from many different sources, such as: imprecise data provided by manufacturers, poor estimation of transmission lines lengths and changes in transmission network design which are not adequately updated in the corresponding database. Network parameter data are employed by almost all power system analysis tools, from real time monitoring to long-term planning. The presence of parameter errors contaminates the results obtained by these tools and compromises decision-making processes. To get rid of single or multiple network parameter errors, a methodology that combines genetic algorithms and power system state estimation is proposed. Tests with the IEEE 14-bus system and a real Brazilian system are performed to illustrate the proposed method. (author)

  13. Knee Joint Optimization Design of Intelligent Bionic Leg Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hualong Xie

    2014-09-01

    Full Text Available Intelligent bionic leg (IBL is an advanced prosthesis which can maximum functionally simulate and approach the motion trajectory of human leg. Knee joint is the most important bone of human leg and its bionic design has great significance to prosthesis performance. The structural components of IBL are introduced and virtual prototype is given. The advantages of 4-bar knee joint are analyzed and are adopted in IBL design. The kinematics model of 4-bar knee joint is established. The objective function, constraint condition, parameters selection and setting of genetic algorithm are discussed in detail. Based on genetic algorithm, the optimization design of IBL knee joint is done. The optimization results indicate that the 4-bar mechanism can achieve better anthropomorphic characteristics of human knee joint.

  14. State Generation Method for Humanoid Motion Planning Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Xuyang Wang

    2008-11-01

    Full Text Available A new approach to generate the original motion data for humanoid motion planning is presented in this paper. And a state generator is developed based on the genetic algorithm, which enables users to generate various motion states without using any reference motion data. By specifying various types of constraints such as configuration constraints and contact constraints, the state generator can generate stable states that satisfy the constraint conditions for humanoid robots.To deal with the multiple constraints and inverse kinematics, the state generation is finally simplified as a problem of optimizing and searching. In our method, we introduce a convenient mathematic representation for the constraints involved in the state generator, and solve the optimization problem with the genetic algorithm to acquire a desired state. To demonstrate the effectiveness and advantage of the method, a number of motion states are generated according to the requirements of the motion.

  15. Automatic multi-resolution image registration based on genetic algorithm and Hausdorff distance

    Institute of Scientific and Technical Information of China (English)

    Famao Ye; Lin Su; Shukai Li

    2006-01-01

    @@ Image registration is a crucial step in all image analysis tasks in which the final information is gained from the combination of various data sources, and it is difficult to automatically register due to the complexity of image. An approach based on genetic algorithm and Hausdorff distance to automatic image registration is presented. We use a multi-resolution edge tracker to find out the fine-quality edges and utilize the Hausdorff distance between the input image and the reference image as similarity measure. We use wavelet decomposition and genetic algorithm, which combine local search methods with global ones balancing exploration and exploitation, to speed up the search of the best transformation parameters.Experimental results show that the proposed approach is a promising method for registration of image.

  16. Improved Cost-Base Design of Water Distribution Networks using Genetic Algorithm

    Science.gov (United States)

    Moradzadeh Azar, Foad; Abghari, Hirad; Taghi Alami, Mohammad; Weijs, Steven

    2010-05-01

    Population growth and progressive extension of urbanization in different places of Iran cause an increasing demand for primary needs. The water, this vital liquid is the most important natural need for human life. Providing this natural need is requires the design and construction of water distribution networks, that incur enormous costs on the country's budget. Any reduction in these costs enable more people from society to access extreme profit least cost. Therefore, investment of Municipal councils need to maximize benefits or minimize expenditures. To achieve this purpose, the engineering design depends on the cost optimization techniques. This paper, presents optimization models based on genetic algorithm(GA) to find out the minimum design cost Mahabad City's (North West, Iran) water distribution network. By designing two models and comparing the resulting costs, the abilities of GA were determined. the GA based model could find optimum pipe diameters to reduce the design costs of network. Results show that the water distribution network design using Genetic Algorithm could lead to reduction of at least 7% in project costs in comparison to the classic model. Keywords: Genetic Algorithm, Optimum Design of Water Distribution Network, Mahabad City, Iran.

  17. Job-shop Scheduling with Multi-objectives Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    周亚勤; 李蓓智; 陈革

    2003-01-01

    The technology of production planning and scheduling is one of the critical technologies that decide whether the automated manufacturing systems can get the expected economy. Job shop scheduling belongs to the special class of NP-hard problems. Most of the algorithms used to optimize this class of problems have an exponential time; that is, the computation time increases exponentially with problem size. In scheduling study, makespan is often considered as the main objective. In this paper, makespan, the due date request of the key jobs, the availability of the key machine, the average wait-time of the jobs, and the similarities between the jobs and so on are taken into accotmt based on the application of mechanical engineering. The job shop scheduling problem with multi-objectives is analyzed and studied by using genetic algorithms based on the mechanics of genetics and natural selection. In this research, the tactics of the coding and decoding and the design of the genetic operators, along with the description of the mathematic model of the multi-objective functions,are presented. Finally an illu-strative example is given to testify the validity of this algorithm.

  18. A genetic algorithm based global search strategy for population pharmacokinetic/pharmacodynamic model selection.

    Science.gov (United States)

    Sale, Mark; Sherer, Eric A

    2015-01-01

    The current algorithm for selecting a population pharmacokinetic/pharmacodynamic model is based on the well-established forward addition/backward elimination method. A central strength of this approach is the opportunity for a modeller to continuously examine the data and postulate new hypotheses to explain observed biases. This algorithm has served the modelling community well, but the model selection process has essentially remained unchanged for the last 30 years. During this time, more robust approaches to model selection have been made feasible by new technology and dramatic increases in computation speed. We review these methods, with emphasis on genetic algorithm approaches and discuss the role these methods may play in population pharmacokinetic/pharmacodynamic model selection.

  19. An Evolutionary Approach to Drug-Design Using a Novel Neighbourhood Based Genetic Algorithm

    CERN Document Server

    Ghosh, Arnab; Chowdhury, Arkabandhu; Konar, Amit

    2012-01-01

    The present work provides a new approach to evolve ligand structures which represent possible drug to be docked to the active site of the target protein. The structure is represented as a tree where each non-empty node represents a functional group. It is assumed that the active site configuration of the target protein is known with position of the essential residues. In this paper the interaction energy of the ligands with the protein target is minimized. Moreover, the size of the tree is difficult to obtain and it will be different for different active sites. To overcome the difficulty, a variable tree size configuration is used for designing ligands. The optimization is done using a novel Neighbourhood Based Genetic Algorithm (NBGA) which uses dynamic neighbourhood topology. To get variable tree size, a variable-length version of the above algorithm is devised. To judge the merit of the algorithm, it is initially applied on the well known Travelling Salesman Problem (TSP).

  20. Anatomy-based three-dimensional dose optimization in brachytherapy using multiobjective genetic algorithms.

    Science.gov (United States)

    Lahanas, M; Baltas, D; Zamboglou, N

    1999-09-01

    In conventional dose optimization algorithms, in brachytherapy, multiple objectives are expressed in terms of an aggregating function which combines individual objective values into a single utility value, making the problem single objective, prior to optimization. A multiobjective genetic algorithm (MOGA) was developed for dose optimization based on an a posteriori approach, leaving the decision-making process to a planner and offering a representative trade-off surface of the various objectives. The MOGA provides a flexible search engine which provides the maximum of information for a decision maker. Tests performed with various treatment plans in brachytherapy have shown that MOGA gives solutions which are superior to those of traditional dose optimization algorithms. Objectives were proposed in terms of the COIN distribution and differential volume histograms, taking into account patient anatomy in the optimization process.

  1. Genetic Algorithm Used for Load Shedding Based on Sensitivity to Enhance Voltage Stability

    Science.gov (United States)

    Titare, L. S.; Singh, P.; Arya, L. D.

    2014-12-01

    This paper presents an algorithm to calculate optimum load shedding with voltage stability consideration based on sensitivity of proximity indicator using genetic algorithm (GA). Schur's inequality based proximity indicator of load flow Jacobian has been selected, which indicates system state. Load flow Jacobian of the system is obtained using Continuation power flow method. If reactive power and active rescheduling are exhausted, load shedding is the last line of defense to maintain the operational security of the system. Load buses for load shedding have been selected on the basis of sensitivity of proximity indicator. The load bus having large sensitivity is selected for load shedding. Proposed algorithm predicts load bus rank and optimum load to be shed on load buses. The algorithm accounts inequality constraints not only in present operating conditions, but also for predicted next interval load (with load shedding). Developed algorithm has been implemented on IEEE 6-bus system. Results have been compared with those obtained using Teaching-Learning-Based Optimization (TLBO), particle swarm optimization (PSO) and its variant.

  2. Diagnosis of Hepatocellular Carcinoma Spectroscopy Based on the Feature Selection Approach of the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Shao-qing Wang

    2013-06-01

    Full Text Available This paper aims to study the application of medical imaging technology with artificial intelligence technology on how to improve the diagnostic accuracy rate for hepatocellular carcinoma. The   recognition method based on genetic algorithm (GA and Neural Network are presented. GA was used to select 20 optimal features from the 401 initial features. BP (Back-propagation Neural Network, BP and PNN (Probabilistic Neural Network, PNN were used to classify tested samples based on these optimized features, and make comparison between results based on 20 optimal features and the all 401 features. The results of the experiment show that the method can improve the recognition rate.

  3. A Novel Cluster-head Selection Algorithm Based on Hybrid Genetic Optimization for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Lejiang Guo

    2011-05-01

    Full Text Available Wireless Sensor Networks (WSN represent a new dimension in the field of network research. The cluster algorithm can significantly reduce the energy consumption of wireless sensor networks and prolong the network lifetime. This paper uses neuron to describe the WSN node and constructs neural network model for WSN. The neural network model includes three aspects: WSN node neuron model, WSN node control model and WSN node connection model. Through learning the framework of cluster algorithm for wireless sensor networks, this paper presents a weighted average of cluster-head selection algorithm based on an improved Genetic Optimization which makes the node weights directly related to the decision-making predictions. The Algorithm consists of two stages: single-parent evolution and population evolution. The initial population is formed in the stage of single-parent evolution by using gene pool, then the algorithm continues to the next further evolution process, finally the best solution will be generated and saved in the population. The simulation results illustrate that the new algorithm has the high convergence speed and good global searching capacity. It is to effectively balance the network energy consumption, improve the network life-cycle, ensure the communication quality and provide a certain theoretical foundation for the applications of the neural networks.

  4. iMASKO: A Genetic Algorithm Based Optimization Framework for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Nanhao Zhu

    2013-10-01

    Full Text Available In this paper we present the design and implementation of a generic GA-based optimization framework iMASKO (iNL@MATLAB Genetic Algorithm-based Sensor NetworK Optimizer to optimize the performance metrics of wireless sensor networks. Due to the global search property of genetic algorithms, the framework is able to automatically and quickly fine tune hundreds of possible solutions for the given task to find the best suitable tradeoff. We test and evaluate the framework by using it to explore a SystemC-based simulation process to tune the configuration of the unslotted CSMA/CA algorithm of IEEE 802.15.4, aiming to discover the most available tradeoff solutions for the required performance metrics. In particular, in the test cases different sensor node platforms are under investigation. A weighted sum based cost function is used to measure the optimization effectiveness and capability of the framework. In the meantime, another experiment is performed to test the framework’s optimization characteristic in multi-scenario and multi-objectives conditions.

  5. Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms.

    Science.gov (United States)

    Liu, B D; Chen, C Y; Tsao, J Y

    2001-01-01

    In this paper, we propose a novel fuzzy logic controller, called linguistic hedge fuzzy logic controller, to simplify the membership function constructions and the rule developments. The design methodology of linguistic hedge fuzzy logic controller is a hybrid model based on the concepts of the linguistic hedges and the genetic algorithms. The linguistic hedge operators are used to adjust the shape of the system membership functions dynamically, and ran speed up the control result to fit the system demand. The genetic algorithms are adopted to search the optimal linguistic hedge combination in the linguistic hedge module, According to the proposed methodology, the linguistic hedge fuzzy logic controller has the following advantages: 1) it needs only the simple-shape membership functions rather than the carefully designed ones for characterizing the related variables; 2) it is sufficient to adopt a fewer number of rules for inference; 3) the rules are developed intuitionally without heavily depending on the endeavor of experts; 4) the linguistic hedge module associated with the genetic algorithm enables it to be adaptive; 5) it performs better than the conventional fuzzy logic controllers do; and 6) it can be realized with low design complexity and small hardware overhead. Furthermore, the proposed approach has been applied to design three well-known nonlinear systems. The simulation and experimental results demonstrate the effectiveness of this design.

  6. Optimization of HAART with genetic algorithms and agent-based models of HIV infection.

    Science.gov (United States)

    Castiglione, F; Pappalardo, F; Bernaschi, M; Motta, S

    2007-12-15

    Highly Active AntiRetroviral Therapies (HAART) can prolong life significantly to people infected by HIV since, although unable to eradicate the virus, they are quite effective in maintaining control of the infection. However, since HAART have several undesirable side effects, it is considered useful to suspend the therapy according to a suitable schedule of Structured Therapeutic Interruptions (STI). In the present article we describe an application of genetic algorithms (GA) aimed at finding the optimal schedule for a HAART simulated with an agent-based model (ABM) of the immune system that reproduces the most significant features of the response of an organism to the HIV-1 infection. The genetic algorithm helps in finding an optimal therapeutic schedule that maximizes immune restoration, minimizes the viral count and, through appropriate interruptions of the therapy, minimizes the dose of drug administered to the simulated patient. To validate the efficacy of the therapy that the genetic algorithm indicates as optimal, we ran simulations of opportunistic diseases and found that the selected therapy shows the best survival curve among the different simulated control groups. A version of the C-ImmSim simulator is available at http://www.iac.cnr.it/~filippo/c-ImmSim.html

  7. Genetic Algorithm Based Control System Design of a Self-Excited Induction Generator

    Directory of Open Access Journals (Sweden)

    A.-F. Attia

    2006-01-01

    Full Text Available This paper presents an application of the genetic algorithm (GA for optimizing controller gains of the Self-Excited Induction Generator (SEIG driven by the Wind Energy Conversion Scheme (WECS. The proposed genetic algorithm is introduced to adapt the integral gains of the conventional controllers of the active and reactive control loop of the system under study, where GA calculates the optimum value for the gains of the variables based on the best dynamic performance and a domain search of the integral gains. The proposed genetic algorithm is used to regulate the terminal voltage or reactive power control, by adjusting the self excitation, and to control the mechanical input power or active power control by adapting the blade angle of WECS, in order to adjust the stator frequency. The GA is used for optimizing these gains, for an active and reactive power loop, by solving the related optimization problem. The simulation results show a better dynamic performance using the GA than using the conventional PI controller for active and reactive control.

  8. LSSVM Network Flow Prediction Based on the Self-adaptive Genetic Algorithm Optimization

    Directory of Open Access Journals (Sweden)

    Liao Wenjing

    2013-02-01

    Full Text Available In order to change the insufficiency of traditional network flow prediction and improve its accuracy, the paper proposed a kind of network flow prediction method based on the self-adaptive genetic least square support vector machine optimization. Through analyzing the individual parameter of the LS-SVM principle and self-adaptive remains algorithm, the network flow prediction model structure of GA-LSSVM, and the genetic model global operation parameters, this paper would conduct a performance test to the network flow simulation experiment. The simulation result showed that: compared with the traditional forecasting methods, the accuracy of its network flow prediction was higher than the traditional forecasting methods by using the least square support vector machine genetic optimization.

  9. User-Based Document Clustering by Redescribing Subject Descriptions with a Genetic Algorithm.

    Science.gov (United States)

    Gordon, Michael D.

    1991-01-01

    Discussion of clustering of documents and queries in information retrieval systems focuses on the use of a genetic algorithm to adapt subject descriptions so that documents become more effective in matching relevant queries. Various types of clustering are explained, and simulation experiments used to test the genetic algorithm are described. (27…

  10. Genetic Algorithms and Local Search

    Science.gov (United States)

    Whitley, Darrell

    1996-01-01

    The first part of this presentation is a tutorial level introduction to the principles of genetic search and models of simple genetic algorithms. The second half covers the combination of genetic algorithms with local search methods to produce hybrid genetic algorithms. Hybrid algorithms can be modeled within the existing theoretical framework developed for simple genetic algorithms. An application of a hybrid to geometric model matching is given. The hybrid algorithm yields results that improve on the current state-of-the-art for this problem.

  11. Fluid Genetic Algorithm (FGA

    Directory of Open Access Journals (Sweden)

    Ruholla Jafari-Marandi

    2017-04-01

    Full Text Available Genetic Algorithm (GA has been one of the most popular methods for many challenging optimization problems when exact approaches are too computationally expensive. A review of the literature shows extensive research attempting to adapt and develop the standard GA. Nevertheless, the essence of GA which consists of concepts such as chromosomes, individuals, crossover, mutation, and others rarely has been the focus of recent researchers. In this paper method, Fluid Genetic Algorithm (FGA, some of these concepts are changed, removed, and furthermore, new concepts are introduced. The performance of GA and FGA are compared through seven benchmark functions. FGA not only shows a better success rate and better convergence control, but it can be applied to a wider range of problems including multi-objective and multi-level problems. Also, the application of FGA for a real engineering problem, Quadric Assignment Problem (AQP, is shown and experienced.

  12. Estimation of Kinetic Parameters for Autocatalytic Oxidation of Cyclohexane Based on a Modified Adaptive Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    刘平乐; 邹丽珊; 罗和安; 王良芥; 郑金华

    2004-01-01

    A modified genetic algorithm of multiple selection strategies, crossover strategies and adaptive operator is constructed, and it is used to estimate the kinetic parameters in autocatalytic oxidation of cyclohexane. The influences of selection strategy, crossover strategy and mutation strategy on algorithm performance are discussed. This algorithm with a specially designed adaptive operator avoids the problem of local optimum usually associated with using standard genetic algorithm and simplex method. The kinetic parameters obtained from the modified genetic algorithm are credible and the calculation results using these parameters agree well with experimental data. Furthermore, a new kinetic model of cyclohexane autocatalytic oxidation is established and the kinetic parameters are estimated by using the modified genetic algorithm.

  13. Modeling and Optimization for Heat Exchanger Networks Synthesis Based on Expert System and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    LIZhihong

    2002-01-01

    A new superstructure from of heat exchanger networks(HEN) is proposed based on expert system (ES). The new superstructure from is combined with the practical engineering.The different investment cost formula for different heat exchanger is also presented based on ES.The mathematical model for the simultaneous optimization of network configuration is established and solved by a genetic algorithm.This method can deal with larger scale HEN synthesis and the optimal HEN configuration is obtained automatically.Finally,a case study is presented to demonstrate the effectiveness of the method.

  14. Clustering of Customers Based on Shopping Behavior and Employing Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    E. P. Bafghi

    2017-02-01

    Full Text Available Clustering of customers is a vital case in marketing and customer relationship management. In traditional marketing, a market seller is categorized based on general characteristics like clients’ statistical information and their lifestyle features. However, this method seems unable to cope with today’s challenges. In this paper, we present a method for the classification of customers based on variables such as shopping cases and financial information related to the customers’ interactions. One measure of similarity was defined as clustering and clustering quality function was further defined. Genetic algorithms been used to ensure the accuracy of clustering.

  15. Genetic algorithm based adaptive neural network ensemble and its application in predicting carbon flux

    Science.gov (United States)

    Xue, Y.; Liu, S.; Hu, Y.; Yang, J.; Chen, Q.

    2007-01-01

    To improve the accuracy in prediction, Genetic Algorithm based Adaptive Neural Network Ensemble (GA-ANNE) is presented. Intersections are allowed between different training sets based on the fuzzy clustering analysis, which ensures the diversity as well as the accuracy of individual Neural Networks (NNs). Moreover, to improve the accuracy of the adaptive weights of individual NNs, GA is used to optimize the cluster centers. Empirical results in predicting carbon flux of Duke Forest reveal that GA-ANNE can predict the carbon flux more accurately than Radial Basis Function Neural Network (RBFNN), Bagging NN ensemble, and ANNE. ?? 2007 IEEE.

  16. Analysis of the diversity of population and convergence of genetic algorithms based on Negentropy

    Institute of Scientific and Technical Information of China (English)

    Zhang Lianying; Wang Anmin

    2005-01-01

    With its wide use in different fields, the problem of the convergence of simple genetic algorithms (GAs) has been concerned. In the past, the research on the convergence of GAs was based on Holland' s model theorem. The diversity of the evolutionary population and the convergence of GAs are studied by using the concept of negentropy based on the discussion of the characteristic of GA. Some test functions are used to test the convergence of GAs, and good results have been obtained. It is shown that the global optimization may be obtained by selecting appropriate parameters of simple GAs if the evolution time is enough.

  17. Genetic algorithm-fuzzy based dynamic motion planning approach for a mobile robot

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Presents the mobile robots dynamic motion planning problem with a task to find an obstacle-free route that requires minimum travel time from the start point to the destination point in a changing environment, due to the obstacle's moving. An Genetic Algorithm fuzzy(GA-Fuzzy)based optimal approach proposed to find any obstacle-free path and the GA used to select the optimal one, points ont that using this learned knowledge off line, a mobile robot can navigate to its goal point when it faces new scenario on-line. Concludes with the opti mal rule base given and the simulation results showing its effectiveness.

  18. Techniques based on genetic algorithms for large deflection analysis of beams

    Indian Academy of Sciences (India)

    Rajesh Kumar; L S Ramachandra; D Roy

    2004-12-01

    A couple of non-convex search strategies, based on the genetic algorithm, are suggested and numerically explored in the context of large-deflection analysis of planar, elastic beams. The first of these strategies is based on the stationarity of the energy functional in the equilibrium state and may therefore be considered weak. The second approach, on the other hand, attempts to directly solve the governing differential equation within an optimisation framework and such a solution may be thought of as strong. Several numerical illustrations and verifications with ‘exact’ solutions, if available, are provided.

  19. A New Optimization Approach for Maximizing the Photovoltaic Panel Power Based on Genetic Algorithm and Lagrange Multiplier Algorithm

    Directory of Open Access Journals (Sweden)

    Mahdi M. M. El-Arini

    2013-01-01

    Full Text Available In recent years, the solar energy has become one of the most important alternative sources of electric energy, so it is important to operate photovoltaic (PV panel at the optimal point to obtain the possible maximum efficiency. This paper presents a new optimization approach to maximize the electrical power of a PV panel. The technique which is based on objective function represents the output power of the PV panel and constraints, equality and inequality. First the dummy variables that have effect on the output power are classified into two categories: dependent and independent. The proposed approach is a multistage one as the genetic algorithm, GA, is used to obtain the best initial population at optimal solution and this initial population is fed to Lagrange multiplier algorithm (LM, then a comparison between the two algorithms, GA and LM, is performed. The proposed technique is applied to solar radiation measured at Helwan city at latitude 29.87°, Egypt. The results showed that the proposed technique is applicable.

  20. Manufacturing Supply Chain Optimization Problem with Time Windows Based on Improved Orthogonal Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xinhua

    2006-01-01

    Aim to the manufacturing supply chain optimization problem with time windows, presents an improved orthogonal genetic algorithm to solve it. At first, we decompose this problem into two sub-problems (distribution and routing) plus an interface mechanism to allow the two algorithms to collaborate in a master-slave fashion, with the distribution algorithm driving the routing algorithm. At second, we describe the proposed improved orthogonal genetic algorithm for solving giving problem detailedly. Finally, the examples suggest that this proposed approach is feasible, correct and valid.

  1. Quantum-Inspired Genetic Algorithm Based on Simulated Annealing for Combinatorial Optimization Problem

    OpenAIRE

    Wanneng Shu

    2009-01-01

    Quantum-inspired genetic algorithm (QGA) is applied to simulated annealing (SA) to develop a class of quantum-inspired simulated annealing genetic algorithm (QSAGA) for combinatorial optimization. With the condition of preserving QGA advantages, QSAGA takes advantage of the SA algorithm so as to avoid premature convergence. To demonstrate its effectiveness and applicability, experiments are carried out on the knapsack problem. The results show that QSAGA performs well, without premature conve...

  2. Excursion-Set-Mediated Genetic Algorithm

    Science.gov (United States)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    Excursion-set-mediated genetic algorithm (ESMGA) is embodiment of method of searching for and optimizing computerized mathematical models. Incorporates powerful search and optimization techniques based on concepts analogous to natural selection and laws of genetics. In comparison with other genetic algorithms, this one achieves stronger condition for implicit parallelism. Includes three stages of operations in each cycle, analogous to biological generation.

  3. Excursion-Set-Mediated Genetic Algorithm

    Science.gov (United States)

    Noever, David; Baskaran, Subbiah

    1995-01-01

    Excursion-set-mediated genetic algorithm (ESMGA) is embodiment of method of searching for and optimizing computerized mathematical models. Incorporates powerful search and optimization techniques based on concepts analogous to natural selection and laws of genetics. In comparison with other genetic algorithms, this one achieves stronger condition for implicit parallelism. Includes three stages of operations in each cycle, analogous to biological generation.

  4. Exponential distribution-based genetic algorithm for solving mixed-integer bilevel programming problems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter A, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.

  5. Surgical wound segmentation based on adaptive threshold edge detection and genetic algorithm

    Science.gov (United States)

    Shih, Hsueh-Fu; Ho, Te-Wei; Hsu, Jui-Tse; Chang, Chun-Che; Lai, Feipei; Wu, Jin-Ming

    2017-02-01

    Postsurgical wound care has a great impact on patients' prognosis. It often takes few days, even few weeks, for the wound to stabilize, which incurs a great cost of health care and nursing resources. To assess the wound condition and diagnosis, it is important to segment out the wound region for further analysis. However, the scenario of this strategy often consists of complicated background and noise. In this study, we propose a wound segmentation algorithm based on Canny edge detector and genetic algorithm with an unsupervised evaluation function. The results were evaluated by the 112 clinical images, and 94.3% of images were correctly segmented. The judgment was based on the evaluation of experimented medical doctors. This capability to extract complete wound regions, makes it possible to conduct further image analysis such as intelligent recovery evaluation and automatic infection requirements.

  6. Focal congenital hyperinsulinism managed by medical treatment: a diagnostic algorithm based on molecular genetic screening.

    Science.gov (United States)

    Maiorana, Arianna; Barbetti, Fabrizio; Boiani, Arianna; Rufini, Vittoria; Pizzoferro, Milena; Francalanci, Paola; Faletra, Flavio; Nichols, Colin G; Grimaldi, Chiara; de Ville de Goyet, Jean; Rahier, Jacques; Henquin, Jean-Claude; Dionisi-Vici, Carlo

    2014-11-01

    Congenital hyperinsulinism (CHI) requires rapid diagnosis and treatment to avoid irreversible neurological sequelae due to hypoglycaemia. Aetiological diagnosis is instrumental in directing the appropriate therapy. Current diagnostic algorithms provide a complete set of diagnostic tools including (i) biochemical assays, (ii) genetic facility and (iii) state-of-the-art imaging. They consider the response to a therapeutic diazoxide trial an early, crucial step before proceeding (or not) to specific genetic testing and eventually imaging, aimed at distinguishing diffuse vs focal CHI. However, interpretation of the diazoxide test is not trivial and can vary between research groups, which may lead to inappropriate decisions. Objective of this report is proposing a new algorithm in which early genetic screening, rather than diazoxide trial, dictates subsequent clinical decisions. Two CHI patients weaned from parenteral glucose infusion and glucagon after starting diazoxide. No hypoglycaemia was registered during a 72-h continuous glucose monitoring (CGMS), or hypoglycaemic episodes were present for no longer than 3% of 72-h. Normoglycaemia was obtained by low-medium dose diazoxide combined with frequent carbohydrate feeds for several years. We identified monoallelic, paternally inherited mutations in KATP channel genes, and (18) F-DOPA PET-CT revealed a focal lesion that was surgically resected, resulting in complete remission of hypoglycaemia. Although rare, some patients with focal lesions may be responsive to diazoxide. As a consequence, we propose an algorithm that is not based on a 'formal' diazoxide response but on genetic testing, in which patients carrying paternally inherited ABCC8 or KCNJ11 mutations should always be subjected to (18) F-DOPA PET-CT. © 2014 John Wiley & Sons Ltd.

  7. A Parallel Genetic Algorithm Based on Spark for Pairwise Test Suite Generation

    Institute of Scientific and Technical Information of China (English)

    Rong-Zhi Qi; Zhi-Jian Wang; Shui-Yan Li

    2016-01-01

    Pairwise testing is an effective test generation technique that requires all pairs of parameter values to be covered by at least one test case. It has been proven that generating minimum test suite is an NP-complete problem. Genetic algorithms have been used for pairwise test suite generation by researchers. However, it is always a time-consuming process, which leads to significant limitations and obstacles for practical use of genetic algorithms towards large-scale test problems. Parallelism will be an effective way to not only enhance the computation performance but also improve the quality of the solutions. In this paper, we use Spark, a fast and general parallel computing platform, to parallelize the genetic algorithm to tackle the problem. We propose a two-phase parallelization algorithm including fitness evaluation parallelization and genetic operation parallelization. Experimental results show that our algorithm outperforms the sequential genetic algorithm and competes with other approaches in both test suite size and computational performance. As a result, our algorithm is a promising improvement of the genetic algorithm for pairwise test suite generation.

  8. Genetic algorithm based optimization of pulse profile for MOPA based high power fiber lasers

    Science.gov (United States)

    Zhang, Jiawei; Tang, Ming; Shi, Jun; Fu, Songnian; Li, Lihua; Liu, Ying; Cheng, Xueping; Liu, Jian; Shum, Ping

    2015-03-01

    Although the Master Oscillator Power-Amplifier (MOPA) based fiber laser has received much attention for laser marking process due to its large tunabilty of pulse duration (from 10ns to 1ms), repetition rate (100Hz to 500kHz), high peak power and extraordinary heat dissipating capability, the output pulse deformation due to the saturation effect of fiber amplifier is detrimental for many applications. We proposed and demonstrated that, by utilizing Genetic algorithm (GA) based optimization technique, the input pulse profile from the master oscillator (current-driven laser diode) could be conveniently optimized to achieve targeted output pulse shape according to real parameters' constraints. In this work, an Yb-doped high power fiber amplifier is considered and a 200ns square shaped pulse profile is the optimization target. Since the input pulse with longer leading edge and shorter trailing edge can compensate the saturation effect, linear, quadratic and cubic polynomial functions are used to describe the input pulse with limited number of unknowns(<5). Coefficients of the polynomial functions are the optimization objects. With reasonable cost and hardware limitations, the cubic input pulse with 4 coefficients is found to be the best as the output amplified pulse can achieve excellent flatness within the square shape. Considering the bandwidth constraint of practical electronics, we examined high-frequency component cut-off effect of input pulses and found that the optimized cubic input pulses with 300MHz bandwidth is still quite acceptable to satisfy the requirement for the amplified output pulse and it is feasible to establish such a pulse generator in real applications.

  9. Neural network and genetic algorithm based global path planning in a static environment

    Institute of Scientific and Technical Information of China (English)

    DU Xin; CHEN Hua-hua; GU Wei-kang

    2005-01-01

    Mobile robot global path planning in a static environment is an important problem. The paper proposes a method of global path planning based on neural network and genetic algorithm. We constructed the neural network model of environmental information in the workspace for a robot and used this model to establish the relationship between a collision avoidance path and the output of the model. Then the two-dimensional coding for the path via-points was converted to one-dimensional one and the fitness of both the collision avoidance path and the shortest distance are integrated into a fitness function. The simulation results showed that the proposed method is correct and effective.

  10. 2-D minimum fuzzy entropy method of image thresholding based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley ofthe histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance.

  11. Genetic Algorithms for Agent-Based Infrastructure Interdependency Modeling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    May Permann

    2007-03-01

    Today’s society relies greatly upon an array of complex national and international infrastructure networks such as transportation, electric power, telecommunication, and financial networks. This paper describes initial research combining agent-based infrastructure modeling software and genetic algorithms (GAs) to help optimize infrastructure protection and restoration decisions. This research proposes to apply GAs to the problem of infrastructure modeling and analysis in order to determine the optimum assets to restore or protect from attack or other disaster. This research is just commencing and therefore the focus of this paper is the integration of a GA optimization method with a simulation through the simulation’s agents.

