WorldWideScience

Sample records for genetic aids vaccine

  1. Genetic Immunity to AIDS

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    In an article on genetic immunity to AIDS published in Science magazine, American and Chinese scientists claim to have discovered why certain HIV carriers do not develop full-blown AIDS. They say that the key to this conundrum lies in a particular protein in the endocrine system that inhibits development of HIV.

  2. HIV/AIDS and Vaccines

    Science.gov (United States)

    ... against the disease. Is There a Vaccine for HIV? No. There is currently no vaccine that will ... in this video! /* // ** // */ Why Do We Need an HIV Vaccine? Today, more people living with HIV than ...

  3. The Development of an AIDS Mucosal Vaccine

    Directory of Open Access Journals (Sweden)

    Xian Tang

    2010-01-01

    Full Text Available It is well known that mucosal tissues contain the largest surface area of the human body and are the front line of natural host defense against various pathogens. In fact, more than 80% of infectious disease pathogens probably gain entry into the susceptible human hosts through open mucosal surfaces. Human immunodeficiency virus type one (HIV-1, a mainly sexually transmitted virus, also primarily targets the vaginal and gastrointestinal mucosa as entry sites for viral transmission, seeding, replication and amplification. Since HIV-1 establishes its early replication in vaginal or rectal mucosal tissues, the induction of sufficient mucosal immunity at the initial site of HIV-1 transmission becomes essential for a protective vaccine. However, despite the fact that current conventional vaccine strategies have remained unsuccessful in preventing HIV-1 infection, sufficient financial support and resources have yet to be given to develop a vaccine able to elicit protective mucosal immunity against sexual transmissions. Interestingly, Chinese ancestors invented variolation through intranasal administration about one thousand years ago, which led to the discovery of a successful smallpox vaccine and the final eradication of the disease. It is the hope for all mankind that the development of a mucosal AIDS vaccine will ultimately help control the AIDS pandemic. In order to discover an effective mucosal AIDS vaccine, it is necessary to have a deep understanding of mucosal immunology and to test various mucosal vaccination strategies.

  4. Studies of Genetic Variation in the AIDS Virus: Relevance to Disease Pathogenesis Anti-Viral Therapy, and Vaccine Development

    Science.gov (United States)

    1990-06-30

    lentiviral systems including equine infectious anemia virus (EIAV), visna virus, and simian immunodeficiency virus (SIV) (119,120,154). For EIAV, it is clear...virus carrier), different modes of virus transmission (perinatal, heterosexual, and homosexual), and widely different numbers of exposures to the AIDS...virus from a healthy Senegalese woman, we concluded that HTLV-4 and STLV-3AC are not independent laboratory isolates, but instead represent transmission

  5. AIDS vaccine: Present status and future challenges

    Directory of Open Access Journals (Sweden)

    Nigam P

    2006-01-01

    Full Text Available Development of a preventive vaccine for HIV is the best hope of controlling the AIDS pandemic. HIV has, however, proved a difficult pathogen to vaccinate against because of its very high mutation rate and capability to escape immune responses. Neutralizing antibodies that can neutralize diverse field strains have so far proved difficult to induce. Adjuvanting these vaccines with cytokine plasmids and a "prime-boost," approach is being evaluated in an effort to induce both CTL and antibody responses and thereby have immune responses active against both infected cells and free viral particles, thereby necessitating fewer doses of recombinant protein to reach maximum antibodies titers. Although obstacles exist in evaluation of candidate HIV vaccines, evidence from natural history studies, new molecular tools in virology and immunology, new adjuvants, new gene expression systems, new antigen delivery systems, recent discoveries in HIV entry and pathogenesis, and promising studies of candidate vaccines in animal models have provided reasons to hope that developing a safe and effective AIDS vaccine is possible and within reach.

  6. Nonhuman primate models for HIV/AIDS vaccine development.

    Science.gov (United States)

    Sui, Yongjun; Gordon, Shari; Franchini, Genoveffa; Berzofsky, Jay A

    2013-10-01

    The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV. Copyright © 2013 John Wiley & Sons, Inc.

  7. AIDS vaccine for Asia Network (AVAN: expanding the regional role in developing HIV vaccines.

    Directory of Open Access Journals (Sweden)

    Stephen J Kent

    2010-09-01

    Full Text Available The HIV/AIDS pandemic continues to spread and an AIDS vaccine is urgently needed. Regional alliances and international collaborations can foster the development and evaluation of the next generation of AIDS vaccine candidates. The importance of coordinating and harmonizing efforts across regional alliances has become abundantly clear. We recently formed the AIDS Vaccine for Asia Network (AVAN to help facilitate the development of a regional AIDS vaccine strategy that accelerates research and development of an AIDS vaccine through government advocacy, improved coordination, and harmonization of research; develops clinical trial and manufacturing capacity; supports ethical and regulatory frameworks; and ensures community participation.

  8. An Interview with AIDS Vaccine Researcher Chris Parks

    Science.gov (United States)

    Sullivan, Megan

    2010-01-01

    The search for an AIDS (acquired immune deficiency syndrome) vaccine is truly a global effort, with university laboratories, biotech firms, pharmaceutical companies, nonprofit research organizations, hospitals, and clinics all working together to develop an effective vaccine as quickly as possible. The International AIDS Vaccine Initiative (IAVI)…

  9. Computer-Aided Vaccine Design: A Brief Report

    Directory of Open Access Journals (Sweden)

    R Ghasemi Khorasgani

    2012-09-01

    Full Text Available Background: Although the conventional vaccines have been instrumented in the incidence of many infectious diseases, the advances in genetic engineering and bioinformatics have provided the opportunity for developing improved and new vaccines.Methods: Reverse vaccinology was pioneered by a group of researchers investigating development of a vaccine against serogroup B Neisseria meningitidis. Reverse vaccinology analyzes the entire genome of a pathogen with the aid of computational programs to identify potentially antigenic extracellular proteins.Results: Using this method for Neisseria meningitidis genome analysis, 600 secretory or surface-exposed proteins were identified and, subsequently, 350 proteins were expressed and purified. Finally, seven proteins capable of activating the immune system against a range of strains were identified.Conclusion: Improved computational techniques are now able to provide researchers with high-confidence predictions for complex biological characteristics. This will herald a move to computer-aided biotechnology in which time-consuming and expensive large-scale experimental approaches are progressively replaced by functional bioinformatic investigations.

  10. Arthritis Genetics Analysis Aids Drug Discovery

    Science.gov (United States)

    ... Matters NIH Research Matters January 13, 2014 Arthritis Genetics Analysis Aids Drug Discovery An international research team ... may play a role in triggering the disease. Genetic factors are also thought to play a role. ...

  11. The development of an AIDS vaccine: progress and promise.

    OpenAIRE

    Fauci, A S; Fischinger, P J

    1988-01-01

    The development of a safe and effective vaccine against infection by the human immunodeficiency virus (HIV) is of paramount importance to the prevention of AIDS worldwide. Although a great deal has been learned about HIV in a few short years, the development of an AIDS vaccine has proved to be extremely difficult. The lack of an appropriate animal model for AIDS, the absence of a defined protective immune response in persons infected with HIV, the long latent period between initial infection ...

  12. Genetic characterization of measles vaccine strains.

    Science.gov (United States)

    Bankamp, Bettina; Takeda, Makoto; Zhang, Yan; Xu, Wenbo; Rota, Paul A

    2011-07-01

    The complete genomic sequences of 9 measles vaccine strains were compared with the sequence of the Edmonston wild-type virus. AIK-C, Moraten, Rubeovax, Schwarz, and Zagreb are vaccine strains of the Edmonston lineage, whereas CAM-70, Changchun-47, Leningrad-4 and Shanghai-191 were derived from 4 different wild-type isolates. Nucleotide substitutions were found in the noncoding regions of the genomes as well as in all coding regions, leading to deduced amino acid substitutions in all 8 viral proteins. Although the precise mechanisms involved in the attenuation of individual measles vaccines remain to be elucidated, in vitro assays of viral protein functions and recombinant viruses with defined genetic modifications have been used to characterize the differences between vaccine and wild-type strains. Although almost every protein contributes to an attenuated phenotype, substitutions affecting host cell tropism, virus assembly, and the ability to inhibit cellular antiviral defense mechanisms play an especially important role in attenuation.

  13. Non-human primate models for HIV/AIDS vaccine development

    Science.gov (United States)

    Sui, Yongjun; Gordon, Shari; Franchini, Genoveffa; Berzofsky, Jay A.

    2013-01-01

    The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the Simian Immunodeficiency Viruses (SIV) that causes a disease in macaques that closely mimics HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here, we examine the multiple variables and considerations that must be taken into account to use this NHP model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration and macaque genetics including Major Histocompatibility Complex molecules that affect immune responses and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues than could not easily be performed on human volunteers. Futhermore macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV. PMID:24510515

  14. Genetic algorithms in computer aided inductor design

    OpenAIRE

    Jean Fivaz; Willem A. Cronjé

    2004-01-01

    The goal of this investigation is to determine the advantages of using genetic algorithms in computer-aided design as applied to inductors.  These advantages are exploited in design problems with a number of specifications and constraints, as encountered in power electronics during practical inductor design. The design tool should be able to select components, such as cores and wires, from databases of available components, and evaluate these choices based on the components’ characteristic d...

  15. Arenavirus reverse genetics for vaccine development.

    Science.gov (United States)

    Ortiz-Riaño, Emilio; Cheng, Benson Yee Hin; Carlos de la Torre, Juan; Martínez-Sobrido, Luis

    2013-06-01

    Arenaviruses are important human pathogens with no Food and Drug Administration (FDA)-licensed vaccines available and current antiviral therapy being limited to an off-label use of the nucleoside analogue ribavirin of limited prophylactic efficacy. The development of reverse genetics systems represented a major breakthrough in arenavirus research. However, rescue of recombinant arenaviruses using current reverse genetics systems has been restricted to rodent cells. In this study, we describe the rescue of recombinant arenaviruses from human 293T cells and Vero cells, an FDA-approved line for vaccine development. We also describe the generation of novel vectors that mediate synthesis of both negative-sense genome RNA and positive-sense mRNA species of lymphocytic choriomeningitis virus (LCMV) directed by the human RNA polymerases I and II, respectively, within the same plasmid. This approach reduces by half the number of vectors required for arenavirus rescue, which could facilitate virus rescue in cell lines approved for human vaccine production but that cannot be transfected at high efficiencies. We have shown the feasibility of this approach by rescuing both the Old World prototypic arenavirus LCMV and the live-attenuated vaccine Candid#1 strain of the New World arenavirus Junín. Moreover, we show the feasibility of using these novel strategies for efficient rescue of recombinant tri-segmented both LCMV and Candid#1.

  16. Genetic algorithms in computer aided inductor design

    Directory of Open Access Journals (Sweden)

    Jean Fivaz

    2004-09-01

    Full Text Available The goal of this investigation is to determine the advantages of using genetic algorithms in computer-aided design as applied to inductors.  These advantages are exploited in design problems with a number of specifications and constraints, as encountered in power electronics during practical inductor design. The design tool should be able to select components, such as cores and wires, from databases of available components, and evaluate these choices based on the components’ characteristic data read from a database of manufacturers’ data-sheets.  The proposed design must always be practically realizable, as close to the desired specifications as possible and within any specified constraints.

  17. The Potential of Vaccines for the Control of AIDS

    Directory of Open Access Journals (Sweden)

    Margaret I Johnston

    1994-01-01

    of attenuated and whole-killed products have led to the pursuit of alternativc designs. including recombinant proteins, vectors and particles, synthetic peptides and naked DNA. Seven recombinant envelope. two recombinant vector and four other candidate vaccines that have entered into phase 1 trials in noninfected individuals have proven safe to date, and have differed In their ability lo induce functional antibody and Cytotoxic T lymphocytes. Two recombinant envelope products have recently progressed to phase 2 testing, Five envelope-based and six other products have entered trial in HIV-infected and individuals and have appeared to be safe, Evidence of new antibody, increased T cell proliferation and lncreased cytotoxic T lymphocyte activity have been reported. Additional placebo controlled trials will be required to evaluate the impact of therapeutic vaccination on CD4 cell count. viral burdrn and clinical end-points. The status of HIV/AIDS vaccine development is reviewed. with emphasis on the challenging task of finding an effieacious, safe, prophylactic vaccine.

  18. Knowledge about vaccine trials and willingness to participate in an HIV/AIDS vaccine study in the Ugandan military.

    Science.gov (United States)

    McGrath, J W; George, K; Svilar, G; Ihler, E; Mafigiri, D; Kabugo, M; Mugisha, E

    2001-08-01

    In preparation for HIV vaccine trials, knowledge about vaccines, willingness to participate in a vaccine study, and motivations for participation must be assessed. The Preparation for AIDS Vaccine Evaluation study assessed knowledge about vaccines and vaccine trials and willingness to participate in a hypothetical trial in 1,182 Ugandan military men (aged 18-30 years). Participants received education about vaccine trials and were interviewed during 24 months of follow-up observation. Its key findings are that: 1) throughout follow-up, most participants expressed willingness to participate in a hypothetical HIV vaccine trial; 2) participants are familiar with vaccines but do not clearly distinguish the use of vaccines for prevention or curing; 3) the most common reason given for being interested in participating in a vaccine trial was to be protected from HIV/AIDS; 4) trials' procedures (e.g., placebos, randomization, and blinding) were unfamiliar; and 5) knowledge about trials' procedures increased incrementally over follow-up, but at different rates for different concepts. These data demonstrate that potential vaccine trials' participants may benefit from vaccine trial education if adequate time is allowed to ensure that participants are able to master the complex information required for trial participation.

  19. Convergent ethical issues in HIV/AIDS, tuberculosis and malaria vaccine trials in Africa: Report from the WHO/UNAIDS African AIDS Vaccine Programme's Ethics, Law and Human Rights Collaborating Centre consultation, 10-11 February 2009, Durban, South Africa

    National Research Council Canada - National Science Library

    Mamotte, Nicole; Wassenaar, Douglas; Koen, Jennifer; Essack, Zaynab

    2010-01-01

    .... In order to explore convergent ethical issues in HIV/AIDS, TB and malaria vaccine trials in Africa, the Ethics, Law and Human Rights Collaborating Centre of the WHO/UNAIDS African AIDS Vaccine...

  20. Strengthening capacity for AIDS vaccine research: analysis of the Pfizer Global Health Fellows program and the International AIDS Vaccine Initiative.

    Science.gov (United States)

    Vian, Taryn; Koseki, Sayaka; Feeley, Frank G; Beard, Jennifer

    2013-10-02

    Industry partnerships can help leverage resources to advance HIV/AIDS vaccine research, service delivery, and policy advocacy goals. This often involves capacity building for international and local non-governmental organizations (NGOs). International volunteering is increasingly being used as a capacity building strategy, yet little is known about how corporate volunteers help to improve performance of NGOs in the fight against HIV/AIDS. This case study helps to extend our understanding by analyzing how the Pfizer Global Health Fellows (GHF) program helped develop capacity of the International AIDS Vaccine Initiative (IAVI), looking specifically at Fellowship activities in South Africa, Kenya, and Uganda. From 2005-2009, 8 Pfizer GHF worked with IAVI and local research centers to strengthen capacity to conduct and monitor vaccine trials to meet international standards and expand trial activities. Data collection for the case study included review of Fellow job descriptions, online journals, evaluation reports, and interviews with Fellows and IAVI staff. Qualitative methods were used to analyze factors which influenced the process and outcomes of capacity strengthening. Fellows filled critical short-term expert staffing needs at IAVI as well as providing technical assistance and staff development activities. Capacity building included assistance in establishing operating procedures for the start-up period of research centers; training staff in Good Clinical Practice (GCP); developing monitoring capacity (staff and systems) to assure that centers are audit-ready at all times; and strategic planning for data management systems. Factors key to the success of volunteering partnerships included similarities in mission between the corporate and NGO partners, expertise and experience of Fellows, and attitudes of partner organization staff. By developing standard operating procedures, ensuring that monitoring and regulatory compliance systems were in place, training

  1. Lessons in Nonhuman Primate Models for AIDS Vaccine Research: From Minefields to Milestones

    OpenAIRE

    Jeffrey D Lifson; Nancy L Haigwood

    2012-01-01

    Nonhuman primate (NHP) disease models for AIDS have made important contributions to the search for effective vaccines for AIDS. Viral diversity, persistence, capacity for immune evasion, and safety considerations have limited development of conventional approaches using killed or attenuated vaccines, necessitating the development of novel approaches. Here we highlight the knowledge gained and lessons learned in testing vaccine concepts in different virus/NHP host combinations.

  2. Innate Immune Signaling by, Genetic Adjuvants for, DNA Vaccination

    Directory of Open Access Journals (Sweden)

    Kouji Kobiyama

    2013-07-01

    Full Text Available DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.

  3. Innate Immune Signaling by, and Genetic Adjuvants for DNA Vaccination.

    Science.gov (United States)

    Kobiyama, Kouji; Jounai, Nao; Aoshi, Taiki; Tozuka, Miyuki; Takeshita, Fumihiko; Coban, Cevayir; Ishii, Ken J

    2013-01-01

    DNA vaccines can induce both humoral and cellular immune responses. Although some DNA vaccines are already licensed for infectious diseases in animals, they are not licensed for human use because the risk and benefit of DNA vaccines is still controversial. Indeed, in humans, the immunogenicity of DNA vaccines is lower than that of other traditional vaccines. To develop the use of DNA vaccines in the clinic, various approaches are in progress to enhance or improve the immunogenicity of DNA vaccines. Recent studies have shown that immunogenicity of DNA vaccines are regulated by innate immune responses via plasmid DNA recognition through the STING-TBK1 signaling cascade. Similarly, molecules that act as dsDNA sensors that activate innate immune responses through STING-TBK1 have been identified and used as genetic adjuvants to enhance DNA vaccine immunogenicity in mouse models. However, the mechanisms that induce innate immune responses by DNA vaccines are still unclear. In this review, we will discuss innate immune signaling upon DNA vaccination and genetic adjuvants of innate immune signaling molecules.

  4. The delicate balance in genetically engineering live vaccines.

    Science.gov (United States)

    Galen, James E; Curtiss, Roy

    2014-07-31

    Contemporary vaccine development relies less on empirical methods of vaccine construction, and now employs a powerful array of precise engineering strategies to construct immunogenic live vaccines. In this review, we will survey various engineering techniques used to create attenuated vaccines, with an emphasis on recent advances and insights. We will further explore the adaptation of attenuated strains to create multivalent vaccine platforms for immunization against multiple unrelated pathogens. These carrier vaccines are engineered to deliver sufficient levels of protective antigens to appropriate lymphoid inductive sites to elicit both carrier-specific and foreign antigen-specific immunity. Although many of these technologies were originally developed for use in Salmonella vaccines, application of the essential logic of these approaches will be extended to development of other enteric vaccines where possible. A central theme driving our discussion will stress that the ultimate success of an engineered vaccine rests on achieving the proper balance between attenuation and immunogenicity. Achieving this balance will avoid over-activation of inflammatory responses, which results in unacceptable reactogenicity, but will retain sufficient metabolic fitness to enable the live vaccine to reach deep tissue inductive sites and trigger protective immunity. The breadth of examples presented herein will clearly demonstrate that genetic engineering offers the potential for rapidly propelling vaccine development forward into novel applications and therapies which will significantly expand the role of vaccines in public health.

  5. HIV/AIDS vaccines for Africa: scientific opportunities, challenges and strategies

    Science.gov (United States)

    Chin'ombe, Nyasha; Ruhanya, Vurayai

    2015-01-01

    More than decades have already elapsed since human immunodeficiency virus (HIV) was identified as the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV has since spread to all parts of the world with devastating effects. In sub-saharan Africa, the HIV/AIDS epidemic has reached unprecedented proportions. Safe, effective and affordable HIV/AIDS vaccines for Africans are therefore urgently needed to contain this public health problem. Although, there are challenges, there are also scientific opportunities and strategies that can be exploited in the development of HIV/AIDS vaccines for Africa. The recent RV144 Phase III trial in Thailand has demonstrated that it is possible to develop a vaccine that can potentially elicit modest protective immunity against HIV infection. The main objective of this review is to outline the key scientific opportunities, challenges and strategies in HIV/AIDS vaccine development in Africa. PMID:26185576

  6. Genetic content of Influenza H3N2 vaccine seeds.

    Science.gov (United States)

    Bergeron, Corinne; Valette, Martine; Lina, Bruno; Ottmann, Michele

    2010-09-05

    Influenza vaccine seeds produced in chicken eggs are selected through HA and NA surface glycoproteins antigenicity, as well as through high replicative ability. Here we characterize the genetic content of recently used thirteen H3N2 influenza vaccine seeds. Interestingly, sequence analysis of the vaccine seeds shows reassortment events leading to PR8:H3N2 segment constellations, ranging from the 6:2 to 2:6 constellations. This study shows that the H3N2 PB1 is the most frequent internal segment incorporated in the tested vaccines seeds.

  7. A framework for HIV/AIDS vaccine research in Zimbabwe | Gomo ...

    African Journals Online (AJOL)

    A framework for HIV/AIDS vaccine research in Zimbabwe. ... Zimbabwe Science News. Journal Home ... Firstly, there currently is no data that unequivocally establishes the existence of sterile immunity against HIV in humans. Secondly ...

  8. Ending the Global HIV/AIDS Pandemic: The Critical Role of an HIV Vaccine

    Science.gov (United States)

    Fauci, Anthony S.; Folkers, Gregory K.; Marston, Hilary D.

    2014-01-01

    While the human immunodeficiency virus (HIV)/AIDS pandemic continues, the incidence of HIV infections has fallen because of the deployment of antiretroviral drugs and multiple prevention modalities. To achieve a durable end to the pandemic, a vaccine remains essential. Recent advances in vaccinology offer new promise for an effective HIV vaccine. PMID:25151483

  9. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Directory of Open Access Journals (Sweden)

    Gennaro Ciliberto

    2011-09-01

    Full Text Available Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  10. Emerging Cancer Vaccines: The Promise of Genetic Vectors

    Energy Technology Data Exchange (ETDEWEB)

    Aurisicchio, Luigi, E-mail: aurisicchio@takis-it.it [Takis, via di Castel Romano 100, 00128 Rome (Italy); BIOGEM scarl, via Camporeale, 83031 Ariano Irpino (AV) (Italy); Ciliberto, Gennaro [Takis, via di Castel Romano 100, 00128 Rome (Italy); Dipartimento di Medicina Sperimentale e Clinica, Università degli studi di Catanzaro “Magna Graecia”, 88100 Catanzaro (Italy)

    2011-09-22

    Therapeutic vaccination against cancer is an important approach which, when combined with other therapies, can improve long-term control of cancer. In fact, the induction of adaptive immune responses against Tumor Associated Antigens (TAAs) as well as innate immunity are important factors for tumor stabilization/eradication. A variety of immunization technologies have been explored in last decades and are currently under active evaluation, such as cell-based, protein, peptide and heat-shock protein-based cancer vaccines. Genetic vaccines are emerging as promising methodologies to elicit immune responses against a wide variety of antigens, including TAAs. Amongst these, Adenovirus (Ad)-based vectors show excellent immunogenicity profile and have achieved immunological proof of concept in humans. In vivo electroporation of plasmid DNA (DNA-EP) is also a desirable vaccine technology for cancer vaccines, as it is repeatable several times, a parameter required for the long-term maintenance of anti-tumor immunity. Recent findings show that combinations of different modalities of immunization (heterologous prime/boost) are able to induce superior immune reactions as compared to single-modality vaccines. In this review, we will discuss the challenges and requirements of emerging cancer vaccines, particularly focusing on the genetic cancer vaccines currently under active development and the promise shown by Ad and DNA-EP heterologous prime-boost.

  11. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Directory of Open Access Journals (Sweden)

    Aitor Nogales

    2016-12-01

    Full Text Available Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines.

  12. Reverse Genetics Approaches for the Development of Influenza Vaccines

    Science.gov (United States)

    Nogales, Aitor; Martínez-Sobrido, Luis

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influenza virus allows for the reassortment between two or more viruses within a co-infected cell, and this characteristic has also been harnessed in the laboratory to generate reassortant viruses for their use as either inactivated or live-attenuated influenza vaccines. With the implementation of plasmid-based reverse genetics techniques, it is now possible to engineer recombinant influenza viruses entirely from full-length complementary DNA copies of the viral genome by transfection of susceptible cells. These reverse genetics systems have provided investigators with novel and powerful approaches to answer important questions about the biology of influenza viruses, including the function of viral proteins, their interaction with cellular host factors and the mechanisms of influenza virus transmission and pathogenesis. In addition, reverse genetics techniques have allowed the generation of recombinant influenza viruses, providing a powerful technology to develop both inactivated and live-attenuated influenza vaccines. In this review, we will summarize the current knowledge of state-of-the-art, plasmid-based, influenza reverse genetics approaches and their implementation to provide rapid, convenient, safe and more effective influenza inactivated or live-attenuated vaccines. PMID:28025504

  13. Hepatitis B vaccine antibody response and the risk of clinical AIDS or death.

    Directory of Open Access Journals (Sweden)

    Michael L Landrum

    Full Text Available BACKGROUND: Whether seroresponse to a vaccine such as hepatitis B virus (HBV vaccine can provide a measure of the functional immune status of HIV-infected persons is unknown.This study evaluated the relationship between HBV vaccine seroresponses and progression to clinical AIDS or death. METHODS AND FINDINGS: From a large HIV cohort, we evaluated those who received HBV vaccine only after HIV diagnosis and had anti-HBs determination 1-12 months after the last vaccine dose. Non-response and positive response were defined as anti-HBs <10 and ≥ 10 IU/L, respectively. Participants were followed from date of last vaccination to clinical AIDS, death, or last visit. Univariate and multivariable risk of progression to clinical AIDS or death were evaluated with Cox regression models. A total of 795 participants vaccinated from 1986-2010 were included, of which 41% were responders. During 3,872 person-years of observation, 122 AIDS or death events occurred (53% after 1995. Twenty-two percent of non-responders experienced clinical AIDS or death compared with 5% of responders (p<0.001. Non-response to HBV vaccine was associated with a greater than 2-fold increased risk of clinical AIDS or death (HR 2.47; 95% CI, 1.38-4.43 compared with a positive response, after adjusting for CD4 count, HIV viral load, HAART use, and delayed type hypersensitivity skin test responses (an in vivo marker of cell-mediated immunity. This association remained evident among those with CD4 count ≥ 500 cells/mm³ (HR 3.40; 95% CI, 1.39-8.32. CONCLUSIONS: HBV vaccine responses may have utility in assessing functional immune status and risk stratificating HIV-infected individuals, including those with CD4 count ≥ 500 cells/mm³.

  14. Novel Vaccine Approach Achieves “Functional Cure” of AIDS Virus in Monkeys | Poster

    Science.gov (United States)

    By Frank Blanchard, Staff Writer, and Jeff Lifson, Guest Writer Scientists at the Oregon Health & Science University and the AIDS and Cancer Virus Program of the Frederick National Laboratory for Cancer Research have used a novel vaccine approach to achieve a “functional cure” and apparent eradication of infection with a monkey version of the AIDS virus.

  15. Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool

    OpenAIRE

    2012-01-01

    Chagas disease is the clinical manifestation of the infection produced by the parasite Trypanosoma cruzi. Currently there is no vaccine to prevent this disease and the protection attained with vaccines containing non-replicating parasites is limited. Genetically attenuated trypanosomatid parasites can be obtained by deletion of selected genes. Gene deletion takes advantage of the fact that this parasite can undergo homologous recombination between endogenous and foreign DNA sequences artifici...

  16. The use of outer membrane proteins as an exposure surface for foreign antigens in AIDS vaccine methodology and AIDS diagnostics

    NARCIS (Netherlands)

    Soede WWD; Hegger I

    1992-01-01

    A live recombinant bacteria or virus with HIV determinants exposed at the outermembrane is one strategy for AIDS vaccine development. Two HIV determinants that showed neutralization capacity in in- vitro experiments were tested for their expression in PhoE outer membrane protein of E coli K12.

  17. DermaVir: a plasmid DNA-based nanomedicine therapeutic vaccine for the treatment of HIV/AIDS.

    Science.gov (United States)

    Lori, Franco

    2011-10-01

    The HIV global pandemic continues to rage with over 33 million people living with the disease. Although multidrug therapy has improved the prognosis for those infected by the virus, it has not eradicated the infection. Immunological therapies, including therapeutic vaccines, are needed to supplement drug therapy in the search for a 'functional cure' for HIV. DermaVir (Genetic Immunity Kft, Budapest, Hungary and McLean, Virginia, USA), an experimental HIV/AIDS therapeutic vaccine, combines three key elements of rational therapeutic vaccine design: a single plasmid DNA (pDNA) immunogen expressing 15 HIV antigens, a synthetic pDNA nanomedicine formulation and a dendritic cell-targeting topical-vaccine administration. DermaVir's novel mechanism of action, natural transport by epidermal Langerhans cells to the lymph nodes to express the pDNA-encoded HIV antigens and induce precursor/memory T cells with high proliferation capacity, has been consistently demonstrated in mouse, rabbit, primate and human subjects. Safety, immunogenicity and preliminary efficacy of DermaVir have been clinically demonstrated in HIV-infected human subjects. The DermaVir technology platform for dendritic cell-based therapeutic vaccination might offer a new treatment paradigm for cancer and infectious diseases.

  18. TIP: protein backtranslation aided by genetic algorithms.

    Science.gov (United States)

    Moreira, Andrés; Maass, Alejandro

    2004-09-01

    Several applications require the backtranslation of a protein sequence into a nucleic acid sequence. The degeneracy of the genetic code makes this process ambiguous; moreover, not every translation is equally viable. The usual answer is to mimic the codon usage of the target species; however, this does not capture all the relevant features of the 'genomic styles' from different taxa. The program TIP ' Traducción Inversa de Proteínas') applies genetic algorithms to improve the backtranslation, by minimizing the difference of some coding statistics with respect to their average value in the target. http://www.cmm.uchile.cl/genoma/tip/

  19. Effects of treatment or/and vaccination on HIV transmission in homosexuals with genetic heterogeneity.

    Science.gov (United States)

    Hsu Schmitz, S

    2000-09-01

    Several mutant genes in HIV co-receptors (e.g., CCR5, CCR2 and CXCR4) have been correlated with susceptibility to HIV or/and rate of progression to AIDS. Some of these genes have high allele frequencies in general populations. Their effects on the HIV/AIDS dynamics may be significant. To study such genetic heterogeneity, Hsu Schmitz [S.-F. Hsu Schmitz, A mathematical model of HIV transmission in homosexuals with genetic heterogeneity, J. Theoret. Med. (to appear)] proposed a one-sex model with susceptibles classified by genotype as having no, partial or full natural resistance to HIV infection and infecteds classified as rapid, normal or slow progressors. The example of CCR5-Delta32 mutation in San Francisco gay men indicated that the normal progressors are most responsible for disease spread. The per-partnership transmission rates of rapid and slow progressors are identified as key parameters. The present manuscript extends the previous one by considering the intervention of treatment or/and vaccination. Detailed investigations are illustrated by using the same example of CCR5-Delta32 mutation in San Francisco gay men. Treating only newly infected individuals or vaccinating only newly recruited susceptibles is not effective enough for disease control. When both measures are applied, the epidemic may be eradicated if the transmission rate of slow progressors is not too large, and treatments and vaccines in use are of decent quality.

  20. Oral vaccination of raccoons (Procyon lotor) with genetically modified rabies virus vaccines

    Science.gov (United States)

    Blanton, Jesse D.; Self, Joshua; Niezgoda, Michael; Faber, Marie-Luise; Dietzschold, Bernhard; Rupprecht, Charles

    2007-01-01

    Oral vaccination is an important tool currently in use to control the spread of rabies in wildlife populations in various programs around the world. Oral rabies vaccination (ORV) of raccoons represents the largest targeted program to control wildlife rabies in the United States. Currently, the vaccinia-rabies glycoprotein recombinant virus vaccine (V-RG) is the only licensed oral rabies vaccine in the US. In the current study, captive raccoons were used to evaluate two previously described constructs of a rabies virus vaccine developed by reverse genetics (SPBNGAS and SPBNGAS-GAS) for immunogenicity and efficacy compared to the V-RG vaccine. Four of five control animals succumbed to rabies virus after severe challenge, while three of five animals vaccinated orally with SPBNGAS succumbed. No mortality was observed for animals administered SPBNGAS-GAS or the V-RG vaccine. The results of this preliminary study suggest that SPBNGAS-GAS provides comparable efficacy to V-RG. Additional studies will be needed to determine the duration of immunity and optimal dosage of SPBNGAS-GAS and to examine its efficacy in other reservoir species. PMID:17826874

  1. DNA/MVA Vaccines for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Smita S. Iyer

    2014-02-01

    Full Text Available Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous “prime-boost” vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.

  2. DNA/MVA Vaccines for HIV/AIDS.

    Science.gov (United States)

    Iyer, Smita S; Amara, Rama R

    2014-01-01

    Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous "prime-boost" vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA)-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.

  3. HIV-2 and its role in conglutinated approach towards Acquired Immunodeficiency Syndrome (AIDS) Vaccine Development

    OpenAIRE

    Diwan, Batul; Saxena, Rupali; Tiwari, Archana

    2013-01-01

    Acquired Immunodeficiency Syndrome (AIDS) is one of the most critically acclaimed endemic diseases, caused by two lentiviruses HIV-1 and 2. HIV-2 displays intimate serological and antigenic resemblance to Simian Immunodeficiency Virus (SIV) along with less pathogenicity, lower infectivity and appreciable cross reactivity with HIV-1 antigens. The present era is confronted with the challenge to fabricate a vaccine effective against all clades of both the species of HIV. But vaccine development ...

  4. [Studies on virulence of HIV and development of non-virulent live AIDS vaccine using monkeys].

    Science.gov (United States)

    Hayami, Masanori; Horiuchi, Reii

    2004-06-01

    A great effort for developing AIDS vaccine has been carried out in the world, designed by various new ideas based on basic research information obtained in recent virology and immunology. Withall it, to obtain effective AIDS vaccine is considered skeptical. One of the reasons of its difficulty is a lack of experimental animals susceptible to HIV-1. In our laboratory, we have succeeded in developing chimeric SIV having 3' half of HIV-1 genome including env (SHIV), which is infectious to macaque monkeys. One of SHIVs has been proved nonpathogenic in monkeys from various aspects and it afforded protective immunity to monkeys against pathogenic SHIV challenge infection. Now, we are trying to develop anti-HIV live attenuated vaccines using the nonpathogenic SHIV as a starting material. In the history of virus vaccine, live attenuated vaccines have been proved most effective in measles and polio-myelitis. However, it is not clear whether nonpathogenic HIV exists or not. Futhermore, even if nonpathogenic HIV could be obtained, there is possibility that it will easily mutate to pathogenic one. Therefore, to develop live attenuated AIDS vaccine is considered dangerous. In this article, We will introduce our research on SHIV pathogenicity using monkeys and hypothesize possibility to obtain nonpathogenic HIV which is speculated from the origin and evolution of HIV/SIV. To clarify virulence and nonvirulence of HIV and to obtain nonpathogenic virus are not only applied research but also basic science to dissolve the fundemental question why HIV can induce the disease.

  5. New Animal Model Could Boost Research on AIDS Drugs and Vaccines | Poster

    Science.gov (United States)

    By Frank Blanchard, Staff Writer, and Jeff Lifson, Guest Writer In a research milestone reported in the June 20 issue of the journal Science, scientists have developed a minimally modified version of HIV-1, the virus that causes AIDS in infected humans, that is capable of causing progressive infection and AIDS in monkeys. The advance should help create more authentic animal models of the disease and provide a potentially invaluable approach for faster and better preclinical evaluation of new drugs and vaccines.

  6. Building collaborative networks for HIV/AIDS vaccine development: the AVIP experience.

    Science.gov (United States)

    Ferrantelli, Flavia; Buttò, Stefano; Cafaro, Aurelio; Wahren, Britta; Ensoli, Barbara

    2006-11-01

    The need for an effective HIV/AIDS vaccine is imperative to halt a pandemic that involves more than 40 million individuals worldwide as of 2005 and is causing enormous socio-economic losses, especially in developing countries (DC). The overall failure of more than two decades of HIV vaccine research justifies the demands for a concerted effort for the rapid development of new and efficacious vaccines against HIV/AIDS. In this context, building international collaborative networks is a must for speeding up scientific research and optimizing the use of funding in a synergistic fashion, as resources for HIV/AIDS are limited and do not involve most of the biggest Pharmas that are more interested in drug discovery. The AIDS Vaccine Integrated Project (AVIP) consortium is an example of synergistic partnership of international European Union and DC experts with a common research goal. AVIP is a European Commission-funded (FP-6), consortium-based, 5-year program directed to the fast development of new HIV/AIDS vaccine candidates to be tested in phase I clinical trials in Europe for future advancement to phase II/III testing in DC. To ensure their rapid development, AVIP novel combined vaccines include both regulatory and structural HIV antigens, which have already been tested, as single components, in phase I clinical trials. In particular, such combination vaccines may be superior to earlier vaccine candidates, the vast majority of which are based only on either structural or regulatory HIV products. In fact, the generation of immune responses to both types of viral antigens expressed either early (regulatory products) or late (structural products) during the viral life cycle can maximize immune targeting of both primary or chronic viral infection. Further, the rational design of combined vaccines allows exploitation of immunomodulatory functions of HIV regulatory proteins, which can improve immunity against structural vaccine components. The building of the AVIP

  7. Therapeutic dendritic-cell vaccine for simian AIDS

    Institute of Scientific and Technical Information of China (English)

    Lu,W; Wu,XX; Lu,YZ; Guo,WZ; Andrieu,JM

    2005-01-01

    An effective immune response against human immunodeficiency virus or simian immunodeficiency virus (SIV) is critical in achieving control of viral replication. Here, we show in SIV-infected rhesus monkeys that an effective and durable SIV-specific cellular and humoral immunity is elicited by a vaccination with chemically inactivated SIV-pulsed dendritic cells. After three immunizations made at two-week intervals, the animals exhibited a 50-fold decrease of SIV DNA and a 1,000-fold decrease of SIV RNA in peripheral blood. Such reduced viral load levels were maintained over the remaining 34 weeks of the study. Molecular and cellular analyses of axillary and inguinal node lymphocytes of vaccinated monkeys revealed a correlation between decreased SIV DNA and RNA levels and increased SIV-specific T-cell responses. Neutralizing antibody responses were augmented and remained elevated. Inactivated whole virus-pulsed dendritic cell vaccines are promising means to control diseases caused by immunodeficiency viruses.

  8. Phylodynamics of HIV-1 from a phase III AIDS vaccine trial in Bangkok, Thailand.

    Directory of Open Access Journals (Sweden)

    Marcos Pérez-Losada

    Full Text Available BACKGROUND: In 2003, a phase III placebo-controlled trial (VAX003 was completed in Bangkok, Thailand. Of the 2,546 individuals enrolled in the trial based on high risk for infection through injection drug use (IDU, we obtained clinical samples and HIV-1 sequence data (envelope glycoprotein gene gp120 from 215 individuals who became infected during the trial. Here, we used these data in combination with other publicly available gp120 sequences to perform a molecular surveillance and phylodynamic analysis of HIV-1 in Thailand. METHODOLOGY AND FINDINGS: Phylogenetic and population genetic estimators were used to assess HIV-1 gp120 diversity as a function of vaccination treatment, viral load (VL and CD4(+ counts, to identify transmission clusters and to investigate the timescale and demographics of HIV-1 in Thailand. Three HIV-1 subtypes were identified: CRF01_AE (85% of the infections, subtype B (13% and CRF15_AE (2%. The Bangkok IDU cohort showed more gp120 diversity than other Asian IDU cohorts and similar diversity to that observed in sexually infected individuals. Moreover, significant differences (P<0.02 in genetic diversity were observed in CRF01_AE IDU with different VL and CD4(+ counts. No phylogenetic structure was detected regarding any of the epidemiological and clinical factors tested, although high proportions (35% to 50% of early infections fell into clusters, which suggests that transmission chains associated with acute infection play a key role on HIV-1 spread among IDU. CRF01_AE was estimated to have emerged in Thailand in 1984.5 (1983-1986, 3-6 years before the first recognition of symptomatic patients (1989. The relative genetic diversity of the HIV-1 population has remained high despite decreasing prevalence rates since the mid 1990s. CONCLUSIONS: Our study and recent epidemiological reports indicate that HIV-1 is still a major threat in Thailand and suggest that HIV awareness and prevention needs to be strengthened to avoid

  9. Refugees, humanitarian aid and the right to decline vaccinations.

    Science.gov (United States)

    Caplan, A L; Curry, David R

    2015-03-01

    Recent instances of governments and others refusing humanitarian assistance to refugees and IDPs (internally-displaced persons) unless they agreed to polio immunization for their children raise difficult ethical challenges. The authors argue that states have the right and a responsibility to require such vaccinations in instances where the serious vaccine-preventable disease(s) at issue threaten others, including local populations, humanitarian workers, and others in camps or support settings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  10. HIV/AIDS vaccine development: are we walking out from the dark?

    Institute of Scientific and Technical Information of China (English)

    WAN Yan-min; WANG You-chun; XU Jian-qing

    2010-01-01

    @@ The need for AIDS vaccine has been emphasized by the increase of HIV-1 prevalence in sexual transmission which bridges the spreading of HIV-1 from high-risk population to other populations. After more than two-decade intensive effort on the AIDS vaccine development, it remains elusive whether and how an effective vaccine will be achieved. Recent data released from a phase Ⅲ trial in Thailand showed a partial protection might be accomplishable by(R)the "prime-boost"combination of two vaccines: ALVAC(R) HIV vaccine (the prime), and AIDSVAX(R) B/E vaccine (the boost).1 This unprecedented large clinical trial observed that the prime-boost combination lowered the rate of HIV infection by 31.2% compared to placebo based on the modified intent-to-treat population (n=51 vs. n=74,respectively; P=0.04). However, debating on the efficacy interpretation of this trial arose among field scientists.Furthermore, how to improve the efficacy will become the most important question to be tackled. Here we reviewed the recent publications and summarized the major progress achieved.

  11. Private demand for a HIV/AIDS vaccine: evidence from Guadalajara, Mexico.

    Science.gov (United States)

    Whittington, Dale; Matsui-Santana, Osmar; Freiberger, John J; Van Houtven, George; Pattanayak, Subhrendu

    2002-06-07

    The private demand for a hypothetical vaccine that would provide lifetime protection against HIV/AIDS to an uninfected adult was measured in Guadalajara, Mexico, using the concept of willingness to pay (WTP). A 91-question survey instrument was administered by trained enumerators employing contingent valuation techniques to 234 adults, aged 18-60. Our estimates of private demand indicate that individuals anticipate sizable personal benefits from such a vaccine, and that they would be willing to allocate a substantial portion of their income to be protected in this way from HIV infection. A conservative estimate of the mean WTP of adults in the Guadalajara sample is 6358 pesos (669 US dollars) and the median is 3000 pesos (316 US dollars). A multivariate statistical analysis of the determinants of individuals' WTP shows that individuals with higher incomes, with spouses or partners, and with higher perceived risks of becoming infected with HIV are willing to pay more for the vaccine. Older respondents are willing to pay less. These results suggest that there is likely to be a potentially large private market for a HIV/AIDS vaccine in the middle-income developing countries such as Mexico. These findings have important implications both for the level of R&D effort that is devoted to a vaccine and, assuming these efforts are successful, for future policies to make the vaccine available to the public.

  12. Optimal vaccination schedule search using genetic algorithm over MPI technology

    Directory of Open Access Journals (Sweden)

    Calonaci Cristiano

    2012-11-01

    Full Text Available Abstract Background Immunological strategies that achieve the prevention of tumor growth are based on the presumption that the immune system, if triggered before tumor onset, could be able to defend from specific cancers. In supporting this assertion, in the last decade active immunization approaches prevented some virus-related cancers in humans. An immunopreventive cell vaccine for the non-virus-related human breast cancer has been recently developed. This vaccine, called Triplex, targets the HER-2-neu oncogene in HER-2/neu transgenic mice and has shown to almost completely prevent HER-2/neu-driven mammary carcinogenesis when administered with an intensive and life-long schedule. Methods To better understand the preventive efficacy of the Triplex vaccine in reduced schedules we employed a computational approach. The computer model developed allowed us to test in silico specific vaccination schedules in the quest for optimality. Specifically here we present a parallel genetic algorithm able to suggest optimal vaccination schedule. Results & Conclusions The enormous complexity of combinatorial space to be explored makes this approach the only possible one. The suggested schedule was then tested in vivo, giving good results. Finally, biologically relevant outcomes of optimization are presented.

  13. The genetic regulation of infant immune responses to vaccination

    Directory of Open Access Journals (Sweden)

    Melanie eNewport

    2015-02-01

    Full Text Available A number of factors are recognised to influence immune responses to vaccinations including age, gender, the dose and quality of the antigen used, the number of doses given, the route of administration and the nutritional status of the recipient. Additionally, several immunogenetic studies have identified associations between polymorphisms in genes encoding immune response proteins, both innate and adaptive, and variation in responses to vaccines. Variants in the genes encoding Toll-like receptors, HLA molecules, cytokines, cytokine receptors have associated with heterogeneity of responses to a wide range of vaccines including measles, hepatitis B, influenza A, BCG, Haemophilus influenzae type b and certain Neisseria meningitidis serotypes, amongst others. However, the vast majority of these studies have been conducted in older children and adults and there are very few data available from studies conducted in infants. This paper reviews the evidence to date that host genes influencing vaccines responses in these older population and identifies a large gap in our understanding of the genetic regulation of responses in early life. . Given the high mortality from infection in early life and the challenges of developing vaccines that generate effective immune responses in the context of the developing immune system further research on infant populations is required.

  14. Genetically attenuated Trypanosoma cruzi parasites as a potential vaccination tool.

    Science.gov (United States)

    Pérez Brandan, Cecilia; Basombrío, Miguel Ángel

    2012-01-01

    Chagas disease is the clinical manifestation of the infection produced by the parasite Trypanosoma cruzi. Currently there is no vaccine to prevent this disease and the protection attained with vaccines containing non-replicating parasites is limited. Genetically attenuated trypanosomatid parasites can be obtained by deletion of selected genes. Gene deletion takes advantage of the fact that this parasite can undergo homologous recombination between endogenous and foreign DNA sequences artificially introduced in the cells. This approach facilitated the discovery of several unknown gene functions, as well as allowing us to speculate about the potential for genetically attenuated live organisms as experimental immunogens. Vaccination with live attenuated parasites has been used effectively in mice to reduce parasitemia and histological damage, and in dogs, to prevent vector-delivered infection in the field. However, the use of live parasites as immunogens is controversial due to the risk of reversion to a virulent phenotype. Herein, we present our results from experiments on genetic manipulation of two T. cruzi strains to produce parasites with impaired replication and infectivity, and using the mutation of the dhfr-ts gene as a safety device against reversion to virulence.

  15. HIV-1/AIDS vaccine development: are we in the darkness before the dawn?

    Institute of Scientific and Technical Information of China (English)

    QIU Chao; XU Jian-qing

    2008-01-01

    @@ The pandemic of human immunodeficiency virus type 1 (HIV-1) has been devastating for the last two decades in a number of developing countries and constituting a grand challenge to the public health.WHO/UNAIDS estimates that approximately 33.2million people were living with HIV-1 infection by the end of 2007 and almost 2.5 million new infections occurred in 2007. An unprecedented scientifc challenge for the AIDS vaccine community is how to develop an effective HIV vaccine that can block HIV transmission and consequently stop the continuing spread of HIV-1.The recent failure of Merck Phase Ⅱ B trial alerted the HIV vaccine community that new vaccine strategies need to be more exclusively explored. In this review, we outline the basics of HIV vaccine and retrospect the history of the road to HIV vaccine in last two decades,and highlight the challenges we are currently facing and new strategies to develop HIV vaccines in this field.The Institute of Biomedical Sciences, Fudan University, Shanghai

  16. Generation and evaluation of a genetically attenuated Newcastle disease virus rGM-VIIm as a genotype-matched vaccine.

    Science.gov (United States)

    Sun, Minhua; Xiang, Bin; Li, Yaling; Xie, Peng; Gao, Shimin; Kang, Yinfeng; Gao, Pei; Li, Yanling; Wang, Zhaoxiong; Liang, Jianpeng; Yu, Deshui; Ren, Tao

    2017-02-01

    Despite intensive vaccination campaigns, outbreaks of Newcastle disease (ND) have been frequently reported in China, especially of genotype VII that first emerged in the late 1990s. Given the dire need for vaccines against the circulating genotype VII virus, we developed an alternative method to recover a highly virulent recombinant GM (rGM) virus that involves a T7 system with a hammerhead ribozyme sequence introduced downstream of the T7 promoter. By changing the F0 polybasic cleavage site RRQKR↓F to the monobasic GRQGR↓L, we generated a mutant virus (rGM-VIIm) that was found to be highly attenuated in chickens. The rGM-VIIm virus not only produced fourfold higher hemagglutination assay (HA) titers than the parental virus, but also exhibited genetic stability after 15 continuous passages in specific-pathogen-free (SPF) embryonated eggs. Whether live or inactivated, rGM-VIIm and LaSota vaccines can protect vaccinated birds from GM challenge infection. However, live and inactivated rGM-VIIm vaccines reduced virus shedding of the homologous challenge virus significantly better than the LaSota virus vaccine did. Altogether, our results suggest that rGM-VIIm vaccines could aid in the control of ND in China.

  17. Association of TLR7 variants with AIDS-like disease and AIDS vaccine efficacy in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Roman A Siddiqui

    Full Text Available In HIV infection, TLR7-triggered IFN-α production exerts a direct antiviral effect through the inhibition of viral replication, but may also be involved in immune pathogenesis leading to AIDS. TLR7 could also be an important mediator of vaccine efficacy. In this study, we analyzed polymorphisms in the X-linked TLR7 gene in the rhesus macaque model of AIDS. Upon resequencing of the TLR7 gene in 36 rhesus macaques of Indian origin, 12 polymorphic sites were detected. Next, we identified three tightly linked single nucleotide polymorphisms (SNP as being associated with survival time. Genotyping of 119 untreated, simian immunodeficiency virus (SIV-infected male rhesus macaques, including an 'MHC adjusted' subset, revealed that the three TLR7 SNPs are also significantly associated with set-point viral load. Surprisingly, this effect was not observed in 72 immunized SIV-infected male monkeys. We hypothesize (i that SNP c.13G>A in the leader peptide is causative for the observed genotype-phenotype association and that (ii the underlying mechanism is related to RNA secondary structure formation. Therefore, we investigated a fourth SNP (c.-17C>T, located 17 bp upstream of the ATG translation initiation codon, that is also potentially capable of influencing RNA structure. In c.13A carriers, neither set-point viral load nor survival time were related to the c.-17C>T genotype. In c.13G carriers, by contrast, the c.-17C allele was significantly associated with prolonged survival. Again, no such association was detected among immunized SIV-infected macaques. Our results highlight the dual role of TLR7 in immunodeficiency virus infection and vaccination and imply that it may be important to control human AIDS vaccine trials, not only for MHC genotype, but also for TLR7 genotype.

  18. Macromolecular Assemblage in the Design of a Synthetic AIDS Vaccine

    Science.gov (United States)

    Defoort, Jean-Philippe; Nardelli, Bernardetta; Huang, Wolin; Ho, David D.; Tam, James P.

    1992-05-01

    We describe a peptide vaccine model based on the mimicry of surface coat protein of a pathogen. This model used a macromolecular assemblage approach to amplify peptide antigens in liposomes or micelles. The key components of the model consisted of an oligomeric lysine scaffolding to amplify peptide antigens covalently 4-fold and a lipophilic membrane-anchoring group to further amplify noncovalently the antigens many-fold in liposomal or micellar form. A peptide antigen derived from the third variable domain of glycoprotein gp120 of human immunodeficiency virus type 1 (HIV-1), consisting of neutralizing, T-helper, and T-cytotoxic epitopes, was used in a macromolecular assemblage model (HIV-1 linear peptide amino acid sequence 308-331 in a tetravalent multiple antigen peptide system linked to tripalmitoyl-S-glycerylcysteine). The latter complex, in liposome or micelle, was used to immunize mice and guinea pigs without any adjuvant and found to induce gp120-specific antibodies that neutralize virus infectivity in vitro, elicit cytokine production, and prime CD8^+ cytotoxic T lymphocytes in vivo. Our results show that the macromolecular assemblage approach bears immunological mimicry of the gp120 of HIV virus and may lead to useful vaccines against HIV infection.

  19. Genetic Algorithms and Nucleation in VIH-AIDS transition.

    Science.gov (United States)

    Barranon, Armando

    2003-03-01

    VIH to AIDS transition has been modeled via a genetic algorithm that uses boom-boom principle and where population evolution is simulated with a cellular automaton based on SIR model. VIH to AIDS transition is signed by nucleation of infected cells and low probability of infection are obtained for different mutation rates in agreement with clinical results. A power law is obtained with a critical exponent close to the critical exponent of cubic, spherical percolation, colossal magnetic resonance, Ising Model and liquid-gas phase transition in heavy ion collisions. Computations were carried out at UAM-A Supercomputing Lab and author acknowledges financial support from Division of CBI at UAM-A.

  20. The genetic basis for interindividual immune response variation to measles vaccine: new understanding and new vaccine approaches.

    Science.gov (United States)

    Haralambieva, Iana H; Ovsyannikova, Inna G; Pankratz, V Shane; Kennedy, Richard B; Jacobson, Robert M; Poland, Gregory A

    2013-01-01

    The live-attenuated measles vaccine is effective, but measles outbreaks still occur in vaccinated populations. This warrants elucidation of the determinants of measles vaccine-induced protective immunity. Interindividual variability in markers of measles vaccine-induced immunity, including neutralizing antibody levels, is regulated in part by host genetic factor variations. This review summarizes recent advances in our understanding of measles vaccine immunogenetics relative to the perspective of developing better measles vaccines. Important genetic regulators of measles vaccine-induced immunity, such as HLA class I and HLA class II genotypes, single nucleotide polymorphisms in cytokine/cytokine receptor genes (IL12B, IL12RB1, IL2, IL10) and the cell surface measles virus receptor CD46 gene, have been identified and independently replicated. New technologies present many opportunities for identification of novel genetic signatures and genetic architectures. These findings help explain a variety of immune response-related phenotypes and promote a new paradigm of 'vaccinomics' for novel vaccine development.

  1. Lessons in AIDS vaccine development learned from studies of equine infectious, anemia virus infection and immunity.

    Science.gov (United States)

    Craigo, Jodi K; Montelaro, Ronald C

    2013-12-02

    Equine infectious anemia (EIA), identified in 1843 [1] as an infectious disease of horses and as a viral infection in 1904, remains a concern in veterinary medicine today. Equine infectious anemia virus (EIAV) has served as an animal model of HIV-1/AIDS research since the original identification of HIV. Similar to other lentiviruses, EIAV has a high propensity for genomic sequence and antigenic variation, principally in its envelope (Env) proteins. However, EIAV possesses a unique and dynamic disease presentation that has facilitated comprehensive analyses of the interactions between the evolving virus population, progressive host immune responses, and the definition of viral and host correlates of immune control and vaccine efficacy. Summarized here are key findings in EIAV that have provided important lessons toward understanding long term immune control of lentivirus infections and the parameters for development of an enduring broadly protective AIDS vaccine.

  2. Lessons in AIDS Vaccine Development Learned from Studies of Equine Infectious, Anemia Virus Infection and Immunity

    Directory of Open Access Journals (Sweden)

    Jodi K. Craigo

    2013-12-01

    Full Text Available Equine infectious anemia (EIA, identified in 1843 [1] as an infectious disease of horses and as a viral infection in 1904, remains a concern in veterinary medicine today. Equine infectious anemia virus (EIAV has served as an animal model of HIV-1/AIDS research since the original identification of HIV. Similar to other lentiviruses, EIAV has a high propensity for genomic sequence and antigenic variation, principally in its envelope (Env proteins. However, EIAV possesses a unique and dynamic disease presentation that has facilitated comprehensive analyses of the interactions between the evolving virus population, progressive host immune responses, and the definition of viral and host correlates of immune control and vaccine efficacy. Summarized here are key findings in EIAV that have provided important lessons toward understanding long term immune control of lentivirus infections and the parameters for development of an enduring broadly protective AIDS vaccine.

  3. Immunological response to hepatitis B vaccination in patients with AIDS and virological response to highly active antiretroviral therapy.

    Science.gov (United States)

    Paitoonpong, Leilani; Suankratay, Chusana

    2008-01-01

    Previous studies showed that an immunological response to hepatitis B virus (HBV) vaccination in patients with AIDS was lower than in the normal population. However, those with virological response to highly active antiretroviral therapy (HAART) may have a normal immunological response to HBV vaccination. In our study, patients with AIDS who had a virological response to HAART and no immunity to HBV received 3 doses of HBV vaccine (20 microg of Engerix-B(R)) on d 0, 30, and 180. Anti-HBs level was measured 1 month after complete vaccination. Of 28 patients, overall response rate to vaccination was 71.4%. The responder group had a significantly higher CD4 count at 1 month after complete vaccination than the non-responder group (466.95+/-146.94 and 335+/-112.62 cells/microl, p =0.035). The patients receiving efavirenz-containing HAART had better response than those without efavirenz-containing HAART (p =0.030). The responder group had received a longer duration of HAART. In conclusion , to our knowledge, ours is the first prospective study to determine the immunological response to HBV vaccination in all patients with AIDS who had maintained the virological response after receiving HAART throughout the study period. Patients with AIDS and virological response to HAART have a good immunological response to HBV vaccination.

  4. HIV-2 and its role in conglutinated approach towards Acquired Immunodeficiency Syndrome (AIDS) Vaccine Development.

    Science.gov (United States)

    Diwan, Batul; Saxena, Rupali; Tiwari, Archana

    2013-12-01

    Acquired Immunodeficiency Syndrome (AIDS) is one of the most critically acclaimed endemic diseases, caused by two lentiviruses HIV-1 and 2. HIV-2 displays intimate serological and antigenic resemblance to Simian Immunodeficiency Virus (SIV) along with less pathogenicity, lower infectivity and appreciable cross reactivity with HIV-1 antigens. The present era is confronted with the challenge to fabricate a vaccine effective against all clades of both the species of HIV. But vaccine development against HIV-1 has proven highly intricate, moreover the laborious and deficient conventional approaches has slackened the pace regarding the development of new vaccines. These concerns may be tackled with the development of HIV-2 vaccine as a natural control of HIV-1 that has been found in ancestors of HIV-2 i.e. African monkeys, mangabeys and macaques. Thereby, suggesting the notion of cross protection among HIV-2 and HIV-1. Assistance of bioinformatics along with vaccinomics strategy can bring about a quantum leap in this direction for surpassing the bottleneck in conventional approaches. These specifics together can add to our conception that HIV-2 vaccine design by in silico strategy will surely be a constructive approach for HIV-1 targeting.

  5. Host genetic factors in susceptibility to HIV-1 infection and progression to AIDS

    Indian Academy of Sciences (India)

    Koushik Chatterjee

    2010-04-01

    HIV-1 infection has rapidly spread worldwide and has become the leading cause of mortality in infectious diseases. The duration for development of AIDS (AIDS progression) is highly variable among HIV–1 infected individuals, ranging from 2–3 years to no signs of AIDS development in the entire lifetime. Several factors regulate the rate at which HIV-1 infection progresses to AIDS. Host genetic factors play an important role in the outcome of such complex or multifactor diseases as AIDS and are also known to regulate the rate of disease progression. This review focuses on the major host genes reported to affect the progression to AIDS in HIV-1 infected individuals.

  6. Vaccination status of people living with HIV/AIDS in outpatient care in Fortaleza, Ceará, Brazil.

    Science.gov (United States)

    Cunha, Gilmara Holanda da; Galvão, Marli Teresinha Gimeniz; Medeiros, Camila Martins de; Rocha, Ryvanne Paulino; Lima, Maria Amanda Correia; Fechine, Francisco Vagnaldo

    2016-01-01

    Antiretroviral therapy has increased the survival of patients with HIV/AIDS, thus necessitating health promotion practice with immunization. Vaccines are critical components for protecting people living with HIV/AIDS (PLWHA). The purpose of study was to analyze the vaccination status of PLWHA in outpatient care in Fortaleza, Ceará, Brazil. Cross-sectional study performed from June 2014 to June 2015. The screening was done with patients in antiretroviral therapy, 420 patients underwent screening, but only 99 met the inclusion criteria. Data were collected for interviews using forms to characterize sociodemographic, clinical and vaccination situations. Only 14 patients had complete vaccination schedules. The most used vaccines were hepatitis B, influenza vaccine and 23-valent pneumococcal. There was no difference between men and women regarding the proportion of PLWHA with full vaccination schedule or between sex, skin color, marital status, sexual orientation, religion or occupational status. There was no difference between having or not having a complete vaccination schedule and age, years of education, family income or number of hospitalizations. CD4+ T-cells count of patients with incomplete immunization was lower than patients with complete immunization. Health education strategies can be done individually or in groups to explain the importance of vaccination and to remind about doses to be administered. Most patients did not have proper adherence to vaccination schedules, especially due to lack of guidance. Results implied that education in health is important for vaccination adhesion, knowledge of adverse events and continuation of schemes. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  7. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID during Inflammation-Associated Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Tsutomu Chiba

    2011-06-01

    Full Text Available Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID, a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis.

  8. Acquisition of Genetic Aberrations by Activation-Induced Cytidine Deaminase (AID) during Inflammation-Associated Carcinogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Takai, Atsushi; Marusawa, Hiroyuki, E-mail: maru@kuhp.kyoto-u.ac.jp; Chiba, Tsutomu [Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606-8507 (Japan)

    2011-06-22

    Genetic abnormalities such as nucleotide alterations and chromosomal disorders that accumulate in various tumor-related genes have an important role in cancer development. The precise mechanism of the acquisition of genetic aberrations, however, remains unclear. Activation-induced cytidine deaminase (AID), a nucleotide editing enzyme, is essential for the diversification of antibody production. AID is expressed only in activated B lymphocytes under physiologic conditions and induces somatic hypermutation and class switch recombination in immunoglobulin genes. Inflammation leads to aberrant AID expression in various gastrointestinal organs and increased AID expression contributes to cancer development by inducing genetic alterations in epithelial cells. Studies of how AID induces genetic disorders are expected to elucidate the mechanism of inflammation-associated carcinogenesis.

  9. Application of reverse genetics for producing attenuated vaccine strains against highly pathogenic avian influenza viruses.

