WorldWideScience

Sample records for genes genomic organization

  1. Genomic organization and evolution of the ULBP genes in cattle.

    Science.gov (United States)

    Larson, Joshua H; Marron, Brandy M; Beever, Jonathan E; Roe, Bruce A; Lewin, Harris A

    2006-09-05

    The cattle UL16-binding protein 1 (ULBP1) and ULBP2 genes encode members of the MHC Class I superfamily that have homology to the human ULBP genes. Human ULBP1 and ULBP2 interact with the NKG2D receptor to activate effector cells in the immune system. The human cytomegalovirus UL16 protein is known to disrupt the ULBP-NKG2D interaction, thereby subverting natural killer cell-mediated responses. Previous Southern blotting experiments identified evidence of increased ULBP copy number within the genomes of ruminant artiodactyls. On the basis of these observations we hypothesized that the cattle ULBPs evolved by duplication and sequence divergence to produce a sufficient number and diversity of ULBP molecules to deliver an immune activation signal in the presence of immunogenic peptides. Given the importance of the ULBPs in antiviral immunity in other species, our goal was to determine the copy number and genomic organization of the ULBP genes in the cattle genome. Sequencing of cattle bacterial artificial chromosome genomic inserts resulted in the identification of 30 cattle ULBP loci existing in two gene clusters. Evidence of extensive segmental duplication and approximately 14 Kbp of novel repetitive sequences were identified within the major cluster. Ten ULBPs are predicted to be expressed at the cell surface. Substitution analysis revealed 11 outwardly directed residues in the predicted extracellular domains that show evidence of positive Darwinian selection. These positively selected residues have only one residue that overlaps with those proposed to interact with NKG2D, thus suggesting the interaction with molecules other than NKG2D. The ULBP loci in the cattle genome apparently arose by gene duplication and subsequent sequence divergence. Substitution analysis of the ULBP proteins provided convincing evidence for positive selection on extracellular residues that may interact with peptide ligands. These results support our hypothesis that the cattle ULBPs

  2. Genomic organization and evolution of the ULBP genes in cattle

    Directory of Open Access Journals (Sweden)

    Lewin Harris A

    2006-09-01

    Full Text Available Abstract Background The cattle UL16-binding protein 1 (ULBP1 and ULBP2 genes encode members of the MHC Class I superfamily that have homology to the human ULBP genes. Human ULBP1 and ULBP2 interact with the NKG2D receptor to activate effector cells in the immune system. The human cytomegalovirus UL16 protein is known to disrupt the ULBP-NKG2D interaction, thereby subverting natural killer cell-mediated responses. Previous Southern blotting experiments identified evidence of increased ULBP copy number within the genomes of ruminant artiodactyls. On the basis of these observations we hypothesized that the cattle ULBPs evolved by duplication and sequence divergence to produce a sufficient number and diversity of ULBP molecules to deliver an immune activation signal in the presence of immunogenic peptides. Given the importance of the ULBPs in antiviral immunity in other species, our goal was to determine the copy number and genomic organization of the ULBP genes in the cattle genome. Results Sequencing of cattle bacterial artificial chromosome genomic inserts resulted in the identification of 30 cattle ULBP loci existing in two gene clusters. Evidence of extensive segmental duplication and approximately 14 Kbp of novel repetitive sequences were identified within the major cluster. Ten ULBPs are predicted to be expressed at the cell surface. Substitution analysis revealed 11 outwardly directed residues in the predicted extracellular domains that show evidence of positive Darwinian selection. These positively selected residues have only one residue that overlaps with those proposed to interact with NKG2D, thus suggesting the interaction with molecules other than NKG2D. Conclusion The ULBP loci in the cattle genome apparently arose by gene duplication and subsequent sequence divergence. Substitution analysis of the ULBP proteins provided convincing evidence for positive selection on extracellular residues that may interact with peptide ligands. These

  3. Insular organization of gene space in grass genomes.

    Science.gov (United States)

    Gottlieb, Andrea; Müller, Hans-Georg; Massa, Alicia N; Wanjugi, Humphrey; Deal, Karin R; You, Frank M; Xu, Xiangyang; Gu, Yong Q; Luo, Ming-Cheng; Anderson, Olin D; Chan, Agnes P; Rabinowicz, Pablo; Devos, Katrien M; Dvorak, Jan

    2013-01-01

    Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands "gene insulae" to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.