  12. Frequency Extrapolation by Floating Genetic Algorithm Based on GTD Model for Radar Cross Section

    Institute of Scientific and Technical Information of China (English)

    YANG Zhenglong; FANG Dagang; SHENG Weixing; LIU Tiejun; ZHUANG Jing

    2001-01-01

    A frequency extrapolation scheme isdeveloped to effectively predict radar cross section us-ing floating genetic algorithm based on the GTD (ge-ometry theory of diffraction) model. The parameter-ized model to extrapolate the frequency response tohigher (or lower) frequency band is used and somepractical targets are calculated to test the effective-ness of the method. The influence of extrapolationon the range profile is studied. Furthermore, the re-lationship between the fitting precision and extrap-olation ability is considered. Different extrapolationprocedures are discussed.

  13. An adaptive laser beam shaping technique based on a genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Ping Yang; Yuan Liu; Wei Yang; Minwu Ao; Shijie Hu; Bing Xu; Wenhan Jiang

    2007-01-01

    @@ A new adaptive beam intensity shaping technique based on the combination of a 19-element piezo-electricity deformable mirror (DM) and a global genetic algorithm is presented. This technique can adaptively adjust the voltages of the 19 actuators on the DM to reduce the difference between the target beam shape and the actual beam shape. Numerical simulations and experimental results show that within the stroke range of the DM, this technique can be well used to create the given beam intensity profiles on the focal plane.

  14. A Genetic Algorithm-based Heuristic for Part-Feeding Mobile Robot Scheduling Problem

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Bocewicz, Grzegorz

    2012-01-01

    This present study deals with the problem of sequencing feeding tasks of a single mobile robot with manipulation arm which is able to provide parts or components for feeders of machines in a manufacturing cell. The mobile robot has to be scheduled in order to keep machines within the cell produci....... A genetic algorithm-based heuristic is developed to find the near optimal solution for the problem. A case study is implemented at an impeller production line in a factory to demonstrate the result of the proposed approach....

  15. Research on central heating system control strategy based on genetic algorithm

    Science.gov (United States)

    Ding, Sa; Yang, Jianhua; Lu, Wei; Duan, Zhipeng

    2017-03-01

    The central heating is a major way of warming in northeast China in winter, however, the traditional heating method is inefficient, intensifying the energy consumption. How to improve the heating efficiency and reduce energy waste attracts more and more attentions in our country. In this paper, the mathematical model of heat transfer station temperature control system was established based on the structure of central heating system. The feedforward-feedback control strategy was used to overcome temperature fluctuations caused by the pressurized heating exchange system. The genetic algorithm was used to optimize the parameters of PID controller and simulation results demonstrated that central heating temperature achieved well control effect and meet stabilization requirements.

  16. A Resource Scheduling Strategy in Cloud Computing Based on Multi-agent Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Wuxue Jiang

    2013-11-01

    Full Text Available Resource scheduling strategies in cloud computing are used either to improve system operating efficiency, or to improve user satisfaction. This paper presents an integrated scheduling strategy considering both resources credibility and user satisfaction. It takes user satisfaction as objective function and resources credibility as a part of the user satisfaction, and realizes optimal scheduling by using genetic algorithm. We integrate this scheduling strategy into Agent subsequently and propose a cloud computing system architecture based on Multi-agent. The numerical results show that this scheduling strategy improves not only the system operating efficiency, but also the user satisfaction.  

  17. A Genetic Algorithm-based Heuristic for Part-Feeding Mobile Robot Scheduling Problem

    DEFF Research Database (Denmark)

    Dang, Vinh Quang; Nielsen, Izabela Ewa; Bocewicz, Grzegorz

    2012-01-01

    This present study deals with the problem of sequencing feeding tasks of a single mobile robot with manipulation arm which is able to provide parts or components for feeders of machines in a manufacturing cell. The mobile robot has to be scheduled in order to keep machines within the cell produci....... A genetic algorithm-based heuristic is developed to find the near optimal solution for the problem. A case study is implemented at an impeller production line in a factory to demonstrate the result of the proposed approach....

  18. Method and application of wavelet shrinkage denoising based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Genetic algorithm (GA) based on wavelet transform threshold shrinkage (WTS) and translation-invafiant threshold shrinkage (TIS) is introduced into the method of noise reduction, where parameters used in WTS and TIS, such as wavelet function,decomposition levels, hard or soft threshold and threshold can be selected automatically. This paper ends by comparing two noise reduction methods on the basis of their denoising performances, computation time, etc. The effectiveness of these methods introduced in this paper is validated by the results of analysis of the simulated and real signals.

  19. Design of the annular binary filters with super-resolution based on the genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    YU Qi-lei; LE Zi-chun; ZHU Hong-ying

    2006-01-01

    To improve the density of information storage,this paper introduces a kind of annular binary filters with super-resolution,Several of these filters have been designed based on the genetic algorithm,the simulations demonstrate that the transverse gain of the filters can reach the value of 1.37.Thus they can remarkably decrease the recording spot size,which is helpful to improve the density of information storage and to make the depth of focus longer,and therefore they can avoid the mistake caused by the small undulation of the optical disk in the process of recording/reading the information.

  20. Electric Energy Demand Forecast of Nanchang based on Cellular Genetic Algorithm and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Cheng Yugui

    2013-07-01

    Full Text Available A kind of power forecast model combined cellular genetic algorithm with BP neural network was established in this article. Mid-long term power demand in urban areas was done load forecasting and analysis based on material object of the actual power consumption in urban areas of Nanchang. The results show that this method has the characteristic of the minimum training times, the shortest consumption time, the minimum error and the shortest operation time to obtain the best fitting effect.  

  1. DESIGN OF A SHAPED BEAM BASE STATION ANTENNA USING GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Liu Ying; Bu Antao; Gong Shuxi; Shen Zongzhen; Xiao Liangyong

    2003-01-01

    Genetic algorithm is used to optimize a base station antenna in order to achieve a shaped beam in a frequency band. During the optimization process, different antenna models have been evaluated using the Method of Moment (MoM). As a result of this optimization, a shaped beam antenna with suppressed sidelobe smaller than -18dB, backlobe smaller than -30dB and filled null point larger than -15dB is achieved. The proposed method is closer to reality compared with previous methods and can be used to optimize complicated antennas. The result is very useful for engineering and theoretical analysis.

  2. A Novel Sliding Mode Variable Structure Controller Based on a Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A novel control method has been proposed by using the genetic algorithm ( GA ) for nonlinear and complex plants. The proposed control strategy is based on a variable structure control, it overcomes the defects of other adaptive methods such as strong dependence to the system. A GA is used to learn to optimally select integral coefficient C. Simulation results verified the effectiveness of the controller. For position control of Direct Current (DC) motor in practice, this method has good performance and strong robustness, and both dynamic and steady performances were improved.

  3. A Constraint programming-based genetic algorithm for capacity output optimization

    Directory of Open Access Journals (Sweden)

    Kate Ean Nee Goh

    2014-10-01

    Full Text Available Purpose: The manuscript presents an investigation into a constraint programming-based genetic algorithm for capacity output optimization in a back-end semiconductor manufacturing company.Design/methodology/approach: In the first stage, constraint programming defining the relationships between variables was formulated into the objective function. A genetic algorithm model was created in the second stage to optimize capacity output. Three demand scenarios were applied to test the robustness of the proposed algorithm.Findings: CPGA improved both the machine utilization and capacity output once the minimum requirements of a demand scenario were fulfilled. Capacity outputs of the three scenarios were improved by 157%, 7%, and 69%, respectively.Research limitations/implications: The work relates to aggregate planning of machine capacity in a single case study. The constraints and constructed scenarios were therefore industry-specific.Practical implications: Capacity planning in a semiconductor manufacturing facility need to consider multiple mutually influenced constraints in resource availability, process flow and product demand. The findings prove that CPGA is a practical and an efficient alternative to optimize the capacity output and to allow the company to review its capacity with quick feedback.Originality/value: The work integrates two contemporary computational methods for a real industry application conventionally reliant on human judgement.

  4. Feature Reduction Based on Genetic Algorithm and Hybrid Model for Opinion Mining

    Directory of Open Access Journals (Sweden)

    P. Kalaivani

    2015-01-01

    Full Text Available With the rapid growth of websites and web form the number of product reviews is available on the sites. An opinion mining system is needed to help the people to evaluate emotions, opinions, attitude, and behavior of others, which is used to make decisions based on the user preference. In this paper, we proposed an optimized feature reduction that incorporates an ensemble method of machine learning approaches that uses information gain and genetic algorithm as feature reduction techniques. We conducted comparative study experiments on multidomain review dataset and movie review dataset in opinion mining. The effectiveness of single classifiers Naïve Bayes, logistic regression, support vector machine, and ensemble technique for opinion mining are compared on five datasets. The proposed hybrid method is evaluated and experimental results using information gain and genetic algorithm with ensemble technique perform better in terms of various measures for multidomain review and movie reviews. Classification algorithms are evaluated using McNemar’s test to compare the level of significance of the classifiers.

  5. Cognitive Radio Engine Model Utilizing Soft Fusion Based Genetic Algorithm for Cooperative Spectrum Optimization

    Directory of Open Access Journals (Sweden)

    Kamal Hossain

    2013-04-01

    Full Text Available Cognitive radio (CR is to detect the presence of primary users (PUs reliably in order to reduce theinterference to licensed communications. Genetic algorithms (GAs are well suited for CR optimizationproblems to increase efficiency of bandwidth utilization by manipulating its unused portions of theapparent spectrum. In this paper, a binary genetic algorithm (BGA-based soft fusion (SF scheme forcooperative spectrum sensing in cognitive radio network is proposed to improve detection performance andbandwidth utilization. The BGA-based optimization method is implemented at the fusion centre of a linearSF scheme to optimize the weighting coefficients vector to maximize global probability of detectionperformance. Simulation results and analyses confirm that the proposed scheme meets real timerequirements of cognitive radio spectrum sensing and it outperforms conventional natural deflectioncoefficient- (NDC-, modified deflection coefficient- (MDC-, maximal ratio combining- (MRC- and equalgain combining- (EGC- based SDF schemes as well as the OR-rule based hard decision fusion (HDF. Thepropose BGA scheme also converges fast and achieves the optimum performance, which means that BGAbasedmethod is efficient and quite stable also.

  6. Intelligent Controller Design for DC Motor Speed Control based on Fuzzy Logic-Genetic Algorithms Optimization

    Directory of Open Access Journals (Sweden)

    Boumediene ALLAOUA

    2008-12-01

    Full Text Available In this paper, an intelligent controller of the DC (Direct current Motor drive is designed using fuzzy logic-genetic algorithms optimization. First, a controller is designed according to fuzzy rules such that the systems are fundamentally robust. To obtain the globally optimal values, parameters of the fuzzy controller are improved by genetic algorithms optimization model. Computer MATLAB work space demonstrate that the fuzzy controller associated to the genetic algorithms approach became very strong, gives a very good results and possesses good robustness.

  7. Short Range Top Attack Trajectory Optimum Design Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A flying-body is considered as the reference model, the optimized mathematical model is established. The genetic operators are designed and algorithm parameters are selected reasonably. The scheme control signal in short range top attack flight trajectory is optimized by using genetic algorithm. The short range top attack trajectory designed meets the design requirements, with the increase of the falling angle and the decrease of the minimum range. The application of genetic algorithm to top attack trajectory optimization is proved to be feasibly and effectively according to the analyses of results.

  8. Research on Public Traffic Vehicles Dispatch Based on Improved Adaptive Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Bus dispatching has been studied,and also the bus dispatching model is set up.Then,Genetic Algorithm is adaptively improved in order to avoid premature problem and the slow convergence,and then the keeping optimal strategy is used to the Genetic Algorithm,so formed the Improved Adaptive Genetic Algorithm,namely IAGA. Finally,the IAGA is used to optimizing the bus dispatching model,and the results of the simulation indicate IAGA has the higher efficiency than simple GA and is one effective way to optimizing the bus dispatching.

  9. Genetic Algorithm Based Simulated Annealing Method for Solving Unit Commitment Problem in Utility System

    Science.gov (United States)

    Rajan, C. Christober Asir

    2010-10-01

    The objective of this paper is to find the generation scheduling such that the total operating cost can be minimized, when subjected to a variety of constraints. This also means that it is desirable to find the optimal generating unit commitment in the power system for the next H hours. Genetic Algorithms (GA's) are general-purpose optimization techniques based on principles inspired from the biological evolution using metaphors of mechanisms such as neural section, genetic recombination and survival of the fittest. In this, the unit commitment schedule is coded as a string of symbols. An initial population of parent solutions is generated at random. Here, each schedule is formed by committing all the units according to their initial status ("flat start"). Here the parents are obtained from a pre-defined set of solution's i.e. each and every solution is adjusted to meet the requirements. Then, a random recommitment is carried out with respect to the unit's minimum down times. And SA improves the status. A 66-bus utility power system with twelve generating units in India demonstrates the effectiveness of the proposed approach. Numerical results are shown comparing the cost solutions and computation time obtained by using the Genetic Algorithm method and other conventional methods.

  10. Optimization of HMM Parameters Based on Chaos and Genetic Algorithm for Hand Gesture Recognition

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In order to prevent standard genetic algorithm (SGA) from being premature, chaos is introduced into GA,thus forming chaotic anneal genetic algorithm (CAGA). Chaos' ergodicity is used to initialize the population, and chaoticanneal mutation operator is used as the substitute for the mutation operator in SGA. CAGA is a unified framework of theexisting chaotic mutation methods. To validate the proposed algorithm, three algorithms, i.e. Baum-Welch, SGA andCAGA, are compared on training hidden Markov model (HMM) to recognize the hand gestures. Experiments on twenty-six alphabetical gestures show the CAGA's validity.

  11. Double Motor Coordinated Control Based on Hybrid Genetic Algorithm and CMAC

    Science.gov (United States)

    Cao, Shaozhong; Tu, Ji

    A novel hybrid cerebellar model articulation controller (CMAC) and online adaptive genetic algorithm (GA) controller is introduced to control two Brushless DC motor (BLDCM) which applied in a biped robot. Genetic Algorithm simulates the random learning among the individuals of a group, and CMAC simulates the self-learning of an individual. To validate the ability and superiority of the novel algorithm, experiments have been done in MATLAB/SIMULINK. Analysis among GA, hybrid GA-CMAC and CMAC feed-forward control is also given. The results prove that the torque ripple of the coordinated control system is eliminated by using the hybrid GA-CMAC algorithm.

  12. Genetic algorithm essentials

    CERN Document Server

    Kramer, Oliver

    2017-01-01

    This book introduces readers to genetic algorithms (GAs) with an emphasis on making the concepts, algorithms, and applications discussed as easy to understand as possible. Further, it avoids a great deal of formalisms and thus opens the subject to a broader audience in comparison to manuscripts overloaded by notations and equations. The book is divided into three parts, the first of which provides an introduction to GAs, starting with basic concepts like evolutionary operators and continuing with an overview of strategies for tuning and controlling parameters. In turn, the second part focuses on solution space variants like multimodal, constrained, and multi-objective solution spaces. Lastly, the third part briefly introduces theoretical tools for GAs, the intersections and hybridizations with machine learning, and highlights selected promising applications.

  13. A new metaheuristic genetic-based placement algorithm for 2D strip packing

    Science.gov (United States)

    Thomas, Jaya; Chaudhari, Narendra S.

    2014-02-01

    Given a container of fixed width, infinite height and a set of rectangular block, the 2D-strip packing problem consists of orthogonally placing all the rectangles such that the height is minimized. The position is subject to confinement of no overlapping of blocks. The problem is a complex NP-hard combinatorial optimization, thus a heuristic based on genetic algorithm is proposed to solve it. In this paper, we give a hybrid approach which combined genetic encoding and evolution scheme with the proposed placement approach. Such a combination resulted in better population evolution and faster solution convergence to optimal. The approach is subjected to a comprehensive test using benchmark instances. The computation results validate the solution and the effectiveness of the approach.

  14. Multi-objective optimization of stamping forming process of head using Pareto-based genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    周杰; 卓芳; 黄磊; 罗艳

    2015-01-01

    To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental (CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model (RSM) was set up and the results of the analysis of variance (ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the“trial and error”procedure.

  15. Vibration-Based Damage Detection in Beams by Cooperative Coevolutionary Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Kittipong Boonlong

    2014-03-01

    Full Text Available Vibration-based damage detection, a nondestructive method, is based on the fact that vibration characteristics such as natural frequencies and mode shapes of structures are changed when the damage happens. This paper presents cooperative coevolutionary genetic algorithm (CCGA, which is capable for an optimization problem with a large number of decision variables, as the optimizer for the vibration-based damage detection in beams. In the CCGA, a minimized objective function is a numerical indicator of differences between vibration characteristics of the actual damage and those of the anticipated damage. The damage detection in a uniform cross-section cantilever beam, a uniform strength cantilever beam, and a uniform cross-section simply supported beam is used as the test problems. Random noise in the vibration characteristics is also considered in the damage detection. In the simulation analysis, the CCGA provides the superior solutions to those that use standard genetic algorithms presented in previous works, although it uses less numbers of the generated solutions in solution search. The simulation results reveal that the CCGA can efficiently identify the occurred damage in beams for all test problems including the damage detection in a beam with a large number of divided elements such as 300 elements.

  16. A Fuzzy Genetic Algorithm Based on Binary Encoding for Solving Multidimensional Knapsack Problems

    Directory of Open Access Journals (Sweden)

    M. Jalali Varnamkhasti

    2012-01-01

    Full Text Available The fundamental problem in genetic algorithms is premature convergence, and it is strongly related to the loss of genetic diversity of the population. This study aims at proposing some techniques to tackle the premature convergence by controlling the population diversity. Firstly, a sexual selection mechanism which utilizes the mate chromosome during selection is used. The second technique focuses on controlling the genetic parameters by applying the fuzzy logic controller. Computational experiments are conducted on the proposed techniques and the results are compared with other genetic operators, heuristics, and local search algorithms commonly used for solving multidimensional 0/1 knapsack problems published in the literature.

  17. Summarizing Relational Data Using Semi-Supervised Genetic Algorithm-Based Clustering Techniques

    Directory of Open Access Journals (Sweden)

    Rayner Alfred

    2010-01-01

    Full Text Available Problem statement: In solving a classification problem in relational data mining, traditional methods, for example, the C4.5 and its variants, usually require data transformations from datasets stored in multiple tables into a single table. Unfortunately, we may loss some information when we join tables with a high degree of one-to-many association. Therefore, data transformation becomes a tedious trial-and-error work and the classification result is often not very promising especially when the number of tables and the degree of one-to-many association are large. Approach: We proposed a genetic semi-supervised clustering technique as a means of aggregating data stored in multiple tables to facilitate the task of solving a classification problem in relational database. This algorithm is suitable for classification of datasets with a high degree of one-to-many associations. It can be used in two ways. One is user-controlled clustering, where the user may control the result of clustering by varying the compactness of the spherical cluster. The other is automatic clustering, where a non-overlap clustering strategy is applied. In this study, we use the latter method to dynamically cluster multiple instances, as a means of aggregating them and illustrate the effectiveness of this method using the semi-supervised genetic algorithm-based clustering technique. Results: It was shown in the experimental results that using the reciprocal of Davies-Bouldin Index for cluster dispersion and the reciprocal of Gini Index for cluster purity, as the fitness function in the Genetic Algorithm (GA, finds solutions with much greater accuracy. The results obtained in this study showed that automatic clustering (seeding, by optimizing the cluster dispersion or cluster purity alone using GA, provides one with good results compared to the traditional k-means clustering. However, the best result can be achieved by optimizing the combination values of both the cluster

  18. CONSTRAINT INFORMATIVE RULES FOR GENETIC ALGORITHM-BASED WEB PAGE RECOMMENDATION SYSTEM

    Directory of Open Access Journals (Sweden)

    S. Prince Mary

    2013-01-01

    Full Text Available To predict the users navigation using web usage mining is the primary motto of the web page recommendation. Currently, researchers are trying to develop a web page recommendation using pattern mining technique. Here, we propose a technique for web page recommendation using genetic algorithm. It consists of three phases as data preparation, mining of informative rules and recommendation. The data preparation contains data preprocessing and user identification. The genetic algorithm is used to mine the informative rule. The genetic algorithm involves three processes which are calculating the fitness values, crossover and mutation. We use three different constraints as time duration, quality and recent visit to allow the process for next stage after the initial fitness calculation. We have to repeat these processes to find the best solution. To form the recommendation tree, we use the best solution which we obtain by means of genetic algorithm.

  19. Hybrid model based on Genetic Algorithms and SVM applied to variable selection within fruit juice classification.

    Science.gov (United States)

    Fernandez-Lozano, C; Canto, C; Gestal, M; Andrade-Garda, J M; Rabuñal, J R; Dorado, J; Pazos, A

    2013-01-01

    Given the background of the use of Neural Networks in problems of apple juice classification, this paper aim at implementing a newly developed method in the field of machine learning: the Support Vector Machines (SVM). Therefore, a hybrid model that combines genetic algorithms and support vector machines is suggested in such a way that, when using SVM as a fitness function of the Genetic Algorithm (GA), the most representative variables for a specific classification problem can be selected.

  20. Hydraulic Self Servo Swing Cylinder Structure Optimization and Dynamic Characteristics Analysis Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Lin Jiang; Ruolin Wu∗and Zhichao Zhu

    2015-01-01

    The dynamic characteristics of hydraulic self servo swing cylinder were analyzed according to the hydraulic system natural frequency formula. Based on that, a method of the hydraulic self servo swing cylinder structure optimization based on genetic algorithm was proposed in this paper. By analyzing the four parameters that affect the dynamic characteristics, we had to optimize the structure to obtain as larger the Dm ( displacement) as possible under the condition with the purpose of improving the dynamic characteristics of hydraulic self servo swing cylinder. So three state equations were established in this paper. The paper analyzed the effect of the four parameters in hydraulic self servo swing cylinder natural frequency equation and used the genetic algorithm to obtain the optimal solution of structure parameters. The model was simulated by substituting the parameters and initial value to the simulink model. Simulation results show that: using self servo hydraulic swing cylinder natural frequency equation to study its dynamic response characteristics is very effective. Compared with no optimization, the overall system dynamic response speed is significantly improved.

  1. An algorithm for the study of DNA sequence evolution based on the genetic code.

    Science.gov (United States)

    Sirakoulis, G Ch; Karafyllidis, I; Sandaltzopoulos, R; Tsalides, Ph; Thanailakis, A

    2004-11-01

    Recent studies of the quantum-mechanical processes in the DNA molecule have seriously challenged the principle that mutations occur randomly. The proton tunneling mechanism causes tautomeric transitions in base pairs resulting in mutations during DNA replication. The meticulous study of the quantum-mechanical phenomena in DNA may reveal that the process of mutagenesis is not completely random. We are still far away from a complete quantum-mechanical model of DNA sequence mutagenesis because of the complexity of the processes and the complex three-dimensional structure of the molecule. In this paper we have developed a quantum-mechanical description of DNA evolution and, following its outline, we have constructed a classical model for DNA evolution assuming that some aspects of the quantum-mechanical processes have influenced the determination of the genetic code. Conversely, our model assumes that the genetic code provides information about the quantum-mechanical mechanisms of mutagenesis, as the current code is the product of an evolutionary process that tries to minimize the spurious consequences of mutagenesis. Based on this model we develop an algorithm that can be used to study the accumulation of mutations in a DNA sequence. The algorithm has a user-friendly interface and the user can change key parameters in order to study relevant hypotheses.

  2. Genetic Algorithm Based Image Steganography for Enhancement of Concealing Capacity and Security

    Directory of Open Access Journals (Sweden)

    yoti

    2013-06-01

    Full Text Available This paper proposes a Genetic Algorithm based steganography for enhancement of embedding capacity and security. Steganography is a method to provide secret communication between sender and receiver by concealing message in cover image. LSB bit encoding method is that the simplest encoding method to cover secret message in color pictures and grayscale pictures. Steganalysis is a method of detecting secret message hidden in a cover image. RS steganalysis is one of the most reliable steganalysis which performs statistical analysis of the pixels to successfully detection of hidden message in an image. This paper presents a secured steganography method using genetic algorithm to protect against the RS attack in color images. The proposed steganography scheme embeds message in integer wavelet transform coefficients by using a mapping function. This mapping function based on GA in an 8x8 block on the input cover color image. After embedding the message optimal pixel adjustment process is applied. By applying the OPAP the error difference between the cover image and stego image is minimized. Frequency domain technique is used to increase the robustness of proposed method. Use of IWT prevents the floating point precision problems of the wavelet filter. GA is used to increase the hiding capacity of image and maintains the quality of image. Experimental results are shows that the proposed steganography method is more secured against RS attack as compared to existing methods. Result showed that Peak signal to noise ratio and image utilization, 49.65 db and 100% respectively.

  3. Development of Genetic Algorithm Based Macro Mechanical Model for Steel Fibre Reinforced Concrete

    Directory of Open Access Journals (Sweden)

    Gopala Krishna Sastry, K, V.S ,

    2014-01-01

    Full Text Available This paper presents the applicability of hybrid networks that combine Artificial Neural Network (ANN and Genetic Algorithm (GA for predicting the strength properties of Steel Fibre Reinforced concrete (SFRC with different water-cement ratio (0.4,0.45,0.5,0.55, aggregate-cement ratio (3,4,5, % of fibres (0.75,1.0,1.5 and aspect ratio of fibres (40,50,60 as input vectors. Strength properties of SFRC such as compressive strength, flexural strength, split tensile strength and compaction factor are considered as output vector. The network has been trained with data obtained from experimental work. The hybrid neural network model learned the relation between input and output vectors in 1900 iterations. After successful learning GA based BPN model predicted the strength characteristics satisfying all the constrains with an accuracy of about 95%.The various stages involved in the development of genetic algorithm based neural network model are addressed at length in this paper.

  4. A Comparative Study of Probability Collectives Based Multi-agent Systems and Genetic Algorithms

    Science.gov (United States)

    Huang, Chien-Feng; Wolpert, David H.; Bieniawski, Stefan; Strauss, Charles E. M.

    2005-01-01

    We compare Genetic Algorithms (GA's) with Probability Collectives (PC), a new framework for distributed optimization and control. In contrast to GA's, PC-based methods do not update populations of solutions. Instead they update an explicitly parameterized probability distribution p over the space of solutions. That updating of p arises as the optimization of a functional of p. The functional is chosen so that any p that optimizes it should be p peaked about good solutions. The PC approach works in both continuous and discrete problems. It does not suffer from the resolution limitation of the finite bit length encoding of parameters into GA alleles. It also has deep connections with both game theory and statistical physics. We review the PC approach using its motivation as the information theoretic formulation of bounded rationality for multi-agent systems. It is then compared with GA's on a diverse set of problems. To handle high dimensional surfaces, in the PC method investigated here p is restricted to a product distribution. Each distribution in that product is controlled by a separate agent. The test functions were selected for their difficulty using either traditional gradient descent or genetic algorithms. On those functions the PC-based approach significantly outperforms traditional GA's in both rate of descent, trapping in false minima, and long term optimization.

  5. Modeling the cooling performance of vortex tube using a genetic algorithm-based artificial neural network

    Directory of Open Access Journals (Sweden)

    Pouraria Hassan

    2016-01-01

    Full Text Available In this study, artificial neural networks (ANNs have been used to model the effects of four important parameters consist of the ratio of the length to diameter(L/D, the ratio of the cold outlet diameter to the tube diameter(d/D, inlet pressure(P, and cold mass fraction (Y on the cooling performance of counter flow vortex tube. In this approach, experimental data have been used to train and validate the neural network model with MATLAB software. Also, genetic algorithm (GA has been used to find the optimal network architecture. In this model, temperature drop at the cold outlet has been considered as the cooling performance of the vortex tube. Based on experimental data, cooling performance of the vortex tube has been predicted by four inlet parameters (L/D, d/D, P, Y. The results of this study indicate that the genetic algorithm-based artificial neural network model is capable of predicting the cooling performance of vortex tube in a wide operating range and with satisfactory precision.

  6. A Genetic Algorithm Based Approach for Segmentingand Identifying Defects in Glass Bottles

    Directory of Open Access Journals (Sweden)

    George Mathew

    2016-07-01

    Full Text Available This work mainly aims at designing and developing a suitable tool for identifying defects in glass bottles through visual inspection based on Segmentation algorithm. The defect identification is done in three stages. These are Image acquisition, Pre-processing and filtering and Segmentation. In the Image acquisition stage, samples of real time images are taken and are converted into 512x512 monochrome images. In the Preprocessing and filtering stage, the image acquired is passed through median filters. The Proposed filter is Modified Decision Based Unsymmetric Trimmed Median Filter (MDBUTMF because it produces a high value of Peak to Signal Ratio (PSNR of 60-75db.The de-noised images is further sent to the third stage which is Segmentation. In this work, Segmentation is done using Genetic Algorithm (GA. The defects in the images are segmented and highlighted. Thus the areas of defects are spotted out. The Genetic segmentation has produced high Sensitivity, high Specificity and high Accuracy of 92%, 93% and 93% respectively. Thus the Proposed work produced effective results and hence this tool shall be useful for food processing industries for the Quality Inspection of the glass bottles

  7. An improved self-calibration approach based on adaptive genetic algorithm for position-based visual servo

    Institute of Scientific and Technical Information of China (English)

    Ding LIU; Xiongjun WU; Yanxi YANG

    2008-01-01

    An improved self-calibrating algorithm for visual servo based on adaptive genetic algorithm is proposed in this paper.Our approach introduces an extension of Mendonca-Cipolla and G.Chesi's self-calibration for the positionbased visual servo technique which exploits the singular value property of the essential matrix.Specifically,a suitable dynamic online cost function is generated according to the property of the three singular values.The visual servo process is carried out simultaneous to the dynamic self-calibration,and then the cost function is minirmzed using the adaptive genetic algorithm instead of the gradient descent method in G.Chesi's approach.Moreover,this method overcomes the limitation that the initial parameters must be selected close to the true value,which is not constant in many cases.It is not necessary to know exactly the camera intrinsic parameters when using our approach,instead,coarse coding bounds ot the five parameters are enough for the algorithm,which can be done once and for all off-line.Besides,this algorithm does not require knowledge of the 3D model of the object.Simulation experiments are carried out and the results demonstrate that the proposed approach provides a fast convergence speed and robustness against unpredictable perturbalaons of camera parameters,and it is an effective and efficient visual scrvo algorithm.

  8. Elastic-plastic model identification for rock surrounding an underground excavation based on immunized genetic algorithm.

    Science.gov (United States)

    Gao, Wei; Chen, Dongliang; Wang, Xu

    2016-01-01

    To compute the stability of underground engineering, a constitutive model of surrounding rock must be identified. Many constitutive models for rock mass have been proposed. In this model identification study, a generalized constitutive law for an elastic-plastic constitutive model is applied. Using the generalized constitutive law, the problem of model identification is transformed to a problem of parameter identification, which is a typical and complicated optimization. To improve the efficiency of the traditional optimization method, an immunized genetic algorithm that is proposed by the author is applied in this study. In this new algorithm, the principle of artificial immune algorithm is combined with the genetic algorithm. Therefore, the entire computation efficiency of model identification will be improved. Using this new model identification method, a numerical example and an engineering example are used to verify the computing ability of the algorithm. The results show that this new model identification algorithm can significantly improve the computation efficiency and the computation effect.

  9. Development of a multi-objective scheduling system for offshore projects based on hybrid non-dominated sorting genetic algorithm

    Directory of Open Access Journals (Sweden)

    Jinghua Li

    2015-03-01

    Full Text Available In order to enhance the efficiency of offshore companies, a multi-objective scheduling system based on hybrid non-dominated sorting genetic algorithm was proposed. An optimized model for multi-objective and multi-execution mode was constructed under the condition of taking time, cost, and resource into account, and then the mathematical model for the same was established. Moreover, the key techniques of the proposed system were elaborated, and the flowchart was designed. Aiming at the weaknesses of non-dominated sorting genetic algorithm which is short for non-dominated sorting genetic algorithm-II in the facet of local search and computational efficiency, Pareto-dominated simulated annealing algorithm was applied in search global solution. Finally, by simulation examples and industrial application, the robustness and outperformance of the improved algorithm were verified.

  10. Optimizing the Mixing Proportion with Neural Networks Based on Genetic Algorithms for Recycled Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Sangyong Kim

    2013-01-01

    Full Text Available This research aims to optimize the mixing proportion of recycled aggregate concrete (RAC using neural networks (NNs based on genetic algorithms (GAs for increasing the use of recycled aggregate (RA. NN and GA were used to predict the compressive strength of the concrete at 28 days. And sensitivity analysis of the NN based on GA was used to find the mixing ratio of RAC. The mixing criteria for RAC were determined and the replacement ratio of RAs was identified. This research reveal that the proposed method, which is NN based on GA, is proper for optimizing appropriate mixing proportion of RAC. Also, this method would help the construction engineers to utilize the recycled aggregate and reduce the concrete waste in construction process.