    Science.gov (United States)

    Uchida, Yuko; Takemae, Nobuhiro; Saito, Takehiko

    2014-08-01

    In this study, reverse genetics was applied to produce vaccine candidate strains against highly pathogenic avian influenza viruses (HPAIVs) of the H5N1 subtype. The H5 subtype vaccine strains were generated by a reverse genetics method in a biosafety level 2 facility. The strain contained the HA gene from the H5N1 subtype HPAIV attenuated by genetic modification at the cleavage site, the NA gene derived from the H5N1 subtype HPAI or the H5N3 subtype of avian influenza virus and internal genes from A/Puerto Rico/8/34. Vaccination with an inactivated recombinant virus with oil-emulsion completely protected chickens from a homologous viral challenge with a 640 HAU or 3,200 HAU/vaccination dose. Vaccination with a higher dose of antigen, 3,200 HAU, was effective at increasing survival and efficiently reduced viral shedding even when challenged by a virus of a different HA clade. The feasibility of differentiation of infected from vaccinated animals (DIVA) was demonstrated against a challenge with H5N1 HPAIVs when the recombinant H5N3 subtype viruses were used as the antigens of the vaccine. Our study demonstrated that the use of reverse genetics would be an option to promptly produce an inactivated vaccine with better matching of antigenicity to a circulating strain.

  10. Reverse Genetics Approaches for the Development of Influenza Vaccines

    OpenAIRE

    Aitor Nogales; Luis Martínez-Sobrido

    2016-01-01

    Influenza viruses cause annual seasonal epidemics and occasional pandemics of human respiratory disease. Influenza virus infections represent a serious public health and economic problem, which are most effectively prevented through vaccination. However, influenza viruses undergo continual antigenic variation, which requires either the annual reformulation of seasonal influenza vaccines or the rapid generation of vaccines against potential pandemic virus strains. The segmented nature of influ...

  11. Safety, tolerability, and immunogenicity of a recombinant, genetically engineered, live-attenuated vaccine against canine blastomycosis.

    Science.gov (United States)

    Wüthrich, Marcel; Krajaejun, Theerapong; Shearn-Bochsler, Valerie; Bass, Chris; Filutowicz, Hanna I; Legendre, Alfred M; Klein, Bruce S

    2011-05-01

    Blastomycosis is a severe, commonly fatal infection caused by the dimorphic fungus Blastomyces dermatitidis in dogs that live in the United States, Canada, and parts of Africa. The cost of treating an infection can be expensive, and no vaccine against this infection is commercially available. A genetically engineered live-attenuated strain of B. dermatitidis lacking the major virulence factor BAD-1 successfully vaccinates against lethal experimental infection in mice. Here we studied the safety, toxicity, and immunogenicity of this strain as a vaccine in dogs, using 25 beagles at a teaching laboratory and 78 foxhounds in a field trial. In the beagles, escalating doses of live vaccine ranging from 2 × 10⁴ to 2 × 10⁷ yeast cells given subcutaneously were safe and did not disseminate to the lung or induce systemic illness, but a dose of vaccine dose of 10⁵ yeast cells was also well tolerated in vaccinated foxhounds who had never had blastomycosis; however, vaccinated dogs with prior infection had more local reactions at the vaccine site. The draining lymph node cells and peripheral blood lymphocytes from vaccinated dogs demonstrated gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), and granulocyte-macrophage colony-stimulating factor (GM-CSF) specifically in response to stimulation with Blastomyces antigens. Thus, the live-attenuated vaccine against blastomycosis studied here proved safe, well tolerated, and immunogenic in dogs and merits further studies of vaccine efficacy.

  12. Researchers See New Patterns in Spread of AIDS Virus; Progress in Development of a Vaccine Sparks Optimism.

    Science.gov (United States)

    Wheeler, David L.

    1990-01-01

    Reports presented at the Sixth International Conference on Aids are summarized including efforts to develop a vaccine, expansion of the epidemic into new areas, the high rate of infection among Romanian children, the crisis in Africa, and evidence of relapsing behaviors among homosexual men in the United States. (MLW)

  13. AID activity in B cells strongly correlates with polyclonal antibody affinity maturation in-vivo following pandemic 2009-H1N1 vaccination in humans.

    Science.gov (United States)

    Khurana, Surender; Frasca, Daniela; Blomberg, Bonnie; Golding, Hana

    2012-09-01

    The role of Activation-Induced Cytidine Deaminase (AID) in somatic hypermutation and polyclonal antibody affinity maturation has not been shown for polyclonal responses in humans. We investigated whether AID induction in human B cells following H1N1pdm09 vaccination correlated with in-vivo antibody affinity maturation against hemagglutinin domains in plasma of young and elderly individuals. AID was measured by qPCR in B cells from individuals of different ages immunized with the H1N1pdm09 influenza vaccine. Polyclonal antibody affinity in human plasma for the HA1 and HA2 domains of the H1N1pdm09 hemagglutinin was measured by antibody-antigen complex dissociation rates using real time kinetics in Surface Plasmon Resonance. Results show an age-related decrease in AID induction in B cells following H1N1pdm09 vaccination. Levels of AID mRNA before vaccination and fold-increase of AID mRNA expression after H1N1pdm09 vaccination directly correlated with increase in polyclonal antibody affinity to the HA1 globular domain (but not to the conserved HA2 stalk). In the younger population, significant affinity maturation to the HA1 globular domain was observed, which associated with initial levels of AID and fold-increase in AID after vaccination. In some older individuals (>65 yr), higher affinity to the HA1 domain was observed before vaccination and H1N1pdm09 vaccination resulted in minimal change in antibody affinity, which correlated with low AID induction in this age group. These findings demonstrate for the first time a strong correlation between AID induction and in-vivo antibody affinity maturation in humans. The ability to generate high affinity antibodies could have significant impact on the elucidation of age-specific antibody responses following vaccination and eventual clinical efficacy and disease outcome.

  14. Emergency deployment of genetically engineered veterinary vaccines in Europe

    NARCIS (Netherlands)

    Ramezanpour, Bahar; Foucauld, de Jean; Kortekaas, Jeroen

    2016-01-01

    On the 9th of November 2015, preceding the World Veterinary Vaccine Congress, a workshop was held to discuss how veterinary vaccines can be deployed more rapidly to appropriately respond to future epizootics in Europe. Considering their potential and unprecedented suitability for surge production

  15. Relation of activation-induced deaminase (AID) expression with antibody response to A(H1N1)pdm09 vaccination in HIV-1 infected patients.

    Science.gov (United States)

    Cagigi, Alberto; Pensieroso, Simone; Ruffin, Nicolas; Sammicheli, Stefano; Thorstensson, Rigmor; Pan-Hammarström, Qiang; Hejdeman, Bo; Nilsson, Anna; Chiodi, Francesca

    2013-04-26

    The relevance of CD4+T-cells, viral load and age in the immunological response to influenza infection and vaccination in HIV-1 infected individuals has previously been pointed out. Our study aimed at assessing, in the setting of 2009 A(H1N1)pdm09 influenza vaccination, whether quantification of activation-induced deaminase (AID) expression in blood B-cells may provide additional indications for predicting antibody response to vaccination in HIV-1 infected patients with similar CD4+T-cell counts and age. Forty-seven healthy controls, 37 ART-treated and 17 treatment-naïve HIV-1 infected patients were enrolled in the study. Blood was collected prior to A(H1N1)pdm09 vaccination and at 1, 3 and 6 months after vaccination. Antibody titers to A(H1N1)pdm09 vaccine were measured by hemagglutination inhibition (HI) assay while the mRNA expression levels of AID were measured by quantitative real time PCR. Upon B-cell activation in vitro, AID increase correlated to antibody response to the A(H1N1)pdm09 vaccine at 1 month after vaccination in all individuals. In addition, the maximum expression levels of AID were significantly higher in those individuals who still carried protective levels of A(H1N1)pdm09 antibodies after 6 months from vaccination. No correlation was found between CD4+T-cell counts or age at vaccination or HIV-1 viral load and levels of A(H1N1)pdm09 antibodies. Assessing AID expression before vaccination may be an additional useful tool for defining a vaccination strategy in immune-compromised individuals at risk of immunization failure.

  16. The ontology of genetic susceptibility factors (OGSF) and its application in modeling genetic susceptibility to vaccine adverse events.

    Science.gov (United States)

    Lin, Yu; He, Yongqun

    2014-01-01

    Due to human variations in genetic susceptibility, vaccination often triggers adverse events in a small population of vaccinees. Based on our previous work on ontological modeling of genetic susceptibility to disease, we developed an Ontology of Genetic Susceptibility Factors (OGSF), a biomedical ontology in the domain of genetic susceptibility and genetic susceptibility factors. The OGSF framework was then applied in the area of vaccine adverse events (VAEs). OGSF aligns with the Basic Formal Ontology (BFO). OGSF defines 'genetic susceptibility' as a subclass of BFO:disposition and has a material basis 'genetic susceptibility factor'. The 'genetic susceptibility to pathological bodily process' is a subclasses of 'genetic susceptibility'. A VAE is a type of pathological bodily process. OGSF represents different types of genetic susceptibility factors including various susceptibility alleles (e.g., SNP and gene). A general OGSF design pattern was developed to represent genetic susceptibility to VAE and associated genetic susceptibility factors using experimental results in genetic association studies. To test and validate the design pattern, two case studies were populated in OGSF. In the first case study, human gene allele DBR*15:01 is susceptible to influenza vaccine Pandemrix-induced Multiple Sclerosis. The second case study reports genetic susceptibility polymorphisms associated with systemic smallpox VAEs. After the data of the Case Study 2 were represented using OGSF-based axioms, SPARQL was successfully developed to retrieve the susceptibility factors stored in the populated OGSF. A network of data from the Case Study 2 was constructed by using ontology terms and individuals as nodes and ontology relations as edges. Different social network analys is (SNA) methods were then applied to verify core OGSF terms. Interestingly, a SNA hub analysis verified all susceptibility alleles of SNPs and a SNA closeness analysis verified the susceptibility genes in Case

  17. Genetic and phenotypic characterization of manufacturing seeds for a tetravalent dengue vaccine (DENVax.

    Directory of Open Access Journals (Sweden)

    Claire Y-H Huang

    Full Text Available BACKGROUND: We have developed a manufacturing strategy that can improve the safety and genetic stability of recombinant live-attenuated chimeric dengue vaccine (DENVax viruses. These viruses, containing the pre-membrane (prM and envelope (E genes of dengue serotypes 1-4 in the replicative background of the attenuated dengue-2 PDK-53 vaccine virus candidate, were manufactured under cGMP. METHODOLOGY/PRINCIPAL FINDINGS: After deriving vaccine viruses from RNA-transfected Vero cells, six plaque-purified viruses for each serotype were produced. The plaque-purified strains were then analyzed to select one stock for generation of the master seed. Full genetic and phenotypic characterizations of the master virus seeds were conducted to ensure these viruses retained the previously identified attenuating determinants and phenotypes of the vaccine viruses. We also assessed vector competence of the vaccine viruses in sympatric (Thai Aedes aegypti mosquito vectors. CONCLUSION/SIGNIFICANCE: All four serotypes of master vaccine seeds retained the previously defined safety features, including all three major genetic loci of attenuation, small plaques, temperature sensitivity in mammalian cells, reduced replication in mosquito cell cultures, and reduced neurovirulence in new-born mice. In addition, the candidate vaccine viruses demonstrated greatly reduced infection and dissemination in Aedes aegypti mosquitoes, and are not likely to be transmissible by these mosquitoes. This manufacturing strategy has successfully been used to produce the candidate tetravalent vaccine, which is currently being tested in human clinical trials in the United States, Central and South America, and Asia.

  18. Vaccinations

    Science.gov (United States)

    ... vaccinated? For many years, a set of annual vaccinations was considered normal and necessary for dogs and ... to protect for a full year. Consequently, one vaccination schedule will not work well for all pets. ...

  19. Differing Patterns of Selection and Geospatial Genetic Diversity within Two Leading Plasmodium vivax Candidate Vaccine Antigens

    Science.gov (United States)

    Parobek, Christian M.; Bailey, Jeffrey A.; Hathaway, Nicholas J.; Socheat, Duong; Rogers, William O.; Juliano, Jonathan J.

    2014-01-01

    Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens – Plasmodium vivax merozoite surface protein 1 (pvmsp-1) and Plasmodium vivax circumsporozoite protein (pvcsp). Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44) and the complete gene of pvcsp (n = 47) from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines. PMID:24743266

  20. Differing patterns of selection and geospatial genetic diversity within two leading Plasmodium vivax candidate vaccine antigens.

    Directory of Open Access Journals (Sweden)

    Christian M Parobek

    2014-04-01

    Full Text Available Although Plasmodium vivax is a leading cause of malaria around the world, only a handful of vivax antigens are being studied for vaccine development. Here, we investigated genetic signatures of selection and geospatial genetic diversity of two leading vivax vaccine antigens--Plasmodium vivax merozoite surface protein 1 (pvmsp-1 and Plasmodium vivax circumsporozoite protein (pvcsp. Using scalable next-generation sequencing, we deep-sequenced amplicons of the 42 kDa region of pvmsp-1 (n = 44 and the complete gene of pvcsp (n = 47 from Cambodian isolates. These sequences were then compared with global parasite populations obtained from GenBank. Using a combination of statistical and phylogenetic methods to assess for selection and population structure, we found strong evidence of balancing selection in the 42 kDa region of pvmsp-1, which varied significantly over the length of the gene, consistent with immune-mediated selection. In pvcsp, the highly variable central repeat region also showed patterns consistent with immune selection, which were lacking outside the repeat. The patterns of selection seen in both genes differed from their P. falciparum orthologs. In addition, we found that, similar to merozoite antigens from P. falciparum malaria, genetic diversity of pvmsp-1 sequences showed no geographic clustering, while the non-merozoite antigen, pvcsp, showed strong geographic clustering. These findings suggest that while immune selection may act on both vivax vaccine candidate antigens, the geographic distribution of genetic variability differs greatly between these two genes. The selective forces driving this diversification could lead to antigen escape and vaccine failure. Better understanding the geographic distribution of genetic variability in vaccine candidate antigens will be key to designing and implementing efficacious vaccines.

  1. Mucosal Vaccination and Therapy with Genetically Modified Lactic Acid Bacteria

    NARCIS (Netherlands)

    Wells, J.

    2011-01-01

    Lactic acid bacteria (LAB) have proved to be effective mucosal delivery vehicles that overcome the problem of delivering functional proteins to the mucosal tissues. By the intranasal route, both live and killed LAB vaccine strains have been shown to elicit mucosal and systemic immune responses that

  2. Mucosal Vaccination and Therapy with Genetically Modified Lactic Acid Bacteria

    NARCIS (Netherlands)

    Wells, J.

    2011-01-01

    Lactic acid bacteria (LAB) have proved to be effective mucosal delivery vehicles that overcome the problem of delivering functional proteins to the mucosal tissues. By the intranasal route, both live and killed LAB vaccine strains have been shown to elicit mucosal and systemic immune responses that

  3. The link between genetic variation and variability in vaccine responses: systematic review and meta-analyses.

    Science.gov (United States)

    Posteraro, Brunella; Pastorino, Roberta; Di Giannantonio, Paolo; Ianuale, Carolina; Amore, Rosarita; Ricciardi, Walter; Boccia, Stefania

    2014-03-26

    Although immune response to vaccines can be influenced by several parameters, human genetic variations are thought to strongly influence the variability in vaccine responsiveness. Systematic reviews and meta-analyses are needed to clarify the genetic contribution to this variability, which may affect the efficacy of existing vaccines. We performed a systematic literature search to identify all studies describing the associations of allelic variants or single nucleotide polymorphisms in immune response genes with vaccine responses until July 2013. The studies fulfilling inclusion criteria were meta-analyzed. Thirteen studies (11,686 subjects) evaluated the associations of human leukocyte antigen (HLA) and other immunity gene variations with the responses to single vaccines, including MMR-II (measles and rubella virus), HepB (hepatitis virus), influenza virus, and MenC (serogroup C meningococcus) vaccines. Seven HLA genetic variants were included in the meta-analyses. The pooled ORs showed that DRB1*07 (2.46 [95% CI=1.60-3.77]; P for heterogeneity=0.117; I(2)=49.1%), DQA1*02:01 (2.21 [95% CI=1.22-4.00]; P for heterogeneity=0.995; I(2)=0.0%), DQB1*02:01 (2.03 [95% CI=1.35-3.07]; P for heterogeneity=0.449; I(2)=0.0%), and DQB1*03:03 (3.31 [95% CI=1.12-9.78]; P for heterogeneity=0.188; I(2)=42.4%) were associated with a significant decrease of antibody responses to MMR-II, HepB, and influenza vaccines. The pooled ORs showed that DRB1*13 (0.52 [95% CI=0.32-0.84]; P for heterogeneity=0.001; I(2)=85.1%) and DRB1*13:01 (0.19 [95% CI=0.06-0.58]; P for heterogeneity=0.367; I(2)=0.0%) were associated with a significant increase of antibody responses to the above vaccines. While our findings reinforce the concept that individuals with a particular HLA allelic composition are more likely to respond efficiently to vaccines, future studies should be encouraged to further elucidate the link between genetic variation and variability of the human immune response to vaccines

  4. Can we build it better? Using BAC genetics to engineer more effective cytomegalovirus vaccines.

    Science.gov (United States)

    Schleiss, Mark R

    2010-12-01

    The magnitude and durability of immunity to human cytomegalovirus (HCMV) following natural infection is compromised by the presence of immune modulation genes that appear to promote evasion of host clearance mechanisms. Since immunity to HCMV offers limited protection, rational design of effective vaccines has been challenging. In this issue of the JCI, Slavuljica and colleagues employ techniques to genetically modify the highly related mouse CMV (MCMV), in the process generating a virus that was rapidly cleared by NK cells. The virus functioned as a safe and highly effective vaccine. Demonstration of the ability to engineer a safe and highly effective live virus vaccine in a relevant rodent model of CMV infection may open the door to clinical trials of safer and more immunogenic HCMV vaccines.

  5. Antitumor Cell-Complex Vaccines Employing Genetically Modified Tumor Cells and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Antonio Miguel

    2014-02-01

    Full Text Available The present study evaluates the immune response mediated by vaccination with cell complexes composed of irradiated B16 tumor cells and mouse fibroblasts genetically modified to produce GM-CSF. The animals were vaccinated with free B16 cells or cell complexes. We employed two gene plasmid constructions: one high producer (pMok and a low producer (p2F. Tumor transplant was performed by injection of B16 tumor cells. Plasma levels of total IgG and its subtypes were measured by ELISA. Tumor volumes were measured and survival curves were obtained. The study resulted in a cell complex vaccine able to stimulate the immune system to produce specific anti-tumor membrane proteins (TMP IgG. In the groups vaccinated with cells transfected with the low producer plasmid, IgG production was higher when we used free B16 cell rather than cell complexes. Nonspecific autoimmune response caused by cell complex was not greater than that induced by the tumor cells alone. Groups vaccinated with B16 transfected with low producer plasmid reached a tumor growth delay of 92% (p ≤ 0.01. When vaccinated with cell complex, the best group was that transfected with high producer plasmid, reaching a tumor growth inhibition of 56% (p ≤ 0.05. Significant survival (40% was only observed in the groups vaccinated with free transfected B16 cells.

  6. Developing culturally sensitive cancer genetics communication aids for African Americans.

    Science.gov (United States)

    Baty, Bonnie Jeanne; Kinney, Anita Yeomans; Ellis, Sara Marie

    2003-04-15

    The goal of this project was to develop educational materials to communicate genetic health information in a culturally sensitive manner. These materials were designed to communicate information about cancer risk, genetic testing options, and health management options in an African American kindred with a known BRCA1 mutation. Educational materials were pilot-tested in four African American focus groups varying in socioeconomic status and gender. The audiotaped focus groups consisted of presentation of the educational materials, followed by a feedback session led by an African American facilitator. Qualitative analysis of the focus group transcripts identified important themes and the educational materials were revised in response to the participants' suggestions. The products included a booklet and a flip chart for use in educational sessions. Focus group participants recommended a substantial reduction in technical detail, and recommended that information be personalized and made relevant to the lives of the target population. Other critical themes included the importance of building trust in the medical system and avoiding words and images that have strong negative associations in the African American community. Strategies that were successful included nontechnical images to explain genetic concepts, clip art images to energize and personalize word slides, vibrant color, identifiably African American figures, and the development of themes relevant to many African Americans. The use of these materials in an ongoing study offering BRCA1 counseling and testing to a large, rural Louisiana-based kindred will provide additional feedback about the effectiveness of the culturally tailored genetic education and counseling materials.

  7. AIDS

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/000594.htm HIV/AIDS To use the sharing features on this page, ... immunodeficiency virus (HIV) is the virus that causes AIDS. When a person becomes infected with HIV, the ...

  8. Immune and Genetic Correlates of Vaccine Protection Against Mucosal Infection by SIV in Monkeys.

    Science.gov (United States)

    Letvin, Norman L; Rao, Srinivas S; Montefiori, David C; Seaman, Michael S; Sun, Yue; Lim, So-Yon; Yeh, Wendy W; Asmal, Mohammed; Gelman, Rebecca S; Shen, Ling; Whitney, James B; Seoighe, Cathal; Lacerda, Miguel; Keating, Sheila; Norris, Philip J; Hudgens, Michael G; Gilbert, Peter B; Buzby, Adam P; Mach, Linh V; Zhang, Jinrong; Balachandran, Harikrishnan; Shaw, George M; Schmidt, Stephen D; Todd, John-Paul; Dodson, Alan; Mascola, John R; Nabel, Gary J

    2011-05-04

    The RV144 vaccine trial in Thailand demonstrated that an HIV vaccine could prevent infection in humans and highlights the importance of understanding protective immunity against HIV. We used a nonhuman primate model to define immune and genetic mechanisms of protection against mucosal infection by the simian immunodeficiency virus (SIV). A plasmid DNA prime/recombinant adenovirus serotype 5 (rAd5) boost vaccine regimen was evaluated for its ability to protect monkeys from infection by SIVmac251 or SIVsmE660 isolates after repeat intrarectal challenges. Although this prime-boost vaccine regimen failed to protect against SIVmac251 infection, 50% of vaccinated monkeys were protected from infection with SIVsmE660. Among SIVsmE660-infected animals, there was about a one-log reduction in peak plasma virus RNA in monkeys expressing the major histocompatibility complex class I allele Mamu-A*01, implicating cytotoxic T lymphocytes in the control of SIV replication once infection is established. Among Mamu-A*01-negative monkeys challenged with SIVsmE660, no CD8(+) T cell response or innate immune response was associated with protection against virus acquisition. However, low levels of neutralizing antibodies and an envelope-specific CD4(+) T cell response were associated with vaccine protection in these monkeys. Moreover, monkeys that expressed two TRIM5 alleles that restrict SIV replication were more likely to be protected from infection than monkeys that expressed at least one permissive TRIM5 allele. This study begins to elucidate the mechanisms of vaccine protection against immunodeficiency viruses and highlights the need to analyze these immune and genetic correlates of protection in future trials of HIV vaccine strategies.

  9. Cancer Vaccines

    Science.gov (United States)

    ... Genetics Services Directory Cancer Prevention Overview Research Cancer Vaccines On This Page What is the immune system? ... cells recognized by the immune system? What are vaccines? What are cancer vaccines? How do cancer preventive ...

  10. Enveloped viruses understood via multiscale simulation: computer-aided vaccine design

    Science.gov (United States)

    Shreif, Z.; Adhangale, P.; Cheluvaraja, S.; Perera, R.; Kuhn, R.; Ortoleva, P.

    Enveloped viruses are viewed as an opportunity to understand how highly organized and functional biosystems can emerge from a collection of millions of chaotically moving atoms. They are an intermediate level of complexity between macromolecules and bacteria. They are a natural system for testing theories of self-assembly and structural transitions, and for demonstrating the derivation of principles of microbiology from laws of molecular physics. As some constitute threats to human health, a computer-aided vaccine and drug design strategy that would follow from a quantitative model would be an important contribution. However, current molecular dynamics simulation approaches are not practical for modeling such systems. Our multiscale approach simultaneously accounts for the outer protein net and inner protein/genomic core, and their less structured membranous material and host fluid. It follows from a rigorous multiscale deductive analysis of laws of molecular physics. Two types of order parameters are introduced: (1) those for structures wherein constituent molecules retain long-lived connectivity (they specify the nanoscale structure as a deformation from a reference configuration) and (2) those for which there is no connectivity but organization is maintained on the average (they are field variables such as mass density or measures of preferred orientation). Rigorous multiscale techniques are used to derive equations for the order parameters dynamics. The equations account for thermal-average forces, diffusion coefficients, and effects of random forces. Statistical properties of the atomic-scale fluctuations and the order parameters are co-evolved. By combining rigorous multiscale techniques and modern supercomputing, systems of extreme complexity can be modeled.

  11. Therapeutic DNA vaccine induces broad T cell responses in the gut and sustained protection from viral rebound and AIDS in SIV-infected rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Deborah Heydenburg Fuller

    Full Text Available Immunotherapies that induce durable immune control of chronic HIV infection may eliminate the need for life-long dependence on drugs. We investigated a DNA vaccine formulated with a novel genetic adjuvant that stimulates immune responses in the blood and gut for the ability to improve therapy in rhesus macaques chronically infected with SIV. Using the SIV-macaque model for AIDS, we show that epidermal co-delivery of plasmids expressing SIV Gag, RT, Nef and Env, and the mucosal adjuvant, heat-labile E. coli enterotoxin (LT, during antiretroviral therapy (ART induced a substantial 2-4-log fold reduction in mean virus burden in both the gut and blood when compared to unvaccinated controls and provided durable protection from viral rebound and disease progression after the drug was discontinued. This effect was associated with significant increases in IFN-γ T cell responses in both the blood and gut and SIV-specific CD8+ T cells with dual TNF-α and cytolytic effector functions in the blood. Importantly, a broader specificity in the T cell response seen in the gut, but not the blood, significantly correlated with a reduction in virus production in mucosal tissues and a lower virus burden in plasma. We conclude that immunizing with vaccines that induce immune responses in mucosal gut tissue could reduce residual viral reservoirs during drug therapy and improve long-term treatment of HIV infection in humans.

  12. Genetically Thermo-Stabilised, Immunogenic Poliovirus Empty Capsids; a Strategy for Non-replicating Vaccines

    Science.gov (United States)

    Fox, Helen; Minor, Philip D.

    2017-01-01

    While wild type polio has been nearly eradicated there will be a need to continue immunisation programmes for some time because of the possibility of re-emergence and the existence of long term excreters of poliovirus. All vaccines in current use depend on growth of virus and most of the non-replicating (inactivated) vaccines involve wild type viruses known to cause poliomyelitis. The attenuated vaccine strains involved in the eradication programme have been used to develop new inactivated vaccines as production is thought safer. However it is known that the Sabin vaccine strains are genetically unstable and can revert to a virulent transmissible form. A possible solution to the need for virus growth would be to generate empty viral capsids by recombinant technology, but hitherto such particles are so unstable as to be unusable. We report here the genetic manipulation of the virus to generate stable empty capsids for all three serotypes. The particles are shown to be extremely stable and to generate high levels of protective antibodies in animal models. PMID:28103317

  13. Genetic polymorphisms associated with rubella virus-specific cellular immunity following MMR vaccination.

    Science.gov (United States)

    Kennedy, Richard B; Ovsyannikova, Inna G; Haralambieva, Iana H; Lambert, Nathaniel D; Pankratz, V Shane; Poland, Gregory A

    2014-11-01

    Rubella virus causes a relatively benign disease in most cases, although infection during pregnancy can result in serious birth defects. An effective vaccine has been available since the early 1970s and outbreaks typically do not occur among highly vaccinated (≥2 doses) populations. Nevertheless, considerable inter-individual variation in immune response to rubella immunization does exist, with single-dose seroconversion rates ~95 %. Understanding the mechanisms behind this variability may provide important insights into rubella immunity. In the current study, we examined associations between single nucleotide polymorphisms (SNPs) in selected cytokine, cytokine receptor, and innate/antiviral genes and immune responses following rubella vaccination in order to understand genetic influences on vaccine response. Our approach consisted of a discovery cohort of 887 subjects aged 11-22 at the time of enrollment and a replication cohort of 542 older adolescents and young adults (age 18-40). Our data indicate that SNPs near the butyrophilin genes (BTN3A3/BTN2A1) and cytokine receptors (IL10RB/IFNAR1) are associated with variations in IFNγ secretion and that multiple SNPs in the PVR gene, as well as SNPs located in the ADAR gene, exhibit significant associations with rubella virus-specific IL-6 secretion. This information may be useful, not only in furthering our understanding immune responses to rubella vaccine, but also in identifying key pathways for targeted adjuvant use to boost immunity in those with weak or absent immunity following vaccination.

  14. Genetic diversity of vaccine candidate antigens in Plasmodium falciparum isolates from the Amazon basin of Peru

    Directory of Open Access Journals (Sweden)

    Lucas Carmen M

    2008-05-01

    Full Text Available Abstract Background Several of the intended Plasmodium falciparum vaccine candidate antigens are highly polymorphic and could render a vaccine ineffective if their antigenic sites were not represented in the vaccine. In this study, characterization of genetic variability was performed in major B and T-cell epitopes within vaccine candidate antigens in isolates of P. falciparum from Peru. Methods DNA sequencing analysis was completed on 139 isolates of P. falciparum collected from endemic areas of the Amazon basin in Loreto, Peru from years 1998 to 2006. Genetic diversity was determined in immunological important regions in circumsporozoite protein (CSP, merozoite surface protein-1 (MSP-1, apical membrane antigen-1 (AMA-1, liver stage antigen-1 (LSA-1 and thrombospondin-related anonymous protein (TRAP. Alleles identified by DNA sequencing were aligned with the vaccine strain 3D7 and DNA polymorphism analysis and FST study-year pairwise comparisons were done using the DnaSP software. Multilocus analysis (MLA was performed and average of expected heterozygosity was calculated for each loci and haplotype over time. Results Three different alleles for CSP, seven for MSP-1 Block 2, one for MSP-1 Block 17, three for AMA-1 and for LSA-1 each and one for TRAP were identified. There were 24 different haplotypes in 125 infections with complete locus typing for each gene. Conclusion Characterization of the genetic diversity in Plasmodium isolates from the Amazon Region of Peru showed that P. falciparum T and B cell epitopes in these antigens have polymorphisms more similar to India than to Africa. These findings are helpful in the formulation of a vaccine considering restricted repertoire populations.

  15. A New Genetically Engineered Vaccine for Animal Growth Promotion

    Institute of Scientific and Technical Information of China (English)

    徐文忠; 杜念兴; 李光地; 汪垣; 李载平

    1994-01-01

    The chemically synthesized somatostatin (ss) gene was fused in phase with the 3′-end ofhepatitis B virus surface antigen (HBsAg) gene.The fusion gene HBs/ss was then recomhined into thegenome of vaccinia virus.This recombinant virus (w-HBs/ss) can express hybrid HBsAg/ss particles whichpresent ss determinants on their surfaces,thereby bearing a good immunogenicity.This new strategical vac-cine of ss can elicit the production of antibody capable of neutralizing ss in the plasma,and consequently en-hance the growth of animals.

  16. Marker-aided genetic divergence analysis in Brassica

    Indian Academy of Sciences (India)

    V. Arunachalam; Shefali Verma; V. Sujata; K. V. Prabhu

    2005-08-01

    Genetic divergence was evaluated in 31 breeding lines from four Brassica species using Mahalanobis’ $D^{2}$. A new method of grouping using $D^{2}$ values was used to group the 31 lines, based on diagnostic morphological traits (called morphoqts). Isozyme variation of the individual enzymes esterase and glutamate oxaloacetate was quantified by five parameters (called isoqts) developed earlier. Grouping by the same method was also done based on the isoqts, and the grouping by isozymes was compared with that by morphoqts. Overall, there was an agreement of 73% suggesting that isoqts can be used in the choice of parents and also first stage selection of segregants in the laboratory. It was suggested that such an exercise would help to take care of season-bound and field-related problems of breeding. The new isozyme QTs, within lane variance of relative mobility and relative absorption, accounted for about 50% of the total divergence. The utility of the new method and isoqts in cost-effective breeding were highlighted.

  17. Toward Developing Genetic Algorithms to Aid in Critical Infrastructure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    2007-05-01

    Today’s society relies upon an array of complex national and international infrastructure networks such as transportation, telecommunication, financial and energy. Understanding these interdependencies is necessary in order to protect our critical infrastructure. The Critical Infrastructure Modeling System, CIMS©, examines the interrelationships between infrastructure networks. CIMS© development is sponsored by the National Security Division at the Idaho National Laboratory (INL) in its ongoing mission for providing critical infrastructure protection and preparedness. A genetic algorithm (GA) is an optimization technique based on Darwin’s theory of evolution. A GA can be coupled with CIMS© to search for optimum ways to protect infrastructure assets. This includes identifying optimum assets to enforce or protect, testing the addition of or change to infrastructure before implementation, or finding the optimum response to an emergency for response planning. This paper describes the addition of a GA to infrastructure modeling for infrastructure planning. It first introduces the CIMS© infrastructure modeling software used as the modeling engine to support the GA. Next, the GA techniques and parameters are defined. Then a test scenario illustrates the integration with CIMS© and the preliminary results.

  18. Suitability of PER.C6 cells to generate epidemic and pandemic influenza vaccine strains by reverse genetics

    NARCIS (Netherlands)

    Koudstaal, W.; Hartgroves, L.; Havenga, M.; Legastelois, I.; Ophorst, C.; Siewerts, M.; Zuijdgeest, D.; Vogels, R.; Custers, J.; Boer-Luijtze, E. de; Leeuw, O. de; Cornelissen, L.; Goudsmit, J.; Barclay, W.

    2009-01-01

    Reverse genetics, the generation of influenza viruses from cDNA, presents a rapid method for creating vaccine strains. The technique necessitates the use of cultured cells. Due to technical and regulatory requirements, the choice of cell lines for production of human influenza vaccines is limited. P

  19. Suitability of PER.C6 cells to generate epidemic and pandemic influenza vaccine strains by reverse genetics

    NARCIS (Netherlands)

    Koudstaal, W.; Hartgroves, L.; Havenga, M.; Legastelois, I.; Ophorst, C.; Siewerts, M.; Zuijdgeest, D.; Vogels, R.; Custers, J.; Boer-Luijtze, E. de; Leeuw, O. de; Cornelissen, L.; Goudsmit, J.; Barclay, W.

    2009-01-01

    Reverse genetics, the generation of influenza viruses from cDNA, presents a rapid method for creating vaccine strains. The technique necessitates the use of cultured cells. Due to technical and regulatory requirements, the choice of cell lines for production of human influenza vaccines is limited. P

  20. Improving the immunogenicity of a trivalent Neisseria meningitidis native outer membrane vesicle vaccine by genetic modification.

    Science.gov (United States)

    Zhang, Lan; Wen, Zhiyun; Lin, Jing; Xu, Hui; Herbert, Paul; Wang, Xin-Min; Mehl, John T; Ahl, Patrick L; Dieter, Lance; Russell, Ryann; Kosinski, Mike J; Przysiecki, Craig T

    2016-07-29

    Trivalent native outer membrane vesicles (nOMVs) derived from three genetically modified Neisseria meningitidis serogroup B strains have been previously evaluated immunologically in mice and rabbits. This nOMV vaccine elicited serum bactericidal activity (SBA) against multiple N. meningitidis serogroup B strains as well as strains from serogroups C, Y, W, and X. In this study, we used trivalent nOMVs isolated from the same vaccine strains and evaluated their immunogenicity in an infant Rhesus macaque (IRM) model whose immune responses to the vaccine are likely to be more predictive of the responses in human infants. IRMs were immunized with trivalent nOMV vaccines and sera were evaluated for exogenous human serum complement-dependent SBA (hSBA). Antibody responses to selected hSBA generating antigens contained within the trivalent nOMVs were also measured and we found that antibody titers against factor H binding protein variant 2 (fHbpv2) were very low in the sera from animals immunized with these original nOMV vaccines. To increase the fHbp content in the nOMVs, the vaccine strains were further genetically altered by addition of another fHbp gene copy into the porB locus. Trivalent nOMVs from the three new vaccine strains had higher fHbp antigen levels and generated higher anti-fHbp antibody responses in immunized mice and IRMs. As expected, fHbp insertion into the porB locus resulted in no PorB expression. Interestingly, higher expression of PorA, an hSBA generating antigen, was observed for all three modified vaccine strains. Compared to the trivalent nOMVs from the original strains, higher PorA levels in the improved nOMVs resulted in higher anti-PorA antibody responses in mice and IRMs. In addition, hSBA titers against other strains with PorA as the only hSBA antigen in common with the vaccine strains also increased. Copyright © 2016 Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ. Published by Elsevier Ltd.. All rights reserved.

  1. Genetic Vaccination against Experimental Infection with Myotropic Parasite Strains of Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Adriano Fernando Araújo

    2014-01-01

    Full Text Available In earlier studies, we reported that a heterologous prime-boost regimen using recombinant plasmid DNA followed by replication-defective adenovirus vector, both containing Trypanosoma cruzi genes encoding trans-sialidase (TS and amastigote surface protein (ASP 2, provided protective immunity against experimental infection with a reticulotropic strain of this human protozoan parasite. Herein, we tested the outcome of genetic vaccination of F1 (CB10XBALB/c mice challenged with myotropic parasite strains (Brazil and Colombian. Initially, we determined that the coadministration during priming of a DNA plasmid containing the murine IL-12 gene improved the immune response and was essential for protective immunity elicited by the heterologous prime-boost regimen in susceptible male mice against acute lethal infections with these parasites. The prophylactic or therapeutic vaccination of resistant female mice led to a drastic reduction in the number of inflammatory infiltrates in cardiac and skeletal muscles during the chronic phase of infection with either strain. Analysis of the electrocardiographic parameters showed that prophylactic vaccination reduced the frequencies of sinus arrhythmia and atrioventricular block. Our results confirmed that prophylactic vaccination using the TS and ASP-2 genes benefits the host against acute and chronic pathologies caused by T. cruzi and should be further evaluated for the development of a veterinary or human vaccine against Chagas disease.

  2. Landscape genetics of raccoons (Procyon lotor) associated with ridges and valleys of Pennsylvania: implications for oral rabies vaccination programs.

    Science.gov (United States)

    Root, J Jeffrey; Puskas, Robert B; Fischer, Justin W; Swope, Craig B; Neubaum, Melissa A; Reeder, Serena A; Piaggio, Antoinette J

    2009-12-01

    Raccoons are the reservoir for the raccoon rabies virus variant in the United States. To combat this threat, oral rabies vaccination (ORV) programs are conducted in many eastern states. To aid in these efforts, the genetic structure of raccoons (Procyon lotor) was assessed in southwestern Pennsylvania to determine if select geographic features (i.e., ridges and valleys) serve as corridors or hindrances to raccoon gene flow (e.g., movement) and, therefore, rabies virus trafficking in this physiographic region. Raccoon DNA samples (n = 185) were collected from one ridge site and two adjacent valleys in southwestern Pennsylvania (Westmoreland, Cambria, Fayette, and Somerset counties). Raccoon genetic structure within and among these study sites was characterized at nine microsatellite loci. Results indicated that there was little population subdivision among any sites sampled. Furthermore, analyses using a model-based clustering approach indicated one essentially panmictic population was present among all the raccoons sampled over a reasonably broad geographic area (e.g., sites up to 36 km apart). However, a signature of isolation by distance was detected, suggesting that widths of ORV zones are critical for success. Combined, these data indicate that geographic features within this landscape influence raccoon gene flow only to a limited extent, suggesting that ridges of this physiographic system will not provide substantial long-term natural barriers to rabies virus trafficking. These results may be of value for future ORV efforts in Pennsylvania and other eastern states with similar landscapes.

  3. Can we build it better? Using BAC genetics to engineer more effective cytomegalovirus vaccines

    OpenAIRE

    Mark R. Schleiss

    2010-01-01

    The magnitude and durability of immunity to human cytomegalovirus (HCMV) following natural infection is compromised by the presence of immune modulation genes that appear to promote evasion of host clearance mechanisms. Since immunity to HCMV offers limited protection, rational design of effective vaccines has been challenging. In this issue of the JCI, Slavuljica and colleagues employ techniques to genetically modify the highly related mouse CMV (MCMV), in the process generating a virus that...

  4. Reverse genetics of measles virus and resulting multivalent recombinant vaccines: applications of recombinant measles viruses.

    Science.gov (United States)

    Billeter, M A; Naim, H Y; Udem, S A

    2009-01-01

    An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.

  5. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Chenet Stella M

    2012-03-01

    Full Text Available Abstract Background A major concern in malaria vaccine development is genetic polymorphisms typically observed among Plasmodium isolates in different geographical areas across the world. Highly polymorphic regions have been observed in Plasmodium falciparum and Plasmodium vivax antigenic surface proteins such as Circumsporozoite protein (CSP, Duffy-binding protein (DBP, Merozoite surface protein-1 (MSP-1, Apical membrane antigen-1 (AMA-1 and Thrombospondin related anonymous protein (TRAP. Methods Genetic variability was assessed in important polymorphic regions of various vaccine candidate antigens in P. vivax among 106 isolates from the Amazon Region of Loreto, Peru. In addition, genetic diversity determined in Peruvian isolates was compared to population studies from various geographical locations worldwide. Results The structured diversity found in P. vivax populations did not show a geographic pattern and haplotypes from all gene candidates were distributed worldwide. In addition, evidence of balancing selection was found in polymorphic regions of the trap, dbp and ama-1 genes. Conclusions It is important to have a good representation of the haplotypes circulating worldwide when implementing a vaccine, regardless of the geographic region of deployment since selective pressure plays an important role in structuring antigen diversity.

  6. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap.

    Science.gov (United States)

    Gray, Glenda E; Mayer, Kenneth H; Elizaga, Marnie L; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C; Sato, Alicia; Gu, Niya; Tomaras, Georgia D; Tucker, Timothy; Barnett, Susan W; Mkhize, Nonhlanhla N; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-06-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.).

  7. Rational design of genetically stable, live-attenuated poliovirus vaccines of all three serotypes: relevance to poliomyelitis eradication.

    Science.gov (United States)

    Macadam, Andrew J; Ferguson, Geraldine; Stone, David M; Meredith, Janet; Knowlson, Sarah; Auda, Ghazi; Almond, Jeffrey W; Minor, Philip D

    2006-09-01

    The global eradication of poliomyelitis caused by wild-type virus is likely to be completed within the next few years, despite immense logistic and political difficulties, and may ultimately be followed by the cessation of vaccination. However, the existing live-attenuated vaccines have the potential to revert to virulence, causing occasional disease, and viruses can be shed by immunocompromised individuals for prolonged periods of time. Moreover, several outbreaks of poliomyelitis have been shown to be caused by viruses derived from the Sabin vaccine strains. The appearance of such strains depends on the prevailing circumstances but poses a severe obstacle to strategies for stopping vaccination. Vaccine strains that are incapable of reversion at a measurable rate would provide a possible solution. Here, we describe the constructions of strains of type 3 poliovirus that are stabilized by the introduction of four mutations in the 5' noncoding region compared to the present vaccine. The strains are genetically and phenotypically stable under conditions where the present vaccine loses the attenuating mutation in the 5' noncoding region completely. Type 1 and type 2 strains in which the entire 5' noncoding regions of Sabin 1 and Sabin 2 were replaced exactly with that of one of the type 3 strains were also constructed. The genetic stability of 5' noncoding regions of these viruses matched that of the type 3 strains, but significant phenotypic reversion occurred, illustrating the potential limitations of a rational approach to the genetic stabilization of live RNA virus vaccines.

  8. Computer-aided vaccine designing approach against fish pathogens Edwardsiella tarda and Flavobacterium columnare using bioinformatics softwares

    Directory of Open Access Journals (Sweden)

    Mahendran R

    2016-05-01

    Full Text Available Radha Mahendran,1 Suganya Jeyabaskar,1 Gayathri Sitharaman,1 Rajamani Dinakaran Michael,2 Agnal Vincent Paul1 1Department of Bioinformatics, 2Centre for Fish Immunology, School of Life Sciences, Vels University, Pallavaram, Chennai, Tamil Nadu, India Abstract: Edwardsiella tarda and Flavobacterium columnare are two important intracellular pathogenic bacteria that cause the infectious diseases edwardsiellosis and columnaris in wild and cultured fish. Prediction of major histocompatibility complex (MHC binding is an important issue in T-cell epitope prediction. In a healthy immune system, the T-cells must recognize epitopes and induce the immune response. In this study, T-cell epitopes were predicted by using in silico immunoinformatics approach with the help of bioinformatics tools that are less expensive and are not time consuming. Such identification of binding interaction between peptides and MHC alleles aids in the discovery of new peptide vaccines. We have reported the potential peptides chosen from the outer membrane proteins (OMPs of E. tarda and F. columnare, which interact well with MHC class I alleles. OMPs from E. tarda and F. columnare were selected and analyzed based on their antigenic and immunogenic properties. The OMPs of the genes TolC and FCOL_04620, respectively, from E. tarda and F. columnare were taken for study. Finally, two epitopes from the OMP of E. tarda exhibited excellent protein–peptide interaction when docked with MHC class I alleles. Five epitopes from the OMP of F. columnare had good protein–peptide interaction when docked with MHC class I alleles. Further in vitro studies can aid in the development of potential peptide vaccines using the predicted peptides. Keywords: E. tarda, F. columnare, edwardsiellosis, columnaris, T-cell epitopes, MHC class I, peptide vaccine, outer membrane proteins 

  9. Various carrier system(s)- mediated genetic vaccination strategies against malaria.

    Science.gov (United States)

    Tyagi, Rajeev K; Sharma, Pradeep Kumar; Vyas, Suresh P; Mehta, Abhinav

    2008-05-01

    The introduction of vaccine technology has facilitated an unprecedented multiantigen approach to develop an effective vaccine against complex pathogens, such as Plasmodium spp., that cause severe malaria. The capacity of multisubunit DNA vaccines encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and IFN-gamma responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be multi-immune (i.e., capable of eliciting more than one type of immune response, including cell-mediated and humoral). In the case of malaria parasites, a cytotoxic T-lymphocyte response is categorically needed against the intracellular hepatocyte stage while a humoral response, with antibodies targeted against antigens from all stages of the life cycle, is also needed. Therefore, the key to success for any DNA-based therapy is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of nonviral DNA-mediated gene-transfer techniques, such as liposomes, virosomes, microspheres and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. In addition, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells. Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. This review comprises various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccines.

  10. Information Vaccine: Using Graphic Novels as an HIV/AIDS Prevention Resource for Young Adults

    Science.gov (United States)

    Albright, Kendra S.; Gavigan, Karen

    2014-01-01

    HIV/AIDS infections are growing at an alarming rate for young adults. In 2009, youth, ages 13-29, accounted for 39% of all new HIV infections in the U.S. (Division of HIV/ AIDS Prevention, Centers for Disease Control (CDC), 2011). South Carolina ranks eighth in the nation for new HIV cases, while the capital city of Columbia ranks seventh…

  11. AIDS vaccine research in Asia: needs and opportunities. Report from a UNAIDS/WHO/NIID meeting Tokyo, 28-30 October 1998.

    Science.gov (United States)

    1999-07-30

    A meeting was organized by the Joint United Nations Programme on HIV/AIDS (UNAIDS), the World Health Organisation (WHO) and the Japanese National Institute of Infectious Diseases (NIID) with the following objectives: (i) to discuss public health and economic rationale to accelerate the development and evaluation of HIV vaccines suitable for use in Asia; (ii) to review ongoing preclinical HIV vaccine research in Asia; (iii) to review the Asian experience in conducting clinical trials of HIV candidate vaccines; (iv) to explore possibilities for international collaboration between countries in the region and with other countries and institutions; and (v) to discuss issues related to availability of future effective HIV vaccines. The meeting was attended by participants from Australia, China, France, Germany, India, Japan, Malaysia, Myanmar, South Korea, Thailand, United Kingdom, and the United States of America. The HIV epidemic in Asia is rapidly spreading and has already resulted in a total of 7 million HIV infections in the region. The epidemic already has a significant public health and economic impact, which may be worse in the future, unless effective intervention programmes are successfully implemented. A safe, effective, and affordable vaccine should be considered as the best hope for a long-term solution to the HIV epidemic in Asia. Asian scientists and institutions have established a number of international collaborations to isolate and characterize prevalent HIV-1 strains (mostly belonging to subtypes C and E) and are developing candidate vaccines based on these subtypes. In the region, phase I/II clinical trials of preventative HIV candidate vaccines have been conducted in Australia, China and Thailand. Since 1993, a comprehensive National AIDS Vaccine Plan has allowed Thailand to conduct phase I/II trials of six different preventative or therapeutic candidate vaccines, and the first phase III preventative efficacy trial has been approved. The meeting

  12. Perceived need of a parental decision aid for the HPV vaccine: content and format preferences.

    Science.gov (United States)

    Lechuga, Julia; Swain, Geoffrey; Weinhardt, Lance S

    2012-03-01

    The human papillomavirus (HPV) is a precursor of cervical cancer. In 2006, the Federal Drug Administration licensed a vaccine to protect against four types of HPV. Three years postlicensure of the vaccine, HPV vaccination is still fraught with controversy. To date, research suggests that contrary to popular notions, parents are less concerned with controversies on moral issues and more with uncertainty regarding because long-term safety of a drug is resolved after licensure. This study was designed to understand whether mothers from diverse ethnicities perceive a need for a decision support tool. Results suggest that the design of a culturally tailored decision support tool may help guide parents through the decision-making process.

  13. Bad Blood: The Tuskegee Syphilis Study and Legacy Recruitment for Experimental AIDS Vaccines

    Science.gov (United States)

    Hagen, Kimberly Sessions

    2005-01-01

    For African Americans, medical research often connotes exploitation and cruelty, making recruiting African Americans to participate in HIV vaccine trials particularly daunting. But infusing adult education principles into such efforts is both increasing African American participation and helping heal the legacy of the Tuskegee experiment.

  14. Roundtable for the Development of Drugs and Vaccines Against Acquired Immune Deficiency Syndrome (AIDS)

    Science.gov (United States)

    1994-05-06

    AIDS) SUBTITLE: Workshop Summary: Government and Industry .. Collaboration in AIDS Drug Development Aoneealon Foy PTIS ’IA& ----- DTI ’ TAB PRINCIPAL ...8217 stating that the government should generally acquire the principal or exclusine rights to inventions derived from federally supported research. IPAs w, ould...obligation to adminiter its patent rights in a responsible manner that benefits societN This mean,,, for one thing. not privatizing patents covering

  15. Worldwide genetic variability of the Duffy binding protein: insights into Plasmodium vivax vaccine development.

    Directory of Open Access Journals (Sweden)

    Taís Nóbrega de Sousa

    Full Text Available The dependence of Plasmodium vivax on invasion mediated by Duffy binding protein (DBP makes this protein a prime candidate for development of a vaccine. However, the development of a DBP-based vaccine might be hampered by the high variability of the protein ligand (DBP(II, known to bias the immune response toward a specific DBP variant. Here, the hypothesis being investigated is that the analysis of the worldwide DBP(II sequences will allow us to determine the minimum number of haplotypes (MNH to be included in a DBP-based vaccine of broad coverage. For that, all DBP(II sequences available were compiled and MNH was based on the most frequent nonsynonymous single nucleotide polymorphisms, the majority mapped on B and T cell epitopes. A preliminary analysis of DBP(II genetic diversity from eight malaria-endemic countries estimated that a number between two to six DBP haplotypes (17 in total would target at least 50% of parasite population circulating in each endemic region. Aiming to avoid region-specific haplotypes, we next analyzed the MNH that broadly cover worldwide parasite population. The results demonstrated that seven haplotypes would be required to cover around 60% of DBP(II sequences available. Trying to validate these selected haplotypes per country, we found that five out of the eight countries will be covered by the MNH (67% of parasite populations, range 48-84%. In addition, to identify related subgroups of DBP(II sequences we used a Bayesian clustering algorithm. The algorithm grouped all DBP(II sequences in six populations that were independent of geographic origin, with ancestral populations present in different proportions in each country. In conclusion, in this first attempt to undertake a global analysis about DBP(II variability, the results suggest that the development of DBP-based vaccine should consider multi-haplotype strategies; otherwise a putative P. vivax vaccine may not target some parasite populations.

  16. Failure of highly active antiretroviral therapy in reconstituting immune response to Clostridium tetani vaccine in aged AIDS patients.

    Science.gov (United States)

    Andrade, Regis M; Andrade, Arnaldo F B; Lazaro, Marta A; Vieira, Morgana M M; Barros, Priscila O; Borner, Alice R S; Silva-Filho, Renato G; Santos, Juliana O; Brindeiro, Rodrigo M; Tanuri, Amilcar; Bento, Cleonice A M

    2010-05-01

    The purpose of this study was to evaluate the impact of age on tetanus-specific immune response in successfully highly active antiretroviral therapy-treated AIDS patients, using healthy age-matched individuals as controls. Whole Peripheral blood mononuclear cells or CD8(+) cell-depleted peripheral blood mononuclear cells from previously tetanus toxoid (TT)-immunized individuals were activated with TT plus IL-2, and cell proliferation, cytokine production, and in vitro HIV-1 replication were measured. The in vivo magnitude of the humoral immune response was also assessed by antibody measurements. Our results showed that, compared with other groups, both in vitro TT-specific lymphoproliferation and serum antibody concentration were lower in older AIDS patients. Although the IL-1beta and tumour necrosis factor alpha (TNF-alpha) production were higher in cultures from aged HIV-1-infected patients, a dramatic damage on the interferon gamma (IFN-gamma) release was observed, when compared with younger patients. CD8(+) T lymphocytes depletion reduced IL-1beta and TNF-alpha release in the older groups, however, it did not significantly alter their IFN-gamma production. Furthermore, the neutralization of endogenous IL-10 did not change the IFN-gamma deficiency in older AIDS patients. Finally, the lower cellular immune response in this patient group was not related to in vitro HIV-1 replication. The results suggest that successfully highly active antiretroviral therapy-treated aged AIDS patients do not reconstitute the immune response to TT, making them probably more susceptible to tetanus even after vaccination.

  17. Biomarkers of safety and immune protection for genetically modified live attenuated Leishmania vaccines against visceral leishmaniasis-Discovery and implications

    Directory of Open Access Journals (Sweden)

    Sreenivas eGannavaram

    2014-05-01

    Full Text Available Despite intense efforts there is no safe and efficacious vaccine against visceral leishmaniasis, which is fatal and endemic in many tropical countries. A major shortcoming in the vaccine development against blood borne parasitic agents such as Leishmania is the inadequate predictive power of the early immune responses mounted in the host against the experimental vaccines. Often immune correlates derived from in-bred animal models do not yield immune markers of protection that can be readily extrapolated to humans. The limited efficacy of vaccines based on DNA, sub-unit, heat killed parasites has led to the realization that acquisition of durable immunity against the protozoan parasites requires a controlled infection with a live attenuated organism. Recent success of irradiated malaria parasites as a vaccine candidate further strengthens this approach to vaccination. We developed several gene deletion mutants in L. donovani as potential live attenuated vaccines and reported extensively on the immunogenicity of LdCentrin1 deleted mutant in mice, hamsters and dogs. Additional limited studies using genetically modified live attenuated Leishmania parasites as vaccine candidates have been reported. However, for the live attenuated parasite vaccines, the primary barrier against widespread use remains the absence of clear biomarkers associated with protection and safety. Recent studies in evaluation of vaccines e.g., influenza and yellow fever vaccines, using systems biology tools demonstrated the power of such strategies in understanding the immunological mechanisms that underpin a protective phenotype. Applying similar tools in isolated human tissues such as PBMCs from healthy individuals infected with live attenuated parasites such as LdCen1-/- in vitro followed by human microarray hybridization experiments will enable us to understand how early vaccine-induced gene expression profiles and the associated immune responses are coordinately regulated

  18. Genetic polymorphisms in host antiviral genes: associations with humoral and cellular immunity to measles vaccine.

    Science.gov (United States)

    Haralambieva, Iana H; Ovsyannikova, Inna G; Umlauf, Benjamin J; Vierkant, Robert A; Shane Pankratz, V; Jacobson, Robert M; Poland, Gregory A

    2011-11-08

    Host antiviral genes are important regulators of antiviral immunity and plausible genetic determinants of immune response heterogeneity after vaccination. We genotyped and analyzed 307 common candidate tagSNPs from 12 antiviral genes in a cohort of 745 schoolchildren immunized with two doses of measles-mumps-rubella (MMR) vaccine. Associations between SNPs/haplotypes and measles virus-specific immune outcomes were assessed using linear regression methodologies in Caucasians and African-Americans. Genetic variants within the DDX58/RIG-I gene, including a coding polymorphism (rs3205166/Val800Val), were associated as single-SNPs (p≤0.017; although these SNPs did not remain significant after correction for false discovery rate/FDR) and in haplotype-level analysis, with measles-specific antibody variations in Caucasians (haplotype allele p-value=0.021; haplotype global p-value=0.076). Four DDX58 polymorphisms, in high LD, demonstrated also associations (after correction for FDR) with variations in both measles-specific IFN-γ and IL-2 secretion in Caucasians (p≤0.001, q=0.193). Two intronic OAS1 polymorphisms, including the functional OAS1 SNP rs10774671 (p=0.003), demonstrated evidence of association with a significant allele-dose-related increase in neutralizing antibody levels in African-Americans. Genotype and haplotype-level associations demonstrated the role of ADAR genetic variants, including a non-synonymous SNP (rs2229857/Arg384Lys; p=0.01), in regulating measles virus-specific IFN-γ Elispot responses in Caucasians (haplotype global p-value=0.017). After correction for FDR, 15 single-SNP associations (11 SNPs in Caucasians and 4 SNPs in African-Americans) still remained significant at the q-valuemeasles vaccine in Caucasians and African-Americans.

  19. HIV/AIDS Treatment

    Science.gov (United States)

    ... with facebook share with twitter share with linkedin HIV/AIDS Treatment HIV/AIDS HIV/AIDS Vaccine Development ... such as hepatitis, malaria, and tuberculosis. Treatment of HIV Infection In the early 1980s when the HIV/ ...

  20. Genetic vaccination against the melanocyte lineage-specific antigen gp100 induces cytotoxic T lymphocyte-mediated tumor protection.

    Science.gov (United States)

    Schreurs, M W; de Boer, A J; Figdor, C G; Adema, G J

    1998-06-15

    Melanocyte lineage-specific antigens, such as gp100, have been shown to induce both cellular and humoral immune responses against melanoma. Therefore, these antigens are potential targets for specific antimelanoma immunotherapy. A novel approach to induce both cellular and humoral immunity is genetic vaccination, the injection of antigen-encoding naked plasmid DNA. In a mouse model, we investigated whether genetic vaccination against the human gp100 antigen results in specific antitumor immunity. The results demonstrate that vaccinated mice were protected against a lethal challenge with syngeneic B16 melanoma-expressing human gp100, but not control-transfected B16. Both cytotoxic T cells and IgG specific for human gp100 could be detected in human gp100-vaccinated mice. However, only adoptive transfer of spleen-derived lymphocytes, not of the serum, isolated from protected mice was able to transfer antitumor immunity to nonvaccinated recipients, indicating that CTLs are the predominant effector cells. CTI, lines generated from human gp100-vaccinated mice specifically recognized human gp100. Interestingly, one of the CTL lines cross-reacted between human and mouse gp100, indicating the recognition of a conserved epitope. However, these CTLs did not appear to be involved in the observed tumor protection. Collectively, our results indicate that genetic vaccination can result in a potent antitumor response in vivo and constitutes a potential immunotherapeutic strategy to fight cancer.

  1. Merck Ad5艾滋病疫苗的研究进展%Progress in Research on Merck's Ad5-based AIDS Vaccine

    Institute of Scientific and Technical Information of China (English)

    刘强

    2011-01-01

    安全有效的疫苗是艾滋病防治的有效手段.上世纪90年代,Merck公司开始研发腺病毒5型(Ad5)载体T细胞概念艾滋病疫苗.2007年9月,在II b期临床观察中宣告失败,给疫苗学界带来沉重打击.本文就Merck Ad5艾滋病疫苗的构建、临床前期和I、Ⅱ期临床观察以及学术界对其失败原因的分析作一综述.%An effective vaccine remains the primary goal for a comprehensive strategy to curb the global HIV epidemic. Merck began to develop adenovirus type 5 ( Ad5 )-based AIDS vaccine in 1990s. In 2007, Merck and NIAID announced that a phase Ⅱb clinical trial of an Ad5-based AIDS vaccine was discontinued after an interim analysis revealed that the vaccine did not work. The vaccine construction, preclinical and clinical trials and causes of failure are reviewed in this paper.

  2. Now that you want to take your HIV/AIDS vaccine/biological product research concept into the clinic: what are the "cGMP"?

    Science.gov (United States)

    Sheets, Rebecca L; Rangavajhula, Vijaya; Pullen, Jeffrey K; Butler, Chris; Mehra, Vijay; Shapiro, Stuart; Pensiero, Michael

    2015-04-08

    The Division of AIDS Vaccine Research Program funds the discovery and development of HIV/AIDS vaccine candidates. Basic researchers, having discovered a potential vaccine in the laboratory, next want to take that candidate into the clinic to test the concept in humans, to see if it translates. Many of them have heard of "cGMP" and know that they are supposed to make a "GMP product" to take into the clinic, but often they are not very familiar with what "cGMP" means and why these good practices are so important. As members of the Vaccine Translational Research Branch, we frequently get asked "can't we use the material we made in the lab in the clinic?" or "aren't Phase 1 studies exempt from cGMP?" Over the years, we have had many experiences where researchers or their selected contract manufacturing organizations have not applied an appropriate degree of compliance with cGMP suitable for the clinical phase of development. We share some of these experiences and the lessons learned, along with explaining the importance of cGMP, just what cGMP means, and what they can assure, in an effort to de-mystify this subject and facilitate the rapid and safe translational development of HIV vaccines.

  3. How can plant genetic engineering contribute to cost-effective fish vaccine development for promoting sustainable aquaculture?