  4. Insular organization of gene space in grass genomes.

    Directory of Open Access Journals (Sweden)

    Andrea Gottlieb

    Full Text Available Wheat and maize genes were hypothesized to be clustered into islands but the hypothesis was not statistically tested. The hypothesis is statistically tested here in four grass species differing in genome size, Brachypodium distachyon, Oryza sativa, Sorghum bicolor, and Aegilops tauschii. Density functions obtained under a model where gene locations follow a homogeneous Poisson process and thus are not clustered are compared with a model-free situation quantified through a non-parametric density estimate. A simple homogeneous Poisson model for gene locations is not rejected for the small O. sativa and B. distachyon genomes, indicating that genes are distributed largely uniformly in those species, but is rejected for the larger S. bicolor and Ae. tauschii genomes, providing evidence for clustering of genes into islands. It is proposed to call the gene islands "gene insulae" to distinguish them from other types of gene clustering that have been proposed. An average S. bicolor and Ae. tauschii insula is estimated to contain 3.7 and 3.9 genes with an average intergenic distance within an insula of 2.1 and 16.5 kb, respectively. Inter-insular distances are greater than 8 and 81 kb and average 15.1 and 205 kb, in S. bicolor and Ae. tauschii, respectively. A greater gene density observed in the distal regions of the Ae. tauschii chromosomes is shown to be primarily caused by shortening of inter-insular distances. The comparison of the four grass genomes suggests that gene locations are largely a function of a homogeneous Poisson process in small genomes. Nonrandom insertions of LTR retroelements during genome expansion creates gene insulae, which become less dense and further apart with the increase in genome size. High concordance in relative lengths of orthologous intergenic distances among the investigated genomes including the maize genome suggests functional constraints on gene distribution in the grass genomes.

  5. Genomic organization and sequence analysis of the vomeronasal receptor V2R genes in mouse genome

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; Zhang YaPing

    2007-01-01

    Two multigene superfamilies, named V1R and V2R, encoding seven-transmembrane-domain G-protein coupled receptors (GPCRs) have been identified as pheromone receptors in mammals. Three V2R gene families have been described in mouse and rat. Here we screened the updated mouse genome sequence database and finally retrieved 63 putative functional V2R genes including three newly identified genes which formed a new additional family. We described the genomic organization of these genes and also characterized the conservation of mouse V2R protein sequences. These genomic and sequence information we described are useful as part of the evidence to speculate the functional domain of V2Rs and should give aid to the functionality study in the future.

  6. Alpha tubulin genes from Leishmania braziliensis: genomic organization, gene structure and insights on their expression.

    Science.gov (United States)

    Ramírez, César A; Requena, José M; Puerta, Concepción J

    2013-07-06

    Alpha tubulin is a fundamental component of the cytoskeleton which is responsible for cell shape and is involved in cell division, ciliary and flagellar motility and intracellular transport. Alpha tubulin gene expression varies according to the morphological changes suffered by Leishmania in its life cycle. However, the objective of studying the mechanisms responsible for the differential expression has resulted to be a difficult task due to the complex genome organization of tubulin genes and to the non-conventional mechanisms of gene regulation operating in Leishmania. We started this work by analyzing the genomic organization of α-tubulin genes in the Leishmania braziliensis genome database. The genomic organization of L. braziliensis α-tubulin genes differs from that existing in the L. major and L. infantum genomes. Two loci containing α-tubulin genes were found in the chromosomes 13 and 29, even though the existence of sequence gaps does not allow knowing the exact number of genes at each locus. Southern blot assays showed that α-tubulin locus at chromosome 13 contains at least 8 gene copies, which are tandemly organized with a 2.08-kb repetition unit; the locus at chromosome 29 seems to contain a sole α-tubulin gene. In addition, it was found that L. braziliensis α-tubulin locus at chromosome 13 contains two types of α-tubulin genes differing in their 3' UTR, each one presumably containing different regulatory motifs. It was also determined that the mRNA expression levels of these genes are controlled by post-transcriptional mechanisms tightly linked to the growth temperature. Moreover, the decrease in the α-tubulin mRNA abundance observed when promastigotes were cultured at 35°C was accompanied by parasite morphology alterations, similar to that occurring during the promastigote to amastigote differentiation. Information found in the genome databases indicates that α-tubulin genes have been reorganized in a drastic manner along Leishmania

  7. Genomic organization and sequences of immunoglobulin light chain genes in a primitive vertebrate suggest coevolution of immunoglobulin gene organization.