  11. A genetic-algorithm-based method to find the unitary transformations for any de- sired quantum computation and application to a one-bit oracle decision problem

    OpenAIRE

    Bang, Jeongho; Yoo, Seokwon

    2014-01-01

    We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the "genetic parameter vector" of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the ...

  12. Application of Intelligence Based Genetic Algorithm for Job Sequencing Problem on Parallel Mixed-Model Assembly Line

    Directory of Open Access Journals (Sweden)

    A. Norozi

    2010-01-01

    Full Text Available Problem statement: In the area of globalization the degree of competition in the market increased and many companies attempted to manufacture the products efficiently to overcome the challenges faced. Approach: Mixed model assembly line was able to provide continuous flow of material and flexibility with regard to model change. The problem under study attempted to describe the mathematical programming limitation for minimizing the overall make-span and balancing objective for set of parallel lines. Results: A proposed mixed-integer model only able to find the best job sequence in each line to meet the problem objectives for the given number of job allotted to each line. Hence using the proposed mathematical model for large size problem was time consuming and inefficient as so many job allocation values should be checked. This study presented an intelligence based genetic algorithm approach to optimize the considered problem objectives through reducing the problem complexity. A heuristic algorithm was introduced to generate the initial population for intelligence based genetic algorithm. Then, it started to find the best sequence of jobs for each line based on the generated population by heuristic algorithm. By this means, intelligence based genetic algorithm only concentrated on those initial populations that produce better solutions instead of probing the entire search space. Conclusion/Recommendations: The results obtained from intelligence based genetic algorithm were used as an initial point for fine-tuning by simulated annealing to increase the quality of solution. In order to check the capability of proposed algorithm, several experimentations on the set of problems were done. As the total objective values in most of problems could not be improved by simulated algorithm, it proved the well performing of proposed intelligence based genetic algorithm in reaching the near optimal solutions.

  13. Series Hybrid Electric Vehicle Power System Optimization Based on Genetic Algorithm

    Science.gov (United States)

    Zhu, Tianjun; Li, Bin; Zong, Changfu; Wu, Yang

    2017-09-01

    Hybrid electric vehicles (HEV), compared with conventional vehicles, have complex structures and more component parameters. If variables optimization designs are carried on all these parameters, it will increase the difficulty and the convergence of algorithm program, so this paper chooses the parameters which has a major influence on the vehicle fuel consumption to make it all work at maximum efficiency. First, HEV powertrain components modelling are built. Second, taking a tandem hybrid structure as an example, genetic algorithm is used in this paper to optimize fuel consumption and emissions. Simulation results in ADVISOR verify the feasibility of the proposed genetic optimization algorithm.

  14. Frequency modulated weak signal detection based on stochastic resonance and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    XING; Hongyan; LU; Chunxia; ZHANG; Qiang

    2016-01-01

    Stochastic resonance system is subject to the restriction of small frequency parameter in weak signal detection,in order to solve this problem,a frequency modulated weak signal detection method based on stochastic resonance and genetic algorithm is presented in this paper. The frequency limit of stochastic resonance is eliminated by introducing carrier signal,which is multiplied with the measured signal to be injected in the stochastic resonance system,meanwhile,using genetic algorithm to optimize the carrier signal frequency,which determine the generated difference-frequency signal in the lowfrequency range,so as to achieve the stochastic resonance weak signal detection. Results showthat the proposed method is feasible and effective,which can significantly improve the output SNR of stochastic resonance,in addition,the system has the better self-adaptability,according to the operation result and output phenomenon,the unknown frequency of the signal to be measured can be obtained,so as to realize the weak signal detection of arbitrary frequency.

  15. Application of genetic algorithm to optimize extrusion condition for soy-based meat analogue texturization.

    Science.gov (United States)

    Mazaheri Tehrani, Mostafa; Ehtiati, Ahmad; Sharifi Azghandi, Shadi

    2017-04-01

    The aim of this study was to find the optimum extrusion process conditions for texturized soybean meal as a meat analogue for food formulations using genetic algorithm. The defatted soybean meal was replaced with whole soybean meal at 10% and extruded in the temperature range of 150-200 °C, screw speed of 270-300 rpm and 20-25% feed moisture content based on the Box-Behnken design. The barrel temperature effect was markedly greater than those of the feed moisture content and screw speed on the product functional properties and appearance. Higher temperatures led to a higher rehydration capacity, water and oil absorption capacity, however, it had a negative effect on the product brightness. It was found that the extrusion at lower moisture content improved soy protein functionality. Genetic algorithm technique was applied to find the best process conditions. The optimized process conditions were found to be the temperature of 198.8 °C, screw speed of 291 rpm and feed moisture content of 20.2%. Overall, the whole soybean treatment was applicable to overcome the oil separation issue during extrusion and the process was optimized to produce texturized soy protein with the maximum attainable functionality.

  16. A neurofuzzy system based on rough set theory and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    LUO Jian-xu; SHAO Hui-he

    2005-01-01

    This paper presents a hybrid soft computing modeling approach for a rough set theory and the genetic algorithms (NFRSGA). The fundamental problem of a neurofuzzy system is that when the input dimension increases, the fuzzy rule base increases exponentially. This leads to a huge infra structure network which results in slow convergence. To solve this problem, rough set theory is used to obtain the reductive rules, which are used as fuzzy rules of the fuzzy system. The number of rules decrease, and each rule does not need all the conditional attribute values. This results in a reduced, or not fully connected, neural network. The structure of the neural network is relatively small and thus the weights to be trained decrease. The genetic algorithm is used to search the optimal discretization of the continuous attributes. The NFRSGA approach has been applied in the practical application of building a soft sensor model for estimating the freezing point of the light diesel fuel in a Fluid Catalytic Cracking Unit ( FCCU), and satisfying results are obtained.

  17. Optimization design of satellite separation systems based on Multi-Island Genetic Algorithm

    Science.gov (United States)

    Hu, Xingzhi; Chen, Xiaoqian; Zhao, Yong; Yao, Wen

    2014-03-01

    The separation systems are crucial for the launch of satellites. With respect to the existing design issues of satellite separation systems, an optimization design approach based on Multi-Island Genetic Algorithm is proposed, and a hierarchical optimization of system mass and separation angular velocity is designed. Multi-Island Genetic Algorithm is studied for the problem and the optimization parameters are discussed. Dynamic analysis of ADAMS used to validate the designs is integrated with iSIGHT. Then the optimization method is employed for a typical problem using the helical compression spring mechanism, and the corresponding objective functions are derived. It turns out that the mass of compression spring catapult is decreased by 30.7% after optimization and the angular velocity can be minimized considering spring stiffness errors. Moreover, ground tests and on-orbit flight indicate that the error of separation speed is controlled within 1% and the angular velocity is reduced by nearly 90%, which proves the design result and the optimization approach.

  18. Optimization lighting layout based on gene density improved genetic algorithm for indoor visible light communications

    Science.gov (United States)

    Liu, Huanlin; Wang, Xin; Chen, Yong; Kong, Deqian; Xia, Peijie

    2017-05-01

    For indoor visible light communication system, the layout of LED lamps affects the uniformity of the received power on communication plane. In order to find an optimized lighting layout that meets both the lighting needs and communication needs, a gene density genetic algorithm (GDGA) is proposed. In GDGA, a gene indicates a pair of abscissa and ordinate of a LED, and an individual represents a LED layout in the room. The segmented crossover operation and gene mutation strategy based on gene density are put forward to make the received power on communication plane more uniform and increase the population's diversity. A weighted differences function between individuals is designed as the fitness function of GDGA for reserving the population having the useful LED layout genetic information and ensuring the global convergence of GDGA. Comparing square layout and circular layout, with the optimized layout achieved by the GDGA, the power uniformity increases by 83.3%, 83.1% and 55.4%, respectively. Furthermore, the convergence of GDGA is verified compared with evolutionary algorithm (EA). Experimental results show that GDGA can quickly find an approximation of optimal layout.

  19. Optimal Feature Space Selection in Detecting Epileptic Seizure based on Recurrent Quantification Analysis and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Saleh LAshkari

    2016-06-01

    Full Text Available Selecting optimal features based on nature of the phenomenon and high discriminant ability is very important in the data classification problems. Since it doesn't require any assumption about stationary condition and size of the signal and the noise in Recurrent Quantification Analysis (RQA, it may be useful for epileptic seizure Detection. In this study, RQA was used to discriminate ictal EEG from the normal EEG where optimal features selected by combination of algorithm genetic and Bayesian Classifier. Recurrence plots of hundred samples in each two categories were obtained with five distance norms in this study: Euclidean, Maximum, Minimum, Normalized and Fixed Norm. In order to choose optimal threshold for each norm, ten threshold of ε was generated and then the best feature space was selected by genetic algorithm in combination with a bayesian classifier. The results shown that proposed method is capable of discriminating the ictal EEG from the normal EEG where for Minimum norm and 0.1˂ε˂1, accuracy was 100%. In addition, the sensitivity of proposed framework to the ε and the distance norm parameters was low. The optimal feature presented in this study is Trans which it was selected in most feature spaces with high accuracy.

  20. Road Traffic Control Based on Genetic Algorithm for Reducing Traffic Congestion

    Science.gov (United States)

    Shigehiro, Yuji; Miyakawa, Takuya; Masuda, Tatsuya

    In this paper, we propose a road traffic control method for reducing traffic congestion with genetic algorithm. In the not too distant future, the system which controls the routes of all vehicles in a certain area must be realized. The system should optimize the routes of all vehicles, however the solution space of this problem is enormous. Therefore we apply the genetic algorithm to this problem, by encoding the route of all vehicles to a fixed length chromosome. To improve the search performance, a new genetic operator called “path shortening” is also designed. The effectiveness of the proposed method is shown by the experiment.

  1. Optimal operation of water supply systems with tanks based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    YU Ting-chao; ZHANG Tu-qiao; LI Xun

    2005-01-01

    In view of the poor water supply system's network properties, the system's complicated network hydraulic equations were replaced by macroscopic nodal pressure model and the model of relationship between supply flow and water source head. By using pump-station pressure head and initial tank water levels as decision variables, the model of optimal allocation of water supply between pump-sources was developed. Genetic algorithm was introduced to deal with the model of optimal allocation of water supply. Methods for handling each constraint condition were put forward, and overcome the shortcoming such as premature convergence of genetic algorithm;a solving method was brought forward in which genetic algorithm was combined with simulated annealing technology and self-adaptive crossover and mutation probabilities were adopted. An application example showed the feasibility of this algorithm.

  2. Distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    Yaozhong Zhang,Lei Zhang,; Zhiqiang Du

    2015-01-01

    A distributed blackboard decision-making framework for col aborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can col aboratively solve the tasks-platforms al ocation scheduling problems dynamical y through the coordinator. This methodo-logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own plat-forms. The inter-DM coordinates the exchange of col aborative re-quest information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black-board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms col aborative planning problem. The assignment of platforms-tasks and the patterns of coordina-tion can achieve a nice trade-off between intra-DM and inter-DM coordination workload.

  3. Genetic algorithm to estimate the input parameters of Klatt and HLSyn formant-based speech synthesizers.

    Science.gov (United States)

    Araújo, Fabíola; Filho, José; Klautau, Aldebaro

    2016-12-01

    Voice imitation basically consists in estimating a synthesizer's input parameters to mimic a target speech signal. This is a difficult inverse problem because the mapping is time-varying, non-linear and from many to one. It typically requires considerable amount of time to be done manually. This work presents the evolution of a system based on a genetic algorithm (GA) to automatically estimate the input parameters of the Klatt and HLSyn formant synthesizers using an analysis-by-synthesis process. Results are presented for natural (human-generated) speech for three male speakers. The results obtained with the GA-based system outperform those obtained with the baseline Winsnoori with respect to four objective figures of merit and a subjective test. The GA with Klatt synthesizer generated similar voices to the target and the subjective tests indicate an improvement in the quality of the synthetic voices when compared to the ones produced by the baseline.

  4. FPGA-based genetic algorithm implementation for AC chopper fed induction motor

    Science.gov (United States)

    Mahendran, S.; Gnanambal, I.; Maheswari, A.

    2016-12-01

    Genetic algorithm (GA)-based harmonic elimination technique is proposed for designing AC chopper. GA is used to calculate optimal firing angles to eliminate lower order harmonics in output voltage. Total harmonic distortion of output voltage is taken for the fitness function used in the GA. Thus, the ratings of the load are not mandatory to be known for calculating the switching angles using proposed technique. For the performance assessment of GA, Newton-Raphson (NR) method is applied in this present work. Simulation results show that the proposed technique is better in terms of less computational complexity and quick convergence. Simulation results were verified by field programmable gate array controller-based prototype. Simulation study and experimental investigations show that the proposed GA method is superior to the conventional methods.

  5. Research on the fully fuzzy time-cost trade-off based on genetic algorithms

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    It is very difficult to estimate exact values of time and cost of an activity in project scheduling process because many uncertain factors, such as weather, productivity level, human factors etc. , dynamically affect them during project implementation process. A GAs-based fully fuzzy optimal time-cost trade-off model is presented based on fuzzy sets and genetic algorithms (GAs). In tihs model all parameters and variables are characteristics by fuzzy numbers. And then GAs is adopted to search for the optimal solution to this model. The method solves the time-cost trade-off problems under an uncertain environment and is proved practicable through a giving example in ship building scheduling.

  6. Image processing with genetic algorithm in a raisin sorting system based on machine vision

    Science.gov (United States)

    Abbasgholipour, Mahdi; Alasti, Behzad Mohammadi; Abbasgholipour, Vahdi; Derakhshan, Ali; Abbasgholipour, Mohammad; Rahmatfam, Sharmin; Rahmatfam, Sheyda; Habibifar, Rahim

    2012-04-01

    This study was undertaken to develop machine vision-based raisin detection technology. Supervised color image segmentation using a Permutation-coded Genetic Algorithm (GA) identifying regions in Hue-Saturation-Intensity (HSI) color space (GAHSI) for desired and undesired raisin detection was successfully implemented. Images were captured to explore the possibility of using GAHSI to locate desired raisin and undesired raisin regions in color space simultaneously. In this research, images were processed separately using three segmentation method, K-Means clustering in L*a*b* color space and GAHSI for single image, GA for single image in Red-Green-Blue (RGB) color space (GARGB). The GAHSI results provided evidence for the existence and separability of such regions. When compared with cluster analysis-based segmentation results, the GAHSI method showed no significant difference.

  7. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor

    Directory of Open Access Journals (Sweden)

    A. Jayachitra

    2014-01-01

    Full Text Available Genetic algorithm (GA based PID (proportional integral derivative controller has been proposed for tuning optimized PID parameters in a continuous stirred tank reactor (CSTR process using a weighted combination of objective functions, namely, integral square error (ISE, integral absolute error (IAE, and integrated time absolute error (ITAE. Optimization of PID controller parameters is the key goal in chemical and biochemical industries. PID controllers have narrowed down the operating range of processes with dynamic nonlinearity. In our proposed work, globally optimized PID parameters tend to operate the CSTR process in its entire operating range to overcome the limitations of the linear PID controller. The simulation study reveals that the GA based PID controller tuned with fixed PID parameters provides satisfactory performance in terms of set point tracking and disturbance rejection.

  8. Genetic algorithm-based design method for multilevel anisotropic diffraction gratings

    Science.gov (United States)

    Okamoto, Hiroyuki; Noda, Kohei; Sakamoto, Moritsugu; Sasaki, Tomoyuki; Wada, Yasuhiro; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2017-08-01

    We developed a method for the design of multilevel anisotropic diffraction gratings based on a genetic algorithm. The method is used to design the multilevel anisotropic diffraction gratings based on input data that represent the output from the required grating. The validity of the proposed method was evaluated by designing a multilevel anisotropic diffraction grating using the outputs from an orthogonal circular polarization grating. The design results corresponded to the orthogonal circular polarization grating structures that were used to provide outputs to act as the input data for the process. Comparison with existing design methods shows that the proposed method can reduce the number of human processes that are required to design multilevel anisotropic diffraction gratings. Additionally, the method will be able to design complex structures without any requirement for subsequent examination by a human designer. The method can contribute to the development of optical elements by designing multilevel anisotropic diffraction gratings.

  9. Zoning Modulus Inversion Method for Concrete Dams Based on Chaos Genetic Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Hao Gu

    2015-01-01

    Full Text Available For dams and rock foundations of ages, the actual mechanical parameters sometimes differed from the design and the experimental values. Therefore, it is necessary to carry out the inversion analysis on main physical and mechanical parameters of dams and rock foundations. However, only the integrated deformation modulus can be inversed by utilizing the conventional inversion method, and it does not meet the actual situation. Therefore, a new method is developed in this paper to inverse the actual initial zoning deformation modulus and to determine the inversion objective function for the actual zoning deformation modulus, based on the dam displacement measured data and finite element calculation results. Furthermore, based on the chaos genetic optimization algorithm, the inversion method for zoning deformation modulus of dam, dam foundation and, reservoir basin is proposed. Combined with the project case, the feasibility and validity of the proposed method are verified.

  10. Optimizing Properties of Aluminum-Based Nanocomposites by Genetic Algorithm Method

    Directory of Open Access Journals (Sweden)

    M.R. Dashtbayazi

    2015-07-01

    Full Text Available Based on molecular dynamics simulation results, a model was developed for determining elastic properties of aluminum nanocomposites reinforced with silicon carbide particles. Also, two models for prediction of density and price of nanocomposites were suggested. Then, optimal volume fraction of reinforcement was obtained by genetic algorithm method for the least density and price, and the highest elastic properties. Based on optimization results, the optimum volume fraction of reinforcement was obtained equal to 0.44. For this optimum volume fraction, optimum Young’s modulus, shear modulus, the price and the density of the nanocomposite were obtained 165.89 GPa, 111.37 GPa, 8.75 $/lb and 2.92 gr/cm3, respectively.

  11. Automated detection of lung nodules in CT images using shape-based genetic algorithm.

    Science.gov (United States)

    Dehmeshki, Jamshid; Ye, Xujiong; Lin, Xinyu; Valdivieso, Manlio; Amin, Hamdan

    2007-09-01

    A shape-based genetic algorithm template-matching (GATM) method is proposed for the detection of nodules with spherical elements. A spherical-oriented convolution-based filtering scheme is used as a pre-processing step for enhancement. To define the fitness function for GATM, a 3D geometric shape feature is calculated at each voxel and then combined into a global nodule intensity distribution. Lung nodule phantom images are used as reference images for template matching. The proposed method has been validated on a clinical dataset of 70 thoracic CT scans (involving 16,800 CT slices) that contains 178 nodules as a gold standard. A total of 160 nodules were correctly detected by the proposed method and resulted in a detection rate of about 90%, with the number of false positives at approximately 14.6/scan (0.06/slice). The high-detection performance of the method suggested promising potential for clinical applications.

  12. Multirunway Optimization Schedule of Airport Based on Improved Genetic Algorithm by Dynamical Time Window

    Directory of Open Access Journals (Sweden)

    Hang Zhou

    2015-01-01

    Full Text Available Reasonable airport runway scheduling is an effective measure to alleviate air traffic congestion. This paper proposes a new model and algorithm for flight scheduling. Considering the factors such as operating conditions and flight safety interval, the runway throughput, flight delays cost, and controller workload composes a multiobjective optimization model. The genetic algorithm combined with sliding time window algorithm is used to solve the model proposed in this paper. Simulation results show that the algorithm presented in this paper gets the optimal results, the runway throughput is increased by 12.87%, the delay cost is reduced by 61.46%, and the controller workload is also significantly reduced compared with FCFS (first come first served. Meanwhile, compared with the general genetic algorithm, it also reduces the time complexity and improves real-time and work efficiency significantly. The analysis results can provide guidance for air traffic controllers to make better air traffic control.

  13. Simulated Annealing Genetic Algorithm Based Schedule Risk Management of IT Outsourcing Project

    Directory of Open Access Journals (Sweden)

    Fuqiang Lu

    2017-01-01

    Full Text Available IT outsourcing is an effective way to enhance the core competitiveness for many enterprises. But the schedule risk of IT outsourcing project may cause enormous economic loss to enterprise. In this paper, the Distributed Decision Making (DDM theory and the principal-agent theory are used to build a model for schedule risk management of IT outsourcing project. In addition, a hybrid algorithm combining simulated annealing (SA and genetic algorithm (GA is designed, namely, simulated annealing genetic algorithm (SAGA. The effect of the proposed model on the schedule risk management problem is analyzed in the simulation experiment. Meanwhile, the simulation results of the three algorithms GA, SA, and SAGA show that SAGA is the most superior one to the other two algorithms in terms of stability and convergence. Consequently, this paper provides the scientific quantitative proposal for the decision maker who needs to manage the schedule risk of IT outsourcing project.

  14. Improving Brain Magnetic Resonance Image (MRI Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    Directory of Open Access Journals (Sweden)

    Javadpour A.

    2016-06-01

    Full Text Available Background: Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective: This study describes a new method for brain Magnetic Resonance Image (MRI segmentation via a novel algorithm based on genetic and regional growth. Methods: Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results: By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion: The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases.

  15. An Adaptive Agent-Based Model of Homing Pigeons: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Francis Oloo

    2017-01-01

    Full Text Available Conventionally, agent-based modelling approaches start from a conceptual model capturing the theoretical understanding of the systems of interest. Simulation outcomes are then used “at the end” to validate the conceptual understanding. In today’s data rich era, there are suggestions that models should be data-driven. Data-driven workflows are common in mathematical models. However, their application to agent-based models is still in its infancy. Integration of real-time sensor data into modelling workflows opens up the possibility of comparing simulations against real data during the model run. Calibration and validation procedures thus become automated processes that are iteratively executed during the simulation. We hypothesize that incorporation of real-time sensor data into agent-based models improves the predictive ability of such models. In particular, that such integration results in increasingly well calibrated model parameters and rule sets. In this contribution, we explore this question by implementing a flocking model that evolves in real-time. Specifically, we use genetic algorithms approach to simulate representative parameters to describe flight routes of homing pigeons. The navigation parameters of pigeons are simulated and dynamically evaluated against emulated GPS sensor data streams and optimised based on the fitness of candidate parameters. As a result, the model was able to accurately simulate the relative-turn angles and step-distance of homing pigeons. Further, the optimised parameters could replicate loops, which are common patterns in flight tracks of homing pigeons. Finally, the use of genetic algorithms in this study allowed for a simultaneous data-driven optimization and sensitivity analysis.

  16. Cost-sensitive case-based reasoning using a genetic algorithm: application to medical diagnosis.

    Science.gov (United States)

    Park, Yoon-Joo; Chun, Se-Hak; Kim, Byung-Chun

    2011-02-01

    The paper studies the new learning technique called cost-sensitive case-based reasoning (CSCBR) incorporating unequal misclassification cost into CBR model. Conventional CBR is now considered as a suitable technique for diagnosis, prognosis and prescription in medicine. However it lacks the ability to reflect asymmetric misclassification and often assumes that the cost of a positive diagnosis (an illness) as a negative one (no illness) is the same with that of the opposite situation. Thus, the objective of this research is to overcome the limitation of conventional CBR and encourage applying CBR to many real world medical cases associated with costs of asymmetric misclassification errors. The main idea involves adjusting the optimal cut-off classification point for classifying the absence or presence of diseases and the cut-off distance point for selecting optimal neighbors within search spaces based on similarity distribution. These steps are dynamically adapted to new target cases using a genetic algorithm. We apply this proposed method to five real medical datasets and compare the results with two other cost-sensitive learning methods-C5.0 and CART. Our finding shows that the total misclassification cost of CSCBR is lower than other cost-sensitive methods in many cases. Even though the genetic algorithm has limitations in terms of unstable results and over-fitting training data, CSCBR results with GA are better overall than those of other methods. Also the paired t-test results indicate that the total misclassification cost of CSCBR is significantly less than C5.0 and CART for several datasets. We have proposed a new CBR method called cost-sensitive case-based reasoning (CSCBR) that can incorporate unequal misclassification costs into CBR and optimize the number of neighbors dynamically using a genetic algorithm. It is meaningful not only for introducing the concept of cost-sensitive learning to CBR, but also for encouraging the use of CBR in the medical area

  17. Layout Optimization of Sensor-based Reconstruction of Explosion Overpressure Field Based on the Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Miaomiao Bai

    2014-11-01

    Full Text Available In underwater blasting experiment, the layout of the sensor has always been highly concerned. From the perspective of reconstruction with explosion overpressure field, the paper presents four indicators, which can obtain the optimal sensor layout scheme and guide sensor layout in practical experiment, combining with the genetic algorithm with global search. Then, a multi-scale model in every subregion of underwater blasting field was established to be used simulation experiments. By Matlab, the variation of these four indicators with different sensor layout, and reconstruction accuracy are analyzed and discussed. Finally, a conclusion has been raised through the analysis and comparison of simulation results, that the program can get a better sensor layout. It requires fewer number of sensors to be able to get good results with high accuracy. In the actual test explosions, we can refer to this scheme laid sensors.

  18. Coverage planning in computer-assisted ablation based on Genetic Algorithm.

    Science.gov (United States)

    Ren, Hongliang; Guo, Weian; Sam Ge, Shuzhi; Lim, Wancheng

    2014-06-01

    An ablation planning system plays a pivotal role in tumor ablation procedures, as it provides a dry run to guide the surgeons in a complicated anatomical environment. Over-ablation, over-perforation or under-ablation may result in complications during the treatments. An optimal solution is desired to have complete tumor coverage with minimal invasiveness, including minimal number of ablations and minimal number of perforation trajectories. As the planning of tumor ablation is a multi-objective problem, it is challenging to obtain optimal covering solutions based on clinician׳s experiences. Meanwhile, it is effective for computer-assisted systems to decide a set of optimal plans. This paper proposes a novel approach of integrating a computational optimization algorithm into the ablation planning system. The proposed ablation planning system is designed based on the following objectives: to achieve complete tumor coverage and to minimize the number of ablations, number of needle trajectories and over-ablation to the healthy tissue. These objectives are taken into account using a Genetic Algorithm, which is capable of generating feasible solutions within a constrained search space. The candidate ablation plans can be encoded in generations of chromosomes, which subsequently evolve based on a fitness function. In this paper, an exponential weight-criterion fitness function has been designed by incorporating constraint parameters that were reflective of the different objectives. According to the test results, the proposed planner is able to generate the set of optimal solutions for tumor ablation problem, thereby fulfilling the aforementioned multiple objectives.

  19. FLEXIBLE ASSEMBLY FIXTURING LA-YOUT MODELING AND OPTIMIZATION BASED ON GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Lai Xinmin; Luo Laijun; Lin Zhongqin

    2004-01-01

    There are many welding fixture layout design problems of flexible parts in body-in-white assembly process, which directly cause body assemble variation.The fixture layout design quality is mainly influenced by the position and quantity of fixture locators and clamps.A general analysis model of flexible assembles deformation caused by fixture is set up based on "N-2-1" locating principle, in which the locator and clamper are treated as the same fixture layout elements.An analysis model for the flexible part deformation in fixturing is set up in order to obtain the optimization object function and constraints accordingly.The final fixture element layout could be obtained through global optimal research by using improved genetic algorithm, which effectively decreases fixture elements layout influence on flexible assembles deformation.

  20. Alternative Fuzzy Cluster Segmentation of Remote Sensing Images Based on Adaptive Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Jing; TANG Jilong; LIU Jibin; REN Chunying; LIU Xiangnan; FENG Jiang

    2009-01-01

    Remote sensing image segmentation is the basis of image understanding and analysis. However, the precision and the speed of segmentation can not meet the need of image analysis, due to strong uncertainty and rich texture details of remote sensing images. We proposed a new segmentation method based on Adaptive Genetic Algorithm (AGA) and Alternative Fuzzy C-Means (AFCM). Segmentation thresholds were identified by AGA. Then the image was segmented by AFCM. The results indicate that the precision and the speed of segmentation have been greatly increased, and the accuracy of threshold selection is much higher compared with traditional Otsu and Fuzzy C-Means (FCM) segmentation methods. The segmentation results also show that multi-thresholds segmentation has been achieved by combining AGA with AFCM.

  1. [Design and field calculation of coil array for transcranial magnetic stimulation (TMS) based on genetic algorithm].

    Science.gov (United States)

    Liu, Jicheng; Huang, Kama; Guo, Lanting; Zhang, Hong; Hu, Yayi

    2005-04-01

    It is the intent of this paper to locate the activation point in Transcranial Magnetic Stimulation (TMS) efficiently. The schemes of coil array in torus shape is presented to get the electromagnetic field distribution with ideal focusing capability. Then an improved adaptive genetic algorithm (AGA) is applied to the optimization of both value and phase of the current infused in each coil. Based on the calculated results of the optimized current configurations, ideal focusing capability is drawn as contour lines and 3-D mesh charts of magnitude of both magnetic and electric field within the calculation area. It is shown that the coil array has good capability to establish focused shape of electromagnetic distribution. In addition, it is also demonstrated that the coil array has the capability to focus on two or more targets simultaneously.

  2. Optimization of interference filters with genetic algorithms applied to silver-based heat mirrors.

    Science.gov (United States)

    Eisenhammer, T; Lazarov, M; Leutbecher, M; Schöffel, U; Sizmann, R

    1993-11-01

    In the optimization of multilayer stacks for various optical filtering purposes not only the thicknesses of the thin films are to be optimized, but also the sequence of materials. Materials with very different optical properties, such as metals and dielectrics, may be combined. A genetic algorithm is introduced to search for the optimal sequence of materials along with their optical thicknesses. This procedure is applied to a heat mirror in combination with a blackbody absorber for thermal solar energy applications at elevated temperatures (250 °C). The heat mirror is based on silver films with antireflective dielectric layers. Seven dielectrics have been considered. For a five-layer stack the sequence (TiO(2)/Ag/TiO(2)/Ag/Y(2)O(3)) is found to be optimal.

  3. Screw Performance Degradation Assessment Based on Quantum Genetic Algorithm and Dynamic Fuzzy Neural Network

    Directory of Open Access Journals (Sweden)

    Xiaochen Zhang

    2015-01-01

    Full Text Available To evaluate the performance of ball screw, screw performance degradation assessment technology based on quantum genetic algorithm (QGA and dynamic fuzzy neural network (DFNN is studied. The ball screw of the CINCINNATIV5-3000 machining center is treated as the study object. Two Kistler 8704B100M1 accelerometers and a Kistler 8765A250M5 three-way accelerometer are installed to monitor the degradation trend of screw performance. First, screw vibration signal features are extracted both in time domain and frequency domain. Then the feature vectors can be obtained by principal component analysis (PCA. Second, the initialization parameters of the DFNN are optimized by means of QGA. Finally, the feature vectors are inputted to DFNN for training and then get the screw performance degradation model. The experiment results show that the screw performance degradation model could effectively evaluate the performance of NC machine screw.

  4. Genetic Algorithm (GA) in Feature Selection for CRF Based Manipuri Multiword Expression (MWE) Identification

    CERN Document Server

    Nongmeikapam, Kishorjit; 10.5121/ijcsit.2011.350

    2011-01-01

    This paper deals with the identification of Multiword Expressions (MWEs) in Manipuri, a highly agglutinative Indian Language. Manipuri is listed in the Eight Schedule of Indian Constitution. MWE plays an important role in the applications of Natural Language Processing(NLP) like Machine Translation, Part of Speech tagging, Information Retrieval, Question Answering etc. Feature selection is an important factor in the recognition of Manipuri MWEs using Conditional Random Field (CRF). The disadvantage of manual selection and choosing of the appropriate features for running CRF motivates us to think of Genetic Algorithm (GA). Using GA we are able to find the optimal features to run the CRF. We have tried with fifty generations in feature selection along with three fold cross validation as fitness function. This model demonstrated the Recall (R) of 64.08%, Precision (P) of 86.84% and F-measure (F) of 73.74%, showing an improvement over the CRF based Manipuri MWE identification without GA application.