    Science.gov (United States)

    Clarke, Jihong Liu; Waheed, Mohammad Tahir; Lössl, Andreas G; Martinussen, Inger; Daniell, Henry

    2013-09-01

    Aquaculture, the fastest growing food-producing sector, now accounts for nearly 50 % of the world's food fish (FAO in The state of world fisheries and aquaculture. FAO, Rome, 2010). The global aquaculture production of food fish reached 62.7 million tonnes in 2011 and is continuously increasing with an estimated production of food fish of 66.5 million tonnes in 2012 (a 9.4 % increase in 1 year, FAO, www.fao.org/fishery/topic/16140 ). Aquaculture is not only important for sustainable protein-based food fish production but also for the aquaculture industry and economy worldwide. Disease prevention is the key issue to maintain a sustainable development of aquaculture. Widespread use of antibiotics in aquaculture has led to the development of antibiotic-resistant bacteria and the accumulation of antibiotics in the environment, resulting in water and soil pollution. Thus, vaccination is the most effective and environmentally-friendly approach to combat diseases in aquaculture to manage fish health. Furthermore, when compared to >760 vaccines against human diseases, there are only about 30 fish vaccines commercially available, suggesting the urgent need for development and cost-effective production of fish vaccines for managing fish health, especially in the fast growing fish farming in Asia where profit is minimal and therefore given high priority. Plant genetic engineering has made significant contributions to production of biotech crops for food, feed, valuable recombinant proteins etc. in the past three decades. The use of plants for vaccine production offers several advantages such as low cost, safety and easy scaling up. To date a large number of plant-derived vaccines, antibodies and therapeutic proteins have been produced for human health, of which a few have been made commercially available. However, the development of animal vaccines in plants, especially fish vaccines by genetic engineering, has not yet been addressed. Therefore, there is a need to exploit

  4. Genetic parameters for resistance to the Salmonella abortusovis vaccinal strain Rv6 in sheep

    Directory of Open Access Journals (Sweden)

    Bouix Jacques

    2003-03-01

    Full Text Available Abstract An experimental population (1216 lambs from 30 sires of the Inra401 sheep was created in an Inra flock to allow QTL detection for susceptibility to Salmonella infection, wool and carcass traits. The Inra401 is a sheep composite line developed from two breeds: Berrichon du Cher and Romanov. At 113 days of age on average, the lambs were inoculated intravenously with 108 Salmonella abortusovis Rv6 (vaccinal strain. They were slaughtered 10 days after the inoculation. Several traits were measured at inoculation and/or slaughtering to estimate the genetic resistance of the lambs to Salmonella infection: specific IgM and IgG1 antibody titres, body weight loss, spleen and pre-scapular node weights and counts of viable Salmonella persisting in these organs. This paper presents a quantitative analysis of the genetic variability of the traits related to salmonellosis susceptibility. The heritabilities of the traits varied between 0.10 and 0.64 (significantly different from zero. Thus, in sheep as well as in other species, the determinism of resistance to Salmonella infection is under genetic control. Moreover, the correlations between the traits are in agreement with the known immune mechanisms. The genetic variability observed should help QTL detection.

  5. Synthetic virus seeds for improved vaccine safety: Genetic reconstruction of poliovirus seeds for a PER.C6 cell based inactivated poliovirus vaccine.

    Science.gov (United States)

    Sanders, Barbara P; Edo-Matas, Diana; Papic, Natasa; Schuitemaker, Hanneke; Custers, Jerome H H V

    2015-10-13

    Safety of vaccines can be compromised by contamination with adventitious agents. One potential source of adventitious agents is a vaccine seed, typically derived from historic clinical isolates with poorly defined origins. Here we generated synthetic poliovirus seeds derived from chemically synthesized DNA plasmids encoding the sequence of wild-type poliovirus strains used in marketed inactivated poliovirus vaccines. The synthetic strains were phenotypically identical to wild-type polioviruses as shown by equivalent infectious titers in culture supernatant and antigenic content, even when infection cultures are scaled up to 10-25L bioreactors. Moreover, the synthetic seeds were genetically stable upon extended passaging on the PER.C6 cell culture platform. Use of synthetic seeds produced on the serum-free PER.C6 cell platform ensures a perfectly documented seed history and maximum control over starting materials. It provides an opportunity to maximize vaccine safety which increases the prospect of a vaccine end product that is free from adventitious agents.

  6. Research Progress on Fish Genetically Engineered Vaccine%鱼用基因工程疫苗研究进展

    Institute of Scientific and Technical Information of China (English)

    田园园; 叶星

    2012-01-01

    疫苗是目前控制鱼类病害最经济有效的方式.免疫学及生物工程的迅速发展极大地促进了鱼类基因工程疫苗的研究.基因工程疫苗克服了传统疫苗的一些缺陷和不足,显示出巨大的应用前景,已成为国内外水产养殖业的研究热点,近年对鱼用基因工程疫苗的研究已取得较大进展,但鱼用基因工程疫苗在研究和应用过程中也面临着急需解决的若干问题.%At present,vaccination is the most cost-effective way to control diseases in fish. The rapid development in immunology and bio-engineering has greatly promoted the studies on genetically engineered vaccines for fish. It overcomes some defects and deficiencies of the traditional vaccines and shows great application prospect,and has become a research focus on aquaculture at home and abroad. This paper reviewed the present status and achievements gained in genetically engineered vaccine against fish pathogens,and problems encountered in commercialization of fishery genetically engineered vaccines that need to be solved urgently.

  7. First evidence of genetic intraspecific variability and occurrence of Entamoeba gingivalis in HIV(+)/AIDS.

    Science.gov (United States)

    Cembranelli, Sibeli B S; Souto, Fernanda O; Ferreira-Paim, Kennio; Richinho, Túlio T; Nunes, Poliana L; Nascentes, Gabriel A N; Ferreira, Thatiana B; Correia, Dalmo; Lages-Silva, Eliane

    2013-01-01

    Entamoeba gingivalis is considered an oral commensal but demonstrates a pathogenic potential associated with periodontal disease in immunocompromised individuals. Therefore, this study evaluated the occurrence, opportunistic conditions, and intraspecific genetic variability of E. gingivalis in HIV(+)/AIDS patients. Entamoeba gingivalis was studied using fresh examination (FE), culture, and PCR from bacterial plaque samples collected from 82 HIV(+)/AIDS patients. Genetic characterization of the lower ribosomal subunit of region 18S (18S-SSU rRNA) was conducted in 9 positive samples using low-stringency single specific primer PCR (LSSP-PCR) and sequencing analysis. Entamoeba gingivalis was detected in 63.4% (52/82) of the samples. No association was detected between the presence of E. gingivalis and the CD4(+) lymphocyte count (≤200 cells/mm(3) (p = 0.912) or viral load (p = 0.429). The LSSP-PCR results helped group E. gingivalis populations into 2 polymorphic groups (68.3% similarity): group I, associated with 63.6% (7/11) of the samples, and group II, associated with 36.4% (4/11) of the samples, which shared 74% and 83.7% similarity and association with C and E isolates from HIV(-) individuals, respectively. Sequencing of 4 samples demonstrated 99% identity with the reference strain ATCC 30927 and also showed 2 divergent clusters, similar to those detected by LSSP-PCR. Opportunistic behavior of E. gingivalis was not detected, which may be related to the use of highly active antiretroviral therapy by all HIV(+)/AIDS patients. The high occurrence of E. gingivalis in these patients can be influenced by multifactorial components not directly related to the CD4(+) lymphocyte counts, such as cholesterol and the oral microbiota host, which could mask the potential opportunistic ability of E. gingivalis. The identification of the 18S SSU-rRNA polymorphism by LSSP-PCR and sequencing analysis provides the first evidence of genetic variability in E. gingivalis

  8. Communication and education as vaccine against the spread of acquired immune deficiency syndrome (AIDS) in Africa.

    Science.gov (United States)

    Soola, E O

    1991-01-01

    Attention is focused on the segmentation of the audience (urban, rural, urban slum) and messages, and on how appropriate communication and educational strategies can be adopted to create awareness of AIDS among the African population. It is important to determine the scope, nature, and content of the message in addition to the delivery of these messages through proper channels. Channels of communication vary in reach and influence, and different segments of the population vary in the capacity to absorb information. Rural people are considered susceptible because of their penchant for continually using injections for treatment of any ailment; the source of concern is unsterilized needles and syringes. The semantics of AIDs is discussed to emphasize the problem of how to identify AIDs among the multiplicity of languages in individual countries. For instance, in Nigeria there may be 150-400 languages, and these languages lack systematically developed metalanguage and specialized vocabularies. The view that local language use must be one way, linear is accepted, and the difficulties surmounted. Local languages may be used to transmit information of a nontechnical nature. The literate minority should have access to detailed information on causes, modes of transmission, symptoms, treatment or management, but not everyone needs this extent of detail. The rural and urban residents should know about the incurability of the disease, the mode of transmission, its symptoms, and what should be done if someone is suspected of having an HIV infection. Already the Hausa of Nigeria have a term for AIDs, Karya-Garkuwa, which suggests a disease that breaks down the mechanism of the biological functioning of the body. Communicators must be knowledgeable and able to effectively transmit facts not myths. Of the 3 modes of transmission (sex, blood, mother to child), sexual transmission is the most important. Blood routes are through transfusions, contaminated blood products for

  9. Telomerase and HER-2/neu as targets of genetic cancer vaccines in dogs.

    Science.gov (United States)

    Peruzzi, Daniela; Mesiti, Giuseppe; Ciliberto, Gennaro; La Monica, Nicola; Aurisicchio, Luigi

    2010-02-03

    Pet dogs represent a valuable pre-clinical model to assess the efficacy of oncology drugs. Additionally, canine cancers occur with an incidence similar to that of humans and share many features with human malignancies including histological appearance, tumor genetics, biological behavior and response to conventional therapies. The telomerase reverse transcriptase (TERT) is reactivated in most of human and dog tumors. Similarly, HER-2/neu oncoprotein is overexpressed in a proportion of canine breast cancers. Therefore, TERT and HER-2/neu can constitute valid tumor associated antigens (TAA), suitable targets for translational cancer immunotherapy in dogs. In this study, we have evaluated the ability of DNA electroporation (DNA-EP) and Adenovirus serotype 6 (Ad6) to induce immune responses against dog TERT (dTERT) and HER-2/neu in healthy dogs. Vaccination was effective in all treated animals and the adaptive immune response remained detectable and long-lasting in the absence of autoimmunity or other side-effects. Our results show that DNA-EP/Ad6-based cancer vaccine induces adaptive immune responses against TAA in canine subjects and support further evaluation of this approach in cancer dog patients.

  10. In silico identification of genetically attenuated vaccine candidate genes for Plasmodium liver stage.

    Science.gov (United States)

    Kumar, Hirdesh; Frischknecht, Friedrich; Mair, Gunnar R; Gomes, James

    2015-12-01

    Genetically attenuated parasites (GAPs) that lack genes essential for the liver stage of the malaria parasite, and therefore cause developmental arrest, have been developed as live vaccines in rodent malaria models and recently been tested in humans. The genes targeted for deletion were often identified by trial and error. Here we present a systematic gene - protein and transcript - expression analyses of several Plasmodium species with the aim to identify candidate genes for the generation of novel GAPs. With a lack of liver stage expression data for human malaria parasites, we used data available for liver stage development of Plasmodium yoelii, a rodent malaria model, to identify proteins expressed in the liver stage but absent from blood stage parasites. An orthology-based search was then employed to identify orthologous proteins in the human malaria parasite Plasmodium falciparum resulting in a total of 310 genes expressed in the liver stage but lacking evidence of protein expression in blood stage parasites. Among these 310 possible GAP candidates, we further studied Plasmodium liver stage proteins by phyletic distribution and functional domain analyses and shortlisted twenty GAP-candidates; these are: fabB/F, fabI, arp, 3 genes encoding subunits of the PDH complex, dnaJ, urm1, rS5, ancp, mcp, arh, gk, lisp2, valS, palm, and four conserved Plasmodium proteins of unknown function. Parasites lacking one or several of these genes might yield new attenuated malaria parasites for experimental vaccination studies.

  11. Elucidation of the full genetic information of Japanese rubella vaccines and the genetic changes associated with in vitro and in vivo vaccine virus phenotypes.

    Science.gov (United States)

    Otsuki, Noriyuki; Abo, Hitoshi; Kubota, Toru; Mori, Yoshio; Umino, Yukiko; Okamoto, Kiyoko; Takeda, Makoto; Komase, Katsuhiro

    2011-02-24

    Rubella is a mild disease characterized by low-grade fever, and a morbilliform rash, but causes congenital defects in neonates born from mothers who suffered from rubella during the pregnancy. After many passages of wild-type rubella virus strains in various types of cultured cells, five live attenuated rubella vaccines were developed in Japan. An inability to elicit anti-rubella virus antibodies in experimentally infected animals was used as an in vivo marker phenotype of Japanese rubella vaccines. All Japanese rubella vaccine viruses exhibit a temperature-sensitive (ts) phenotype, and replicate very poorly at a high temperature. We determined the entire genome sequences of three Japanese rubella vaccines (Matsuba, TCRB19, and Matsuura), thereby completing the sequencing of all five Japanese rubella vaccines. In addition, the entire genome sequences of three vaccine progenitors were determined. Comparative nucleotide sequence analyses revealed mutations that were introduced into the genomes of the TO-336 and Matsuura vaccines during their production by laboratory passaging. Analyses involving cellular expression of viral P150 nonstructural protein-derived peptides revealed that the N1159S mutation conferred the ts phenotype on the TO-336 vaccine, and that reduced thermal stability of the P150 protease domain was a cause of the ts phenotype of some rubella vaccine viruses. The ts phenotype of vaccine viruses was not necessarily correlated with their inability to elicit humoral immune responses in animals. Therefore, the molecular mechanisms underlying the inability of these vaccines to elicit humoral responses in animals are more complicated than the previously considered mechanism involving the ts phenotype as the major cause.

  12. RNA polymerase I-driven reverse genetics system for enterovirus 71 and its implications for vaccine production

    Directory of Open Access Journals (Sweden)

    Meng Tao

    2012-10-01

    Full Text Available Abstract Background Enterovirus 71 (EV71 is a virus that causes from mild hand, foot and mouth disease (HFMD to severe neurological complications and deaths in infants and young children. Effective antiviral agents and vaccines against EV71 are not available. However, Vero cell-based chemically inactivated EV71 vaccines could be developed soon based on the success of inactivated polio vaccine. Like poliovirus, EV71 has a positive single-stranded RNA genome of about 7400 nucleotides which contains a single open reading frame (ORF flanked by conserved and untranslated regions at both the 5′ and 3′ ends. Results The universal amplification of the full length genome of EV71 regardless of its genetic diversity, and the subsequent construction of a human RNA polymerase I-driven reverse genetics (RG system to produce pure virus stocks in Vero cell within 10 days were described. The rescued viruses were characterized by DNA sequencing, cytopathic effect (CPE and indirect fluorescent assay (IFA in comparison with the wild-type viruses. Moreover, the rescued viruses grew to high titers and retained the same immunogenicity as the wild-type viruses. Conclusion We have established a simplified method to rescue RG EV71 virus from diverse clinical isolates with detailed genetic information and to prepare virus stocks in only 10 days. This method could accelerate EV71 vaccine development.

  13. Edible vaccines.

    OpenAIRE

    Artnzen, C J

    1997-01-01

    Vaccines were the result of trial and error research until molecular biology and genetic engineering made possible the creation of of many new and improved vaccines. New vaccines need to be inexpensive, easily administered, and capable of being stored and transported without refrigeration; without these characteristics, developing countries find it difficult to adopt vaccination as the central strategy for preventing their most devastating diseases. The authors describe a promising approach t...

  14. The emergence of HIV/AIDS in the Americas and beyond

    DEFF Research Database (Denmark)

    Gilbert, M Thomas P; Rambaut, Andrew; Wlasiuk, Gabriela

    2007-01-01

    HIV/AIDS epidemic outside sub-Saharan Africa and the most genetically diverse subtype B epidemic, which might present challenges for HIV-1 vaccine design and testing. The emergence of the pandemic variant of subtype B was an important turning point in the history of AIDS, but its spread was likely...

  15. HIV-1 Polymorphism: a Challenge for Vaccine Development - A Review

    Directory of Open Access Journals (Sweden)

    Morgado MG

    2002-01-01

    Full Text Available The perspective for the development of anti-HIV/AIDS vaccines became a target sought by several research groups and pharmaceutical companies. However, the complex virus biology in addition to a striking genetic variability and the limited understanding of the immunological correlates of protection have made this an enormous scientific challenge not overcome so far. In this review we presented an updating of HIV-1 subtypes and recombinant viruses circulating in South American countries, focusing mainly on Brazil, as one of the challenges for HIV vaccine development. Moreover, we discussed the importance of stimulating developing countries to participate in the process of vaccine evaluation, not only testing vaccines according to already defined protocols, but also working together with them, in order to take into consideration their local information on virus diversity and host genetic background relevant for the vaccine development and testing, as well as including local virus based reagents to evaluate the immunogenicity of the candidate vaccines.

  16. Molecular mechanisms of paraptosis induction: implications for a non-genetically modified tumor vaccine.

    Directory of Open Access Journals (Sweden)

    Neil Hoa

    Full Text Available Paraptosis is the programmed cell death pathway that leads to cellular necrosis. Previously, rodent and human monocytes/macrophages killed glioma cells bearing the membrane macrophage colony stimulating factor (mM-CSF through paraptosis, but the molecular mechanism of this killing process was never identified. We have demonstrated that paraptosis of rat T9 glioma cells can be initiated through a large potassium channel (BK-dependent process initiated by reactive oxygen species. Macrophage mediated cytotoxicity upon the mM-CSF expressing T9-C2 cells was not prevented by the addition of the caspase inhibitor, zVAD-fmk. By a combination of fluorescent confocal and electron microscopy, flow cytometry, electrophysiology, pharmacology, and genetic knock-down approaches, we demonstrated that these ion channels control cellular swelling and vacuolization of rat T9 glioma cells. Cell lysis is preceded by a depletion of intracellular ATP. Six-hour exposure to BK channel activation caused T9 cells to over express heat shock proteins (Hsp 60, 70, 90 and gp96. This same treatment forced HMGB1 translocation from the nuclear region to the periphery. These last molecules are "danger signals" that can stimulate immune responses. Similar inductions of mitochondrial swelling and increased Hsp70 and 90 expressions by BK channel activation were observed with the non-immunogenic F98 glioma cells. Rats injected with T9 cells which were killed by prolonged BK channel activation developed immunity against the T9 cells, while the injection of x-irradiated apoptotic T9 cells failed to produce the vaccinating effect. These results are the first to show that glioma cellular death induced by prolonged BK channel activation improves tumor immunogenicity; this treatment reproduces the vaccinating effects of mM-CSF transduced cells. Elucidation of strategies as described in this study may prove quite valuable in the development of clinical immunotherapy against cancer.

  17. Genetic drift evolution under vaccination pressure among H5N1 Egyptian isolates

    Directory of Open Access Journals (Sweden)

    Afifi Manal A

    2011-06-01

    Egypt. Egyptian H5N1-AIVs are constantly undergoing genetic changes and reveal a complex pattern of drifts. These findings raise the concerns about the value of using influenza vaccines in correlation with the development of antigenic drift in influenza epidemics.

  18. DAI (DLM-1/ZBP1) as a genetic adjuvant for DNA vaccines that promotes effective antitumor CTL immunity.

    Science.gov (United States)

    Lladser, Alvaro; Mougiakakos, Dimitrios; Tufvesson, Helena; Ligtenberg, Maarten A; Quest, Andrew Fg; Kiessling, Rolf; Ljungberg, Karl

    2011-03-01

    DNA vaccination is an attractive approach to induce antigen-specific cytotoxic CD8(+) T lymphocytes (CTLs), which can mediate protective antitumor immunity. The potency of DNA vaccines encoding weakly immunogenic tumor-associated antigens (TAAs) can be enhanced by codelivering gene-encoded adjuvants. Pattern recognition receptors (PRRs) that sense intracellular DNA could potentially be used to harness intrinsic immune-stimulating properties of plasmid DNA vaccines. Consequently, the cytosolic DNA sensor, DNA-dependent activator of interferon (IFN) regulatory factors (DAI), was used as a genetic adjuvant. In vivo electroporation (EP) of mice with a DAI-encoding plasmid (pDAI) promoted transcription of genes encoding type I IFNs, proinflammatory cytokines, and costimulatory molecules. Coimmunization with pDAI and antigen-encoding plasmids enhanced in vivo antigen-specific proliferation, and induction of effector and memory CTLs. Moreover, codelivery of pDAI effectively promoted CTL and CD4(+) Th1 responses to the TAA survivin. The DAI-enhanced CTL induction required nuclear factor κB (NF-κB) activation and type I IFN signaling, but did not involve the IFN regulatory factor 3 (IRF3). Codelivery of pDAI also increased CTL responses to the melanoma-associated antigen tyrosinase-related protein-2 (TRP2), enhanced tumor rejection and conferred long-term protection against B16 melanoma challenge. This study constitutes "proof-of-principle" validating the use of intracellular PRRs as genetic adjuvants to enhance DNA vaccine potency.

  19. Genetic and antigenic analysis of H5N1 viruses for selection of HA-donor virus for vaccine strains.

    Science.gov (United States)

    Bhatia, S; Kunal, A; Khandia, R; Siddiqui, A; Pateriya, A K; Sood, R

    2013-12-01

    Genetic and antigenic analysis of H5N1 viruses, isolated in India during a period from year 2006 to 2010, was carried out for selection of the potential H5-HA (haemagglutinin) gene donor virus for developing a reverse genetics based DIVA marker H5 vaccine for poultry in India. Out of the 47 H5N1 viruses (clade 2.2), 14 representative viruses were selected on the basis of amino acid sequence analysis of HA1 gene for further antigenic characterization. Using antigenic cartography, an antigenic map was constructed based on the data of cross-HI (haemagglutinin inhibition) titration of 14 sera versus 14 viruses to visualize the relatedness among the antigens and antigenic coverage of the sera. Sera against five H5N1 viruses (A/crow/Assam/142119/2008, A/chicken/West Bengal/100879/2008, A/chicken/West Bengal/155505/2009, A/chicken/West Bengal/80995/2008 and A/chicken/West Bengal/81760/2008) exhibited maximum (100 %) antigenic coverage, hence, were selected as the potential HA donor viruses. However, the virus strain A/chicken/West Bengal/80995/2008 matched completely with the consensus amino acid sequence of the 47 viruses, therefore, was considered the best HA donor candidate out of the five showing 100 % antigenic coverage. The present study demonstrates a stepwise methodology for logical selection of vaccine strain or HA gene donor strain for developing H5 vaccines using genetic and antigenic data.

  20. Measles virus genetic evolution throughout an imported epidemic outbreak in a highly vaccinated population.

    Science.gov (United States)

    Muñoz-Alía, Miguel Ángel; Fernández-Muñoz, Rafael; Casasnovas, José María; Porras-Mansilla, Rebeca; Serrano-Pardo, Ángela; Pagán, Israel; Ordobás, María; Ramírez, Rosa; Celma, María Luisa

    2015-01-22

    Measles virus circulates endemically in African and Asian large urban populations, causing outbreaks worldwide in populations with up-to-95% immune protection. We studied the natural genetic variability of genotype B3.1 in a population with 95% vaccine coverage throughout an imported six month measles outbreak. From first pass viral isolates of 47 patients we performed direct sequencing of genomic cDNA. Whilst no variation from index case sequence occurred in the Nucleocapsid gene hyper-variable carboxy end, in the Hemagglutinin gene, main target for neutralizing antibodies, we observed gradual nucleotide divergence from index case along the outbreak (0% to 0.380%, average 0.138%) with the emergence of transient and persistent non-synonymous and synonymous mutations. Little or no variation was observed between the index and last outbreak cases in Phosphoprotein, Nucleocapsid, Matrix and Fusion genes. Most of the H non-synonymous mutations were mapped on the protein surface near antigenic and receptors binding sites. We estimated a MV-Hemagglutinin nucleotide substitution rate of 7.28 × 10-6 substitutions/site/day by a Bayesian phylogenetic analysis. The dN/dS analysis did not suggest significant immune or other selective pressures on the H gene during the outbreak. These results emphasize the usefulness of MV-H sequence analysis in measles epidemiological surveillance and elimination programs, and in detection of potentially emergence of measles virus neutralization-resistant mutants.

  1. Enhancing DNA vaccine potency against hantavirus by co-administration of interleukin-12 expression vector as a genetic adjuvant

    Institute of Scientific and Technical Information of China (English)

    ZHENG Lan-yan; MOU Ling; LIN Song; LU Run-ming; LUO En-jie

    2005-01-01

    Background The heavy incidence and mortality of hemorrhagic fever with renal syndrome, as well as no specific drugs in curing the disease,clearly indicate the need for development of the more effective hantavirus vaccine. Refining the DNA vaccination strategy to elicit more clinically efficacious immune responses is now under intensive investigation. In the present study, we examined the effects of using an interleukin-12 expression plasmid as a genetic adjuvant to enhance the immune responses induced by a DNA vaccine based on the S gene encoding nucleocapsid protein against hantavirus. Methods BALB/c mice were immunized three times by intramuscular inoculations of DNA vaccine encoding of hantanvirus nucleocapsid protein alone or in combination with a plasmid expressing murine interleukin-12 (pcIL-12). Booster immunizations were employed 2 times at 2-week interval. To evaluate the humoral and cellular immune responses, antigen-specific lymphocyte proliferation and antibody production were assayed by MTT method and ELISA respectively. The level of interleukin-4 and interferon-γ in the splenic lymphocytic cultured supernatant were detected with ELISA kit at day 5, 10, 17, 35 and 42 after primary immunization.Conclusion Humoral and cytokine responses elicited by pcDNA3.1+S inoculation can be modulated by co-inoculation with pcIL-12 and efficiently induced Th1-dominant immune responses.

  2. Genetic Engineering Vaccine of Toxoplasma Gondii%刚地弓形虫基因工程疫苗

    Institute of Scientific and Technical Information of China (English)

    徐安健; 谷俊朝

    2009-01-01

    The Toxoplasma gondii vaccine is the best way to prevent Toxoplasma gondii infection. The improvement of the biological techology promots the study of Toxoplasma gondii vaccine. The newest study progresses of Toxoplasma gondii genetic engineering vaccine, which is summarized on the basis of the current study results, is respected to provide new aspects of the Toxoplasma gondii vaccine study for the researches.%弓形虫疫苗是预防弓形虫感染的最有效手段之一.随着生物学研究技术的不断进步,弓形虫疫苗的研究也不断深入完善.介绍了近些年发展起来的基因工程疫苗的最新研究进展,以期望在对现有研究成果总结的基础上,为今后的科研提供新的视角和方向.

  3. Effectiveness of vaccination with recombinant HpaA from Helicobacter pylori is influenced by host genetic background.

    Science.gov (United States)

    Sutton, Philip; Doidge, Christopher; Pinczower, Gideon; Wilson, John; Harbour, Stacey; Swierczak, Agnieszka; Lee, Adrian

    2007-07-01

    Several studies have explored the production and immunogenicity of HpaA as a potential protective antigen against Helicobacter pylori but little is known regarding its protective capabilities. We therefore evaluated the protective efficacy of recombinant HpaA (rHpaA) as a candidate vaccine antigen against H. pylori. To explore the impact of genetic diversity, inbred and outbred mice were prophylactically and therapeutically immunized with rHpaA adjuvanted with cholera toxin (CT). Prophylactic immunization induced a reduction in bacterial colonization in BALB/c and QS mice, but was ineffective in C57BL/6 mice, despite induction of antigen-specific antibodies. By contrast, therapeutic immunization was effective in all three strains of mice. Prophylactic immunization with CT-adjuvanted rHpaA was more effective when delivered via the nasal route than following intragastric delivery in BALB/c mice. However, HpaA-mediated protection was inferior to that induced by bacterial lysate. Hence, protective efficacy is inducible with vaccines containing HpaA, most relevantly shown in an outbred population of mice. The effectiveness of protection induced by HpaA antigen was influenced by host genetics and was less effective than lysate. HpaA therefore has potential for the development of effective immunization against H. pylori but this would probably entail the antigen to be one component of a multiantigenic vaccine.

  4. Genetic Diversity and Protective Efficacy of the RTS,S/AS01 Malaria Vaccine

    DEFF Research Database (Denmark)

    Neafsey, Daniel E; Juraska, Michal; Bedford, Trevor

    2015-01-01

    Background The RTS,S/AS01 vaccine targets the circumsporozoite protein of Plasmodium falciparum and has partial protective efficacy against clinical and severe malaria disease in infants and children. We investigated whether the vaccine efficacy was specific to certain parasite genotypes at the c...

  5. Genetic Determinants of Japanese Encephalitis Virus Vaccine Strain SA14-14-2 That Govern Attenuation of Virulence in Mice.

    Science.gov (United States)

    Gromowski, Gregory D; Firestone, Cai-Yen; Whitehead, Stephen S

    2015-06-01

    cultures and rodents, with intermittent tissue culture plaque purifications, to produce a virus clone that had adequate levels of attenuation and immunogenicity. The vaccine and parent virus sequences were later compared, and mutations were identified throughout the vaccine virus genome, but their contributions to attenuation were never fully elucidated. Here, using reverse genetics, we comprehensively defined the impact of JEV SA14-14-2 mutations on attenuation of virulence and immunogenicity in mice. These results are relevant for quality control of new lots of the current live-attenuated vaccine and provide insight for the rational design of second-generation, live-attenuated, recombinant JEV vaccine candidates. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  6. Classical swine fever virus marker vaccine strain CP7_E2alf: genetic stability in vitro and in vivo.

    Science.gov (United States)

    Goller, Katja V; Dräger, Carolin; Höper, Dirk; Beer, Martin; Blome, Sandra

    2015-12-01

    Recently, CP7_E2alf (SuvaxynCSF Marker), a live marker vaccine against classical swine fever virus, was licensed through the European Medicines Agency. For application of such a genetically engineered virus under field conditions, knowledge about its genetic stability is essential. Here, we report on stability studies that were conducted to assess and compare the mutation rate of CP7_E2alf in vitro and in vivo. Sequence analyses upon passaging confirmed the high stability of CP7_E2alf, and no recombination events were observed in the experimental setup. The data obtained in this study confirm the genetic stability of CP7_E2alf as an important safety component.

  7. [Genetic Characteristics of Type 2 Vaccine-derived Poliovirus in Shanxi Province (China) in 2014].

    Science.gov (United States)

    Yan, Dongrei; Li, Xiaolei; Zhang, Yong; Yang, Jianfang; Zhu, Shuangli; Wang, Dongyan; Zhang, Chuangye; Zhu, Hui; Xu, Wenbo

    2015-03-01

    The World Health Organization redefined the type 2 vaccine-derived poliovirus (VDPV) in 2010. To study the genetic characteristics and evolution of type 2 VDPV under this new definition, we conducted genome sequencing and analyses of type 2 VDPVs isolated from one patient with acute flaccid paralysis in Shanxi province (China) in 2014. Nucleotide sequencing revealed that the full-length of type 2 VDPV is 7439 bases encoding 2207 amino acids with no insertion or deletion of nucleotides compared with Sabin2. One nucleotide substitution identified as a key determinant of the attenuated phenotype of the Sabin 2 strain (A-G reversion at nucleotide nt 481 in the 5-end of the untranslated region) had reverted in the Shanxi type 2 VDPV. The other known key determinant of the attenuated phenotype of the Sabin 2 strain (U-->C reversion at nt2909 in the VP1 coding region that caused a Ile143Thr substitution in VP1) had not reverted in the Shanxi VDPV. The Shanxi type 2 VDPV was S2/S1 recombinant, the crossover site of which mapped to the 3-end of the 3D region (between nt 6247 and nt 6281). A phylogentic tree based on the VP1 coding region showed that evolution of the Shanxi type 2 VDPV was independent of other type 2 VDPVs detected worldwide. We estimated that the strain circulated for approximately = 11 months in the population according to the known evolution rate. The present study confirmed that the Chinese Polio Laboratory Network could discover the VDPV promptly and that it played an important part in maintenance of a polio-free China.

  8. Genetic Adjuvantation of a Cell-Based Therapeutic Vaccine for Amelioration of Chagasic Cardiomyopathy.

    Science.gov (United States)

    Konduri, Vanaja; Halpert, Matthew M; Liang, Dan; Levitt, Jonathan M; Cruz-Chan, Julio Vladimir; Zhan, Bin; Bottazzi, Maria Elena; Hotez, Peter J; Jones, Kathryn M; Decker, William K

    2017-09-01

    Chagas disease, caused by infection with the protozoan parasite Trypanosoma cruzi, is a leading cause of heart disease ("chagasic cardiomyopathy") in Latin America, disproportionately affecting people in resource-poor areas. The efficacy of currently approved pharmaceutical treatments is limited mainly to acute infection, and there are no effective treatments for the chronic phase of the disease. Preclinical models of Chagas disease have demonstrated that antigen-specific CD8(+) gamma interferon (IFN-γ)-positive T-cell responses are essential for reducing parasite burdens, increasing survival, and decreasing cardiac pathology in both the acute and chronic phases of Chagas disease. In the present study, we developed a genetically adjuvanted, dendritic cell-based immunotherapeutic for acute Chagas disease in an attempt to delay or prevent the cardiac complications that eventually result from chronic T. cruzi infection. Dendritic cells transduced with the adjuvant, an adenoviral vector encoding a dominant negative isoform of Src homology region 2 domain-containing tyrosine phosphatase 1 (SHP-1) along with the T. cruzi Tc24 antigen and trans-sialidase antigen 1 (TSA1), induced significant numbers of antigen-specific CD8(+) IFN-γ-positive cells following injection into BALB/c mice. A vaccine platform transduced with the adenoviral vector and loaded in tandem with the recombinant protein reduced parasite burdens by 76% to >99% in comparison to a variety of different controls and significantly reduced cardiac pathology in a BALB/c mouse model of live Chagas disease. Although no statistical differences in overall survival rates among cohorts were observed, the data suggest that immunotherapeutic strategies for the treatment of acute Chagas disease are feasible and that this approach may warrant further study. Copyright © 2017 American Society for Microbiology.

  9. Effects of Oral Levamisole as an Adjuvant to Hepatitis B Vaccine in HIV/ AIDS Patients: A Randomized Controlled Trial

    Science.gov (United States)

    Sayad, Babak; Alavian, Seyyed Moayed; Najafi, Farid; Soltani, Bita; Shirvani, Maria; Janbakhsh, Alireza; Mansouri, Feyzollah; Afsharian, Mandana; Vaziri, Siavash; Alikhani, Arash; Bashiri, Homayoon

    2012-01-01

    Background Human immunodeficiency virus (HIV) infected patients are also frequently exposed to the hepatitis B virus (HBV), due to the common routes of transmission, therefore, prevention of hepatitis B results in decreased complications of the disease. Objectives Since the immune response of HIV patients to hepatitis B vaccination is less robust than that found in healthy individuals, this study aimed to evaluate the effect of a levamisole adjuvant on increasing the immune response. Patients and Methods In this study, 89 HIV infected patients, without a history of HBV infection or vaccination, were randomly allocated into experimental (44 patients) and control (45 patients) groups. HBV vaccination was performed using the Hepavax-Gene TF vaccine, 40 μg three times at intervals of; zero, one, and three months. Levamisole 50 mg twice a day or a placebo, was administered to the experimental and control groups, respectively, for a period of six days before to six days after the vaccination. Immune response was evaluated by measuring hepatitis B surface antibodies (HBsAb) concurrently with the second and third vaccine administration, and at one and three months at the conclusion of the vaccination program. Results The immune response following the threevaccinations was higher in those who were receiving levamisole compared with the controls (90% vs. 65.38%) (P = 0.05). Furthermore, the immune response and the mean antibody titer following the repeated vaccination in the experimental group showed a higher increase than in the control group. The immune response and the mean titer of antibody were not associated with; age, sex, body mass index, history of smoking and/or intravenous drug use in either of the groups. However, regarding CD4+ cells more than 200 cell/mm3, mean antibody production significantly increased in both groups. Conclusions Using levamisole with the hepatitis B vaccination can increase the immune response and antibody titer mean in HIV infected

  10. Systems analysis of MVA-C induced immune response reveals its significance as a vaccine candidate against HIV/AIDS of clade C.

    Directory of Open Access Journals (Sweden)

    Carmen Elena Gómez

    Full Text Available Based on the partial efficacy of the HIV/AIDS Thai trial (RV144 with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C. MVA-C infection of human monocyte derived dendritic cells (moDCs induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.

  11. Genetic characterization of Toxoplasma gondii from autopsy proven cases of AIDS associated cerebral toxoplasmosis in South India.

    Science.gov (United States)

    Vijaykumar, B R; Lekshmi, Swathi U; Sai Kant, R; Vaigundan, D; Mahadevan, Anita; Rajendran, C; Shankar, S K; Jayshree, R S

    2016-04-01

    Toxoplasma gondii (T.gondii) infection can be devastating in the immunodeficient causing high morbidity and mortality. Due to limited availability of both diagnostic facilities and Highly Active Antiretroviral Therapy (HAART), toxoplasmosis continues to be a significant problem amongst Acquired Immuno Deficiency Syndrome (AIDS) patients in India. While scanty literature is available on T. gondii isolates in animals in India, little is known about the genetic diversity of the parasite in humans. Therefore, the present study investigated the genetic diversity of T. gondii in 25 confirmed cases of cerebral toxoplasmosis developing on the background of human immunodeficiency virus (HIV) infection/AIDS. PCR DNA sequencing was performed at four important genetic loci of T. gondii: BTUB, GRA6, alternative SAG2 (alt SAG2) and SAG3 on DNA from tissues obtained at postmortem. The amplified products from all the cases were successfully sequenced except at one locus for one case. Results of the present study suggest that majority of the patients (22/25; 88%) in South India are infected with strains that are recombinants of type II/III and/or strains representing T. gondii different from the archetypal lineages I, II, and III. In addition, clonal types III, MAS, and MAS variant genotypes were encountered. No clonal type I or II was seen in the present study. In addition, variants were observed at alt SAG2 and SAG3 but BTUB and GRA6 were highly conserved. Single nucleotide polymorphisms were observed mainly at two loci which are coding for surface antigens at alt SAG2 and SAG3. In conclusion, the present study reveals genetic diversity in India amongst strains of T. gondii from clinical cases of toxoplasmosis which is in accordance with other recent studies showing a high rate of genetic diversity in this parasite across the globe. There is a need to genotype T. gondii from different forms of toxoplasmosis in humans in India.

  12. Development of a flow cytometric bead immunoassay and its assessment as a possible aid to potency evaluation of enterotoxaemia vaccines

    Directory of Open Access Journals (Sweden)

    Angela Buys

    2014-02-01

    Full Text Available Enterotoxaemia, an economically important disease of sheep, goats and calves, is caused by systemic effects of the epsilon toxin produced by the anaerobic bacterium Clostridium perfringens type D. The only practical means of controlling the occurrence of enterotoxaemia is to immunise animals by vaccination. The vaccine is prepared by deriving a toxoid from the bacterial culture filtrate and the potency of the vaccine is tested with the in vivo mouse neutralisation test (MNT. Due to ethical, economic and technical reasons, alternative in vitro assays are needed. In this study an indirect cytometric bead immunoassay (I-CBA was developed for use in vaccine potency testing and the results were compared with those obtained using an indirect enzyme-linked immunosorbent assay (I-ELISA and the MNT. Sera were collected from guinea pigs immunised with three different production batches of enterotoxaemia vaccine and the levels of anti-epsilon toxin antibodies were determined. Although the intra- and inter-assay variability was satisfactory, epsilon antitoxin levels determined by both the I-ELISA and indirect cytometric bead immunoassay (I-CBA tests were higher than those of the MNT assay. In contrast to the MNT, all of the serum samples were identified as having antitoxin levels above the required minimum (not less than 5 U/mL. These results indicate that the respective in vitro tests in their current formats are not yet suitable alternatives to the in vivo MNT. The growing demand for a more humane, cost-effective and efficient method for testing the potency of enterotoxaemia vaccines, however, provides a strong impetus for further optimisation and standardisation of the I-CBA assay but further analytical research is required.

  13. Integrated Analysis of Genetic and Proteomic Data Identifies Biomarkers Associated with Adverse Events Following Smallpox Vaccination

    Science.gov (United States)

    Complex clinical outcomes, such as adverse reaction to vaccination, arise from the concerted interactions among the myriad components of a biological system. Therefore, comprehensive etiological models can be developed only through the integrated study of multiple types of experi...

  14. Integrated Analysis of Genetic and Proteomic Data Identifies Biomarkers Associated with Adverse Events Following Smallpox Vaccination

    Science.gov (United States)

    Complex clinical outcomes, such as adverse reaction to vaccination, arise from the concerted interactions among the myriad components of a biological system. Therefore, comprehensive etiological models can be developed only through the integrated study of multiple types of experi...

  15. Genetic drift evolution under vaccination pressure among H5N1 Egyptian isolates

    OpenAIRE

    Afifi Manal A; Abdel-Moneim Ahmed S; El-Kady Magdy F

    2011-01-01

    Background The highly pathogenic H5N1 is a major avian pathogen that intensively affects the poultry industry in Egypt even in spite of the adoption of vaccination strategy. Antigenic drift is among the strategies the influenza virus uses to escape the immune system that might develop due to the pressure of extensive vaccination. H5N1 mutates in an intensified manner and is considered a potential candidate for the possible next pandemic with all the catastrophic consequences such an eventual...

  16. Interleukin-12 as a Genetic Adjuvant Enhances Hepatitis C Virus NS3 DNA Vaccine Immunogenicity

    Institute of Scientific and Technical Information of China (English)

    Malihe Naderi; Atefeh Saeedi; Abdolvahab Moradi; Mishar Kleshadi; Mohammad Reza Zolfaghari; Ali Gorji; Amir Ghaemi

    2013-01-01

    Hepatitis C virus (HCV) chronic infection is a worldwide health problem,and numerous efforts have been invested to develop novel vaccines.An efficient vaccine requires broad immune response induction against viral proteins.To achieve this goal,we constructed a DNA vaccine expressing nonstructural 3 (NS3) gene (pcDNA3.1-HCV-NS3) and assessed the immune response in C57BL/6 mice.In this study,the NS3 gene was amplified with a nested-reverse transcriptase-polymerase chain reaction (RT-PCR) method using sera of HCV-infected patients with genotype 1 a.The resulting NS3 gene was subcloned into a pcDNA3.1 eukaryotic expression vector,and gene expression was detected by western blot.The resultant DNA vaccine was co-administered with interleukin-12 (IL-12) as an adjuvant to female C57BL/6 mice.After the final immunizations,lymphocyte proliferation,cytotoxicity,and cytokine levels were assessed to measure immune responses.Our data suggest that co-administration of HCV NS3 DNA vaccine with IL-12 induces production of significant levels of both IL-4 and interferon (IFN)-γ (p<0.05).Cytotoxicity and lymphocyte proliferation responses of vaccinated mice were significantly increased compared to control (p<0.05).Collectively,our results demonstrated that co-administration of HCV NS3 and IL-12 displayed strong immunogenicity in a murine model.

  17. A recombinant vesicular stomatitis virus-based Lassa fever vaccine protects guinea pigs and macaques against challenge with geographically and genetically distinct Lassa viruses.

    Directory of Open Access Journals (Sweden)

    David Safronetz

    2015-04-01

    Full Text Available Lassa virus (LASV is endemic in several West African countries and is the etiological agent of Lassa fever. Despite the high annual incidence and significant morbidity and mortality rates, currently there are no approved vaccines to prevent infection or disease in humans. Genetically, LASV demonstrates a high degree of diversity that correlates with geographic distribution. The genetic heterogeneity observed between geographically distinct viruses raises concerns over the potential efficacy of a "universal" LASV vaccine. To date, several experimental LASV vaccines have been developed; however, few have been evaluated against challenge with various genetically unique Lassa virus isolates in relevant animal models.Here we demonstrate that a single, prophylactic immunization with a recombinant vesicular stomatitis virus (VSV expressing the glycoproteins of LASV strain Josiah from Sierra Leone protects strain 13 guinea pigs from infection / disease following challenge with LASV isolates originating from Liberia, Mali and Nigeria. Similarly, the VSV-based LASV vaccine yields complete protection against a lethal challenge with the Liberian LASV isolate in the gold-standard macaque model of Lassa fever.Our results demonstrate the VSV-based LASV vaccine is capable of preventing morbidity and mortality associated with non-homologous LASV challenge in two animal models of Lassa fever. Additionally, this work highlights the need for the further development of disease models for geographical distinct LASV strains, particularly those from Nigeria, in order to comprehensively evaluate potential vaccines and therapies against this prominent agent of viral hemorrhagic fever.

  18. Specific Genetic Immunotherapy Induced by Recombinant Vaccine Alpha-Fetoprotein-Heat Shock Protein 70 Complex

    Science.gov (United States)

    Wang, Xiaoping; Lin, Huanping; Wang, Qiaoxia

    Purposes: To construct a recombinant vaccine alpha-fetoprotein (AFP)-heat shock protein (HSP70) complex, and study its ability to induce specific CTL response and its protective effect against AFP-producing tumor. Material/Methods: A recombinant vaccine was constructed by conjugating mouse alpha-fetoprotein to heat shock protein 70. By way of intracutaneous injection, mice were primed and boosted with recombinant vaccine mAFP/HSP70, whereas single mAFP or HSP70 injection as controls. The ELISPOT and ELISA were used to measure the frequency of cells producing the cytokine IFN-γ in splenocytes and the level of anti-AFP antibody of serum from immunized mice respectively. In vivo tumor challenge were carried out to assess the immune effect of the recombinant vaccine. Results: By recombinant mAFP/HSP70 vaccine immunization, the results of ELISPOT and ELISA showed that the number of splenic cells producing IFN-γ and the level of anti-AFP antibody of serum were significantly higher in mAFP/HSP70 group than those in mAFP and HSP70 groups (108.50±11.70 IFN-γ spots/106 cells vs 41.60±10.40 IFN-γ spots/106 cells, 7.32±3.14 IFN-γ spots/106 cells, Precombinant mAFP/HSP70 vaccine could generate effective antitumor immunity on AFP-producing tumor. The recombined mAFP/HSP70 vaccine may be suitable for serving as an immunotherapy for hepatocellular carcinoma.

  19. What is a Preventive HIV Vaccine?

    Science.gov (United States)

    ... Therapeutic HIV Vaccine? What is a Preventive HIV Vaccine? HIV/AIDS Clinical Trials HIV Prevention The Basics of ... Send us an email What is a Preventive HIV Vaccine? Last Reviewed: August 16, 2017 Key Points A ...

  20. Teaching the Principles of Genetics with the Aid of the Herediscope.

    Science.gov (United States)

    Oltenacu, E. A. Branford

    1983-01-01

    A herediscope is a device used to teach genetics while overcoming students' fears of the mathematical aspects of the subject. The herediscope can be constructed from cardboard or heavy paper by individual students. Qualitative inheritance, sex inheritance, random assortment, and population genetics are among the topics taught using the device. (JN)

  1. Antigen Gene Cloning and Expression of HIV-1 Toward AIDS Vaccine Design Ⅱ. Subtype Classification and Quasi-species Identification of HIV-1

    Institute of Scientific and Technical Information of China (English)

    ZENG Qingping (曾庆平); YANG Ruiyi (杨瑞仪); FENG Liling (冯丽玲); CHEN Zhuhua (陈竹华); ZENG Changhong (曾常红)

    2002-01-01

    Objectives: To analyze subtypes and quasi-species of isolatedviruses from HIV-1 infected individuals among the populationof Guangdong Province, for understanding the molecularepidemioiogical dynamics of local HIV-1 isolates, thus laying afoundation for designing a candidate AIDS vaccine.Methods: By hetero-duplex mobility assay (HMA) andsingle strand conformation poly- morphism (SSCP) analysison amplicons from single-primed polymerase chain reaction(SP-PCR), subtypes and quasi-species of tested HIV-1 isolateswere elucidated, and amplicons were sequenced forconfirmation.Results: Specific amplicons from different subtypes andquasi-species of HIV-1 could be discernible by HMA andSSCP analysis.Conclusion: HIV-1 isolates from different patients might beeither a different subtype or an identical subtype, and HIV-1isolates from an individual were present in a population ofquasi-species.

  2. HIV Vaccine-Challenges and Opportunities

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The need for an efficacious HIV/AIDS vaccine remains the highest priority of the world HIV/AIDS agenda. The generation of an efficacious HIV/AIDS vaccine proves an enormous scientific challenge. This article reviews the neutralizing antibody problem, elusive immune protection, immunogen design, pre-existing anti-vector immunity and design of phase 3 vaccine trials and the challenges and opportunities in development of HIV/AIDS vaccine are discussed.

  3. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design

    Directory of Open Access Journals (Sweden)

    Alexander W. Tarr

    2015-07-01

    Full Text Available In the 26 years since the discovery of Hepatitis C virus (HCV a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.

  4. Genetic variations of live attenuated plague vaccine strains (Yersinia pestis EV76 lineage) during laboratory passages in different countries.

    Science.gov (United States)

    Cui, Yujun; Yang, Xianwei; Xiao, Xiao; Anisimov, Andrey P; Li, Dongfang; Yan, Yanfeng; Zhou, Dongsheng; Rajerison, Minoarisoa; Carniel, Elisabeth; Achtman, Mark; Yang, Ruifu; Song, Yajun

    2014-08-01

    Plague, one of the most devastating infectious diseases in human history, is caused by the bacterial species Yersinia pestis. A live attenuated Y. pestis strain (EV76) has been widely used as a plague vaccine in various countries around the world. Here we compared the whole genome sequence of an EV76 strain used in China (EV76-CN) with the genomes of Y. pestis wild isolates to identify genetic variations specific to the EV76 lineage. We identified 6 SNPs and 6 Indels (insertions and deletions) differentiating EV76-CN from its counterparts. Then, we screened these polymorphic sites in 28 other strains of EV76 lineage that were stored in different countries. Based on the profiles of SNPs and Indels, we reconstructed the parsimonious dissemination history of EV76 lineage. This analysis revealed that there have been at least three independent imports of EV76 strains into China. Additionally, we observed that the pyrE gene is a mutation hotspot in EV76 lineages. The fine comparison results based on whole genome sequence in this study provide better understanding of the effects of laboratory passages on the accumulation of genetic polymorphisms in plague vaccine strains. These variations identified here will also be helpful in discriminating different EV76 derivatives. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Identification of Brucella melitensis Rev.1 vaccine-strain genetic markers: Towards understanding the molecular mechanism behind virulence attenuation.

    Science.gov (United States)

    Issa, Mohammad Nouh; Ashhab, Yaqoub

    2016-09-22

    Brucella melitensis Rev.1 is an avirulent strain that is widely used as a live vaccine to control brucellosis in small ruminants. Although an assembled draft version of Rev.1 genome has been available since 2009, this genome has not been investigated to characterize this important vaccine. In the present work, we used the draft genome of Rev.1 to perform a thorough genomic comparison and sequence analysis to identify and characterize the panel of its unique genetic markers. The draft genome of Rev.1 was compared with genome sequences of 36 different Brucella melitensis strains from the Brucella project of the Broad Institute of MIT and Harvard. The comparative analyses revealed 32 genetic alterations (30 SNPs, 1 single-bp insertion and 1 single-bp deletion) that are exclusively present in the Rev.1 genome. In silico analyses showed that 9 out of the 17 non-synonymous mutations are deleterious. Three ABC transporters are among the disrupted genes that can be linked to virulence attenuation. Out of the 32 mutations, 11 Rev.1 specific markers were selected to test their potential to discriminate Rev.1 using a bi-directional allele-specific PCR assay. Six markers were able to distinguish between Rev.1 and a set of control strains. We succeeded in identifying a panel of 32 genome-specific markers of the B. melitensis Rev.1 vaccine strain. Extensive in silico analysis showed that a considerable number of these mutations could severely affect the function of the associated genes. In addition, some of the discovered markers were able to discriminate Rev.1 strain from a group of control strains using practical PCR tests that can be applied in resource-limited settings.

  6. Co-administration of a plasmid DNA encoding IL-15 improves long-term protection of a genetic vaccine against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Christopher S Eickhoff

    Full Text Available BACKGROUND: Immunization of mice with the Trypanosoma cruzi trans-sialidase (TS gene using plasmid DNA, adenoviral vector, and CpG-adjuvanted protein delivery has proven highly immunogenic and provides protection against acute lethal challenge. However, long-term protection induced by TS DNA vaccines has not been reported. The goal of the present work was to test whether the co-administration of a plasmid encoding IL-15 (pIL-15 could improve the duration of protection achieved through genetic vaccination with plasmid encoding TS (pTS alone. METHODOLOGY: We immunized BALB/c mice with pTS in the presence or absence of pIL-15 and studied immune responses [with TS-specific IFN-γ ELISPOT, serum IgG ELISAs, intracellular cytokine staining (IFN-γ, TNF-α, and IL-2, tetramer staining, and CFSE dilution assays] and protection against lethal systemic challenge at 1 to 6 months post vaccination. Mice receiving pTS alone developed robust TS-specific IFN-γ responses and survived a lethal challenge given within the first 3 months following immunization. The addition of pIL-15 to pTS vaccination did not significantly alter T cell responses or protection during this early post-vaccination period. However, mice vaccinated with both pTS and pIL-15 challenged 6 months post-vaccination were significantly more protected against lethal T. cruzi challenges than mice vaccinated with pTS alone (P6 months post immunization. Also, these TS-specific T cells were better able to expand after in vitro re-stimulation. CONCLUSION: Addition of pIL-15 during genetic vaccination greatly improved long-term T cell survival, memory T cell expansion, and long-term protection against the important human parasite, T. cruzi.

  7. A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation From Immunogenicity

    Directory of Open Access Journals (Sweden)

    David J. Dowling

    2016-12-01

    Full Text Available Background. Group B Neisseria meningitidis, an endotoxin-producing gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs or soluble lipopolysaccharide (LPS represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific in vitro culture systems.Methods. OMVs from wild type and inactivated lpxL1 gene mutant N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and PGE2 production, as well as cell surface activation markers (HLA-DR, CD86, CCR7. OMV immunogenicity was assessed in mice.Results. ΔlpxLI native OMVs demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, Bacillus Calmette–Guérin (BCG tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI native OMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization.Conclusions. A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.

  8. A Meningococcal Outer Membrane Vesicle Vaccine Incorporating Genetically Attenuated Endotoxin Dissociates Inflammation from Immunogenicity.

    Science.gov (United States)

    Dowling, David J; Sanders, Holly; Cheng, Wing Ki; Joshi, Sweta; Brightman, Spencer; Bergelson, Ilana; Pietrasanta, Carlo; van Haren, Simon D; van Amsterdam, Sandra; Fernandez, Jeffrey; van den Dobbelsteen, Germie P J M; Levy, Ofer

    2016-01-01

    Group B Neisseria meningitidis, an endotoxin-producing Gram-negative bacterium, causes the highest incidence of group B meningococcus (MenB) disease in the first year of life. The Bexsero vaccine is indicated in Europe from 8 weeks of age. Endotoxin components of outer membrane vesicles (OMVs) or soluble lipopolysaccharide (LPS) represent a potential source of inflammation and residual reactogenicity. The purpose of this study was to compare novel candidate MenB vaccine formulations with licensed vaccines, including Bexsero, using age-specific human in vitro culture systems. OMVs from wild type- and inactivated lpxL1 gene mutant-N. meningitidis strains were characterized in human neonatal and adult in vitro whole blood assays and dendritic cell (DC) arrays. OMVs were benchmarked against licensed vaccines, including Bexsero and whole cell pertussis formulations, with respect to Th-polarizing cytokine and prostaglandin E2 production, as well as cell surface activation markers (HLA-DR, CD86, and CCR7). OMV immunogenicity was assessed in mice. ΔlpxLI native OMVs (nOMVs) demonstrated significantly less cytokine induction in human blood and DCs than Bexsero and most of the other pediatric vaccines (e.g., PedvaxHib, EasyFive, and bacillus Calmette-Guérin) tested. Despite a much lower inflammatory profile in vitro than Bexsero, ΔlpxLI nOMVs still had moderate DC maturing ability and induced robust anti-N. meningitidis antibody responses after murine immunization. A meningococcal vaccine comprised of attenuated LPS-based OMVs with a limited inflammatory profile in vitro induces robust antigen-specific immunogenicity in vivo.

  9. Biocompatible anionic polymeric microspheres as priming delivery system for effetive HIV/AIDS Tat-based vaccines.

    Directory of Open Access Journals (Sweden)

    Fausto Titti

    Full Text Available Here we describe a prime-boost regimen of vaccination in Macaca fascicularis that combines priming with novel anionic microspheres designed to deliver the biologically active HIV-1 Tat protein and boosting with Tat in Alum. This regimen of immunization modulated the IgG subclass profile and elicited a balanced Th1-Th2 type of humoral and cellular responses. Remarkably, following intravenous challenge with SHIV89.6Pcy243, vaccinees significantly blunted acute viremia, as compared to control monkeys, and this control was associated with significantly lower CD4+ T cell depletion rate during the acute phase of infection and higher ability to resume the CD4+ T cell counts in the post-acute and chronic phases of infection. The long lasting control of viremia was associated with the persistence of high titers anti-Tat antibodies whose profile clearly distinguished vaccinees in controllers and viremics. Controllers, as opposed to vaccinated and viremic cynos, exhibited significantly higher pre-challenge antibody responses to peptides spanning the glutamine-rich and the RGD-integrin-binding regions of Tat. Finally, among vaccinees, titers of anti-Tat IgG1, IgG3 and IgG4 subclasses had a significant association with control of viremia in the acute and post-acute phases of infection. Altogether these findings indicate that the Tat/H1D/Alum regimen of immunization holds promise for next generation vaccines with Tat protein or other proteins for which maintenance of the native conformation and activity are critical for optimal immunogenicity. Our results also provide novel information on the role of anti-Tat responses in the prevention of HIV pathogenesis and for the design of new vaccine candidates.

  10. Safety and efficacy of an oral HIV vaccine (V-1 Immunitor) in AIDS patients at various stages of the disease.

    Science.gov (United States)

    Jirathitikal, Vichai; Bourinbaiar, Aldar S

    2002-01-01

    To evaluate the safety and efficacy of an orally available, therapeutic HIV vaccine (V-1 Immunitor) in patients who were not treated with antiviral drugs. All entrants who had been tested at least once at entry and at postimmunization were considered for analysis. Main endpoints were vaccine safety and differential effects on CD4 and CD8 cell counts, plasma HIV RNA levels, and body weight change. Forty patients, 21 females (52%) and 19 males (48%), aged 22-65 years (mean/median age, 35/32 years) with a mean 225/mm3 CD4 cells at baseline were retrospectively analyzed. Patients self-administered two 850-mg pills containing inactivated HIV-1 antigens b.i.d. for 27 weeks (median, 24 weeks). The treatment was well tolerated without significant adverse effects. The mean body weight gain was 2.2 kg (p =.0004). The mean increase in absolute CD4 and CD8 cells was 51 (18%; p =.0088) and 172 (16%; p =.0199) cells/mm3. Viral load was measured by polymerase chain reaction (PCR) in 8 individuals; although overall decrease did not reach standard cut-off statistical significance (Friedman p =.0588), the trend in reduction of viremia attributable to vaccine administration was highly significant (Spearman correlation test: r = 0.96, p =.0005). Mucosal delivery of HIV antigens provides compelling results and deserves further evaluation in placebo-controlled clinical trials.

  11. Immune Efficacy of a Genetically Engineered Vaccine against Lymphocystis Disease Virus: Analysis of Different Immunization Strategies

    Directory of Open Access Journals (Sweden)

    Fengrong Zheng

    2011-01-01

    Full Text Available Here, we report the construction of a vaccine against lymphocystis disease virus (LCDV using nucleic acid vaccination technology. A fragment of the major capsid protein encoding gene from an LCDV isolated from China (LCDV-cn was cloned into an eukaryotic expression vector pEGFP-N2, yielding a recombinant plasmid pEGFP-N2-LCDV-cn0.6 kb. This plasmid was immediately expressed after liposomal transfer into the Japanese flounder embryo cell line. The recombinant plasmid was inoculated into Japanese flounder via two routes (intramuscular injection and hypodermic injection at three doses (0.1, 5, and 15 μg, and then T-lymphopoiesis in different tissues and antibodies raised against LCDV were evaluated. The results indicated that this recombinant plasmid induced unique humoral or cell-mediated immune responses depending on the inoculation route and conferred immune protection. Furthermore, the humoral immune responses and protective effects were significantly increased at higher vaccine doses via the two injection routes. Plasmid pEGFP-N2-LCDV0.6 kb is therefore a promising vaccine candidate against LCDV in Japanese flounder.

  12. Interleukin-Encoding Adenoviral Vectors as Genetic Adjuvant for Vaccination against Retroviral Infection

    Science.gov (United States)

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity. PMID:24349306

  13. Interleukin-encoding adenoviral vectors as genetic adjuvant for vaccination against retroviral infection.

    Directory of Open Access Journals (Sweden)

    Inga Ohs

    Full Text Available Interleukins (IL are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4(+ T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV surface envelope protein gp70 (Ad.pIXgp70 in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4(+ T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4(+ T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity.

  14. Interleukin-encoding adenoviral vectors as genetic adjuvant for vaccination against retroviral infection.

    Science.gov (United States)

    Ohs, Inga; Windmann, Sonja; Wildner, Oliver; Dittmer, Ulf; Bayer, Wibke

    2013-01-01

    Interleukins (IL) are cytokines with stimulatory and modulatory functions in the immune system. In this study, we have chosen interleukins which are involved in the enhancement of TH2 responses and B cell functions to analyze their potential to improve a prophylactic adenovirus-based anti-retroviral vaccine with regard to antibody and virus-specific CD4(+) T cell responses. Mice were vaccinated with an adenoviral vector which encodes and displays the Friend Virus (FV) surface envelope protein gp70 (Ad.pIXgp70) in combination with adenoviral vectors encoding the interleukins IL4, IL5, IL6, IL7 or IL23. Co-application of Ad.pIXgp70 with Ad.IL5, Ad.IL6 or Ad.IL23 resulted in improved protection with high control over FV-induced splenomegaly and reduced viral loads. Mice co-immunized with adenoviral vectors encoding IL5 or IL23 showed increased neutralizing antibody responses while mice co-immunized with Ad.IL6 or Ad.IL23 showed improved FV-specific CD4(+) T cell responses compared to mice immunized with Ad.pIXgp70 alone. We show that the co-application of adenoviral vectors encoding specific interleukins is suitable to improve the vaccination efficacy of an anti-retroviral vaccine. Improved protection correlated with improved CD4(+) T cell responses and especially with higher neutralizing antibody titers. The co-application of selected interleukin-encoding adenoviral vectors is a valuable tool for vaccination with regard to enhancement of antibody mediated immunity.

  15. Quest for a broad-range vaccine against Neisseria meningitidis serogroup B: implications of genetic variations of the surface-exposed proteins.

    Science.gov (United States)

    de Filippis, Ivano

    2009-09-01

    Despite the development of new vaccine formulations using new biotechnology resources to combat emerging and re-emerging diseases, serogroup B meningococcal disease is still a worldwide burden, accounting for many deaths and disabilities every year. The successful approach of coupling a polysaccharide (PS) with a carrier protein in order to increase long-lasting immunity could not be exploited against Neisseria meningitidis B because of the limitations of using the capsular PS of serogroup B meningococci. Tailor-made vaccines based on exposed proteins were shown to be a promising approach to overcome these flaws. However, the continuous adaptation of surface meningococcal structures to the external environment has led to genetic shifts of potential vaccine-target epitopes, hampering the quest for a broad-range vaccine that could be used against all serogroups, especially against serogroup B.