    Science.gov (United States)

    Shamblott, M J; Litman, G W

    1989-01-01

    The genomic organization and sequence of immunoglobulin light chain genes in Heterodontus francisci (horned shark), a phylogenetically primitive vertebrate, have been characterized. Light chain variable (VL) and joining (JI) segments are separated by 380 nucleotides and together with the single constant region exon (CI), occupy less than 2.7 kb, the closest linkage described thus far for a rearranging gene system. The VL segment is flanked by a characteristic recombination signal sequence possessing a 12 nucleotide spacer; the recombination signal sequence flanking the JL segment is 23 nucleotides. The VL genes, unlike heavy chain genes, possess a typical upstream regulatory octamer as well as conserved enhancer core sequences in the intervening sequence separating JL and CL. Restriction mapping and genomic Southern blotting are consistent with the presence of multiple light chain gene clusters. There appear to be considerably fewer light than heavy chain genes. Heavy and light chain clusters show no evidence of genomic linkage using field inversion gel electrophoresis. The findings of major differences in the organization and functional rearrangement properties of immunoglobulin genes in species representing different levels of vertebrate evolution, but consistent similarity in the organization of heavy and light chain genes within a species, suggests that these systems may be coevolving. Images PMID:2511000

  8. Modeling chromosomes in mouse to explore the function of genes, genomic disorders, and chromosomal organization.

    Directory of Open Access Journals (Sweden)

    Véronique Brault

    2006-07-01

    Full Text Available One of the challenges of genomic research after the completion of the human genome project is to assign a function to all the genes and to understand their interactions and organizations. Among the various techniques, the emergence of chromosome engineering tools with the aim to manipulate large genomic regions in the mouse model offers a powerful way to accelerate the discovery of gene functions and provides more mouse models to study normal and pathological developmental processes associated with aneuploidy. The combination of gene targeting in ES cells, recombinase technology, and other techniques makes it possible to generate new chromosomes carrying specific and defined deletions, duplications, inversions, and translocations that are accelerating functional analysis. This review presents the current status of chromosome engineering techniques and discusses the different applications as well as the implication of these new techniques in future research to better understand the function of chromosomal organization and structures.

  9. Genome organization and expression of the rat ACBP gene family

    DEFF Research Database (Denmark)

    Mandrup, S; Andreasen, P H; Knudsen, J

    1993-01-01

    pool former. We have molecularly cloned and characterized the rat ACBP gene family which comprises one expressed and four processed pseudogenes. One of these was shown to exist in two allelic forms. A comprehensive computer-aided analysis of the promoter region of the expressed ACBP gene revealed...

  10. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P. falciparu

  11. Rodent malaria parasites : genome organization & comparative genomics

    NARCIS (Netherlands)

    Kooij, Taco W.A.

    2006-01-01

    The aim of the studies described in this thesis was to investigate the genome organization of rodent malaria parasites (RMPs) and compare the organization and gene content of the genomes of RMPs and the human malaria parasite P. falciparum. The release of the complete genome sequence of P.

  12. Genomic organization, annotation, and ligand-receptor inferences of chicken chemokines and chemokine receptor genes based on comparative genomics