  5. Parameter identification of ZnO surge arrester models based on genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bayadi, Abdelhafid [Laboratoire d' Automatique de Setif, Departement d' Electrotechnique, Faculte des Sciences de l' Ingenieur, Universite Ferhat ABBAS de Setif, Route de Bejaia Setif 19000 (Algeria)

    2008-07-15

    The correct and adequate modelling of ZnO surge arresters characteristics is very important for insulation coordination studies and systems reliability. In this context many researchers addressed considerable efforts to the development of surge arresters models to reproduce the dynamic characteristics observed in their behaviour when subjected to fast front impulse currents. The difficulties with these models reside essentially in the calculation and the adjustment of their parameters. This paper proposes a new technique based on genetic algorithm to obtain the best possible series of parameter values of ZnO surge arresters models. The validity of the predicted parameters is then checked by comparing the predicted results with the experimental results available in the literature. Using the ATP-EMTP package, an application of the arrester model on network system studies is presented and discussed. (author)

  6. Hybrid Genetic Algorithm Based Optimization of Coupled HMM for Complex Interacting Processes Recognition

    Institute of Scientific and Technical Information of China (English)

    Liu Jianghua(刘江华); Chen Jiapin; Cheng Junshi

    2004-01-01

    Coupled Hidden Markov Model (CHMM) is the extension of traditional HMM, which is mainly used for complex interactive process modeling such as two-hand gestures. However, the problems of finding optimal model parameter are still of great interest to the researches in this area. This paper proposes a hybrid genetic algorithm (HGA) for the CHMM training. Chaos is used to initialize GA and used as mutation operator. Experiments on Chinese TaiChi gestures show that standard GA (SGA) based CHMM training is superior to Maximum Likelihood (ML) HMM training. HGA approach has the highest recognition rate of 98.0769%, then 96.1538% for SGA. The last one is ML method, only with a recognition rate of 69.2308%.

  7. Classification of Noisy Data: An Approach Based on Genetic Algorithms and Voronoi Tessellation

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Knudsen, Torben;

    2016-01-01

    Classification is one of the major constituents of the data-mining toolkit. The well-known methods for classification are built on either the principle of logic or statistical/mathematical reasoning for classification. In this article we propose: (1) a different strategy, which is based......). The results of this study suggest that our proposed methodology is specialized to deal with the classification problem of highly imbalanced classes with significant overlap....... on the portioning of information space; and (2) use of the genetic algorithm to solve combinatorial problems for classification. In particular, we will implement our methodology to solve complex classification problems and compare the performance of our classifier with other well-known methods (SVM, KNN, and ANN...

  8. Multi-Period Model of Portfolio Investment and Adjustment Based on Hybrid Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    RONG Ximin; LU Meiping; DENG Lin

    2009-01-01

    This paper proposes a multi-period portfolio investment model with class constraints, transaction cost, and indivisible securities. When an investor joins the securities market for the first time, he should decide on portfolio investment based on the practical conditions of securities market. In addition, investors should adjust the portfolio according to market changes, changing or not changing the category of risky securities. Markowitz mean-variance approach is applied to the multi-period portfolio selection problems. Because the sub-models are optimal mixed integer program, whose objective function is not unimodal and feasible set is with a particular structure, traditional optimization method usually fails to find a globally optimal solution. So this paper employs the hybrid genetic algorithm to solve the problem. Investment policies that accord with finance market and are easy to operate for investors are put forward with an illustration of application.

  9. Supplier selection based on a neural network model using genetic algorithm.

    Science.gov (United States)

    Golmohammadi, Davood; Creese, Robert C; Valian, Haleh; Kolassa, John

    2009-09-01

    In this paper, a decision-making model was developed to select suppliers using neural networks (NNs). This model used historical supplier performance data for selection of vendor suppliers. Input and output were designed in a unique manner for training purposes. The managers' judgments about suppliers were simulated by using a pairwise comparisons matrix for output estimation in the NN. To obtain the benefit of a search technique for model structure and training, genetic algorithm (GA) was applied for the initial weights and architecture of the network. The suppliers' database information (input) can be updated over time to change the suppliers' score estimation based on their performance. The case study illustrated shows how the model can be applied for suppliers' selection.

  10. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  11. A genetic algorithm-based job scheduling model for big data analytics.

    Science.gov (United States)

    Lu, Qinghua; Li, Shanshan; Zhang, Weishan; Zhang, Lei

    Big data analytics (BDA) applications are a new category of software applications that process large amounts of data using scalable parallel processing infrastructure to obtain hidden value. Hadoop is the most mature open-source big data analytics framework, which implements the MapReduce programming model to process big data with MapReduce jobs. Big data analytics jobs are often continuous and not mutually separated. The existing work mainly focuses on executing jobs in sequence, which are often inefficient and consume high energy. In this paper, we propose a genetic algorithm-based job scheduling model for big data analytics applications to improve the efficiency of big data analytics. To implement the job scheduling model, we leverage an estimation module to predict the performance of clusters when executing analytics jobs. We have evaluated the proposed job scheduling model in terms of feasibility and accuracy.

  12. Flexible job-shop scheduling based on genetic algorithm and simulation validation

    Directory of Open Access Journals (Sweden)

    Zhou Erming

    2017-01-01

    Full Text Available This paper selects flexible job-shop scheduling problem as the research object, and Constructs mathematical model aimed at minimizing the maximum makespan. Taking the transmission reverse gear production line of a transmission corporation as an example, genetic algorithm is applied for flexible jobshop scheduling problem to get the specific optimal scheduling results with MATLAB. DELMIA/QUEST based on 3D discrete event simulation is applied to construct the physical model of the production workshop. On the basis of the optimal scheduling results, the logical link of the physical model for the production workshop is established, besides, importing the appropriate process parameters to make virtual simulation on the production workshop. Finally, through analyzing the simulated results, it shows that the scheduling results are effective and reasonable.

  13. Multi-objective optimization based on Genetic Algorithm for PID controller tuning

    Institute of Scientific and Technical Information of China (English)

    WANG Guo-liang; YAN Wei-wu; SHAO Hui-he

    2009-01-01

    To get the satisfying performance of a PID controller, this paper presents a novel Pareto - based multi-objective genetic algorithm ( MOGA), which can be used to find the appropriate setting of the PID controller by analyzing the pareto optimal surfaces. Rated settings of the controller by two criteria, the error between output and reference signals and control moves, are listed on the pareto surface. Appropriate setting can be chosen under a balance between two criteria for different control purposes. A controller tuning problem for a plant with high order and time delay is chosen as an example. Simulation results show that the method of MOGA is more efficient compared with traditional tuning methods.

  14. Bus Timetabling as a Fuzzy Multiobjective Optimization Problem Using Preference-based Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Surafel Luleseged Tilahun

    2012-05-01

    Full Text Available Transportation plays a vital role in the development of a country and the car is the most commonly used means. However, in third world countries long waiting time for public buses is a common problem, especially when people need to switch buses. The problem becomes critical when one considers buses joining different villages and cities. Theoretically this problem can be solved by assigning more buses on the route, which is not possible due to economical problem. Another option is to schedule the buses so that customers who want to switch buses at junction cities need not have to wait long. This paper discusses how to model single frequency routes bus timetabling as a fuzzy multiobjective optimization problem and how to solve it using preference-based genetic algorithm by assigning appropriate fuzzy preference to the need of the customers. The idea will be elaborated with an example.

  15. Battery Pack Grouping and Capacity Improvement for Electric Vehicles Based on a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Zheng Chen

    2017-03-01

    Full Text Available This paper proposes an optimal grouping method for battery packs of electric vehicles (EVs. Based on modeling the vehicle powertrain, analyzing the battery degradation performance and setting up the driving cycle of an EV, a genetic algorithm (GA is applied to optimize the battery grouping topology with the objective of minimizing the total cost of ownership (TCO. The battery capacity and the serial and parallel amounts of the pack can thus be determined considering the influence of battery degradation. The results show that the optimized pack grouping can be solved by GA within around 9 min. Compared with the results of maximum discharge efficiency within a fixed lifetime, the proposed method can not only achieve a higher discharge efficiency, but also reduce the TCO by 2.29%. To enlarge the applications of the proposed method, the sensitivity to driving conditions is also analyzed to further prove the feasibility of the proposed method.

  16. Nonlinear Electrical Circuit Oscillator Control Based on Backstepping Method: A Genetic Algorithm Approach

    Directory of Open Access Journals (Sweden)

    Mahsa Khoeiniha

    2012-01-01

    Full Text Available This paper investigated study of dynamics of nonlinear electrical circuit by means of modern nonlinear techniques and the control of a class of chaotic system by using backstepping method based on Lyapunov function. The behavior of such nonlinear system when they are under the influence of external sinusoidal disturbances with unknown amplitudes has been considered. The objective is to analyze the performance of this system at different amplitudes of disturbances. We illustrate the proposed approach for controlling duffing oscillator problem to stabilize this system at the equilibrium point. Also Genetic Algorithm method (GA for computing the parameters of controller has been used. GA can be successfully applied to achieve a better controller. Simulation results have shown the effectiveness of the proposed method.

  17. A new SVD based fragile image watermarking by using genetic algorithm

    Science.gov (United States)

    Aslantas, Veysel; Dogru, Mevlut

    2015-03-01

    In this paper, a novel fragile image watermarking scheme based on singular value decomposition (SVD) using genetic algorithm (GA) is proposed. Every line of watermark is scaled by using multiple scaling factors (SFs). Host image is divided into blocks. Watermarked image is obtained by embedding a different line of the watermark to singular values (SVs) of the every block. In this proposed method, the SFs are optimized using GA to obtain maximum transparency. Experimental results indicate that the method reached the highest possible transparency. Fragility of the watermark under various attacks such as rotating, rescaling and sharpening is tested. When an attack does not occur, exactly the original extracted watermark is obtained; on the other hand, the extracted watermark is intensely distorted.

  18. A Low-Complexity PTS Based on Greedy and Genetic Algorithm for OFDM Systems

    Institute of Scientific and Technical Information of China (English)

    LUO Renze; ZHANG Chengsen; NIU Na; LI Rui

    2015-01-01

    Partial transmit sequence (PTS) is one of eff ective technique to reduce high Peak-to-average power ratio (PAPR) in Orthogonal frequency division multiplex-ing (OFDM) system. However, the complexity of Original PTS (O-PTS) increases exponentially with the number of sub-blocks. To reduce the computational complexity while still off ering a lower PAPR, a new PTS method is pro-posed to search for suboptimal rotating vectors in this pa-per. In the proposed method, the candidate rotation vec-tors are generated based on greedy and genetic algorithm. We also combine the proposed method and the superim-posed training sequence method to get a further PAPR reduction. The theory and simulations results show that the proposed method can achieve better PAPR reduction and significantly reduce the computational complexity.

  19. NOVEL APPROACH FOR ROBOT PATH PLANNING BASED ON NUMERICAL ARTIFICIAL POTENTIAL FIELD AND GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    WANG Weizhong; ZHAO Jie; GAO Yongsheng; CAI Hegao

    2006-01-01

    A novel approach for collision-free path planning of a multiple degree-of-freedom (DOF)articulated robot in a complex environment is proposed. Firstly, based on visual neighbor point (VNP), a numerical artificial potential field is constructed in Cartesian space, which provides the heuristic information, effective distance to the goal and the motion direction for the motion of the robot joints. Secondly, a genetic algorithm, combined with the heuristic rules, is used in joint space to determine a series of contiguous configurations piecewise fiom initial configuration until the goal configuration is attained. A simulation shows that the method can not only handle issues on path planning of the articulated robots in environment with complex obstacles, but also improve the efficiency and quality of path planning.

  20. Screw Remaining Life Prediction Based on Quantum Genetic Algorithm and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Xiaochen Zhang

    2017-01-01

    Full Text Available To predict the remaining life of ball screw, a screw remaining life prediction method based on quantum genetic algorithm (QGA and support vector machine (SVM is proposed. A screw accelerated test bench is introduced. Accelerometers are installed to monitor the performance degradation of ball screw. Combined with wavelet packet decomposition and isometric mapping (Isomap, the sensitive feature vectors are obtained and stored in database. Meanwhile, the sensitive feature vectors are randomly chosen from the database and constitute training samples and testing samples. Then the optimal kernel function parameter and penalty factor of SVM are searched with the method of QGA. Finally, the training samples are used to train optimized SVM while testing samples are adopted to test the prediction accuracy of the trained SVM so the screw remaining life prediction model can be got. The experiment results show that the screw remaining life prediction model could effectively predict screw remaining life.

  1. Genetic-algorithm-based multiple regression with fuzzy inference system for detection of nocturnal hypoglycemic episodes.

    Science.gov (United States)

    Ling, Steve S H; Nguyen, Hung T

    2011-03-01

    Hypoglycemia or low blood glucose is dangerous and can result in unconsciousness, seizures, and even death. It is a common and serious side effect of insulin therapy in patients with diabetes. Hypoglycemic monitor is a noninvasive monitor that measures some physiological parameters continuously to provide detection of hypoglycemic episodes in type 1 diabetes mellitus patients (T1DM). Based on heart rate (HR), corrected QT interval of the ECG signal, change of HR, and the change of corrected QT interval, we develop a genetic algorithm (GA)-based multiple regression with fuzzy inference system (FIS) to classify the presence of hypoglycemic episodes. GA is used to find the optimal fuzzy rules and membership functions of FIS and the model parameters of regression method. From a clinical study of 16 children with T1DM, natural occurrence of nocturnal hypoglycemic episodes is associated with HRs and corrected QT intervals. The overall data were organized into a training set (eight patients) and a testing set (another eight patients) randomly selected. The results show that the proposed algorithm performs a good sensitivity with an acceptable specificity.

  2. A Nonlinear Blind Source Separation Method Based On Radial Basis Function and Quantum Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Wang Pidong

    2016-01-01

    Full Text Available Blind source separation is a hot topic in signal processing. Most existing works focus on dealing with linear combined signals, while in practice we always encounter with nonlinear mixed signals. To address the problem of nonlinear source separation, in this paper we propose a novel algorithm using radial basis function neutral network, optimized by multi-universe parallel quantum genetic algorithm. Experiments show the efficiency of the proposed method.

  3. Granularity of Knowledge Computed by Genetic Algorithms Based on Rough Sets Theory

    Institute of Scientific and Technical Information of China (English)

    Wenyuan Yang; Xiaoping Ye; Yong Tang; Pingping Wei

    2006-01-01

    Rough set philosophy hinges on the granularity of data, which is used to build all its basic concepts, like approximations, dependencies, reduction etc. Genetic Algorithms provides a general frame to optimize problem solution of complex system without depending on the domain of problem. It is robust to many kinds of problems. The paper combines Genetic Algorithms and rough sets theory to compute granular of knowledge through an example of information table. The combination enable us to compute granular of knowledge effectively. It is also useful for computer auto-computing and information processing.

  4. Optimization of lamp arrangement in a closed-conduit UV reactor based on a genetic algorithm.

    Science.gov (United States)

    Sultan, Tipu; Ahmad, Zeshan; Cho, Jinsoo

    2016-01-01

    The choice for the arrangement of the UV lamps in a closed-conduit ultraviolet (CCUV) reactor significantly affects the performance. However, a systematic methodology for the optimal lamp arrangement within the chamber of the CCUV reactor is not well established in the literature. In this research work, we propose a viable systematic methodology for the lamp arrangement based on a genetic algorithm (GA). In addition, we analyze the impacts of the diameter, angle, and symmetry of the lamp arrangement on the reduction equivalent dose (RED). The results are compared based on the simulated RED values and evaluated using the computational fluid dynamics simulations software ANSYS FLUENT. The fluence rate was calculated using commercial software UVCalc3D, and the GA-based lamp arrangement optimization was achieved using MATLAB. The simulation results provide detailed information about the GA-based methodology for the lamp arrangement, the pathogen transport, and the simulated RED values. A significant increase in the RED values was achieved by using the GA-based lamp arrangement methodology. This increase in RED value was highest for the asymmetric lamp arrangement within the chamber of the CCUV reactor. These results demonstrate that the proposed GA-based methodology for symmetric and asymmetric lamp arrangement provides a viable technical solution to the design and optimization of the CCUV reactor.

  5. Safety part design optimisation based on the finite elements method and a genetic algorithm

    OpenAIRE

    Gildemyn, Eric; Dal Santo, Philippe; Robert, Camille; POTIRON, Alain; SAÏDANE, Delphine

    2010-01-01

    International audience; This paper deals with a numerical approach for improving the mechanical properties of a safety belt anchor by optimizing its shape and the manufacturing process by using a multi-objective genetic algorithm (NSGA-2). This kind of automotive component is typically manufactured in three stages: blanking, rounding of the edges by punching and finally bending (90°). This study focuses only on the rounding and bending processes. The numerical model is linked to the genetic a...

  6. Fuzzy ranking based non-dominated sorting genetic algorithm-II for network overload alleviation

    Directory of Open Access Journals (Sweden)

    Pandiarajan K.

    2014-09-01

    Full Text Available This paper presents an effective method of network overload management in power systems. The three competing objectives 1 generation cost 2 transmission line overload and 3 real power loss are optimized to provide pareto-optimal solutions. A fuzzy ranking based non-dominated sorting genetic algorithm-II (NSGA-II is used to solve this complex nonlinear optimization problem. The minimization of competing objectives is done by generation rescheduling. Fuzzy ranking method is employed to extract the best compromise solution out of the available non-dominated solutions depending upon its highest rank. N-1 contingency analysis is carried out to identify the most severe lines and those lines are selected for outage. The effectiveness of the proposed approach is demonstrated for different contingency cases in IEEE 30 and IEEE 118 bus systems with smooth cost functions and their results are compared with other single objective evolutionary algorithms like Particle swarm optimization (PSO and Differential evolution (DE. Simulation results show the effectiveness of the proposed approach to generate well distributed pareto-optimal non-dominated solutions of multi-objective problem

  7. Optimization of chiral lattice based metastructures for broadband vibration suppression using genetic algorithms

    Science.gov (United States)

    Abdeljaber, Osama; Avci, Onur; Inman, Daniel J.

    2016-05-01

    One of the major challenges in civil, mechanical, and aerospace engineering is to develop vibration suppression systems with high efficiency and low cost. Recent studies have shown that high damping performance at broadband frequencies can be achieved by incorporating periodic inserts with tunable dynamic properties as internal resonators in structural systems. Structures featuring these kinds of inserts are referred to as metamaterials inspired structures or metastructures. Chiral lattice inserts exhibit unique characteristics such as frequency bandgaps which can be tuned by varying the parameters that define the lattice topology. Recent analytical and experimental investigations have shown that broadband vibration attenuation can be achieved by including chiral lattices as internal resonators in beam-like structures. However, these studies have suggested that the performance of chiral lattice inserts can be maximized by utilizing an efficient optimization technique to obtain the optimal topology of the inserted lattice. In this study, an automated optimization procedure based on a genetic algorithm is applied to obtain the optimal set of parameters that will result in chiral lattice inserts tuned properly to reduce the global vibration levels of a finite-sized beam. Genetic algorithms are considered in this study due to their capability of dealing with complex and insufficiently understood optimization problems. In the optimization process, the basic parameters that govern the geometry of periodic chiral lattices including the number of circular nodes, the thickness of the ligaments, and the characteristic angle are considered. Additionally, a new set of parameters is introduced to enable the optimization process to explore non-periodic chiral designs. Numerical simulations are carried out to demonstrate the efficiency of the optimization process.

  8. Three-dimensional inverse modelling of magnetic anomaly sources based on a genetic algorithm

    Science.gov (United States)

    Montesinos, Fuensanta G.; Blanco-Montenegro, Isabel; Arnoso, José

    2016-04-01

    We present a modelling method to estimate the 3-D geometry and location of homogeneously magnetized sources from magnetic anomaly data. As input information, the procedure needs the parameters defining the magnetization vector (intensity, inclination and declination) and the Earth's magnetic field direction. When these two vectors are expected to be different in direction, we propose to estimate the magnetization direction from the magnetic map. Then, using this information, we apply an inversion approach based on a genetic algorithm which finds the geometry of the sources by seeking the optimum solution from an initial population of models in successive iterations through an evolutionary process. The evolution consists of three genetic operators (selection, crossover and mutation), which act on each generation, and a smoothing operator, which looks for the best fit to the observed data and a solution consisting of plausible compact sources. The method allows the use of non-gridded, non-planar and inaccurate anomaly data and non-regular subsurface partitions. In addition, neither constraints for the depth to the top of the sources nor an initial model are necessary, although previous models can be incorporated into the process. We show the results of a test using two complex synthetic anomalies to demonstrate the efficiency of our inversion method. The application to real data is illustrated with aeromagnetic data of the volcanic island of Gran Canaria (Canary Islands).

  9. Guided macro-mutation in a graded energy based genetic algorithm for protein structure prediction.

    Science.gov (United States)

    Rashid, Mahmood A; Iqbal, Sumaiya; Khatib, Firas; Hoque, Md Tamjidul; Sattar, Abdul

    2016-04-01

    Protein structure prediction is considered as one of the most challenging and computationally intractable combinatorial problem. Thus, the efficient modeling of convoluted search space, the clever use of energy functions, and more importantly, the use of effective sampling algorithms become crucial to address this problem. For protein structure modeling, an off-lattice model provides limited scopes to exercise and evaluate the algorithmic developments due to its astronomically large set of data-points. In contrast, an on-lattice model widens the scopes and permits studying the relatively larger proteins because of its finite set of data-points. In this work, we took the full advantage of an on-lattice model by using a face-centered-cube lattice that has the highest packing density with the maximum degree of freedom. We proposed a graded energy-strategically mixes the Miyazawa-Jernigan (MJ) energy with the hydrophobic-polar (HP) energy-based genetic algorithm (GA) for conformational search. In our application, we introduced a 2 × 2 HP energy guided macro-mutation operator within the GA to explore the best possible local changes exhaustively. Conversely, the 20 × 20 MJ energy model-the ultimate objective function of our GA that needs to be minimized-considers the impacts amongst the 20 different amino acids and allow searching the globally acceptable conformations. On a set of benchmark proteins, our proposed approach outperformed state-of-the-art approaches in terms of the free energy levels and the root-mean-square deviations.

  10. Classification of Noisy Data: An Approach Based on Genetic Algorithms and Voronoi Tessellation

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Knudsen, Torben

    2016-01-01

    on the portioning of information space; and (2) use of the genetic algorithm to solve combinatorial problems for classification. In particular, we will implement our methodology to solve complex classification problems and compare the performance of our classifier with other well-known methods (SVM, KNN, and ANN...

  11. Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method

    Science.gov (United States)

    Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen

    2008-01-01

    In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…

  12. Classification of Noisy Data: An Approach Based on Genetic Algorithms and Voronoi Tessellation

    DEFF Research Database (Denmark)

    Khan, Abdul Rauf; Schiøler, Henrik; Knudsen, Torben

    on the portioning of information space; and (2) use of the genetic algorithm to solve combinatorial problems for classification. In particular, we will implement our methodology to solve complex classification problems and compare the performance of our classifier with other well-known methods (SVM, KNN, and ANN...

  13. Creating IRT-Based Parallel Test Forms Using the Genetic Algorithm Method

    Science.gov (United States)

    Sun, Koun-Tem; Chen, Yu-Jen; Tsai, Shu-Yen; Cheng, Chien-Fen

    2008-01-01

    In educational measurement, the construction of parallel test forms is often a combinatorial optimization problem that involves the time-consuming selection of items to construct tests having approximately the same test information functions (TIFs) and constraints. This article proposes a novel method, genetic algorithm (GA), to construct parallel…

  14. A neural-network-based exponential H∞ synchronisation for chaotic secure communication via improved genetic algorithm

    Science.gov (United States)

    Hsiao, Feng-Hsiag

    2016-10-01

    In this study, a novel approach via improved genetic algorithm (IGA)-based fuzzy observer is proposed to realise exponential optimal H∞ synchronisation and secure communication in multiple time-delay chaotic (MTDC) systems. First, an original message is inserted into the MTDC system. Then, a neural-network (NN) model is employed to approximate the MTDC system. Next, a linear differential inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, this study proposes a delay-dependent exponential stability criterion derived in terms of Lyapunov's direct method, thus ensuring that the trajectories of the slave system approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a linear matrix inequality (LMI). Due to GA's random global optimisation search capabilities, the lower and upper bounds of the search space can be set so that the GA will seek better fuzzy observer feedback gains, accelerating feedback gain-based synchronisation via the LMI-based approach. IGA, which exhibits better performance than traditional GA, is used to synthesise a fuzzy observer to not only realise the exponential synchronisation, but also achieve optimal H∞ performance by minimizing the disturbance attenuation level and recovering the transmitted message. Finally, a numerical example with simulations is given in order to demonstrate the effectiveness of our approach.

  15. A Constrained Genetic Algorithm Based on Constraint Handling with KS Function and Grouping Penalty

    Directory of Open Access Journals (Sweden)

    Jiang Zhansi

    2015-01-01

    Full Text Available In order to overcome the limitation when using traditional genetic algorithm in solving constrained optimization problems, this paper presents a new method of constrain handling to solve the constrained optimization problems. Firstly, the method makes full use of the condensed characteristics of the KS function to transform multi-constrained optimization problem into a single constraint optimization problem. And then a group penalty method is adopted by genetic algorithm. Aggregate constraint reduces the solution scale effectively and improves the efficiency of searching for global optimization solution. The method of penalty in grouping is used to overcome the difficulty of penalty coefficient selection for general penalty function method. Several typical numerical experiments and engineering application show the performance and effectiveness of the proposed algorithm.

  16. Optimal Facility Location Model Based on Genetic Simulated Annealing Algorithm for Siting Urban Refueling Stations

    Directory of Open Access Journals (Sweden)

    Dawei Chen

    2015-01-01

    Full Text Available This paper analyzes the impact factors and principles of siting urban refueling stations and proposes a three-stage method. The main objective of the method is to minimize refueling vehicles’ detour time. The first stage aims at identifying the most frequently traveled road segments for siting refueling stations. The second stage focuses on adding additional refueling stations to serve vehicles whose demands are not directly satisfied by the refueling stations identified in the first stage. The last stage further adjusts and optimizes the refueling station plan generated by the first two stages. A genetic simulated annealing algorithm is proposed to solve the optimization problem in the second stage and the results are compared to those from the genetic algorithm. A case study is also conducted to demonstrate the effectiveness of the proposed method and algorithm. The results indicate the proposed method can provide practical and effective solutions that help planners and government agencies make informed refueling station location decisions.

  17. Optimized design on condensing tubes high-speed TIG welding technology magnetic control based on genetic algorithm

    Science.gov (United States)

    Lu, Lin; Chang, Yunlong; Li, Yingmin; Lu, Ming

    2013-05-01

    An orthogonal experiment was conducted by the means of multivariate nonlinear regression equation to adjust the influence of external transverse magnetic field and Ar flow rate on welding quality in the process of welding condenser pipe by high-speed argon tungsten-arc welding (TIG for short). The magnetic induction and flow rate of Ar gas were used as optimum variables, and tensile strength of weld was set to objective function on the base of genetic algorithm theory, and then an optimal design was conducted. According to the request of physical production, the optimum variables were restrained. The genetic algorithm in the MATLAB was used for computing. A comparison between optimum results and experiment parameters was made. The results showed that the optimum technologic parameters could be chosen by the means of genetic algorithm with the conditions of excessive optimum variables in the process of high-speed welding. And optimum technologic parameters of welding coincided with experiment results.

  18. A New Spectral Shape-Based Record Selection Approach Using Np and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Edén Bojórquez

    2013-01-01

    Full Text Available With the aim to improve code-based real records selection criteria, an approach inspired in a parameter proxy of spectral shape, named Np, is analyzed. The procedure is based on several objectives aimed to minimize the record-to-record variability of the ground motions selected for seismic structural assessment. In order to select the best ground motion set of records to be used as an input for nonlinear dynamic analysis, an optimization approach is applied using genetic algorithms focuse on finding the set of records more compatible with a target spectrum and target Np values. The results of the new Np-based approach suggest that the real accelerograms obtained with this procedure, reduce the scatter of the response spectra as compared with the traditional approach; furthermore, the mean spectrum of the set of records is very similar to the target seismic design spectrum in the range of interest periods, and at the same time, similar Np values are obtained for the selected records and the target spectrum.

  19. Optimization design of wind turbine drive train based on Matlab genetic algorithm toolbox

    Science.gov (United States)

    Li, R. N.; Liu, X.; Liu, S. J.

    2013-12-01

    In order to ensure the high efficiency of the whole flexible drive train of the front-end speed adjusting wind turbine, the working principle of the main part of the drive train is analyzed. As critical parameters, rotating speed ratios of three planetary gear trains are selected as the research subject. The mathematical model of the torque converter speed ratio is established based on these three critical variable quantity, and the effect of key parameters on the efficiency of hydraulic mechanical transmission is analyzed. Based on the torque balance and the energy balance, refer to hydraulic mechanical transmission characteristics, the transmission efficiency expression of the whole drive train is established. The fitness function and constraint functions are established respectively based on the drive train transmission efficiency and the torque converter rotating speed ratio range. And the optimization calculation is carried out by using MATLAB genetic algorithm toolbox. The optimization method and results provide an optimization program for exact match of wind turbine rotor, gearbox, hydraulic mechanical transmission, hydraulic torque converter and synchronous generator, ensure that the drive train work with a high efficiency, and give a reference for the selection of the torque converter and hydraulic mechanical transmission.

  20. GARD: a genetic algorithm for recombination detection

    National Research Council Canada - National Science Library

    Kosakovsky Pond, Sergei L; Posada, David; Gravenor, Michael B; Woelk, Christopher H; Frost, Simon D W

    2006-01-01

    .... We developed a likelihood-based model selection procedure that uses a genetic algorithm to search multiple sequence alignments for evidence of recombination breakpoints and identify putative recombinant sequences...

  1. GASAKe: forecasting landslide activations by a genetic-algorithms based hydrological model

    Science.gov (United States)

    Terranova, O. G.; Gariano, S. L.; Iaquinta, P.; Iovine, G. G. R.

    2015-02-01

    GASAKe is a new hydrological model aimed at forecasting the triggering of landslides. The model is based on genetic-algorithms and allows to obtaining thresholds of landslide activation from the set of historical occurrences and from the rainfall series. GASAKe can be applied to either single landslides or set of similar slope movements in a homogeneous environment. Calibration of the model is based on genetic-algorithms, and provides for families of optimal, discretized solutions (kernels) that maximize the fitness function. Starting from these latter, the corresponding mobility functions (i.e. the predictive tools) can be obtained through convolution with the rain series. The base time of the kernel is related to the magnitude of the considered slope movement, as well as to hydro-geological complexity of the site. Generally, smaller values are expected for shallow slope instabilities with respect to large-scale phenomena. Once validated, the model can be applied to estimate the timing of future landslide activations in the same study area, by employing recorded or forecasted rainfall series. Example of application of GASAKe to a medium-scale slope movement (the Uncino landslide at San Fili, in Calabria, Southern Italy) and to a set of shallow landslides (in the Sorrento Peninsula, Campania, Southern Italy) are discussed. In both cases, a successful calibration of the model has been achieved, despite unavoidable uncertainties concerning the dates of landslide occurrence. In particular, for the Sorrento Peninsula case, a fitness of 0.81 has been obtained by calibrating the model against 10 dates of landslide activation; in the Uncino case, a fitness of 1 (i.e. neither missing nor false alarms) has been achieved against 5 activations. As for temporal validation, the experiments performed by considering the extra dates of landslide activation have also proved satisfactory. In view of early-warning applications for civil protection purposes, the capability of the

  2. Diagonalization of a real-symmetric Hamiltonian by genetic algorithm: A recipe based on minimization of Rayleigh quotient

    Indian Academy of Sciences (India)

    Subhajit Nandy; Pinaki Chaudhury; S P Bhattacharyya

    2004-08-01

    A genetic algorithm-based recipe involving minimization of the Rayleigh quotient is proposed for the sequential extraction of eigenvalues and eigenvectors of a real symmetric matrix with and without basis optimization. Important features of the method are analysed, and possible directions of development suggested.

  3. A DFT-based genetic algorithm search for AuCu nanoalloy electrocatalysts for CO2 reduction

    DEFF Research Database (Denmark)

    Lysgaard, Steen; Mýrdal, Jón Steinar Garðarsson; Hansen, Heine Anton

    2015-01-01

    Using a DFT-based genetic algorithm (GA) approach, we have determined the most stable structure and stoichiometry of a 309-atom icosahedral AuCu nanoalloy, for potential use as an electrocatalyst for CO2 reduction. The identified core–shell nano-particle consists of a copper core interspersed...