  16. Computer-aided identification of polymorphism sets diagnostic for groups of bacterial and viral genetic variants

    Directory of Open Access Journals (Sweden)

    Huygens Flavia

    2007-08-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs and genes that exhibit presence/absence variation have provided informative marker sets for bacterial and viral genotyping. Identification of marker sets optimised for these purposes has been based on maximal generalized discriminatory power as measured by Simpson's Index of Diversity, or on the ability to identify specific variants. Here we describe the Not-N algorithm, which is designed to identify small sets of genetic markers diagnostic for user-specified subsets of known genetic variants. The algorithm does not treat the user-specified subset and the remaining genetic variants equally. Rather Not-N analysis is designed to underpin assays that provide 0% false negatives, which is very important for e.g. diagnostic procedures for clinically significant subgroups within microbial species. Results The Not-N algorithm has been incorporated into the "Minimum SNPs" computer program and used to derive genetic markers diagnostic for multilocus sequence typing-defined clonal complexes, hepatitis C virus (HCV subtypes, and phylogenetic clades defined by comparative genome hybridization (CGH data for Campylobacter jejuni, Yersinia enterocolitica and Clostridium difficile. Conclusion Not-N analysis is effective for identifying small sets of genetic markers diagnostic for microbial sub-groups. The best results to date have been obtained with CGH data from several bacterial species, and HCV sequence data.

  17. Utilizing a TLR5-Adjuvanted Cytomegalovirus as a Lentiviral Vaccine in the Nonhuman Primate Model for AIDS.

    Directory of Open Access Journals (Sweden)

    Jesse D Deere

    Full Text Available Despite tremendous progress in our understanding of human immunodeficiency virus (HIV natural history and advances in HIV treatment, there is neither an approved vaccine nor a cure for infection. Here, we describe the development and characterization of a novel replicating vaccine vector utilizing Cytomegalovirus (CMV and a TLR5 adjuvant. After partial truncation of the central, immunodominant hypervariable domain, flagellin (fliC from Salmonella was cloned downstream of a codon optimized gag gene from simian immunodeficiency virus (SIV and transiently expressed in telomerized rhesus fibroblast (TeloRF cells in culture. Lysates generated from these transfected cells induced the tumor necrosis factor alpha (TNF-α, in a mouse macrophage cell line, in a TLR5-dependent manner. The Gag/FliC expression construct was cloned into a bacterial artificial chromosome encoding the rhesus CMV (RhCMV genome, and infectious RhCMV was generated following transfection of TeloRF cells. This virus stably expressed an SIV Gag/FliC fusion protein through four serial passages. Lysates generated from infected cells induced TNF-α in a TLR5-dependent manner. Western blot analysis of infected cell lysates verified expression of a Gag/FliC fusion protein using a SIV p27 capsid monoclonal antibody. Lastly, rhesus macaques inoculated with this novel RhCMV virus demonstrated increased inflammatory responses at the site of inoculation seven days post-infection when compared to the parental RhCMV. These results demonstrate that an artificially constructed replicating RhCMV expressing an SIV Gag/FliC fusion protein is capable of activating TLR5 in a macrophage cell line in vitro and induction of an altered inflammatory response in vivo. Ongoing animals studies are aimed at determining vaccine efficacy, including subsequent challenge with pathogenic SIV.

  18. Recoding of the vesicular stomatitis virus L gene by computer-aided design provides a live, attenuated vaccine candidate.

    Science.gov (United States)

    Wang, Bingyin; Yang, Chen; Tekes, Gergely; Mueller, Steffen; Paul, Aniko; Whelan, Sean P J; Wimmer, Eckard

    2015-03-31

    Codon pair bias (CPB), which has been observed in all organisms, is a neglected genomic phenomenon that affects gene expression. CPB results from synonymous codons that are paired more or less frequently in ORFeomes regardless of codon bias. The effect of an individual codon pair change is usually small, but when it is amplified by large-scale genome recoding, strikingly altered biological phenotypes are observed. The utility of codon pair bias in the development of live attenuated vaccines was recently demonstrated by recodings of poliovirus (a positive-strand RNA virus) and influenza virus (a negative-strand segmented RNA virus). Here, the L gene of vesicular stomatitis virus (VSV), a nonsegmented negative-sense RNA virus, was partially recoded based on codon pair bias. Totals of 858 and 623 silent mutations were introduced into a 5'-terminal segment of the viral L gene (designated L1) to create sequences containing either overrepresented or underrepresented codon pairs, designated L1(sdmax) and L1(min), respectively. Analysis revealed that recombinant VSV containing the L1(min) sequence could not be recovered, whereas the virus with the sdmax sequence showed a modest level of attenuation in cell culture. More strikingly, in mice the L1(sdmax) virus was almost as immunogenic as the parental strain but highly attenuated. Taken together, these results open a new road to attain a balance between VSV virulence and immunogenicity, which could serve as an example for the attenuation of other negative-strand, nonsegmented RNA viruses. Vesicular stomatitis virus (VSV) is the prototypic rhabdovirus in the order Mononegavirales. A wide range of human pathogens belong to this family. Using a unique computer algorithm and large-scale genome synthesis, we attempted to develop a live attenuated vaccine strain for VSV, which could be used as an antigen delivery platform for humans. Recombinant VSVs with distinct codon pair biases were rationally designed, constructed, and

  19. Genetic diversity of circulating rotavirus strains in Tanzania prior to the introduction of vaccination.

    Directory of Open Access Journals (Sweden)

    Sabrina J Moyo

    Full Text Available BACKGROUND: Tanzania currently rolls out vaccination against rotavirus-diarrhea, a major cause of child illness and death. As the vaccine covers a limited number of rotavirus variants, this study describes the molecular epidemiology of rotavirus among children under two years in Dar es Salaam, Tanzania, prior to implementation of vaccination. METHODS: Stool specimens, demographic and clinical information, were collected from 690 children admitted to hospital due to diarrhea (cases and 545 children without diarrhea (controls during one year. Controls were inpatient or children attending child health clinics. Rotavirus antigen was detected using ELISA and positive samples were typed by multiplex semi-nested PCR and sequencing. RESULTS: The prevalence of rotavirus was higher in cases (32.5% than in controls (7.7%, P<0.001. The most common G genotypes were G1 followed by G8, G12, and G4 in cases and G1, G12 and G8 in controls. The Tanzanian G1 variants displayed 94% similarity with the Rotarix vaccine G1 variant. The commonest P genotypes were P[8], P[4] and P[6], and the commonest G/P combination G1 P[8] (n = 123, G8 P[4] and G12 P[6]. Overall, rotavirus prevalence was higher in cool (23.9% than hot months (17.1% of the year (P = 0.012. We also observed significant seasonal variation of G genotypes. Rotavirus was most frequently found in the age group of four to six months. The prevalence of rotavirus in cases was lower in stunted children (28.9% than in non-stunted children (40.1%, P = 0.003 and lower in HIV-infected (15.4%, 4/26 than in HIV-uninfected children (55.3%, 42/76, P<0.001. CONCLUSION: This pre-vaccination study shows predominance of genotype G1 in Tanzania, which is phylogenetically distantly related to the vaccine strains. We confirm the emergence of genotype G8 and G12. Rotavirus infection and circulating genotypes showed seasonal variation. This study also suggests that rotavirus may not be an opportunistic pathogen in

  20. Microsatellite-aided detection of genetic redundancy improves management of the International Cocoa Genebank, Trinidad

    Science.gov (United States)

    Cacao (Theobroma cacao L.), the tree from which cocoa butter and chocolate is derived, is conserved in field genebanks. The largest of these ex situ collections in the public domain is the International Cocoa Genebank, Trinidad (ICG,T). Reduction of genetic redundancy is essential to improve the acc...

  1. Computer Simulation of a Microbial Genetics Experiment as a Learning Aid for Undergraduate Teaching.

    Science.gov (United States)

    Day, M. J.; And Others

    1983-01-01

    Reports design of an interactive computer program (FORTRAN) in microbial genetics. The program is divided into three stages: background information, simulation, and data treatment. Results obtained from the simulation allow four genes to be sequenced along the bacterial chromosome. The simulation mimics experimental errors and production of…

  2. Progress in genetic engineering vaccines against canine parvovirus%犬细小病毒病基因工程疫苗的研究进展

    Institute of Scientific and Technical Information of China (English)

    徐进; 孙世琪; 曹随忠; 孙德惠; 郭慧琛

    2012-01-01

    从犬细小病毒病亚单位疫苗、表位疫苗、核酸疫苗、活载体疫苗等方面,论述了近年来国内外在犬细小病毒病新型疫苗研究方面的新进展,并对各种新型疫苗的优缺点及应用前景进行了讨论,为犬细小病毒病新型疫苗的研制提供理论基础。提出各种犬细小病毒病基因工程疫苗互有优劣,可以通过技术手段采用不同种类的新型疫苗的交叉组合、免疫原的集成使用等研制出更理想、更有效的疫苗。%To provide the theoretical references for the development of novel vaccine against canine parvovirus infection,researches on subunit vaccine,epitope vaccine,DNA vaccine and live vector vaccine against canine parvovirus infection in recent years were reviewed and discussed.The advantages and disadvantages of different vaccines in application were compared and highlighted.It suggested that there are pros and cons in different genetical engineering vaccines.It would be the best to develop the more effective and ideal novel vaccine by combining with the different vaccine style or using more and stronger immunogens.

  3. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    Science.gov (United States)

    Guerrero, Rubén D.; Arango, Carlos A.; Reyes, Andrés

    2015-09-01

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  4. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Bogota (Colombia); Arango, Carlos A. [Department of Chemical Sciences, Universidad Icesi, Cali (Colombia); Reyes, Andrés [Department of Chemistry, Universidad Nacional de Colombia, Bogota (Colombia)

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  5. R5 clade C SHIV strains with tier 1 or 2 neutralization sensitivity: tools to dissect env evolution and to develop AIDS vaccines in primate models.

    Directory of Open Access Journals (Sweden)

    Nagadenahalli B Siddappa

    Full Text Available BACKGROUND: HIV-1 clade C (HIV-C predominates worldwide, and anti-HIV-C vaccines are urgently needed. Neutralizing antibody (nAb responses are considered important but have proved difficult to elicit. Although some current immunogens elicit antibodies that neutralize highly neutralization-sensitive (tier 1 HIV strains, most circulating HIVs exhibiting a less sensitive (tier 2 phenotype are not neutralized. Thus, both tier 1 and 2 viruses are needed for vaccine discovery in nonhuman primate models. METHODOLOGY/PRINCIPAL FINDINGS: We constructed a tier 1 simian-human immunodeficiency virus, SHIV-1157ipEL, by inserting an "early," recently transmitted HIV-C env into the SHIV-1157ipd3N4 backbone [1] encoding a "late" form of the same env, which had evolved in a SHIV-infected rhesus monkey (RM with AIDS. SHIV-1157ipEL was rapidly passaged to yield SHIV-1157ipEL-p, which remained exclusively R5-tropic and had a tier 1 phenotype, in contrast to "late" SHIV-1157ipd3N4 (tier 2. After 5 weekly low-dose intrarectal exposures, SHIV-1157ipEL-p systemically infected 16 out of 17 RM with high peak viral RNA loads and depleted gut CD4+ T cells. SHIV-1157ipEL-p and SHIV-1157ipd3N4 env genes diverge mostly in V1/V2. Molecular modeling revealed a possible mechanism for the increased neutralization resistance of SHIV-1157ipd3N4 Env: V2 loops hindering access to the CD4 binding site, shown experimentally with nAb b12. Similar mutations have been linked to decreased neutralization sensitivity in HIV-C strains isolated from humans over time, indicating parallel HIV-C Env evolution in humans and RM. CONCLUSIONS/SIGNIFICANCE: SHIV-1157ipEL-p, the first tier 1 R5 clade C SHIV, and SHIV-1157ipd3N4, its tier 2 counterpart, represent biologically relevant tools for anti-HIV-C vaccine development in primates.

  6. Noise-aided Logic in an Electronic Analog of Synthetic Genetic Networks

    CERN Document Server

    Hellen, Edward H; Kurths, Jurgen; Sinha, Sudeshna

    2012-01-01

    We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constructive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. Interestingly, the two dynamical variables in the system yield complementary logic behaviour simultaneously, indicating strong potential for parallel processing.

  7. Genetic Structure Change in Harvard Vaccine Strain of Clostridium Tetani for the Period of 1990 to 2010 by Pulsed-Field Gel Electrophoresis

    Directory of Open Access Journals (Sweden)

    Ahmad Sakhravi

    2013-07-01

    Full Text Available Background: PFGE facilitates the differential migration of large DNA fragments through agarose gel by constantly changing the direction of the electrical field during electrophoresis. Possibility of high difference between strains and repeatability make PFGE one of the strong molecular methods in study of bacterial strains in epidemiology. To identifying and DNA fingerprinting of vaccine strain of Clostridium tetani by PFGE technique. Also, possibility of genotyping profile changes in frequency of vaccine strain of C. tetani during the period of 1990 to 2011.Materials and Methods: The vaccine strain of C. tetani was provided by Razi Vaccine and Serum Research Institute in Karaj. The seeds were inoculated into Columbia blood agar and grown for 72 h. The cultures were incubated at 35°C in anaerobic conditions. The PFGE analyses were performed using genomic DNA digested with the restriction enzyme SmaI. The electrophoresis analyses were carried out on a CHEF DR III apparatus (Bio-Rad and band patterns obtained were then analyzed.Results: The PFGE profile obtained from vaccine strain during a period of more than two decades revealed no remarkable genetic changes and mutations. This type of analysis provides detailed data useful for surveillance of vaccine strains and isolates as well as for the selection of certain predominant profiles for further investigation.Conclusion: This study showed no considerable change in chromosomal genome of Harvard, the vaccine strain. It is therefore concluded that the vaccine produced by Razi Institute had evidently no alteration or modification in accordance to PFGE profile analysis during a period of more than two decades.

  8. Genetic Modification of Hematopoietic Stem Cells as a Therapy for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Patrick Younan

    2013-11-01

    Full Text Available The combination of genetic modification and hematopoietic stem cell (HSC transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  9. Genetic modification of hematopoietic stem cells as a therapy for HIV/AIDS.

    Science.gov (United States)

    Younan, Patrick; Kowalski, John; Kiem, Hans-Peter

    2013-11-28

    The combination of genetic modification and hematopoietic stem cell (HSC) transplantation may provide the necessary means to develop an alternative treatment option to conventional antiretroviral therapy. As HSCs give rise to all hematopoietic cell types susceptible to HIV infection, modification of HSCs is an ideal strategy for the development of infection-resistant immune cell populations. Although promising results have been obtained in multiple animal models, additional evidence is needed to convincingly demonstrate the feasibility of this approach as a treatment of HIV-1 infected patients. Here, we review the potential of HSC transplantation and the recently identified limitations of this approach. Using the Berlin Patient as a model for a functional cure, we contrast the confines of autologous versus allogeneic transplantation. Finally, we suggest that although autologous, gene-modified HSC-transplantation may significantly reduce plasma viremia, reaching the lower detection limits currently obtainable through daily HAART will remain a challenging endeavor that will require innovative combinatorial therapies.

  10. Integrated Sentinel Surveillance Linking Genetic, Antigenic, and Epidemiologic Monitoring of Influenza Vaccine-Virus Relatedness and Effectiveness During the 2013-2014 Influenza Season.

    Science.gov (United States)

    Skowronski, Danuta M; Chambers, Catharine; Sabaiduc, Suzana; De Serres, Gaston; Winter, Anne-Luise; Dickinson, James A; Gubbay, Jonathan; Fonseca, Kevin; Charest, Hugues; Krajden, Mel; Petric, Martin; Mahmud, Salaheddin M; Van Caeseele, Paul; Bastien, Nathalie; Eshaghi, Alireza; Li, Yan

    2015-09-01

    Canada's Sentinel Physician Surveillance Network links genetic, antigenic, and vaccine effectiveness (VE) measures in an integrated platform of influenza monitoring, described here for the 2013-2014 influenza season of resurgent A(H1N1)pdm09 and late-season type B activity. VE was estimated as [1 - odds ratio] × 100% and compared vaccination status between individuals who tested positive (cases) and those who tested negative (controls) for influenza virus. Vaccine-virus relatedness was assessed by genomic sequence analysis and hemagglutination inhibition assays. Analyses included 1037 controls (of whom 33% were vaccinated) and 663 cases (of whom 14% were vaccinated). A total of 415 cases tested positive for A(H1N1)pdm09 virus, 15 tested positive for A(H3N2) virus, 191 tested positive for B/Yamagata-lineage virus, 6 tested positive for B/Victoria-lineage virus, and 36 tested positive for viruses of unknown subtype or lineage. A(H1N1)pdm09 viruses belonged to clade 6B, distinguished by a K163Q substitution, but remained antigenically similar to the A/California/07/2009-like vaccine strain, with an adjusted VE of 71% (95% confidence interval [CI], 58%-80%). Most B/Yamagata-lineage viruses (83%) clustered phylogenetically with the prior (ie, 2012-2013) season's B/Wisconsin/01/2010-like clade 3 vaccine strain, while only 17% clustered with the current (ie, 2013-2014) season's B/Massachusetts/02/2012-like clade 2 vaccine strain. The adjusted VE for B/Yamagata-lineage virus was 73% (95% CI, 57%-84%), with a lower VE obtained after partial calendar-time adjustment for clade-mismatched B/Wisconsin/01/2010-like virus (VE, 63%; 95% CI, 41%-77%), compared with that for clade-matched B/Massachusetts/02/2012-like virus (VE, 88%; 95% CI, 48%-97%). No A(H3N2) viruses clustered with the A/Texas/50/2012-like clade 3C.1 vaccine strain, and more than half were antigenically mismatched, but sparse data did not support VE estimation. VE corresponded with antigenically conserved A(H1N1

  11. [Influence of genetic and phenotypical factors on the efficiency of the vaccination of young children against diphtheria and measles].

    Science.gov (United States)

    Gordeeva, L A; Shabaldin, A V; Semenova, E M; Glushkov, A N

    2006-01-01

    The child's sex was shown to influence the character of antibody formation only after immunization against diphtheria with live measles vaccine: girls exhibited stronger reaction to vaccination than boys. Children of different gender were found to have characteristic HLA DR markers of humoral immune response to diphtheria toxoid and measles vaccine. HLA DR7 proved to be the marker of low production of antibodies to diphtheria toxoid and measles vaccine in boys.

  12. Neutral genetic drift can alter promiscuous protein functions, potentially aiding functional evolution

    Directory of Open Access Journals (Sweden)

    Lu Zhongyi

    2007-06-01

    Full Text Available Abstract Background Many of the mutations accumulated by naturally evolving proteins are neutral in the sense that they do not significantly alter a protein's ability to perform its primary biological function. However, new protein functions evolve when selection begins to favor other, "promiscuous" functions that are incidental to a protein's original biological role. If mutations that are neutral with respect to a protein's primary biological function cause substantial changes in promiscuous functions, these mutations could enable future functional evolution. Results Here we investigate this possibility experimentally by examining how cytochrome P450 enzymes that have evolved neutrally with respect to activity on a single substrate have changed in their abilities to catalyze reactions on five other substrates. We find that the enzymes have sometimes changed as much as four-fold in the promiscuous activities. The changes in promiscuous activities tend to increase with the number of mutations, and can be largely rationalized in terms of the chemical structures of the substrates. The activities on chemically similar substrates tend to change in a coordinated fashion, potentially providing a route for systematically predicting the change in one activity based on the measurement of several others. Conclusion Our work suggests that initially neutral genetic drift can lead to substantial changes in protein functions that are not currently under selection, in effect poising the proteins to more readily undergo functional evolution should selection favor new functions in the future. Reviewers This article was reviewed by Martijn Huynen, Fyodor Kondrashov, and Dan Tawfik (nominated by Christoph Adami.

  13. Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm.

    Science.gov (United States)

    Arabasadi, Zeinab; Alizadehsani, Roohallah; Roshanzamir, Mohamad; Moosaei, Hossein; Yarifard, Ali Asghar

    2017-04-01

    Cardiovascular disease is one of the most rampant causes of death around the world and was deemed as a major illness in Middle and Old ages. Coronary artery disease, in particular, is a widespread cardiovascular malady entailing high mortality rates. Angiography is, more often than not, regarded as the best method for the diagnosis of coronary artery disease; on the other hand, it is associated with high costs and major side effects. Much research has, therefore, been conducted using machine learning and data mining so as to seek alternative modalities. Accordingly, we herein propose a highly accurate hybrid method for the diagnosis of coronary artery disease. As a matter of fact, the proposed method is able to increase the performance of neural network by approximately 10% through enhancing its initial weights using genetic algorithm which suggests better weights for neural network. Making use of such methodology, we achieved accuracy, sensitivity and specificity rates of 93.85%, 97% and 92% respectively, on Z-Alizadeh Sani dataset.

  14. Genetically-Engineered Poxviruses and the Construction of Live Recombinant Vaccines

    Science.gov (United States)

    1990-08-01

    A DNA ligase function with obvious implications in recombination was identified. It was shown to be an early protein. Genetic manipulation revealed...1990) A DNA ligase gene in the Copenhagen strain of vaccinia virus is nonessential for viral replication and recombination. Virology (in press). 3

  15. Genetic and Physiological Studies of Bacillus anthracis Related to Development of an Improved Vaccine

    Science.gov (United States)

    1987-07-01

    lI) were mixed with 10 41 of tracking dye (0.25% bromphenol blue , 15% ficoll) and samples (40 pi) were applied to horizontal 0.7% agarose (Sigma...subtilis which take advantage of Tn917 insertional mutagenesis. In A.T. Ganeson and J.A. Hoch (eds.), Genetics and Biotachnology of Bacilli. Academic

  16. Recent progress in genetic engineering vaccines of human cytomegalovirus%人巨细胞病毒基因工程疫苗研究新进展

    Institute of Scientific and Technical Information of China (English)

    葛俊; 王明丽

    2011-01-01

    人巨细胞病毒(human cytomegalovirus,HCMV)在人群中感染普遍,而HCMV感染是导致免疫抑制或免疫缺陷患者发病率和死亡率高的重要原因,也是目前胎儿出生缺陷的主要病因.因此,研制HCMV疫苗具有重要意义.研究发现,抗病毒体液免疫应答主要针对病毒包膜糖蛋白gB,而细胞免疫应答主要针对被膜蛋白pp65.以这些蛋白设计的候选基因工程疫苗,包括亚单位疫苗、DNA疫苗、病毒载体疫苗等,已得到了较广泛的临床研究.此文就上述疫苗的研究进展做一综述.%Human cytomegalovirus (HCMV) is ubiquitous in all populations.HCMV infection might cause high morbidity and mortality in immunosuppressive or immunodeficiency patients and is the main reason of fetal birth defects.Development of HCMV vaccines is important,but so far there have been no vaccines approved for sale.The researchers found that the viral glycoprotein gB and membrane protein pp65 could induce antiviral humoral and cellular immune responses,respectively.The genetic engineering vaccines based on these proteins,including subunit vaccines,DNA vaccines and virus vector vaccines,have been studied widely in clinical trials.This review describes the research progress of the above-mentioned vaccines.

  17. Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables.

    Directory of Open Access Journals (Sweden)

    Barbara Vinceti

    Full Text Available Conservation priorities for Prunus africana, a tree species found across Afromontane regions, which is of great commercial interest internationally and of local value for rural communities, were defined with the aid of spatial analyses applied to a set of georeferenced molecular marker data (chloroplast and nuclear microsatellites from 32 populations in 9 African countries. Two approaches for the selection of priority populations for conservation were used, differing in the way they optimize representation of intra-specific diversity of P. africana across a minimum number of populations. The first method (S1 was aimed at maximizing genetic diversity of the conservation units and their distinctiveness with regard to climatic conditions, the second method (S2 at optimizing representativeness of the genetic diversity found throughout the species' range. Populations in East African countries (especially Kenya and Tanzania were found to be of great conservation value, as suggested by previous findings. These populations are complemented by those in Madagascar and Cameroon. The combination of the two methods for prioritization led to the identification of a set of 6 priority populations. The potential distribution of P. africana was then modeled based on a dataset of 1,500 georeferenced observations. This enabled an assessment of whether the priority populations identified are exposed to threats from agricultural expansion and climate change, and whether they are located within the boundaries of protected areas. The range of the species has been affected by past climate change and the modeled distribution of P. africana indicates that the species is likely to be negatively affected in future, with an expected decrease in distribution by 2050. Based on these insights, further research at the regional and national scale is recommended, in order to strengthen P. africana conservation efforts.

  18. Conservation priorities for Prunus africana defined with the aid of spatial analysis of genetic data and climatic variables.

    Science.gov (United States)

    Vinceti, Barbara; Loo, Judy; Gaisberger, Hannes; van Zonneveld, Maarten J; Schueler, Silvio; Konrad, Heino; Kadu, Caroline A C; Geburek, Thomas

    2013-01-01

    Conservation priorities for Prunus africana, a tree species found across Afromontane regions, which is of great commercial interest internationally and of local value for rural communities, were defined with the aid of spatial analyses applied to a set of georeferenced molecular marker data (chloroplast and nuclear microsatellites) from 32 populations in 9 African countries. Two approaches for the selection of priority populations for conservation were used, differing in the way they optimize representation of intra-specific diversity of P. africana across a minimum number of populations. The first method (S1) was aimed at maximizing genetic diversity of the conservation units and their distinctiveness with regard to climatic conditions, the second method (S2) at optimizing representativeness of the genetic diversity found throughout the species' range. Populations in East African countries (especially Kenya and Tanzania) were found to be of great conservation value, as suggested by previous findings. These populations are complemented by those in Madagascar and Cameroon. The combination of the two methods for prioritization led to the identification of a set of 6 priority populations. The potential distribution of P. africana was then modeled based on a dataset of 1,500 georeferenced observations. This enabled an assessment of whether the priority populations identified are exposed to threats from agricultural expansion and climate change, and whether they are located within the boundaries of protected areas. The range of the species has been affected by past climate change and the modeled distribution of P. africana indicates that the species is likely to be negatively affected in future, with an expected decrease in distribution by 2050. Based on these insights, further research at the regional and national scale is recommended, in order to strengthen P. africana conservation efforts.

  19. Research progress on genetically engineered vaccine of Bifidobacterium%双歧杆菌基因工程疫苗研究进展

    Institute of Scientific and Technical Information of China (English)

    高峰; 吴利先

    2009-01-01

    双歧杆菌是人类最早发现的生理性细菌之一,是能在健康人肠道内定植的益生菌.如今,随着分子生物技术的发展,双歧杆菌基因工程疫苗研究日趋受到重视.此文综述了双歧杆菌基因工程疫苗的理论基础、研究进展以及前景.%Bifidobacterium is one of the human first discovered physiological bacteria,and a beneficial bacterium that colonizing in the healthy people's intestinal canal.Today,with the development of molecular biotechnology,people pay more attention to the research on genetically engineered vaccine of Bifidobacterium.In this paper,the basic theory,research progress and the prospect about the genetically engineered vaccine of Bifidobacterium are reviewed.

  20. Vaccines against poverty.

    Science.gov (United States)

    MacLennan, Calman A; Saul, Allan

    2014-08-26

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vaccines for neglected infectious diseases. However, the majority of this went to three diseases: HIV/AIDS, malaria, and tuberculosis, and not neglected diseases. Much of it went to basic research rather than development, with an ongoing decline in funding for product development partnerships. Further investment in vaccines against diarrheal diseases, hepatitis C, and group A Streptococcus could lead to a major health impact in LMICs, along with vaccines to prevent sepsis, particularly among mothers and neonates. The Advanced Market Commitment strategy of the Global Alliance for Vaccines and Immunisation (GAVI) Alliance is helping to implement vaccines against rotavirus and pneumococcus in LMICs, and the roll out of the MenAfriVac meningococcal A vaccine in the African Meningitis Belt represents a paradigm shift in vaccines against poverty: the development of a vaccine primarily targeted at LMICs. Global health vaccine institutes and increasing capacity of vaccine manufacturers in emerging economies are helping drive forward new vaccines for LMICs. Above all, partnership is needed between those developing and manufacturing LMIC vaccines and the scientists, health care professionals, and policy makers in LMICs where such vaccines will be implemented.

  1. 气单胞菌外膜蛋白基因工程疫苗的研究进展%Progress in Outer Membrane Protein Genetic Engineering Vaccine against Aeromonas

    Institute of Scientific and Technical Information of China (English)

    单晓枫; 曹亮; 沈锦玉; 陈龙; 康元环; 陈亨利; 钱爱东

    2014-01-01

    This article reviewed the development, immunization and disadvantages of Aeromonas outer membrane protein genetic engineering vaccine, DNA vaccine and recombinant live vector vaccine in order to provide reference for the research of Aeromonas vaccine.%就气单胞菌外膜蛋白的基因工程亚单位疫苗、DNA疫苗、重组活载体疫苗等基因工程疫苗的研究现状、免疫方式以及不足之处进行了综述,以期为气单胞菌疫苗研制提供参考。

  2. Changes in genetically drifted H3N2 influenza A viruses and vaccine effectiveness in adults 65 years and older during the 2016/17 season in Denmark

    DEFF Research Database (Denmark)

    Trebbien, Ramona; Kølsen Fischer, Thea; Krause, Tyra Grove

    2017-01-01

    viruses and determine the seasonal vaccine effectiveness (VE) overall in the Danish population and further on the virus cluster level. STUDY DESIGN: Influenza virus positive samples submitted for the national surveillance programme were genetically characterized by sequencing. VE estimates against......BACKGROUND: In Denmark, influenza A virus of the subtype H3N2 has been dominating the 2016/17 season, as in most countries of the Northern Hemisphere. OBJECTIVES: This study was conducted as part of the Danish seasonal influenza surveillance programme to genetically characterize circulating H3N2...... influenza A and the circulating virus clusters were determined in patients above 65 years using the test-negative case-control design. RESULTS: The genetic characterization revealed several genetically drifted viruses, which could be divided into four main clusters by the defining amino acid substitutions...

  3. Genetic mutations in live infectious bronchitis vaccine viruses following single or dual in vitro infection of tracheal organ cultures.

    Science.gov (United States)

    Ball, Christopher; Bennett, Sarah; Forrester, Anne; Ganapathy, Kannan

    2016-12-01

    Despite regular co-vaccination of two different strains of live infectious bronchitis vaccine viruses, little is known about possible mutations in these viruses following vaccination. As an alternative to chicks, this study used an in vitro infection model to identify single-nucleotide polymorphisms (SNPs) within the part-S1 gene of two live infectious bronchitis virus vaccine strains (793B and Massachusetts) following single or dual inoculation onto tracheal organ cultures. Results indicate that viral titres reduced over the duration of the study; conversely, the amount of detected infectious bronchitis virus genome increased. Results demonstrate a greater number of non-synonymous SNPs in both vaccine strains when they are co-inoculated, compared with the single inoculations. The influence of the increased SNP and hydrophobic properties of the translated proteins on the vaccine viruses' virulence is unknown.

  4. Induction of an Immune-Protective T-Cell Repertoire With Diverse Genetic Coverage by a Novel Viral-Vectored Tuberculosis Vaccine in Humans.

    Science.gov (United States)

    Jeyanathan, Mangalakumari; Damjanovic, Daniela; Yao, Yushi; Bramson, Jonathan; Smaill, Fiona; Xing, Zhou

    2016-12-15

     Whether a candidate tuberculosis vaccine induces clinically relevant protective T-cell repertoires in humans will not be known until the completion of costly efficacy clinical trials.  We have developed an integrated immunologic approach to investigate the clinical relevance of T cells induced by a novel tuberculosis vaccine in a phase 1 trial. This approach consists of screening for likely dominant T-cell epitopes, establishing antigen-specific memory T-cell lines for identifying CD8(+) and CD4(+) T-cell epitopes, determining the ability of vaccine-induced T cells to inhibit mycobacterial growth in infected cells, and examining the genetic diversity of HLA recognition and the clinical relevance of identified T-cell epitopes.  A single-dose immunization in BCG-primed adults with an adenovirus-based tuberculosis vaccine elicits a repertoire of memory T cells capable of recognizing multiple Ag85A epitopes. These T cells are polyfunctional and cytotoxic and can inhibit mycobacterial growth in infected target cells. Some identified T-cell epitopes are promiscuous and recognizable by the common HLA alleles. These epitopes are clinically relevant to the epitopes identified in people with latent Mycobacterium tuberculosis infection and treated patients with tuberculosis.  These data support further clinical development of this candidate vaccine. Our approach helps fill the gap in clinical tuberculosis vaccine development. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Status of vaccine research and development of vaccines for HIV-1.

    Science.gov (United States)

    Safrit, Jeffrey T; Fast, Patricia E; Gieber, Lisa; Kuipers, Hester; Dean, Hansi J; Koff, Wayne C

    2016-06-03

    Human immunodeficiency virus (HIV) is the cause of one of the most lethal pandemics in human history, although in recent years access to highly effective anti-retroviral therapy has provided new hope worldwide. Transmission of HIV by sexual contact, childbirth and injection drug use has been reduced, but 2 million are newly infected each year, and much of the transmission is from people who do not know their status. In addition to known methods, a preventive vaccine is needed to end the pandemic. The extraordinary mutability and genetic diversity of HIV is an enormous challenge, but vaccines are being designed for broad coverage. Computer-aided design of mosaic immunogens, incorporating many epitopes from the entire genome or from conserved regions aim to induce CD8+ T cells to kill virus-infected cells or inhibit virus replication, while trimeric envelope proteins or synthetic mimics aim to induce broadly reactive neutralizing antibodies similar to those cloned from some infected patients. Induction of more potent and durable responses may require new adjuvants or replicating chimeric vectors chimeras that bear HIV genes. Passive or genetic delivery of broadly neutralizing antibodies may provide broad protection and/or lead to insights for vaccine designers. Proof-of-concept trials in non-human primates and in one human efficacy trial have provided scientific clues for a vaccine that could provide broad and durable protection against HIV. The use of vaccines to destroy HIV reservoirs as part of therapy or cure is now also being explored.

  6. RNA polymerase I-driven reverse genetics system for enterovirus 71 and its implications for vaccine production

    OpenAIRE

    Meng Tao; Kiener Tanja K; Kwang Jimmy

    2012-01-01

    Abstract Background Enterovirus 71 (EV71) is a virus that causes from mild hand, foot and mouth disease (HFMD) to severe neurological complications and deaths in infants and young children. Effective antiviral agents and vaccines against EV71 are not available. However, Vero cell-based chemically inactivated EV71 vaccines could be developed soon based on the success of inactivated polio vaccine. Like poliovirus, EV71 has a positive single-stranded RNA genome of about 7400 nucleotides which co...

  7. Strategy for AIDS Prevention and Treatment

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    HIV/AIDS has been circulating in China for over 25 year. While making progress and achievements on HIV/AIDS prevention, there still are great challenge and difficulties such as HIV epidemic controlling and vaccine research.

  8. Diagnosing Breast Cancer with the Aid of Fuzzy Logic Based on Data Mining of a Genetic Algorithm in Infrared Images

    Directory of Open Access Journals (Sweden)

    Hossein Ghayoumi Zadeh

    2012-10-01

    Full Text Available Background: Breast cancer is one of the most prevalent cancers among women today. The importance of breast cancer screening, its role in the timely identification of patients, and the reduction in treatment expenses are considered to be among the highest sanitary priorities of a modern country. Thermal imaging clearly possesses a special role in this stage due to rapid diagnosis and use of harmless rays.Methods: We used a thermal camera for imaging of the patients. Important parameters were derived from the images for their posterior analysis with the aid of a genetic algorithm. The principal components that were entered in a fuzzy neural network for clustering breast cancer were identified.Results: The number of images considered for the test included a database of 200 patients out of whom 15 were diagnosed with breast cancer via mammography. Results of the base method show a sensitivity of 93%. The selection of parameters in the combination module gave rise measured errors, which in training of the fuzzy-neural network were of the order of clustering 1.0923×10-5, which reached 2%.Conclusion: The study indicates that thermal image scanning coupled with the presented method based on artificial intelligence can possess a special status in screening women for breast cancer due to the use of harmless non-radiation rays. There are cases where physicians cannot decisively say that the observed pattern in theimage is benign or malignant. In such cases, the response of the computer model can be a valuable support tool for the physician enabling an accurate diagnosis based on the type of imaging pattern as a response from the computer model.

  9. Generating memory with vaccination.

    Science.gov (United States)

    Castellino, Flora; Galli, Grazia; Del Giudice, Giuseppe; Rappuoli, Rino

    2009-08-01

    The goal of vaccination is to induce long-lasting protective immune memory. Although most vaccines induce good memory responses, the type of memory induced by different vaccines may be considerably different. In addition, memory responses to the same vaccine may be influenced by age, environmental and genetic factors. Results emerging from detailed and integrated profiling of immune-responses to natural infection or vaccination suggest that the type and duration of immune memory are largely determined by the magnitude and complexity of innate immune signals that imprint the acquired immune primary responses. Here we summarize results obtained from analyzing human immune memory responses to different types of vaccines. We will also discuss how extending clinical investigation to events occurring early after vaccination can help identify early predictive markers of protective memory and thus contribute to faster development of better and safer vaccines.

  10. Genetic characterisation of Malawian pneumococci prior to the roll-out of the PCV13 vaccine using a high-throughput whole genome sequencing approach.

    Directory of Open Access Journals (Sweden)

    Dean B Everett

    Full Text Available BACKGROUND: Malawi commenced the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13 into the routine infant immunisation schedule in November 2011. Here we have tested the utility of high throughput whole genome sequencing to provide a high-resolution view of pre-vaccine pneumococcal epidemiology and population evolutionary trends to predict potential future change in population structure post introduction. METHODS: One hundred and twenty seven (127 archived pneumococcal isolates from randomly selected adults and children presenting to the Queen Elizabeth Central Hospital, Blantyre, Malawi underwent whole genome sequencing. RESULTS: The pneumococcal population was dominated by serotype 1 (20.5% of invasive isolates prior to vaccine introduction. PCV13 is likely to protect against 62.9% of all circulating invasive pneumococci (78.3% in under-5-year-olds. Several Pneumococcal Molecular Epidemiology Network (PMEN clones are now in circulation in Malawi which were previously undetected but the pandemic multidrug resistant PMEN1 lineage was not identified. Genome analysis identified a number of novel sequence types and serotype switching. CONCLUSIONS: High throughput genome sequencing is now feasible and has the capacity to simultaneously elucidate serotype, sequence type and as well as detailed genetic information. It enables population level characterization, providing a detailed picture of population structure and genome evolution relevant to disease control. Post-vaccine introduction surveillance supported by genome sequencing is essential to providing a comprehensive picture of the impact of PCV13 on pneumococcal population structure and informing future public health interventions.

  11. Vaccination for Disease

    Science.gov (United States)

    Oehen, Stephan; Hengartner, Hans; Zinkernagel, Rolf M.

    1991-01-01

    Recombinant virus vaccines that express a limited number of epitopes are currently being developed to prevent disease by changing the relative balance between viral spread and the immune response. Some circumstances, however, were found in infections with a noncytopathic virus in which vaccination caused disease; sensitive parameters included the genetic background of the host, the time or dose of infection, and the constituents of the vaccine. Thus, immunopathologic damage by T cells may be an unwanted consequence of vaccination with the new types of peptide or recombinant vaccines that are being investigated for the human immunodeficiency viruses and other pathogens.

  12. Reverse genetics vaccine seeds for influenza: Proof of concept in the source of PB1 as a determinant factor in virus growth and antigen yield.

    Science.gov (United States)

    Gíria, Marta; Santos, Luís; Louro, João; Rebelo de Andrade, Helena

    2016-09-01

    Growth deficits of reverse genetics vaccine seeds have compromised effective immunization. The impairment has been attributed to sub-optimal protein interactions. Some level of dependence may exist between PB1 and antigenic glycoproteins, however, further research is necessary to clarify the extent to which it can be used in favor of seed production. Our objective was to establish proof of concept on the phenotypic outcome of PB1 source in the PR8: A(H1N1)pdm09 reassortants. Reassortants were generated with the gene constellation of the classical 6:2 PR8: HA, NApdm09 seed prototype and the 5:3 reassortant PR8: HA, NA, PB1pdm09. Viral growth and antigen yield were evaluated 12-60h post-infection. The 5:3 reassortant presented statistically significant growth and antigen yield improvements when compared to the 6:2. We believe these findings to be of promising value to vaccine research towards an improvement of reverse genetic seeds, an overall more cost-effective vaccine manufacture and timely delivery. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Limited potential for mosquito transmission of genetically engineered, live-attenuated western equine encephalitis virus vaccine candidates.

    Science.gov (United States)

    Turell, Michael J; O'Guinn, Monica L; Parker, Michael D

    2003-02-01

    Specific mutations associated with attenuation of Venezuelan equine encephalitis (VEE) virus in rodent models were identified during efforts to develop an improved VEE vaccine. Analogous mutations were produced in full-length cDNA clones of the Cba 87 strain of western equine encephalitis (WEE) virus by site-directed mutagenesis in an attempt to develop an improved WEE vaccine. Isogenic viral strains with these mutations were recovered after transfection of baby hamster kidney cells with infectious RNA. We evaluated two of these strains (WE2102 and WE2130) for their ability to replicate in and be transmitted by Culex tarsalis, the principal natural vector of WEE virus in the United States. Each of the vaccine candidates contained a deletion of the PE2 furin cleavage site and a secondary mutation in the E1 or E2 glycoprotein. Both of these potential candidates replicated in mosquitoes significantly less efficiently than did either wild-type WEE (Cba 87) virus or the parental clone (WE2000). Likewise, after intrathoracic inoculation, mosquitoes transmitted the vaccine candidate strains significantly less efficiently than they transmitted either the wild-type or the parental clone. One-day-old chickens vaccinated with either of the two vaccine candidates did not become viremic when challenged with virulent WEE virus two weeks later. Mutations that result in less efficient replication in or transmission by mosquitoes should enhance vaccine safety and reduce the possibility of accidental introduction of the vaccine strain to unintentional hosts.

  14. Scientific advice on the suitability of data for the assessment of DNA integration into the fish genome of a genetically modified DNA plasmid-based veterinary vaccine

    Directory of Open Access Journals (Sweden)

    European Food Safety Authority

    2013-05-01

    Full Text Available Pancreas disease caused by salmonid alphavirus in farmed Atlantic salmon (Salmo salar leads to high mortality rates post infection and histopathological lesions in several organs. As protection against pancreas disease, Novartis developed a prophylactic DNA plasmid-based vaccine to be administered to salmon as naked plasmid in a single intramuscular injection. In order to assess the legal status of the fish vaccinated with this new vaccine with regard to the legislation on genetically modified organisms, the European Commission suggested that the company carry out a scientific study on the integration/non-integration of the plasmid DNA into the fish genome. Subsequently, the European Commission requested EFSA to give scientific advice on the study design and the conclusions drawn by the company. PCR based analysis of genomic DNA from muscle samples, taken from at or around the injection site 436 days post vaccination, led the company to conclude that integration of plasmid DNA into the fish genome is extremely unlikely. After an assessment of the study, EFSA considers that the study presented by Novartis Animal Health on the integration/non-integration of DNA plasmid-based vaccine into the salmon genomic DNA provides insufficient information on the potential integration of plasmid DNA fragments into the fish genome due to a limited coverage of the plasmid DNA by the detection method provided, the limited number of samples analysed and an insufficient limit of detection and method validation. Therefore, EFSA is of the opinion that the results from the integration/non-integration study submitted by Novartis Animal Health are not sufficient to support the conclusion of non-integration of plasmid DNA into the fish genome drawn by the company.

  15. "HIV-peplotion vaccine"--a novel approach to protection against AIDS by transepithelial transport of viral peptides to Langerhans cells for long-term antiviral CTL response. (A review).

    Science.gov (United States)

    Becker, Y

    1996-01-01

    Viral vaccines which stimulate the humoral immune response in humans have been successful in preventing most of the known virus diseases except dengue fever, respiratory syncytial virus infections and HIV-1-related AIDS. Burke [1] raised a concern that anti-HIV-1 antibodies may add a risk factor to immunized individuals infected with HIV-1. An approach to develop HIV-1 vaccines capable of stimulating anti-HIV-1 cytotoxic T cells requires an understanding of the importance of epidermal and epithelial Langerhans cells (LC). These cells are professional antigen-presenting cells which express HLA class I and class II molecules. Epithelial LC are present in a specific layer in the skin, genitalia and gut and may be accessible to viral antigens by local application in a vehicle for transepithelial transport of viral proteins/peptides (designated "HIV-1 Peplotion vaccine"). This approach is supported by the reports that HIV-1 gp160 in ISCOM induced MHC class I CTL response [2], mixing of cationic lipids with viral proteins formed complexes which were delivered to cell cytoplasm and the degraded peptides stimulated CTLs by HLA class I mechanism [3] and viral proteins encapsulated in pH-sensitive liposomes administered to LC induced primary antiviral CTLs [4]. Current studies in our laboratory deal with (a) selection of the vehicle for transepidermal transport of peptides and the conditions for selective uptake by epidermal LC [5]; (b) computer analysis of HIV-1 proteins to detect the putative proteolytic cleavage peptides with amino acid motifs which allow association with different known HLA class I haplotype molecules on LCs and synthetic peptide uptake from "without" by LC. The "HIV-1 Peplotion vaccine", when developed, will be useful for continual stimulation of antiviral CTLs in uninfected individuals and HIV-1 carriers by repetitive application to skin, genitalia and gut. The "Peplotion vaccine" will be applied by vaccinees, will be affordable for all human

  16. Vaccination priorities.

    Science.gov (United States)

    Steffen, Robert; Baños, Ana; deBernardis, Chiara

    2003-02-01

    Selection of immunizations should be based on requirements and on risk of infection. According to the International Health Regulations, many countries require yellow fever vaccination and proof thereof as the International Certificate of vaccination. Additionally selected countries require proof of vaccination against cholera and meningococcal disease. A consultation for travel health advice is always an opportunity to ascertain that routine immunizations have been performed. Recommended immunizations often are more important for traveller's health than the required or routine ones. The most frequent vaccine preventable infection in non-immune travellers to developing countries is hepatitis A with an average incidence rate of 0.3% per month; in high risk backpackers or foreign-aid-volunteers this rate is 2.0%. Many immunizations are recommended for special risk groups only: there is a growing tendency in many countries to immunize all young travellers to developing countries against hepatitis B, as it is uncertain who will voluntarily or involuntarily get exposed. The attack rate of influenza in intercontinental travel is estimated to be 1%. Immunity against poliomyelitis remains essential for travel to Africa and parts of Asia. Many of the 0.2-0.4% who experience an animal bite are at risk of rabies. Typhoid fever is diagnosed with an incidence rate of 0.03% per month among travellers to the Indian subcontinent, North and West Africa (except Tunisia), and Peru, elsewhere this rate is 10-fold lower. Meningococcal disease, Japanese encephalitis, cholera and tuberculosis have been reported in travellers, but these infections are rare in this population. Although no travel health vaccine is cost beneficial, most professionals will offer protection against the frequent risks, while most would find it ridiculous to use all available vaccines in every traveller. It is essentially an arbitrary decision made on the risk level one wishes to recommend protection--but the

  17. Evaluation of genetic melanoma vaccines in cdk4-mutant mice provides evidence for immunological tolerance against authochthonous melanomas in the skin.

    Science.gov (United States)

    Steitz, Julia; Büchs, Stefanie; Tormo, Damia; Ferrer, Aleix; Wenzel, Jörg; Huber, Christoph; Wölfel, Thomas; Barbacid, Mariano; Malumbres, Marcos; Tüting, Thomas

    2006-01-15

    We evaluated the efficacy of a candidate melanoma vaccine approach in mice genetically prone to develop melanoma due to the introduction of an oncogenic mutation (R24C) in the germline sequence of the cyclin-dependent kinase 4 (cdk4), a protein critically involved in cell cycle regulation. Melanomas were induced in cdk4-mutant mice by chemical carcinogenesis and UVB irradiation. A genetic prime-boost strategy targeting the clinically relevant differentiation antigen tyrosinase-related protein 2 (TRP2) was performed which was able to stimulate a melanocyte-specific cellular immune response associated with localized autoimmune vitiligo-like depigmentation. However, significant destruction of carcinogen-induced autochthonous melanocytic neoplasms in the skin was not observed following immunization. We provide evidence that autochthonous melanomas expressed TRP2 but not the MHC molecule H2-Kb and are immunologically tolerated in the skin. Our results highlight the importance of assessing melanoma vaccines in genetic mouse models that more adequately represent the expected clinical situation in order to identify strategies, which eventually may be of benefit for melanoma patients.

  18. HPV vaccine

    Science.gov (United States)

    ... cervix - HPV vaccine; Abnormal Pap smear - HPV vaccine; Vaccination - HPV vaccine ... and Gynecologists. Committee opinion No. 641: human papillomavirus vaccination. Obstet Gynecol . 2015;126(3):e38-e43. PMID: ...

  19. Establishment of Vero cell RNA polymerase I-driven reverse genetics for Influenza A virus and its application for pandemic (H1N1) 2009 influenza virus vaccine production.

    Science.gov (United States)

    Song, Min-Suk; Baek, Yun Hee; Pascua, Philippe Noriel Q; Kwon, Hyeok-Il; Park, Su-Jin; Kim, Eun-Ha; Lim, Gyo-Jin; Choi, Young-Ki

    2013-06-01

    The constant threat of newly emerging influenza viruses with pandemic potential requires the need for prompt vaccine production. Here, we utilized the Vero cell polymerase I (PolI) promoter, rather than the commonly used human PolI promoter, in an established reverse-genetics system to rescue viable influenza viruses in Vero cells, an approved cell line for human vaccine production. The Vero PolI promoter was more efficient in Vero cells and demonstrated enhanced transcription levels and virus rescue rates commensurate with that of the human RNA PolI promoter in 293T cells. These results appeared to be associated with more efficient generation of A(H1N1)pdm09- and H5N1-derived vaccine seed viruses in Vero cells, whilst the rescue rates in 293T cells were comparable. Our study provides an alternative means for improving vaccine preparation by using a novel reverse-genetics system for generating influenza A viruses.

  20. A brief history of autism, the autism/vaccine hypothesis and a review of the genetic basis of autism spectrum disorders.

    Science.gov (United States)

    Blake, Jerome; Hoyme, H Eugene; Crotwell, Patricia L

    2013-01-01

    Autism spectrum disorders (ASD) represent a common spectrum of developmental disabilities, sharing deficits in social interactions, communication and restricted interests or repetitive behaviors with difficult transitions. In this article, we review the history of the identification and classification of autism and the origin of the now widely-debunked autism/vaccine hypothesis. The differences between syndromal (complex) and non-syndromal (essential) autism are described and illustrated with case descriptions where appropriate. Finally, the evidence that autism is fundamentally a genetic disease is discussed, including family studies, the role of DNA copy number variation and known single gene mutations.

  1. Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process.

    Science.gov (United States)

    van de Waterbeemd, Bas; Streefland, Mathieu; van der Ley, Peter; Zomer, Bert; van Dijken, Harry; Martens, Dirk; Wijffels, René; van der Pol, Leo

    2010-07-05

    The use of detergent-extracted outer membrane vesicles (OMVs) is an established approach for development of a multivalent PorA vaccine against N. meningitidis serogroup B. Selective removal of lipopolysaccharide (LPS) decreases toxicity, but promotes aggregation and narrows the immune response. Detergent-free OMV vaccines retain all LPS, which preserves the native vesicle structure, but result in high toxicity and lower yield. The present study assessed the effects of gene mutations that attenuated LPS toxicity (lpxL1) or improved OMV yield (rmpM) in combination with the available OMV purification processes. The results substantiate that OMVs from a strain with both mutations, produced with a detergent-free process provide better vaccine characteristics than the traditional detergent-based approach. With comparable toxicity and yield, no aggregation and cross-protection against other PorA subtypes, these OMV vaccines are potentially safe and effective for parenteral use in humans. Copyright 2010 Elsevier Ltd. All rights reserved.

  2. 艾滋病疫苗专题文献引文特征的可视化分析%Visual analysis of features of citations in papers on AIDS vaccine

    Institute of Scientific and Technical Information of China (English)

    谭婉君; 张世玉; 王伟

    2014-01-01

    Important papers representing the advances in AIDS vaccine research were retrieved from Web of Sci-ence using HistCite.The citation chronological chart was plotted by analyzing the relation between their citation fre-quency and cited frequency , and analyzing their citation sequences , which shows the development rules and histori-cal development path in AIDS vaccine research , and provides a certain reference value for the researchers in related fields at home and abroad.%以Web of Science的艾滋病疫苗研究文献作为数据来源,利用引文分析可视化软件HistCite,找出代表艾滋病疫苗研究领域发展的重要文献,并分析文献之间引用与被引用关系和引用序列,获得引文编年图谱,梳理出艾滋病疫苗研究领域的发展规律和历史发展轨迹,为国内外相关领域的研究人员提供一定的参考。

  3. Vaccine development for Tuberculosis: Past, Present and Future Challenges

    Directory of Open Access Journals (Sweden)

    Dileep Tiwari

    2011-06-01

    Full Text Available About one third of the world's population is infected with Mycobacterium tuberculosis (M. tb, and new infections occur at a rate of about one per second. Additionally, more people in the developed world contact tuberculosis (TB because their immune systems are more likely to be compromised due to higher exposure to immunosuppressive drugs, substance abuse, or AIDS. The distribution of tuberculosis is not uniform across the globe, still the treatment is difficult and requires long courses of multiple antibiotics. However, antibiotic resistance is a growing problem in multidrugresistant (MDR tuberculosis. But mostly the prevention relies on screening programs and vaccination, usually with Bacillus Calmette- Guérin (BCG vaccine. BCG is the most commonly used vaccine worldwide, but not as a powerful vaccine. BCG also provides some protection against severe forms of pediatric TB, but has been shown to be unreliable against adult pulmonary TB which accounts for most of the disease burden worldwide. Currently, there is an urgent need for novel, more effective vaccine that can prevent all forms of TB including drug resistant strains for all age groups and among people with HIV. The first recombinant tuberculosis vaccine rBCG30, entered clinical trials in year 2004, but, still no effective vaccine is available in a market. Study showed that DNA TB vaccine given with conventional chemotherapy can accelerate the disappearance of bacteria as well as protect against re-infection in mice and it is quite effective against TB. A very promising TB vaccine, MVA85A, is currently in phase II trials and is based on a genetically modified vaccinia virus. Many other strategies are also being used to develop novel vaccines, including both subunit vaccines such as Hybrid-1, HyVac4 or M72, and recombinant adenoviruses such as Ad35. Some of these vaccines can be effectively administered without needles making them preferable for areas where HIV is very common and few of

  4. Phylogenetic analysis of human influenza A/H3N2 viruses isolated in 2015 in Germany indicates significant genetic divergence from vaccine strains.

    Science.gov (United States)

    Mostafa, Ahmed; Abdelwhab, El-Sayed M; Slanina, Heiko; Hussein, Mohamed A; Kuznetsova, Irina; Schüttler, Christian G; Ziebuhr, John; Pleschka, Stephan

    2016-06-01

    Infections by H3N2-type influenza A viruses (IAV) resulted in significant numbers of hospitalization in several countries in 2014-2015, causing disease also in vaccinated individuals and, in some cases, fatal outcomes. In this study, sequence analysis of H3N2 viruses isolated in Germany from 1998 to 2015, including eleven H3N2 isolates collected early in 2015, was performed. Compared to the vaccine strain A/Texas/50/2012 (H3N2), the 2015 strains from Germany showed up to 4.5 % sequence diversity in their HA1 protein, indicating substantial genetic drift. The data further suggest that two distinct phylogroups, 3C.2 and 3C.3, with 1.6-2.3 % and 0.3-2.4 % HA1 nucleotide and amino acid sequence diversity, respectively, co-circulated in Germany in the 2014/2015 season. Distinct glycosylation patterns and amino acid substitutions in the hemagglutinin and neuraminidase proteins were identified, possibly contributing to the unusually high number of H3N2 infections in this season and providing important information for developing vaccines that are effective against both genotypes.

  5. Genetics

    Science.gov (United States)

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  6. Using genetic algorithms with subjective input from human subjects: implications for fitting hearing aids and cochlear implants.

    Science.gov (United States)

    Başkent, Deniz; Eiler, Cheryl L; Edwards, Brent

    2007-06-01

    To present a comprehensive analysis of the feasibility of genetic algorithms (GA) for finding the best fit of hearing aids or cochlear implants for individual users in clinical or research settings, where the algorithm is solely driven by subjective human input. Due to varying pathology, the best settings of an auditory device differ for each user. It is also likely that listening preferences vary at the same time. The settings of a device customized for a particular user can only be evaluated by the user. When optimization algorithms are used for fitting purposes, this situation poses a difficulty for a systematic and quantitative evaluation of the suitability of the fitting parameters produced by the algorithm. In the present study, an artificial listening environment was generated by distorting speech using a noiseband vocoder. The settings produced by the GA for this listening problem could objectively be evaluated by measuring speech recognition and comparing the performance to the best vocoder condition where speech was least distorted. Nine normal-hearing subjects participated in the study. The parameters to be optimized were the number of vocoder channels, the shift between the input frequency range and the synthesis frequency range, and the compression-expansion of the input frequency range over the synthesis frequency range. The subjects listened to pairs of sentences processed with the vocoder, and entered a preference for the sentence with better intelligibility. The GA modified the solutions iteratively according to the subject preferences. The program converged when the user ranked the same set of parameters as the best in three consecutive steps. The results produced by the GA were analyzed for quality by measuring speech intelligibility, for test-retest reliability by running the GA three times with each subject, and for convergence properties. Speech recognition scores averaged across subjects were similar for the best vocoder solution and for the

  7. Identification of the Mechanisms Causing Reversion to Virulence in an Attenuated SARS-CoV for the Design of a Genetically Stable Vaccine.

    Science.gov (United States)

    Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Nieto-Torres, Jose L; DeDiego, Marta L; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Perlman, Stanley; Enjuanes, Luis

    2015-10-01

    A SARS-CoV lacking the full-length E gene (SARS-CoV-∆E) was attenuated and an effective vaccine. Here, we show that this mutant virus regained fitness after serial passages in cell culture or in vivo, resulting in the partial duplication of the membrane gene or in the insertion of a new sequence in gene 8a, respectively. The chimeric proteins generated in cell culture increased virus fitness in vitro but remained attenuated in mice. In contrast, during SARS-CoV-∆E passage in mice, the virus incorporated a mutated variant of 8a protein, resulting in reversion to a virulent phenotype. When the full-length E protein was deleted or its PDZ-binding motif (PBM) was mutated, the revertant viruses either incorporated a novel chimeric protein with a PBM or restored the sequence of the PBM on the E protein, respectively. Similarly, after passage in mice, SARS-CoV-∆E protein 8a mutated, to now encode a PBM, and also regained virulence. These data indicated that the virus requires a PBM on a transmembrane protein to compensate for removal of this motif from the E protein. To increase the genetic stability of the vaccine candidate, we introduced small attenuating deletions in E gene that did not affect the endogenous PBM, preventing the incorporation of novel chimeric proteins in the virus genome. In addition, to increase vaccine biosafety, we introduced additional attenuating mutations into the nsp1 protein. Deletions in the carboxy-terminal region of nsp1 protein led to higher host interferon responses and virus attenuation. Recombinant viruses including attenuating mutations in E and nsp1 genes maintained their attenuation after passage in vitro and in vivo. Further, these viruses fully protected mice against challenge with the lethal parental virus, and are therefore safe and stable vaccine candidates for protection against SARS-CoV.

  8. Dengue type 4 live-attenuated vaccine viruses passaged in vero cells affect genetic stability and dengue-induced hemorrhaging in mice.

    Directory of Open Access Journals (Sweden)

    Hsiang-Chi Lee

    Full Text Available Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4 virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3' NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q(438H, E-V(463L, NS2B-Q(78H, and NS2B-A(113T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine

  9. Brucellosis vaccines for livestock.

    Science.gov (United States)

    Goodwin, Zakia I; Pascual, David W

    2016-11-15

    Brucellosis is a livestock disease responsible for fetal loss due to abortions. Worldwide, this disease has profound economic and social impact by reducing the ability of livestock producers to provide an adequate supply of disease-free meat and dairy products. In addition to its presence in domesticated animals, brucellosis is harbored in a number of wildlife species creating new disease reservoirs, which adds to the difficulty of eradicating this disease. Broad and consistent use of the available vaccines would contribute in reducing the incidence of brucellosis. Unfortunately, this practice is not common. In addition, the current brucellosis vaccines cannot provide sterilizing immunity, and in certain circumstances, vaccinated livestock are not protected against co-mingling Brucella-infected wildlife. Given that these vaccines are inadequate for conferring complete protection for some vaccinated livestock, alternatives are being sought, and these include genetic modifications of current vaccines or their reformulations. Alternatively, many groups have sought to develop new vaccines. Subunit vaccines, delivered as a combination of soluble vaccine plus adjuvant or the heterologous expression of Brucella epitopes by different vaccine vectors are currently being tested. New live attenuated Brucella vaccines are also being developed and tested in their natural hosts. Yet, what is rarely considered is the route of vaccination which could improve vaccine efficacy. Since Brucella infections are mostly transmitted mucosally, mucosal delivery of a vaccine has the potential of eliciting a more robust protective immune response for improved efficacy. Hence, this review will examine these questions and provide the status of new vaccines for livestock brucellosis.