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2005-03-01

    Full Text Available Abstract Background Chemokines and their receptors play important roles in host defense, organogenesis, hematopoiesis, and neuronal communication. Forty-two chemokines and 19 cognate receptors have been found in the human genome. Prior to this report, only 11 chicken chemokines and 7 receptors had been reported. The objectives of this study were to systematically identify chicken chemokines and their cognate receptor genes in the chicken genome and to annotate these genes and ligand-receptor binding by a comparative genomics approach. Results Twenty-three chemokine and 14 chemokine receptor genes were identified in the chicken genome. All of the chicken chemokines contained a conserved CC, CXC, CX3C, or XC motif, whereas all the chemokine receptors had seven conserved transmembrane helices, four extracellular domains with a conserved cysteine, and a conserved DRYLAIV sequence in the second intracellular domain. The number of coding exons in these genes and the syntenies are highly conserved between human, mouse, and chicken although the amino acid sequence homologies are generally low between mammalian and chicken chemokines. Chicken genes were named with the systematic nomenclature used in humans and mice based on phylogeny, synteny, and sequence homology. Conclusion The independent nomenclature of chicken chemokines and chemokine receptors suggests that the chicken may have ligand-receptor pairings similar to mammals. All identified chicken chemokines and their cognate receptors were identified in the chicken genome except CCR9, whose ligand was not identified in this study. The organization of these genes suggests that there were a substantial number of these genes present before divergence between aves and mammals and more gene duplications of CC, CXC, CCR, and CXCR subfamilies in mammals than in aves after the divergence.

  13. Genome organization and long-range regulation of gene expression by enhancers.

    Science.gov (United States)

    Smallwood, Andrea; Ren, Bing

    2013-06-01

    It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles. Copyright © 2013. Published by Elsevier Ltd.

  14. Evolution of the Genome 3D Organization: Comparison of Fused and Segregated Globin Gene Clusters.

    Science.gov (United States)

    Kovina, Anastasia P; Petrova, Natalia V; Gushchanskaya, Ekaterina S; Dolgushin, Konstantin V; Gerasimov, Evgeny S; Galitsyna, Aleksandra A; Penin, Alexey A; Flyamer, Ilya M; Ioudinkova, Elena S; Gavrilov, Alexey A; Vassetzky, Yegor S; Ulianov, Sergey V; Iarovaia, Olga V; Razin, Sergey V

    2017-06-01

    The genomes are folded in a complex three-dimensional (3D) structure. Some features of this organization are common for all eukaryotes, but little is known about its evolution. Here, we have studied the 3D organization and regulation of zebrafish globin gene domain and compared its organization and regulation with those of other vertebrate species. In birds and mammals, the α- and β-globin genes are segregated into separate clusters located on different chromosomes and organized into chromatin domains of different types, whereas in cold-blooded vertebrates, including Danio rerio, α- and β-globin genes are organized into common clusters. The major globin gene locus of Danio rerio is of particular interest as it is located in a genomic area that is syntenic in vertebrates and is controlled by a conserved enhancer. We have found that the major globin gene locus of Danio rerio is structurally and functionally segregated into two spatially distinct subloci harboring either adult or embryo-larval globin genes. These subloci demonstrate different organization at the level of chromatin domains and different modes of spatial organization, which appears to be due to selective interaction of the upstream enhancer with the sublocus harboring globin genes of the adult type. These data are discussed in terms of evolution of linear and 3D organization of gene clusters in vertebrates. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. The Giardia lamblia vsp gene repertoire: characteristics, genomic organization, and evolution

    Directory of Open Access Journals (Sweden)

    Nash Theodore E

    2010-07-01

    Full Text Available Abstract Background Giardia lamblia trophozoites colonize the intestines of susceptible mammals and cause diarrhea, which can be prolonged despite an intestinal immune response. The variable expression of the variant-specific surface protein (VSP genes may contribute to this prolonged infection. Only one is expressed at a time, and switching expression from one gene to another occurs by an epigenetic mechanism. Results The WB Giardia isolate has been sequenced at 10× coverage and assembled into 306 contigs as large as 870 kb in size. We have used this assembly to evaluate the genomic organization and evolution of the vsp repertoire. We have identified 228 complete and 75 partial vsp gene sequences for an estimated repertoire of 270 to 303, making up about 4% of the genome. The vsp gene diversity includes 30 genes containing tandem repeats, and 14 vsp pairs of identical genes present in either head to head or tail to tail configurations (designated as inverted pairs, where the two genes are separated by 2 to 4 kb of non-coding DNA. Interestingly, over half the total vsp repertoire is present in the form of linear gene arrays that can contain up to 10 vsp gene members. Lastly, evidence for recombination within and across minor clades of vsp genes is provided. Conclusions The data we present here is the first comprehensive analysis of the vsp gene family from the Genotype A1 WB isolate with an emphasis on vsp characterization, function, evolution and contributions to pathogenesis of this important pathogen.