  4. HIGEDA: a hierarchical gene-set genetics based algorithm for finding subtle motifs in biological sequences.

    Science.gov (United States)

    Le, Thanh; Altman, Tom; Gardiner, Katheleen

    2010-02-01

    Identification of motifs in biological sequences is a challenging problem because such motifs are often short, degenerate, and may contain gaps. Most algorithms that have been developed for motif-finding use the expectation-maximization (EM) algorithm iteratively. Although EM algorithms can converge quickly, they depend strongly on initialization parameters and can converge to local sub-optimal solutions. In addition, they cannot generate gapped motifs. The effectiveness of EM algorithms in motif finding can be improved by incorporating methods that choose different sets of initial parameters to enable escape from local optima, and that allow gapped alignments within motif models. We have developed HIGEDA, an algorithm that uses the hierarchical gene-set genetic algorithm (HGA) with EM to initiate and search for the best parameters for the motif model. In addition, HIGEDA can identify gapped motifs using a position weight matrix and dynamic programming to generate an optimal gapped alignment of the motif model with sequences from the dataset. We show that HIGEDA outperforms MEME and other motif-finding algorithms on both DNA and protein sequences. Source code and test datasets are available for download at http://ouray.cudenver.edu/~tnle/, implemented in C++ and supported on Linux and MS Windows.

  5. Optimization of flapping-wing micro aircrafts based on the kinematic parameters using genetic algorithm method

    Directory of Open Access Journals (Sweden)

    Ebrahim BARATI

    2013-03-01

    Full Text Available In this paper the optimization of kinematics, which has great influence in performance of flapping foil propulsion, is investigated. The purpose of optimization is to design a flapping-wing micro aircraft with appropriate kinematics and aerodynamics features, making the micro aircraft suitable for transportation over large distance with minimum energy consumption. On the point of optimal design, the pitch amplitude, wing reduced frequency and phase difference between plunging and pitching are considered as given parameters and consumed energy, generated thrust by wings and lost power are computed using the 2D quasi-steady aerodynamic model and multi-objective genetic algorithm. Based on the thrust optimization, the increase in pitch amplitude reduces the power consumption. In this case the lost power increases and the maximum thrust coefficient is computed of 2.43. Based on the power optimization, the results show that the increase in pitch amplitude leads to power consumption increase. Additionally, the minimum lost power obtained in this case is 23% at pitch amplitude of 25°, wing reduced frequency of 0.42 and phase angle difference between plunging and pitching of 77°. Furthermore, the wing reduced frequency can be estimated using regression with respect to pitch amplitude, because reduced frequency variations with pitch amplitude is approximately a linear function.

  6. Genetic algorithms-based inversion of multimode guided waves for cortical bone characterization

    Science.gov (United States)

    Bochud, N.; Vallet, Q.; Bala, Y.; Follet, H.; Minonzio, J.-G.; Laugier, P.

    2016-10-01

    Recent progress in quantitative ultrasound has exploited the multimode waveguide response of long bones. Measurements of the guided modes, along with suitable waveguide modeling, have the potential to infer strength-related factors such as stiffness (mainly determined by cortical porosity) and cortical thickness. However, the development of such model-based approaches is challenging, in particular because of the multiparametric nature of the inverse problem. Current estimation methods in the bone field rely on a number of assumptions for pairing the incomplete experimental data with the theoretical guided modes (e.g. semi-automatic selection and classification of the data). The availability of an alternative inversion scheme that is user-independent is highly desirable. Thus, this paper introduces an efficient inversion method based on genetic algorithms using multimode guided waves, in which the mode-order is kept blind. Prior to its evaluation on bone, our proposal is validated using laboratory-controlled measurements on isotropic plates and bone-mimicking phantoms. The results show that the model parameters (i.e. cortical thickness and porosity) estimated from measurements on a few ex vivo human radii are in good agreement with the reference values derived from x-ray micro-computed tomography. Further, the cortical thickness estimated from in vivo measurements at the third from the distal end of the radius is in good agreement with the values delivered by site-matched high-resolution x-ray peripheral computed tomography.

  7. Method of Inequalities-based Multiobjective Genetic Algorithm for Optimizing a Cart-double-pendulum System

    Institute of Scientific and Technical Information of China (English)

    Tung-Kuan Liu; Chiu-Hung Chen; Zu-Shu Li; Jyh-Horng Chou

    2009-01-01

    This article presents a multiobjective approach to the design of the controller for the swing-up and handstand control of a general cart-double-pendulum system (CDPS).The designed controller,which is based on the human-simulated intelligent control (HSIC) method,builds up different control modes to monitor and control the CDPS during four kinetic phases consisting of an initial oscillation phase,a swing-up phase,a posture adjustment phase,and a balance control phase.For the approach,the original method of inequalities-based (MoI) multiobjective genetic algorithm (MMGA) is extended and applied to the case study which uses a set of performance indices that includes the cart displacement over the rail boundary,the number of swings,the settling time,the overshoot of the total energy,and the control effort.The simulation results show good responses of the CDPS with the controllers obtained by the proposed approach.

  8. A Web-Based Tool to Interpolate Nitrogen Loading Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Youn Shik Park

    2014-09-01

    Full Text Available Water quality data may not be collected at a high frequency, nor over the range of streamflow data. For instance, water quality data are often collected monthly, biweekly, or weekly, since collecting and analyzing water quality samples are costly compared to streamflow data. Regression models are often used to interpolate pollutant loads from measurements made intermittently. Web-based Load Interpolation Tool (LOADIN was developed to provide user-friendly interfaces and to allow use of streamflow and water quality data from U.S. Geological Survey (USGS via web access. LOADIN has a regression model assuming that instantaneous load is comprised of the pollutant load based on streamflow and the pollutant load variation within the period. The regression model has eight coefficients determined by a genetic algorithm with measured water quality data. LOADIN was applied to eleven water quality datasets from USGS gage stations located in Illinois, Indiana, Michigan, Minnesota, and Wisconsin states with drainage areas from 44 km2 to 1,847,170 km2. Measured loads were calculated by multiplying nitrogen data by streamflow data associated with measured nitrogen data. The estimated nitrogen loads and measured loads were evaluated using Nash-Sutcliffe Efficiency (NSE and coefficient of determination (R2. NSE ranged from 0.45 to 0.91, and R2 ranged from 0.51 to 0.91 for nitrogen load estimation.

  9. QSAR modeling for quinoxaline derivatives using genetic algorithm and simulated annealing based feature selection.

    Science.gov (United States)

    Ghosh, P; Bagchi, M C

    2009-01-01

    With a view to the rational design of selective quinoxaline derivatives, 2D and 3D-QSAR models have been developed for the prediction of anti-tubercular activities. Successful implementation of a predictive QSAR model largely depends on the selection of a preferred set of molecular descriptors that can signify the chemico-biological interaction. Genetic algorithm (GA) and simulated annealing (SA) are applied as variable selection methods for model development. 2D-QSAR modeling using GA or SA based partial least squares (GA-PLS and SA-PLS) methods identified some important topological and electrostatic descriptors as important factor for tubercular activity. Kohonen network and counter propagation artificial neural network (CP-ANN) considering GA and SA based feature selection methods have been applied for such QSAR modeling of Quinoxaline compounds. Out of a variable pool of 380 molecular descriptors, predictive QSAR models are developed for the training set and validated on the test set compounds and a comparative study of the relative effectiveness of linear and non-linear approaches has been investigated. Further analysis using 3D-QSAR technique identifies two models obtained by GA-PLS and SA-PLS methods leading to anti-tubercular activity prediction. The influences of steric and electrostatic field effects generated by the contribution plots are discussed. The results indicate that SA is a very effective variable selection approach for such 3D-QSAR modeling.

  10. DWFS: A Wrapper Feature Selection Tool Based on a Parallel Genetic Algorithm

    KAUST Repository

    Soufan, Othman

    2015-02-26

    Many scientific problems can be formulated as classification tasks. Data that harbor relevant information are usually described by a large number of features. Frequently, many of these features are irrelevant for the class prediction. The efficient implementation of classification models requires identification of suitable combinations of features. The smaller number of features reduces the problem\\'s dimensionality and may result in higher classification performance. We developed DWFS, a web-based tool that allows for efficient selection of features for a variety of problems. DWFS follows the wrapper paradigm and applies a search strategy based on Genetic Algorithms (GAs). A parallel GA implementation examines and evaluates simultaneously large number of candidate collections of features. DWFS also integrates various filteringmethods thatmay be applied as a pre-processing step in the feature selection process. Furthermore, weights and parameters in the fitness function of GA can be adjusted according to the application requirements. Experiments using heterogeneous datasets from different biomedical applications demonstrate that DWFS is fast and leads to a significant reduction of the number of features without sacrificing performance as compared to several widely used existing methods. DWFS can be accessed online at www.cbrc.kaust.edu.sa/dwfs.

  11. Image Retrieval Approach Based on Intuitive Fuzzy Set Combined with Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-yin; XU Wei-hua; HU Chang-zhen

    2009-01-01

    Aiming at shortcomings of traditional image retrieval systems,a new image retrieval approach based on color features of image combining intuitive fuzzy theory with genetic algorithm is proposed.Each image is segmented into a constant number of sub-images in vertical direction.Color features are extracted from every sub-image to get chromosome coding.It is considered that fuzzy membership and intuitive fuzzy hesitancy degree of every pixel's color in image are associated to all the color histogram bins.Certain feature,fuzzy feature and intuitive fuzzy feature of colors in an image,are used together to describe the content of image.Efficient combinations of sub-image are selected according to operation of selecting,crossing and variation.Retrieval resuits are obtained from image matching based on these color feature combinations of sub-images.Tests show that this approach can improve the accuracy of image retrieval in the case of not decreasing the speed of image retrieval.Its mean precision is above 80%.

  12. Land cover classification using random forest with genetic algorithm-based parameter optimization

    Science.gov (United States)

    Ming, Dongping; Zhou, Tianning; Wang, Min; Tan, Tian

    2016-07-01

    Land cover classification based on remote sensing imagery is an important means to monitor, evaluate, and manage land resources. However, it requires robust classification methods that allow accurate mapping of complex land cover categories. Random forest (RF) is a powerful machine-learning classifier that can be used in land remote sensing. However, two important parameters of RF classification, namely, the number of trees and the number of variables tried at each split, affect classification accuracy. Thus, optimal parameter selection is an inevitable problem in RF-based image classification. This study uses the genetic algorithm (GA) to optimize the two parameters of RF to produce optimal land cover classification accuracy. HJ-1B CCD2 image data are used to classify six different land cover categories in Changping, Beijing, China. Experimental results show that GA-RF can avoid arbitrariness in the selection of parameters. The experiments also compare land cover classification results by using GA-RF method, traditional RF method (with default parameters), and support vector machine method. When the GA-RF method is used, classification accuracies, respectively, improved by 1.02% and 6.64%. The comparison results show that GA-RF is a feasible solution for land cover classification without compromising accuracy or incurring excessive time.

  13. Genetic algorithm based on virus theory of evolution for traveling salesman problem; Virus shinkaron ni motozuku identeki algorithm no junkai salesman mondai eno oyo

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, N. [Osaka Inst. of Technology, Osaka (Japan); Fukuda, T. [Nagoya University, Nagoya (Japan)

    1998-05-31

    This paper deals with virus evolutionary genetic algorithm. The genetic algorithms (GAs) have been demonstrated its effectiveness in optimization problems in these days. In general, the GAs simulate the survival of fittest by natural selection and the heredity of the Darwin`s theory of evolution. However, some types of evolutionary hypotheses such as neutral theory of molecular evolution, Imanishi`s evolutionary theory, serial symbiosis theory, and virus theory of evolution, have been proposed in addition to the Darwinism. Virus theory of evolution is based on the view that the virus transduction is a key mechanism for transporting segments of DNA across species. This paper proposes genetic algorithm based on the virus theory of evolution (VE-GA), which has two types of populations: host population and virus population. The VE-GA is composed of genetic operators and virus operators such as reverse transcription and incorporation. The reverse transcription operator transcribes virus genes on the chromosome of host individual and the incorporation operator creates new genotype of virus from host individual. These operators by virus population make it possible to transmit segment of DNA between individuals in the host population. Therefore, the VE-GA realizes not only vertical but also horizontal propagation of genetic information. Further, the VE-GA is applied to the traveling salesman problem in order to show the effectiveness. 20 refs., 10 figs., 3 tabs.

  14. [The new algorithm for disease management of patients with epilepsy based on genetic research].

    Science.gov (United States)

    Oros, M M; Smolanka, V I

    2012-01-01

    We have developed and proposed a new algorithm for treating patients with epilepsy, which takes into account the genetic criteria for the effectiveness of AEDs and provides an opportunity to significantly reduce the time drug-resistance definition, which in turn reduces the time progression epileptohenesis. Therefore, the use of alternative treatments for epilepsy, it is possible before the occurrence of irreversible changes in the patient's central nervous system. Therefore, treatment for this algorithm accelerates the choice of adequate treatment tactics in a particular patient, which promotes safety in society as active and healthy citizens.

  15. Novel Genetic Algorithm Based Solutions for Optimal Power Flow under Contingency Conditions

    Directory of Open Access Journals (Sweden)

    S. V. Durga Bhavani,

    2014-06-01

    Full Text Available Power system throughout the world is undergoing tremendous changes and developments due to rapid Restructuring, Deregulation and Open-access policies. Greater liberalization, larger market and increasing dependency on the electricity lead to the system operators to work on limited spinning reserve and to operate on vicinities to maximize the economy compromising on the reliability and security of the system for greater profits, which lead to establishment of a monitoring authority and accurate electronic system to prevent any untoward incidents like Blackouts. In any power system, unexpected outages of lines or transformers occur due to faults or other disturbances. These events may cause significant overloading of transmission lines or transformers, which in turn may lead to a viability crisis of the power system. The main role of power system control is to maintain a secure system state, i.e., to prevent the power system, moving from secure state into emergency state over the widest range of operating conditions. Security Constrained Optimal Power Flow (SCOPF is major tool used to improve the security of the system. In this work, Genetic algorithm has been used to solve the OPF and SCOPF problems. As initial effort conventional GA (binary coded based OPF and SCOPF is going to be attempted. The difficulties of binary coded GA in handling continuous search space lead to the evolution of real coded GA‟s. Solutions obtained using both the algorithms are compared. Case studies are made on the IEEE30 bus test system to demonstrate the ability of real coded GA in solving the OPF and SCOPF problems.

  16. Genetic algorithm optimization of entanglement

    CERN Document Server

    Navarro-Munoz, J C; Rosu, H C; Navarro-Munoz, Jorge C.

    2006-01-01

    We present an application of a genetic algorithmic computational method to the optimization of the concurrence measure of entanglement for the cases of one dimensional chains, as well as square and triangular lattices in a simple tight-binding approach

  17. A Parallel Search Genetic Algorithm Based on Multiple Peak Values and Multiple Rules

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In this paper the Hamming distance is used to contr ol individual difference in the process of creating an original population, and a peak-depot is established to preserve information of different peak-points. So me new methods are also put forward to improve optimization performance of genet ic algorithm, such as point-cast method and neighborhood search strategy around peak-points. The methods are used to deal with genetic operation besides of cr ossover and mutation, in order to obtain a global optimu...

  18. Logistics Distribution Center Location Evaluation Based on Genetic Algorithm and Fuzzy Neural Network

    Science.gov (United States)

    Shao, Yuxiang; Chen, Qing; Wei, Zhenhua

    Logistics distribution center location evaluation is a dynamic, fuzzy, open and complicated nonlinear system, which makes it difficult to evaluate the distribution center location by the traditional analysis method. The paper proposes a distribution center location evaluation system which uses the fuzzy neural network combined with the genetic algorithm. In this model, the neural network is adopted to construct the fuzzy system. By using the genetic algorithm, the parameters of the neural network are optimized and trained so as to improve the fuzzy system’s abilities of self-study and self-adaptation. At last, the sampled data are trained and tested by Matlab software. The simulation results indicate that the proposed identification model has very small errors.

  19. Location Model and Optimization of Seaborne Petroleum Logistics Distribution Center Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Chu-Liangyong

    2013-06-01

    Full Text Available The network of Chinese Waterborne Petroleum Logistics (CWPL is so complex that reasonably disposing and choosing Chinese Waterborne Petroleum Logistics Distribution Center (CWPLDC take on the important theory value and the practical significance. In the study, the network construct of CWPL distribution is provided and the corresponding mathematical model for locating CWPLDC is established, which is a nonlinear mixed interger model. In view of the nonlinerar programming characteristic of model, the genetic algorithm as the solution strategy is put forward here, the strategies of hybrid coding, constraint elimination , fitness function and genetic operator are given followed the algorithm. The result indicates that this model is effective and reliable. This method could also be applicable for other types of large-scale logistics distribution center optimization.

  20. Patterns Antennas Arrays Synthesis Based on Adaptive Particle Swarm Optimization and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Boufeldja Kadri

    2013-01-01

    Full Text Available In recent years, evolutionary optimization (EO techniques have attracted considerable attention in the design of electromagnetic systems of increasing complexity. This paper presents a comparison between two optimization algorithms for the synthesis of uniform linear and planar antennas arrays, the first one is an adaptive particle swarm optimization (APSO where the inertia weight and acceleration coefficient are adjusted dynamically according to feedback taken from particles best memories to overcome the limitations of the standard PSO which are: premature convergence, low searching accuracy and iterative inefficiency. The second method is the genetic algorithms (GA inspired from the processes of the evolution of the species and the natural genetics. The results show that the design of uniform linear and planar antennas arrays using APSO method provides a low side lobe level and achieve faster convergence speed to the optimum solution than those obtained by a GA.

  1. Forecasting increasing rate of power consumption based on immune genetic algorithm combined with neural network

    Institute of Scientific and Technical Information of China (English)

    杨淑霞

    2008-01-01

    Considering the factors affecting the increasing rate of power consumption, the BP neural network structure and the neural network forecasting model of the increasing rate of power consumption were established. Immune genetic algorithm was applied to optimizing the weight from input layer to hidden layer, from hidden layer to output layer, and the threshold value of neuron nodes in hidden and output layers. Finally, training the related data of the increasing rate of power consumption from 1980 to 2000 in China, a nonlinear network model between the increasing rate of power consumption and influencing factors was obtained. The model was adopted to forecasting the increasing rate of power consumption from 2001 to 2005, and the average absolute error ratio of forecasting results is 13.521 8%. Compared with the ordinary neural network optimized by genetic algorithm, the results show that this method has better forecasting accuracy and stability for forecasting the increasing rate of power consumption.

  2. Simulating Visual Learning and Optical Illusions via a Network-Based Genetic Algorithm

    Science.gov (United States)

    Siu, Theodore; Vivar, Miguel; Shinbrot, Troy

    We present a neural network model that uses a genetic algorithm to identify spatial patterns. We show that the model both learns and reproduces common visual patterns and optical illusions. Surprisingly, we find that the illusions generated are a direct consequence of the network architecture used. We discuss the implications of our results and the insights that we gain on how humans fall for optical illusions

  3. FREQUENCY-CODED OPTIMIZATION OF HOPPED-FREQUENCY PULSE SIGNAL BASED ON GENETIC ALGORITHM

    Institute of Scientific and Technical Information of China (English)

    Liu Zheng; Mu Xuehua

    2005-01-01

    The Frequency-Coded Pulse (FCP) signal has good performance of range and Doppler resolution. This paper first gives the mathematical expression of the ambiguity function for FCP signals, and then presents a coding rule for optimizing FCP signal. The genetic algorithm is presented to solve this kind of problem for optimizing codes. Finally, an example for optimizing calculation is illustrated and the optimized frequency coding results are given with the code length N=64 and N=128 respectively.

  4. Validation of genetic algorithm-based optimal sampling for ocean data assimilation

    Science.gov (United States)

    Heaney, Kevin D.; Lermusiaux, Pierre F. J.; Duda, Timothy F.; Haley, Patrick J.

    2016-08-01

    Regional ocean models are capable of forecasting conditions for usefully long intervals of time (days) provided that initial and ongoing conditions can be measured. In resource-limited circumstances, the placement of sensors in optimal locations is essential. Here, a nonlinear optimization approach to determine optimal adaptive sampling that uses the genetic algorithm (GA) method is presented. The method determines sampling strategies that minimize a user-defined physics-based cost function. The method is evaluated using identical twin experiments, comparing hindcasts from an ensemble of simulations that assimilate data selected using the GA adaptive sampling and other methods. For skill metrics, we employ the reduction of the ensemble root mean square error (RMSE) between the "true" data-assimilative ocean simulation and the different ensembles of data-assimilative hindcasts. A five-glider optimal sampling study is set up for a 400 km × 400 km domain in the Middle Atlantic Bight region, along the New Jersey shelf-break. Results are compared for several ocean and atmospheric forcing conditions.

  5. Multilevel Association Rule Mining for Bridge Resource Management Based on Immune Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Ou

    2014-01-01

    Full Text Available This paper is concerned with the problem of multilevel association rule mining for bridge resource management (BRM which is announced by IMO in 2010. The goal of this paper is to mine the association rules among the items of BRM and the vessel accidents. However, due to the indirect data that can be collected, which seems useless for the analysis of the relationship between items of BIM and the accidents, the cross level association rules need to be studied, which builds the relation between the indirect data and items of BRM. In this paper, firstly, a cross level coding scheme for mining the multilevel association rules is proposed. Secondly, we execute the immune genetic algorithm with the coding scheme for analyzing BRM. Thirdly, based on the basic maritime investigation reports, some important association rules of the items of BRM are mined and studied. Finally, according to the results of the analysis, we provide the suggestions for the work of seafarer training, assessment, and management.

  6. Genetic Algorithm-Based Fuzzy Comprehensive Evaluation of Water Quality in Dongzhaigang

    Directory of Open Access Journals (Sweden)

    Jiasheng Wen

    2015-09-01

    Full Text Available The concentrations of dissolved inorganic nitrogen (DIN; NO2−–N, NH3–N, and NO3−–N, PO43−–P, dissolved oxygen (DO, chemical oxygen demand (COD, five-day biological oxygen demand (BOD5, oil, Si, and seven heavy metals (Hg, Cr, Cu, As, Zn, Pb, and Cd in seawater from the Dongzhaigang National Mangrove Nature Reserve of China in 2013 were determined. Except for the concentrations of the COD, BOD5, Cr, Hg, Cu, As, and Cd, each index in seawater were found to be over the limits of I-Class seawater standards. The index of organic pollution showed that the pollution level in this study area reached level 6; eutrophication levels indicated that the nutritional level reached level 4. According to the water quality index model, the sea area was slightly polluted by heavy metals. In a genetic algorithm-based fuzzy comprehensive evaluation, the results for organic pollutants, nutrients, and heavy metal pollution can be combined to evaluate the water quality as a whole. Results showed that the sea area in Dongzhaigang did not have a healthy water environment, but was seriously polluted by organic pollutants and nutrients.

  7. AERODYNAMIC OPTIMIZATION FOR TURBINE BLADE BASED ON HIERARCHICAL FAIR COMPETITION GENETIC ALGORITHMS WITH DYNAMIC NICHE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is presented. In order to meet the search theory of GAs and the aerodynamic performances of turbine, Bezier curve is adopted to parameterize the turbine blade profile, and a fitness function pertaining to optimization is designed. The design variables are the control points' ordinates of characteristic polygon of Bezier curve representing the turbine blade profile. The object function is the maximum lift-drag ratio of the turbine blade. The constraint conditions take into account the leading and trailing edge metal angle, and the strength and aerodynamic performances of turbine blade. And the treatment method of the constraint conditions is the flexible penalty function. The convergence history of test function indicates that HFCDN-GAs can locate the global optimum within a few search steps and have high robustness. The lift-drag ratio of the optimized blade is 8.3% higher than that of the original one. The results show that the proposed global optimization approach is effective for turbine blade.

  8. A Multi-Stage Reverse Logistics Network Problem by Using Hybrid Priority-Based Genetic Algorithm

    Science.gov (United States)

    Lee, Jeong-Eun; Gen, Mitsuo; Rhee, Kyong-Gu

    Today remanufacturing problem is one of the most important problems regarding to the environmental aspects of the recovery of used products and materials. Therefore, the reverse logistics is gaining become power and great potential for winning consumers in a more competitive context in the future. This paper considers the multi-stage reverse Logistics Network Problem (m-rLNP) while minimizing the total cost, which involves reverse logistics shipping cost and fixed cost of opening the disassembly centers and processing centers. In this study, we first formulate the m-rLNP model as a three-stage logistics network model. Following for solving this problem, we propose a Genetic Algorithm pri (GA) with priority-based encoding method consisting of two stages, and introduce a new crossover operator called Weight Mapping Crossover (WMX). Additionally also a heuristic approach is applied in the 3rd stage to ship of materials from processing center to manufacturer. Finally numerical experiments with various scales of the m-rLNP models demonstrate the effectiveness and efficiency of our approach by comparing with the recent researches.

  9. Stability Analysis of Tunnel-Slope Coupling Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Tao Luo

    2015-07-01

    Full Text Available Subjects in tunnels, being constrained by terrain and routes, entrances and exits to tunnels, usually stay in the terrain with slopes. Thus, it is necessary to carry out stability analysis by treating the tunnel slope as an entity. In this study, based on the Janbu slices method, a model for the calculation of the stability of the original slope-tunnel-bank slope is established. The genetic algorithm is used to implement calculation variables, safety coefficient expression and fitness function design. The stability of the original slope-tunnel-bank slope under different conditions is calculated, after utilizing the secondary development function of the mathematical tool MATLAB for programming. We found that the bearing capacity of the original slopes is reduced as the tunnels are excavated and the safety coefficient is gradually decreased as loads of the embankment construction increased. After the embankment was constructed, the safety coefficient was 1.38, which is larger than the 1.3 value specified by China’s standards. Thus, the original slope-tunnel-bank slope would remain in a stable state.

  10. Optimum allocation of FACTS devices in Fars Regional Electric Network using genetic algorithm based goal attainment

    Institute of Scientific and Technical Information of China (English)

    Mohsen GITIZADEH; Mohsen KALANTAR

    2009-01-01

    This paper presents a novel approach to find optimum locations and capacity of flexible alternating current transmission system (FACTS) devices in a power system using a multi-objective optimization function. Thyristor controlled series compensators (TCSCs) and static var compensators (SVCs) are the utilized FACTS devices. Our objectives are active power loss reduction, newly introduced FACTS devices cost reduction, voltage deviation reduction, and increase on the robustness of thesecurity margin against voltage collapse. The operational and controlling constraints, as well as load constraints, were considered in the optimum allocation. A goal attainment method based on the genetic algorithm (GA) was used to approach the global optimum. The estimated annual load profile was utilized in a sequential quadratic programming (SQP) optimization sub-problem to the optimum siting and sizing of FACTS devices. Fars Regional Electric Network was selected as a practical system to validate the performance and effectiveness of the proposed method. The entire investment of the FACTS devices was paid offand an additional 2.4% savings was made. The cost reduction of peak point power generation implies that power plant expansion can be postponed.

  11. New Approach to Optimize the Apfs Placement Based on Instantaneous Reactive Power Theory by Genetic Algorithm

    Science.gov (United States)

    Hashemi-Dezaki, Hamed; Mohammadalizadeh-Shabestary, Masoud; Askarian-Abyaneh, Hossein; Rezaei-Jegarluei, Mohammad

    2014-01-01

    In electrical distribution systems, a great amount of power are wasting across the lines, also nowadays power factors, voltage profiles and total harmonic distortions (THDs) of most loads are not as would be desired. So these important parameters of a system play highly important role in wasting money and energy, and besides both consumers and sources are suffering from a high rate of distortions and even instabilities. Active power filters (APFs) are innovative ideas for solving of this adversity which have recently used instantaneous reactive power theory. In this paper, a novel method is proposed to optimize the allocation of APFs. The introduced method is based on the instantaneous reactive power theory in vectorial representation. By use of this representation, it is possible to asses different compensation strategies. Also, APFs proper placement in the system plays a crucial role in either reducing the losses costs and power quality improvement. To optimize the APFs placement, a new objective function has been defined on the basis of five terms: total losses, power factor, voltage profile, THD and cost. Genetic algorithm has been used to solve the optimization problem. The results of applying this method to a distribution network illustrate the method advantages.

  12. Prediction of atomic structure of Pt-based bimetallic nanoalloys by using genetic algorithm

    Science.gov (United States)

    Oh, Jung Soo; Nam, Ho-Seok; Choi, Jung-Hae; Lee, Seung-Cheol

    2013-05-01

    The atom-arrangements in Pt-based bimetallic nanoalloys were predicted by the combined use of genetic algorithm (GA) and molecular dynamics (MD) simulations. The nanoparticles of these nanoalloys were assumed to be a 3.5 nm-diameter truncated octahedron with Pt and noble metals of fixed composition ratio of 1:1. For the GA, a Python code, which concurrently linked with the MD method that uses the embedded atom method inter-atomic potentials, was developed for the prediction of the atom arrangements in these bimetallic nanoalloys. Successfully, the GA calculation predicted the core-shell structures for both Pt-Ag and Pt-Au nanoalloy, but an onion-like multilayered core-shell structure for Pt-Cu nanoalloy. The structural characteristics in the bimetallic nanoalloy were mainly due to the differences in the surface energy and cohesive energy between Pt and the other alloying metal elements and their miscibility gap and so on. Briefly, the prediction performance was analyzed to show the superior searching ability of GA.

  13. An Interval-Valued Approach to Business Process Simulation Based on Genetic Algorithms and the BPMN

    Directory of Open Access Journals (Sweden)

    Mario G.C.A. Cimino

    2014-05-01

    Full Text Available Simulating organizational processes characterized by interacting human activities, resources, business rules and constraints, is a challenging task, because of the inherent uncertainty, inaccuracy, variability and dynamicity. With regard to this problem, currently available business process simulation (BPS methods and tools are unable to efficiently capture the process behavior along its lifecycle. In this paper, a novel approach of BPS is presented. To build and manage simulation models according to the proposed approach, a simulation system is designed, developed and tested on pilot scenarios, as well as on real-world processes. The proposed approach exploits interval-valued data to represent model parameters, in place of conventional single-valued or probability-valued parameters. Indeed, an interval-valued parameter is comprehensive; it is the easiest to understand and express and the simplest to process, among multi-valued representations. In order to compute the interval-valued output of the system, a genetic algorithm is used. The resulting process model allows forming mappings at different levels of detail and, therefore, at different model resolutions. The system has been developed as an extension of a publicly available simulation engine, based on the Business Process Model and Notation (BPMN standard.

  14. Genetic Algorithms Based Approach for Designing Spring Brake Orthosis – Part I: Spring Parameters

    Directory of Open Access Journals (Sweden)

    M. S. Huq

    2012-01-01

    Full Text Available Spring brake orthosis (SBO concentrates purely on the knee to generate the swing phase of the paraplegic gait with the required hip flexion occurring passively as a consequence of the ipsilateral knee flexion, generated by releasing the torsion spring mounted at the knee joint. Electrical stimulation then drives the knee back to full extension, as well as restores the spring potential energy. In this paper, genetic algorithm (GA and its variant multi-objective GA (MOGA is used to perform the search operation for the ‘best’ spring parameters for the SBO spring mounted on an average sized subject simulated in the sagittal plane. Conventional torsion spring is tested against constant torque type spring in terms of swing duration as, based on first principles, it is hypothesized that constant torque spring would be able to produce slower SBO swing phase as might be preferred in assisted paraplegic gait. In line with the hypothesis, it is found that it is not possible to delay the occurrence of the flexion peak of the SBO swing phase further than its occurrence in the natural gait. The use of conventional torsion spring causes the swing knee flexion peak to appear rather faster than that of the natural gait, resulting in a potentially faster swing phase and hence gait cycle. The constant torque type spring on the other hand is able to stretch duration of the swing phase to some extent, rendering it the preferable spring type in SBO.

  15. Automatic Curve Fitting Based on Radial Basis Functions and a Hierarchical Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    G. Trejo-Caballero

    2015-01-01

    Full Text Available Curve fitting is a very challenging problem that arises in a wide variety of scientific and engineering applications. Given a set of data points, possibly noisy, the goal is to build a compact representation of the curve that corresponds to the best estimate of the unknown underlying relationship between two variables. Despite the large number of methods available to tackle this problem, it remains challenging and elusive. In this paper, a new method to tackle such problem using strictly a linear combination of radial basis functions (RBFs is proposed. To be more specific, we divide the parameter search space into linear and nonlinear parameter subspaces. We use a hierarchical genetic algorithm (HGA to minimize a model selection criterion, which allows us to automatically and simultaneously determine the nonlinear parameters and then, by the least-squares method through Singular Value Decomposition method, to compute the linear parameters. The method is fully automatic and does not require subjective parameters, for example, smooth factor or centre locations, to perform the solution. In order to validate the efficacy of our approach, we perform an experimental study with several tests on benchmarks smooth functions. A comparative analysis with two successful methods based on RBF networks has been included.