  10. Rising Cellular Immune Response after Injection of pVax/iutA: A Genetic DNA Cassette as Candidate Vaccine against Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    Ronak BAKHTIARI

    2016-08-01

    Full Text Available Background: Uropathogenic Escherichia coli (UPEC are major bacterial agent of Urinary Tract Infection (UTI. This infection is more prevalent among women because approximately half of all women will experience a UTI in their life-time and near a quarter of them will have a recurrent infection within 6–12 months. IutA protein has a major role during UPEC pathogenesis and consequently infection. Therefore, the aim of current study was assessment of IutA protein roles as a potential candidate antigen based for vaccine designing.Methods: This survey was conducted during 2014-2015 at the University of Tehran, Iran. Chromosomal DNA extracted from E. coli 35218 and iutA gene amplified by PCR. The amplicon cloned to pVax.1 eukaryotic expression vector and recombinant vector confirmed by sequencing. The iutA gene expression in genetic cassette of pVax/iutA was evaluated in COS7 cell line by RT-PCR. Then, injected to mouse model, which divided to three groups: injected with pVax vector, PBS and pVax/iutA cassette respectively in two stages (d 1 and 14. One week after the second injection, bleeding from immunized mouse was performed and IFN-gamma was measured.Results: The mice immunized with pVax/iutA showed increased interferon-γ responses significantly higher than two non-immunized groups (P<0.05.Conclusion: Cellular immune response has a main protective role against UTI. Raising this kind of immune response is important to preventing of recurrent infection. Moreover, the current DNA cassette will be valuable for more trying to prepare a new vaccine against UTI. Keywords: Genetic vaccination, Uropathogenic escherichia coli, IutA

  11. Genetic stability of a recombinant adenovirus vaccine vector seed library expressing human papillomavirus type 16 E6 and E7 proteins

    Science.gov (United States)

    WU, JIE; CHEN, KE-DA; GAO, MENG; CHEN, GANG; JIN, SU-FENG; ZHUANG, FANG-CHENG; WU, XIAO-HONG; JIANG, YUN-SHUI; LI, JIAN-BO

    2015-01-01

    The aim of the present study was to understand the genetic stability of a master seed bank (MSB) and a working seed bank (WSB) of an adenovirus vector vaccine expressing the human papillomavirus (HPV) type 16 E6 and E7 fusion proteins (Ad-HPV16E6E7). Microscopic examination and viral infectious efficacy were used to measure the infectious titers of the Ad-HPV16E6E7 MSB and WSB. Polymerase chain reaction was used to analyze the stability of the Ad-HPV16E6E7 target gene insertion, while western blot analysis and immunofluorescence were used to assess the expression levels of the Ad-HPV16E6E7 target protein. A C57BL/6 mouse TC-1 tumor cell growth inhibition model was used to evaluate the biological effect of Ad-HPV16E6E7 administration. The infectious titers of the Ad-HPV16E6E7 MSB and WSB were 6.31×109 IU/ml and 3.0×109 IU/ml, respectively. In addition, the expression levels of the inserted target genes and target proteins were found to be stable. In the mouse TC-1 tumor inhibition analysis, when the virus titers of the Ad-HPV16E6E7 MSB and WSB were 109 IU/ml, the tumor inhibition rate was 100%, which was significantly different when compared with the control group (χ2MSB=20.00 and χ2WSB=20.00; P<0.01). Therefore, the Ad-HPV16E6E7 vaccine seed bank is genetically stable and meets the requirements for vaccine development. PMID:25780403

  12. Improving the Immunogenicity of the Mycobacterium bovis BCG Vaccine by Non-Genetic Bacterial Surface Decoration Using the Avidin-Biotin System.

    Directory of Open Access Journals (Sweden)

    Ting-Yu Angela Liao

    Full Text Available Current strategies to improve the current BCG vaccine attempt to over-express genes encoding specific M. tuberculosis (Mtb antigens and/or regulators of antigen presentation function, which indeed have the potential to reshape BCG in many ways. However, these approaches often face serious difficulties, in particular the efficiency and stability of gene expression via nucleic acid complementation and safety concerns associated with the introduction of exogenous DNA. As an alternative, we developed a novel non-genetic approach for rapid and efficient display of exogenous proteins on bacterial cell surface. The technology involves expression of proteins of interest in fusion with a mutant version of monomeric avidin that has the feature of reversible binding to biotin. Fusion proteins are then used to decorate the surface of biotinylated BCG. Surface coating of BCG with recombinant proteins was highly reproducible and stable. It also resisted to the freeze-drying shock routinely used in manufacturing conventional BCG. Modifications of BCG surface did not affect its growth in culture media neither its survival within the host cell. Macrophages phagocytized coated BCG bacteria, which efficiently delivered their surface cargo of avidin fusion proteins to MHC class I and class II antigen presentation compartments. Thereafter, chimeric proteins corresponding to a surrogate antigen derived from ovalbumin and the Mtb specific ESAT6 antigen were generated and tested for immunogenicity in vaccinated mice. We found that BCG displaying ovalbumin antigen induces an immune response with a magnitude similar to that induced by BCG genetically expressing the same surrogate antigen. We also found that BCG decorated with Mtb specific antigen ESAT6 successfully induces the expansion of specific T cell responses. This novel technology, therefore, represents a practical and effective alternative to DNA-based gene expression for upgrading the current BCG vaccine.

  13. An aid to the diagnosis of genetic disorders underlying adult-onset renal failure : a literature review

    NARCIS (Netherlands)

    Joosten, H.; Strunk, A. L. M.; Meijer, S.; Boers, J. E.; Aries, M.J.H.; Abbes, A. P.; Engel, H.; Beukhof, J. R.

    2010-01-01

    Several genetic disorders can present in adult patients with renal insufficiency. Genetic renal disease other than ADPKD accounts for ESRD in 3% of the adult Dutch population. Because of this low prevalence and their clinical heterogeneity most adult nephrologists are less familiar with these disord

  14. Vaccine Safety

    Science.gov (United States)

    ... Vaccine Safety Shingles (Herpes Zoster) Vaccine Safety Smallpox Vaccine Safety Common Concerns Adjuvants Autism CDC Statement: 2004 Pediatrics Paper on MMR and Autism Fainting (Syncope) Febrile ...

  15. Biotechnology and genetic engineering in the new drug development. Part II. Monoclonal antibodies, modern vaccines and gene therapy.

    Science.gov (United States)

    Stryjewska, Agnieszka; Kiepura, Katarzyna; Librowski, Tadeusz; Lochyński, Stanisław

    2013-01-01

    Monoclonal antibodies, modern vaccines and gene therapy have become a major field in modern biotechnology, especially in the area of human health and fascinating developments achieved in the past decades are impressive examples of an interdisciplinary interplay between medicine, biology and engineering. Among the classical products from cells one can find viral vaccines, monoclonal antibodies, and interferons, as well as recombinant therapeutic proteins. Gene therapy opens up challenging new areas. In this review, a definitions of these processes are given and fields of application and products, as well as the future prospects, are discussed.

  16. Uganda pioneers ALVAC -- and informed consent. Vaccine trials.

    Science.gov (United States)

    Epstein, H; Nsubuga, L

    1997-02-01

    Pasteur Merieux, a French pharmaceutical company, has developed a promising new experimental vaccine against AIDS. The vaccine, ALVAC VCP205, contains live, genetically engineered canaripox virus carrying several small fragments of HIV. Canaripox virus causes disease among canary birds, but not in humans. ALVAC VCP205 has already been tested on more than 100 volunteers in the US and France who have shown no ill effects. Clinical trials will start in Uganda in early 1997, at which point 40 young male volunteers in Kampala will be administered the vaccine. The volunteers are soldiers of the Ugandan army. Possibly continuing until 2005, the trials will assess the safety of ALVAC VCP205 and, if successful, lead to much larger trials involving thousands of Ugandans in 1998. Only then will scientists know whether the vaccine can protect humans against HIV infection. The need for a vaccine, the Uganda trial, and concerns over whether trial subjects are truly volunteers are discussed. There is also concern over whether the vaccine will be affordable in Uganda if it is shown to be effective and whether it will be appropriate for use by Ugandans at risk of HIV infection. ALVAC VCP205 is designed to provide the greatest level of protection against HIV-1 subtype B, the dominant strain of HIV in Europe and the US. In Uganda, strains A and D predominate.

  17. Recombinant MVA vaccines: dispelling the myths.

    Science.gov (United States)

    Cottingham, Matthew G; Carroll, Miles W

    2013-09-06

    Diseases such as HIV/AIDS, tuberculosis, malaria and cancer are prime targets for prophylactic or therapeutic vaccination, but have proven partially or wholly resistant to traditional approaches to vaccine design. New vaccines based on recombinant viral vectors expressing a foreign antigen are under intense development for these and other indications. One of the most advanced and most promising vectors is the attenuated, non-replicating poxvirus MVA (modified vaccinia virus Ankara), a safer derivative of the uniquely successful smallpox vaccine. Despite the ability of recombinant MVA to induce potent humoral and cellular immune responses against transgenic antigen in humans, especially when used as the latter element of a heterologous prime-boost regimen, doubts are occasionally expressed about the ultimate feasibility of this approach. In this review, five common misconceptions over recombinant MVA are discussed, and evidence is cited to show that recombinant MVA is at least sufficiently genetically stable, manufacturable, safe, and immunogenic (even in the face of prior anti-vector immunity) to warrant reasonable hope over the feasibility of large-scale deployment, should useful levels of protection against target pathogens, or therapeutic benefit for cancer, be demonstrated in efficacy trials.

  18. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  19. Generation of Recombinant Equine Influenza Vaccine Candidate RgH3N1 Virus by Reverse Genetics

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yun; LIU Ming; YU Kang-zhen; Webster Robert

    2005-01-01

    The antigenic variation of influenza A virus hemagglutinin (HA) glycoproteins requires frequent changes in vaccine formulation. The new strategy of creating influenza seed strains for vaccine production is to generate 7 + 1 reassortants that contain seven genes from a high-yield virus A/Puerto Rico/8/34[A/PR/8/34](H1N1) and the HA gene from the circulating strains. By using this DNA-based cotransfection technique, we generated 7 + 1 reassortants rgH3N1 which had the antigenic determinants of influenza virus A/Songbird/HongKong/102/00[SB/HK/01](H3N8) and 7 other genes from A/PR/8/34. The hemagglutinin of A/Songbird/HongKong/102/00 is 96.3% homologous to that of A/Equine/Jilin/98[Eq/J1/89] (H3N8). The resulting virus rgH3N1 grows to high HA titers in chicken embryonated eggs, allowing vaccine preparation in unconcentrated allantoic fluid. The rgH3N1 is stable after multiple passages in embryonated eggs. The reassortant rgH3N1 virus could be used as vaccine candidate to reduce the reemergence of equine influenza outbreaks.

  20. Improved OMV vaccine against Neisseria meningitidis using genetically engineered strains and a detergent-free purification process

    NARCIS (Netherlands)

    Waterbeemd, van de B.; Streefland, M.; Ley, de P.; Zomer, B.; Dijken, van H.; Martens, D.E.; Wijffels, R.H.; Pol, van der L.A.

    2010-01-01

    The use of detergent-extracted outer membrane vesicles (OMVs) is an established approach for development of a multivalent PorA vaccine against N. meningitidis serogroup B. Selective removal of lipopolysaccharide (LPS) decreases toxicity, but promotes aggregation and narrows the immune response.

  1. Serological surveillance and IL-10 genetic variants on anti-HBs titers: hepatitis B vaccination 20 years after neonatal immunization in Taiwan.

    Science.gov (United States)

    Lin, Ying-Ju; Lan, Yu-Ching; Wan, Lei; Lin, Ting-Hsu; Chen, Da-Yuan; Tsai, Chang-Hai; Liu, Chiu-Shong; Hsueh, Kai-Chung; Tsai, Fuu-Jen

    2011-04-11

    The national hepatitis B (HB) vaccination program in Taiwan that began in 1984 has resulted in a significant reduction in the carrier rate among children. However, a significant proportion of Taiwanese neonatal HB immunization recipients have exhibited low anti-HBs titers that fall to non-protective or undetectable levels. We recruited 1677 entering freshman and graduate student participants at a Taiwanese university health center, grouped them into three age groups representing three stages of Taiwan's HB vaccination program, then conducted hepatitis B surface antigen (HBsAg) and antibodies to HBsAg (anti-HBs) serological surveillances for each individual. Univariate and multivariate regression analyses of clinical characteristics and Interleukin-10 (IL-10) genetic variations were also conducted. A trend toward a decreasing HBsAg carrier rate was observed over the starting dates of the vaccination program (11.7%, 1.6% and 1.7% for age groups 1, 2 and 3, respectively), but we also observed an increasing rate of non-protective anti-HBs titers (15%, 26% and 50.3% for cohorts 1-3, respectively). The percentage of students with non-protective anti-HBs titers increased from 23.1% for students born in 1984, to 25.2% for those born in 1985, to 39.4% for birth-year 1986 students, to 45.7% for birth-year 1987 students, and to 56.5% for birth-year 1988 students. The risk for low anti-HBs titers increased concurrently with increases in systolic blood pressure (BP), the IL-10 ATA/ACC haplotype, and the IL-10 ATA present haplotype. Risk for low anti-HBs titers decreased with concurrent decreases in glucose ante cibum (AC, before meals) and the IL-10 ACC/ACC haplotype. These results suggest that the genetic determinants may also contribute to variations in anti-HBs titers in immune responses to HB vaccination. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Evaluation of the effectiveness and safety of a genetically modified live vaccine in broilers challenged with Salmonella Heidelberg.

    Science.gov (United States)

    Muniz, Eduardo Correa; Verdi, Renato; Leão, Joice Aparecida; Back, Alberto; Nascimento, Vladimir Pinheiro do

    2017-08-22

    Salmonellosis ranks among the major diseases of commercial poultry, and its presence in poultry flocks is responsible for economic losses and risks related to public health. Vaccines are an important tool within integrated programmes to control salmonellosis. The purpose of this study was to assess cross-protection provided by the Poulvac® ST vaccine in the control of Salmonella Heidelberg in experimentally challenged 3- and 21-day-old birds. Eighty birds were identified and separated into four treatments (T1: vaccinated and challenged at 3 days of age, T2: unvaccinated and challenged at 3 days of age, T3: vaccinated and challenged at 21 days of age, and T4: unvaccinated and challenged at 21 days of age). The inoculum was produced from a Brazilian field strain of SH. At the end of the experiment, caecum and liver/spleen samples were collected for quantitative and qualitative analysis of SH, respectively. Analysis of the liver/spleen showed that Poulvac® ST significantly (P ≤ 0.05) reduced the percentage of SH positivity in the group challenged at 3 days of age, while in the group challenged at 21 days this difference was almost considered significant (P = 0.1818). On the other hand, there was no statistically significant difference in SH count in the caecum (CFU/g) in the group challenged at 3 days, but for the group challenged at 21 days the SH counts were significantly (P ≤ 0.05) lower in the vaccinated group when compared to the positive control.

  3. MutAid: Sanger and NGS Based Integrated Pipeline for Mutation Identification, Validation and Annotation in Human Molecular Genetics.

    Science.gov (United States)

    Pandey, Ram Vinay; Pabinger, Stephan; Kriegner, Albert; Weinhäusel, Andreas

    2016-01-01

    Traditional Sanger sequencing as well as Next-Generation Sequencing have been used for the identification of disease causing mutations in human molecular research. The majority of currently available tools are developed for research and explorative purposes and often do not provide a complete, efficient, one-stop solution. As the focus of currently developed tools is mainly on NGS data analysis, no integrative solution for the analysis of Sanger data is provided and consequently a one-stop solution to analyze reads from both sequencing platforms is not available. We have therefore developed a new pipeline called MutAid to analyze and interpret raw sequencing data produced by Sanger or several NGS sequencing platforms. It performs format conversion, base calling, quality trimming, filtering, read mapping, variant calling, variant annotation and analysis of Sanger and NGS data under a single platform. It is capable of analyzing reads from multiple patients in a single run to create a list of potential disease causing base substitutions as well as insertions and deletions. MutAid has been developed for expert and non-expert users and supports four sequencing platforms including Sanger, Illumina, 454 and Ion Torrent. Furthermore, for NGS data analysis, five read mappers including BWA, TMAP, Bowtie, Bowtie2 and GSNAP and four variant callers including GATK-HaplotypeCaller, SAMTOOLS, Freebayes and VarScan2 pipelines are supported. MutAid is freely available at https://sourceforge.net/projects/mutaid.

  4. Ensuring safety of DNA vaccines

    Directory of Open Access Journals (Sweden)

    Wessels Stephen

    2005-09-01

    Full Text Available Abstract In 1990 a new approach for vaccination was invented involving injection of plasmid DNA in vivo, which elicits an immune response to the encoded protein. DNA vaccination can overcome most disadvantages of conventional vaccine strategies and has potential for vaccines of the future. However, today 15 years on, a commercial product still has not reached the market. One possible explanation could be the technique's failure to induce an efficient immune response in humans, but safety may also be a fundamental issue. This review focuses on the safety of the genetic elements of DNA vaccines and on the safety of the microbial host for the production of plasmid DNA. We also propose candidates for the vaccine's genetic elements and for its microbial production host that can heighten the vaccine's safety and facilitate its entry to the market.

  5. Epilepsy and vaccinations: Italian guidelines.

    Science.gov (United States)

    Pruna, Dario; Balestri, Paolo; Zamponi, Nelia; Grosso, Salvatore; Gobbi, Giuseppe; Romeo, Antonino; Franzoni, Emilio; Osti, Maria; Capovilla, Giuseppe; Longhi, Riccardo; Verrotti, Alberto

    2013-10-01

    Reports of childhood epilepsies in temporal association with vaccination have had a great impact on the acceptance of vaccination programs by health care providers, but little is known about this possible temporal association and about the types of seizures following vaccinations. For these reasons the Italian League Against Epilepsy (LICE), in collaboration with other Italian scientific societies, has decided to generate Guidelines on Vaccinations and Epilepsy. The aim of Guidelines on Vaccinations and Epilepsy is to present recent unequivocal evidence from published reports on the possible relationship between vaccines and epilepsy in order to provide information about contraindications and risks of vaccinations in patients with epilepsy. The following main issues have been addressed: (1) whether contraindications to vaccinations exist in patients with febrile convulsions, epilepsy, and/or epileptic encephalopathies; and (2) whether any vaccinations can cause febrile seizures, epilepsy, and/or epileptic encephalopathies. Diphtheria-tetanus-pertussis (DTP) vaccination and measles, mumps, and rubella vaccination (MMR) increase significantly the risk of febrile seizures. Recent observations and data about the relationships between vaccination and epileptic encephalopathy show that some cases of apparent vaccine-induced encephalopathy could in fact be caused by an inherent genetic defect with no causal relationship with vaccination.

  6. Rhodococcus equi (Prescottella equi) vaccines; the future of vaccine development.

    Science.gov (United States)

    Giles, C; Vanniasinkam, T; Ndi, S; Barton, M D

    2015-09-01

    For decades researchers have been targeting prevention of Rhodococcus equi (Rhodococcus hoagui/Prescottella equi) by vaccination and the horse breeding industry has supported the ongoing efforts by researchers to develop a safe and cost effective vaccine to prevent disease in foals. Traditional vaccines including live, killed and attenuated (physical and chemical) vaccines have proved to be ineffective and more modern molecular-based vaccines including the DNA plasmid, genetically attenuated and subunit vaccines have provided inadequate protection of foals. Newer, bacterial vector vaccines have recently shown promise for R. equi in the mouse model. This article describes the findings of key research in R. equi vaccine development and looks at alternative methods that may potentially be utilised.

  7. Enhanced anti-tumor effect of a gene gun-delivered DNA vaccine encoding the human papillomavirus type 16 oncoproteins genetically fused to the herpes simplex virus glycoprotein D

    Directory of Open Access Journals (Sweden)

    M.O. Diniz

    2011-05-01

    Full Text Available Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5 expressing three proteins (E7, E6, and E5 of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose induced a strong activation of E7-specific interferon-γ (INF-γ-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

  8. Cross-protection of the Bivalent Human Papillomavirus (HPV) Vaccine Against Variants of Genetically Related High-Risk HPV Infections.

    Science.gov (United States)

    Harari, Ariana; Chen, Zigui; Rodríguez, Ana Cecilia; Hildesheim, Allan; Porras, Carolina; Herrero, Rolando; Wacholder, Sholom; Panagiotou, Orestis A; Befano, Brian; Burk, Robert D; Schiffman, Mark

    2016-03-15

    Results from the Costa Rica Vaccine Trial (CVT) demonstrated partial cross-protection by the bivalent human papillomavirus (HPV) vaccine, which targets HPV-16 and HPV-18, against HPV-31, -33, and -45 infection and an increased incidence of HPV-51 infection. A study nested within the CVT intention-to-treat cohort was designed to assess high-risk HPV variant lineage-specific vaccine efficacy (VE). The 2 main end points were (1) long-term incident infections persisting for ≥2 years and/or progression to high-grade squamous intraepithelial lesions (ie, cervical intraepithelial neoplasia grade 2/3 [CIN 2/3]) and (2) incident transient infections lasting for infections due to HPV-16, -18, -31, -33, -35, -45, and -51 resulting in persistent infection and/or CIN 2/3 were matched (ratio, 1:2) to the more-frequent transient viral infections, by HPV type. Variant lineages were determined by sequencing the upstream regulatory region and/or E6 region. VEs against persistent or transient infections with HPV-16, -18, -33, -35, -45, and -51 did not differ significantly by variant lineage. As the possible exception, VEs against persistent infection and/or CIN 2/3 due to HPV-31 A/B and HPV-31C variants were -7.1% (95% confidence interval [CI], -33.9% to 0%) and 86.4% (95% CI, 65.1%-97.1%), respectively (P = .02 for test of equal VE). No difference in VE was observed by variant among transient HPV-31 infections (P = .68). Overall, sequence variation at the variant level does not appear to explain partial cross-protection by the bivalent HPV vaccine. © The Author 2015. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  9. Genetic selection for resistance to mycoplasmal pneumonia of swine (MPS) in the Landrace line influences the expression of soluble factors in blood after MPS vaccine sensitization.

    Science.gov (United States)

    Shimazu, Tomoyuki; Borjigin, Liushiqi; Katayama, Yuki; Li, Meihua; Satoh, Takumi; Watanabe, Kouichi; Kitazawa, Haruki; Roh, Sang-gun; Aso, Hisashi; Kazuo, Katoh; Suda, Yoshihito; Sakuma, Akiko; Nakajo, Mituru; Suzuki, Keiichi

    2014-04-01

    We recently developed a Landrace line that is resistant to mycoplasmal pneumonia of swine (MPS) infection by genetic selection for five generations, and we reported that the immunophenotype of this line is different from that of the non-selected line in terms of changes in peripheral blood leukocyte population after MPS vaccination. This study followed up previous findings demonstrating changes in soluble factors in blood, namely, hormones, Mycoplasma hyopneumoniae-specific immunoglobulin G (IgG), and cytokines. These two lines were injected with MPS vaccine on days -7 and 0 after blood sampling on those days, and blood samples were collected on days -14, -7, 0, 2, 7 and 14. We found changes in the levels of many hormones and cytokines in both lines. However, we found that only growth hormone (GH) and interferon (IFN)-γ levels were statistically different between these two lines. GH concentration was reduced (day 0) and IFN-γ concentration was increased (day 14) in the MPS-selected line compared with the non-selected line, despite unchanged IFN-γ messenger RNA expression in blood cells. Although detailed mechanisms underlying these phenotypes remain unsolved, these traits would be useful to improve MPS resistance in pig production and provide an insight into MPS infection.

  10. Linking noninvasive genetic sampling and traditional monitoring to aid management of a trans-border carnivore population.

    Science.gov (United States)

    Bischof, Richard; Swenson, Jon E

    2012-01-01

    Noninvasive genetic sampling has been embraced by wildlife managers and ecologists, especially those charged with monitoring rare and elusive species over large areas. Challenges arise when desired population measures are not directly attainable from genetic data and when monitoring targets trans-border populations. Norwegian management authorities count individual brown bears (Ursus arctos) using noninvasive genetic sampling but express management goals in the annual number of bear reproductions (females that produce cubs), a measure that is not directly available from genetic data. We combine noninvasive genetic sampling data with information obtained from a long-term intensive monitoring study in neighboring Sweden to estimate the number of annual reproductions by females detected within Norway. Most female brown bears in Norway occur near the border with neighboring countries (Sweden, Finland, and Russia) and their potential reproduction can therefore only partially be credited to Norway. Our model includes a simulation-based method that corrects census data to account for this. We estimated that 4.3 and 5.7 reproductions can be credited to females detected with noninvasive genetic sampling in Norway in 2008 and 2009, respectively. These numbers fall substantially short of the national target (15 annual reproductions). Ignoring the potential for home ranges to extend beyond Norway's borders leads to an increase in the estimate of the number of reproductions by -30%. Our study shows that combining noninvasive genetic sampling with information obtained from traditional intensive/invasive monitoring can help answer contemporary management questions in the currency desired by managers and policy makers. Furthermore, combining methodologies and thereby accounting for space use increases the accuracy of the information on which decisions are based. It is important that the information derived from multiple approaches is applicable to the same focal population and

  11. Locating structures and evolution pathways of reconstructed rutile TiO2(011) using genetic algorithm aided density functional theory calculations.

    Science.gov (United States)

    Ding, Pan; Gong, Xue-Qing

    2016-05-01

    Titanium dioxide (TiO2) is an important metal oxide that has been used in many different applications. TiO2 has also been widely employed as a model system to study basic processes and reactions in surface chemistry and heterogeneous catalysis. In this work, we investigated the (011) surface of rutile TiO2 by focusing on its reconstruction. Density functional theory calculations aided by a genetic algorithm based optimization scheme were performed to extensively sample the potential energy surfaces of reconstructed rutile TiO2 structures that obey (2 × 1) periodicity. A lot of stable surface configurations were located, including the global-minimum configuration that was proposed previously. The wide variety of surface structures determined through the calculations performed in this work provide insight into the relationship between the atomic configuration of a surface and its stability. More importantly, several analytical schemes were proposed and tested to gauge the differences and similarities among various surface structures, aiding the construction of the complete pathway for the reconstruction process.

  12. Risk Factor or Social Vaccine? The Historical Progression of the Role of Education in HIV and AIDS Infection in Sub-Saharan Africa

    Science.gov (United States)

    Baker, David P.; Collins, John M.; Leon, Juan

    2008-01-01

    Numerous epidemiological studies from the early years of the tragic HIV and AIDS pandemic in sub-Saharan Africa identified formal education as a risk factor increasing the chance of infection. Instead of playing its usual role as a preventative factor, as has been noted in many other public health cases, until the mid-1990s educated African men…

  13. HIV DNA Vaccine: Stepwise Improvements Make a Difference

    Directory of Open Access Journals (Sweden)

    Barbara K. Felber

    2014-05-01

    Full Text Available Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.

  14. Enhanced antibody responses elicited by a CpG adjuvant do not improve the protective effect of an aldrithiol-2-inactivated simian immunodeficiency virus therapeutic AIDS vaccine.

    Science.gov (United States)

    Wang, Yichuan; Blozis, Shelley A; Lederman, Michael; Krieg, Arthur; Landay, Alan; Miller, Christopher J

    2009-04-01

    The potential benefit of using unmethylated CpG oligoribodeoxynucleotides (ODN) as an adjuvant in a therapeutic simian immunodeficiency virus (SIV) vaccine consisting of AT2-inactivated SIVmac239 was evaluated in SIV-infected rhesus macaques receiving antiretroviral therapy (ART). We hypothesized that using CpG ODN as an adjuvant in therapeutic vaccination would enhance SIV-specific immune responses and suppress SIV replication after ART was stopped. To test our hypothesis, we immunized chronically SIV-infected rhesus macaques receiving ART with one of the following therapeutic vaccines: (i) AT2-inactivated SIVmac239, (ii) CpG10103 plus AT2-inactivated SIVmac239, (iii) CpG10103, and (iv) saline. While immunization with CpG plus AT2-SIVmac239 significantly increased SIV-specific immunoglobulin G (IgG) antibody titers, the mean plasma viral RNA (vRNA) level in these animals after ART did not differ from those of saline-treated animals. The AT2-inactivated SIVmac239-immunized animal group had a significantly higher mean SIV-specific gamma interferon T-cell response after three immunizations and lower plasma vRNA levels for 6 weeks after ART was withdrawn compared to the saline-treated animal group. Compared to the saline control group, the animal group treated with CpG alone had a significantly higher mean SIV-specific lymphocyte proliferation index and a higher rate of plasma vRNA rebound after ART. These results demonstrate that while the use of CpG as an adjuvant enhances SIV-specific antibody responses, this does not improve the control of SIV replication after ART is stopped. The lack of benefit may be related to the high levels of SIV-specific lymphocyte proliferation in the CpG adjuvant group.

  15. Rapid and scalable plant-based production of a cholera toxin B subunit variant to aid in mass vaccination against cholera outbreaks.

    Directory of Open Access Journals (Sweden)

    Krystal Teasley Hamorsky

    Full Text Available INTRODUCTION: Cholera toxin B subunit (CTB is a component of an internationally licensed oral cholera vaccine. The protein induces neutralizing antibodies against the holotoxin, the virulence factor responsible for severe diarrhea. A field clinical trial has suggested that the addition of CTB to killed whole-cell bacteria provides superior short-term protection to whole-cell-only vaccines; however, challenges in CTB biomanufacturing (i.e., cost and scale hamper its implementation to mass vaccination in developing countries. To provide a potential solution to this issue, we developed a rapid, robust, and scalable CTB production system in plants. METHODOLOGY/PRINCIPAL FINDINGS: In a preliminary study of expressing original CTB in transgenic Nicotiana benthamiana, the protein was N-glycosylated with plant-specific glycans. Thus, an aglycosylated CTB variant (pCTB was created and overexpressed via a plant virus vector. Upon additional transgene engineering for retention in the endoplasmic reticulum and optimization of a secretory signal, the yield of pCTB was dramatically improved, reaching >1 g per kg of fresh leaf material. The protein was efficiently purified by simple two-step chromatography. The GM1-ganglioside binding capacity and conformational stability of pCTB were virtually identical to the bacteria-derived original B subunit, as demonstrated in competitive enzyme-linked immunosorbent assay, surface plasmon resonance, and fluorescence-based thermal shift assay. Mammalian cell surface-binding was corroborated by immunofluorescence and flow cytometry. pCTB exhibited strong oral immunogenicity in mice, inducing significant levels of CTB-specific intestinal antibodies that persisted over 6 months. Moreover, these antibodies effectively neutralized the cholera holotoxin in vitro. CONCLUSIONS/SIGNIFICANCE: Taken together, these results demonstrated that pCTB has robust producibility in Nicotiana plants and retains most, if not all, of major

  16. [Travelers' vaccines].

    Science.gov (United States)

    Ouchi, Kazunobu

    2011-09-01

    The number of Japanese oversea travelers has gradually increased year by year, however they usually pay less attention to the poor physical condition at the voyage place. Many oversea travelers caught vaccine preventable diseases in developing countries. The Vaccine Guideline for Oversea Travelers 2010 published by Japanese Society of Travel Health will be helpful for spreading the knowledge of travelers' vaccine and vaccine preventable diseases in developing countries. Many travelers' vaccines have not licensed in Japan. I hope these travelers' vaccines, such as typhoid vaccine, meningococcal vaccine, cholera vaccine and so on will be licensed in the near future.

  17. What is a Therapeutic HIV Vaccine?

    Science.gov (United States)

    ... Understanding HIV/AIDS Drugs Clinical Trials Apps Home Guidelines Understanding HIV/AIDS Drugs Clinical Trials Apps skip to content HIV Overview Home Understanding HIV/AIDS Fact Sheets What is a Therapeutic HIV Vaccine? Search Search Table of Contents Table ...

  18. Genetic sensitivity to bitter taste of 6-n Propylthiouracil: A useful diagnostic aid to detect early childhood caries in pre-school children

    Directory of Open Access Journals (Sweden)

    Raghavendra Pidamale

    2012-01-01

    Full Text Available Purpose: Genetic factor to bitter taste perception appears to be largely mediated by the TAS2R38 gene. The insensitivity to bitter compounds like 6-n-propylthiouracil (PROP is mediated by this gene. PROP, a pharmacological drug used in treatment of Graves′ disease, proved to be useful tool in determining the genetic sensitivity levels to bitter and sweet taste. The purpose of this study is to show much simpler PROP sensitivity technique for the clinical examiner and its application as a diagnostic aid in Early Childhood Caries (ECC detection among preschool children. Materials and Methods: A total of 119 children belonging to the age group of 36 to 71 months of both sexes, were recruited from A. J. Institute of Dental Sciences, Mangalore (Karnataka. PROP sensitivity test was carried out to determine the inherent genetic ability to taste a bitter or sweet substance. This study used simpler scaling method to find out genetic sensitivity to bitter taste; one who tasted bitter as taster and one who was not able to differentiate/tasted like paper as non-taster. A questionnaire was provided to evaluate their dietary habits and caries experience was recorded. Collected data were tabulated and subjected to statistical analysis. Results: In the total of 119 children the mean dmfs was definitely higher in non-taster children compared to tasters. The tasters had a mean dmfs value of 9.5120 (S.D. 7.0543 and non-tasters had a value of 7.7250 (S.D. 8.33147, which was statistically significant. The results suggested that there was increase in caries experience among the group of non-tasters as compared to tasters. Tasters tended to be sweet dislikers and non-tasters tended to be sweet likers. On the whole, tasters had a bad dentition as compared to non tasters. Conclusion: The PROP sensitivity test (filter paper test proved to be a useful diagnostic tool in determining the genetic sensitivity levels of bitter taste. The knowledge of a child′s taste

  19. Leptospirosis vaccines

    Directory of Open Access Journals (Sweden)

    Jin Li

    2007-12-01

    Full Text Available Abstract Leptospirosis is a serious infection disease caused by pathogenic strains of the Leptospira spirochetes, which affects not only humans but also animals. It has long been expected to find an effective vaccine to prevent leptospirosis through immunization of high risk humans or animals. Although some leptospirosis vaccines have been obtained, the vaccination is relatively unsuccessful in clinical application despite decades of research and millions of dollars spent. In this review, the recent advancements of recombinant outer membrane protein (OMP vaccines, lipopolysaccharide (LPS vaccines, inactivated vaccines, attenuated vaccines and DNA vaccines against leptospirosis are reviewed. A comparison of these vaccines may lead to development of new potential methods to combat leptospirosis and facilitate the leptospirosis vaccine research. Moreover, a vaccine ontology database was built for the scientists working on the leptospirosis vaccines as a starting tool.

  20. Rising Cellular Immune Response after Injection of pVax/iutA: A Genetic DNA Cassette as Candidate Vaccine against Urinary Tract Infection

    Science.gov (United States)

    BAKHTIARI, Ronak; AHMADIAN, Shahin; FALLAH MEHRABADI, Jalil

    2016-01-01

    Background: Uropathogenic Escherichia coli (UPEC) are major bacterial agent of Urinary Tract Infection (UTI). This infection is more prevalent among women because approximately half of all women will experience a UTI in their life-time and near a quarter of them will have a recurrent infection within 6–12 months. IutA protein has a major role during UPEC pathogenesis and consequently infection. Therefore, the aim of current study was assessment of IutA protein roles as a potential candidate antigen based for vaccine designing. Methods: This survey was conducted during 2014–2015 at the University of Tehran, Iran. Chromosomal DNA extracted from E. coli 35218 and iutA gene amplified by PCR. The amplicon cloned to pVax.1 eukaryotic expression vector and recombinant vector confirmed by sequencing. The iutA gene expression in genetic cassette of pVax/iutA was evaluated in COS7 cell line by RT-PCR. Then, injected to mouse model, which divided to three groups: injected with pVax vector, PBS and pVax/iutA cassette respectively in two stages (d 1 and 14). One week after the second injection, bleeding from immunized mouse was performed and IFN-gamma was measured. Results: The mice immunized with pVax/iutA showed increased interferon-γ responses significantly higher than two non-immunized groups (P<0.05). Conclusion: Cellular immune response has a main protective role against UTI. Raising this kind of immune response is important to preventing of recurrent infection. Moreover, the current DNA cassette will be valuable for more trying to prepare a new vaccine against UTI. PMID:27516995

  1. Vaccine Hesitancy.

    Science.gov (United States)

    Jacobson, Robert M; St Sauver, Jennifer L; Finney Rutten, Lila J

    2015-11-01

    Vaccine refusal received a lot of press with the 2015 Disneyland measles outbreak, but vaccine refusal is only a fraction of a much larger problem of vaccine delay and hesitancy. Opposition to vaccination dates back to the 1800 s, Edward Jenner, and the first vaccine ever. It has never gone away despite the public's growing scientific sophistication. A variety of factors contribute to modern vaccine hesitancy, including the layperson's heuristic thinking when it comes to balancing risks and benefits as well as a number of other features of vaccination, including falling victim to its own success. Vaccine hesitancy is pervasive, affecting a quarter to a third of US parents. Clinicians report that they routinely receive requests to delay vaccines and that they routinely acquiesce. Vaccine rates vary by state and locale and by specific vaccine, and vaccine hesitancy results in personal risk and in the failure to achieve or sustain herd immunity to protect others who have contraindications to the vaccine or fail to generate immunity to the vaccine. Clinicians should adopt a variety of practices to combat vaccine hesitancy, including a variety of population health management approaches that go beyond the usual call to educate patients, clinicians, and the public. Strategies include using every visit to vaccinate, the creation of standing orders or nursing protocols to provide vaccination without clinical encounters, and adopting the practice of stating clear recommendations. Up-to-date, trusted resources exist to support clinicians' efforts in adopting these approaches to reduce vaccine hesitancy and its impact.

  2. Comparative Antitumor Effect of Preventive versus Therapeutic Vaccines Employing B16 Melanoma Cells Genetically Modified to Express GM-CSF and B7.2 in a Murine Model

    Directory of Open Access Journals (Sweden)

    Salvador F. Aliño

    2012-10-01

    Full Text Available Cancer vaccines have always been a subject of gene therapy research. One of the most successful approaches has been working with genetically modified tumor cells. In this study, we describe our approach to achieving an immune response against a murine melanoma model, employing B16 tumor cells expressing GM-CSF and B7.2. Wild B16 cells were injected in C57BL6 mice to cause the tumor. Irradiated B16 cells transfected with GM-CSF, B7.2, or both, were processed as a preventive and therapeutic vaccination. Tumor volumes were measured and survival curves were obtained. Blood samples were taken from mice, and IgGs of each treatment group were also measured. The regulatory T cells (Treg of selected groups were quantified using counts of images taken by confocal microscopy. Results: one hundred percent survival was achieved by preventive vaccination with the group of cells transfected with p2F_GM-CSF. Therapeutic vaccination achieved initial inhibition of tumor growth but did not secure overall survival of the animals. Classical Treg cells did not vary among the different groups in this therapeutic vaccination model.

  3. [AIDS in Africa].

    Science.gov (United States)

    Bolin, H

    1987-12-01

    Acquired immunodeficiency syndrome (AIDS) is believed to have begun in Rwanda with the transmission of green monkey virus to humans; the virus spread among prostitutes and truck drivers along the highways and then to the cities. In the most threatened areas, for example, Kinshasa in Zaire, 20% of the inhabitants are infected. 8% of pregnant women are human immunodeficiency virus (HIV)-positive. Social conditions are important. In Kenya prostitutes who work along the highways are carriers of socially transmitted diseases and genital sores. They are 60-80% HIV-positive. The better-off prostitutes at bars and hotels enjoy better health and fewer contacts and are 30% HIV-positive. It should be possible to develop a vaccine against the AIDS virus, but only a few virologists believe that this can be done within 10 years. Because HIV virus mutates rapidly, many different vaccines would have to be prepared. About 80 countries are cooperating with the World Health Organization to combat HIV and AIDS in Africa. Traveling and working abroad is beginning to be a problem. 15 countries have introduced restrictions on foreign visitors. Swedish midwives have an important role to play in fighting HIV. Their youth counseling activities can spread information about HIV and AIDS. Children who are in early stages of sexuality are probably the most important group to be influenced. It is already too late to begin informing 15-17 year olds about the disease. Midwives should probably be starting much sooner, perhaps even with 10-year olds.

  4. Developing Vaccines to Combat Pandemic Influenza

    Directory of Open Access Journals (Sweden)

    Othmar G. Engelhardt

    2010-02-01

    Full Text Available Influenza vaccine manufacturers require antigenically relevant vaccine viruses that have good manufacturing properties and are safe to use. In developing pandemic vaccine viruses, reverse genetics has been employed as a rational approach that can also be used effectively to attenuate the highly virulent H5N1 virus and at the same time place the H5 HA and N1 NA on a background of PR8, a virus that has been used over many decades to provide high yielding vaccine viruses. Reverse genetics has also been used successfully alongside classical reassorting techniques in the development of (swine flu pandemic A(H1N1v vaccine viruses.

  5. A cost-effectiveness analysis of genetic testing of the DRD2 Taq1A polymorphism to aid treatment choice for smoking cessation.

    Science.gov (United States)

    Welton, Nicky J; Johnstone, Elaine C; David, Sean P; Munafò, Marcus R

    2008-01-01

    We conducted a cost-effectiveness analysis of genetic testing for smoking cessation, based on data available from the published pharmacogenetic studies of nicotine replacement therapy and bupropion, and a previous cost-effectiveness analysis of smoking cessation treatments. We use multiparameter evidence synthesis methods to combine evidence on cessation by genotype with evidence on cessation irrespective of genotype (which can be written as a function of genotype-specific parameters). Our intention was to explore the most cost-effective approach to prescribing smoking cessation pharmacotherapy, given the hypothetical availability of a test based on a single-gene variant that has been reported to predict treatment response. We considered four types of treatment: nicotine replacement therapy (NRT) pharmacotherapy, bupropion SR pharmacotherapy, combination NRT and bupropion, and standard care as the control. Two scenarios were investigated, one in which the control represented brief advice and the other in which the control represented individual counseling. Strategies that either do not test for dopamine D2 receptor (DRD2) genotype (each individual receives the same treatment), or do test for DRD2 genotype (treatment allocated according to genotype), were evaluated. Our results indicated that the most cost-effective strategy in our hypothetical example of a single-gene test to aid prescription of smoking cessation pharmacotherapy is to prescribe both NRT and bupropion regardless of genotype, as a first-line treatment for smoking cessation. We conclude that it should not be assumed that genetic tailoring will necessarily be more cost-effective than applying the current "one-size-fits-all" model of pharmacotherapy for smoking cessation. In addition, single-gene tests are unlikely to be cost-effective, partly because the predictive value of these tests is likely to be modest.

  6. Genetics

    DEFF Research Database (Denmark)

    Christensen, Kaare; McGue, Matt

    2016-01-01

    The sequenced genomes of individuals aged ≥80 years, who were highly educated, self-referred volunteers and with no self-reported chronic diseases were compared to young controls. In these data, healthy ageing is a distinct phenotype from exceptional longevity and genetic factors that protect...

  7. Cytokine production associated with smallpox vaccine responses.

    Science.gov (United States)

    Simon, Whitney L; Salk, Hannah M; Ovsyannikova, Inna G; Kennedy, Richard B; Poland, Gregory A

    2014-01-01

    Smallpox was eradicated 34 years ago due to the success of the smallpox vaccine; yet, the vaccine continues to be studied because of its importance in responding to potential biological warfare and the adverse events associated with current smallpox vaccines. Interindividual variations in vaccine response are observed and are, in part, due to genetic variation. In some cases, these varying responses lead to adverse events, which occur at a relatively high rate for the smallpox vaccine compared with other vaccines. Here, we aim to summarize the cytokine responses associated with smallpox vaccine response to date. Along with a description of each of these cytokines, we describe the genetic and adverse event data associated with cytokine responses to smallpox vaccination.

  8. [Protein subunit vaccines: example of vaccination against hepatitis B virus].

    Science.gov (United States)

    Degos, F

    1995-06-15

    Hepatitis B vaccine has been used for over 10 years. It is efficient and safe. Protection of risk groups against hepatitis B virus infection is now achieved and vaccination of newborns and adolescents is a main public health problem. Bad responders are well characterized and immunomodulatory interventions (cytokines) must be tested in these patients. Response to hepatitis B vaccine is genetically determined and the possibility of vaccine induced escape mutants should lead to careful epidemiological studies of the spread of hepatitis B virus infection.

  9. THE AIDS HANDBOOK

    Directory of Open Access Journals (Sweden)

    Z Khan

    1997-12-01

    Full Text Available HIV infection and AIDS is increasingly becoming a major public health problem in our country. Currently, the reported cases represent only the 'tip of the iceberg' of the problem. In view of the fact that no cure or vaccine for the disease has yet been found, spreading knowledge and removing misconceptions is about the only way that AIDS can be effectively tackled.This handbook, developed by Prof. Shankar Chowdhury and associates, seeks to address all levels of medical and non-medical AIDS workers, as well as the layman. It deals with topics ranging from biology of the virus, symptoms and transmission of disease, to prevention, counselling for infected persons and action plan for AIDS education.The biology of the virus and the immune system is described in simple terms, as well as methods of testing for HIV, and what these test results mean. The progression of disease in adults and children, development of symptoms, diagnostic criteria for AIDS, treatment and outcome of disease is dealt with. How AIDS spreads between people, and the health risk for health workers and families is examined. The various ways in which transmission of HIV can be prevented is looked at in detail, including public health measures, national and internatonal action, and ethical and human rights issues involved.

  10. Genetic transformation of novel isolates of chicken Lactobacillus bearing probiotic features for expression of heterologous proteins: a tool to develop live oral vaccines

    Directory of Open Access Journals (Sweden)

    Neumann Elisabeth

    2006-01-01

    Full Text Available Abstract Background The use of lactic acid bacteria as vehicles to delivery antigens to immunize animals is a promising issue. When genetically modified, these bacteria can induce a specific local and systemic immune response against selected pathogens. Gastric acid and bile salts tolerance, production of antagonistic substances against pathogenic microorganisms, and adhesive ability to gut epithelium are other important characteristics that make these bacteria useful for oral immunization. Results Bacteria isolated on de Man, Rogosa and Sharpe medium (MRS from different gastrointestinal portions of broiler chicks were evaluated for their resistance to artificial gastric acid and bile salts, production of hydrogen peroxide, and cell surface hydrophobicity. Thirty-eight isolates were first typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR amplicons (PCR-ARDRA. An expression cassette was assembled onto the pCR2.1-Topo vector by cloning the promoter, leader peptide, cell wall anchor and terminator sequences derived from the laminin binding S-layer protein gene of L. crispatus strain F5.7 (lbs gene. A sequence encoding the green fluorescent protein (GFP was inserted as reporter gene, and an erythromycin resistance gene was added as selective marker. All constructs were able to express GFP in the cloning host E. coli XL1-Blue and different Lactobacillus strains as verified by FACS and laser scanning confocal microscopy. Conclusion Lactobacillus isolated from gastrointestinal tract of broiler chickens and selected for probiotic characteristics can be genetically modified by introducing an expression cassette into the lbs locus. The transformed bacteria expressed on its cell wall surface different fluorescent proteins used as reporters of promoter function. It is possible then that similar bacterial model

  11. Genetic transformation of novel isolates of chicken Lactobacillus bearing probiotic features for expression of heterologous proteins: a tool to develop live oral vaccines

    Science.gov (United States)

    Mota, Rodrigo M; Moreira, João Luiz S; Souza, Marcelo R; Fátima Horta, M; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C

    2006-01-01

    Background The use of lactic acid bacteria as vehicles to delivery antigens to immunize animals is a promising issue. When genetically modified, these bacteria can induce a specific local and systemic immune response against selected pathogens. Gastric acid and bile salts tolerance, production of antagonistic substances against pathogenic microorganisms, and adhesive ability to gut epithelium are other important characteristics that make these bacteria useful for oral immunization. Results Bacteria isolated on de Man, Rogosa and Sharpe medium (MRS) from different gastrointestinal portions of broiler chicks were evaluated for their resistance to artificial gastric acid and bile salts, production of hydrogen peroxide, and cell surface hydrophobicity. Thirty-eight isolates were first typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR amplicons (PCR-ARDRA). An expression cassette was assembled onto the pCR2.1-Topo vector by cloning the promoter, leader peptide, cell wall anchor and terminator sequences derived from the laminin binding S-layer protein gene of L. crispatus strain F5.7 (lbs gene). A sequence encoding the green fluorescent protein (GFP) was inserted as reporter gene, and an erythromycin resistance gene was added as selective marker. All constructs were able to express GFP in the cloning host E. coli XL1-Blue and different Lactobacillus strains as verified by FACS and laser scanning confocal microscopy. Conclusion Lactobacillus isolated from gastrointestinal tract of broiler chickens and selected for probiotic characteristics can be genetically modified by introducing an expression cassette into the lbs locus. The transformed bacteria expressed on its cell wall surface different fluorescent proteins used as reporters of promoter function. It is possible then that similar bacterial model expressing pathogen antigens can

  12. The Lapinized Chinese Strain Vaccine Against Classical Swine Fever Virus: A Retrospective Review Spanning Half A Century

    Institute of Scientific and Technical Information of China (English)

    QIU Hua-ji; SHEN Rong-xian; TONG Guang-zhi

    2006-01-01

    Classical swine fever (CSF), a list A disease of Office International des Epizooties, is caused by classical swine fever virus (CSFV) belonging to the Flaviviridae family. The well-known lapinized Chinese strain of CSFV, also known as C-strain,was developed in China in the mid-1950s. In the past half a century, the vaccine has been proved to be safe and immunogenic in pigs of essentially any age. It is ofhigh efficacy, providing immunized animals with broad-spectrum,sometimes lifelong, protection, which is contributed by both cell-mediated immunity and humoral immunity, against essentially all genotypes or subgenotypes of the virus. The maternal antibodies derived from immunized sows can confer solid protection of their offspring from disease; however, they have been proved to inhibit the successful active immunization of C-strain vaccine. The complete genomes of C-strain and dozens of established or field strains have been sequenced and annotated. Recently, the reverse genetics system of C-strain has been developed, resulting in several Cstrain-derived candidate marker vaccines. Many countries manage to control or even eradicate CSF with the aid of mass vaccination with C-strain. In spite of these efforts, the eradication of the disease worldwide remains a big challenge and needs to go a long way, and provably still resorts to genetically modified C-strain vaccine. The authors present an overview of the characteristics of the vaccine, which has stood the test of half a century.

  13. [Development of new vaccines].

    Science.gov (United States)

    González-Romo, Fernando; Picazo, Juan J

    2015-10-01

    Recent and important advances in the fields of immunology, genomics, functional genomics, immunogenetics, immunogenomics, bioinformatics, microbiology, genetic engineering, systems biology, synthetic biochemistry, proteomics, metabolomics and nanotechnology, among others, have led to new approaches in the development of vaccines. The better identification of ideal epitopes, the strengthening of the immune response due to new adjuvants, and the search of new routes of vaccine administration, are good examples of advances that are already a reality and that will favour the development of more vaccines, their use in indicated population groups, or its production at a lower cost. There are currently more than 130 vaccines are under development against the more wished (malaria or HIV), difficult to get (CMV or RSV), severe re-emerging (Dengue or Ebola), increasing importance (Chagas disease or Leishmania), and nosocomial emerging (Clostridium difficile or Staphylococcus aureus) infectious diseases. Copyright © 2015. Published by Elsevier España, S.L.U.

  14. Genetic engineering of trimers of hypoallergenic fragments of the major birch pollen allergen, Bet v 1, for allergy vaccination.

    Science.gov (United States)

    Vrtala, Susanne; Fohr, Monika; Campana, Raffaela; Baumgartner, Christian; Valent, Peter; Valenta, Rudolf

    2011-03-01

    An immunotherapy trial performed in allergic patients with hypoallergenic recombinant fragments, comprising aa 1-74 and 75-160 of the major birch pollen allergen, Bet v 1, has indicated that the induction of allergen-specific IgG responses may be an important mechanism of this treatment. To investigate whether the immunogenicity of the rBet v 1 fragments can be increased, recombinant trimers of the fragments were produced. For this purpose, DNA trimers of rBet v 1 aa 1-74 as well as of rBet v 1 aa 75-160 were subcloned into expression plasmid pET 17b, expressed in Escherichia coli and purified. The fragments as well as the fragment trimers showed a reduced IgE-binding capacity and allergenic activity compared to rBet v 1 wildtype when tested in allergic patients. Both rBet v 1 aa 75-160 monomer and trimer induced high titers of allergen-specific IgG1 Abs in mice. Interestingly, rBet v 1 aa 1-74 trimer induced a much higher IgG(1) response to rBet v 1 than rBet v 1 aa 1-74 monomer. Consequently, IgG Abs induced with the rBet v 1 aa 1-74 trimer inhibited birch pollen allergic patients' IgE-binding 10-fold more efficiently than IgG Abs induced with the monomer. Our data show that the immunogenicity of allergy vaccines can be increased by oligomerization.

  15. The future of human DNA vaccines.

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans.

  16. Bactericidal antibody responses elicited by a meningococcal outer membrane vesicle vaccine with overexpressed factor H-binding protein and genetically attenuated endotoxin.

    Science.gov (United States)

    Koeberling, Oliver; Seubert, Anja; Granoff, Dan M

    2008-07-15

    Outer membrane vesicle (OMV) vaccines from mutant Neisseria meningitidis strains engineered to overexpress factor H-binding protein (fHbp) have elicited broadly protective serum antibody responses in mice. The vaccines investigated were not treated with detergents to avoid extracting fHbp, which is a lipoprotein. Because of their high endotoxin content, the vaccines would not be safe to administer to humans. We prepared a native OMV vaccine from a strain engineered to overexpress fHbp and in which the gene encoding LpxL1 was inactivated, which reportedly decreases endotoxin activity. The OMV vaccine from the mutant had a similar or lower ability to induce the expression of proinflammatory cytokines by human peripheral blood mononuclear cells, compared with a detergent-extracted wild-type OMV, and 1000-10,000-fold lower activity than a native wild-type OMV. In mice, the OMV vaccine from the mutant elicited higher serum bactericidal antibody responses to a panel of heterologous N. meningitidis strains than did a control multicomponent recombinant protein vaccine or a detergent-extracted OMV vaccine that has been demonstrated to confer protection against meningococcal disease in humans. The data illustrate the potential to develop a broadly immunogenic native OMV vaccine that has decreased endotoxin activity and is potentially suitable for testing in humans.

  17. A New Decade of Vaccines

    LENUS (Irish Health Repository)

    Murphy, JFA

    2011-09-01

    The call for a new decade of vaccines was made in December 2010. The aims are to secure the further discovery, development and delivery of vaccination. The first challenge is the acquisition of funds for the research and development of 20 new vaccines1. The Gates Foundation has pledged $10 billion for this venture. The other major players are WHO, UNICEF and the US National Institute of Allergy and Infectious Diseases. The top priorities are TB, AIDS and Malaria. It is hoped that a Malaria vaccine will available in 3 years. The ambitious target of saving the lives of over 7 million children has been set. The programme must also address the need for vaccines in insulin dependent diabetes, cancers and degenerative diseases2.

  18. A candidate HIV/AIDS vaccine (MVA-B lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

    Directory of Open Access Journals (Sweden)

    Juan García-Arriaza

    Full Text Available The vaccinia virus (VACV C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

  19. A candidate HIV/AIDS vaccine (MVA-B) lacking vaccinia virus gene C6L enhances memory HIV-1-specific T-cell responses.

    Science.gov (United States)

    García-Arriaza, Juan; Nájera, José Luis; Gómez, Carmen E; Tewabe, Nolawit; Sorzano, Carlos Oscar S; Calandra, Thierry; Roger, Thierry; Esteban, Mariano

    2011-01-01

    The vaccinia virus (VACV) C6 protein has sequence similarities with the poxvirus family Pox_A46, involved in regulation of host immune responses, but its role is unknown. Here, we have characterized the C6 protein and its effects in virus replication, innate immune sensing and immunogenicity in vivo. C6 is a 18.2 kDa protein, which is expressed early during virus infection and localizes to the cytoplasm of infected cells. Deletion of the C6L gene from the poxvirus vector MVA-B expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (MVA-B ΔC6L) had no effect on virus growth kinetics; therefore C6 protein is not essential for virus replication. The innate immune signals elicited by MVA-B ΔC6L in human macrophages and monocyte-derived dendritic cells (moDCs) are characterized by the up-regulation of the expression of IFN-β and IFN-α/β-inducible genes. In a DNA prime/MVA boost immunization protocol in mice, flow cytometry analysis revealed that MVA-B ΔC6L enhanced the magnitude and polyfunctionality of the HIV-1-specific CD4+ and CD8+ T-cell memory immune responses, with most of the HIV-1 responses mediated by the CD8+ T-cell compartment with an effector phenotype. Significantly, while MVA-B induced preferentially Env- and Gag-specific CD8+ T-cell responses, MVA-B ΔC6L induced more Gag-Pol-Nef-specific CD8+ T-cell responses. Furthermore, MVA-B ΔC6L enhanced the levels of antibodies against Env in comparison with MVA-B. These findings revealed that C6 can be considered as an immunomodulator and that deleting C6L gene in MVA-B confers an immunological benefit by enhancing IFN-β-dependent responses and increasing the magnitude and quality of the T-cell memory immune responses to HIV-1 antigens. Our observations are relevant for the improvement of MVA vectors as HIV-1 vaccines.

  20. Military Vaccines in Today’s Environment

    Science.gov (United States)

    2012-08-01

    vaccines for anthrax, plague, influenza, rubella, ade- noviruses, meningococci, hepatitis B, typhoid , Japanese encephalitis, and hepa- titis A...licensed vaccines for naturally occurring diseases, such as those for yellow fever , mumps, measles, chickenpox and polio, were developed with the...HIV-AIDS, Chikungunya, Rift Valley fever , Argentinian hemorrhagic fever , and hemorrhagic fever with renal syndrome (HFRS), have been developed and

  1. Improving Adaptive and Memory Immune Responses of an HIV/AIDS Vaccine Candidate MVA-B by Deletion of Vaccinia Virus Genes (C6L and K7R) Blocking Interferon Signaling Pathways.

    Science.gov (United States)

    García-Arriaza, Juan; Arnáez, Pilar; Gómez, Carmen E; Sorzano, Carlos Óscar S; Esteban, Mariano

    2013-01-01

    Poxvirus vector Modified Vaccinia Virus Ankara (MVA) expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B) is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV) genes (C6L and K7R) coding for inhibitors of interferon (IFN) signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R) in human macrophages and monocyte-derived dendritic cells (moDCs) showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4(+) and CD8(+) T cell adaptive and memory immune responses, which were mostly mediated by CD8(+) T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4(+) T cell responses were mainly directed against Env, while GPN-specific CD8(+) T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the immunogenicity

  2. Improving Adaptive and Memory Immune Responses of an HIV/AIDS Vaccine Candidate MVA-B by Deletion of Vaccinia Virus Genes (C6L and K7R Blocking Interferon Signaling Pathways.

    Directory of Open Access Journals (Sweden)

    Juan García-Arriaza

    Full Text Available Poxvirus vector Modified Vaccinia Virus Ankara (MVA expressing HIV-1 Env, Gag, Pol and Nef antigens from clade B (termed MVA-B is a promising HIV/AIDS vaccine candidate, as confirmed from results obtained in a prophylactic phase I clinical trial in humans. To improve the immunogenicity elicited by MVA-B, we have generated and characterized the innate immune sensing and the in vivo immunogenicity profile of a vector with a double deletion in two vaccinia virus (VACV genes (C6L and K7R coding for inhibitors of interferon (IFN signaling pathways. The innate immune signals elicited by MVA-B deletion mutants (MVA-B ΔC6L and MVA-B ΔC6L/K7R in human macrophages and monocyte-derived dendritic cells (moDCs showed an up-regulation of the expression of IFN-β, IFN-α/β-inducible genes, TNF-α, and other cytokines and chemokines. A DNA prime/MVA boost immunization protocol in mice revealed that these MVA-B deletion mutants were able to improve the magnitude and quality of HIV-1-specific CD4(+ and CD8(+ T cell adaptive and memory immune responses, which were mostly mediated by CD8(+ T cells of an effector phenotype, with MVA-B ΔC6L/K7R being the most immunogenic virus recombinant. CD4(+ T cell responses were mainly directed against Env, while GPN-specific CD8(+ T cell responses were induced preferentially by the MVA-B deletion mutants. Furthermore, antibody levels to Env in the memory phase were slightly enhanced by the MVA-B deletion mutants compared to the parental MVA-B. These findings revealed that double deletion of VACV genes that act blocking intracellularly the IFN signaling pathway confers an immunological benefit, inducing innate immune responses and increases in the magnitude, quality and durability of the HIV-1-specific T cell immune responses. Our observations highlighted the immunomodulatory role of the VACV genes C6L and K7R, and that targeting common pathways, like IRF3/IFN-β signaling, could be a general strategy to improve the

  3. DENGUE VACCINES.

    Science.gov (United States)

    Thisyakorn, Usa; Thisyakorn, Chule

    2015-01-01

    The uniqueness of the dengue viruses (DENVs) and the spectrum of disease resulting from infection have made dengue vaccine development difficult. Several vaccine candidates are currently being evaluated in clinical studies. The candidate currently at the most advanced clinical development stage, a live-attenuated tetravalent vaccine based on the chimeric yellow fever-dengue virus (CYD-TDV), has progressed to Phase 3 efficacy studies. Several other live-attenuated vaccines, as well as subunit, DNA, and purified inactivated vaccine candidates are at earlier stages of clinical development. Additional technological approaches, such as virus-vectored and Virus-Like Particles (VLP)-based vaccines are under evaluation in preclinical studies.

  4. Hearing Aids

    Science.gov (United States)

    ... more in both quiet and noisy situations. Hearing aids help people who have hearing loss from damage ... your doctor. There are different kinds of hearing aids. They differ by size, their placement on or ...

  5. AIDS (image)

    Science.gov (United States)

    AIDS (acquired immune deficiency syndrome) is caused by HIV (human immunodeficiency virus), and is a syndrome that ... life-threatening illnesses. There is no cure for AIDS, but treatment with antiviral medicine can suppress symptoms. ...

  6. Heterosubtypic cross-protection induced by whole inactivated influenza virus vaccine in mice : Influence of the route of vaccine administration

    NARCIS (Netherlands)

    Budimir, Natalija; de Haan, Aalzen; Meijerhof, Tjarko; Gostick, Emma; Price, David A.; Huckriede, Anke; Wilschut, Jan

    2013-01-01

    Background Development of influenza vaccines capable of inducing broad protection against different virus subtypes is necessary given the ever-changing viral genetic landscape. Previously, we showed that vaccination with whole inactivated virus (WIV) induces heterosubtypic protection against lethal

  7. Aid Effectiveness

    DEFF Research Database (Denmark)

    Arndt, Channing; Jones, Edward Samuel; Tarp, Finn

    Controversy over the aggregate impact of foreign aid has focused on reduced form estimates of the aid-growth link. The causal chain, through which aid affects developmental outcomes including growth, has received much less attention. We address this gap by: (i) specifying a structural model of th...

  8. Concomitant Immunity Induced by Persistent Leishmania major Does Not Preclude Secondary Re-Infection: Implications for Genetic Exchange, Diversity and Vaccination.