  16. From genes to milk: genomic organization and epigenetic regulation of the mammary transcriptome.

    Science.gov (United States)

    Lemay, Danielle G; Pollard, Katherine S; Martin, William F; Freeman Zadrowski, Courtneay; Hernandez, Joseph; Korf, Ian; German, J Bruce; Rijnkels, Monique

    2013-01-01

    Even in genomes lacking operons, a gene's position in the genome influences its potential for expression. The mechanisms by which adjacent genes are co-expressed are still not completely understood. Using lactation and the mammary gland as a model system, we explore the hypothesis that chromatin state contributes to the co-regulation of gene neighborhoods. The mammary gland represents a unique evolutionary model, due to its recent appearance, in the context of vertebrate genomes. An understanding of how the mammary gland is regulated to produce milk is also of biomedical and agricultural importance for human lactation and dairying. Here, we integrate epigenomic and transcriptomic data to develop a comprehensive regulatory model. Neighborhoods of mammary-expressed genes were determined using expression data derived from pregnant and lactating mice and a neighborhood scoring tool, G-NEST. Regions of open and closed chromatin were identified by ChIP-Seq of histone modifications H3K36me3, H3K4me2, and H3K27me3 in the mouse mammary gland and liver tissue during lactation. We found that neighborhoods of genes in regions of uniquely active chromatin in the lactating mammary gland, compared with liver tissue, were extremely rare. Rather, genes in most neighborhoods were suppressed during lactation as reflected in their expression levels and their location in regions of silenced chromatin. Chromatin silencing was largely shared between the liver and mammary gland during lactation, and what distinguished the mammary gland was mainly a small tissue-specific repertoire of isolated, expressed genes. These findings suggest that an advantage of the neighborhood organization is in the collective repression of groups of genes via a shared mechanism of chromatin repression. Genes essential to the mammary gland's uniqueness are isolated from neighbors, and likely have less tolerance for variation in expression, properties they share with genes responsible for an organism's survival.

  17. The cloning, genomic organization and tissue expression profile of the human DLG5 gene

    Directory of Open Access Journals (Sweden)

    Gibbs Richard A

    2002-02-01

    Full Text Available Abstract Background Familial atrial fibrillation, an autosomal dominant disease, was previously mapped to chromosome 10q22. One of the genes mapped to the 10q22 region is DLG5, a member of the MAGUKs (Membrane Associated Gyanylate Kinase family which mediates intracellular signaling. Only a partial cDNA was available for DLG5. To exclude potential disease inducing mutations, it was necessary to obtain a complete cDNA and genomic sequence of the gene. Methods The Northern Blot analysis performed using 3' UTR of this gene indicated the transcript size to be about 7.2 KB. Using race technique and library screening the entire cDNA was cloned. This gene was evaluated by sequencing the coding region and splice functions in normal and affected family members with familial atrial fibrillation. Furthermore, haploid cell lines from affected patients were generated and analyzed for deletions that may have been missed by PCR. Results We identified two distinct alternately spliced transcripts of this gene. The genomic sequence of the DLG5 gene spanned 79 KB with 32 exons and was shown to have ubiquitous human tissue expression including placenta, heart, skeletal muscle, liver and pancreas. Conclusions The entire cDNA of DLG5 was identified, sequenced and its genomic organization determined.

  18. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    Science.gov (United States)

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens, and Citrobacter freundii. During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As. PMID:28377759

  19. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    Science.gov (United States)

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens, and Citrobacter freundii. During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As.