  16. Clustering and Genetic Algorithm Based Hybrid Flowshop Scheduling with Multiple Operations

    Directory of Open Access Journals (Sweden)

    Yingfeng Zhang

    2014-01-01

    Full Text Available This research is motivated by a flowshop scheduling problem of our collaborative manufacturing company for aeronautic products. The heat-treatment stage (HTS and precision forging stage (PFS of the case are selected as a two-stage hybrid flowshop system. In HTS, there are four parallel machines and each machine can process a batch of jobs simultaneously. In PFS, there are two machines. Each machine can install any module of the four modules for processing the workpeices with different sizes. The problem is characterized by many constraints, such as batching operation, blocking environment, and setup time and working time limitations of modules, and so forth. In order to deal with the above special characteristics, the clustering and genetic algorithm is used to calculate the good solution for the two-stage hybrid flowshop problem. The clustering is used to group the jobs according to the processing ranges of the different modules of PFS. The genetic algorithm is used to schedule the optimal sequence of the grouped jobs for the HTS and PFS. Finally, a case study is used to demonstrate the efficiency and effectiveness of the designed genetic algorithm.

  17. An Image Filter Based on Multiobjective Genetic Algorithm and Shearlet Transformation

    Directory of Open Access Journals (Sweden)

    Zhi-yong Fan

    2013-01-01

    Full Text Available Rician noise pollutes magnetic resonance imaging (MRI data, making data’s postprocessing difficult. In order to remove this noise and avoid loss of details as much as possible, we proposed a filter algorithm using both multiobjective genetic algorithm (MOGA and Shearlet transformation. Firstly, the multiscale wavelet decomposition is applied to the target image. Secondly, the MOGA target function is constructed by evaluation methods, such as signal-to-noise ratio (SNR and mean square error (MSE. Thirdly, MOGA is used with optimal coefficients of Shearlet wavelet threshold value in a different scale and a different orientation. Finally, the noise-free image could be obtained through inverse wavelet transform. At the end of the paper, experimental results show that this proposed algorithm eliminates Rician noise more effectively and yields better peak signal-to-noise ratio (PSNR gains compared with other traditional filters.

  18. QoS-Based Dynamic Multicast Routing Design Using Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    YUANYouwei; YANLamei

    2004-01-01

    This paper addresses the problem of determining minimum cost paths to nodes in a Multicast group satisfying delay bounds and delay variation bounds. This study explores the use of Genetic algorithms (GAs) for solving the multicast routing problems when multiple Quality of services (QoS) requirements are presented. Our simulation results indicate that it is critical to select a suitable representation method and a set of appropriate parameters in order to obtain good performance. For a medium network, the probability from 0.02 to 0.2 seems to work better than those of too small or too large. As compared with the other optimal algorithm, the proposed algorithm gives better performance in terms of the success rate, the tree cost, the number of exchanged messages and the convergence time.

  19. 基于遗传算法的K均值聚类分析%K-Means Clustering Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    王敞; 陈增强; 袁著祉

    2003-01-01

    This paper proposes a K-Means clustering method based on genetic algorithm. We compare our method with the traditional K-Means method and clustering method based on simple genetic algorithm. The comparison proves that our method achieves a better result than the other two. The drawback of this method is a comparably slower speed in clustering.

  20. Study on Parameter Optimization Design of Drum Brake Based on Hybrid Cellular Multiobjective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2012-01-01

    Full Text Available In consideration of the significant role the brake plays in ensuring the fast and safe running of vehicles, and since the present parameter optimization design models of brake are far from the practical application, this paper proposes a multiobjective optimization model of drum brake, aiming at maximizing the braking efficiency and minimizing the volume and temperature rise of drum brake. As the commonly used optimization algorithms are of some deficiency, we present a differential evolution cellular multiobjective genetic algorithm (DECell by introducing differential evolution strategy into the canonical cellular genetic algorithm for tackling this problem. For DECell, the gained Pareto front could be as close as possible to the exact Pareto front, and also the diversity of nondominated individuals could be better maintained. The experiments on the test functions reveal that DECell is of good performance in solving high-dimension nonlinear multiobjective problems. And the results of optimizing the new brake model indicate that DECell obviously outperforms the compared popular algorithm NSGA-II concerning the number of obtained brake design parameter sets, the speed, and stability for finding them.

  1. Quantum Genetic Algorithms for Computer Scientists

    OpenAIRE

    Rafael Lahoz-Beltra

    2016-01-01

    Genetic algorithms (GAs) are a class of evolutionary algorithms inspired by Darwinian natural selection. They are popular heuristic optimisation methods based on simulated genetic mechanisms, i.e., mutation, crossover, etc. and population dynamical processes such as reproduction, selection, etc. Over the last decade, the possibility to emulate a quantum computer (a computer using quantum-mechanical phenomena to perform operations on data) has led to a new class of GAs known as “Quantum Geneti...

  2. A genetic algorithm approach for assessing soil liquefaction potential based on reliability method

    Indian Academy of Sciences (India)

    M H Bagheripour; I Shooshpasha; M Afzalirad

    2012-02-01

    Deterministic approaches are unable to account for the variations in soil’s strength properties, earthquake loads, as well as source of errors in evaluations of liquefaction potential in sandy soils which make them questionable against other reliability concepts. Furthermore, deterministic approaches are incapable of precisely relating the probability of liquefaction and the factor of safety (FS). Therefore, the use of probabilistic approaches and especially, reliability analysis is considered since a complementary solution is needed to reach better engineering decisions. In this study, Advanced First-Order Second-Moment (AFOSM) technique associated with genetic algorithm (GA) and its corresponding sophisticated optimization techniques have been used to calculate the reliability index and the probability of liquefaction. The use of GA provides a reliable mechanism suitable for computer programming and fast convergence. A new relation is developed here, by which the liquefaction potential can be directly calculated based on the estimated probability of liquefaction (), cyclic stress ratio (CSR) and normalized standard penetration test (SPT) blow counts while containing a mean error of less than 10% from the observational data. The validity of the proposed concept is examined through comparison of the results obtained by the new relation and those predicted by other investigators. A further advantage of the proposed relation is that it relates and FS and hence it provides possibility of decision making based on the liquefaction risk and the use of deterministic approaches. This could be beneficial to geotechnical engineers who use the common methods of FS for evaluation of liquefaction. As an application, the city of Babolsar which is located on the southern coasts of Caspian Sea is investigated for liquefaction potential. The investigation is based primarily on in situ tests in which the results of SPT are analysed.

  3. Analog Module Placement Design Using Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This paper presents a novel genetic algorithm for analog module placement based on ageneralization of the two-dimensional bin packing problem. The genetic encoding and operators assure that allproblem constraints are always satisfied. Thus the potential problems of adding penalty terms to the costfunction are eliminated so that the search configuration space is drastically decreased. The dedicated costfunction is based on the special requirements of analog integrated circuits. A fractional factorial experimentwas conducted using an orthogonal array to study the algorithm parameters. A meta GA was applied todetermine the optimal parameter values. The algorithm was tested with several local benchmark circuits. Theexperimental results show that the algorithm has better performance than the simulated annealing approachwith satisfactory results comparable to manual placement. This study demonstrates the effectiveness of thegenetic algorithm in the analog module placement problem. The algorithm has been successfully used in alayout synthesis tool.

  4. Incremental multiple objective genetic algorithms.

    Science.gov (United States)

    Chen, Qian; Guan, Sheng-Uei

    2004-06-01

    This paper presents a new genetic algorithm approach to multiobjective optimization problems--incremental multiple objective genetic algorithms (IMOGA). Different from conventional MOGA methods, it takes each objective into consideration incrementally. The whole evolution is divided into as many phases as the number of objectives, and one more objective is considered in each phase. Each phase is composed of two stages. First, an independent population is evolved to optimize one specific objective. Second, the better-performing individuals from the single-objecive population evolved in the above stage and the multiobjective population evolved in the last phase are joined together by the operation of integration. The resulting population then becomes an initial multiobjective population, to which a multiobjective evolution based on the incremented objective set is applied. The experiment results show that, in most problems, the performance of IMOGA is better than that of three other MOGAs, NSGA-II, SPEA, and PAES. IMOGA can find more solutions during the same time span, and the quality of solutions is better.

  5. Performance impact of mutation operators of a subpopulation-based genetic algorithm for multi-robot task allocation problems.

    Science.gov (United States)

    Liu, Chun; Kroll, Andreas

    2016-01-01

    Multi-robot task allocation determines the task sequence and distribution for a group of robots in multi-robot systems, which is one of constrained combinatorial optimization problems and more complex in case of cooperative tasks because they introduce additional spatial and temporal constraints. To solve multi-robot task allocation problems with cooperative tasks efficiently, a subpopulation-based genetic algorithm, a crossover-free genetic algorithm employing mutation operators and elitism selection in each subpopulation, is developed in this paper. Moreover, the impact of mutation operators (swap, insertion, inversion, displacement, and their various combinations) is analyzed when solving several industrial plant inspection problems. The experimental results show that: (1) the proposed genetic algorithm can obtain better solutions than the tested binary tournament genetic algorithm with partially mapped crossover; (2) inversion mutation performs better than other tested mutation operators when solving problems without cooperative tasks, and the swap-inversion combination performs better than other tested mutation operators/combinations when solving problems with cooperative tasks. As it is difficult to produce all desired effects with a single mutation operator, using multiple mutation operators (including both inversion and swap) is suggested when solving similar combinatorial optimization problems.

  6. Evolving evolutionary algorithms using linear genetic programming.

    Science.gov (United States)

    Oltean, Mihai

    2005-01-01

    A new model for evolving Evolutionary Algorithms is proposed in this paper. The model is based on the Linear Genetic Programming (LGP) technique. Every LGP chromosome encodes an EA which is used for solving a particular problem. Several Evolutionary Algorithms for function optimization, the Traveling Salesman Problem and the Quadratic Assignment Problem are evolved by using the considered model. Numerical experiments show that the evolved Evolutionary Algorithms perform similarly and sometimes even better than standard approaches for several well-known benchmarking problems.

  7. 基于贪心算法和遗传算法的仓储车辆调度算法%Scheduling algorithm for vehicles in warehouses based on greedy algorithm and genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    王友钊; 彭宇翔; 潘芬兰

    2012-01-01

    In view of scheduling problem of vehicles in warehouses, a scheduling algorithm based on greedy algorithm and genetic algorithm is presented. The algorithm uses genetic algorithm as its frame, and the most efficient scheduling scheme is selected after evolution. The fused greedy algorithm is responsible for the optimization of tasks sorting. It makes the coding of genetic algorithm convenient and excludes impracticable solution. Therefore the performance of algorithm is enhanced extremely. The scheduling algorithm has been realized by C++ programming. Experimental analysis demonstrates that the efficiency of scheduling has been promoted.%针对仓储车辆调度问题提出一种基于贪心算法与遗传算法的调度算法.它主要利用遗传算法为框架筛选、进化出高效的调度方案,算法又融合了贪心算法对调度中的任务排序进行了快速优化.此融合使得遗传算法的编码简便,排除了不可行解的可能,从而使得算法性能大大提高.算法已经C++语言编程实现,实验分析证明:算法有效地提升了调度方案的效率.

  8. Feature Selection for Natural Language Call Routing Based on Self-Adaptive Genetic Algorithm

    Science.gov (United States)

    Koromyslova, A.; Semenkina, M.; Sergienko, R.

    2017-02-01

    The text classification problem for natural language call routing was considered in the paper. Seven different term weighting methods were applied. As dimensionality reduction methods, the feature selection based on self-adaptive GA is considered. k-NN, linear SVM and ANN were used as classification algorithms. The tasks of the research are the following: perform research of text classification for natural language call routing with different term weighting methods and classification algorithms and investigate the feature selection method based on self-adaptive GA. The numerical results showed that the most effective term weighting is TRR. The most effective classification algorithm is ANN. Feature selection with self-adaptive GA provides improvement of classification effectiveness and significant dimensionality reduction with all term weighting methods and with all classification algorithms.

  9. A Hybrid Genetic Algorithm with a Knowledge-Based Operator for Solving the Job Shop Scheduling Problems

    Directory of Open Access Journals (Sweden)

    Hamed Piroozfard

    2016-01-01

    Full Text Available Scheduling is considered as an important topic in production management and combinatorial optimization in which it ubiquitously exists in most of the real-world applications. The attempts of finding optimal or near optimal solutions for the job shop scheduling problems are deemed important, because they are characterized as highly complex and NP-hard problems. This paper describes the development of a hybrid genetic algorithm for solving the nonpreemptive job shop scheduling problems with the objective of minimizing makespan. In order to solve the presented problem more effectively, an operation-based representation was used to enable the construction of feasible schedules. In addition, a new knowledge-based operator was designed based on the problem’s characteristics in order to use machines’ idle times to improve the solution quality, and it was developed in the context of function evaluation. A machine based precedence preserving order-based crossover was proposed to generate the offspring. Furthermore, a simulated annealing based neighborhood search technique was used to improve the local exploitation ability of the algorithm and to increase its population diversity. In order to prove the efficiency and effectiveness of the proposed algorithm, numerous benchmarked instances were collected from the Operations Research Library. Computational results of the proposed hybrid genetic algorithm demonstrate its effectiveness.

  10. Voice Matching Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Abhishek Bal

    2014-03-01

    Full Text Available In this paper, the use of Genetic Algorithm (GA for voice recognition is described. The practical application of Genetic Algorithm (GA to the solution of engineering problem is a rapidly emerging approach in the field of control engineering and signal processing. Genetic algorithms are useful for searching a space in multi-directional way from large spaces and poorly defined space. Voice is a signal of infinite information. Digital processing of voice signal is very important for automatic voice recognition technology. Nowadays, voice processing is very much important in security mechanism due to mimicry characteristic. So studying the voice feature extraction in voice processing is very necessary in military, hospital, telephone system, investigation bureau and etc. In order to extract valuable information from the voice signal, make decisions on the process, and obtain results, the data needs to be manipulated and analyzed. In this paper, if the instant voice is not matched with same person’s reference voices in the database, then Genetic Algorithm (GA is applied between two randomly chosen reference voices. Again the instant voice is compared with the result of Genetic Algorithm (GA which is used, including its three main steps: selection, crossover and mutation. We illustrate our approach with different sample of voices from human in our institution.

  11. Multicast routing with bandwidth and delay constraints based on genetic algorithms

    Directory of Open Access Journals (Sweden)

    Ahmed Younes

    2011-07-01

    Full Text Available Many multimedia communication applications require a source to send multimedia information to multiple destinations through a communication network. To support these applications, it is necessary to determine a multicast tree of minimal cost to connect the source node to the destination nodes subject to delay constraints on multimedia communication. This problem is known as multimedia multicast routing and has been proved to be NP-complete. The paper proposes a genetic algorithm for solving multimedia multicast routing, which find the low-cost multicasting tree with bandwidth and delay constraints. In the proposed algorithm, the k shortest paths from the source node to the destination nodes are used for genotype representation. The simulation results show that the proposed algorithm is able to find a better solution, fast convergence speed and high reliability. It can meet the real-time requirement in multimedia communication networks. The scalability and the performance of the algorithm with increasing number of network nodes are also quite encouraged.

  12. Identification and analysis based on genetic algorithm for proton exchange membrane fuel cell stack

    Institute of Scientific and Technical Information of China (English)

    LI Xi; CAO Guang-yi; ZHU Xin-jian; WEI Dong

    2006-01-01

    The temperature of proton exchange membrane fuel cell stack and the stoichiometric oxygen in cathode have relationship with the performance and life span of fuel cells closely. The thermal coefficients were taken as important factors affecting the temperature distribution of fuel cells and components. According to the experimental analysis, when the stoichiometric oxygen in cathode is greater than or equal to 1.8, the stack voltage loss is the least. A novel genetic algorithm was developed to identify and optimize the variables in dynamic thermal model of proton exchange membrane fuel cell stack, making the outputs of temperature model approximate to the actual temperature, and ensuring that the maximal error is less than 1℃. At the same time, the optimum region of stoichiometric oxygen is obtained, which is in the range of 1.8 -2.2 and accords with the experimental analysis results. The simulation and experimental results show the effectiveness of the proposed algorithm.

  13. Optimization of min-max vehicle routing problem based on genetic algorithm

    Science.gov (United States)

    Liu, Xia

    2013-10-01

    In some cases, there are some special requirements for the vehicle routing problem. Personnel or goods geographically scattered, should be delivered simultaneously to an assigned place by a fleet of vehicles as soon as possible. In this case the objective is to minimize the distance of the longest route among all sub-routes. An improved genetic algorithm was adopted to solve these problems. Each customer has a unique integer identifier and the chromosome is defined as a string of integers. Initial routes are constructed randomly, and then standard proportional selection incorporating elitist is chosen to guarantee the best member survives. New crossover and 2-exchange mutation is adopted to increase the diversity of group. The algorithm was implemented and tested on some instances. The results demonstrate the effectiveness of the method.

  14. A Compact Self-organizing Cellular Automata-based Genetic Algorithm

    CERN Document Server

    Barmpoutis, Vasileios

    2007-01-01

    A Genetic Algorithm (GA) is proposed in which each member of the population can change schemata only with its neighbors according to a rule. The rule methodology and the neighborhood structure employ elements from the Cellular Automata (CA) strategies. Each member of the GA population is assigned to a cell and crossover takes place only between adjacent cells, according to the predefined rule. Although combinations of CA and GA approaches have appeared previously, here we rely on the inherent self-organizing features of CA, rather than on parallelism. This conceptual shift directs us toward the evolution of compact populations containing only a handful of members. We find that the resulting algorithm can search the design space more efficiently than traditional GA strategies due to its ability to exploit mutations within this compact self-organizing population. Consequently, premature convergence is avoided and the final results often are more accurate. In order to reinforce the superior mutation capability, ...

  15. Multiple sequence alignment based on combining genetic algorithm with chaotic sequences.

    Science.gov (United States)

    Gao, C; Wang, B; Zhou, C J; Zhang, Q

    2016-06-24

    In bioinformatics, sequence alignment is one of the most common problems. Multiple sequence alignment is an NP (nondeterministic polynomial time) problem, which requires further study and exploration. The chaos optimization algorithm is a type of chaos theory, and a procedure for combining the genetic algorithm (GA), which uses ergodicity, and inherent randomness of chaotic iteration. It is an efficient method to solve the basic premature phenomenon of the GA. Applying the Logistic map to the GA and using chaotic sequences to carry out the chaotic perturbation can improve the convergence of the basic GA. In addition, the random tournament selection and optimal preservation strategy are used in the GA. Experimental evidence indicates good results for this process.

  16. A Genetic Algorithm-Based Approach for Process Scheduling In Distributed Operating Systems

    Directory of Open Access Journals (Sweden)

    2012-01-01

    Full Text Available A Distributed Computing System comprising networked heterogeneous processors requires efficient process allocation algorithms to achieve minimum turnaround time and highest possible throughput. To efficiently execute processes on a distributed system, processes must be correctly assigned to processors and determine the execution order of processes so that the overall execution time is minimized. Even when target processors are fully connected and the communication among processors is fast and no dependencies exist among processes the scheduling problem is NP-complete. Complexity of scheduling problem dependent of number of processors, process execution time and the processor network topology. As distributed systems exist in kinds of homogeneous and heterogeneous, in heterogeneous systems the difference between processors leads to different execution time for an individual process on different processors and makes scheduling problem more complex. Our proposed genetic algorithm is applicable for both homogeneous and heterogeneous kinds.

  17. An intelligent modeling method based on genetic algorithm for partner selection in virtual organizations

    Directory of Open Access Journals (Sweden)

    Pacuraru Raluca

    2011-04-01

    Full Text Available The goal of a Virtual Organization is to find the most appropriate partners in terms of expertise, cost wise, quick response, and environment. In this study we propose a model and a solution approach to a partner selection problem considering three main evaluation criteria: cost, time and risk. This multiobjective problem is solved by an improved genetic algorithm (GA that includes meiosis specific characteristics and step-size adaptation for the mutation operator. The algorithm performs strong exploration initially and exploitation in later generations. It has a high global search ability and a fast convergence rate and also avoids premature convergence. On the basis of the numerical investigations, the incorporation of the proposed enhancements has been successfully proved.

  18. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    Science.gov (United States)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And

  19. Scheduling optimization based on genetic algorithm%基于遗传算法的排产优化方法

    Institute of Scientific and Technical Information of China (English)

    韩志甲; 邓海峡; 李晓平

    2014-01-01

    For-the-single-and-small-batch-job-shop-scheduling-problem,-an-encoding-method-based-on-genetic-algorithm-is-proposed.-A-new-fitness-function-algorithm-that-can-deal-with-the-relationship-of-the-part-and-assembly-is-presented.-The-realization-method-and-results-of-genetic-algorithm-in-the-job-shop-optimization-scheduling-are-introduced,-mainly-focusing-on-the-encoding-method-and-the-design-of-fitness-function-algorithm.-Based-on-this-algorithm,-a-kind-of-software-for-production-plan-scheduling-is-developed-to-realize-intelligent-process-scheduling.-It-can-automatically-realize-the-forward-and-backward-plan.%针对单件小批量生产车间的优化排产问题,采用遗传算法进行研究,设计了一种分组编码方案,提出了可处理零部件间装配关系的适应度函数算法。介绍了遗传算法在车间优化排产中的实现方法及结果,重点讨论了编码方案及适应度函数设计。基于此算法,开发了生产作业计划排产软件,可完成顺排产与倒排产的自动排产,实现工艺排产的智能化。

  20. The superior fault tolerance of artificial neural network training with a fault/noise injection-based genetic algorithm

    Directory of Open Access Journals (Sweden)

    Feng Su

    2016-08-01

    Full Text Available Abstract Artificial neural networks (ANNs are powerful computational tools that are designed to replicate the human brain and adopted to solve a variety of problems in many different fields. Fault tolerance (FT, an important property of ANNs, ensures their reliability when significant portions of a network are lost. In this paper, a fault/noise injection-based (FIB genetic algorithm (GA is proposed to construct fault-tolerant ANNs. The FT performance of an FIB-GA was compared with that of a common genetic algorithm, the back-propagation algorithm, and the modification of weights algorithm. The FIB-GA showed a slower fitting speed when solving the exclusive OR (XOR problem and the overlapping classification problem, but it significantly reduced the errors in cases of single or multiple faults in ANN weights or nodes. Further analysis revealed that the fit weights showed no correlation with the fitting errors in the ANNs constructed with the FIB-GA, suggesting a relatively even distribution of the various fitting parameters. In contrast, the output weights in the training of ANNs implemented with the use the other three algorithms demonstrated a positive correlation with the errors. Our findings therefore indicate that a combination of the fault/noise injection-based method and a GA is capable of introducing FT to ANNs and imply that the distributed ANNs demonstrate superior FT performance.

  1. Optimization of wind-marine hybrid power system configuration based on genetic algorithm

    Science.gov (United States)

    Shi, Hongda; Li, Linna; Zhao, Chenyu

    2017-08-01

    Multi-energy power systems can use energy generated from various sources to improve power generation reliability. This paper presents a cost-power generation model of a wind-tide-wave energy hybrid power system for use on a remote island, where the configuration is optimized using a genetic algorithm. A mixed integer programming model is used and a novel object function, including cost and power generation, is proposed to solve the boundary problem caused by existence of two goals. Using this model, the final optimized result is found to have a good fit with local resources.

  2. Discrete channel modelling based on genetic algorithm and simulated annealing for training hidden Markov model

    Institute of Scientific and Technical Information of China (English)

    Zhao Zhi-Jin; Zheng Shi-Lian; Xu Chun-Yun; Kong Xian-Zheng

    2007-01-01

    Hidden Markov models (HMMs) have been used to model burst error sources of wireless channels. This paper proposes a hybrid method of using genetic algorithm (GA) and simulated annealing (SA) to train HMM for discrete channel modelling. The proposed method is compared with pure GA, and experimental results show that the HMMs trained by the hybrid method can better describe the error sequences due to SA's ability of facilitating hill-climbing at the later stage of the search. The burst error statistics of the HMMs trained by the proposed method and the corresponding error sequences are also presented to validate the proposed method.

  3. A RBF classification method of remote sensing image based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The remote sensing image classification has stimulated considerable interest as an effective method for better retrieving information from the rapidly increasing large volume, complex and distributed satellite remote imaging data of large scale and cross-time, due to the increase of remote image quantities and image resolutions. In the paper, the genetic algorithms were employed to solve the weighting of the radial basis faction networks in order to improve the precision of remote sensing image classification. The remote sensing image classification was also introduced for the GIS spatial analysis and the spatial online analytical processing (OLAP) ,and the resulted effectiveness was demonstrated in the analysis of land utilization variation of Daqing city.

  4. A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem

    Science.gov (United States)

    Bang, Jeongho; Yoo, Seokwon

    2014-12-01

    We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the "genetic parameter vector" of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.

  5. A genetic-algorithm-based method to find unitary transformations for any desired quantum computation and application to a one-bit oracle decision problem

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)

    2014-12-15

    We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.

  6. Wireless Sensor Network Localization Algorithms based on Quantum Genetic Algorithm%基于量子遗传算法的WSN定位算法

    Institute of Scientific and Technical Information of China (English)

    徐健; 时好振

    2013-01-01

    针对无线传感网络由于位置信息等原因造成的定位误差较大、精度不高等问题,在继承DV-Hop定位算法优点的基础上对其进行改进,提出了一种基于量子遗传算法的无线传感器网络节点定位技术.将其应用于DV-Hop算法的第3阶段,对节点的位置进行校正,利用量子遗传算法求解模型的最优解,从而得到未知节点的最优估计位置.改进的DV-Hop定位算法与原算法相比,改进的算法能够改善定位覆盖率低的问题,在锚节点比例较低的情况下有更高的定位精度.%Focused on the problems of wireless sensor networks such as big position error and low precision caused by position information, inherited advantages of DV-Hop localization algorithm, an improved location algorithm for wireless sensor networks based on the quantum genetic algorithm was put forward in the paper. It was applied to the third stage of DV- Hop algorithm, the node's position correction, the quantum genetic algorithm was used to get the optimal solution of the model and the optimal estimation position of the unknown nodes can be gotten. Compared with the original algorithm, improved DV-hop localization algorithm can improve the problem of low position coverage and has higher precision in the low proportion of anchor nodes.

  7. A Puzzle-Based Genetic Algorithm with Block Mining and Recombination Heuristic for the Traveling Salesman Problem

    Institute of Scientific and Technical Information of China (English)

    Pei-Chann Chang; Wei-Hsiu Huang; Zhen-Zhen Zhang

    2012-01-01

    In this research,we introduce a new heuristic approach using the concept of ant colony optimization (ACO)to extract patterns from the chromosomes generated by previous generations for solving the generalized traveling salesman problem.The proposed heuristic is composed of two phases.In the first phase the ACO technique is adopted to establish an archive consisting of a set of non-overlapping blocks and of a set of remaining cities (nodes) to be visited.The second phase is a block recombination phase where the set of blocks and the rest of cities are combined to form an artificial chromosome.The generated artificial chromosomes (ACs) will then be injected into a standard genetic algorithm (SGA) to speed up the convergence.The proposed method is called "Puzzle-Based Genetic Algorithm" or "p-ACGA".We demonstrate that p-ACGA performs very well on all TSPLIB problems,which have been solved to optimality by other researchers.The proposed approach can prevent the early convergence of the genetic algorithm (GA) and lead the algorithm to explore and exploit the search space by taking advantage of the artificial chromosomes.

  8. GASAKe: forecasting landslide activations by a genetic-algorithms-based hydrological model

    Science.gov (United States)

    Terranova, O. G.; Gariano, S. L.; Iaquinta, P.; Iovine, G. G. R.

    2015-07-01

    GASAKe is a new hydrological model aimed at forecasting the triggering of landslides. The model is based on genetic algorithms and allows one to obtain thresholds for the prediction of slope failures using dates of landslide activations and rainfall series. It can be applied to either single landslides or a set of similar slope movements in a homogeneous environment. Calibration of the model provides families of optimal, discretized solutions (kernels) that maximize the fitness function. Starting from the kernels, the corresponding mobility functions (i.e., the predictive tools) can be obtained through convolution with the rain series. The base time of the kernel is related to the magnitude of the considered slope movement, as well as to the hydro-geological complexity of the site. Generally, shorter base times are expected for shallow slope instabilities compared to larger-scale phenomena. Once validated, the model can be applied to estimate the timing of future landslide activations in the same study area, by employing measured or forecasted rainfall series. Examples of application of GASAKe to a medium-size slope movement (the Uncino landslide at San Fili, in Calabria, southern Italy) and to a set of shallow landslides (in the Sorrento Peninsula, Campania, southern Italy) are discussed. In both cases, a successful calibration of the model has been achieved, despite unavoidable uncertainties concerning the dates of occurrence of the slope movements. In particular, for the Sorrento Peninsula case, a fitness of 0.81 has been obtained by calibrating the model against 10 dates of landslide activation; in the Uncino case, a fitness of 1 (i.e., neither missing nor false alarms) has been achieved using five activations. As for temporal validation, the experiments performed by considering further dates of activation have also proved satisfactory. In view of early-warning applications for civil protection, the capability of the model to simulate the occurrences of the

  9. Position Servo Control for a Direct-Drive Actuator Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Baifen Liu

    2013-05-01

    Full Text Available A novel position control strategy for a Brushless DC motor (BLDC drive is proposed in this paper. Brushless DC motor, which is widely used in the field of Direct Drive servo Actuator (DDA with superior performance, possesses fast transient response and high accuracy. Nevertheless, there are such uncertainties as unpredictable flow torques and estimated errors of the BLDC model in this system, which may influence the accuracy and the rapid response of the control. So in this paper, genetic algorithm is applied to the position loop. Simultaneously, in order to improve the rapidness of the whole system, position and velocity double closed-loop system is compared with position and current double closed-loop system. Experimental results validate the scheme proposed can attenuate the influences by the uncertainties of the model sharply. The genetic algorithm used in the position loop can ensure the system's stability and the accuracy of the position response. While tracking the same step response the step rise time of the double closed loop structure of the position and current reduced more than 25% compared with that of the double closed loop structure of the position and velocity.

  10. Real Coded Genetic Algorithm Based Improvement of Efficiency in Interleaved Boost Converter

    Directory of Open Access Journals (Sweden)

    K Valarmathi

    2015-02-01

    Full Text Available   The reliability, efficiency, and controllability of Photo Voltaic power systems can be increased by embedding the components of a Boost Converter. Currently, the converter technology overcomes the main problems of manufacturing cost, efficiency and mass production. Issue to limit the life span of a Photo Voltaic inverter is the huge electrolytic capacitor across the Direct Current bus for energy decoupling. This paper presents a two-phase interleaved boost converter which ensures 180 angle phase shift between the two interleaved converters. The Proportional Integral controller is used to reshape that the controller attempts to minimize the error by adjusting the control inputs and also real coded genetic algorithm is proposed for tuning of controlling parameters of Proportional Integral controller. The real coded genetic algorithm is applied in the Interleaved Boost Converter with Advanced Pulse Width Modulation Techniques for improving the results of efficiency and reduction of ripple current. Simulation results illustrate the improvement of efficiency and the diminution of ripple current.

  11. An optimal policy based on the genetic algorithm for the dynamic threshold of the optical network

    Science.gov (United States)

    Zhu, Hongying; Le, Zichun; Dong, Wen; Fu, Minglei

    2006-09-01

    The complete partitioning policy (CP) for the wavelength resource in optical networks is now widely focused on. The dynamic threshold is one of the ways to make CP policy more efficient. Furthermore, an optimized threshold will be better for reducing the blocking probability and improving the utilization of the wavelength resource. Hence, the genetic algorithm is selected as the optimal policy on virtue of its excellent global search performance for getting optimized value of the dynamic threshold. Moreover, a maximal threshold as the high limit for the dynamic threshold is needed to be decided for making wavelengths shared between different wavelength classes, because the class with higher priority can share its wavelengths with the lower one after its own call setups are satisfied. Therefore, a neural network predictor that can predict the number of the next call setup is designed on the basis of the genetic algorithm to solve this problem. The values of the dynamic threshold and the maximal threshold are calculated, and the simulation results show that they take good effect in reducing the blocking probability and improving the utilization of the wavelength resource.

  12. Research on Arrival/Departure Scheduling of Flights on Multirunways Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hang Zhou

    2014-01-01

    Full Text Available Aiming at the phenomenon of a large number of flight delays in the terminal area makes a reasonable scheduling for the approach and departure flights, which will minimize flight delay losses and improve runway utilization. This paper considered factors such as operating conditions and safety interval of multi runways; the maximum throughput and minimum flight delay losses as well as robustness were taken as objective functions; the model of optimization scheduling of approach and departure flights was established. Finally, the genetic algorithm was introduced to solve the model. The results showed that, in the program whose advance is not counted as a loss, its runway throughput is improved by 18.4%, the delay losses are reduced by 85.8%, and the robustness is increased by 20% compared with the results of FCFS (first come first served algorithm, while, compared with the program whose advance is counted as a loss, the runway throughput is improved by 15.16%, flight delay losses are decreased by 75.64%, and the robustness is also increased by 20%. The algorithm can improve the efficiency and reduce delay losses effectively and reduce the workload of controllers, thereby improving economic results.