    Directory of Open Access Journals (Sweden)

    Michael A Mandell

    2016-06-01

    Full Text Available Many microbes have evolved the ability to co-exist for long periods of time within other species in the absence of overt pathology. Evolutionary biologists have proposed benefits to the microbe from 'asymptomatic persistent infections', most commonly invoking increased likelihood of transmission by longer-lived hosts. Typically asymptomatic persistent infections arise from strong containment by the immune system, accompanied by protective immunity; such 'vaccination' from overt disease in the presence of a non-sterilizing immune response is termed premunition or concomitant immunity. Here we consider another potential benefit of persistence and concomitant immunity to the parasite: the 'exclusion' of competing super-infecting strains, which would favor transmission of the original infecting organism.To investigate this in the protozoan parasite Leishmania major, a superb model for the study of asymptomatic persistence, we used isogenic lines of comparable virulence bearing independent selectable markers. One was then used to infect genetically resistant mice, yielding infections which healed and progressed to asymptomatic persistent infection; these mice were then super-infected with the second marked line. As anticipated, super-infection yielded minimal pathology, showing that protective immunity against disease pathology had been established. The relative abundance of the primary and super-infecting secondary parasites was then assessed by plating on selective media. The data show clearly that super-infecting parasites were able to colonize the immune host effectively, achieving numbers comparable to and sometimes greater than that of the primary parasite.We conclude that induction of protective immunity does not guarantee the Leishmania parasite exclusive occupation of the infected host. This finding has important consequences to the maintenance and generation of parasite diversity in the natural Leishmania infectious cycle alternating

  9. Rabies Vaccine

    Science.gov (United States)

    ... high risk of exposure to rabies, such as veterinarians, animal handlers, rabies laboratory workers, spelunkers, and rabies biologics production workers should be offered rabies vaccine. The vaccine should also be considered for: (1) ...

  10. Vaccine supply, demand, and policy: a primer.

    Science.gov (United States)

    Muzumdar, Jagannath M; Cline, Richard R

    2009-01-01

    To provide an overview of supply and demand issues in the vaccine industry and the policy options that have been implemented to resolve these issues. Medline, Policy File, and International Pharmaceutical Abstracts were searched to locate academic journal articles. Other sources reviewed included texts on the topics of vaccine history and policy, government agency reports, and reports from independent think tanks. Keywords included vaccines, immunizations, supply, demand, and policy. Search criteria were limited to English language and human studies. Articles pertaining to vaccine demand, supply, and public policy were selected and reviewed for inclusion. By the authors. Vaccines are biologic medications, therefore making their development and production more difficult and costly compared with "small-molecule" drugs. Research and development costs for vaccines can exceed $800 million, and development may require 10 years or more. Strict manufacturing regulations and facility upgrades add to these costs. Policy options to increase and stabilize the supply of vaccines include those aimed at increasing supply, such as government subsidies for basic vaccine research, liability protection for manufacturers, and fast-track approval for new vaccines. Options to increase vaccine demand include advance purchase commitments, government stockpiles, and government financing for select populations. High development costs and multiple barriers to entry have led to a decline in the number of vaccine manufacturers. Although a number of vaccine policies have met with mixed success in increasing the supply of and demand for vaccines, a variety of concerns remain, including developing vaccines for complex pathogens and increasing immunization rates with available vaccines. New policy innovations such as advance market commitments and Medicare Part D vaccine coverage have been implemented and may aid in resolving some of the problems in the vaccine industry.

  11. DNA vaccines against influenza.

    Science.gov (United States)

    Stachyra, Anna; Góra-Sochacka, Anna; Sirko, Agnieszka

    2014-01-01

    Genetic vaccine technology has been considerably developed within the last two decades. This cost effective and promising strategy can be applied for therapy of cancers and for curing allergy, chronic and infectious diseases, such as a seasonal and pandemic influenza. Despite numerous advantages, several limitations of this technology reduce its performance and can retard its commercial exploitation in humans and its veterinary applications. Inefficient delivery of the DNA vaccine into cells of immunized individuals results in low intracellular supply of suitable expression cassettes encoding an antigen, in its low expression level and, in turn, in reduced immune responses against the antigen. Improvement of DNA delivery into the host cells might significantly increase effectiveness of the DNA vaccine. A vast array of innovative methods and various experimental strategies have been applied in order to enhance the effectiveness of DNA vaccines. They include various strategies improving DNA delivery as well as expression and immunogenic potential of the proteins encoded by the DNA vaccines. Researchers focusing on DNA vaccines against influenza have applied many of these strategies. Recent examples of the most successful modern approaches are discussed in this review.

  12. Periodontal vaccine

    OpenAIRE

    Ranjan Malhotra; Anoop Kapoor; Vishakha Grover; Aaswin Kaur Tuli

    2011-01-01

    Vaccine is the name applied generally to a substance of the nature of dead or attenuated living infectious material introduced into the body with the object of increasing its power to resist or get rid of a disease. Vaccines are generally prophylactic, i.e. they ameliorate the effects of future infection. One such vaccine considered here is the "Periodontal vaccine". Till date, no preventive modality exists for periodontal disease and treatment rendered is palliative. Thus, availability of pe...

  13. 75 FR 48706 - Proposed Vaccine Information Materials for Rotavirus Vaccine

    Science.gov (United States)

    2010-08-11

    ... Compensation Program were diphtheria, tetanus, pertussis, measles, mumps, rubella and poliomyelitis vaccines... is weakened because of: --HIV/AIDS, or any other disease that affects the immune system --Treatment with drugs such as long-term steroids --Cancer, or cancer treatment with x-rays or drugs In the late...

  14. HPV Vaccine

    Science.gov (United States)

    ... Surgery? A Week of Healthy Breakfasts Shyness HPV Vaccine KidsHealth > For Teens > HPV Vaccine Print A A A What's in this article? ... 11 or 12 through age 21 If needed, kids can get the vaccine starting at age 9. continue How Does the ...

  15. Newcastle disease virus vectored vaccines as bivalent or antigen delivery vaccines

    Science.gov (United States)

    2017-01-01

    Recent advances in reverse genetics techniques make it possible to manipulate the genome of RNA viruses such as Newcastle disease virus (NDV). Several NDV vaccine strains have been used as vaccine vectors in poultry, mammals, and humans to express antigens of different pathogens. The safety, immunogenicity, and protective efficacy of these NDV-vectored vaccines have been evaluated in pre-clinical and clinical studies. The vaccines are safe in mammals, humans, and poultry. Bivalent NDV-vectored vaccines against pathogens of economic importance to the poultry industry have been developed. These bivalent vaccines confer solid protective immunity against NDV and other foreign antigens. In most cases, NDV-vectored vaccines induce strong local and systemic immune responses against the target foreign antigen. This review summarizes the development of NDV-vectored vaccines and their potential use as a base for designing other effective vaccines for veterinary and human use. PMID:28775971

  16. A Novel Adeno-Associated Virus-Based Genetic Vaccine Encoding the Hepatitis C Virus NS3/4 Protein Exhibits Immunogenic Properties in Mice Superior to Those of an NS3-Protein-Based Vaccine.

    Directory of Open Access Journals (Sweden)

    Fengqin Zhu

    Full Text Available More than 170 million individuals worldwide are infected with hepatitis C virus (HCV, and up to an estimated 30% of chronically infected individuals will go on to develop progressive liver disease. Despite the recent advances in antiviral treatment of HCV infection, it remains a major public health problem. Thus, development of an effective vaccine is urgently required. In this study, we constructed novel adeno-associated virus (AAV vectors expressing the full-length NS3 or NS3/4 protein of HCV genotype 1b. The expression of the NS3 or NS3/4 protein in HepG2 cells was confirmed by western blotting. C57BL/6 mice were intramuscularly immunised with a single injection of AAV vectors, and the resultant immune response was investigated. The AAV2/rh32.33.NS3/4 vaccine induced stronger humoral and cellular responses than did the AAV2/rh32.33.NS3 vaccine. Our results demonstrate that AAV-based vaccines exhibit considerable potential for the development of an effective anti-HCV vaccine.

  17. Decreased serologic response in vaccinated military recruits during 2011 correspond to genetic drift in concurrent circulating pandemic A/H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Dennis J Faix

    Full Text Available BACKGROUND: Population-based febrile respiratory illness surveillance conducted by the Department of Defense contributes to an estimate of vaccine effectiveness. Between January and March 2011, 64 cases of 2009 A/H1N1 (pH1N1, including one fatality, were confirmed in immunized recruits at Fort Jackson, South Carolina, suggesting insufficient efficacy for the pH1N1 component of the live attenuated influenza vaccine (LAIV. METHODOLOGY/PRINCIPAL FINDINGS: To test serologic protection, serum samples were collected at least 30 days post-vaccination from recruits at Fort Jackson (LAIV, Parris Island (LAIV and trivalent inactivated vaccine [TIV] at Cape May, New Jersey (TIV and responses measured against pre-vaccination sera. A subset of 78 LAIV and 64 TIV sera pairs from recruits who reported neither influenza vaccination in the prior year nor fever during training were tested by microneutralization (MN and hemagglutination inhibition (HI assays. MN results demonstrated that seroconversion in paired sera was greater in those who received TIV versus LAIV (74% and 37%. Additionally, the fold change associated with TIV vaccination was significantly different between circulating (2011 versus the vaccine strain (2009 of pH1N1 viruses (ANOVA p value = 0.0006. HI analyses revealed similar trends. Surface plasmon resonance (SPR analysis revealed that the quantity, IgG/IgM ratios, and affinity of anti-HA antibodies were significantly greater in TIV vaccinees. Finally, sequence analysis of the HA1 gene in concurrent circulating 2011 pH1N1 isolates from Fort Jackson exhibited modest amino acid divergence from the vaccine strain. CONCLUSIONS/SIGNIFICANCE: Among military recruits in 2011, serum antibody response differed by vaccine type (LAIV vs. TIV and pH1N1 virus year (2009 vs. 2011. We hypothesize that antigen drift in circulating pH1N1 viruses contributed to reduce vaccine effectiveness at Fort Jackson. Our findings have wider implications regarding

  18. DNA vaccines

    Science.gov (United States)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  19. FLU VACCINATION

    CERN Document Server

    2007-01-01

    People working on the CERN site who wish to be vaccinated may go to the Infirmary (ground-floor, bldg. 57), with their vaccine, without a prior appointment. The vaccine can be reimbursed directly by Uniqa providing you attach the receipt and the prescription that you will receive from the Medical Service the day of your injection at the infirmary. Ideally, the vaccination should take place between 1st October and 30th November 2007 (preferably between 14:00 and 16:00). CERN staff aged 50 or over are recommended to have influenza vaccinations. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and those convalescing from serious medical problems or after serious surgical operations. The Medical Service will not administer vaccines for family members or retired staff members, who must contact their normal family doctor. Medical Service

  20. Periodontal vaccine

    Directory of Open Access Journals (Sweden)

    Ranjan Malhotra

    2011-01-01

    Full Text Available Vaccine is the name applied generally to a substance of the nature of dead or attenuated living infectious material introduced into the body with the object of increasing its power to resist or get rid of a disease. Vaccines are generally prophylactic, i.e. they ameliorate the effects of future infection. One such vaccine considered here is the "Periodontal vaccine". Till date, no preventive modality exists for periodontal disease and treatment rendered is palliative. Thus, availability of periodontal vaccine would not only prevent and modulate periodontal disease, but also enhance the quality of life of people for whom periodontal treatment cannot be easily obtained. The aim of the research should be development of a multispecies vaccine targeting the four prime periodontal pathogens, viz. Porphyromonas gingivalis, T. forsythus, T. denticola and A. comitans. Success is still elusive in case of periodontal vaccine due to the complex etiopathogenesis of the disease.

  1. Live attenuated influenza vaccine--a review.

    Science.gov (United States)

    Gasparini, R; Amicizia, D; Lai, P L; Panatto, D

    2011-09-01

    Owing to the variability of influenza viruses, vaccine composition needs to be up-dated annually. As many variables can influence their efficacy, vaccines are still considered "sub-optimal". Many studies have been carried out in recent years to improve vaccines. In particular, researchers and vaccine-producing corporations have focused on developing a live vaccine. Among the candidate vaccines, the strain developed by Maassab has recently been licensed in the USA and Europe, after extensive investigation. This vaccine is safe and well tolerated, and has shown very good genetic stability. Although vaccine recipients are able to spread the virus, transmission to close contacts is practically non-existent. Studies on cold-adapted attenuated influenza vaccines have demonstrated that such vaccines are effective, and sometimes more effective than inactivated influenza vaccines. Cold-adapted attenuated influenza vaccines therefore appear to be an important weapon against influenza. However, a more widespread use of these vaccines is to be recommended, especially in children, as the more acceptable way of administration can favour parental compliance.

  2. HIV / AIDS

    Science.gov (United States)

    ... Respond to Pre-Award Requests Manage Your Award Negotiation & Initial Award After Award ... New Trial Launched in West Africa to Evaluate Three Vaccination Strategies , April 6, 2017 Monoclonal Antibody Cures Marburg Infection ...

  3. DNA vaccines for aquacultured fish.

    Science.gov (United States)

    Lorenzen, N; LaPatra, S E

    2005-04-01

    Deoxyribonucleic acid (DNA) vaccination is based on the administration of the gene encoding the vaccine antigen, rather than the antigen itself. Subsequent expression of the antigen by cells in the vaccinated hosts triggers the host immune system. Among the many experimental DNA vaccines tested in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important viruses such as infectious haematopoietic necrosis virus (IHNV) and viral haemorrhagic septicaemia virus (VHSV). DNA vaccines against other types of fish pathogens, however, have so far had limited success. The most efficient delivery route at present is IM injection, and suitable delivery strategies for mass vaccination of small fish have yet to be developed. In terms of safety, no adverse effects in the vaccinated fish have been observed to date. As DNA vaccination is a relatively new technology, various theoretical and long-term safety issues related to the environment and the consumer remain to be fully addressed, although inherently the risks should not be any greater than with the commercial fish vaccines that are currently used. Present classification systems lack clarity in distinguishing DNA-vaccinated animals from genetically modified organisms (GMOs), which could raise issues in terms of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production conditions has recently been initiated in Canada and Denmark.

  4. Research advances on transgenic plant vaccines.

    Science.gov (United States)

    Han, Mei; Su, Tao; Zu, Yuan-Gang; An, Zhi-Gang

    2006-04-01

    In recent years, with the development of genetics molecular biology and plant biotechnology, the vaccination (e.g. genetic engineering subunit vaccine, living vector vaccine, nucleic acid vaccine) programs are taking on a prosperous evolvement. In particular, the technology of the use of transgenic plants to produce human or animal therapeutic vaccines receives increasing attention. Expressing vaccine candidates in vegetables and fruits open up a new avenue for producing oral/edible vaccines. Transgenic plant vaccine disquisitions exhibit a tempting latent exploiting foreground. There are a lot of advantages for transgenic plant vaccines, such as low cost, easiness of storage, and convenient immune-inoculation. Some productions converged in edible tissues, so they can be consumed directly without isolation and purification. Up to now, many transgenic plant vaccine productions have been investigated and developed. In this review, recent advances on plant-derived recombinant protein expression systems, infectious targets, and delivery systems are presented. Some issues of high concern such as biosafety and public health are also discussed. Special attention is given to the prospects and limitations on transgenic plant vaccines.

  5. Two double-blinded, randomized, comparative trials of 4 human immunodeficiency virus type 1 (HIV-1) envelope vaccines in HIV-1-infected individuals across a spectrum of disease severity: AIDS Clinical Trials Groups 209 and 214.

    Science.gov (United States)

    Schooley, R T; Spino, C; Kuritzkes, D; Walker, B D; Valentine, F A; Hirsch, M S; Cooney, E; Friedland, G; Kundu, S; Merigan, T C; McElrath, M J; Collier, A; Plaeger, S; Mitsuyasu, R; Kahn, J; Haslett, P; Uherova, P; deGruttola, V; Chiu, S; Zhang, B; Jones, G; Bell, D; Ketter, N; Twadell, T; Chernoff, D; Rosandich, M

    2000-11-01

    The potential role of human immunodeficiency virus type 1 (HIV-1)-specific immune responses in controlling viral replication in vivo has stimulated interest in enhancing virus-specific immunity by vaccinating infected individuals with HIV-1 or its components. These studies were undertaken to define patient populations most likely to respond to vaccination, with the induction of novel HIV-1-specific cellular immune responses, and to compare the safety and immunogenicity of several candidate recombinant HIV-1 envelope vaccines and adjuvants. New lymphoproliferative responses (LPRs) developed in 350 cells/mm(3) and were usually strain restricted. Responders tended to be more likely than nonresponders to have an undetectable level of HIV-1 RNA at baseline (P=.067). Induction of new cellular immune responses by HIV-1 envelope vaccines is a function of the immunologic stage of disease and baseline plasma HIV-1 RNA level and exhibits considerable vaccine strain specificity.

  6. Foreign aid

    DEFF Research Database (Denmark)

    Tarp, Finn

    2008-01-01

    Foreign aid has evolved significantly since the Second World War in response to a dramatically changing global political and economic context. This article (a) reviews this process and associated trends in the volume and distribution of foreign aid; (b) reviews the goals, principles and instituti......Foreign aid has evolved significantly since the Second World War in response to a dramatically changing global political and economic context. This article (a) reviews this process and associated trends in the volume and distribution of foreign aid; (b) reviews the goals, principles...

  7. 基因工程烟草花叶病毒在疫苗研发中的应用%Application of genetically engineered tobacco mosaic virus to vaccine development

    Institute of Scientific and Technical Information of China (English)

    周宇; 叶琳

    2009-01-01

    烟草花叶病毒(tobacco mosaic virus,TMV)是一种能感染植物的RNA病毒.因其基因组较小,易于进行遗传操作,且感染过程简单,适于改造成微小颗粒,故近年来已广泛用于疫苗研发.此文对TMV多肽表达及抗原展示系统的应用、疫苗开发中TMV操作的最新进展以及疫苗在动物模型中诱导体液和细胞免疫应答做一综述.%Tobacco mosaic virus (TMV) has been widely applied to vaccine development in recent years. The genome of TMV is relatively small and easy for genetic manipulation. TMV is suitable for modification to nanoparticles. In this review, we describe the application of TMV polypeptide expression and antigen display, recent advances in the manipulation of TMV for development of vaccines, and vaccine-induced humoral and cell-mediated immune responses in animal models.

  8. 基于最短处理时间疫苗的免疫遗传算法优化FJSP问题%Optimization of Flexible Job-shop Scheduling Problem by Immune Genetic Algorithm of Shortest Processing Time Vaccine

    Institute of Scientific and Technical Information of China (English)

    信宁宁; 黄宗南

    2013-01-01

    Reasonable job scheduling program can improve the utilization of the processing machine.The immune genetic algorithm is used to solve the flexible job-shop scheduling problem while it is more difficult.At the side of vaccine technology,according to the process timetable of the work piece,selecting the machine that processes the same process of same work piece with the shortest processing time as vaccine is proposed and vaccinate the machine code of the individual for the corresponding workpiece.Finally,an example is tested,the result shows that the method used can obtain better scheduling program and reduce machine idle time.%合理的作业调度方案能提高加工机器的利用率.针对柔性作业车间调度求解难度更大的特点,采用免疫遗传算法求解.在疫苗技术方面,提出依据工件工序加工时间表,选择同工件同工序加工时间最短的机器作为疫苗,对相应工件个体机器码接种.最后对测试案例求解,结果表明所采取的方法能够求得更好的调度方案,减少机器空闲时间.

  9. 猪囊尾蚴重组抗原和基因工程疫苗的研究进展%Research Progress for Recombinant Antigen and Genetic Engineering Vaccine of Cysticercosis

    Institute of Scientific and Technical Information of China (English)

    冯金瑞; 刘立军

    2012-01-01

    猪囊尾蚴病(Cysticercosis)是由猪带绦虫的幼虫囊尾蚴寄生于人或猪等而引起的人畜共患寄生虫病,是公认的世界经济病之一。严重威胁着人体健康,并给畜牧业造成重大经济损失,猪囊尾蚴病的免疫防治势在必行。然而在猪囊尾蚴病疫苗研究中,疫苗抗原的选择和来源一直困扰着兽医工作者。该文就近年来猪囊尾蚴病诊断重组抗原和基因工程疫苗的分子生物学研究进展进行了综述。%Cysticercosis,which is known as a social-economic disease in the world,is an important zoonosis infecting human and pig caused by Taenia solium larval Cysticercus cellulosae.This disease must be prevented for its influence on international competition of the meat product and the great economic loss.However,the choice and source of vaccinal antigen always puzzles veterinarians.This paper reviewed recent research progress in molecular biology of vaccine for Recombinant antigen and genetic engineering vaccine of cysticercosis.

  10. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma

    Science.gov (United States)

    Miguel, Antonio; Sendra, Luis; Noé, Verónica; Ciudad, Carles J; Dasí, Francisco; Hervas, David; Herrero, María José; Aliño, Salvador F

    2017-01-01

    The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg), which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the “in vitro” cell entrance and gene silencing efficacy of two tools, 2′-O-methyl phosphorotioate-modified oligonucleotides (2′-OMe-PS-ASOs) and polypurine reverse Hoogsteen hairpins (PPRHs), were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF) and were intraperitoneally treated with CTLA4 and Foxp3 2′-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following results were obtained: 1) only 2′-OMe-PS-ASO reached gene silencing efficacy “in vitro”; 2) an improved survival effect was achieved combining both therapeutic vaccine and Foxp3 antisense or CTLA4 antisense oligonucleotides (50% and 20%, respectively); 3) The blood CD4+CD25+Foxp3+ (Treg) and CD4+CTLA4+ cell counts were higher in mice that developed tumor on the day of sacrifice. Our data showed that tumor cell vaccine combined with Foxp3 or CTLA4 gene silencing can increase the efficacy of therapeutic antitumor vaccination. PMID:28176947

  11. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  12. Flu vaccination

    CERN Multimedia

    CERN Medical Service

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor.CERN Medical Service

  13. Flu Vaccination

    CERN Document Server

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  14. FLU VACCINATION

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical Service

  15. Flu Vaccination

    CERN Multimedia

    2006-01-01

    People working on the CERN site who wish to be vaccinated against influenza may go to the Medical Service (ground floor, Bldg. 57) without an appointment (preferably between 14:00 and 16:00), PROVIDED THAT THEY BRING THEIR OWN VACCINE WITH THEM. Ideally, vaccination should take place between 1st October and 30th November 2006. The influenza vaccine is recommended for CERN staff aged 50 and over. Vaccination is particularly important for those suffering from chronic lung, cardio-vascular or kidney problems, for diabetics and for those convalescing from serious medical problems or major surgery. The Medical Service will not administer vaccines to family members or retired staff members, who must contact their family doctor. CERN Medical service

  16. Foreign aid

    DEFF Research Database (Denmark)

    Tarp, Finn

    2008-01-01

    Foreign aid has evolved significantly since the Second World War in response to a dramatically changing global political and economic context. This article (a) reviews this process and associated trends in the volume and distribution of foreign aid; (b) reviews the goals, principles...

  17. Brand Aid

    DEFF Research Database (Denmark)

    Richey, Lisa Ann; Ponte, Stefano

    A critical account of the rise of celebrity-driven “compassionate consumption” Cofounded by the rock star Bono in 2006, Product RED exemplifies a new trend in celebrity-driven international aid and development, one explicitly linked to commerce, not philanthropy. Brand Aid offers a deeply informed...

  18. Leptospirosis vaccines

    OpenAIRE

    Jin Li; Wang Zhijun; Węgrzyn Alicja

    2007-01-01

    Abstract Leptospirosis is a serious infection disease caused by pathogenic strains of the Leptospira spirochetes, which affects not only humans but also animals. It has long been expected to find an effective vaccine to prevent leptospirosis through immunization of high risk humans or animals. Although some leptospirosis vaccines have been obtained, the vaccination is relatively unsuccessful in clinical application despite decades of research and millions of dollars spent. In this review, the...

  19. Food Safety for People with HIV/AIDS

    Science.gov (United States)

    ... Vaccines, Blood & Biologics Animal & Veterinary Cosmetics Tobacco Products Food Home Food Foodborne Illness & Contaminants People at Risk of Foodborne Illness Food Safety for People with HIV/AIDS Share Tweet ...

  20. New, More Authentic Model for AIDS Will Accelerate Studies | Poster

    Science.gov (United States)

    By Frank Blanchard, Staff Writer, and Jeff Lifson, Guest Writer Researchers are working to develop a more authentic animal model of human immunodeficiency virus (HIV) infection and AIDS that is expected to speed up studies of experimental treatments and vaccines.

  1. The development of an AIDS mucosal vaccine

    OpenAIRE

    Xian Tang; Zhiwei Chen

    2010-01-01

    It is well known that mucosal tissues contain the largest surface area of the human body and are the front line of natural host defense against various pathogens. In fact, more than 80% of infectious disease pathogens probably gain entry into the susceptible human hosts through open mucosal surfaces. Human immunodeficiency virus type one (HIV-1), a mainly sexually transmitted virus, also primarily targets the vaginal and gastrointestinal mucosa as entry sites for viral transmission, seeding, ...

  2. The Combined Deficiency of Immunoproteasome Subunits Affects Both the Magnitude and Quality of Pathogen- and Genetic Vaccination-Induced CD8+ T Cell Responses to the Human Protozoan Parasite Trypanosoma cruzi

    Science.gov (United States)

    Ersching, Jonatan; Vasconcelos, José R.; Ferreira, Camila P.; Caetano, Braulia C.; Machado, Alexandre V.; Bruna–Romero, Oscar; Baron, Monique A.; Ferreira, Ludmila R. P.; Cunha-Neto, Edécio; Rock, Kenneth L.

    2016-01-01

    The β1i, β2i and β5i immunoproteasome subunits have an important role in defining the repertoire of MHC class I-restricted epitopes. However, the impact of combined deficiency of the three immunoproteasome subunits in the development of protective immunity to intracellular pathogens has not been investigated. Here, we demonstrate that immunoproteasomes play a key role in host resistance and genetic vaccination-induced protection against the human pathogen Trypanosoma cruzi (the causative agent of Chagas disease), immunity to which is dependent on CD8+ T cells and IFN-γ (the classical immunoproteasome inducer). We observed that infection with T. cruzi triggers the transcription of immunoproteasome genes, both in mice and humans. Importantly, genetically vaccinated or T. cruzi-infected β1i, β2i and β5i triple knockout (TKO) mice presented significantly lower frequencies and numbers of splenic CD8+ effector T cells (CD8+CD44highCD62Llow) specific for the previously characterized immunodominant (VNHRFTLV) H-2Kb-restricted T. cruzi epitope. Not only the quantity, but also the quality of parasite-specific CD8+ T cell responses was altered in TKO mice. Hence, the frequency of double-positive (IFN-γ+/TNF+) or single-positive (IFN-γ+) cells specific for the H-2Kb-restricted immunodominant as well as subdominant T. cruzi epitopes were higher in WT mice, whereas TNF single-positive cells prevailed among CD8+ T cells from TKO mice. Contrasting with their WT counterparts, TKO animals were also lethally susceptible to T. cruzi challenge, even after an otherwise protective vaccination with DNA and adenoviral vectors. We conclude that the immunoproteasome subunits are key determinants in host resistance to T. cruzi infection by influencing both the magnitude and quality of CD8+ T cell responses. PMID:27128676

  3. HIV Vaccine Trials Network: activities and achievements of the first decade and beyond

    OpenAIRE

    Kublin, James G.; Morgan, Cecilia A.; Day, Tracey A.; Gilbert, Peter B.; Self, Steve G.; McElrath, M. Juliana; Corey, Lawrence

    2012-01-01

    The HIV Vaccine Trials Network (HVTN) is an international collaboration of scientists and educators facilitating the development of HIV/AIDS preventive vaccines. The HVTN conducts all phases of clinical trials, from evaluating experimental vaccines for safety and immunogenicity, to testing vaccine efficacy. Over the past decade, the HVTN has aimed to improve the process of designing, implementing and analyzing vaccine trials. Several major achievements include streamlining protocol developmen...

  4. Preclinical and clinical safety studies on DNA vaccines.

    NARCIS (Netherlands)

    Schalk, Johanna A C; Mooi, Frits R; Berbers, Guy A M; Aerts, Leon A G J M van; Ovelgönne, Hans; Kimman, Tjeerd G

    2007-01-01

    DNA vaccines are based on the transfer of genetic material, encoding an antigen, to the cells of the vaccine recipient. Despite high expectations of DNA vaccines as a result of promising preclinical data their clinical utility remains unproven. However, much data is gathered in preclinical and

  5. Preclinical and clinical safety studies on DNA vaccines.

    NARCIS (Netherlands)

    Schalk, Johanna A C; Mooi, Frits R; Berbers, Guy A M; Aerts, Leon A G J M van; Ovelgönne, Hans; Kimman, Tjeerd G

    2007-01-01

    DNA vaccines are based on the transfer of genetic material, encoding an antigen, to the cells of the vaccine recipient. Despite high expectations of DNA vaccines as a result of promising preclinical data their clinical utility remains unproven. However, much data is gathered in preclinical and clini

  6. Silencing of Foxp3 enhances the antitumor efficacy of GM-CSF genetically modified tumor cell vaccine against B16 melanoma

    Directory of Open Access Journals (Sweden)

    Miguel A

    2017-01-01

    Full Text Available Antonio Miguel,1 Luis Sendra,1 Verónica Noé,2 Carles J Ciudad,2 Francisco Dasí,3,4 David Hervas,5 María José Herrero,1,6 Salvador F Aliño17 1Department of Pharmacology, Faculty of Medicine, University of Valencia, 2Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University of Barcelona, 3Research University Hospital of Valencia, INCLIVA Health Research Institute, 4Department of Physiology, Faculty of Medicine, University of Valencia Foundation, 5Biostatistics Unit, 6Pharmacogenetics Unit, Instituto de Investigación Sanitaria La Fe (IIS La Fe, 7Clinical Pharmacology Unit, ACM Hospital Universitario y Politécnico La Fe, Valencia, Spain Abstract: The antitumor response after therapeutic vaccination has a limited effect and seems to be related to the presence of T regulatory cells (Treg, which express the immunoregulatory molecules CTLA4 and Foxp3. The blockage of CTLA4 using antibodies has shown an effective antitumor response conducing to the approval of the human anti-CTLA4 antibody ipilimumab by the US Food and Drug Administration. On the other hand, Foxp3 is crucial for Treg development. For this reason, it is an attractive target for cancer treatment. This study aims to evaluate whether combining therapeutic vaccination with CTLA4 or Foxp3 gene silencing enhances the antitumor response. First, the “in vitro” cell entrance and gene silencing efficacy of two tools, 2'-O-methyl phosphorotioate-modified oligonucleotides (2'-OMe-PS-ASOs and polypurine reverse Hoogsteen hairpins (PPRHs, were evaluated in EL4 cells and cultured primary lymphocytes. Following B16 tumor transplant, C57BL6 mice were vaccinated with irradiated B16 tumor cells engineered to produce granulocyte-macrophage colony-stimulating factor (GM-CSF and were intraperitoneally treated with CTLA4 and Foxp3 2'-OMe-PS-ASO before and after vaccination. Tumor growth, mice survival, and CTLA4 and Foxp3 expression in blood cells were measured. The following

  7. Exploiting the mutanome for tumor vaccination.

    NARCIS (Netherlands)

    Castle, J.C.; Kreiter, S.; Diekmann, J.; Lower, M.; Roemer, N. van de; Graaf, J. de; Selmi, A.; Diken, M.; Boegel, S.; Paret, C.; Koslowski, M.; Kuhn, A.N.; Britten, C.M.; Huber, C.; Tureci, O.; Sahin, U.

    2012-01-01

    Multiple genetic events and subsequent clonal evolution drive carcinogenesis, making disease elimination with single-targeted drugs difficult. The multiplicity of gene mutations derived from clonal heterogeneity therefore represents an ideal setting for multiepitope tumor vaccination. Here, we used

  8. E-101 Preventative HIV Vaccine Progress

    National Research Council Canada - National Science Library

    John Mascola

    2014-01-01

    .... The analysis of bNAb structural mode of recognition and genetic pathways of antigen recognition and affinity maturation can impact HIV vaccine design and prevention efforts in several ways, including (1...

  9. Experimental Shingles Vaccine Looks Quite Effective

    Science.gov (United States)

    ... are theoretical concerns about the adjuvant in the vaccine, she said: In people with a certain genetic type, it's possible the ingredient could stimulate the immune system in a "bad way." "But that's speculative at this point," she ...

  10. Selecting Viruses for the Seasonal Influenza Vaccine

    Science.gov (United States)

    ... and Flu Vaccines Vaccine Effectiveness Types of Flu Vaccine Flu Shot Quadrivalent Influenza Vaccine Intradermal Influenza (Flu) Vaccination ... Cell-Based Flu Vaccines Flublok Seasonal Influenza (Flu) Vaccine Flu Vaccination by Jet Injector Adjuvant Vaccine Vaccine Virus ...

  11. Seasonal Flu Vaccine Safety and Pregnant Women

    Science.gov (United States)

    ... and Flu Vaccines Vaccine Effectiveness Types of Flu Vaccine Flu Shot Quadrivalent Influenza Vaccine Intradermal Influenza (Flu) Vaccination ... Cell-Based Flu Vaccines Flublok Seasonal Influenza (Flu) Vaccine Flu Vaccination by Jet Injector Adjuvant Vaccine Vaccine Virus ...

  12. Autologous Hematopoietic Stem Cells transplantation and genetic modification of CCR5 m303/m303 mutant patient for HIV/AIDS.

    Science.gov (United States)

    Esmaeilzadeh, Abdolreza; Farshbaf, Alieh; Erfanmanesh, Maryam

    2015-03-01

    HIV and AIDS is one of the biggest challenges all over the world. There are an approximately 34 million people living with the virus, and a large number of them become infected each year. Although there are some antiviral drugs for HIV viral load reduction, they are not sufficient. There is no cure for AIDS. Nowadays natural resistance or immunity has absorbed attentions. Because in some HIV positive patients progression trend is slow or even they indicate resistance to AIDS. One of the most interesting approaches in this category is CCR5 gene. CCR5 is a main cc-chemokine co-receptor that facilitates HIV-1 entry to macrophage and CD4(+) T cells. To now, many polymorphisms have been known by CCR5 gene that produces a truncated protein with no function. So, HIV-1 could not entry to immune-cells and the body resistant to HIV/AIDS. Δ32/Δ32 and m303/m303 homozygotes are example of mutations that could create this resistance mechanism. There is a new treatment, such as Hematopoietic Stem Cell transplantation (HSCT) in Berlin and Boston patients for Δ32/Δ32 mutation. It could eliminate co-receptor antagonist and highly-active-anti retroviral therapy (HAART) drugs problems such as toxicity, low safety and side-effects. Now there, the aim of this hypothesis will be evaluation of a new mutation CCR5 m303/m303 as autologous HSCT. This novel hypothesis indicates that autologous HSCT for m303/m303 could be effective treatment for anyone HIV/AIDS affected patient worldwide.

  13. The AIDS scare in India could be aid-induced.

    Science.gov (United States)

    Mohan, S

    1996-01-01

    Peter Piot, head of the Joint United Nations Program on HIV/AIDS (UNAIDS), told the World AIDS Conference in Vancouver that India had 3 million people infected with HIV. The Indian government, however, gave no estimate because it has no baseline data upon which a realistic projection can be made. The National AIDS Control Organization (NACO) officially questioned Dr. Piot on the basis of his estimates. Piot attributes his figure to World Health Organization estimates made in consultation with NACO at the end of 1994 that there were 1.75 million people living with HIV in India. Alarmist reports have appeared in the media based upon Dr. Piot's comments. Some health experts, however, believe that the figures are being inflated by the West to pressure India into accepting vaccine trials and other research on HIV-infected people. For now, neither the Indian government nor the country's general population seem concerned about the reported statistics.

  14. Hearing Aids

    Science.gov (United States)

    ... slightly different from the ITC and is nearly hidden in the ear canal. Both canal hearing aids ... Privacy Policy & Terms of Use Visit the Nemours Web site. Note: All information on TeensHealth® is for ...

  15. Hearing Aid

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A man realized that he needed to purchase ahearing aid, but he was unwilling to spend muchmoney. "How much do they run?"he asked theclerk. "That depends," said. the salesman. "Theyrun from 2 to 2000."

  16. Vaccines and vaccination strategies against human cutaneous leishmaniasis.

    Science.gov (United States)

    Okwor, Ifeoma; Uzonna, Jude

    2009-05-01

    One might think that the development of a vaccine against cutaneous leishmaniasis would be relatively straightforward because the type of immune response required for protection is known and natural immunity occurs following recovery from primary infection. However, there is as yet no effective vaccine against the disease in humans. Although vaccination in murine studies has yielded promising results, these vaccines have failed miserably when tested in primates or humans. The reasons behind these failures are unknown and remain a major hurdle for vaccine design and development against cutaneous leishmaniasis. In contrast, recovery from natural, deliberate or experimental infections results in development of long-lasting immunity to re-infection. This so called infection-induced resistance is the strongest anti-Leishmania immunity known. Here, we briefly review the different approaches to vaccination against cutaneous leishmaniasis and argue that vaccines composed of genetically modified (attenuated) parasites, which induce immunity akin to infection-induced resistance, may provide best protection against cutaneous leishmaniasis in humans.

  17. EDIBLE VACCINES FROM GM CROPS: CURRENT STATUS AND FUTURE SCOPE

    OpenAIRE

    2013-01-01

    The idea of an edible vaccine is coming closer to reality as scientists have found a way to incorporate the protein gene with some antigen in some plants. The major hurdles in the path of an emerging vaccine technology are being overcome. In this context, genetically modified (GM) plants are being investigated for the production of vaccines, antibodies and therapeutic proteins. The development of GM crops to produce drugs and vaccines has received considerable investment and is relatively wel...

  18. Genetic variation of the HIV-1 integrase region in newly diagnosed anti-retroviral drug-naïve patients with HIV/AIDS in Korea.

    Science.gov (United States)

    Kim, J-Y; Kim, E-J; Choi, J-Y; Kwon, O-K; Kim, G J; Choi, S Y; Kim, S S

    2011-08-01

    The survival time of HIV/AIDS patients in Korea has increased since HAART (highly active anti-retroviral therapy) was introduced. However, the occurrence of drug-resistant strains requires new anti-retroviral drugs, one of which, an integrase inhibitor (INI), was approved by the US Food and Drug Administration (FDA) in 2007. INIs have been used for therapy in many countries and are about to be employed in Korea. Therefore, it is important to identify basic mutant variants prior to the introduction of INIs in order to estimate their efficacy. To monitor potential drug-resistant INI mutations in Korean HIV/AIDS patients, the polymorphism of the int gene was investigated together with the pol gene using a genotypic assay for 75 randomly selected Korean HIV-1 patients newly diagnosed in 2007. The drug-resistant mutation sequences were analysed using the Stanford HIV DB and the International AIDS Society resistance testing-USA panel (IAS-USA). Seventy strains of Korean subtype B were compared with foreign subtype-B strains, and there were no significantly different variants of the int gene region in the study population. Major mutation sites in the integrase (E92Q, F121Y, G140A/S, Y143C/R, Q148H/R/K and N155H) were not detected, and only a few minor mutation sites (L74M, V151I, E157Q, V165I, I203M, S230N and D232N) were identified in 21 strains (28%). Resistance due to mutations in the pol gene was observed in a single strain (1.3%) resistant to protease inhibitors (PIs) and in four strains (5.3%) resistant to reverse transcriptase inhibitors (RTIs). In summary, this demonstrates that INIs will be susceptible to drug naïve HIV/AIDS patients in Korea.

  19. [Research and development strategies, examples among new vaccines].

    Science.gov (United States)

    Denis, F; Ploy, M-C

    2009-05-01

    Classical methods are still providing new vaccines, but molecular biology and genetic engineering have enabled new approaches to development. Changes in vaccinology have involved the isolation, presentation and administration of vaccinal antigens or attenuated vaccinal strains. New methods of vaccine delivery other than injection will be used (e.g. mucosal administration) and new vectors or adjuvants will be added to vaccines in order to stimulate specific responses. New vaccines can also be obtained by using viral-like particles (VLP of papillomavirus), conjugate polysaccharides (N. meningitidis, S. pneumoniae) or the reassortment of segmented genomes (rotavirus, influenza). Here, we analyze the different steps of a vaccine's life using concrete cases of two new vaccines against papillomavirus and rotavirus. Vaccination has a promising future.

  20. What Has 30 Years of HIV Vaccine Research Taught Us?

    Directory of Open Access Journals (Sweden)

    José Esparza

    2013-10-01

    Full Text Available When HIV was discovered and established as the cause of AIDS in 1983–1984, many people believed that a vaccine would be rapidly developed. However, 30 years have passed and we are still struggling to develop an elusive vaccine. In trying to achieve that goal, different scientific paradigms have been explored. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. Major lessons learned are: the development of an HIV vaccine is an extremely difficult challenge; the temptation of just following the fashion should be avoided; clinical trials are critical, especially large-scale efficacy trials; HIV vaccine research will require long-term commitment; and sustainable collaborations are needed to accelerate the development of an HIV vaccine. Concrete actions must be implemented with the sense of urgency imposed by the severity of the AIDS epidemic.

  1. What Has 30 Years of HIV Vaccine Research Taught Us?

    Science.gov (United States)

    Esparza, José

    2013-10-30

    When HIV was discovered and established as the cause of AIDS in 1983-1984, many people believed that a vaccine would be rapidly developed. However, 30 years have passed and we are still struggling to develop an elusive vaccine. In trying to achieve that goal, different scientific paradigms have been explored. Although major progress has been made in understanding the scientific basis for HIV vaccine development, efficacy trials have been critical in moving the field forward. Major lessons learned are: the development of an HIV vaccine is an extremely difficult challenge; the temptation of just following the fashion should be avoided; clinical trials are critical, especially large-scale efficacy trials; HIV vaccine research will require long-term commitment; and sustainable collaborations are needed to accelerate the development of an HIV vaccine. Concrete actions must be implemented with the sense of urgency imposed by the severity of the AIDS epidemic.

  2. Cyclophilin A as a potential genetic adjuvant to improve HIV-1 Gag DNA vaccine immunogenicity by eliciting broad and long-term Gag-specific cellular immunity in mice

    Science.gov (United States)

    Hou, Jue; Zhang, Qicheng; Liu, Zheng; Wang, Shuhui; Li, Dan; Liu, Chang; Liu, Ying; Shao, Yiming

    2016-01-01

    Previous research has shown that host Cyclophilin A (CyPA) can promote dendritic cell maturation and the subsequent innate immune response when incorporated into an HIV-1 Gag protein to circumvent the resistance of dendritic cells to HIV-1 infection. This led us to hypothesize that CyPA may improve HIV-1 Gag-specific vaccine immunogenicity via binding with Gag antigen. The adjuvant effect of CyPA was evaluated using a DNA vaccine with single or dual expression cassettes. Mouse studies indicated that CyPA specifically and markedly promoted HIV-1 Gag-specific cellular immunity but not an HIV-1 Env-specific cellular response. The Gag/CyPA dual expression cassettes stimulated a greater Gag-specific cellular immune response, than Gag immunization alone. Furthermore, CyPA induced a broad Gag-specific T cell response and strong cellular immunity that lasted up to 5 months. In addition, CyPA skewed to cellular rather than humoral immunity. To investigate the mechanisms of the adjuvant effect, site-directed mutagenesis in CyPA, including active site residues H54Q and F60A resulted in mutants that were co-expressed with Gag in dual cassettes. The immune response to this vaccine was analyzed in vivo. Interestingly, the wild type CyPA markedly increased Gag cellular immunity, but the H54Q and F60A mutants drastically reduced CyPA adjuvant activation. Therefore, we suggest that the adjuvant effect of CyPA was based on Gag-CyPA-specific interactions. Herein, we report that Cyclophilin A can augment HIV-1 Gag-specific cellular immunity as a genetic adjuvant in multiplex DNA immunization strategies, and that activity of this adjuvant is specific, broad, long-term, and based on Gag-CyPA interaction. PMID:26305669

  3. Types of Hearing Aids

    Science.gov (United States)

    ... Consumer Devices Consumer Products Hearing Aids Types of Hearing Aids Share Tweet Linkedin Pin it More sharing ... are some features for hearing aids? What are hearing aids? Hearing aids are sound-amplifying devices designed ...

  4. A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Konstantin A. Tsetsarkin

    2016-08-01

    Full Text Available An arthropod-borne virus, Zika virus (ZIKV, has recently emerged as a major human pathogen. Associated with complications during perinatal development and Guillain-Barré syndrome in adults, ZIKV raises new challenges for understanding the molecular determinants of flavivirus pathogenesis. This underscores the necessity for the development of a reverse genetic system based on an epidemic ZIKV strain. Here, we describe the generation and characterization in cell cultures of an infectious cDNA clone of ZIKV isolated from the 2015 epidemic in Brazil. The cDNA-derived ZIKV replicated efficiently in a variety of cell lines, including those of both neuronal and placental origin. We observed that the growth of cDNA-derived virus was attenuated compared to the growth of the parental isolate in most cell lines, which correlates with substantial differences in sequence heterogeneity between these viruses that were determined by deep-sequencing analysis. Our findings support the role of genetic diversity in maintaining the replicative fitness of viral populations under changing conditions. Moreover, these results indicate that caution should be exercised when interpreting the results of reverse-genetics experiments in attempts to accurately predict the biology of natural viruses. Finally, a Vero cell-adapted cDNA clone of ZIKV was generated that can be used as a convenient platform for studies aimed at the development of ZIKV vaccines and therapeutics.

  5. A Full-Length Infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a Genetic Platform for Studies of Virus-Host Interactions and Vaccine Development

    Science.gov (United States)

    Tsetsarkin, Konstantin A.; Kenney, Heather; Chen, Rubing; Liu, Guangping; Manukyan, Hasmik; Whitehead, Stephen S.; Laassri, Majid

    2016-01-01

    ABSTRACT An arthropod-borne virus, Zika virus (ZIKV), has recently emerged as a major human pathogen. Associated with complications during perinatal development and Guillain-Barré syndrome in adults, ZIKV raises new challenges for understanding the molecular determinants of flavivirus pathogenesis. This underscores the necessity for the development of a reverse genetic system based on an epidemic ZIKV strain. Here, we describe the generation and characterization in cell cultures of an infectious cDNA clone of ZIKV isolated from the 2015 epidemic in Brazil. The cDNA-derived ZIKV replicated efficiently in a variety of cell lines, including those of both neuronal and placental origin. We observed that the growth of cDNA-derived virus was attenuated compared to the growth of the parental isolate in most cell lines, which correlates with substantial differences in sequence heterogeneity between these viruses that were determined by deep-sequencing analysis. Our findings support the role of genetic diversity in maintaining the replicative fitness of viral populations under changing conditions. Moreover, these results indicate that caution should be exercised when interpreting the results of reverse-genetics experiments in attempts to accurately predict the biology of natural viruses. Finally, a Vero cell-adapted cDNA clone of ZIKV was generated that can be used as a convenient platform for studies aimed at the development of ZIKV vaccines and therapeutics. PMID:27555311

  6. Genetic diversity of VAR2CSA ID1-DBL2Xb in worldwide Plasmodium falciparum populations: impact on vaccine design for placental malaria.

    Science.gov (United States)

    Bordbar, Bita; Tuikue Ndam, Nicaise; Renard, Emmanuelle; Jafari-Guemouri, Sayeh; Tavul, Livingstone; Jennison, Charlie; Gnidehou, Sédami; Tahar, Rachida; Gamboa, Dionicia; Bendezu, Jorge; Menard, Didier; Barry, Alyssa E; Deloron, Philippe; Sabbagh, Audrey

    2014-07-01

    In placental malaria (PM), sequestration of infected erythrocytes in the placenta is mediated by an interaction between VAR2CSA, a Plasmodium falciparum protein expressed on erythrocytes, and chondroitin sulfate A (CSA) on syncytiotrophoblasts. Recent works have identified ID1-DBL2Xb as the minimal CSA-binding region within VAR2CSA able to induce strong protective immunity, making it the leading candidate for the development of a vaccine against PM. Assessing the existence of population differences in the distribution of ID1-DBL2Xb polymorphisms is of paramount importance to determine whether geographic diversity must be considered when designing a candidate vaccine based on this fragment. In this study, we examined patterns of sequence variation of ID1-DBL2Xb in a large collection of P. falciparum field isolates (n=247) from different malaria-endemic areas, including Africa (Benin, Senegal, Cameroon and Madagascar), Asia (Cambodia), Oceania (Papua New Guinea), and Latin America (Peru). Detection of variants and estimation of their allele frequencies were performed using next-generation sequencing of DNA pools. A considerable amount of variation was detected along the whole gene segment, suggesting that several allelic variants may need to be included in a candidate vaccine to achieve broad population coverage. However, most sequence variants were common and extensively shared among worldwide parasite populations, demonstrating long term persistence of those polymorphisms, probably maintained through balancing selection. Therefore, a vaccine mixture including such stable antigen variants will be putatively applicable and efficacious in all world regions where malaria occurs. Despite similarity in ID1-DBL2Xb allele repertoire across geographic areas, several peaks of strong population differentiation were observed at specific polymorphic loci, pointing out putative targets of humoral immunity subject to positive immune selection.

  7. Decreased Serologic Response in Vaccinated Military Recruits during 2011 Correspond to Genetic Drift in Concurrent Circulating Pandemic A/H1N1 Viruses

    Science.gov (United States)

    2012-04-13

    responsible pathogens , and pathogen subtypes. To counter outbreaks of influenza, the trivalent inactivated vaccine (TIV) has been used to protect...increased virulence in mouse models [47]. The reversion mutation S84N, Figure 4. Phylogenetic analysis of the hemagglutinin (HA) gene of influenza pH1N1...members for periodic HIV testing and operationally required pre- and post-deployment blood draws [51]. Baseline samples were shipped to NHRC on dry

  8. Research Progresses on Genetically Engineering Vaccine of the Newcastle Disease Virus Fusion Protein%新城疫F蛋白基因工程疫苗的研究现状

    Institute of Scientific and Technical Information of China (English)

    陶静; 叶红

    2011-01-01

    新城疫(Newcastle disease,NDV)是当今世界上最严重的禽类传染病之一,被世界动物卫生组织(OIE)列为必须报告的传染病.同预防其他传染病一样,新城疫的主要防控手段仍是免疫接种.F蛋白是构成新城疫病毒(NDV)致病性的分子基础之一.综述了国内外新城疫F蛋白基因工程疫苗的研究进展.%Newcastle disease is one of the most serious poultry diseases, especially in the field of poultry raising. It could bring great economic loss and it was defined as a rank A infectious disease by the OIE. Now the main method to prevent Newcastle disease is still the vaccine inoculation. NDV F protein constituted one of the molecular bases of pathogenicity. The research progresses on genetically engineering vaccine of the F protein of Newcastle disease virus were expounded.

  9. Genetic stability of a Vero-cell-derived, inactivated Japanese encephalitis vaccine (P3 strain)%乙型脑炎Vero细胞灭活疫苗毒株的遗传稳定性

    Institute of Scientific and Technical Information of China (English)

    张海燕; 曹晗; 王俊荣; 张名; 梁疆莉; 马艳; 顾琴; 杨卉娟; 孙明波

    2014-01-01

    Objective To investigate genetic stability of P3 strain of Vero cell derived inactivated Japanese encephalitis vaccine.Methods The nucleotide and amino acid sequences of E protein of Japanese encephalitis virus (JEV) P3 strain at different culture period including the mouse brain one passage seed,master seed,working seed the vaccine lot in addition to its 5 passages lot were determined,while the E gene and protein sequences were compared with JEV wide stain (AF036919) from the GenBank.Furthermore,the master seed,working seed,vaccine lot and its 5 passages lot of P3 stain were determined for virus titer,antigen concentration and the vaccine potency.Results The E gene and protein sequences of the above 5 passages of vaccine strain prepared for JEV vaccine showed no difference with homologies of 100%.When the 5 passages of vaccine stain compared with those JEV wide stain (AF036919),the gene sequence at E9,E10,E324,E330,E1223,E1338 showed difference with homologies of 99.73%.No silent mutation were investigated except the amino acid mutation at aE408 (L→S) but was no virulence-associated sites with homologies of 99.80%.The virus titers of the master seed,working seed,vaccine lot and its 5 passages lot of P3 stain were higher than 8.0 lgLD50/ml,while the antigen concentrations and the vaccine potency showed no difference.Conclusion The virus seed bank of P3 strain for Vero cell derived inactivated Japanese encephalitis vaccine showed high genetic stable.%目的 研究流行性乙型脑炎Vero细胞灭活疫苗毒种(P3毒株)在生产过程中的遗传稳定性,为疫苗的安全性和免疫原性评价提供依据.方法 检测P3毒株鼠脑传代一代毒株、主种子、工作种子、疫苗及疫苗续传5代后病毒E蛋白基因核苷酸及氨基酸序列,并与GenBank中乙脑病毒P3株(AF036919)进行比对分析,同时比较主种子、工作种子、疫苗及疫苗续传5代后毒株的病毒滴度、抗原含量及效价.结果 以上5代次病毒

  10. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants.

    OpenAIRE

    Marie-Ève Lebel; Karine Chartrand; Denis Leclerc; Alain Lamarre

    2016-01-01

    International audience; Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the develop...

  11. A Small Dose of HIV? HIV Vaccine Mental Models and Risk Communication

    Science.gov (United States)

    Newman, Peter A.; Seiden, Danielle S.; Roberts, Kathleen J.; Kakinami, Lisa; Duan, Naihua

    2009-01-01

    Existing knowledge and beliefs related to HIV vaccines provide an important basis for the development of risk communication messages to support future HIV vaccine dissemination. This study explored HIV vaccine mental models among adults from segments of the population disproportionately affected by HIV/AIDS. Nine focus groups were conducted with…

  12. Influenza vaccination

    DEFF Research Database (Denmark)

    Østerhus, Sven Frederick

    2015-01-01

    The Cochrane Library was systematically searched for meta-analyses regarding influenza vaccination of various populations, both healthy and sick. An effect in reducing the number of cases of influenza, influenza-like illness or complications to influenza was found in some studies, but, generally......, the quality of the studies was low, and several studies lacked hard clinical endpoints. Data on adverse effects were scarce. More randomised controlled trials investigating the effects of influenza vaccination are warranted....

  13. Ear Infection and Vaccines

    Science.gov (United States)

    ... an ENT Doctor Near You Ear Infection and Vaccines Ear Infection and Vaccines Patient Health Information News ... or may need reinsertion over time. What about vaccines? A vaccine is a preparation administered to stimulate ...

  14. Adults Need Vaccines, Too!

    Science.gov (United States)

    ... turn JavaScript on. Feature: Adult Vaccinations Adults Need Vaccines, Too! Past Issues / Summer 2015 Table of Contents ... of the millions of adults not receiving the vaccines you need? What vaccines do you need? All ...

  15. Vaccinations during Pregnancy

    Science.gov (United States)

    ... X Home > Pregnancy > Prenatal care > Vaccinations and pregnancy Vaccinations and pregnancy E-mail to a friend Please ... date before you get pregnant. What is a vaccination? A vaccination is a shot that contains a ...

  16. Influenza Vaccine, Live Intranasal

    Science.gov (United States)

    ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should NOT ... to your doctor or pharmacist about the best flu vaccine option for you or your family.

  17. Antipneumococcal vaccination

    Directory of Open Access Journals (Sweden)

    Gian Vincenzo Zuccotti

    2013-06-01

    Full Text Available Streptococcus pneumoniae (SP is a gram-positive bacterium with more than 90 known serotypes causing around 11% of all deaths worldwide in children aged 1-59 months. A new era in prevention of SP-related diseases started in at the beginning of 2000s when a 7-valent pneumococcal conjugate vaccine (PCV7 was recommended as the vaccine of choice in pediatric age. PCV7 dramatically reduced invasive pneumococcal diseases (IPD among children with indirect effects noted among other age groups as well. However, thanks to a strict surveillance network, an increase in non-vaccine serotypes (NVTs causing IPD was noted worldwide and in late 2000s a new second generation vaccine (13-valent pneumococcal conjugate vaccine-PCV13 with an expanded serotype coverage was licensed. Due to the lack of solid effectiveness data, up to know it is difficult to predict how the composition of NVTs will change after the large-scale introduction of PCV13 or whether the characteristics of the serotypes will change. Long-term surveillance of both IPD, pneumonia, acute otitis media and carriage will be crucial to ascertain whether these second generation vaccines are having the desired effect of reducing the incidence of diseases in the long term. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  18. [Genetics in the study of HIV infection].

    Science.gov (United States)

    Amoroso, Antonio; Savoldi, Silvana

    2012-01-01

    Thirty years after the discovery of the human immunodeficiency virus (HIV) as the cause of acquired immunodeficiency syndrome (AIDS), no effective vaccines are available and there is no cure for the disease. The susceptibility to HIV infection shows a considerable degree of individual heterogeneity, which may be largely due to the genetic variability of the host. In an effort to find the host factors required for viral replication, to identify the crucial pathogenetic pathways, and reveal the full armament of host defenses, there has been a shift from candidate-gene studies to unbiased genomewide genetic and functional studies. Nevertheless, the number of established genetic factors involved in the susceptibility to diseases caused by HIV infection remains small, explaining only 15-20% of the observed heterogeneity, most of which is attributable to polymorphisms of human leukocyte antigens (HLA). Genetic studies, however, have allowed to clarify which genetic variations underlie the adverse response to some antiretroviral drugs (such as HLA-B*5701 in the treatment with abacavir) or the occurrence of renal complications as the disease progresses. The results of these studies already have a possible impact on healthcare practice.

  19. First Aid: Influenza (Flu)

    Science.gov (United States)

    ... of Flu Vaccine Does My Child Need? Your Child's Immunizations: Influenza Vaccine Immunization Schedule Tips for Treating the Flu Too Late for the Flu Vaccine? Vomiting Fever and Taking Your Child's Temperature Flu Center Who Needs a Flu Shot? ...

  20. Genetic structure of human A/H1N1 and A/H3N2 influenza virus on Corsica Island: phylogenetic analysis and vaccine strain match, 2006-2010.

    Directory of Open Access Journals (Sweden)

    Alessandra Falchi

    Full Text Available BACKGROUND: The aim of this study was to analyse the genetic patterns of Hemagglutinin (HA genes of influenza A strains circulating on Corsica Island during the 2006-2009 epidemic seasons and the 2009-2010 pandemic season. METHODS: Nasopharyngeal samples from 371 patients with influenza-like illness (ILI were collected by General Practitioners (GPs of the Sentinelles Network through a randomised selection routine. RESULTS: Phylogenetic analysis of HA revealed that A/H3N2 strains circulating on Corsica were closely related to the WHO recommended vaccine strains in each analyzed season (2006-2007 to 2008-2009. Seasonal Corsican influenza A/H1N1 isolated during the 2007-2008 season had drifted towards the A/Brisbane/59/2007 lineage, the A/H1N1 vaccine strain for the 2008-2009 season. The A/H1N1 2009 (A/H1N1pdm strains isolated on Corsica Island were characterized by the S220T mutation specific to clade 7 isolates. It should be noted that Corsican isolates formed a separate sub-clade of clade 7 as a consequence of the presence of the fixed substitution D222E. The percentages of the perfect match vaccine efficacy, estimated by using the p(epitope model, against influenza viruses circulating on Corsica Island varied substantially across the four seasons analyzed, and tend to be highest for A/H1N1 compared with A/H3N2 vaccines, suggesting that cross-immunity seems to be stronger for the H1 HA gene. CONCLUSION: The molecular analysis of the HA gene of influenza viruses that circulated on Corsica Island between 2006-2010 showed for each season the presence of a dominant lineage characterized by at least one fixed mutation. The A/H3N2 and A/H1N1pdm isolates were characterized by multiples fixation at antigenic sites. The fixation of specific mutations at each outbreak could be explained by the combination of a neutral phenomenon and a founder effect, favoring the presence of a dominant lineage in a closed environment such as Corsica Island.

  1. Scientific challenges and opportunities in developing novel vaccines for the emerging and developing markets: New Technologies in Emerging Markets, October 16th-18th 2012, World Vaccine Congress, Lyon.

    Science.gov (United States)

    Kochhar, Sonali

    2013-04-01

    Vaccines have had a major role in enhancing the quality of life and increasing life expectancy. Despite these successes and the development of new vaccine technologies, there remain multiple infectious diseases including AIDS, malaria and tuberculosis that require effective prophylactic vaccines. New and traditional technologies have a role in the development and delivery of the new vaccine candidates. The scientific challenges, opportunities and funding models for developing vaccines for low resource settings are highlighted here.

  2. Live attenuated HIV vaccines: predicting the tradeoff between efficacy and safety.

    Science.gov (United States)

    Blower, S M; Koelle, K; Kirschner, D E; Mills, J

    2001-03-13

    The utility of live attenuated vaccines for controlling HIV epidemics is being debated. Live attenuated HIV vaccines (LAHVs) could be extremely effective in protecting against infection with wild-type strains, but may not be completely safe as the attenuated strain could cause AIDS in some vaccinated individuals. We present a theoretical framework for evaluating the consequences of the tradeoff between vaccine efficacy (in terms of preventing new infections with wild-type strains) and safety (in terms of vaccine-induced AIDS deaths). We use our framework to predict, for Zimbabwe and Thailand, the epidemiological impact of 1,000 different (specified by efficacy and safety characteristics) LAHVs. We predict that paradoxically: (i) in Zimbabwe (where transmission is high) LAHVs would significantly decrease the AIDS death rate, but (ii) in Thailand (where transmission is low) exactly the same vaccines (in terms of efficacy and safety characteristics) would increase the AIDS death rate. Our results imply that a threshold transmission rate exists that determines whether any given LAHV has a beneficial or a detrimental impact. We also determine the vaccine perversity point, which is defined in terms of the fraction of vaccinated individuals who progress to AIDS as a result of the vaccine strain. Vaccination with any LAHV that causes more than 5% of vaccinated individuals to progress to AIDS in 25 years would, even 50 years later, lead to perversity (i.e., increase the annual AIDS death rate) in Thailand; these same vaccines would lead to decreases in the annual AIDS death rate in Zimbabwe.

  3. Therapeutic genes for anti-HIV/AIDS gene therapy.

    Science.gov (United States)

    Bovolenta, Chiara; Porcellini, Simona; Alberici, Luca

    2013-01-01

    The multiple therapeutic approaches developed so far to cope HIV-1 infection, such as anti-retroviral drugs, germicides and several attempts of therapeutic vaccination have provided significant amelioration in terms of life-quality and survival rate of AIDS patients. Nevertheless, no approach has demonstrated efficacy in eradicating this lethal, if untreated, infection. The curative power of gene therapy has been proven for the treatment of monogenic immunodeficiensies, where permanent gene modification of host cells is sufficient to correct the defect for life-time. No doubt, a similar concept is not applicable for gene therapy of infectious immunodeficiensies as AIDS, where there is not a single gene to be corrected; rather engineered cells must gain immunotherapeutic or antiviral features to grant either short- or long-term efficacy mostly by acquisition of antiviral genes or payloads. Anti-HIV/AIDS gene therapy is one of the most promising strategy, although challenging, to eradicate HIV-1 infection. In fact, genetic modification of hematopoietic stem cells with one or multiple therapeutic genes is expected to originate blood cell progenies resistant to viral infection and thereby able to prevail on infected unprotected cells. Ultimately, protected cells will re-establish a functional immune system able to control HIV-1 replication. More than hundred gene therapy clinical trials against AIDS employing different viral vectors and transgenes have been approved or are currently ongoing worldwide. This review will overview anti-HIV-1 infection gene therapy field evaluating strength and weakness of the transgenes and payloads used in the past and of those potentially exploitable in the future.