  20. Genomic organization and expression of immunoglobulin genes in the Chinese hamster (Cricetulus griseus).

    Science.gov (United States)

    Qin, T; Zhu, H; Wang, D; Hao, H; Du, W

    2015-01-01

    In science, the hamsters are widely used as a model for studying the human diseases because they display many features like humans. The utility of the Chinese hamster as a biology model can be further enhanced by further characterization of the genes encoding components of the immune system. Here, we report the genomic organization and expression of the Chinese hamster immunoglobulin heavy and light chain genes. The Chinese hamster IgH locus contains 268 VH segments (132 potentially functional genes, 12 ORFs and 124 pseudogenes), 4 DH segments, 6 JH segments, four constant region genes (μ, γ, ε and α) and one reverse δ remnant fragment. The Igκ locus contains only a single Cκ gene, 4 Jκ segments and 48 Vκ segments (15 potentially functional genes and 33 pseudogenes), whereas the Igλ locus contains 4 Cλ genes, but only Cλ 3 and Cλ 4 each preceded by a Jλ gene segment. A total of 49 Vλ segments (39 potentially functional genes, 3 ORFs and 7 pseudogenes) were identified. Analysis of junctions of the recombined V(D)J transcripts reveals complex diversity in both expressed H and κ sequences, but the microhomology-directed VJ recombination obviously results in very limited diversity in the Chinese hamster λ gene despite more potential germline-encoded combinatorial diversity. This is the first study to make a comprehensive analysis of the Ig genes in the Chinese hamster, which provides insights into the Ig genes in placental mammals.

  1. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms

    Science.gov (United States)

    Chen, Bin; Zhong, Daibin; Monteiro, Antónia

    2006-01-01

    Background HSP90 proteins are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, and folding, degradation, and transport of proteins. HSP90 proteins have been found in a variety of organisms suggesting that they are ancient and conserved. In this study we investigate the nuclear genomes of 32 species across all kingdoms of organisms, and all sequences available in GenBank, and address the diversity, evolution, gene structure, conservation and nomenclature of the HSP90 family of genes across all organisms. Results Twelve new genes and a new type HSP90C2 were identified. The chromosomal location, exon splicing, and prediction of whether they are functional copies were documented, as well as the amino acid length and molecular mass of their polypeptides. The conserved regions across all protein sequences, and signature sequences in each subfamily were determined, and a standardized nomenclature system for this gene family is presented. The proeukaryote HSP90 homologue, HTPG, exists in most Bacteria species but not in Archaea, and it evolved into three lineages (Groups A, B and C) via two gene duplication events. None of the organellar-localized HSP90s were derived from endosymbionts of early eukaryotes. Mitochondrial TRAP and endoplasmic reticulum HSP90B separately originated from the ancestors of HTPG Group A in Firmicutes-like organisms very early in the formation of the eukaryotic cell. TRAP is monophyletic and present in all Animalia and some Protista species, while HSP90B is paraphyletic and present in all eukaryotes with the exception of some Fungi species, which appear to have lost it. Both HSP90C (chloroplast HSP90C1 and location-undetermined SP90C2) and cytosolic HSP90A are monophyletic, and originated from HSP90B by independent gene duplications. HSP90C exists only in Plantae, and was duplicated into HSP90C1 and HSP90C2 isoforms in higher plants. HSP90A occurs across all eukaryotes, and duplicated into HSP

  2. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms

    Directory of Open Access Journals (Sweden)

    Zhong Daibin

    2006-06-01

    Full Text Available Abstract Background HSP90 proteins are essential molecular chaperones involved in signal transduction, cell cycle control, stress management, and folding, degradation, and transport of proteins. HSP90 proteins have been found in a variety of organisms suggesting that they are ancient and conserved. In this study we investigate the nuclear genomes of 32 species across all kingdoms of organisms, and all sequences available in GenBank, and address the diversity, evolution, gene structure, conservation and nomenclature of the HSP90 family of genes across all organisms. Results Twelve new genes and a new type HSP90C2 were identified. The chromosomal location, exon splicing, and prediction of whether they are functional copies were documented, as well as the amino acid length and molecular mass of their polypeptides. The conserved regions across all protein sequences, and signature sequences in each subfamily were determined, and a standardized nomenclature system for this gene family is presented. The proeukaryote HSP90 homologue, HTPG, exists in most Bacteria species but not in Archaea, and it evolved into three lineages (Groups A, B and C via two gene duplication events. None of the organellar-localized HSP90s were derived from endosymbionts of early eukaryotes. Mitochondrial TRAP and endoplasmic reticulum HSP90B separately originated from the ancestors of HTPG Group A in Firmicutes-like organisms very early in the formation of the eukaryotic cell. TRAP is monophyletic and present in all Animalia and some Protista species, while HSP90B is paraphyletic and present in all eukaryotes with the exception of some Fungi species, which appear to have lost it. Both HSP90C (chloroplast HSP90C1 and location-undetermined SP90C2 and cytosolic HSP90A are monophyletic, and originated from HSP90B by independent gene duplications. HSP90C exists only in Plantae, and was duplicated into HSP90C1 and HSP90C2 isoforms in higher plants. HSP90A occurs across all

  3. The Complete Mitochondrial Genome of Aleurocanthus camelliae: Insights into Gene Arrangement and Genome Organization within the Family Aleyrodidae.