  13. A Solution to Reconstruct Cross-Cut Shredded Text Documents Based on Character Recognition and Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Hedong Xu

    2014-01-01

    Full Text Available The reconstruction of destroyed paper documents is of more interest during the last years. This topic is relevant to the fields of forensics, investigative sciences, and archeology. Previous research and analysis on the reconstruction of cross-cut shredded text document (RCCSTD are mainly based on the likelihood and the traditional heuristic algorithm. In this paper, a feature-matching algorithm based on the character recognition via establishing the database of the letters is presented, reconstructing the shredded document by row clustering, intrarow splicing, and interrow splicing. Row clustering is executed through the clustering algorithm according to the clustering vectors of the fragments. Intrarow splicing regarded as the travelling salesman problem is solved by the improved genetic algorithm. Finally, the document is reconstructed by the interrow splicing according to the line spacing and the proximity of the fragments. Computational experiments suggest that the presented algorithm is of high precision and efficiency, and that the algorithm may be useful for the different size of cross-cut shredded text document.

  14. Genetic algorithms as global random search methods

    Science.gov (United States)

    Peck, Charles C.; Dhawan, Atam P.

    1995-01-01

    Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.

  15. Genetic Algorithm Based Framework for Automation of Stochastic Modeling of Multi-Season Streamflows

    Science.gov (United States)

    Srivastav, R. K.; Srinivasan, K.; Sudheer, K.

    2009-05-01

    bootstrap (MABB) ) based on the explicit objective functions of minimizing the relative bias and relative root mean square error in estimating the storage capacity of the reservoir. The optimal parameter set of the hybrid model is obtained based on the search over a multi- dimensional parameter space (involving simultaneous exploration of the parametric (PAR(1)) as well as the non-parametric (MABB) components). This is achieved using the efficient evolutionary search based optimization tool namely, non-dominated sorting genetic algorithm - II (NSGA-II). This approach helps in reducing the drudgery involved in the process of manual selection of the hybrid model, in addition to predicting the basic summary statistics dependence structure, marginal distribution and water-use characteristics accurately. The proposed optimization framework is used to model the multi-season streamflows of River Beaver and River Weber of USA. In case of both the rivers, the proposed GA-based hybrid model yields a much better prediction of the storage capacity (where simultaneous exploration of both parametric and non-parametric components is done) when compared with the MLE-based hybrid models (where the hybrid model selection is done in two stages, thus probably resulting in a sub-optimal model). This framework can be further extended to include different linear/non-linear hybrid stochastic models at other temporal and spatial scales as well.

  16. Sensor Management Algorithm Based on Matrix Genetic Algorithm%基于矩阵遗传的传感器管理算法

    Institute of Scientific and Technical Information of China (English)

    徐瑞阳; 冯新喜

    2016-01-01

    To solve the combinatorial explosion problem during sensor assignment, a sensor management algorithm based on matrix genetic algorithm is proposed.The algorithm adopts assignment matrix as individual of the species and the elements in the matrix as genetics.Simulation results show that this sensor management algorithm perform well in solving the combinatorial problem and can achieve a good performance in multi-sensor multi-target tracking.%针对传感器分配过程中出现的组合爆炸问题,以传感器管理中的分配矩阵作为种群中的个体,分配矩阵中的元素作为基因进行遗传,提出了一种基于矩阵遗传的传感器管理算法. 仿真结果表明,采用矩阵遗传的传感器管理算法可以较好地解决传感器分配中的组合爆炸问题,可以使多传感器多目标跟踪取得较好的效果.

  17. Evaluation and selection of the ship collaborative design resources based on AHP and genetic and simulated annealing algorithm

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The characteristics of the design resources in the ship collaborative design is described and the hierarchical model for the evaluation of the design resources is established. The comprehensive evaluation of the co-designers for the collaborative design resources has been done from different aspects using Analytic Hierarchy Process (AHP),and according to the evaluation results,the candidates are determined. Meanwhile,based on the principle of minimum cost,and starting from the relations between the design tasks and the corresponding co-designers,the optimizing selection model of the collaborators is established and one novel genetic combined with simulated annealing algorithm is proposed to realize the optimization. It overcomes the defects of the genetic algorithm which may lead to the premature convergence and local optimization if used individually. Through the application of this method in the ship collaborative design system,it proves the feasibility and provides a quantitative method for the optimizing selection of the design resources.

  18. Using Genetic Algorithms in Secured Business Intelligence Mobile Applications

    OpenAIRE

    Silvia TRIF

    2011-01-01

    The paper aims to assess the use of genetic algorithms for training neural networks used in secured Business Intelligence Mobile Applications. A comparison is made between classic back-propagation method and a genetic algorithm based training. The design of these algorithms is presented. A comparative study is realized for determining the better way of training neural networks, from the point of view of time and memory usage. The results show that genetic algorithms based training offer bette...

  19. Simultaneous stabilization using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Benson, R.W.; Schmitendorf, W.E. (California Univ., Irvine, CA (USA). Dept. of Mechanical Engineering)

    1991-01-01

    This paper considers the problem of simultaneously stabilizing a set of plants using full state feedback. The problem is converted to a simple optimization problem which is solved by a genetic algorithm. Several examples demonstrate the utility of this method. 14 refs., 8 figs.

  20. Design of a Broadband Electrical Impedance Matching Network for Piezoelectric Ultrasound Transducers Based on a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jianfei An

    2014-04-01

    Full Text Available An improved method based on a genetic algorithm (GA is developed to design a broadband electrical impedance matching network for piezoelectric ultrasound transducer. A key feature of the new method is that it can optimize both the topology of the matching network and perform optimization on the components. The main idea of this method is to find the optimal matching network in a set of candidate topologies. Some successful experiences of classical algorithms are absorbed to limit the size of the set of candidate topologies and greatly simplify the calculation process. Both binary-coded GA and real-coded GA are used for topology optimization and components optimization, respectively. Some calculation strategies, such as elitist strategy and clearing niche method, are adopted to make sure that the algorithm can converge to the global optimal result. Simulation and experimental results prove that matching networks with better performance might be achieved by this improved method.

  1. Design of a broadband electrical impedance matching network for piezoelectric ultrasound transducers based on a genetic algorithm.

    Science.gov (United States)

    An, Jianfei; Song, Kezhu; Zhang, Shuangxi; Yang, Junfeng; Cao, Ping

    2014-04-16

    An improved method based on a genetic algorithm (GA) is developed to design a broadband electrical impedance matching network for piezoelectric ultrasound transducer. A key feature of the new method is that it can optimize both the topology of the matching network and perform optimization on the components. The main idea of this method is to find the optimal matching network in a set of candidate topologies. Some successful experiences of classical algorithms are absorbed to limit the size of the set of candidate topologies and greatly simplify the calculation process. Both binary-coded GA and real-coded GA are used for topology optimization and components optimization, respectively. Some calculation strategies, such as elitist strategy and clearing niche method, are adopted to make sure that the algorithm can converge to the global optimal result. Simulation and experimental results prove that matching networks with better performance might be achieved by this improved method.

  2. Hybrid attribute-based recommender system for learning material using genetic algorithm and a multidimensional information model

    Directory of Open Access Journals (Sweden)

    Mojtaba Salehi

    2013-03-01

    Full Text Available In recent years, the explosion of learning materials in the web-based educational systems has caused difficulty of locating appropriate learning materials to learners. A personalized recommendation is an enabling mechanism to overcome information overload occurred in the new learning environments and deliver suitable materials to learners. Since users express their opinions based on some specific attributes of items, this paper proposes a hybrid recommender system for learning materials based on their attributes to improve the accuracy and quality of recommendation. The presented system has two main modules: explicit attribute-based recommender and implicit attribute-based recommender. In the first module, weights of implicit or latent attributes of materials for learner are considered as chromosomes in genetic algorithm then this algorithm optimizes the weights according to historical rating. Then, recommendation is generated by Nearest Neighborhood Algorithm (NNA using the optimized weight vectors implicit attributes that represent the opinions of learners. In the second, preference matrix (PM is introduced that can model the interests of learner based on explicit attributes of learning materials in a multidimensional information model. Then, a new similarity measure between PMs is introduced and recommendations are generated by NNA. The experimental results show that our proposed method outperforms current algorithms on accuracy measures and can alleviate some problems such as cold-start and sparsity.

  3. Application of detecting algorithm based on network

    Institute of Scientific and Technical Information of China (English)

    张凤斌; 杨永田; 江子扬; 孙冰心

    2004-01-01

    Because currently intrusion detection systems cannot detect undefined intrusion behavior effectively,according to the robustness and adaptability of the genetic algorithms, this paper integrates the genetic algorithms into an intrusion detection system, and a detection algorithm based on network traffic is proposed. This algorithm is a real-time and self-study algorithm and can detect undefined intrusion behaviors effectively.

  4. Multi-Criterion Optimal Design of Automotive Door Based on Metamodeling Technique and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A method for optimizing automotive doors under multiple criteria involving the side impact,stiffness, natural frequency, and structure weight is presented. Metamodeling technique is employed to construct approximations to replace the high computational simulation models. The approximating functions for stiffness and natural frequency are constructed using Taylor series approximation. Three popular approximation techniques, i. e. polynomial response surface (PRS), stepwise regression (SR), and Kriging are studied on their accuracy in the construction of side impact functions. Uniform design is employed to sample the design space of the door impact analysis. The optimization problem is solved by a multi-objective genetic algorithm. It is found that SR technique is superior to PRS and Kriging techniques in terms of accuracy in this study. The numerical results demonstrate that the method successfully generates a well-spread Pareto optimal set. From this Pareto optimal set, decision makers can select the most suitable design according to the vehicle program and its application.

  5. A VR Based Interactive Genetic Algorithm Framework For Design of Support Schemes to Deep Excavations

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Riyu [Univ. of Queensland, Brisbane (Australia); Wu, Heng [Guangxi Univ., Nanning (China)

    2002-11-15

    An interactive genetic algorithm (IGA) framework for the design of support schemes to deep excavations is proposed in this paper, in which virtual reality (VR) is used as an aid to the evaluation of design schemes that is performed interactively. The fitness of a scheme individual is evaluated by two steps. Firstly a fitness value is automatically assigned to a scheme individual according to the the estimated construction cost of the individual. And the human evaluation is introduced to modify the fitness value by taking into account other factors, such as the feasibility factor. The design scheme is composed of four basic categories, i. e., cantilever walls, reinforced soil walls, tieback systems and bracing systems, each of which is encoded by a binary string. To assist human evaluation, 3D models of design schemes are created and visualized in a virtual reality environment, providing designers with a reality sense of various schemes.

  6. Model predictive control of attitude maneuver of a geostationary flexible satellite based on genetic algorithm

    Science.gov (United States)

    TayyebTaher, M.; Esmaeilzadeh, S. Majid

    2017-07-01

    This article presents an application of Model Predictive Controller (MPC) to the attitude control of a geostationary flexible satellite. SIMO model has been used for the geostationary satellite, using the Lagrange equations. Flexibility is also included in the modelling equations. The state space equations are expressed in order to simplify the controller. Naturally there is no specific tuning rule to find the best parameters of an MPC controller which fits the desired controller. Being an intelligence method for optimizing problem, Genetic Algorithm has been used for optimizing the performance of MPC controller by tuning the controller parameter due to minimum rise time, settling time, overshoot of the target point of the flexible structure and its mode shape amplitudes to make large attitude maneuvers possible. The model included geosynchronous orbit environment and geostationary satellite parameters. The simulation results of the flexible satellite with attitude maneuver shows the efficiency of proposed optimization method in comparison with LQR optimal controller.

  7. A genetic algorithm based stochastic programming model for air quality management

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region,accounting for the dynamic and stochastic character of meteorological conditions.This is accomplished by integrating Monte Carlo simulation and using genetic algorithm to solve the model.The model is demonstrated by using a realistic air urban-scale SO2 control problem in the Yuxi City of China.To evaluate effectiveness of the model,results of the approach are shown to compare with those of the linear deterministic procedures.This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents'health.Finally,a discussion of the areas for further research are briefly delineated.

  8. IMPLEMENTATION OF GENETIC ALGORITHM FOR A DWT BASED IMAGE WATERMARKING SCHEME

    Directory of Open Access Journals (Sweden)

    P. Surekha

    2011-07-01

    Full Text Available This paper proposes a new optimization method for digital images in the Discrete Wavelet Transform (DWT domain. Digital image watermarking has proved its efficiency in protecting illegal authentication of data. The amplification factor of the watermark is the significant parameter that helps in improving the perceptual transparency and robustness against attacks. The tradeoff between the transparency and robustness is considered as an optimization problem and is solved by applying Genetic Algorithm. The experimental results of this approach prove to be secure and robust to filtering attacks, additive noise, rotation, scaling, cropping and JPEG compression. The Peak Signal to Noise Ratio (PSNR, Mean Square Error (MSE, and computational time are evaluated for a set of images obtained from the Tampere University of Technology, Finland using the MATLAB R2008b software.

  9. Genetic Algorithm Based on New Evaluation Function and Mutation Model for Training of BPNN

    Institute of Scientific and Technical Information of China (English)

    周祥; 何小荣; 陈丙珍

    2002-01-01

    A local minimum is frequently encountered in the training of back propagation neural networks (BPNN), which sharply slows the training process. In this paper, an analysis of the formation of local minima is presented, and an improved genetic algorithm (GA) is introduced to overcome local minima. The Sigmoid function is generally used as the activation function of BPNN nodes. It is the flat characteristic of the Sigmoid function that results in the formation of local minima. In the improved GA, pertinent modifications are made to the evaluation function and the mutation model. The evaluation of the solution is associated with both the training error and gradient. The sensitivity of the error function to network parameters is used to form a self-adapting mutation model. An example of industrial application shows the advantage of the improved GA to overcome local minima.

  10. 基于RESTFUL服务的分布式遗传算法%Distributed Genetic Algorithm Based on RESTFUL Service

    Institute of Scientific and Technical Information of China (English)

    马青霞; 孙梅

    2011-01-01

    Based on analyzing the features of REST and RESTFUL service, the concept of designing service-oriented computing for Genetic Algorithm(GA) in REST style is presented, which realizes distributed genetic evolving with two sorts independent service processes that call each other by verb PUT and POX encoding format. An intelligent test paper system taking advantage of distributed paralleling genetic algorithm running RESTFUL service is developed by Window Communication Foundation(WCF). Experimental results show that the algorithm is proved to have high operational efficiency.%根据REST及RESTFUL服务特点,构建一种基于REST的遗传算法.设计服务计算系统,采用主子2种独立的服务实现分布式遗传进化,利用PUT谓词及POX数据格式进行服务互调,以实现RESTFUL服务下的遗传组卷算法.实验结果表明,该算法具有较高的运行效率.

  11. A simulation-based inventory management with genetic algorithm for uncertain demand for third-party logistics provider

    Directory of Open Access Journals (Sweden)

    Wuthichai Wongthatsanekorn

    2014-09-01

    Full Text Available This research aims to study and apply inventory management system for Third party logistics provider. Currently, the company uses economic order quantity to control inventory. The analysis of historical demand data shows that the demand is not deterministic. Hence, assumptions of using economic order quantity are violated. In this research, the simulation-based technique is applied to solve for optimal order quantity and reorder point. Since there are numerous items in the considered warehouse, ABC analysis is utilized to select important items to analyze. Then simulation and genetic algorithm are applied to find the optimal solution. Design of experiment with full factorial design is used to determine the best parameter setting of genetic algorithm. The performance measures are the average total inventory cost which composes of average ordering cost, average inventory holding cost and average lost sale cost. The results show that the average total cost for product code G2654, G2581, G0706, G2791 can be reduced by 73.43%, 49.86%, 28.50% and 13.38% respectively. For product code G2654, the average lost sale cost can be reduced by 85.30%. In summary, the solution from simulation and genetic algorithm provides better results than the one from economic order quantity method.

  12. Social Welfare Improvement by TCSC using Real Code Based Genetic Algorithm in Double-Sided Auction Market

    Directory of Open Access Journals (Sweden)

    MASOUM, M. A. S.

    2011-05-01

    Full Text Available This paper presents a genetic algorithm (GA to maximize total system social welfare and alleviate congestion by best placement and sizing of TCSC device, in a double-sided auction market. To introduce more accurate modeling, the valve loading effects is incorporated to the conventional quadratic smooth generator cost curves. By adding the valve point effect, the model presents nondifferentiable and nonconvex regions that challenge most gradient-based optimization algorithms. In addition, quadratic consumer benefit functions integrated in the objective function to guarantee that locational marginal prices charged at the demand buses is less than or equal to DisCos benefit, earned by selling that power to retail customers. The proposed approach makes use of the genetic algorithm to optimal schedule GenCos, DisCos and TCSC location and size, while the Newton-Raphson algorithm minimizes the mismatch of the power flow equations. Simulation results on the modified IEEE 14-bus and 30-bus test systems (with/without line flow constraints, before and after the compensation are used to examine the impact of TCSC on the total system social welfare improvement. Several cases are considered to test and validate the consistency of detecting best solutions. Simulation results are compared to solutions obtained by sequential quadratic programming (SQP approaches.

  13. Control parameter optimal tuning method based on annealing-genetic algorithm for complex electromechanical system

    Institute of Scientific and Technical Information of China (English)

    贺建军; 喻寿益; 钟掘

    2003-01-01

    A new searching algorithm named the annealing-genetic algorithm(AGA) was proposed by skillfully merging GA with SAA. It draws on merits of both GA and SAA ,and offsets their shortcomings. The difference from GA is that AGA takes objective function as adaptability function directly, so it cuts down some unnecessary time expense because of float-point calculation of function conversion. The difference from SAA is that AGA need not execute a very long Markov chain iteration at each point of temperature, so it speeds up the convergence of solution and makes no assumption on the search space,so it is simple and easy to be implemented. It can be applied to a wide class of problems. The optimizing principle and the implementing steps of AGA were expounded. The example of the parameter optimization of a typical complex electromechanical system named temper mill shows that AGA is effective and superior to the conventional GA and SAA. The control system of temper mill optimized by AGA has the optimal performance in the adjustable ranges of its parameters.

  14. Optimal design of FIR high pass filter based on L1 error approximation using real coded genetic algorithm

    Directory of Open Access Journals (Sweden)

    Apoorva Aggarwal

    2015-12-01

    Full Text Available In this paper, an optimal design of linear phase digital finite impulse response (FIR highpass (HP filter using the L1-norm based real-coded genetic algorithm (RCGA is investigated. A novel fitness function based on L1 norm is adopted to enhance the design accuracy. Optimized filter coefficients are obtained by defining the filter objective function in L1 sense using RCGA. Simulation analysis unveils that the performance of the RCGA adopting this fitness function is better in terms of signal attenuation ability of the filter, flatter passband and the convergence rate. Observations are made on the percentage improvement of this algorithm over the gradient-based L1 optimization approach on various factors by a large amount. It is concluded that RCGA leads to the best solution under specified parameters for the FIR filter design on account of slight unnoticeable higher transition width.

  15. Efficiently Hiding Sensitive Itemsets with Transaction Deletion Based on Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Chun-Wei Lin

    2014-01-01

    Full Text Available Data mining is used to mine meaningful and useful information or knowledge from a very large database. Some secure or private information can be discovered by data mining techniques, thus resulting in an inherent risk of threats to privacy. Privacy-preserving data mining (PPDM has thus arisen in recent years to sanitize the original database for hiding sensitive information, which can be concerned as an NP-hard problem in sanitization process. In this paper, a compact prelarge GA-based (cpGA2DT algorithm to delete transactions for hiding sensitive itemsets is thus proposed. It solves the limitations of the evolutionary process by adopting both the compact GA-based (cGA mechanism and the prelarge concept. A flexible fitness function with three adjustable weights is thus designed to find the appropriate transactions to be deleted in order to hide sensitive itemsets with minimal side effects of hiding failure, missing cost, and artificial cost. Experiments are conducted to show the performance of the proposed cpGA2DT algorithm compared to the simple GA-based (sGA2DT algorithm and the greedy approach in terms of execution time and three side effects.

  16. Combinatorial Multiobjective Optimization Using Genetic Algorithms

    Science.gov (United States)

    Crossley, William A.; Martin. Eric T.

    2002-01-01

    The research proposed in this document investigated multiobjective optimization approaches based upon the Genetic Algorithm (GA). Several versions of the GA have been adopted for multiobjective design, but, prior to this research, there had not been significant comparisons of the most popular strategies. The research effort first generalized the two-branch tournament genetic algorithm in to an N-branch genetic algorithm, then the N-branch GA was compared with a version of the popular Multi-Objective Genetic Algorithm (MOGA). Because the genetic algorithm is well suited to combinatorial (mixed discrete / continuous) optimization problems, the GA can be used in the conceptual phase of design to combine selection (discrete variable) and sizing (continuous variable) tasks. Using a multiobjective formulation for the design of a 50-passenger aircraft to meet the competing objectives of minimizing takeoff gross weight and minimizing trip time, the GA generated a range of tradeoff designs that illustrate which aircraft features change from a low-weight, slow trip-time aircraft design to a heavy-weight, short trip-time aircraft design. Given the objective formulation and analysis methods used, the results of this study identify where turboprop-powered aircraft and turbofan-powered aircraft become more desirable for the 50 seat passenger application. This aircraft design application also begins to suggest how a combinatorial multiobjective optimization technique could be used to assist in the design of morphing aircraft.

  17. Genetic algorithms for protein threading.

    Science.gov (United States)

    Yadgari, J; Amir, A; Unger, R

    1998-01-01

    Despite many years of efforts, a direct prediction of protein structure from sequence is still not possible. As a result, in the last few years researchers have started to address the "inverse folding problem": Identifying and aligning a sequence to the fold with which it is most compatible, a process known as "threading". In two meetings in which protein folding predictions were objectively evaluated, it became clear that threading as a concept promises a real breakthrough, but that much improvement is still needed in the technique itself. Threading is a NP-hard problem, and thus no general polynomial solution can be expected. Still a practical approach with demonstrated ability to find optimal solutions in many cases, and acceptable solutions in other cases, is needed. We applied the technique of Genetic Algorithms in order to significantly improve the ability of threading algorithms to find the optimal alignment of a sequence to a structure, i.e. the alignment with the minimum free energy. A major progress reported here is the design of a representation of the threading alignment as a string of fixed length. With this representation validation of alignments and genetic operators are effectively implemented. Appropriate data structure and parameters have been selected. It is shown that Genetic Algorithm threading is effective and is able to find the optimal alignment in a few test cases. Furthermore, the described algorithm is shown to perform well even without pre-definition of core elements. Existing threading methods are dependent on such constraints to make their calculations feasible. But the concept of core elements is inherently arbitrary and should be avoided if possible. While a rigorous proof is hard to submit yet an, we present indications that indeed Genetic Algorithm threading is capable of finding consistently good solutions of full alignments in search spaces of size up to 10(70).

  18. Currency-based Iterative Multi-Agent Bidding Mechanism Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    M; K; LIM; Z; ZHANG

    2002-01-01

    This paper introduces a multi-agent system which i nt egrates process planning and production scheduling, in order to increase the fle xibility of manufacturing systems in coping with rapid changes in dynamic market and dealing with internal uncertainties such as machine breakdown or resources shortage. This system consists of various autonomous agents, each of which has t he capability of communicating with one another and making decisions based on it s knowledge and if necessary on information provided ...

  19. Genetic algorithms for route discovery.

    Science.gov (United States)

    Gelenbe, Erol; Liu, Peixiang; Lainé, Jeremy

    2006-12-01

    Packet routing in networks requires knowledge about available paths, which can be either acquired dynamically while the traffic is being forwarded, or statically (in advance) based on prior information of a network's topology. This paper describes an experimental investigation of path discovery using genetic algorithms (GAs). We start with the quality-of-service (QoS)-driven routing protocol called "cognitive packet network" (CPN), which uses smart packets (SPs) to dynamically select routes in a distributed autonomic manner based on a user's QoS requirements. We extend it by introducing a GA at the source routers, which modifies and filters the paths discovered by the CPN. The GA can combine the paths that were previously discovered to create new untested but valid source-to-destination paths, which are then selected on the basis of their "fitness." We present an implementation of this approach, where the GA runs in background mode so as not to overload the ingress routers. Measurements conducted on a network test bed indicate that when the background-traffic load of the network is light to medium, the GA can result in improved QoS. When the background-traffic load is high, it appears that the use of the GA may be detrimental to the QoS experienced by users as compared to CPN routing because the GA uses less timely state information in its decision making.

  20. An investigation of messy genetic algorithms

    Science.gov (United States)

    Goldberg, David E.; Deb, Kalyanmoy; Korb, Bradley

    1990-01-01

    Genetic algorithms (GAs) are search procedures based on the mechanics of natural selection and natural genetics. They combine the use of string codings or artificial chromosomes and populations with the selective and juxtapositional power of reproduction and recombination to motivate a surprisingly powerful search heuristic in many problems. Despite their empirical success, there has been a long standing objection to the use of GAs in arbitrarily difficult problems. A new approach was launched. Results to a 30-bit, order-three-deception problem were obtained using a new type of genetic algorithm called a messy genetic algorithm (mGAs). Messy genetic algorithms combine the use of variable-length strings, a two-phase selection scheme, and messy genetic operators to effect a solution to the fixed-coding problem of standard simple GAs. The results of the study of mGAs in problems with nonuniform subfunction scale and size are presented. The mGA approach is summarized, both its operation and the theory of its use. Experiments on problems of varying scale, varying building-block size, and combined varying scale and size are presented.

  1. Genetic Algorithm Approaches for Actuator Placement

    Science.gov (United States)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  2. Applying a Genetic Algorithm to Reconfigurable Hardware

    Science.gov (United States)

    Wells, B. Earl; Weir, John; Trevino, Luis; Patrick, Clint; Steincamp, Jim

    2004-01-01

    This paper investigates the feasibility of applying genetic algorithms to solve optimization problems that are implemented entirely in reconfgurable hardware. The paper highlights the pe$ormance/design space trade-offs that must be understood to effectively implement a standard genetic algorithm within a modem Field Programmable Gate Array, FPGA, reconfgurable hardware environment and presents a case-study where this stochastic search technique is applied to standard test-case problems taken from the technical literature. In this research, the targeted FPGA-based platform and high-level design environment was the Starbridge Hypercomputing platform, which incorporates multiple Xilinx Virtex II FPGAs, and the Viva TM graphical hardware description language.

  3. Energy management of a power-split plug-in hybrid electric vehicle based on genetic algorithm and quadratic programming

    Science.gov (United States)

    Chen, Zheng; Mi, Chris Chunting; Xiong, Rui; Xu, Jun; You, Chenwen

    2014-02-01

    This paper introduces an online and intelligent energy management controller to improve the fuel economy of a power-split plug-in hybrid electric vehicle (PHEV). Based on analytic analysis between fuel-rate and battery current at different driveline power and vehicle speed, quadratic equations are applied to simulate the relationship between battery current and vehicle fuel-rate. The power threshold at which engine is turned on is optimized by genetic algorithm (GA) based on vehicle fuel-rate, battery state of charge (SOC) and driveline power demand. The optimal battery current when the engine is on is calculated using quadratic programming (QP) method. The proposed algorithm can control the battery current effectively, which makes the engine work more efficiently and thus reduce the fuel-consumption. Moreover, the controller is still applicable when the battery is unhealthy. Numerical simulations validated the feasibility of the proposed controller.

  4. 基于遗传算法的主题爬虫%Focused Crawling Based on Genetic Algorithms

    Institute of Scientific and Technical Information of China (English)

    张海亮; 袁道华

    2012-01-01

    针对目前主题网络爬虫搜索策略难以在全局范围内找到最优解,通过对遗传算法的分析与研究,文中设计了一个基于遗传算法的主题爬虫方案.引入了结合文本内容的PageRank算法;采用向量空间模型算法计算网页主题相关度;采取网页链接结构与主题相关度来评判网页的重要性;依据网页重要性选择爬行中的遗传因子;设置适应度函数筛选与主题相关的网页.与普通的主题爬虫比较,该策略能够获取大量主题相关度高的网页信息,能够提高获取的网页的重要性,能够满足用户对所需主题网页的检索需求,并在一定程度上解决了上述问题.%Optimized solution cant be found in the global scope based on the present searching strategy of focused crawler. A focused crawler method based on genetic algorithm is proposed through the analysis and study of genetic algorithm. This method introduces the PageRank algorithm combined with text contents, computes the page topic similarity with vector space model algorithm , and judges the importance of web page according to web link structure and topic similarity. At the same time, the genetic factors are selected on basis of the importance of web page. The system sets fitness function to select pages relevant with topic. Compared to focused crawler , the topic crawler based on genetic algorithms could obtain the web pages which have strong correlation with subjects, and improve the importance of access web pages, and satisfy user' s demand for searching topic webs they' re interested in. So in a certain extent, the above problems are solved.

  5. Results of Evolution Supervised by Genetic Algorithms

    CERN Document Server

    Jäntschi, Lorentz; Bălan, Mugur C; Sestraş, Radu E

    2010-01-01

    A series of results of evolution supervised by genetic algorithms with interest to agricultural and horticultural fields are reviewed. New obtained original results from the use of genetic algorithms on structure-activity relationships are reported.

  6. An Improved Genetic-Simulated Annealing Algorithm Based on a Hormone Modulation Mechanism for a Flexible Flow-Shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Min Dai

    2013-01-01

    Full Text Available A flexible flow-shop scheduling (FFS with nonidentical parallel machines for minimizing the maximum completion time or makespan is a well-known combinational problem. Since the problem is known to be strongly NP-hard, optimization can either be the subject of optimization approaches or be implemented for some approximated cases. In this paper, an improved genetic-simulated annealing algorithm (IGAA, which combines genetic algorithm (GA based on an encoding matrix with simulated annealing algorithm (SAA based on a hormone modulation mechanism, is proposed to achieve the optimal or near-optimal solution. The novel hybrid algorithm tries to overcome the local optimum and further to explore the solution space. To evaluate the performance of IGAA, computational experiments are conducted and compared with results generated by different algorithms. Experimental results clearly demonstrate that the improved metaheuristic algorithm performs considerably well in terms of solution quality, and it outperforms several other algorithms.

  7. Genetic warfarin dosing: tables versus algorithms.

    Science.gov (United States)

    Finkelman, Brian S; Gage, Brian F; Johnson, Julie A; Brensinger, Colleen M; Kimmel, Stephen E

    2011-02-01

    The aim of this study was to compare the accuracy of genetic tables and formal pharmacogenetic algorithms for warfarin dosing. Pharmacogenetic algorithms based on regression equations can predict warfarin dose, but they require detailed mathematical calculations. A simpler alternative, recently added to the warfarin label by the U.S. Food and Drug Administration, is to use genotype-stratified tables to estimate warfarin dose. This table may potentially increase the use of pharmacogenetic warfarin dosing in clinical practice; however, its accuracy has not been quantified. A retrospective cohort study of 1,378 patients from 3 anticoagulation centers was conducted. Inclusion criteria were stable therapeutic warfarin dose and complete genetic and clinical data. Five dose prediction methods were compared: 2 methods using only clinical information (empiric 5 mg/day dosing and a formal clinical algorithm), 2 genetic tables (the new warfarin label table and a table based on mean dose stratified by genotype), and 1 formal pharmacogenetic algorithm, using both clinical and genetic information. For each method, the proportion of patients whose predicted doses were within 20% of their actual therapeutic doses was determined. Dosing methods were compared using McNemar's chi-square test. Warfarin dose prediction was significantly more accurate (all p algorithm (52%) than with all other methods: empiric dosing (37%; odds ratio [OR]: 2.2), clinical algorithm (39%; OR: 2.2), warfarin label (43%; OR: 1.8), and genotype mean dose table (44%; OR: 1.9). Although genetic tables predicted warfarin dose better than empiric dosing, formal pharmacogenetic algorithms were the most accurate. Copyright © 2011 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  8. Forecasting nonlinear chaotic time series with function expression method based on an improved genetic-simulated annealing algorithm.