  4. Brand Aid

    DEFF Research Database (Denmark)

    Richey, Lisa Ann; Ponte, Stefano

    2011-01-01

    activists, scholars and venture capitalists, discusses the pros and cons of changing the world by ‘voting with your dollars’. Lisa Ann Richey and Stefano Ponte (Professor at Roskilde University and Senior Researcher at DIIS respectively), authors of Brand Aid: Shopping Well to Save the World, highlight how...

  5. Survey of Obstetrics and Gynecology Residents Regarding Pneumococcal Vaccination in Pregnancy: Education, Knowledge, and Barriers to Vaccination

    Science.gov (United States)

    Fay, Emily E.; Hoppe, Kara K.; Schulkin, Jay; Eckert, Linda O.

    2016-01-01

    Objective. The 23-valent pneumococcal vaccine is recommended for adults over 65 years of age and younger adults with certain medical conditions. The Centers for Disease Control and Prevention (CDC) state insufficient evidence to recommend routine pneumococcal vaccination during pregnancy, but the vaccine is indicated for pregnant women with certain medical conditions. We designed this project to gauge obstetrics and gynecology (OB/GYN) resident knowledge of maternal pneumococcal vaccination. Methods. We administered a 22-question survey to OB/GYN residents about maternal pneumococcal vaccination. We performed descriptive analysis for each question. Results. 238 OB/GYN residents responded. Overall, 69.3% of residents reported receiving vaccination education and 86.0% reported having ready access to vaccine guidelines and safety data. Most residents knew that asplenia (78.2%), pulmonary disease (77.3%), and HIV/AIDS (69.4%) are indications for vaccination but less knew that cardiovascular disease (45.0%), diabetes (35.8%), asthma (42.8%), nephrotic syndrome (19.7%), and renal failure (33.6%) are also indications for vaccination. Conclusion. OB/GYN residents are taught about vaccines and have ready access to vaccine guidelines and safety data. However, knowledge of indications for pneumococcal vaccination in pregnancy is lacking. Likely, the opportunity to vaccinate at-risk pregnant patients is being missed. PMID:26949324

  6. Survey of Obstetrics and Gynecology Residents Regarding Pneumococcal Vaccination in Pregnancy: Education, Knowledge, and Barriers to Vaccination

    Directory of Open Access Journals (Sweden)

    Emily E. Fay

    2016-01-01

    Full Text Available Objective. The 23-valent pneumococcal vaccine is recommended for adults over 65 years of age and younger adults with certain medical conditions. The Centers for Disease Control and Prevention (CDC state insufficient evidence to recommend routine pneumococcal vaccination during pregnancy, but the vaccine is indicated for pregnant women with certain medical conditions. We designed this project to gauge obstetrics and gynecology (OB/GYN resident knowledge of maternal pneumococcal vaccination. Methods. We administered a 22-question survey to OB/GYN residents about maternal pneumococcal vaccination. We performed descriptive analysis for each question. Results. 238 OB/GYN residents responded. Overall, 69.3% of residents reported receiving vaccination education and 86.0% reported having ready access to vaccine guidelines and safety data. Most residents knew that asplenia (78.2%, pulmonary disease (77.3%, and HIV/AIDS (69.4% are indications for vaccination but less knew that cardiovascular disease (45.0%, diabetes (35.8%, asthma (42.8%, nephrotic syndrome (19.7%, and renal failure (33.6% are also indications for vaccination. Conclusion. OB/GYN residents are taught about vaccines and have ready access to vaccine guidelines and safety data. However, knowledge of indications for pneumococcal vaccination in pregnancy is lacking. Likely, the opportunity to vaccinate at-risk pregnant patients is being missed.

  7. Selection and characterization of vaccine strain for Enterovirus 71 vaccine development.

    Science.gov (United States)

    Chang, Jui-Yuan; Chang, Cheng-Peng; Tsai, Hutchinson Hau-Pong; Lee, Chen-Dou; Lian, Wei-Cheng; Ih-Jen-Su; Sai, I-Hsi; Liu, Chia-Chyi; Chou, Ai-Hsiang; Lu, Ya-Jung; Chen, Ching-Yao; Lee, Pi-Hsiu; Chiang, Jen-Ron; Chong, Pele Choi-Sing

    2012-01-17

    Enterovirus 71 (EV71) has recently emerged as an important neurotropic virus in Asia because effective medications and prophylactic vaccine against EV71 infection are not available. Based on the success of inactivated poliovirus vaccine, the Vero cell-based chemically inactivated EV71 vaccine candidate could be developed. Identification of EV71 vaccine strain which can grow to high titer in Vero cell and induce cross-genotype virus neutralizing antibody responses represents the first step in vaccine development. In this report we describe the characterization and validation of a clinical isolate E59 belonging to B4 sub-genotype based on VP1 genetic analysis. Before selected as the vaccine strain, the genetic stability of E59 in passage had been analyzed based on the nucleotide sequences obtained from the Master Virus Seed, Working Seed banks and the virus harvested from the production lots, and found to be identical to those found in the original isolate. These results indicate that E59 vaccine strain has strong genetic stability in passage. Using this vaccine strain the prototype EV71 vaccine candidate was produced from 20L of Vero cell grown in serum-containing medium. The production processes were investigated, characterized and quantified to establish the potential vaccine manufacturing process including the time for virus harvest, the membrane for diafiltration and concentration, the gel-filtration chromatography for the down-stream virus purification, and the methods for viral inactivation. Finally, the inactivated virion vaccine candidate containing sub-microgram of viral proteins formulated with alum adjuvant was found to induce strong virus neutralizing antibody responses in mice and rabbits. Therefore, these results provide valuable information for cell-based EV71 vaccine development.

  8. Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine.

    Science.gov (United States)

    Kollipara, Avinash; Polkinghorne, Adam; Wan, Charles; Kanyoka, Pride; Hanger, Jon; Loader, Joanne; Callaghan, John; Bell, Alicia; Ellis, William; Fitzgibbon, Sean; Melzer, Alistar; Beagley, Kenneth; Timms, Peter

    2013-12-27

    The long term survival of the koala (Phascolarctos cinereus) is at risk due to a range of threatening processes. A major contributing factor is disease caused by infection with Chlamydia pecorum, which has been detected in most mainland koala populations and is associated with ocular and genital tract infections. A critical aspect for the development of vaccines against koala chlamydial infections is a thorough understanding of the prevalence and strain diversity of C. pecorum infections across wild populations. In this study, we describe the largest survey (403 koalas from eight wild populations and three wildlife hospitals) examining the diversity of C. pecorum infections. 181 of the 403 koalas tested (45%) positive for C. pecorum by species-specific quantitative PCR with infection rates ranging from 20% to 61% in the eight wild populations sampled. The ompA gene, which encodes the chlamydial major outer membrane protein (MOMP), has been the major target of several chlamydial vaccines. Based on our analysis of the diversity of MOMP amino types in the infected koalas, we conclude that, (a) there exists significant diversity of C. pecorum strains in koalas, with 10 distinct, full length C. pecorum MOMP amino types identified in the 11 koala locations sampled, (b) despite this diversity, there are predicted T and B cell epitopes in both conserved as well as variable domains of MOMP which suggest cross-amino type immune responses, and (c) a recombinant MOMP-based vaccine consisting of MOMP "F" could potentially induce heterotypic protection against a range of C. pecorum strains.

  9. Genetic diversity of the S10 RNA segment of field and vaccine strains of bluetongue virus from the P. R. China.

    Science.gov (United States)

    Zhang, Yifang; Du, Xiaogang; Li, Wengui; Li, Jinyao; Liu, Jianping; Zhu, Jianbo; Zhang, Nianzu

    2010-02-01

    Bluetongue virus (BTV) infection of ruminants is endemic throughout tropical and subtropical regions of the world. However, the molecular epidemiology of BTV infection in China has not yet been reported. In this study, the S10 gene segments from 30 BTV isolates, one attenuated BTV strain, one vaccine BTV strain, and one South Africa BTV prototype strain, were sequenced. Phylogenetic analysis of the S10 genes showed that Chinese BTV isolates could be classified into two phyletic subgroups, and the clustering of Chinese BTV viruses was dependent on their geographical origin and the number of generations for which they had been propagated, rather than their host species or year of isolation.

  10. A comparative approach between heterologous prime-boost vaccination strategy and DNA vaccinations for rabies.

    Science.gov (United States)

    Borhani, Kiandokht; Ajorloo, Mehdi; Bamdad, Taravat; Mozhgani, Sayed Hamid Reza; Ghaderi, Mostafa; Gholami, Ali Reza

    2015-04-01

    Rabies is a widespread neurological zoonotic disease causing significant mortality rates, especially in developing countries. Although a vaccine for rabies is available, its production and scheduling are costly in such countries. Advances in recombinant DNA technology have made it a good candidate for an affordable vaccine. Among the proteins of rabies virus, the Glycoprotein (RVG) has been the major target for new vaccine development which plays the principal role in providing complete protection against RV challenge. The aim of this study is to produce recombinant RVG which could be a DNA vaccine candidate and to evaluate the efficiency of this construct in a prime-boost vaccination regimen, compared to commercial vaccine. Cloning to pcDNA3.1(+) and expression of rabies virus glycoprotein gene in BSR cell  line were performed followed by SDS-PAGE and Western blot analysis of the expressed glycoprotein. The resulting genetic construct was used as a DNA vaccine by injecting 80 µg of the plasmid to MNRI mice twice. Prime-Boost vaccination strategy was performed using 80 µg plasmid construct as prime dose and the second dose of an inactivated rabies virus vaccine. Production of rabies virus neutralizing antibody (RVNA) titers of the serum samples were determined by RFFIT. In comparisons between heterologous prime-boost vaccination strategy and DNA vaccinations, the potency of group D that received Prime-Boost vaccine with the second dose of pcDNA3.1(+)-Gp was enhanced significantly compared to the group C which had received pcDNA3.1(+)-Gp as first injection. In this study, RVGP expressing construct was used in a comparative approach between Prime-Boost vaccination strategy and DNA vaccination and compared with the standard method of rabies vaccination. It was concluded that this strategy could lead to induction of acceptable humoral immunity.

  11. Safety of vaccine adjuvants: focus on autoimmunity.

    Science.gov (United States)

    van der Laan, Jan Willem; Gould, Sarah; Tanir, Jennifer Y

    2015-03-24

    Questions have been recently raised regarding the safety of vaccine adjuvants, particularly in relation to autoimmunity or autoimmune disease(s)/disorder(s) (AID). The International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) formed a scientific committee and convened a 2-day workshop, consisting of technical experts from around the world representing academia, government regulatory agencies, and industry, to investigate and openly discuss the issues around adjuvant safety in vaccines. The types of adjuvants considered included oil-in-water emulsions and toll-like receptor (TLR) agonists. The state of science around the use of animal models and biomarkers for the evaluation and prediction of AID were also discussed. Following extensive literature reviews by the HESI committee, and presentations by experts at the workshop, several key points were identified, including the value of animal models used to study autoimmunity and AID toward studying novel vaccine adjuvants; whether there is scientific evidence indicating an intrinsic risk of autoimmunity and AID with adjuvants, or a higher risk resulting from the mechanism of action; and if there is compelling clinical data linking adjuvants and AID. The tripartite group of experts concluded that there is no compelling evidence supporting the association of vaccine adjuvants with autoimmunity signals. Additionally, it is recommended that future research on the potential effects of vaccine adjuvants on AID should consider carefully the experimental design in animal models particularly if they are to be used in any risk assessment, as an improper design and model could result in misleading information. Finally, studies on the mechanistic aspects and potential biomarkers related to adjuvants and autoimmunity phenomena could be developed.

  12. Plant Viruses as Nanoparticle-Based Vaccines and Adjuvants

    Directory of Open Access Journals (Sweden)

    Marie-Ève Lebel

    2015-08-01

    Full Text Available Vaccines are considered one of the greatest medical achievements in the battle against infectious diseases. However, the intractability of various diseases such as hepatitis C, HIV/AIDS, malaria, tuberculosis, and cancer poses persistent hurdles given that traditional vaccine-development methods have proven to be ineffective; as such, these challenges have driven the emergence of novel vaccine design approaches. In this regard, much effort has been put into the development of new safe adjuvants and vaccine platforms. Of particular interest, the utilization of plant virus-like nanoparticles and recombinant plant viruses has gained increasing significance as an effective tool in the development of novel vaccines against infectious diseases and cancer. The present review summarizes recent advances in the use of plant viruses as nanoparticle-based vaccines and adjuvants and their mechanism of action. Harnessing plant-virus immunogenic properties will enable the design of novel, safe, and efficacious prophylactic and therapeutic vaccines against disease.

  13. Genetic control of immune responsiveness in the chicken

    NARCIS (Netherlands)

    Zijpp, van der A.J.

    1982-01-01

    Disease can be combated by medication, vaccination, hygienic measures, eradication and genetic resistance. Genetic resistance to infectious diseases is advantageous because of its permanent character in contrast with the aforementioned procedures. In the chicken genetic resistance to specific diseas

  14. Negotiating Aid

    DEFF Research Database (Denmark)

    Whitfield, Lindsay; Fraser, Alastair

    2011-01-01

    This article presents a new analytical approach to the study of aid negotiations. Building on existing approaches but trying to overcome their limitations, it argues that factors outside of individual negotiations (or the `game' in game-theoretic approaches) significantly affect the preferences...... of actors, the negotiating strategies they fashion, and the success of those strategies. This approach was employed to examine and compare the experiences of eight countries: Botswana, Ethiopia, Ghana, Mali, Mozambique, Rwanda, Tanzania and Zambia. The article presents findings from these country studies...... which investigated the strategies these states have adopted in talks with aid donors, the sources of leverage they have been able to bring to bear in negotiations, and the differing degrees of control that they have been able to exercise over the policies agreed in negotiations and those implemented...

  15. Tactile Aids

    Directory of Open Access Journals (Sweden)

    Mohtaramossadat Homayuni

    1996-04-01

    Full Text Available Tactile aids, which translate sound waves into vibrations that can be felt by the skin, have been used for decades by people with severe/profound hearing loss to enhance speech/language development and improve speechreading.The development of tactile aids dates from the efforts of Goults and his co-workers in the 1920s; Although The power supply was too voluminous and it was difficult to carry specially by children, it was too huge and heavy to be carried outside the laboratories and its application was restricted to the experimental usage. Nowadays great advances have been performed in producing this instrument and its numerous models is available in markets around the world.

  16. AIDS: resource materials for school personnel.

    Science.gov (United States)

    Fulton, G B; Metress, E; Price, J H

    1987-01-01

    The AIDS dilemma continues to escalate, leaving a legacy that probably will affect the nation for years to come. The U.S. Centers for Disease Control, the National Academy of Sciences, and the U.S. Surgeon General have noted that in the absence of a vaccine or treatment for AIDS, education remains the only effective means to prevent the spread of the disease. Thus, schools have an important role in protecting the public health. To respond appropriately to the situation, school personnel must become familiar with relevant information and resources available concerning AIDS. This article first provides essential information about AIDS using a question-and-answer format. Second, policy statements addressing school attendance by students infected with the virus that causes AIDS are presented. Third, hotlines that can be used to obtain more detailed information about AIDS are described. Fourth, organizations that can provide information for school health education about AIDS are identified. Fifth, an annotated list of audiovisual materials that schools can use to provide education about AIDS is provided. Sixth, a bibliography of publications relevant to school health education about AIDS is offered.

  17. Challenges in Mucosal HIV Vaccine Development: Lessons from Non-Human Primate Models

    OpenAIRE

    Iskra Tuero; Marjorie Robert-Guroff

    2014-01-01

    An efficacious HIV vaccine is urgently needed to curb the AIDS pandemic. The modest protection elicited in the phase III clinical vaccine trial in Thailand provided hope that this goal might be achieved. However, new approaches are necessary for further advances. As HIV is transmitted primarily across mucosal surfaces, development of immunity at these sites is critical, but few clinical vaccine trials have targeted these sites or assessed vaccine-elicited mucosal immune responses. Pre-clinic...

  18. Influenza vaccine effectiveness during the 2012 influenza season in Victoria, Australia: influences of waning immunity and vaccine match.

    Science.gov (United States)

    Sullivan, Sheena G; Komadina, Naomi; Grant, Kristina; Jelley, Lauren; Papadakis, Georgina; Kelly, Heath

    2014-06-01

    Vaccine effectiveness may wane with increasing time since vaccination. This analysis used the Victorian sentinel general practitioner (GP) network to estimate vaccine effectiveness for trivalent inactivated vaccines in the 2012 season. A test-negative design was used where patients presenting to GPs with influenza-like illness who tested positive for influenza were cases and noncases were those who tested negative. Vaccination status was recorded by GPs. Vaccine effectiveness was calculated as (1-odds ratio) × 100%. Estimates were compared early versus late in the season and by time since vaccination. Virus isolates were assessed antigenically by hemagglutination inhibition assay in a selection of positive samples and viruses from healthy adults who experienced a vaccine breakthrough were analyzed genetically. The adjusted vaccine effectiveness estimate for any type of influenza was 45% (95% CI: 8,66) and for influenza A(H3) was 35% (95% CI: -11,62). A non-significant effect of waning effectiveness by time since vaccination was observed for A(H3). For those vaccinated influenza vaccine provided moderate protection against influenza and showed limited evidence for waning effectiveness. Antigenic and genetic data can provide additional insight into understanding these estimates.

  19. Genetic correlations between first parity and accumulated second to last parity reproduction traits as selection aids to improve sow lifetime productivity

    Directory of Open Access Journals (Sweden)

    Udomsak Noppibool

    2017-03-01

    Full Text Available Objective The objective of this research was to estimate genetic correlations between number of piglets born alive in the first parity (NBA1, litter birth weight in the first parity (LTBW1, number of piglets weaned in the first parity (NPW1, litter weaning weight in the first parity (LTWW1, number of piglets born alive from second to last parity (NBA2+, litter birth weight from second to last parity (LTBW2+, number of piglets weaned from second to last parity (NPW2+ and litter weaning weight from second to last parity (LTWW2+, and to identify the percentages of animals (the top 10%, 25%, and 50% for first parity and sums of second and later parity traits. Methods The 9,830 records consisted of 2,124 Landrace (L, 724 Yorkshire (Y, 2,650 LY, and 4,332 YL that had their first farrowing between July 1989 and December 2013. The 8-trait animal model included the fixed effects of first farrowing year-season, additive genetic group, heterosis of the sow and the litter, age at first farrowing, and days to weaning (NPW1, LTWW1, NPW2+, and LTWW2+. Random effects were animal and residual. Results Heritability estimates ranged from 0.08±0.02 (NBA1 and NPW1 to 0.29±0.02 (NPW2+. Genetic correlations between reproduction traits in the first parity and from second to last parity ranged from 0.17±0.08 (LTBW1 and LTBW2+ to 0.67±0.06 (LTWW1 and LTWW2+. Phenotypic correlations between reproduction traits in the first parity and from second to last parity were close to zero. Rank correlations between LTWW1 and LTWW2+ estimated breeding value tended to be higher than for other pairs of traits across all replacement percentages. Conclusion These rank correlations indicated that selecting boars and sows using genetic predictions for first parity reproduction traits would help improve reproduction traits in the second and later parities as well as lifetime productivity in this swine population.

  20. [Autoimmune connective tissue diseases and vaccination].

    Science.gov (United States)

    Więsik-Szewczyk, Ewa; Jahnz-Różyk, Karina

    2015-12-31

    The idea that infectious agents can induce autoimmune diseases in genetically susceptible subjects has been a matter of discussion for years. Moreover, increased incidence of autoimmune diseases and introduction of prophylactic vaccinations from early childhood suggest that these two trends are linked. In the medical literature and even non-professional media, case reports or events temporally related to vaccination are reported. It raises the issue of vaccination safety. In everyday practice medical professionals, physicians, rheumatologists and other specialists will be asked their opinion of vaccination safety. The decision should be made according to evidence-based medicine and the current state of knowledge. The purpose of this paper is to discuss a potential mechanism which links infections, vaccinations and autoimmunity. We present an overview of published case reports, especially of systemic connective tissue diseases temporally related to vaccination and results from case-nested studies. As yet, no conclusive evidence supports a causal relationship between vaccination and autoimmune diseases. It has to be determined whether the performed studies are sufficiently sensitive to detect the link. The debate is ongoing, and new data may be required to explain the pathogenesis of autoimmunity. We would like to underscore the need for prophylactic vaccination in patients with autoimmune rheumatic diseases and to break down the myth that the vaccines are contraindicated in this target group.

  1. Flying vaccinator; a transgenic mosquito delivers a Leishmania vaccine via blood feeding.

    Science.gov (United States)

    Yamamoto, D S; Nagumo, H; Yoshida, S

    2010-06-01

    'Flying vaccinator' is the concept of using genetically engineered hematophagous insects to deliver vaccines. Here we show the generation of a transgenic anopheline mosquito that expresses the Leishmania vaccine candidate, SP15, fused to monomeric red fluorescent protein (mDsRed) in its salivary glands. Importantly, mice bitten repeatedly by the transgenic mosquitoes raised anti-SP15 antibodies, indicating delivery of SP15 via blood feeding with its immunogenicity intact. Thus, this technology makes possible the generation of transgenic mosquitoes that match the original concept of a 'flying vaccinator'. However, medical safety issues and concerns about informed consent mitigate the use of the 'flying vaccinator' as a method to deliver vaccines. We propose that this expression system could be applied to elucidate saliva-malaria sporozoite interactions.

  2. Accelerating the development of a safe and effective HIV vaccine: HIV vaccine case study for the Decade of Vaccines.

    Science.gov (United States)

    Koff, Wayne C; Russell, Nina D; Walport, Mark; Feinberg, Mark B; Shiver, John W; Karim, Salim Abdool; Walker, Bruce D; McGlynn, Margaret G; Nweneka, Chidi Victor; Nabel, Gary J

    2013-04-18

    Human immunodeficiency virus (HIV), the etiologic agent that causes AIDS, is the fourth largest killer in the world today. Despite the remarkable achievements in development of anti-retroviral therapies against HIV, and the recent advances in new prevention technologies, the rate of new HIV infections continue to outpace efforts on HIV prevention and control. Thus, the development of a safe and effective vaccine for prevention and control of AIDS remains a global public health priority and the greatest opportunity to eventually end the AIDS pandemic. Currently, there is a renaissance in HIV vaccine development, due in large part to the first demonstration of vaccine induced protection, albeit modest, in human efficacy trials, a generation of improved vaccine candidates advancing in the clinical pipeline, and newly defined targets on HIV for broadly neutralizing antibodies. The main barriers to HIV vaccine development include the global variability of HIV, lack of a validated animal model, lack of correlates of protective immunity, lack of natural protective immune responses against HIV, and the reservoir of infected cells conferred by integration of HIV's genome into the host. Some of these barriers are not unique to HIV, but generic to other variable viral pathogens such as hepatitis C and pandemic influenza. Recommendations to overcome these barriers are presented in this document, including but not limited to expansion of efforts to design immunogens capable of eliciting broadly neutralizing antibodies against HIV, expansion of clinical research capabilities to assess multiple immunogens concurrently with comprehensive immune monitoring, increased support for translational vaccine research, and engaging industry as full partners in vaccine discovery and development.

  3. Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions

    Directory of Open Access Journals (Sweden)

    Lindsay Jodi A

    2010-06-01

    Full Text Available Abstract Background S. aureus is a coloniser and pathogen of humans and mammals. Whole genome sequences of 58 strains of S. aureus in the public domain and data from multi-strain microarrays were compared to assess variation in the sequence of proteins known or putatively interacting with host. Results These included 24 surface proteins implicated in adhesion (ClfA, ClfB, Cna, Eap, Ebh, EbpS, FnBPA, FnBPB, IsaB, IsdA, IsdB, IsdH, SasB, SasC, SasD, SasF, SasG, SasH, SasK, SdrC, SdrD, SdrE, Spa and SraP and 13 secreted proteins implicated in immune response evasion (Coa, Ecb, Efb, Emp, EsaC, EsxA, EssC, FLIPr, FLIPr like, Sbi, SCIN-B, SCIN-C, VWbp located on the stable core genome. Many surface protein genes were missing or truncated, unlike immune evasion genes, and several distinct variants were identified. Domain variants were lineage specific. Unrelated lineages often possess the same sequence variant domains proving that horizontal transfer and recombination has contributed to their evolution. Surprisingly, sequenced strains from four animal S. aureus strains had surface and immune evasion proteins remarkably similar to those found in human strains, yet putative targets of these proteins vary substantially between different hosts. This suggests these proteins are not essential for virulence. However, the most variant protein domains were the putative functional regions and there is biological evidence that variants can be functional, arguing they do play a role. Conclusion Surface and immune evasion genes are candidates for S. aureus vaccines, and their distribution and functionality is key. Vaccines should contain cocktails of antigens representing all variants or they will not protect against naturally occurring S. aureus populations.

  4. Polio Vaccine

    Science.gov (United States)

    ... Health Resources Share Polio Vaccine What is polio?Poliomyelitis (polio, for short) is a serious illness that can cause paralysis (when you can't move your arms and legs) or even death. Polio is caused by a virus. The virus can be spread by drinking water ...

  5. Vexing Vaccines

    Science.gov (United States)

    Bowman, Darcia Harris

    2004-01-01

    Schools play a key role in ensuring that children are being immunized against diseases, but conflicting research is making enforcement difficult. This article discusses a growing trend of vaccine avoidance and the endless supply of conflicting information and research about immunization safety. Despite the controversy, many people appear to accept…

  6. Rotavirus Vaccine

    Science.gov (United States)

    ... including a severe allergy to latex. Babies with "severe combined immunodeficiency" (SCID) should not get rotavirus vaccine. Babies who have had a type of bowel blockage called "intussusception" should not get ... with moderate or severe diarrhea or vomiting. Check with your doctor if ...

  7. Valuing vaccination

    Science.gov (United States)

    Bärnighausen, Till; Bloom, David E.; Cafiero-Fonseca, Elizabeth T.; O’Brien, Jennifer Carroll

    2014-01-01

    Vaccination has led to remarkable health gains over the last century. However, large coverage gaps remain, which will require significant financial resources and political will to address. In recent years, a compelling line of inquiry has established the economic benefits of health, at both the individual and aggregate levels. Most existing economic evaluations of particular health interventions fail to account for this new research, leading to potentially sizable undervaluation of those interventions. In line with this new research, we set forth a framework for conceptualizing the full benefits of vaccination, including avoided medical care costs, outcome-related productivity gains, behavior-related productivity gains, community health externalities, community economic externalities, and the value of risk reduction and pure health gains. We also review literature highlighting the magnitude of these sources of benefit for different vaccinations. Finally, we outline the steps that need to be taken to implement a broad-approach economic evaluation and discuss the implications of this work for research, policy, and resource allocation for vaccine development and delivery. PMID:25136129

  8. Teaching AIDS.

    Science.gov (United States)

    Short, R V

    1989-06-01

    This article reviews a peer group Acquired Immunodeficiency Syndrome (AIDS) educational program at a university in Australia. Studies in the US have shown that most adolescents, although sexually active, do not believe they are likely to become infected with the Human Immunodeficiency Virus, and therefore do not attempt to modify their sexual behavior. A 1st step in educating students is to introduce them to condoms and impress upon them the fact that condoms should be used at the beginning of all sexual relationships, whether homosexual or heterosexual. In this program 3rd year medical students were targeted, as they are effective communicators and disseminators of information to the rest of the student body. After class members blow up condoms, giving them a chance to handle various brands and observe the varying degrees of strength, statistical evidence about the contraceptive failure rate of condoms (0.6-14.7 per 100 women-years) is discussed. Spermicides, such as nonoxynol-9 used in conjunction with condoms, are also discussed, as are condoms for women, packaging and marketing of condoms, including those made from latex and from the caecum of sheep, the latter condoms being of questionable effectiveness in preventing transmission of the virus. The care of terminal AIDS cases and current global and national statistics on AIDS are presented. The program also includes cash prizes for the best student essays on condom use, the distribution of condoms, condom key rings and T-shirts, and a student-run safe sex stand during orientation week. All of these activities are intended to involve students and attract the interest of the undergraduate community. Questionnaires administered to students at the end of the course revealed that the lectures were received favorably. Questionnaires administered to new medical and English students attending orientation week revealed that 72% of students thought the stand was a good idea and 81% and 83%, respectively found it

  9. DENGUE VACCINE, CHALLENGES, DEVELOPMENT AND STRATEGIES

    Directory of Open Access Journals (Sweden)

    Dewi Marbawati

    2014-08-01

    Full Text Available ABSTRAKPenyakit demam Dengue endemik di lebih dari 100 negara di dunia. Obat anti virus Dengue efektif belum ditemukan danpengendalian vektor dinilai kurang efektif, sehingga diperlukan upaya pencegahan dengan vaksinasi. Vaksin Dengue yangideal adalah murah, mencakup 4 serotipe, efektif dalam memberikan kekebalan, cukup diberikan sekali seumur hidup, aman,memberi kekebalan jangka panjang, stabil dalam penyimpanan dan stabil secara genetis (tidak bermutasi. Beberapakandidat vaksin yang telah dan sedang dikembangkan oleh para peneliti di seluruh dunia adalah tetravalent live attenuatedvaccine, vaksin Chimera (ChimeriVax, vaksin subunit dan vaksin DNA. Vaksin Dengue dipandang sebagai pendekatan yangefektif dan berkesinambungan dalam mengendalikan penyakit Dengue. Tahun 2003 telah terbentuk Pediatric DengueVaccine Initiative (PDVI, yaitu sebuah konsorsium internasional yang bergerak dalam advokasi untuk meyakinkanmasyarakat internasional akan penting dan mendesaknya vaksin Dengue. Konsorsium vaksin Dengue Indonesia saat iniberupaya mengembangkan vaksin Dengue dengan menggunakan strain virus lokal.Kata kunci: Dengue, virus, vaksinABSTRACTDengue fever is endemic in more than 100 countries in the world. The effective dengue antiviral drug has not been found yet,and vector control is considered less effective. Prevention program by vaccination is needed. An ideal dengue vaccine shouldbe inexpensive, covering four serotypes (tetravalent, effective in providing immunity, given once a lifetime, safe, stable instorage and genetically. Several vaccine candidates have been and are being developed included attenuated tetravalentvaccine, ChimeriVax, sub- unit vaccines and DNA vaccines. Dengue vaccine is seen as an effective and sustainable approachto controll Dengue infection. In 2003, Pediatric Dengue Vaccine Initiative (PDVI has been formed as an internationalconsortium involved in advocacy to convince the international community about the essence and urgency

  10. Brand Aid

    DEFF Research Database (Denmark)

    Richey, Lisa Ann; Ponte, Stefano

    2011-01-01

    activists, scholars and venture capitalists, discusses the pros and cons of changing the world by ‘voting with your dollars’. Lisa Ann Richey and Stefano Ponte (Professor at Roskilde University and Senior Researcher at DIIS respectively), authors of Brand Aid: Shopping Well to Save the World, highlight how......Can Citizen Consumers Make a Difference? DIIS researcher contributes to a Boston Review - New Democracy Forum In the current issue of Boston Review (November/December 2011), contributors to a ‘New Democracy Forum’ debate whether Citizen Consumers can make a difference in stimulating responsible...

  11. Genetics in psychiatry.

    Science.gov (United States)

    Umesh, Shreekantiah; Nizamie, Shamshul Haque

    2014-04-01

    Today, psychiatrists are focusing on genetics aspects of various psychiatric disorders not only for a future classification of psychiatric disorders but also a notion that genetics would aid in the development of new medications to treat these disabling illnesses. This review therefore emphasizes on the basics of genetics in psychiatry as well as focuses on the emerging picture of genetics in psychiatry and their future implications.

  12. The safety of influenza vaccines in children: An Institute for Vaccine Safety white paper.

    Science.gov (United States)

    Halsey, Neal A; Talaat, Kawsar R; Greenbaum, Adena; Mensah, Eric; Dudley, Matthew Z; Proveaux, Tina; Salmon, Daniel A

    2015-12-30

    Most influenza vaccines are generally safe, but influenza vaccines can cause rare serious adverse events. Some adverse events, such as fever and febrile seizures, are more common in children than adults. There can be differences in the safety of vaccines in different populations due to underlying differences in genetic predisposition to the adverse event. Live attenuated vaccines have not been studied adequately in children under 2 years of age to determine the risks of adverse events; more studies are needed to address this and several other priority safety issues with all influenza vaccines in children. All vaccines intended for use in children require safety testing in the target age group, especially in young children. Safety of one influenza vaccine in children should not be extrapolated to assumed safety of all influenza vaccines in children. The low rates of adverse events from influenza vaccines should not be a deterrent to the use of influenza vaccines because of the overwhelming evidence of the burden of disease due to influenza in children.

  13. Varicella (Chickenpox) Vaccine

    Science.gov (United States)

    ProQuad® (as a combination product containing Measles Vaccine, Mumps Vaccine, Rubella Vaccine, Varicella Vaccine) ... up to about 1 person in 5) and measles-like rash (about 1 person in 20) than MMR and varicella vaccines given separately. Moderate Problems:Seizure (jerking or staring) ...

  14. Weighing the risks and benefits of vaccination.

    Science.gov (United States)

    Glickman, L T

    1999-01-01

    are "just too dangerous." Some owners report that since they completely stopped vaccinating their animals, they have been healthy. What they fail to realize is that a high percentage of animal owners are responsible and do vaccinate their animals, thus providing "herd immunity" protection to the unvaccinated animals whom they contact. The solution to the vaccine controversy is not to abandon vaccination as an effective means of disease prevention and control, but rather to encourage vaccine research to answer important questions regarding safety and to identify the biological basis for adverse reactions. Key questions to be answered include these: What components of vaccines are responsible for adverse reactions? What is the genetic basis for susceptibility to adverse health effects in animals? How can susceptible individuals be identified? Do multivalent vaccines cause a higher rate of adverse reactions than monovalent vaccines? Is administration of multiple doses of monovalent vaccines really any safer than administering a single multivalent vaccine? These and other vaccine-related questions deserve our attention as veterinarians so we can fulfill our veterinary oath to relieve animal suffering and "above all else, do no harm."

  15. Modeling and Multi-Objective Optimization of Engine Performance and Hydrocarbon Emissions via the Use of a Computer Aided Engineering Code and the NSGA-II Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Richard Fiifi Turkson

    2016-01-01

    Full Text Available It is feared that the increasing population of vehicles in the world and the depletion of fossil-based fuel reserves could render transportation and other activities that rely on fossil fuels unsustainable in the long term. Concerns over environmental pollution issues, the high cost of fossil-based fuels and the increasing demand for fossil fuels has led to the search for environmentally friendly, cheaper and efficient fuels. In the search for these alternatives, liquefied petroleum gas (LPG has been identified as one of the viable alternatives that could be used in place of gasoline in spark-ignition engines. The objective of the study was to present the modeling and multi-objective optimization of brake mean effective pressure and hydrocarbon emissions for a spark-ignition engine retrofitted to run on LPG. The use of a one-dimensional (1D GT-Power™ model, together with Group Method of Data Handling (GMDH neural networks, has been presented. The multi-objective optimization was implemented in MATLAB® using the non-dominated sorting genetic algorithm (NSGA-II. The modeling process generally achieved low mean squared errors (0.0000032 in the case of the hydrocarbon emissions model for the models developed and was attributed to the collection of a larger training sample data using the 1D engine model. The multi-objective optimization and subsequent decisions for optimal performance have also been presented.

  16. New Vaccines for the World's Poorest People.

    Science.gov (United States)

    Hotez, Peter J; Bottazzi, Maria Elena; Strych, Ulrich

    2016-01-01

    The 2000 Millennium Development Goals helped stimulate the development of life-saving childhood vaccines for pneumococcal and rotavirus infections while greatly expanding coverage of existing vaccines. However, there remains an urgent need to develop new vaccines for HIV/AIDS, malaria, and tuberculosis, as well as for respiratory syncytial virus and those chronic and debilitating (mostly parasitic) infections known as neglected tropical diseases (NTDs). The NTDs represent the most common diseases of people living in extreme poverty and are the subject of this review. The development of NTD vaccines, including those for hookworm infection, schistosomiasis, leishmaniasis, and Chagas disease, is being led by nonprofit product development partnerships (PDPs) working in consortia of academic and industrial partners, including vaccine manufacturers in developing countries. NTD vaccines face unique challenges with respect to their product development and manufacture, as well as their preclinical and clinical testing. We emphasize global efforts to accelerate the development of NTD vaccines and some of the hurdles to ensuring their availability to the world's poorest people.

  17. Your Baby's First Vaccines

    Science.gov (United States)

    ... Link Vaccines & Immunizations Immunization Schedules Your Child's First Vaccines Format: Select one PDF [335 KB] RTF [260 ... child will get one or more of these vaccines today: DTaP Hib Hepatitis B Polio PCV13 Why ...

  18. Human Papillomavirus (HPV) Vaccines

    Science.gov (United States)

    ... Directory Cancer Prevention Overview Research Human Papillomavirus (HPV) Vaccines On This Page What are human papillomaviruses? Which ... infections? Can HPV infections be prevented? What HPV vaccines are available? Who should get the HPV vaccines? ...

  19. Vaccines Stop Illness

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues Vaccines Stop Illness Past Issues / Spring 2008 Table of ... meningitis won't infect, cripple, or kill children. Vaccine Safety In light of recent questions about vaccine ...

  20. Vaccines and Thimerosal

    Science.gov (United States)

    ... this? Submit What's this? Submit Button Thimerosal in Vaccines Recommend on Facebook Tweet Share Compartir Thimerosal is ... harm. Thimerosal prevents the growth of bacteria in vaccines. Thimerosal is added to vials of vaccine that ...

  1. Meningococcal Vaccine (For Parents)

    Science.gov (United States)

    ... to 2-Year-Old Your Child's Immunizations: Meningococcal Vaccines KidsHealth > For Parents > Your Child's Immunizations: Meningococcal Vaccines ... or her parents, and the doctor. Why the Vaccines Are Recommended Meningococcal disease is caused by a ...

  2. Vaccines.gov

    Science.gov (United States)

    ... supported by science, on vaccine safety. Are your child’s vaccines up to date? Getting all recommended vaccines on time can protect your child from serious diseases. Protect your community! Did you ...

  3. Modeling HIV vaccines in Brazil: assessing the impact of a future HIV vaccine on reducing new infections, mortality and number of people receiving ARV.

    Directory of Open Access Journals (Sweden)

    Maria Goretti P Fonseca

    Full Text Available BACKGROUND: The AIDS epidemic in Brazil remains concentrated in populations with high vulnerability to HIV infection, and the development of an HIV vaccine could make an important contribution to prevention. This study modeled the HIV epidemic and estimated the potential impact of an HIV vaccine on the number of new infections, deaths due to AIDS and the number of people receiving ARV treatment, under various scenarios. METHODS AND FINDINGS: The historical HIV prevalence was modeled using Spectrum and projections were made from 2010 to 2050 to study the impact of an HIV vaccine with 40% to 70% efficacy, and 80% coverage of adult population, specific groups such as MSM, IDU, commercial sex workers and their partners, and 15 year olds. The possibility of disinhibition after vaccination, neglecting medium- and high-risk groups, and a disease-modifying vaccine were also considered. The number of new infections and deaths were reduced by 73% and 30%, respectively, by 2050, when 80% of adult population aged 15-49 was vaccinated with a 40% efficacy vaccine. Vaccinating medium- and high-risk groups reduced new infections by 52% and deaths by 21%. A vaccine with 70% efficacy produced a great decline in new infections and deaths. Neglecting medium- and high-risk population groups as well as disinhibition of vaccinated population reduced the impact or even increased the number of new infections. Disease-modifying vaccine also contributed to reducing AIDS deaths, the need for ART and new HIV infections. CONCLUSIONS: Even in a country with a concentrated epidemic and high levels of ARV coverage, such as Brazil, moderate efficacy vaccines as part of a comprehensive package of treatment and prevention could have a major impact on preventing new HIV infections and AIDS deaths, as well as reducing the number of people on ARV. Targeted vaccination strategies may be highly effective and cost-beneficial.

  4. Improving influenza vaccine virus selectionReport of a WHO informal consultation held at WHO headquarters, Geneva, Switzerland, 14–16 June 2010

    Science.gov (United States)

    Ampofo, William K.; Baylor, Norman; Cobey, Sarah; Cox, Nancy J.; Daves, Sharon; Edwards, Steven; Ferguson, Neil; Grohmann, Gary; Hay, Alan; Katz, Jacqueline; Kullabutr, Kornnika; Lambert, Linda; Levandowski, Roland; Mishra, A. C.; Monto, Arnold; Siqueira, Marilda; Tashiro, Masato; Waddell, Anthony L.; Wairagkar, Niteen; Wood, John; Zambon, Maria; Zhang, Wenqing

    2011-01-01

    the development of additional criteria for measuring immunity.• Standardized seroepidemiological surveys to assess the impact of influenza in a population could help to establish well‐characterized banks of age‐stratified representative sera as a national, regional and global resource, while providing direct evidence of the specific benefits of vaccination.• Advances in high‐throughput genetic sequencing coupled with advanced bioinformatics tools, together with more X‐ray crystallographic data, should accelerate understanding of the genetic and phenotypic changes that underlie virus evolution and more specifically help to predict the influence of amino acid changes on virus antigenicity.• Complex mathematical modelling techniques are increasingly being used to gain insights into the evolution and epidemiology of influenza viruses. However, their value in predicting the timing and nature of future antigenic and genetic changes is likely to be limited at present. The application of simpler non‐mechanistic statistical algorithms, such as those already used as the basis of antigenic cartography, and phylogenetic modelling are more likely to be useful in facilitating vaccine virus selection and in aiding assessment of the pandemic potential of avian and other animal influenza viruses.• The adoption of alternative vaccine technologies – such as live‐attenuated, quadrivalent or non‐HA‐based vaccines – has significant implications for vaccine virus selection, as well as for vaccine regulatory and manufacturing processes. Recent collaboration between the GISRS and vaccine manufacturers has resulted in the increased availability of egg isolates and high‐growth reassortants for vaccine production, the development of qualified cell cultures and the investigation of alternative methods of vaccine potency testing. WHO will continue to support these and other efforts to increase the reliability and timeliness of the global influenza vaccine

  5. Killed whole-HIV vaccine; employing a well established strategy for antiviral vaccines.

    Science.gov (United States)

    Kang, C Yong; Gao, Yong

    2017-09-12

    The development of an efficient prophylactic HIV vaccine has been one of the major challenges in infectious disease research during the last three decades. Here, we present a mini review on strategies employed for the development of HIV vaccines with an emphasis on a well-established vaccine technology, the killed whole-virus vaccine approach. Recently, we reported an evaluation of the safety and the immunogenicity of a genetically modified and killed whole-HIV-1 vaccine designated as SAV001 [1]. HIV-1 Clade B NL4-3 was genetically modified by deleting the nef and vpu genes and substituting the coding sequence of the Env signal peptide with that of honeybee melittin to produce an avirulent and replication efficient HIV-1. This genetically modified virus (gmHIV-1 NL4-3 ) was propagated in a human T cell line followed by virus purification and inactivation by aldrithiol-2 and γ-irradiation. We found that SAV001 was well tolerated with no serious adverse events. HIV-1 NL4-3 -specific polymerase chain reaction showed no evidence of vaccine virus replication in participants receiving SAV001 and in human T cells infected in vitro. Furthermore, SAV001 with an adjuvant significantly increased the antibody response to HIV-1 structural proteins. Moreover, antibodies in the plasma from these vaccinations neutralized tier I and tier II of HIV-1 B, A, and D subtypes. These results indicated that the killed whole-HIV vaccine is safe and may trigger appropriate immune responses to prevent HIV infection. Utilization of this killed whole-HIV vaccine strategy may pave the way to develop an effective HIV vaccine.

  6. Intracellular Targeting of CEA Results in Th1-Type Antibody Responses Following Intradermal Genetic Vaccination by a Needle-Free Jet Injection Device

    Directory of Open Access Journals (Sweden)

    Susanne Johansson

    2007-01-01

    Full Text Available The route and method of immunization, as well as the cellular localization of the antigen, can influence the generation of an immune response. In general, intramuscular immunization results in Th1 responses, whereas intradermal delivery of DNA by gene gun immunization often results in more Th2 responses. Here we investigate how altering the cellular localization of the tumor antigen CEA (carcinoembryonic antigen affects the quality and amplitude of DNA vaccine-induced antibody responses in mice following intradermal delivery of DNA by a needle-free jet injection device (Biojector. CEA was expressed either in a membrane-bound form (wild-type CEA or in two truncated forms (CEA6 and CEA66 with cytoplasmic localization, where CEA66 was fused to a promiscuous T-helper epitope from tetanus toxin. Repeated intradermal immunization of BALB/c mice with DNA encoding wild-type CEA produced high antibody titers of a mixed IgG1/IgG2a ratio. In contrast, utilizing the DNA construct that resulted in intracellular targeting of CEA led to a reduced capacity to induce CEA-specific antibodies, but instead induced a Th1-biased immune response.

  7. Vaccine-Preventable Disease Photos

    Science.gov (United States)

    Home | About | A-Z | Contact | Follow Vaccine Information You Need VACCINE BASICS Evaluating Online Health Information FAQs How Vaccines Work Importance of Vaccines Paying for Vaccines State Immunization Programs ...

  8. The AIDS Pandemic in Uganda : Social Capital and the Role of NGOs in Alleviating the Impact of HIV/AIDS

    OpenAIRE

    Muriisa, Roberts Kabeba

    2007-01-01

    AIDS has a devastating impact on individuals and society. It is defined as Acquired Immune Deficiency Syndrome and it is a condition caused by the Human Immunodeficiency Virus (HIV). This condition occurs when people who have lived with HIV for a long time lose their immunity and become susceptible to various opportunistic infections. AIDS often results in death. At present, there is neither a vaccine against HIV nor a cure for AIDS. Apart from the numerous deaths it causes, HIV/AIDS has othe...

  9. [Vaccination against mouse pox].

    Science.gov (United States)

    Mahnel, H

    1985-01-01

    Attenuated MVA-strain of vaccinia virus has been efficient in the control of enzootic mousepox and in prophylactic vaccination. The virus has been used as a live vaccine for prophylactic and emergency vaccinations as well as for sanitation of populations. More than 100 000 vaccinations were carried out safely. Even after suspension of the obligatory vaccination of humans against smallpox the MVA-vaccine can be employed without risk and danger.

  10. Smallpox vaccination and bioterrorism with pox viruses.

    Science.gov (United States)

    Mayr, Anton

    2003-10-01

    Bioterrorist attacks occupy a special place amongst the innumerable potential types of terrorist attack, with the intentional release of pox viruses being especially feared in this connection. Apart from the variola virus, the agent responsible for smallpox in humans, the monkeypox virus and numerous other animal pox viruses pose potential risks for humans and animals. This risk scenario also includes recombinations between the various pox viruses, changes in hosts and genetically engineered manipulations of pox viruses. For over 200 years, the method of choice for combatting smallpox was via vaccination with a reproductive, original vaccinia virus. Worldwide eradication of smallpox at the end of the 1970s and the discontinuation of routine smallpox vaccination in 1980 can be credited to such vaccination. Unfortunately, these vaccinations were associated with a large number of postvaccinal impairments, sometimes resulting in death (e.g. postvaccinal encephalitis). The only way to restrict such postvaccinal complications was to carry out initial vaccination within the first 2 postnatal years. Initial vaccination at a later age led to such a sharp increase in the number of vaccines with complications that vaccination had to be discouraged. The dilemma of the smallpox vaccine stocks stems from the fact that a large portion of these stocks are produced with the same vaccinia strains as before. This is irresponsible, especially as the percentage of immune-suppressed persons in the population, for whom vaccination-related complications pose an especial threat, is increasing. One solution to the dilemma of the smallpox vaccine stocks is the MVA strain. It is harmless, protects humans and animals equally well against smallpox and can be applied parenterally.

  11. Oral vaccination against plague using Yersinia pseudotuberculosis.

    Science.gov (United States)

    Demeure, Christian E; Derbise, Anne; Carniel, Elisabeth

    2017-04-01

    Yersinia pestis, the agent of plague, is among the deadliest bacterial pathogens affecting humans, and is a potential biological weapon. Because antibiotic resistant strains of Yersinia pestis have been observed or could be engineered for evil use, vaccination against plague might become the only means to reduce mortality. Although plague is re-emerging in many countries, a vaccine with worldwide license is currently lacking. The vaccine strategy described here is based on an oral vaccination with an attenuated strain of Yersinia pseudotuberculosis. Indeed, this species is genetically almost identical to Y. pestis, but has a much lower pathogenicity and a higher genomic stability. Gradual modifications of the wild-type Yersinia pseudotuberculosis strain IP32953 were performed to generate a safe and immunogenic vaccine. Genes coding for three essential virulence factors were deleted from this strain. To increase cross-species immunogenicity, an F1-encapsulated Y. pseudotuberculosis strain was then generated. For this, the Y. pestis caf operon, which encodes F1, was inserted first on a plasmid, and subsequently into the chromosome. The successive steps achieved to reach maximal vaccine potential are described, and how each step affected bacterial virulence and the development of a protective immune response is discussed. The final version of the vaccine, named VTnF1, provides a highly efficient and long-lasting protection against both bubonic and pneumonic plague after a single oral vaccine dose. Since a Y. pestis strain deprived of F1 exist or could be engineered, we also analyzed the protection conferred by the vaccine against such strain and found that it also confers full protection against the two forms of plague. Thus, the properties of VTnF1 makes it one of the most efficient candidate vaccine for mass vaccination in tropical endemic areas as well as for populations exposed to bioterrorism. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Nonclinical Development of BCG Replacement Vaccine Candidates

    Directory of Open Access Journals (Sweden)

    Bernd Eisele

    2013-04-01

    Full Text Available The failure of current Mycobacterium bovis bacille Calmette–Guérin (BCG vaccines, given to neonates to protect against adult tuberculosis and the risk of using these live vaccines in HIV-infected infants, has emphasized the need for generating new, more efficacious and safer replacement vaccines. With the availability of genetic techniques for constructing recombinant BCG (rBCG strains containing well-defined gene deletions or insertions, new vaccine candidates are under evaluation at both the preclinical and clinical stages of development. Since most BCG vaccines in use today were evaluated in clinical trials decades ago and are produced by outdated processes, the development of new BCG vaccines offers a number of advantages that include a modern well-defined manufacturing process along with state-of-the-art evaluation of safety and efficacy in target populations. We provide a description of the preclinical development of two novel rBCGs, VPM1002 that was constructed by adding a modified hly gene coding for the protein listeriolysin O (LLO from Listeria monocytogenes and AERAS-422, which carries a modified pfoA gene coding for the protein perfringolysin O (PFO from Clostridium perfringens, and three genes from Mycobacterium tuberculosis. Novel approaches like these should be helpful in generating stable and effective rBCG vaccine candidates that can be better characterized than traditional BCG vaccines.

  13. Vaccine breaks: Outbreaks of myxomatosis on Spanish commercial rabbit farms.

    Science.gov (United States)

    Dalton, K P; Nicieza, I; de Llano, D; Gullón, J; Inza, M; Petralanda, M; Arroita, Z; Parra, F

    2015-08-05

    Despite the success of vaccination against myxoma virus, myxomatosis remains a problem on rabbit farms throughout Spain and Europe. In this study we set out to evaluate possible causes of myxoma virus (MYXV) vaccine failures addressing key issues with regard to pathogen, vaccine and vaccination strategies. This was done by genetically characterising MYXV field isolates from farm outbreaks, selecting a representative strain for which to assay its virulence and measuring the protective capability of a commercial vaccine against this strain. Finally, we compare methods (route) of vaccine administration under farm conditions and evaluate immune response in vaccinated rabbits. The data presented here show that the vaccine tested is capable of eliciting protection in rabbits that show high levels of seroconversion. However, the number of animals failing to seroconvert following subcutaneous vaccination may leave a large number of rabbits unprotected following vaccine administration. Successful vaccination requires the strict implication of workable, planned, on farm programs. Following this, analysis to confirm seroconversion rates may be advisable. Factors such as the wild rabbit reservoir, control of biting insects and good hygienic practices must be taken into consideration to prevent vaccine failures from occurring. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. What Have We Learnt about BCG Vaccination in the Last 20 Years?

    Science.gov (United States)

    Dockrell, Hazel M.; Smith, Steven G.

    2017-01-01

    A number of new tuberculosis (TB) vaccines have been or are entering clinical trials, which include genetically modified mycobacteria, mycobacterial antigens delivered by viral vectors, or mycobacterial antigens in adjuvant. Some of these vaccines aim to replace the existing BCG vaccine but others will be given as a boosting vaccine following BCG vaccination given soon after birth. It is clear that the existing BCG vaccines provide incomplete and variable protection against pulmonary TB. This review will discuss what we have learnt over the last 20 years about how the BCG vaccine induces specific and non-specific immunity, what factors influence the immune responses induced by BCG, and progress toward identifying correlates of immunity against TB from BCG vaccination studies. There is still a lot to learn about the BCG vaccine and the insights gained can help the development of more protective vaccines. PMID:28955344

  15. Strategies for designing and monitoring malaria vaccines targeting diverse antigens

    Directory of Open Access Journals (Sweden)

    Alyssa E Barry

    2014-07-01

    Full Text Available After more than 50 years of intensive research and development, only one malaria vaccine candidate, RTS,S, has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now catalogued the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarise the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximise the potential of future malaria vaccine

  16. Current status and future prospects of yellow fever vaccines.

    Science.gov (United States)

    Beck, Andrew S; Barrett, Alan D T

    2015-01-01

    Yellow fever 17D vaccine is one of the oldest live-attenuated vaccines in current use that is recognized historically for its immunogenic and safe properties. These unique properties of 17D are presently exploited in rationally designed recombinant vaccines targeting not only flaviviral antigens but also other pathogens of public health concern. Several candidate vaccines based on 17D have advanced to human trials, and a chimeric recombinant Japanese encephalitis vaccine utilizing the 17D backbone has been licensed. The mechanism(s) of attenuation for 17D are poorly understood; however, recent insights from large in silico studies have indicated particular host genetic determinants contributing to the immune response to the vaccine, which presumably influences the considerable durability of protection, now in many cases considered to be lifelong. The very rare occurrence of severe adverse events for 17D is discussed, including a recent fatal case of vaccine-associated viscerotropic disease.

  17. Immunology Update: New Vaccines.

    Science.gov (United States)

    Starr, S Paul

    2016-11-01

    A new 9-valent human papillomavirus (HPV) vaccine is effective against more cancer-causing HPV types than previous vaccines. HPV vaccine series started with previous vaccines can be completed with the 9-valent vaccine. Two new influenza vaccines are available for adults 65 years and older: a high-dose vaccine and an enhanced adjuvant vaccine. These elicit stronger antibody responses than standard-dose vaccines. Current guidelines specify no preference for the new versus standard-dose vaccines. Two new group B meningococcal vaccines are intended for use during outbreaks and for patients with asplenia, complement deficiencies, frequent occupational meningococcus exposure, or for patients who desire protection from type B meningococcus. These are not substitutes for the quadrivalent vaccine already in use. For pneumococcus, new recommendations state that 13-valent pneumococcal conjugate vaccine (PCV13) should be administered to patients 65 years and older, followed at least 1 year later by the polyvalent pneumococcal polysaccharide vaccine (PPSV23). For patients ages 19 to 64 years with immunocompromise and not previously vaccinated against pneumococcus, administration of these two vaccines should be separated by at least 8 weeks. Rotavirus vaccine is standard for infants at age 2 months. Also, there is a new cholera vaccine approved for use in the United States. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  18. Adjuvants for allergy vaccines

    National Research Council Canada - National Science Library

    Moingeon, Philippe

    2012-01-01

    .... Aluminum hydroxide or calcium phosphate are broadly used as adjuvants for subcutaneous allergy vaccines, whereas commercial sublingual vaccines rely upon high doses of aqueous allergen extracts...

  19. Hepatitis B Vaccine

    Science.gov (United States)

    ... a combination product containing Haemophilus influenzae type b, Hepatitis B Vaccine) ... combination product containing Diphtheria, Tetanus Toxoids, Acellular Pertussis, Hepatitis B, Polio Vaccine)

  20. Ontology-based Brucella vaccine literature indexing and systematic analysis of gene-vaccine association network

    Science.gov (United States)

    2011-01-01

    Background Vaccine literature indexing is poorly performed in PubMed due to limited hierarchy of Medical Subject Headings (MeSH) annotation in the vaccine field. Vaccine Ontology (VO) is a community-based biomedical ontology that represents various vaccines and their relations. SciMiner is an in-house literature mining system that supports literature indexing and gene name tagging. We hypothesize that application of VO in SciMiner will aid vaccine literature indexing and mining of vaccine-gene interaction networks. As a test case, we have examined vaccines for Brucella, the causative agent of brucellosis in humans and animals. Results The VO-based SciMiner (VO-SciMiner) was developed to incorporate a total of 67 Brucella vaccine terms. A set of rules for term expansion of VO terms were learned from training data, consisting of 90 biomedical articles related to Brucella vaccine terms. VO-SciMiner demonstrated high recall (91%) and precision (99%) from testing a separate set of 100 manually selected biomedical articles. VO-SciMiner indexing exhibited superior performance in retrieving Brucella vaccine-related papers over that obtained with MeSH-based PubMed literature search. For example, a VO-SciMiner search of "live attenuated Brucella vaccine" returned 922 hits as of April 20, 2011, while a PubMed search of the same query resulted in only 74 hits. Using the abstracts of 14,947 Brucella-related papers, VO-SciMiner identified 140 Brucella genes associated with Brucella vaccines. These genes included known protective antigens, virulence factors, and genes closely related to Brucella vaccines. These VO-interacting Brucella genes were significantly over-represented in biological functional categories, including metabolite transport and metabolism, replication and repair, cell wall biogenesis, intracellular trafficking and secretion, posttranslational modification, and chaperones. Furthermore, a comprehensive interaction network of Brucella vaccines and genes were

  1. Aids for Handicapped Readers.

    Science.gov (United States)

    Library of Congress, Washington, DC. Div. for the Blind and Physically Handicapped.

    The reference circular provides information on approximately 50 reading and writing aids intended for physically or visually handicapped individuals. Described are low vision aids, aids for holding a book or turning pages, aids for reading in bed, handwriting aids, typewriters and accessories, braille writing equipment, sound reproducers, and aids…

  2. AIDS.gov

    Science.gov (United States)

    ... concerns. Search Services Share This Help National HIV/AIDS Strategy Check out NHAS's latest progress in the ... from AIDS.gov Read more AIDS.gov tweets AIDS.gov HIV/AIDS Basics • Federal Resources • Using New ...

  3. HIV/AIDS - resources

    Science.gov (United States)

    Resources - HIV/AIDS ... information on AIDS : AIDS.gov -- www.aids.gov AIDS Info -- aidsinfo.nih.gov The Henry J. Kaiser Family Foundation -- www.kff.org/hivaids US Centers for Disease Control and Prevention -- www.cdc.gov/hiv

  4. Current developments in avian influenza vaccines, including safety of vaccinated birds as food.

    Science.gov (United States)

    Swayne, D E; Suarez, D L

    2007-01-01

    Until recently, most vaccines against avian influenza were based on oil-emulsified inactivated low- or high-pathogenicity viruses. Now, recombinant fowl pox and avian paramyxovirus type 1 vaccines with avian influenza H5 gene inserts (+ or - N1 gene insert) are available and licensed. New technologies might overcome existing limitations to make available vaccines that can be grown in tissue culture systems for more rapid production; provide optimized protection, as a result of closer genetic relations to field viruses; allow mass administration by aerosol, in drinking-water or in ovo; and allow easier strategies for identifying infected birds within vaccinated populations (DIVA). The technologies include avian influenza viruses with partial gene deletions, avian influenza-Newcastle disease virus chimeras, vectored vaccines such as adenoviruses and Marek's disease virus, and subunit vaccines. These new methods should be licensed only after their purity, safety, efficacy and potency against avian influenza viruses have been demonstrated, and, for live vectored vaccines, restriction of viral transmission to unvaccinated birds. Use of vaccines in countries affected by highly pathogenic avian influenza will not only protect poultry but will provide additional safety for consumers. Experimental studies have shown that birds vaccinated against avian influenza have no virus in meat and minimal amounts in eggs after HPAI virus challenge, and that replication and shedding from their respiratory and alimentary tracts is greatly reduced.

  5. The blueprint for vaccine research & development: walking the path for better TB vaccines.

    Science.gov (United States)

    Lienhardt, Christian; Fruth, Uli; Greco, Michel

    2012-03-01

    Much progress has been made in TB vaccine research over the past ten years, and a series of new live genetically altered mycobacterial vaccines, viral-vectored vaccines and sub-unit vaccines composed of recombinant antigens are presently in clinical development phases. A series of challenges remain, however, to be addressed in order to develop new and better candidate TB vaccines, especially an expansion of our knowledge of what constitutes protective immunity in TB, the identification of the most suitable vaccination strategies, the capacity and infrastructure to conduct large-scale trials in endemic countries, the investment in vaccine manufacturing capacity, and the development of effective regulatory pathways that shorten review timelines. In this brief paper, we review how the Vaccine Blueprint places itself in the continuation and expansion of two groundbreaking initiatives taking place over the last two years, that is, an invigorated Global Plan to Stop TB 2011-2015 that gives a clear emphasis on Research and Development, and the International Roadmap for TB Research, that identifies key priorities for research on TB vaccines, spanning from the most fundamental research aspects to the more field-based epidemiological aspects.