    Science.gov (United States)

    Chen, Shi-Chun; Wang, Xiao-Qing; Li, Pin-Wu; Hu, Xiang; Wang, Jin-Jun; Peng, Ping

    2016-11-07

    There are numerous gene rearrangements and transfer RNA gene absences existing in mitochondrial (mt) genomes of Aleyrodidae species. To understand how mt genomes evolved in the family Aleyrodidae, we have sequenced the complete mt genome of Aleurocanthus camelliae and comparatively analyzed all reported whitefly mt genomes. The mt genome of A. camelliae is 15,188 bp long, and consists of 13 protein-coding genes, two rRNA genes, 21 tRNA genes and a putative control region (GenBank: KU761949). The tRNA gene, trnI, has not been observed in this genome. The mt genome has a unique gene order and shares most gene boundaries with Tetraleurodes acaciae. Nineteen of 21 tRNA genes have the conventional cloverleaf shaped secondary structure and two (trnS₁ and trnS₂) lack the dihydrouridine (DHU) arm. Using ARWEN and homologous sequence alignment, we have identified five tRNA genes and revised the annotation for three whitefly mt genomes. This result suggests that most absent genes exist in the genomes and have not been identified, due to be lack of technology and inference sequence. The phylogenetic relationships among 11 whiteflies and Drosophila melanogaster were inferred by maximum likelihood and Bayesian inference methods. Aleurocanthus camelliae and T. acaciae form a sister group, and all three Bemisia tabaci and two Bemisia afer strains gather together. These results are identical to the relationships inferred from gene order. We inferred that gene rearrangement plays an important role in the mt genome evolved from whiteflies.

  4. Structure and organization of Marchantia polymorpha chloroplast genome. I. Cloning and gene identification.

    Science.gov (United States)

    Ohyama, K; Fukuzawa, H; Kohchi, T; Sano, T; Sano, S; Shirai, H; Umesono, K; Shiki, Y; Takeuchi, M; Chang, Z

    1988-09-20

    We have determined the complete nucleotide sequence of chloroplast DNA from a liverwort, Marchantia polymorpha, using a clone bank of chloroplast DNA fragments. The circular genome consists of 121,024 base-pairs and includes two large inverted repeats (IRA and IRB, each 10,058 base-pairs), a large single-copy region (LSC, 81,095 base-pairs), and a small single-copy region (SSC, 19,813 base-pairs). The nucleotide sequence was analysed with a computer to deduce the entire gene organization, assuming the universal genetic code and the presence of introns in the coding sequences. We detected 136 possible genes. 103 gene products of which are related to known stable RNA or protein molecules. Stable RNA genes for four species of ribosomal RNA and 32 species of tRNA were located, although one of the tRNA genes may be defective. Twenty genes encoding polypeptides involved in photosynthesis and electron transport were identified by comparison with known chloroplast genes. Twenty-five open reading frames (ORFs) show structural similarities to Escherichia coli RNA polymerase subunits, 19 ribosomal proteins and two related proteins. Seven ORFs are comparable with human mitochondrial NADH dehydrogenase genes. A computer-aided homology search predicted possible chloroplast homologues of bacterial proteins; two ORFs for bacterial 4Fe-4S-type ferredoxin, two for distinct subunits of a protein-dependent transport system, one ORF for a component of nitrogenase, and one for an antenna protein of a light-harvesting complex. The other 33 ORFs, consisting of 29 to 2136 codons, remain to be identified, but some of them seem to be conserved in evolution. Detailed information on gene identification is presented in the accompanying papers. We postulated that there were 22 introns in 20 genes (8 tRNA genes and 12 ORFs), which may be classified into the groups I and II found in fungal mitochondrial genes. The structural gene for ribosomal protein S12 is trans-split on the opposite DNA strand