    Science.gov (United States)

    Wang, Jun; Zhou, Bi-hua; Zhou, Shu-dao; Sheng, Zheng

    2015-01-01

    The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA) algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  9. Forecasting Nonlinear Chaotic Time Series with Function Expression Method Based on an Improved Genetic-Simulated Annealing Algorithm

    Directory of Open Access Journals (Sweden)

    Jun Wang

    2015-01-01

    Full Text Available The paper proposes a novel function expression method to forecast chaotic time series, using an improved genetic-simulated annealing (IGSA algorithm to establish the optimum function expression that describes the behavior of time series. In order to deal with the weakness associated with the genetic algorithm, the proposed algorithm incorporates the simulated annealing operation which has the strong local search ability into the genetic algorithm to enhance the performance of optimization; besides, the fitness function and genetic operators are also improved. Finally, the method is applied to the chaotic time series of Quadratic and Rossler maps for validation. The effect of noise in the chaotic time series is also studied numerically. The numerical results verify that the method can forecast chaotic time series with high precision and effectiveness, and the forecasting precision with certain noise is also satisfactory. It can be concluded that the IGSA algorithm is energy-efficient and superior.

  10. Nurse Rostering with Genetic Algorithms

    CERN Document Server

    Aickelin, Uwe

    2010-01-01

    In recent years genetic algorithms have emerged as a useful tool for the heuristic solution of complex discrete optimisation problems. In particular there has been considerable interest in their use in tackling problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle constraints and successful implementations usually require some sort of modification to enable the search to exploit problem specific knowledge in order to overcome this shortcoming. This paper is concerned with the development of a family of genetic algorithms for the solution of a nurse rostering problem at a major UK hospital. The hospital is made up of wards of up to 30 nurses. Each ward has its own group of nurses whose shifts have to be scheduled on a weekly basis. In addition to fulfilling the minimum demand for staff over three daily shifts, nurses' wishes and qualifications have to be taken into account. The schedules must also be seen to be fair, in tha...

  11. Design, optimization and realization of FLC based Stokes polarimeters and Mueller matrix ellipsometer using a genetic algorithm

    CERN Document Server

    Aas, Lars Martin S; Ellingsen, Pål G; Letnes, Paul Anton; Kildemo, Morten

    2013-01-01

    The design of broad-band polarimeters with high performance is challenging due to the wavelength dependence of optical components. An efficient Genetic Algorithm (GA) computer code was recently developed in order to design and re-optimize complete broadband Stokes polarimeters and Mueller matrix ellipsometers (MME). Our results are improvements of previous patented designs based on two and three ferroelectric liquid crystals (FLC), and are suited for broad-band hyperspectral imaging, or multichannel spectroscopy applications. We have realized and implemented one design using two FLCs and compare the spectral range and precision with previous designs.

  12. Structure and spectroscopy of water-fluoride microclusters: a combined genetic algorithm and DFT-based study.

    Science.gov (United States)

    Neogi, Soumya Ganguly; Chaudhury, Pinaki

    2012-03-05

    In this article, we explore the efficiency of using a coupled genetic algorithm (GA) and density functional theory (DFT) based strategy to evaluate probable structures of (H(2) O)(n) F(-) micro-clusters, with n = 1 - 6. We use the stochastic optimization technique of GA to arrive at structures of the cluster systems and once the structures are obtained, do a DFT calculation with the optimized coordinates from the GA calculation as input to get the infra-red spectrum of all the systems. The results of our work closely resembles the pure quantum chemical results obtained by Baik et al. (J Chem Phys 1999, 110, 9116-9127).

  13. Analysis of the Multi Strategy Goal Programming for Micro-Grid Based on Dynamic ant Genetic Algorithm

    Science.gov (United States)

    Qiu, J. P.; Niu, D. X.

    Micro-grid is one of the key technologies of the future energy supplies. Take economic planning. reliability, and environmental protection of micro grid as a basis for the analysis of multi-strategy objective programming problems for micro grid which contains wind power, solar power, and battery and micro gas turbine. Establish the mathematical model of each power generation characteristics and energy dissipation. and change micro grid planning multi-objective function under different operating strategies to a single objective model based on AHP method. Example analysis shows that in combination with dynamic ant mixed genetic algorithm can get the optimal power output of this model.

  14. A novel pseudoderivative-based mutation operator for real-coded adaptive genetic algorithms [v2; ref status: indexed, http://f1000r.es/1td

    Directory of Open Access Journals (Sweden)

    Maxinder S Kanwal

    2013-11-01

    Full Text Available Recent development of large databases, especially those in genetics and proteomics, is pushing the development of novel computational algorithms that implement rapid and accurate search strategies. One successful approach has been to use artificial intelligence and methods, including pattern recognition (e.g. neural networks and optimization techniques (e.g. genetic algorithms. The focus of this paper is on optimizing the design of genetic algorithms by using an adaptive mutation rate that is derived from comparing the fitness values of successive generations. We propose a novel pseudoderivative-based mutation rate operator designed to allow a genetic algorithm to escape local optima and successfully continue to the global optimum. Once proven successful, this algorithm can be implemented to solve real problems in neurology and bioinformatics. As a first step towards this goal, we tested our algorithm on two 3-dimensional surfaces with multiple local optima, but only one global optimum, as well as on the N-queens problem, an applied problem in which the function that maps the curve is implicit. For all tests, the adaptive mutation rate allowed the genetic algorithm to find the global optimal solution, performing significantly better than other search methods, including genetic algorithms that implement fixed mutation rates.

  15. A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes.

    Science.gov (United States)

    Lee, I; Sikora, R; Shaw, M J

    1997-01-01

    Genetic algorithms (GAs) have been used widely for such combinatorial optimization problems as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), and job shop scheduling. In all of these problems there is usually a well defined representation which GA's use to solve the problem. We present a novel approach for solving two related problems-lot sizing and sequencing-concurrently using GAs. The essence of our approach lies in the concept of using a unified representation for the information about both the lot sizes and the sequence and enabling GAs to evolve the chromosome by replacing primitive genes with good building blocks. In addition, a simulated annealing procedure is incorporated to further improve the performance. We evaluate the performance of applying the above approach to flexible flow line scheduling with variable lot sizes for an actual manufacturing facility, comparing it to such alternative approaches as pair wise exchange improvement, tabu search, and simulated annealing procedures. The results show the efficacy of this approach for flexible flow line scheduling.

  16. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2016-01-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  17. Ambient Vibration Based Damage Diagnosis Using Statistical Modal Filtering and Genetic Algorithm: A Bridge Case Study

    Directory of Open Access Journals (Sweden)

    S. El-Ouafi Bahlous

    2013-01-01

    Full Text Available The authors recently developed a damage identification method which combines ambient vibration measurements and a Statistical Modal Filtering approach to predict the location and degree of damage. The method was then validated experimentally via ambient vibration tests conducted on full-scale reinforced concrete laboratory specimens. The main purpose of this paper is to demonstrate the feasibility of the identification method for a real bridge. An important challenge in this case is to overcome the absence of vibration measurements for the structure in its undamaged state which corresponds ideally to the reference state of the structure. The damage identification method is, therefore, modified to adapt it to the present situation where the intact state was not subjected to measurements. An additional refinement of the method consists of using a genetic algorithm to improve the computational efficiency of the damage localization method. This is particularly suited for a real case study where the number of damage parameters becomes significant. The damage diagnosis predictions suggest that the diagnosed bridge is damaged in four elements among a total of 168 elements with degrees of damage varying from 6% to 18%.

  18. Text Region Extraction: A Morphological Based Image Analysis Using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Dhirendra Pal Singh

    2015-01-01

    Full Text Available Image analysis belongs to the area of computer vision and pattern recognition. These areas are also a part of digital image processing, where researchers have a great attention in the area of content retrieval information from various types of images having complex background, low contrast background or multi-spectral background etc. These contents may be found in any form like texture data, shape, and objects. Text Region Extraction as a content from an mage is a class of problems in Digital Image Processing Applications that aims to provides necessary information which are widely used in many fields medical imaging, pattern recognition, Robotics, Artificial intelligent Transport systems etc. To extract the text data information has becomes a challenging task. Since, Text extraction are very useful for identifying and analysis the whole information about image, Therefore, In this paper, we propose a unified framework by combining morphological operations and Genetic Algorithms for extracting and analyzing the text data region which may be embedded in an image by means of variety of texts: font, size, skew angle, distortion by slant and tilt, shape of the object which texts are on, etc. We have established our proposed methods on gray level image sets and make qualitative and quantitative comparisons with other existing methods and concluded that proposed method is better than others.

  19. Mechanical Properties Prediction of the Mechanical Clinching Joints Based on Genetic Algorithm and BP Neural Network

    Institute of Scientific and Technical Information of China (English)

    LONG Jiangqi; LAN Fengchong; CHEN Jiqing; YU Ping

    2009-01-01

    For optimal design of mechanical clinching steel-aluminum joints, the back propagation (BP) neural network is used to research the mapping relationship between joining technique parameters including sheet thickness, sheet hardness, joint bottom diameter etc., and mechanical properties of shearing and peeling in order to investigate joining technology between various material plates in the steel-aluminum hybrid structure car body. Genetic algorithm (GA) is adopted to optimize the back-propagation neural network connection weights. The training and validating samples are made by the BTM(R) Tog-L-Loc system with different technologic parameters. The training samples' parameters and the corresponding joints' mechanical properties are supplied to the artificial neural network (ANN) for training. The validating samples' experimental data is used for checking up the prediction outputs. The calculation results show that GA can improve the model's prediction precision and generalization ability of BP neural network. The comparative analysis between the experimental data and the prediction outputs shows that ANN prediction models after training can effectively predict the mechanical properties of mechanical clinching joints and prove the feasibility and reliability of the intelligent neural networks system when used in the mechanical properties prediction of mechanical clinching joints. The prediction results can be used for a reference in the design of mechanical clinching steel-aluminum joints.

  20. An image segmentation based on a genetic algorithm for determining soil coverage by crop residues.

    Science.gov (United States)

    Ribeiro, Angela; Ranz, Juan; Burgos-Artizzu, Xavier P; Pajares, Gonzalo; del Arco, Maria J Sanchez; Navarrete, Luis

    2011-01-01

    Determination of the soil coverage by crop residues after ploughing is a fundamental element of Conservation Agriculture. This paper presents the application of genetic algorithms employed during the fine tuning of the segmentation process of a digital image with the aim of automatically quantifying the residue coverage. In other words, the objective is to achieve a segmentation that would permit the discrimination of the texture of the residue so that the output of the segmentation process is a binary image in which residue zones are isolated from the rest. The RGB images used come from a sample of images in which sections of terrain were photographed with a conventional camera positioned in zenith orientation atop a tripod. The images were taken outdoors under uncontrolled lighting conditions. Up to 92% similarity was achieved between the images obtained by the segmentation process proposed in this paper and the templates made by an elaborate manual tracing process. In addition to the proposed segmentation procedure and the fine tuning procedure that was developed, a global quantification of the soil coverage by residues for the sampled area was achieved that differed by only 0.85% from the quantification obtained using template images. Moreover, the proposed method does not depend on the type of residue present in the image. The study was conducted at the experimental farm "El Encín" in Alcalá de Henares (Madrid, Spain).

  1. Feature Selection and Classification of Electroencephalographic Signals: An Artificial Neural Network and Genetic Algorithm Based Approach.

    Science.gov (United States)

    Erguzel, Turker Tekin; Ozekes, Serhat; Tan, Oguz; Gultekin, Selahattin

    2015-10-01

    Feature selection is an important step in many pattern recognition systems aiming to overcome the so-called curse of dimensionality. In this study, an optimized classification method was tested in 147 patients with major depressive disorder (MDD) treated with repetitive transcranial magnetic stimulation (rTMS). The performance of the combination of a genetic algorithm (GA) and a back-propagation (BP) neural network (BPNN) was evaluated using 6-channel pre-rTMS electroencephalographic (EEG) patterns of theta and delta frequency bands. The GA was first used to eliminate the redundant and less discriminant features to maximize classification performance. The BPNN was then applied to test the performance of the feature subset. Finally, classification performance using the subset was evaluated using 6-fold cross-validation. Although the slow bands of the frontal electrodes are widely used to collect EEG data for patients with MDD and provide quite satisfactory classification results, the outcomes of the proposed approach indicate noticeably increased overall accuracy of 89.12% and an area under the receiver operating characteristic (ROC) curve (AUC) of 0.904 using the reduced feature set.

  2. ANFIS-based genetic algorithm for predicting the optimal sizing coefficient of photovoltaic supply systems

    Energy Technology Data Exchange (ETDEWEB)

    Mellit, A. [Medea Univ., Medea (Algeria). Inst. of Science Engineering, Dept. of Electronics

    2007-07-01

    Stand-alone photovoltaic (PV) power supply systems are regarded as reliable and economical sources of electricity in rural remote areas, particularly in developing countries. However, the sizing of stand-alone photovoltaic (PV) systems is an important part of the system design. Choosing the optimal number of solar cell panels and the size of the storage battery to be used for a certain application at a particular site is an important economical problem. In this paper, a genetic algorithm (GA) and an adaptive neuro-fuzzy inference scheme (ANFIS) were proposed as a means for determining the optimal size of PV system, particularly, in isolated areas. The GA-ANFIS model was shown to be suitable for modelling the optimal sizing parameters of PVS systems. The GA was used to determine the PV-array capacity and the storage capacity for 60 sites. From this database, 56 pairs relative to 56 sites were used for training the network. Four pairs were used for testing and validating the ANFIS model. A correlation of 99 per cent was achieved when complete unknown data parameters were presented to the model. The proposed technique provided more accurate results than the alternative artificial neural network (ANN) with GA. The advantage of this model was that it could estimate the PV-array area and the useful capacity of the battery from only geographical coordinates. Although the technique was applied and tested in Algeria, it can be generalized for any location in the world. 15 refs., 4 tabs., 8 figs.

  3. Pollutant source identification model for water pollution incidents in small straight rivers based on genetic algorithm

    Science.gov (United States)

    Zhang, Shou-ping; Xin, Xiao-kang

    2017-07-01

    Identification of pollutant sources for river pollution incidents is an important and difficult task in the emergency rescue, and an intelligent optimization method can effectively compensate for the weakness of traditional methods. An intelligent model for pollutant source identification has been established using the basic genetic algorithm (BGA) as an optimization search tool and applying an analytic solution formula of one-dimensional unsteady water quality equation to construct the objective function. Experimental tests show that the identification model is effective and efficient: the model can accurately figure out the pollutant amounts or positions no matter single pollution source or multiple sources. Especially when the population size of BGA is set as 10, the computing results are sound agree with analytic results for a single source amount and position identification, the relative errors are no more than 5 %. For cases of multi-point sources and multi-variable, there are some errors in computing results for the reasons that there exist many possible combinations of the pollution sources. But, with the help of previous experience to narrow the search scope, the relative errors of the identification results are less than 5 %, which proves the established source identification model can be used to direct emergency responses.

  4. Damage identification of a large-span concrete cable-stayed bridge based on genetic algorithm

    Institute of Scientific and Technical Information of China (English)

    ZHU Jinsong; XIAO Rucheng

    2007-01-01

    The global stability of a structure, the stiffness of its main girder and concrete tower, and the variation of the forces of its stay cables are key issues to the safety assessment of an in-service cable-stayed bridge. The efficiency and ratio- nality of local elaborate non-damage-identification could be enhanced by the primary damage identification of cable- stayed bridges on the basis of periodic detection of the cable force and strain monitor in key sections of the main girder. The genetic algorithms of damage identification for cable- stayed bridges were investigated in this paper on the basis of the monitor data of the cable force and strain in a key section of the main girder. A damage detection program for complex civil structure was generated to implement the identification of damage location and extent. The deterioration of the struc- ture was calculated according to the variation of monitor data. It is demonstrated that the results of damage identification from the parametric finite element method are accurate. The method had been verified using a long-span concrete cable- stayed bridge in Ningbo, which has been in use for the past four years.

  5. Multidisciplinary Design Optimization of Crankshaft Structure Based on Cooptimization and Multi-Island Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2016-01-01

    Full Text Available The feasibility design method with multidisciplinary and multiobjective optimization is applied in the research of lightweight design and NVH performances of crankshaft in high-power marine reciprocating compressor. Opt-LHD is explored to obtain the experimental scheme and perform data sampling. The elliptical basis function neural network (EBFNN model considering modal frequency, static strength, torsional vibration angular displacement, and lightweight design of crankshaft is built. Deterministic optimization and reliability optimization for lightweight design of crankshaft are operated separately. Multi-island genetic algorithm (MIGA combined with multidisciplinary cooptimization method is used to carry out the multiobjective optimization of crankshaft structure. Pareto optimal set is obtained. Optimization results demonstrate that the reliability optimization which considers the uncertainties of production process can ensure product stability compared with deterministic optimization. The coupling and decoupling of structure mechanical properties, NVH, and lightweight design are considered during the multiobjective optimization of crankshaft structure. Designers can choose the optimization results according to their demands, which means the production development cycle and the costs can be significantly reduced.

  6. Machine Learning-Based Parameter Tuned Genetic Algorithm for Energy Minimizing Vehicle Routing Problem

    Directory of Open Access Journals (Sweden)

    P. L. N. U. Cooray

    2017-01-01

    Full Text Available During the last decade, tremendous focus has been given to sustainable logistics practices to overcome environmental concerns of business practices. Since transportation is a prominent area of logistics, a new area of literature known as Green Transportation and Green Vehicle Routing has emerged. Vehicle Routing Problem (VRP has been a very active area of the literature with contribution from many researchers over the last three decades. With the computational constraints of solving VRP which is NP-hard, metaheuristics have been applied successfully to solve VRPs in the recent past. This is a threefold study. First, it critically reviews the current literature on EMVRP and the use of metaheuristics as a solution approach. Second, the study implements a genetic algorithm (GA to solve the EMVRP formulation using the benchmark instances listed on the repository of CVRPLib. Finally, the GA developed in Phase 2 was enhanced through machine learning techniques to tune its parameters. The study reveals that, by identifying the underlying characteristics of data, a particular GA can be tuned significantly to outperform any generic GA with competitive computational times. The scrutiny identifies several knowledge gaps where new methodologies can be developed to solve the EMVRPs and develops propositions for future research.

  7. An Approach to Assembly Sequence Plannning Based on Hierarchical Strategy and Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    Niu Xinwen; Ding Han; Xiong Youlun

    2001-01-01

    Using group and subassembly cluster methods, the hierarchical structure of a product is.generated automatically, which largely reduces the complexity of planning. Based on genetic algofithn the optimal of assembly sequence of each stracture level can be obtained by sequence-bysequence search. As a result, a better assembly sequence of the product can be generated by combining the assembly sequences of all hierarchical structures, which provides more parallelism and flexibility for assembly operations. An industrial example is solved by this new approach.

  8. Multi-Stage Feature Selection by Using Genetic Algorithms for Fault Diagnosis in Gearboxes Based on Vibration Signal

    Directory of Open Access Journals (Sweden)

    Mariela Cerrada

    2015-09-01

    Full Text Available There are growing demands for condition-based monitoring of gearboxes, and techniques to improve the reliability, effectiveness and accuracy for fault diagnosis are considered valuable contributions. Feature selection is still an important aspect in machine learning-based diagnosis in order to reach good performance in the diagnosis system. The main aim of this research is to propose a multi-stage feature selection mechanism for selecting the best set of condition parameters on the time, frequency and time-frequency domains, which are extracted from vibration signals for fault diagnosis purposes in gearboxes. The selection is based on genetic algorithms, proposing in each stage a new subset of the best features regarding the classifier performance in a supervised environment. The selected features are augmented at each stage and used as input for a neural network classifier in the next step, while a new subset of feature candidates is treated by the selection process. As a result, the inherent exploration and exploitation of the genetic algorithms for finding the best solutions of the selection problem are locally focused. The Sensors 2015, 15 23904 approach is tested on a dataset from a real test bed with several fault classes under different running conditions of load and velocity. The model performance for diagnosis is over 98%.

  9. Population resizing on fitness improvement genetic algorithm to optimize promotion visit route based on android and google maps API

    Science.gov (United States)

    Listyorini, Tri; Muzid, Syafiul

    2017-06-01

    The promotion team of Muria Kudus University (UMK) has done annual promotion visit to several senior high schools in Indonesia. The visits were done to numbers of schools in Kudus, Jepara, Demak, Rembang and Purwodadi. To simplify the visit, each visit round is limited to 15 (fifteen) schools. However, the team frequently faces some obstacles during the visit, particularly in determining the route that they should take toward the targeted school. It is due to the long distance or the difficult route to reach the targeted school that leads to elongated travel duration and inefficient fuel cost. To solve these problems, the development of a certain application using heuristic genetic algorithm method based on the dynamic of population size or Population Resizing on Fitness lmprovement Genetic Algorithm (PRoFIGA), was done. This android-based application was developed to make the visit easier and to determine a shorter route for the team, hence, the visiting period will be effective and efficient. The result of this research was an android-based application to determine the shortest route by combining heuristic method and Google Maps Application Programming lnterface (API) that display the route options for the team.

  10. Optimal Genetic View Selection Algorithm for Data Warehouse

    Institute of Scientific and Technical Information of China (English)

    Wang Ziqiang; Feng Boqin

    2005-01-01

    To efficiently solve the materialized view selection problem, an optimal genetic algorithm of how to select a set of views to be materialized is proposed so as to achieve both good query performance and low view maintenance cost under a storage space constraint. First, a pre-processing algorithm based on the maximum benefit per unit space is used to generate initial solutions. Then, the initial solutions are improved by the genetic algorithm having the mixture of optimal strategies. Furthermore, the generated infeasible solutions during the evolution process are repaired by loss function. The experimental results show that the proposed algorithm outperforms the heuristic algorithm and canonical genetic algorithm in finding optimal solutions.

  11. Load balancing prediction method of cloud storage based on analytic hierarchy process and hybrid hierarchical genetic algorithm.

    Science.gov (United States)

    Zhou, Xiuze; Lin, Fan; Yang, Lvqing; Nie, Jing; Tan, Qian; Zeng, Wenhua; Zhang, Nian

    2016-01-01

    With the continuous expansion of the cloud computing platform scale and rapid growth of users and applications, how to efficiently use system resources to improve the overall performance of cloud computing has become a crucial issue. To address this issue, this paper proposes a method that uses an analytic hierarchy process group decision (AHPGD) to evaluate the load state of server nodes. Training was carried out by using a hybrid hierarchical genetic algorithm (HHGA) for optimizing a radial basis function neural network (RBFNN). The AHPGD makes the aggregative indicator of virtual machines in cloud, and become input parameters of predicted RBFNN. Also, this paper proposes a new dynamic load balancing scheduling algorithm combined with a weighted round-robin algorithm, which uses the predictive periodical load value of nodes based on AHPPGD and RBFNN optimized by HHGA, then calculates the corresponding weight values of nodes and makes constant updates. Meanwhile, it keeps the advantages and avoids the shortcomings of static weighted round-robin algorithm.

  12. A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system

    Science.gov (United States)

    Chai, Xiu-Li; Gan, Zhi-Hua; Lu, Yang; Zhang, Miao-Hui; Chen, Yi-Ran

    2016-10-01

    Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional (4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes, and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203094 and 61305042), the Natural Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).

  13. Model-based Layer Estimation using a Hybrid Genetic/Gradient Search Optimization Algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Chambers, D; Lehman, S; Dowla, F

    2007-05-17

    A particle swarm optimization (PSO) algorithm is combined with a gradient search method in a model-based approach for extracting interface positions in a one-dimensional multilayer structure from acoustic or radar reflections. The basic approach is to predict the reflection measurement using a simulation of one-dimensional wave propagation in a multi-layer, evaluate the error between prediction and measurement, and then update the simulation parameters to minimize the error. Gradient search methods alone fail due to the number of local minima in the error surface close to the desired global minimum. The PSO approach avoids this problem by randomly sampling the region of the error surface around the global minimum, but at the cost of a large number of evaluations of the simulator. The hybrid approach uses the PSO at the beginning to locate the general area around the global minimum then switches to the gradient search method to zero in on it. Examples of the algorithm applied to the detection of interior walls of a building from reflected ultra-wideband radar signals are shown. Other possible applications are optical inspection of coatings and ultrasonic measurement of multilayer structures.

  14. Application of multi-objective optimization based on genetic algorithm for sustainable strategic supplier selection under fuzzy environment

    Directory of Open Access Journals (Sweden)

    Muhammad Hashim

    2017-05-01

    Full Text Available Purpose:  The incorporation of environmental objective into the conventional supplier selection practices is crucial for corporations seeking to promote green supply chain management (GSCM. Challenges and risks associated with green supplier selection have been broadly recognized by procurement and supplier management professionals. This paper aims to solve a Tetra “S” (SSSS problem based on a fuzzy multi-objective optimization with genetic algorithm in a holistic supply chain environment. In this empirical study, a mathematical model with fuzzy coefficients is considered for sustainable strategic supplier selection (SSSS problem and a corresponding model is developed to tackle this problem. Design/methodology/approach: Sustainable strategic supplier selection (SSSS decisions are typically multi-objectives in nature and it is an important part of green production and supply chain management for many firms. The proposed uncertain model is transferred into deterministic model by applying the expected value mesurement (EVM and genetic algorithm with weighted sum approach for solving the multi-objective problem. This research focus on a multi-objective optimization model for minimizing lean cost, maximizing sustainable service and greener product quality level. Finally, a mathematical case of textile sector is presented to exemplify the effectiveness of the proposed model with a sensitivity analysis. Findings: This study makes a certain contribution by introducing the Tetra ‘S’ concept in both the theoretical and practical research related to multi-objective optimization as well as in the study of sustainable strategic supplier selection (SSSS under uncertain environment. Our results suggest that decision makers tend to select strategic supplier first then enhance the sustainability. Research limitations/implications: Although the fuzzy expected value model (EVM with fuzzy coefficients constructed in present research should be helpful for

  15. Pattern Recognition and Pathway Analysis with Genetic Algorithms in Mass Spectrometry Based Metabolomics

    Directory of Open Access Journals (Sweden)

    Wei Zou

    2009-04-01

    Full Text Available A robust and complete workflow for metabolic profiling and data mining was described in detail. Three independent and complementary analytical techniques for metabolic profiling were applied: hydrophilic interaction chromatography (HILIC–LC–ESI–MS, reversed-phase liquid chromatography (RP–LC–ESI–MS, and gas chromatography (GC–TOF–MS all coupled to mass spectrometry (MS. Unsupervised methods, such as principle component analysis (PCA and clustering, and supervised methods, such as classification and PCA-DA (discriminatory analysis were used for data mining. Genetic Algorithms (GA, a multivariate approach, was probed for selection of the smallest subsets of potentially discriminative predictors. From thousands of peaks found in total, small subsets selected by GA were considered as highly potential predictors allowing discrimination among groups. It was found that small groups of potential top predictors selected with PCA-DA and GA are different and unique. Annotated GC–TOF–MS data generated identified feature metabolites. Metabolites putatively detected with LC–ESI–MS profiling require further elemental composition assignment with accurate mass measurement by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS and structure elucidation by nuclear magnetic resonance spectroscopy (NMR. GA was also used to generate correlated networks for pathway analysis. Several case studies, comprising groups of plant samples bearing different genotypes and groups of samples of human origin, namely patients and healthy volunteers’ urine samples, demonstrated that such a workflow combining comprehensive metabolic profiling and advanced data mining techniques provides a powerful approach for pattern recognition and biomarker discovery

  16. Spatial Interpolation of Annual Runoff in Ungauged Basins Based on the Improved Information Diffusion Model Using a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Mei Hong

    2017-01-01

    Full Text Available Prediction in Ungauged Basins (PUB is an important task for water resources planning and management and remains a fundamental challenge for the hydrological community. In recent years, geostatistical methods have proven valuable for estimating hydrological variables in ungauged catchments. However, four major problems restrict the development of geostatistical methods. We established a new information diffusion model based on genetic algorithm (GIDM for spatial interpolating of runoff in the ungauged basins. Genetic algorithms (GA are used to generate high-quality solutions to optimization and search problems. So, using GA, the parameter of optimal window width can be obtained. To test our new method, seven experiments for the annual runoff interpolation based on GIDM at 17 stations on the mainstream and tributaries of the Yellow River are carried out and compared with the inverse distance weighting (IDW method, Cokriging (COK method, and conventional IDMs using the same sparse observed data. The seven experiments all show that the GIDM method can solve four problems of the previous geostatistical methods to some extent and obtains best accuracy among four different models. The key problems of the PUB research are the lack of observation data and the difficulties in information extraction. So the GIDM is a new and useful tool to solve the Prediction in Ungauged Basins (PUB problem and to improve the water management.

  17. Intelligent control a hybrid approach based on fuzzy logic, neural networks and genetic algorithms

    CERN Document Server

    Siddique, Nazmul

    2014-01-01

    Intelligent Control considers non-traditional modelling and control approaches to nonlinear systems. Fuzzy logic, neural networks and evolutionary computing techniques are the main tools used. The book presents a modular switching fuzzy logic controller where a PD-type fuzzy controller is executed first followed by a PI-type fuzzy controller thus improving the performance of the controller compared with a PID-type fuzzy controller.  The advantage of the switching-type fuzzy controller is that it uses one rule-base thus minimises the rule-base during execution. A single rule-base is developed by merging the membership functions for change of error of the PD-type controller and sum of error of the PI-type controller. Membership functions are then optimized using evolutionary algorithms. Since the two fuzzy controllers were executed in series, necessary further tuning of the differential and integral scaling factors of the controller is then performed. Neural-network-based tuning for the scaling parameters of t...

  18. Genetic algorithm optimization for finned channel performance

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Compared to a smooth channel, a finned channel provides a higher heat transfer coefficient; increasing the fin height enhances the heat transfer. However, this heat transfer enhancement is associated with an increase in the pressure drop. This leads to an increased pumping power requirement so that one may seek an optimum design for such systems. The main goal of this paper is to define the exact location and size of fins in such a way that a minimal pressure drop coincides with an optimal heat transfer based on the genetic algorithm. Each fin arrangement is considered a solution to the problem(an individual for genetic algorithm). An initial population is generated randomly at the first step. Then the algorithm has been searched among these solutions and made new solutions iteratively by its functions to find an optimum design as reported in this article.

  19. Comparison of Genetic Algorithm, Particle Swarm Optimization and Biogeography-based Optimization for Feature Selection to Classify Clusters of Microcalcifications

    Science.gov (United States)

    Khehra, Baljit Singh; Pharwaha, Amar Partap Singh

    2016-06-01

    Ductal carcinoma in situ (DCIS) is one type of breast cancer. Clusters of microcalcifications (MCCs) are symptoms of DCIS that are recognized by mammography. Selection of robust features vector is the process of selecting an optimal subset of features from a large number of available features in a given problem domain after the feature extraction and before any classification scheme. Feature selection reduces the feature space that improves the performance of classifier and decreases the computational burden imposed by using many features on classifier. Selection of an optimal subset of features from a large number of available features in a given problem domain is a difficult search problem. For n features, the total numbers of possible subsets of features are 2n. Thus, selection of an optimal subset of features problem belongs to the category of NP-hard problems. In this paper, an attempt is made to find the optimal subset of MCCs features from all possible subsets of features using genetic algorithm (GA), particle swarm optimization (PSO) and biogeography-based optimization (BBO). For simulation, a total of 380 benign and malignant MCCs samples have been selected from mammogram images of DDSM database. A total of 50 features extracted from benign and malignant MCCs samples are used in this study. In these algorithms, fitness function is correct classification rate of classifier. Support vector machine is used as a classifier. From experimental results, it is also observed that the performance of PSO-based and BBO-based algorithms to select an optimal subset of features for classifying MCCs as benign or malignant is better as compared to GA-based algorithm.

  20. Back-propagation network improved by conjugate gradient based on genetic algorithm in QSAR study on endocrine disrupting chemicals

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Since the complexity and structural diversity of man-made compounds are considered,quantitative structure-activity relationships(QSARs)-based fast screening approaches are urgently needed for the assessment of the potential risk of endocrine disrupting chemicals(EDCs).The artificial neural networks(ANN)are capable of recognizing highly nonlinear relationships,so it will have a bright application prospect in building high-quality QSAR models.As a popular supervised training algorithm in ANN,back-propagation(BP)converges slowly and immerses in vibration frequently.In this paper,a research strategy that BP neural network was improved by conjugate gradient(CG)algorithm with a variable selection method based on genetic algorithm was applied to investigate the QSAR of EDCs.This resulted in a robust and highly predictive ANN model with R2 of 0.845 for the training set,q2 pred of 0.81 and root-mean-square error(RMSE) of 0.688 for the test set.The result shows that our method can provide a feasible and practical tool for the rapid screening of the estrogen activity of organic compounds.