  6. Vaccines against biologic agents: uses and developments.

    Science.gov (United States)

    Ales, Noel C; Katial, Rohit K

    2004-03-01

    Although the Geneva protocol that prohibits the use of chemical and biologic weapons was ratified in 1925, many countries failed to accept this protocol: others stipulated retaliation, and some, like the United States, did not ratify the protocol for decades. This delay allowed the continued development of chemical and biologic agents. Members of the health care community are responsible for determining the best way to protect society from the potentially devastating effects of these biologic agents. Ideally,these diseases would be prevented from ever developing into systemic illnesses. In the past, vaccination has been a successful means of eradicating disease. Vaccines remain a hopeful therapy for the future, but time is short,and there are many obstacles.Information regarding bioterrorism agents and their treatments comes mainly from dated data or from in vitro or animal studies that may not apply to human treatment and disease. Additionally, the current threat of bioterrorism does not allow enough time for accurate, well-designed,controlled studies in humans before the release of investigational vaccines. Furthermore, some human studies would not be safe or ethical. Finally,many members of society suffer from illnesses that would put them at high risk to receive prophylactic vaccination. It is therefore naive to believe that vaccines would be the ultimate protection from these agents. In addition to vaccine development, there must be concurrent investigations into disease management and treatment. Even in instances in which vaccination is known to be an effective means of disease protection. biologic agents may be presented in a manner that renders vaccines ineffective. Virulent strains of organisms may be used, more than one organism may be used in tandem to increase virulence, and strains may be selected for antibiotic and vaccine resistance. Genetically engineered strains may use virulence factors other than those targeted in vaccines, and high

  7. Macroeconomic Issues in Foreign Aid

    DEFF Research Database (Denmark)

    Hjertholm, Peter; Laursen, Jytte; White, Howard

    foreign aid, macroeconomics of aid, gap models, aid fungibility, fiscal response models, foreign debt,......foreign aid, macroeconomics of aid, gap models, aid fungibility, fiscal response models, foreign debt,...

  8. PERSPECTIVES OF THE DEVELOPMENT OF MUCOSAL VACCINES AGAINST DANGEROUS INFECTIONS ON THE BASE OF TRANSGENIC PLANTS

    Directory of Open Access Journals (Sweden)

    A.V. Tretyakova

    2012-08-01

    Full Text Available Mucosal vaccines created on the base of transgenic plants reacting with mucosal layers of the intestines and other organs are considered to be the perspective method of the vaccination. These vaccines induce both mucosal and general humoral immunogenicity after the peroral administration. The folding of antigenic proteins synthesizing in plants occurs via eukaryotic type and has advantages before yeast and prokaryotic platforms. This feature results to more adequate synthesis of antibodies against pathogens and to the interaction with effector molecules of complement. Earlier we together with The State Scientific Center “Vector”, Institute of chemical biology and fundamental medicine SB RAS and Dr R.Hammond from Laboratory of Plant Pathology (Maryland, USA created two candidate vaccines : one of them against AIDS (HIV-1 and hepatitis B on the base of the chimeric gene TBI-HBS, encoding simultaneously 9 antigenic determinants of HIV-1 and the main surface antigen of hepatitis B (HBsAg. The second candidate vaccine was created against hepatitis B on the base of the genetic construct with the gene preS2-S encoding the synthesis of two subunits of the main surface antigen of hepatitis B and the signal peptide HDEL which directed antigens for the accumulation on ER. Both vaccines were tested on mice and confirmed their immunogenicity as the pronounced antibodies response. Twice vaccinated mice maintained the antibodies response during 11 months after there was little tendency to lowering. It was established that transgenic plants – vaccines (tomato kept the capability to the synthesis of antigenic determinants in seven seed generations during 7 years. The results of the development of the mucosal vaccine against cervical carcinoma (carcinoma of uterine cervix evoked by human papillomaviruses of high oncogenic risks were presented in this report. We created the genetic construct consisting of 35S CaMV promoter, Ώ (omega leader of TMV, the

  9. Crawling Aid

    Science.gov (United States)

    1982-01-01

    The Institute for the Achievement of Human Potential developed a device known as the Vehicle for Initial Crawling (VIC); the acronym is a tribute to the crawler's inventor, Hubert "Vic" Vykukal; is an effective crawling aid. The VIC is used by brain injured children who are unable to crawl due to the problems of weight-bearing and friction, caused by gravity. It is a rounded plywood frame large enough to support the child's torso, leaving arms and legs free to move. On its underside are three aluminum discs through which air is pumped to create an air-bearing surface that has less friction than a film of oil. Upper side contains the connection to the air supply and a pair of straps which restrain the child and cause the device to move with him. VIC is used with the intent to recreate the normal neurological connection between brain and muscles. Over repetitive use of the device the child develops his arm and leg muscles as well as coordination. Children are given alternating therapy, with and without the VIC until eventually the device is no longer needed.

  10. Vaccines and vaccinations. The strategic issues.

    Science.gov (United States)

    Ford, R B

    2001-05-01

    The rapid proliferation of companion animal vaccines, advances in diagnostic and vaccine technology, and concerns over vaccine safety are clearly among the most important issues practicing veterinarians face as we enter the 21st century. Although many would argue that these are already issues, the future promises to be especially challenging as the vaccines we currently use and the protocols we recommend undergo unprecedented review.

  11. Applications of nanoparticles for DNA based rabies vaccine.

    Science.gov (United States)

    Shah, Muhammad Ali A; Khan, Sajid Umar; Ali, Zeeshan; Yang, Haowen; Liu, Keke; Mao, Lanlan

    2014-01-01

    Rabies is a fatal encephalomyelitis. Most cases occur in developing countries and are transmitted by dogs. The cell culture vaccines as associated with high cost; therefore, have not replaced the unsafe brain-derived vaccines. In the developing countries these brain-derived rabies vaccines still can be seen in action. Moreover, there will be a need for vaccines against rabies-related viruses against which classical vaccines are not always effective. The worldwide incidence of rabies and the inability of currently used vaccination strategies to provide highly potent and cost-effective therapy indicate the need for alternate control strategies. DNA vaccines have emerged as the safest vaccines and best remedy for complicated diseases like hepatitis, HIV, and rabies. A number of recombinant DNA vaccines are now being developed against several diseases such as AIDS and malaria. Therefore, it can be a valuable alternative for the production of cheaper rabies vaccines against its larger spectrum of viruses. In this review we report published data on DNA-based immunization with sequences encoding rabies with special reference to nanotechnology.

  12. Scientific Opinion on field trials for bovine tuberculosis vaccination

    Directory of Open Access Journals (Sweden)

    EFSA Panel on Animal Health and Welfare (AHAW

    2013-12-01

    Full Text Available The opinion provides advice relating to the design of field trials to test the performance of a vaccine for bovine tuberculosis (bTB, along with a test to Detect Infected among Vaccinated Animals (DIVA. The objective of cattle vaccination is to use the vaccine in combination with presently applied control measures within the EU as an aid towards bTB eradication. The ideal field trials for the DIVA test will follow the OIE guidelines for test validation. Any deviations from the ideal trial design in relation to DIVA test performance should be justified, and the bias that may subsequently be introduced should be accounted for. The ideal field trial design for vaccination performance should implement a double-blind randomised test scenario, and allow for known risk factors in the field situation. Any deviations from the ideal trial design in relation to vaccine performance should also be justified and bias that may subsequently be introduced should be accounted for. Relevant risk factors and possible confounders that should be taken into consideration in the design of field trials are described in this opinion. The safety of a candidate vaccine is guaranteed in the registration of a vaccine medication by a competent authority. The field trials will need to fulfil these requirements to prove that the use of this vaccine in the field is safe for both public health and the environment. Some additional remarks regarding the safety of this specific vaccine are included in this opinion.

  13. The vaccines for Bovine Herpesvirus Type 1: A review

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... 1Zhengzhou college of Animal Husbandry Engineering, Zhengzhou, China, 450011. 2School of Food ... alternative vaccination strategies against BoHV-1. Genetic ... been tested to evaluate their safety and efficacy with.

  14. Heart attack first aid

    Science.gov (United States)

    First aid - heart attack; First aid - cardiopulmonary arrest; First aid - cardiac arrest ... A heart attack occurs when the blood flow that carries oxygen to the heart is blocked. The heart muscle ...

  15. Blisters: First Aid

    Science.gov (United States)

    First aid Blisters: First aid Blisters: First aid By Mayo Clinic Staff If a blister isn't too painful, try to keep it intact. Unbroken skin over a blister may provide a natural barrier to bacteria and ...

  16. HIV and AIDS

    Science.gov (United States)

    ... Emergency Room? What Happens in the Operating Room? HIV and AIDS KidsHealth > For Kids > HIV and AIDS ... actually the virus that causes the disease AIDS. HIV Hurts the Immune System People who are HIV ...

  17. Breathing difficulties - first aid

    Science.gov (United States)

    Difficulty breathing - first aid; Dyspnea - first aid; Shortness of breath - first aid ... Breathing difficulty is almost always a medical emergency. An exception is feeling slightly winded from normal activity, ...

  18. Dried influenza vaccines : Over the counter vaccines

    NARCIS (Netherlands)

    Saluja, Vinay; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2010-01-01

    Since last year influenza pandemic has struck again after 40 years, this is the right moment to discuss the different available formulation options for influenza vaccine. Looking back to the last 4 decades, most vaccines are still formulated as liquid solution. These vaccines have shown a poor

  19. Dried influenza vaccines : Over the counter vaccines

    NARCIS (Netherlands)

    Saluja, Vinay; Hinrichs, Wouter L. J.; Frijlink, Henderik W.

    2010-01-01

    Since last year influenza pandemic has struck again after 40 years, this is the right moment to discuss the different available formulation options for influenza vaccine. Looking back to the last 4 decades, most vaccines are still formulated as liquid solution. These vaccines have shown a poor stabi

  20. Guillain-Barré Syndrome (GBS) and Flu Vaccine

    Science.gov (United States)

    ... and Flu Vaccines Vaccine Effectiveness Types of Flu Vaccine Flu Shot Quadrivalent Influenza Vaccine Intradermal Influenza (Flu) Vaccination ... Cell-Based Flu Vaccines Flublok Seasonal Influenza (Flu) Vaccine Flu Vaccination by Jet Injector Adjuvant Vaccine Vaccine Virus ...

  1. 麻疹减毒活疫苗S191生产用毒株的遗传稳定性%Genetic Stability of S191 Strain for Production of Live Attenuated Measles Vaccine

    Institute of Scientific and Technical Information of China (English)

    赵炜炜; 封多佳; 董小曼

    2009-01-01

    目的 分析麻疹减毒活疫苗S191生产用毒株病毒结构基因的遗传稳定性.方法 将北京天坛生物制品股份有限公司(天坛生物)用于麻疹疫苗生产的S191株25代病毒(S191-BJ25)传至29代(S191-BJ29),上海生物制品研究所保存的S191株24代病毒(S191-SH24)传至33代(S191-SH33).从S191株传代病毒中提取RNA,对病毒结构基因片段N、M、F,H进行扩增及测序.将测序结果与GenBank中1994年收录的S191株麻疹病毒的相应序列进行比较分析.结果 S191-BJ25传代病毒N、M、F、H 4个基因的总突变率为0.02%,S191-SH2A传代病毒为0.15%;与1994年的S191疫苗株相比,S191-BJ25传代病毒N、M、F、H 4个基因的总突变率为0.3%,S191-SH24传代病毒为0.4%.结论 目前天坛生物使用的麻疹疫苗S191株生产用三级种子库具有可靠的遗传稳定性,从主代种子到疫苗的传代过程中,N、M、F、H结构基因表现出稳定的分子遗传特征.目前使用的S191毒株的4个结构基因较1994年以前的疫苗株发生了变化.但目前没有证据表明这些变化对免疫原性产生不利影响.%Objective To analyze the genetic stability of structural gene of S191 strain for production of live attenuated measles vaccine.Methods The S191 strain for production of measles vaccine by Beijing Tiantan Biological Products Co.Ltd Was subcuhured from passage 25(S191-BJ25)to 29 (S191-BJ29),and that by Shanghai Institute of Biological Products from passage 24(S191-SH24)to 33(S191-SH33).RNAs were extracted from the subcultured strains for amplification and sequencing of structural gene fragments N,M,F and H.The sequencing results were compared with those of the corresponding sequences of S191 strain included in GenBank in 1994.Results The total mutation rate of N,M,F and H genes of subcultured S191-BJ25 Was 0.02%.while that of subcuhured S191-SH24 was 0.15%.Compared with those of S191 strain included in GenBank in 1994,the total mutation rate of the four genes of

  2. Seropositivity to non-vaccine incorporated genotypes induced by the bivalent and quadrivalent HPV vaccines: A systematic review and meta-analysis.

    Science.gov (United States)

    Bissett, Sara L; Godi, Anna; Jit, Mark; Beddows, Simon

    2017-07-13

    Human papillomavirus vaccines have demonstrated remarkable efficacy against persistent infection and disease associated with vaccine-incorporated genotypes and a degree of efficacy against some genetically related, non-vaccine-incorporated genotypes. The vaccines differ in the extent of cross-protection against these non-vaccine genotypes. Data supporting the role for neutralizing antibodies as a correlate or surrogate of cross-protection are lacking, as is a robust assessment of the seroconversion rates against these non-vaccine genotypes. We performed a systematic review and meta-analysis of available data on vaccine-induced neutralizing antibody seropositivity to non-vaccine incorporated HPV genotypes. Of 304 articles screened, 9 were included in the analysis representing ca. 700 individuals. The pooled estimate for seropositivity against HPV31 for the bivalent vaccine (86%; 95%CI 78-91%) was higher than that for the quadrivalent vaccine (61%; 39-79%; p=0.011). The pooled estimate for seropositivity against HPV45 for the bivalent vaccine (50%; 37-64%) was also higher than that for the quadrivalent vaccine (16%; 6-36%; p=0.007). Seropositivity against HPV33, HPV52 and HPV58 were similar between the vaccines. Mean seropositivity rates across non-vaccine genotypes were positively associated with the corresponding vaccine efficacy data reported from vaccine trials. These data improve our understanding of vaccine-induced functional antibody specificity against non-vaccine incorporated genotypes and may help to parameterize vaccine-impact models and improve patient management in a post-vaccine setting. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States.

    Directory of Open Access Journals (Sweden)

    Angela B Brueggemann

    2007-11-01

    Full Text Available The heptavalent pneumococcal conjugate vaccine (PCV7 was introduced in the United States (US in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990, but also by the emergence of a novel "vaccine escape recombinant" pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny, recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term.

  4. Characterization nanoparticles-based vaccines and vaccine candidates: a Transmission Electron Microscopy study

    Directory of Open Access Journals (Sweden)

    I. Menéndez I

    2016-05-01

    Full Text Available Transmission Electron Microscopy (TEM is a valuable tool for the biotech industry. This paper summarizes some of the contributions of MET in the characterization of the recombinant antigens are part of vaccines or vaccine candidates obtained in the CIGB. It mentions the use of complementary techniques MET (Negative staining, and immunoelectron that enhance visualization and ultrastructural characterization of the recombinant proteins obtained by Genetic Engineering.

  5. Mucosal vaccination of fish

    NARCIS (Netherlands)

    Rombout, J.H.W.M.; Kiron, V.

    2014-01-01

    Among the novel vaccination methods, mucosal vaccination seems to possess all the desired criteria. The chapter reviews the state-of-the-art knowledge regarding this type of vaccination with a focus on their uptake, immune stimulation, and where possible, discusses their potential as future vaccines

  6. History of vaccination.

    Science.gov (United States)

    Plotkin, Stanley

    2014-08-26

    Vaccines have a history that started late in the 18th century. From the late 19th century, vaccines could be developed in the laboratory. However, in the 20th century, it became possible to develop vaccines based on immunologic markers. In the 21st century, molecular biology permits vaccine development that was not possible before.

  7. AIDS education -- theory and practice. AIDS education: getting the right message across.

    Science.gov (United States)

    1990-01-01

    In the absence of a drug or vaccine to curtail the acquired immunodeficiency syndrome (AIDS) epidemic, health education offers the most productive approach. The majority of National AIDS Committees have established AIDS education programs aimed at reducing the high-risk behaviors associated with AIDS. The content of an AIDS educational program varies according to the educational level and cultural norms of the target audience, but is crucial to determining whether misconceptions and prejudices about the disease will be reinforced or dispelled. It is suggested that all AIDS-related materials should be examined in relation to the following factors: accuracy (correct statistics and factually true statements); current (the presentation of present trends and developments); appropriate to objectives (suitable for the purpose); appropriate to the level of the target audience (in terms of not only literacy level, but also emotional maturity and special sensitivities); adequate (sufficient information as to be useful); and objective and unbiased. Each subject covered in AIDS prevention materials--the natural history of the epidemic, the nature of infection with AIDS, signs and symptoms, modes of transmission, and preventive strategies--should be analyzed in relation to the above factors.

  8. Using Plasmids as DNA Vaccines for Infectious Diseases.

    Science.gov (United States)

    Tregoning, John S; Kinnear, Ekaterina

    2014-12-01

    DNA plasmids can be used to induce a protective (or therapeutic) immune response by delivering genes encoding vaccine antigens. That naked DNA (without the refinement of coat proteins or host evasion systems) can cross from outside the cell into the nucleus and be expressed is particularly remarkable given the sophistication of the immune system in preventing infection by pathogens. As a result of the ease, low cost, and speed of custom gene synthesis, DNA vaccines dangle a tantalizing prospect of the next wave of vaccine technology, promising individual designer vaccines for cancer or mass vaccines with a rapid response time to emerging pandemics. There is considerable enthusiasm for the use of DNA vaccination as an approach, but this enthusiasm should be tempered by the successive failures in clinical trials to induce a potent immune response. The technology is evolving with the development of improved delivery systems that increase expression levels, particularly electroporation and the incorporation of genetically encoded adjuvants. This review will introduce some key concepts in the use of DNA plasmids as vaccines, including how the DNA enters the cell and is expressed, how it induces an immune response, and a summary of clinical trials with DNA vaccines. The review also explores the advances being made in vector design, delivery, formulation, and adjuvants to try to realize the promise of this technology for new vaccines. If the immunogenicity and expression barriers can be cracked, then DNA vaccines may offer a step change in mass vaccination.

  9. Nucleic Acid Vaccines

    Institute of Scientific and Technical Information of China (English)

    LU Shan

    2004-01-01

    @@ Anew method of immunization was discovered in the early 1990s. Several research groups independently demonstrated that direct inoculation of DNA plasmids coding for a specific protein antigen could elicit immune responses against that antigen[1-4].Since in theory the mRNA molecules also have the potential to be translated into the protein antigen, this vaccination approach was officially named by WHO as the nucleic acid vaccination even though the term DNA vaccine has been used more commonly in the literature. This novel approach is considered the fourth generation of vaccines after live attenuated vaccines, killed or inactivated vaccines and recombinant protein based subunit vaccines.

  10. Vaccine adverse events.

    Science.gov (United States)

    Follows, Jill

    2012-01-01

    Millions of adults are vaccinated annually against the seasonal influenza virus. An undetermined number of individuals will develop adverse events to the influenza vaccination. Those who suffer substantiated vaccine injuries, disabilities, and aggravated conditions may file a timely, no-fault and no-cost petition for financial compensation under the National Vaccine Act in the Vaccine Court. The elements of a successful vaccine injury claim are described in the context of a claim showing the seasonal influenza vaccination was the cause of Guillain-Barré syndrome.

  11. Antibody persistence and T-cell balance: Two key factors confronting HIV vaccine development

    Science.gov (United States)

    Lewis, George K.; DeVico, Anthony L.; Gallo, Robert C.

    2014-01-01

    The quest for a prophylactic AIDS vaccine is ongoing, but it is now clear that the successful vaccine must elicit protective antibody responses. Accordingly, intense efforts are underway to identify immunogens that elicit these responses. Regardless of the mechanism of antibody-mediated protection, be it neutralization, Fc-mediated effector function, or both, antibody persistence and appropriate T-cell help are significant problems confronting the development of a successful AIDS vaccine. Here, we discuss the evidence illustrating the poor persistence of antibody responses to Env, the envelope glycoprotein of HIV-1, and the related problem of CD4+ T-cell responses that compromise vaccine efficacy by creating excess cellular targets of HIV-1 infection. Finally, we propose solutions to both problems that are applicable to all Env-based AIDS vaccines regardless of the mechanism of antibody-mediated protection. PMID:25349379

  12. Vaccination in Fish

    DEFF Research Database (Denmark)

    Chettri, Jiwan Kumar

    significant losses in aquacultural enterprises but vaccination methods implemented since the 1990s have demonstrated their role as one of the most efficient disease control strategies. These have been particularly successful with regard to bacterial diseases in Norwegian salmon farming where multivalent...... vaccines have reduced the need for usage of antibiotics with more than 99 % since the 1980s. Fish can be vaccinated by three different administration routes: injection, immersion and oral vaccination. Injection vaccination (intraperitoneal injection of vaccine) is the most time consuming and labor...... intensive method, which however, provides the best protection of the fish. Immersion vaccination is used for immunization of a high number of small fish is cost-efficient and fast (30 sec immersion into vaccine). Oral vaccination (vaccine in feed) is the least efficient. As in higher vertebrates fish...

  13. Evaluation of Novel Oral Vaccine Candidates and Validation of a Caprine Model of Johne's Disease

    Directory of Open Access Journals (Sweden)

    Murray E. Hines

    2014-03-01

    Full Text Available Johne’s disease (JD caused by Mycobacterium avium subspecies paratuberculosis (MAP is a major threat to the dairy industry and possibly some cases of Crohn’s disease in humans. A MAP vaccine that reduced of clinical disease and/or reduced fecal shedding would aid in the control of JD. The objectives of this study were 1 to evaluate the efficacy of 5 attenuated strains of MAP as vaccine candidates compared to a commercial control vaccine using the protocol proposed by the Johne’s Disease Integrated Program (JDIP Animal Model Standardization Committee (AMSC, and 2 to validate the AMSC Johne’s disease goat challenge model. Eighty goat kids were vaccinated orally twice at 8 and 10 weeks of age with an experimental vaccine or once subcutaneously at 8 weeks with Silirum® (Zoetis, or a sham control oral vaccine at 8 and 10 weeks. Kids were challenged orally with a total of approximately 1.44 X 10^9 CFU divided in 2 consecutive daily doses using MAP ATCC-700535 (K10-like bovine isolate. All kids were necropsied at 13 months post challenge. Results indicated that the AMSC goat challenge model is a highly efficient and valid model for JD challenge studies. None of the experimental or control vaccines evaluated prevented MAP infection or eliminated fecal shedding, although the 329 vaccine lowered the incidence of infection, fecal shedding, tissue colonization and reduced lesion scores, but less than the control vaccine. Based on our results the relative performance ranking of the experimental live-attenuated vaccines evaluated, the 329 vaccine was the best performer, followed by the 318 vaccine, then 316 vaccine, 315 vaccine and finally the 319 vaccine was the worst performer. The subcutaneously injected control vaccine outperformed the orally-delivered mutant vaccine candidates. Two vaccines (329 and 318 do reduce presence of JD gross and microscopic lesions, slow progression of disease, and one vaccine (329 reduced fecal shedding and tissue

  14. Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's disease.

    Science.gov (United States)

    Hines, Murray E; Turnquist, Sue E; Ilha, Marcia R S; Rajeev, Sreekumari; Jones, Arthur L; Whittington, Lisa; Bannantine, John P; Barletta, Raúl G; Gröhn, Yrjö T; Katani, Robab; Talaat, Adel M; Li, Lingling; Kapur, Vivek

    2014-01-01

    Johne's disease (JD) caused by Mycobacterium avium subspecies paratuberculosis (MAP) is a major threat to the dairy industry and possibly some cases of Crohn's disease in humans. A MAP vaccine that reduced of clinical disease and/or reduced fecal shedding would aid in the control of JD. The objectives of this study were (1) to evaluate the efficacy of 5 attenuated strains of MAP as vaccine candidates compared to a commercial control vaccine using the protocol proposed by the Johne's Disease Integrated Program (JDIP) Animal Model Standardization Committee (AMSC), and (2) to validate the AMSC Johne's disease goat challenge model. Eighty goat kids were vaccinated orally twice at 8 and 10 weeks of age with an experimental vaccine or once subcutaneously at 8 weeks with Silirum® (Zoetis), or a sham control oral vaccine at 8 and 10 weeks. Kids were challenged orally with a total of approximately 1.44 × 10(9) CFU divided in two consecutive daily doses using MAP ATCC-700535 (K10-like bovine isolate). All kids were necropsied at 13 months post-challenge. Results indicated that the AMSC goat challenge model is a highly efficient and valid model for JD challenge studies. None of the experimental or control vaccines evaluated prevented MAP infection or eliminated fecal shedding, although the 329 vaccine lowered the incidence of infection, fecal shedding, tissue colonization and reduced lesion scores, but less than the control vaccine. Based on our results the relative performance ranking of the experimental live-attenuated vaccines evaluated, the 329 vaccine was the best performer, followed by the 318 vaccine, then 316 vaccine, 315 vaccine and finally the 319 vaccine was the worst performer. The subcutaneously injected control vaccine outperformed the orally-delivered mutant vaccine candidates. Two vaccines (329 and 318) do reduce presence of JD gross and microscopic lesions, slow progression of disease, and one vaccine (329) reduced fecal shedding and tissue colonization.

  15. [HIV/AIDS infection. The Brazilian view. AIDS in Brazil].

    Science.gov (United States)

    Gonçalves, A P; De Sa, C A; Rubini, N

    1996-01-01

    The Ministry of Health coordinates and orients in Brazil all the activities concerning the acquired immunodeficiency syndrome which is officially designated as AIDS. The first AIDS' case registered in Brazil was, by retrospective diagnosis, in 1981 but it was in 1982 that the first two diagnosis in live patients were made. The incidence is very high in this country that is among the ones where the higher number of cases are being registered. The great majority of the Brazilian cases occurs in the cities and in direct proportion to the population index. The groups of risk are the same universally known and a comparative increase of heterosexual transmission is noted, chiefly due to the use of injectable drugs and bisexuality of the male partners. Another problem that is being increased is pediatric AIDS, with raising importance of perinatal transmission as well as the use of injectable drugs and precocious prostitution in adolescence. The transfusional and haemophilic AIDS have proportionally decreased due to the control of blood products. The control and the orientation activity of the Ministry of Health is directed to varied points such as: compulsory cases notification, cooperation between public and private sectors, preventive and sexual orientation, freely delivered medication and laboratory tests including sigilous tests, lay and technical personnel preparation, diversified informative and educational campaigns. Trial tests with anti-HIV vaccines have begun to be performed. Multiple Reference Centers were officially established by the administration. Among them is to be quoted the Hospital Universitário Gaffrée Guinle of Rio de Janeiro where the authors work. It is credited for its intensive activity and pioneerism. In this Institution special attention was due against discrimination of HIV-infected patients, to diagnosis, to anonymous and sigilous tests, to medical and psychological assistance, to myocardium involvement, to the virologic study of the

  16. Vaccines against poverty

    OpenAIRE

    MacLennan, Calman A.; Saul, Allan

    2014-01-01

    With the 2010s declared the Decade of Vaccines, and Millennium Development Goals 4 and 5 focused on reducing diseases that are potentially vaccine preventable, now is an exciting time for vaccines against poverty, that is, vaccines against diseases that disproportionately affect low- and middle-income countries (LMICs). The Global Burden of Disease Study 2010 has helped better understand which vaccines are most needed. In 2012, US$1.3 billion was spent on research and development for new vacc...

  17. Plant-Based Vaccines: Production and Challenges

    Directory of Open Access Journals (Sweden)

    Erna Laere

    2016-01-01

    Full Text Available Plant-based vaccine technologies involve the integration of the desired genes encoding the antigen protein for specific disease into the genome of plant tissues by various methods. Agrobacterium-mediated gene transfer and transformation via genetically modified plant virus are the common methods that have been used to produce effective vaccines. Nevertheless, with the advancement of science and technology, new approaches have been developed to increase the efficiency of former methods such as biolistic, electroporation, agroinfiltration, sonication, and polyethylene glycol treatment. Even though plant-based vaccines provide many benefits to the vaccine industry, there are still challenges that limit the rate of successful production of these third-generation vaccines. Even with all the limitations, continuous efforts are still ongoing in order to produce efficient vaccine for many human and animals related diseases owing to its great potentials. This paper reviews the existing conventional methods as well as the development efforts by researchers in order to improve the production of plant-based vaccines. Several challenges encountered during and after the production process were also discussed.

  18. Sex-based differences in immune function and responses to vaccination

    Science.gov (United States)

    Klein, Sabra L.; Marriott, Ian; Fish, Eleanor N.

    2015-01-01

    Females typically develop higher antibody responses and experience more adverse reactions following vaccination than males. These differences are observed in response to diverse vaccines, including the bacillus Calmette-Guerin vaccine, the measles, mumps and rubella vaccine, the yellow fever virus vaccine and influenza vaccines. Sex differences in the responses to vaccines are observed across diverse age groups, ranging from infants to aged individuals. Biological as well as behavioral differences between the sexes are likely to contribute to differences in the outcome of vaccination between the sexes. Immunological, hormonal, genetic and microbiota differences between males and females may also affect the outcome of vaccination. Identifying ways to reduce adverse reactions in females and increase immune responses in males will be necessary to adequately protect both sexes against infectious diseases. PMID:25573105

  19. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations.

    Science.gov (United States)

    Leunda, Amaya; Baldo, Aline; Goossens, Martine; Huygen, Kris; Herman, Philippe; Romano, Marta

    2014-06-16

    Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.

  20. A critical question for HIV vaccine development: Which antibodies to induce?

    OpenAIRE

    Zolla-Pazner, Susan

    2014-01-01

    A vaccine against HIV-1 must prevent infection against genetically diverse virus strains. Two approaches are currently being pursued to elicit antibody-mediated protection: vaccines that induce potent and broadly reactive neutralizing antibodies (bnAbs) or vaccines that induce “conventional antibodies,” which are less potent and broadly neutralizing in comparison. Although bnAbs may provide the greatest level of protection, their structural and genetic characteristics make their elicitation t...

  1. Recent advances in vaccination of non-responders to standard dose hepatitis B virus vaccine

    Institute of Scientific and Technical Information of China (English)

    Saqib; Walayat; Zohair; Ahmed; Daniel; Martin; Srinivas; Puli; Michael; Cashman; Sonu; Dhillon

    2015-01-01

    Hepatitis B virus(HBV) infection is a global health problem. It is estimated there are more than 2 billion individuals exposed to the virus and 250 million are chronically infected. Hepatitis B is the cause of more than 600000 annual deaths due to cirrhosis and hepatocellular carcinoma. An effective vaccine exists and preventative initiatives center around universal vaccination especially in those at highest risk. Effective vaccination algorithms have led to a significant decline in the development of new infections and its devastating consequences. The vaccine is administered intramuscularly in three doses, with 95% showing long lasting serologic immunity. An additional fourth dose or a repeated higher dose three course regimen is given to those that fail to show immunity. Despite these additional regimens, some remain vulnerable to hepatitis B and are deemed nonresponders. Individuals with chronic disease states such as kidney disease, liver disease, diabetes mellitus, as well as those with a genetic predisposition, and those on immunomodulation therapy, have the highest likelihood of non-response. Various strategies have been developed to elicit an immune response in these individuals. These include increased vaccination dose, intradermal administration, alternative adjuvants, alternative routes of administration, co-administration with other vaccines, and other novel therapies. These alternative strategies can show improved response and lasting immunity. In summary, HBV vaccination is a major advance of modern medicine and all individuals at risk should be sought and vaccinated with subsequent adequate titers demonstrated.

  2. Genetic conservation of hlyA determinants and serological conservation of HlyA: basis for developing a broadly cross-reactive subunit Escherichia coli alpha-hemolysin vaccine.

    Science.gov (United States)

    O'Hanley, P; Marcus, R; Baek, K H; Denich, K; Ji, G E

    1993-03-01

    The HlyA determinant among Escherichia coli isolates from patients with symptomatic urinary tract infection was compared in this report with a prototype HlyA encoded by pSF4000 by DNA-DNA hybridization tests with 20-base synthetic oligonucleotides and monoclonal antibody binding and neutralization assays. Hybridization results demonstrated that 349 (98%) of 357 definitive reactions among 54 hemolytic strains shared homology with seven DNA probes spanning many HlyA regions corresponding to residues (R) 41 to 47, 55 to 61, 248 to 254, 306 to 312, 336 to 343, 402 to 408, and 929 to 935. Genetic divergence was identified by lack of hybridization signals among 17 to 76% of the hemolytic strains within the distal portion of a predicted hydrophobic region corresponding to R491 to 319 and within a predicted hydrophilic region corresponding to R491 to 497 and R532 to 538. Serological studies demonstrated that 26 (81%) culture supernatants of 32 hemolytic strains were bound by all 12 monoclonal anti-HlyA antibodies. Among five of six remaining strains, the culture supernatants were bound by 3 to 11 monoclonal antibody preparations. There was only one hemolytic culture supernatant that failed to be bound by any monoclonal antibody, although the strain hybridized with nine hemolysin DNA probes. In addition, hemolytic activity of all 24 different culture supernatants tested was reduced by at least twofold by one monoclonal antibody specific for R2-161. These data extend and support previous views that the HlyA determinant is conserved among E. coli strains and suggest that a broadly cross-reactive HlyA subunit vaccine can be developed.

  3. [Bacterial spore--a new vaccine vehicle--a review].

    Science.gov (United States)

    Wang, Yanchun; Zhang, Zhaoshan

    2008-03-01

    Bacterial spores are robust and dormant life forms with formidable resistance properties. Spores of the genus Bacillus have been used for a long time as probiotics for oral bacteriotherapy both in humans and animals. Recently, genetically modified B. subtilis spores and B. anthracis spores have been used as indestructible delivery vehicles for vaccine antigens. They were used as vaccine vehicles or spore vaccine for oral immunization against tetanus and anthrax, and the results were very exciting. Unlike many second generation vaccine systems currently under development, bacterial spores offer heat stability and the flexibility for genetic manipulation. At the same time, they can elicit mucosal immune response by oral and nasal administration. This review focuses on the use of recombinant spores as vaccine delivery vehicles.

  4. New developments and concepts related to biomarker application to vaccines

    Science.gov (United States)

    Ahmed, S. Sohail; Black, Steve; Ulmer, Jeffrey

    2012-01-01

    Summary This minireview will provide a perspective on new developments and concepts related to biomarker applications for vaccines. In the context of preventive vaccines, biomarkers have the potential to predict adverse events in select subjects due to differences in genetic make‐up/underlying medical conditions or to predict effectiveness (good versus poor response). When expanding them to therapeutic vaccines, their utility in identification of patients most likely to respond favourably (or avoid potentially negative effects of treatment) becomes self‐explanatory. Despite the progress made so far on dissection of various pathways of biological significance in humans, there is still plenty to unravel about the mysteries related to the quantitative and qualitative aspects of the human host response. This review will provide a focused overview of new concepts and developments in the field of vaccine biomarkers including (i) vaccine‐dependent signatures predicting subject response and safety, (ii) predicting therapeutic vaccine efficacy in chronic diseases, (iii) exploring the genetic make‐up of the host that may modulate subject‐specific adverse events or affect the quality of immune responses, and (iv) the topic of volunteer stratification as a result of biomarker screening (e.g. for therapeutic vaccines but also potentially for preventive vaccines) or as a reflection of an effort to compare select groups (e.g. vaccinated subjects versus patients recovering from infection) to enable the discovery of clinically relevant biomarkers for preventive vaccines. PMID:21895991

  5. Home Health Aides

    Science.gov (United States)

    ... specifications Help to keep clients engaged in their social networks and communities Home health aides, unlike personal care aides , typically work ... self-care and everyday tasks. They also provide social supports and assistance that enable clients to participate in their ... more information about home health aides, including voluntary credentials for aides, visit ...

  6. Vaccine Effectiveness - How Well Does the Seasonal Flu Vaccine Work?

    Science.gov (United States)

    ... flu viruses. What are the benefits of flu vaccination? While how well the flu vaccine works can ... older people have weaker immune responses to flu vaccination, should they still get vaccinated? Despite the fact ...

  7. HIV-vaccine-jægeren fra Århus

    DEFF Research Database (Denmark)

    Østergaard, Lars

    2008-01-01

    AIDS og den manglende HIV-vaccine, der en gang for alle kan forebygge den dødbringende sygdom, er den største sundhedsmæssige udordring på verdensplan udtaler Lars Østergaard Udgivelsesdato: 06.11.08......AIDS og den manglende HIV-vaccine, der en gang for alle kan forebygge den dødbringende sygdom, er den største sundhedsmæssige udordring på verdensplan udtaler Lars Østergaard Udgivelsesdato: 06.11.08...

  8. Typhoid fever vaccination strategies.

    Science.gov (United States)

    Date, Kashmira A; Bentsi-Enchill, Adwoa; Marks, Florian; Fox, Kimberley

    2015-06-19

    Typhoid vaccination is an important component of typhoid fever prevention and control, and is recommended for public health programmatic use in both endemic and outbreak settings. We reviewed experiences with various vaccination strategies using the currently available typhoid vaccines (injectable Vi polysaccharide vaccine [ViPS], oral Ty21a vaccine, and injectable typhoid conjugate vaccine [TCV]). We assessed the rationale, acceptability, effectiveness, impact and implementation lessons of these strategies to inform effective typhoid vaccination strategies for the future. Vaccination strategies were categorized by vaccine disease control strategy (preemptive use for endemic disease or to prevent an outbreak, and reactive use for outbreak control) and vaccine delivery strategy (community-based routine, community-based campaign and school-based). Almost all public health typhoid vaccination programs used ViPS vaccine and have been in countries of Asia, with one example in the Pacific and one experience using the Ty21a vaccine in South America. All vaccination strategies were found to be acceptable, feasible and effective in the settings evaluated; evidence of impact, where available, was strongest in endemic settings and in the short- to medium-term. Vaccination was cost-effective in high-incidence but not low-incidence settings. Experience in disaster and outbreak settings remains limited. TCVs have recently become available and none are WHO-prequalified yet; no program experience with TCVs was found in published literature. Despite the demonstrated success of several typhoid vaccination strategies, typhoid vaccines remain underused. Implementation lessons should be applied to design optimal vaccination strategies using TCVs which have several anticipated advantages, such as potential for use in infant immunization programs and longer duration of protection, over the ViPS and Ty21a vaccines for typhoid prevention and control. Copyright © 2015. Published by

  9. Aid and Development

    DEFF Research Database (Denmark)

    Tarp, Finn

    Foreign aid looms large in the public discourse; and international development assistance remains squarely on most policy agendas concerned with growth, poverty and inequality in Africa and elsewhere in the developing world. The present review takes a retrospective look at how foreign aid has...... evolved since World War II in response to a dramatically changing global political and economic context. I review the aid process and associated trends in the volume and distribution of aid and categorize some of the key goals, principles and institutions of the aid system. The evidence on whether aid has...... for aid in the future...

  10. Types of Foreign Aid

    DEFF Research Database (Denmark)

    Bjørnskov, Christian

    Foreign aid is given for many purposes and different intentions, yet most studies treat aid flows as a unitary concept. This paper uses factor analysis to separate aid flows into different types. The main types can be interpreted as aid for economic purposes, social purposes, and reconstruction......; a residual category captures remaining purposes. Estimating the growth effects of separable types of aid suggests that most aid has no effects while reconstruction aid has direct positive effects. Although this type only applies in special circumstances, it has become more prevalent in more recent years....

  11. Study Discounts Myth of 'Patient Zero' in U.S. AIDS Crisis

    Science.gov (United States)

    ... Study Discounts Myth of 'Patient Zero' in U.S. AIDS Crisis Genetic analysis of 40-year-old blood ... in North America of the virus that causes AIDS. One myth already debunked by the research: That ...

  12. Intradermal delivery of vaccines: potential benefits and current challenges

    Science.gov (United States)

    Hickling, JK; Jones, KR; Friede, M; Chen, D; Kristensen, D

    2011-01-01

    Abstract Delivery of vaccine antigens to the dermis and/or epidermis of human skin (i.e. intradermal delivery) might be more efficient than injection into the muscle or subcutaneous tissue, thereby reducing the volumes of antigen. This is known as dose-sparing and has been demonstrated in clinical trials with some, but not all, vaccines. Dose-sparing could be beneficial to immunization programmes by potentially reducing the costs of purchase, distribution and storage of vaccines; increasing vaccine availability and effectiveness. The data obtained with intradermal delivery of some vaccines are encouraging and warrant further study and development; however significant gaps in knowledge and operational challenges such as reformulation, optimizing vaccine presentation and development of novel devices to aid intradermal vaccine delivery need to be addressed. Modelling of the costs and potential savings resulting from intradermal delivery should be done to provide realistic expectations of the potential benefits and to support cases for investment. Implementation and uptake of intradermal vaccine delivery requires further research and development, which depends upon collaboration between multiple stakeholders in the field of vaccination. PMID:21379418

  13. A 2020 vision for vaccines against HIV, tuberculosis and malaria.

    Science.gov (United States)

    Rappuoli, Rino; Aderem, Alan

    2011-05-26

    Acquired immune deficiency syndrome (AIDS), malaria and tuberculosis collectively cause more than five million deaths per year, but have nonetheless eluded conventional vaccine development; for this reason they represent one of the major global public health challenges as we enter the second decade of the twenty-first century. Recent trials have provided evidence that it is possible to develop vaccines that can prevent infection by human immunodeficiency virus (HIV) and malaria. Furthermore, advances in vaccinology, including novel adjuvants, prime-boost regimes and strategies for intracellular antigen presentation, have led to progress in developing a vaccine against tuberculosis. Here we discuss these advances and suggest that new tools such as systems biology and structure-based antigen design will lead to a deeper understanding of mechanisms of protection which, in turn, will lead to rational vaccine development. We also argue that new and innovative approaches to clinical trials will accelerate the availability of these vaccines.

  14. Analysis of H7 avian influenza viruses by antigenic cartography and correlation to protection by vaccination

    Science.gov (United States)

    The H7 hemagglutinin subtype one of the most common subtypes of avian influenza virus (AIV) in poultry world wide and since it has the potential to become highly pathogenic it is among the priority subtypes for vaccination. Selection of the optimal vaccine seed strains may now be aided by antigenic...

  15. Vaccines for preventing infection with Pseudomonas aeruginosa in cystic fibrosis

    DEFF Research Database (Denmark)

    Johansen, H.K.; Gøtzsche, Peter C.; Johansen, Helle Krogh

    2008-01-01

    BACKGROUND: Chronic pulmonary infection in cystic fibrosis results in progressive lung damage. Once colonisation of the lungs with Pseudomonas aeruginosa occurs, it is almost impossible to eradicate. Vaccines, aimed at reducing infection with Pseudomonas aeruginosa, have been developed. OBJECTIVES......: To assess the effectiveness of vaccination against Pseudomonas aeruginosa in cystic fibrosis. SEARCH STRATEGY: We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register using the terms vaccines AND pseudomonas (last search May 2008) and PubMed using the terms vaccin* AND cystic...... fibrosis (last search May 2008). SELECTION CRITERIA: Randomised trials (published or unpublished) comparing Pseudomonas aeruginosa vaccines (oral, parenteral or intranasal) with control vaccines or no intervention in cystic fibrosis. DATA COLLECTION AND ANALYSIS: The authors independently selected trials...

  16. Optimization model of vaccination strategy for dengue transmission

    Science.gov (United States)

    Widayani, H.; Kallista, M.; Nuraini, N.; Sari, M. Y.

    2014-02-01

    Dengue fever is emerging tropical and subtropical disease caused by dengue virus infection. The vaccination should be done as a prevention of epidemic in population. The host-vector model are modified with consider a vaccination factor to prevent the occurrence of epidemic dengue in a population. An optimal vaccination strategy using non-linear objective function was proposed. The genetic algorithm programming techniques are combined with fourth-order Runge-Kutta method to construct the optimal vaccination. In this paper, the appropriate vaccination strategy by using the optimal minimum cost function which can reduce the number of epidemic was analyzed. The numerical simulation for some specific cases of vaccination strategy is shown.

  17. Neurologic complications of vaccinations.

    Science.gov (United States)

    Miravalle, Augusto A; Schreiner, Teri

    2014-01-01

    This chapter reviews the most common neurologic disorders associated with common vaccines, evaluates the data linking the disorder with the vaccine, and discusses the potential mechanism of disease. A literature search was conducted in PubMed using a combination of the following terms: vaccines, vaccination, immunization, and neurologic complications. Data were also gathered from publications of the American Academy of Pediatrics Committee on Infectious Diseases, the World Health Organization, the US Centers for Disease Control and Prevention, and the Vaccine Adverse Event Reporting System. Neurologic complications of vaccination are rare. Many associations have been asserted without objective data to support a causal relationship. Rarely, patients with a neurologic complication will have a poor outcome. However, most patients recover fully from the neurologic complication. Vaccinations have altered the landscape of infectious disease. However, perception of risk associated with vaccinations has limited the success of disease eradication measures. Neurologic complications can be severe, and can provoke fear in potential vaccines. Evaluating whether there is causal link between neurologic disorders and vaccinations, not just temporal association, is critical to addressing public misperception of risk of vaccination. Among the vaccines available today, the cost-benefit analysis of vaccinations and complications strongly argues in favor of vaccination. © 2014 Elsevier B.V. All rights reserved.

  18. Vaccination: An Act of Love

    Science.gov (United States)

    ... benefits of vaccines. For this reason, we created Vaccination Week in the Americas to get vaccines to ... and no one gets left behind. Help the vaccination teams when they come to your town, your ...

  19. Nasal spray flu vaccine (image)

    Science.gov (United States)

    The flu vaccine can also be administered as a nasal spray instead of the usual injection method. It can be ... the recombinant influenza vaccine (RIV). The nasal spray flu vaccine (live attenuated influenza vaccine or LAIV) should not ...

  20. Vaccinations for Adults with Diabetes

    Science.gov (United States)

    Vaccinations for Adults with Diabetes The table below shows which vaccinations you should have to protect your health if ... sure you and your healthcare provider keep your vaccinations up to date. Vaccine Do you need it? ...

  1. The changing face of HIV vaccine research

    Directory of Open Access Journals (Sweden)

    Gary J Nabel

    2012-07-01

    Full Text Available While there has been remarkable progress in understanding the biology of HIV-1 and its recognition by the human immune system, we have not yet developed an efficacious HIV-1 vaccine. Vaccine challenges include the genetic diversity and mutability of HIV-1 which create a plethora of constantly changing antigens, the structural features of the viral envelope glycoprotein that disguise conserved receptor-binding sites from the immune system, and the presence of carbohydrate moieties that shield potential epitopes from antibodies. Despite these challenges, there has been significant scientific progress in recent years. In 2009, a large-scale clinical trial known as RV144 demonstrated that a HIV-1 vaccine could modestly reduce the incidence of HIV-1 infection. Further, the identification of broadly neutralizing monoclonal antibodies (such as VRC01, a human monoclonal antibody capable of neutralizing over 90% of natural HIV-1 isolates, as well as PG and PGT antibodies that recognize conserved glycopeptide epitopes has revealed new opportunities for vaccine design. Our ability to understand HIV-1 structure and antibody epitopes at the atomic level, the rapid advance of computational and bioinformatics approaches to immunogen design, and our newly acquired knowledge that it is possible for a vaccine to reduce the risk of HIV-1 infection, have all opened up new and promising pathways towards the development of an urgently needed effective HIV-1 vaccine. This article summarizes challenges to the development of an HIV-1 vaccine, lessons learned from scientific investigation and completed vaccine trials, and promising developments in HIV-1 vaccine design.

  2. Preventive vaccines for cervical cancer

    Directory of Open Access Journals (Sweden)

    WHEELER COSETTE M

    1997-01-01

    Full Text Available The potential use of vaccines for the human papillomavirus (HPV in the prevention and treatment of cervical cancer is a possibility in the near future. Close to 20 genotypes of HPV, of the 75 that have been identified, infect the femine genital tract, but four subtypes (16, 18, 31 and 45 have been associated in close to 80% of cervical cancers. this article proposes that in order to design an effective prophylactic vaccine against HPV infection, an adequate immune response should be guaranteed through four goals; a activation of antigens present in the cell; b overcoming the host response and viral genetic variability in the T cell response; c generation of high levels of T and B memory cells; and d persistence of antigens.

  3. Genotype-specific neutralization determinants in envelope protein: implications for the improvement of Japanese encephalitis vaccine.

    Science.gov (United States)

    Ye, Qing; Xu, Yan-Peng; Zhang, Yu; Li, Xiao-Feng; Wang, Hong-Jiang; Liu, Zhong-Yu; Li, Shi-Hua; Liu, Long; Zhao, Hui; Nian, Qing-Gong; Deng, Yong-Qiang; Qin, E-De; Qin, Cheng-Feng

    2015-08-01

    Japanese encephalitis remains the leading cause of viral encephalitis in children in Asia and is expanding its geographical range to larger areas in Asia and Australasia. Five genotypes of Japanese encephalitis virus (JEV) co-circulate in the geographically affected areas. In particular, the emergence of genotype I (GI) JEV has displaced genotype III (GIII) as the dominant circulating genotype in many Asian regions. However, all approved vaccine products are derived from GIII strains. In the present study, bioinformatic analysis revealed that GI and GIII JEV strains shared two distinct amino acid residues within the envelope (E) protein (E222 and E327). By using reverse genetics approaches, A222S and S327T mutations were demonstrated to decrease live-attenuated vaccine (LAV) SA14-14-2-induced neutralizing antibodies in humans, without altering viral replication. A222S or S327T mutations were then rationally engineered into the infectious clone of SA14-14-2, and the resulting mutant strains retained the same genetic stability and attenuation characteristics as the parent strain. More importantly, immunization of mice with LAV-A222S or LAV-S327T elicited increased neutralizing antibodies against GI strains. Together, these results demonstrated that E222 and E327 are potential genotype-related neutralization determinants and are critical in determining the protective efficacy of live Japanese encephalitis vaccine SA14-14-2 against circulating GI strains. Our findings will aid in the rational design of the next generation of Japanese encephalitis LAVs capable of providing broad protection against all JEV strains belonging to different genotypes.

  4. 42 CFR 410.57 - Pneumococcal vaccine and flu vaccine.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 2 2010-10-01 2010-10-01 false Pneumococcal vaccine and flu vaccine. 410.57... § 410.57 Pneumococcal vaccine and flu vaccine. (a) Medicare Part B pays for pneumococcal vaccine and its administration when reasonable and necessary for the prevention of disease, if the vaccine is ordered by a...

  5. Immunogenicity of DNA and Recombinant Sendai Virus Vaccines Expressing the HIV-1 gag Gene

    Institute of Scientific and Technical Information of China (English)

    Xia FENG; Shuang-qing YU; Tsugumine Shu; Tetsuro Matano; Mamoru Hasegawa; Xiao-li WANG; Hong-tao MA; Hong-xia LI; Yi ZENG

    2008-01-01

    Combinations of DNA and recombinant-viral-vector based vaccines are promising AIDS vaccine methods because of their potential for inducing cellular immune responses. It was found that Gag-specific cytotoxic lymphocyte (CTL) responses were associated with lowering viremia in an untreated HIV-1 infected cohort. The main objectives of our studies were the construction of DNA and recombinant Sendal virus vector (rSeV) vaccines containing a gag gene from the prevalent Thailand subtype B strain in China and trying to use these vaccines for therapeutic and prophylactic vaccines. The candidate plasmid DNA vaccine pcDNA3.1(+)-gag and recombinant Sendai virus vaccine (rSeV-gag) were constructed separately. It was verified by Western blotting analysis that both DNA and rSeV-gag vaccines expressed the HIV-1 Gag protein correctly and efficiently. Balb/c mice were immunized with these two vaccines in different administration schemes. HIV-1 Gag-specific CTL responses and antibody levels were detected by intracellular cytokine staining assay and enzyme-linked immunosorbant assay (ELISA) respectively. Combined vaccines in a DNA prime/rSeV-gag boost vaccination regimen induced the strongest and most long-lasting Gag-specific CTL and antibody responses. It maintained relatively high levels even 9 weeks post immunization. This data indicated that the prime-boost regimen with DNA and rSeV-gag vaccines may offer promising HIV vaccine regimens.

  6. Virally vectored vaccine delivery: medical needs, mechanisms, advantages and challenges.

    Science.gov (United States)

    Pinschewer, Daniel D

    2017-08-14

    Vaccines represent one of the most successful chapters in the history of medicine. Over the past decades, the advent of recombinant cDNA technology has enabled the biomedical community to genetically engineer viruses for vaccine delivery purposes. As a starting point, this review evaluates the unmet medical needs, which drive scientists and industry to exploit such fundamentally new technology for human vaccination. The author discusses the molecular functioning, production and safety profile of replication-competent and -deficient viral vector systems, representing two fundamentally distinct classes of "genetic vaccines". Building upon this knowledge, he dissects the immunological mechanisms rendering immune responses to viral vectors qualitatively and quantitatively distinct from those elicited by non-live vaccination approaches. These mechanisms comprise (1) the vectors' innate immune recognition by the host cell, (2) potent priming of CD8+ cytotoxic T cells as a result of dendritic cell targeting and endogenous protein synthesis, (3) conformational antigen display for protective antibody induction as well as (4) prolonged availability of substantial quantities of antigen. Deduced from these features, preferential indications for virally vectored vaccines are discussed, taking into consideration specific medical needs as well as risk-benefit assessments of replicating vector systems. The limitations and challenges in virally vectored vaccination must also be given careful consideration. Pre-existing and vaccination-induced anti-vector immunity can interfere with vaccine immunogenicity and prime-boost vaccination, respectively. Additionally, the requirement for eukaryotic production systems imposes technological as well as regulatory hurdles. Existing strategies to overcome these challenges are outlined. With the recent licensure of the first virally vectored vaccine this review seems timely to herald the introduction of virally vectored vaccines into daily

  7. Vaccines and Immunization Practice.

    Science.gov (United States)

    Hogue, Michael D; Meador, Anna E

    2016-03-01

    Vaccines are among most cost-effective public health strategies. Despite effective vaccines for many bacterial and viral illnesses, tens of thousands of adults and hundreds of children die each year in the United States from vaccine-preventable diseases. Underutilization of vaccines requires rethinking the approach to incorporating vaccines into practice. Arguably, immunizations could be a part all health care encounters. Shared responsibility is paramount if deaths are to be reduced. This article reviews the available vaccines in the US market, as well as practice recommendations of the Centers for Disease Control and Prevention's Advisory Committee on Immunization Practices. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Vaccine Associated Myocarditis

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2017-04-01

    Full Text Available Most of the cases of vaccine associated myocarditis have been following small pox vaccination. Reports have also been there after streptococcal pneumonia vaccine and influenza vaccine. In some cases, autoimmune/inflammatory syndrome induced by adjuvants (ASIA used in the vaccine have been implicated. Exclusion of other causes is very important in the diagnostic process, especially that of acute coronary syndrome. Management is similar to that of other etiologies of myocarditis. These rare instances of myocarditis should not preclude one from taking necessary immunization for vaccine preventable diseases.

  9. Animal models for HIV/AIDS research

    Science.gov (United States)

    Hatziioannou, Theodora; Evans, David T.

    2015-01-01

    The AIDS pandemic continues to present us with unique scientific and public health challenges. Although the development of effective antiretroviral therapy has been a major triumph, the emergence of drug resistance requires active management of treatment regimens and the continued development of new antiretroviral drugs. Moreover, despite nearly 30 years of intensive investigation, we still lack the basic scientific knowledge necessary to produce a safe and effective vaccine against HIV-1. Animal models offer obvious advantages in the study of HIV/AIDS, allowing for a more invasive investigation of the disease and for preclinical testing of drugs and vaccines. Advances in humanized mouse models, non-human primate immunogenetics and recombinant challenge viruses have greatly increased the number and sophistication of available mouse and simian models. Understanding the advantages and limitations of each of these models is essential for the design of animal studies to guide the development of vaccines and antiretroviral therapies for the prevention and treatment of HIV-1 infection. PMID:23154262

  10. Allergic reactions to vaccines.

    Science.gov (United States)

    Wood, Robert A

    2013-09-01

    Anaphylactic reactions to vaccines are rare but do occur, and have been reported for nearly every vaccine. And while the reaction rate per each dose of vaccine is low, this is a common clinical question due in large part to the enormous numbers of vaccines administered. Reactions are most often due to vaccine constituents rather than the microbial components of the vaccine, but in many instances, the specific ingredient triggering the reaction cannot be definitively identified. Evaluation of patients with suspected vaccine reactions should begin by determining whether the symptoms and timing of the reaction were consistent with a true allergic reaction, followed by an assessment to determine whether the patient needs further doses of the vaccine in question, or similar vaccines, in the future. Skin and serologic testing to vaccines and vaccine constituents can then be performed to further assess the potential cause of the reaction and to develop a plan for future immunizations. Specific guidelines for the administration of influenza vaccines to egg allergic patients have been revised to allow virtually all patients to receive this vaccine in a straightforward manner. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. MMR Vaccine (Measles, Mumps, and Rubella)

    Science.gov (United States)

    Attenuvax® Measles Vaccine ... R-Vax® II (as a combination product containing Measles Vaccine, Rubella Vaccine) ... M-R® II (as a combination product containing Measles Vaccine, Mumps Vaccine, Rubella Vaccine)

  12. Current Status of HIV/AIDS in Cameroon: How Effective are Control Strategies?

    Directory of Open Access Journals (Sweden)

    Dora Mbanya

    2008-12-01

    Full Text Available Nearly three decades after its discovery, HIV infection remains the number one killer disease in Sub-Saharan Africa where up to 67% of the world’s 33 million infected people live. In Cameroon, based on a Demographic Health Survey carried out in 2004, the national HIV prevalence is estimated at 5.5% with women and youths being predominantly infected. Orphans and vulnerable children (OVC from the HIV and AIDS pandemic have increased steadily over the years; hospital occupancy is estimated at about 30%, hence stretching the health system; co-infections like HIV/tuberculosis have been reported to reach 40-50% of infected cases and 95% of teachers are said not to be productive on several counts. Thus, the impact is multi-sectorial. Furthermore, the HIV epidemic in Cameroon is peculiar because of the wide HIV-1 genetic diversity of HIV-1 Group M observed with several subtypes reported (A, B, C, D, F, G, H, J, K, predominantly subtype A. There are also circulating recombinant forms, mainly CRF02_AG. In addition, HIV-1 Groups O and N have all been noted in Cameroon. These findings have great implications not only for HIV diagnosis, but also for responsiveness to therapy as well as for vaccine development. In 1986, the initial response of the Cameroon government to the increasing trends in the HIV/AIDS infection was to create a National AIDS Control Committee to coordinate a national AIDS programme. By 2000, the first National Strategic Plan was drawn for 2000-2005. The second National Strategic Plan for 2006-2010 is currently being implemented and covers various axes. Some results obtained show that there has been significantly positive outcomes noted in the various arms of intervention by the Cameroon government.

  13. Current status of HIV/AIDS in Cameroon: how effective are control strategies?

    Science.gov (United States)

    Mbanya, Dora; Sama, Martyn; Tchounwou, Paul

    2008-12-01

    Nearly three decades after its discovery, HIV infection remains the number one killer disease in Sub- Saharan Africa where up to 67% of the world's 33 million infected people live. In Cameroon, based on a Demographic Health Survey carried out in 2004, the national HIV prevalence is estimated at 5.5% with women and youths being predominantly infected. Orphans and vulnerable children (OVC) from the HIV and AIDS pandemic have increased steadily over the years; hospital occupancy is estimated at about 30%, hence stretching the health system; co-infections like HIV/tuberculosis have been reported to reach 40-50% of infected cases and 95% of teachers are said not to be productive on several counts. Thus, the impact is multi-sectorial. Furthermore, the HIV epidemic in Cameroon is peculiar because of the wide HIV-1 genetic diversity of HIV-1 Group M observed with several subtypes reported (A, B, C, D, F, G, H, J, K), predominantly subtype A. There are also circulating recombinant forms, mainly CRF02_AG. In addition, HIV-1 Groups O and N have all been noted in Cameroon. These findings have great implications not only for HIV diagnosis, but also for responsiveness to therapy as well as for vaccine development. In 1986, the initial response of the Cameroon government to the increasing trends in the HIV/AIDS infection was to create a National AIDS Control Committee to coordinate a national AIDS programme. By 2000, the first National Strategic Plan was drawn for 2000-2005. The second National Strategic Plan for 2006-2010 is currently being implemented and covers various axes. Some results obtained show that there has been significantly positive outcomes noted in the various arms of intervention by the Cameroon government.

  14. Aid and Development

    DEFF Research Database (Denmark)

    Tarp, Finn

    evolved since World War II in response to a dramatically changing global political and economic context. I review the aid process and associated trends in the volume and distribution of aid and categorize some of the key goals, principles and institutions of the aid system. The evidence on whether aid has......Foreign aid looms large in the public discourse; and international development assistance remains squarely on most policy agendas concerned with growth, poverty and inequality in Africa and elsewhere in the developing world. The present review takes a retrospective look at how foreign aid has...

  15. Aid and development

    DEFF Research Database (Denmark)

    Tarp, Finn

    2006-01-01

    evolved since World War II in response to a dramatically changing global political and economic context. I review the aid process and associated trends in the volume and distribution of aid and categorize some of the key goals, principles and institutions of the aid system. The evidence on whether aid has......Foreign aid looms large in the public discourse; and international development assistance remains squarely on most policy agendas concerned with growth, poverty and inequality in Africa and elsewhere in the developing world. The present review takes a retrospective look at how foreign aid has...

  16. The HPV Vaccination Crisis

    Science.gov (United States)

    Following the release of a consensus statement from the NCI-Designated Cancer Centers urging HPV vaccination in the United States, Dr. Noel Brewer discusses the country’s low vaccination rates and how clinicians can help to improve them.

  17. Meningococcal Vaccine (For Parents)

    Science.gov (United States)

    ... Feeding Your 1- to 2-Year-Old Your Child's Immunizations: Meningococcal Vaccines KidsHealth > For Parents > Your Child's Immunizations: ... vaccines are a good idea. Caring for Your Child After Immunization Your child might have a fever, soreness, and ...

  18. Vaccines and Pregnancy

    Science.gov (United States)

    ... best live chat Live Help Fact Sheets Share Vaccines and Pregnancy Thursday, 01 September 2016 In every ... risk. This sheet talks about whether exposure to vaccines may increase the risk for birth defects over ...

  19. Vaccines in Multiple Sclerosis.

    Science.gov (United States)

    Williamson, Eric M L; Chahin, Salim; Berger, Joseph R

    2016-04-01

    Vaccinations help prevent communicable disease. To be valuable, a vaccine's ability to prevent disease must exceed the risk of adverse effects from administration. Many vaccines present no risk of infection as they are comprised of killed or non-infectious components while other vaccines consist of live attenuated microorganisms which carry a potential risk of infection-particularly, in patients with compromised immunity. There are several unique considerations with respect to vaccination in the multiple sclerosis (MS) population. First, there has been concern that vaccination may trigger or aggravate the disease. Second, disease-modifying therapies (DMTs) employed in the treatment of MS may increase the risk of infectious complications from vaccines or alter their efficacy. Lastly, in some cases, vaccination strategies may be part of the treatment paradigm in attempts to avoid complications of therapy.

  20. Pneumococcal Vaccines (PCV, PPSV)

    Science.gov (United States)

    ... Games, and the Internet Your Child's Immunizations: Pneumococcal Vaccines (PCV, PPSV) KidsHealth > For Parents > Your Child's Immunizations: ... or HIV infection); or cochlear implants. Why the Vaccines Are Recommended Children younger than 2 years old, ...