  5. Partial genomic organization of ribosomal protein S7 gene from malaria vector Anopheles stephensi

    Institute of Scientific and Technical Information of China (English)

    RAJNIKANT DIXIT; SARITA DIXIT; UPAL ROY; YOGESH S.SHOUCHE; SURENDRA GAKHAR

    2007-01-01

    In this study, we describe the partial genomic organization of ribosomal protein S7 gene isolated from the mosquito Anopheles stephensi. Initially a 558 bp partial cDNA sequence was amplified as precursor mRNA sequence containing 223 bp long intron. 5' and 3' end sequences were recovered using end specific rapid amplification of cDNA ends (RACE) polymerase chain reaction. The full-length cDNA sequence was 914 nucleotide long with an open reading frame capable of encoding 192 amino acid long protein with calculated molecular mass of 22174 Da and a pI point of 9.94. Protein homology search revealed >75% identity to other insect's S7 ribosomal proteins. Analysis of sequence alignment revealed several highly conserved domains, one of which is related to nuclear localization signal (NLS) region of human rpS7. Interestingly, intron nucleotide sequence comparison with A. gambiae showed a lesser degree of conservation as compared to coding and untranslated regions. Like this, early studies on the genomic organization and cDNA/Expressed sequence tag analysis (EST) could help in genome annotation ofA. stephensi, and would be likely to be sequenced in the future.

  6. From genes to milk: Genomic organization and epigenetic regulation of the mammary transcriptome

    Science.gov (United States)

    Even in genomes lacking operons, a gene's position in the genome influences its potential for expression. The mechanisms by which adjacent genes are co-expressed are still not completely understood. Using lactation and the mammary gland as a model system, we explore the hypothesis that chromatin sta...

  7. The complete mitochondrial genome sequence and gene organization of Tridentiger trigonocephalus (Gobiidae: Gobionellinae) with phylogenetic consideration.

    Science.gov (United States)

    Wei, Hongqing; Ma, Hongyu; Ma, Chunyan; Zhang, Fengying; Wang, Wei; Chen, Wei; Ma, Lingbo

    2016-09-01

    The complete mitochondrial genome plays an important role in studies of genome-level characteristics and phylogenetic relationships. Here we determined the complete mitogenome sequence of Tridentiger trigonocephalus (Perciformes, Gobiidae), and discovered its phylogenetic relationship. This circular genome was 16 662 bp in length, and consisted of 37 typical genes, including 13 protein-coding genes, 22 tRNA genes, and two rRNA genes. The gene order of T. trigonocephalus mitochondrial genome was identical to those observed in most other vertebrates. Of 37 genes, 28 were encoded by heavy strand, while the others were encoded by light strand. The phylogenetic tree constructed by 13 concatenated protein-coding genes showed that T. trigonocephalus was closest to T. bifasciatus, and then to T. barbatus among the 20 species within suborder Gobioidei. This work should facilitate the studies on population genetic diversity, and molecular evolution in Gobioidei fishes.

  8. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.

    OpenAIRE

    Wang, Liying; Wang, Jin; Jing, Chuanyong

    2017-01-01

    Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters we...

  9. Phylogeny, genomic organization and expression of lambda and kappa immunoglobulin light chain genes in a reptile, Anolis carolinensis.

    Science.gov (United States)

    Wu, Qian; Wei, Zhiguo; Yang, Zhi; Wang, Tao; Ren, Liming; Hu, Xiaoxiang; Meng, Qingyong; Guo, Ying; Zhu, Qinghong; Robert, Jacques; Hammarström, Lennart; Li, Ning; Zhao, Yaofeng

    2010-05-01

    The reptiles are the last major taxon of jawed vertebrates in which immunoglobulin light chain isotypes have not been well characterized. Using the recently released genome sequencing data, we show in this study that the reptile Anolis carolinensis expresses both lambda and kappa light chain genes. The genomic organization of both gene loci is structurally similar to their respective counterparts in mammals. The identified lambda locus contains three constant region genes each preceded by a joining gene segment, and a total of 37 variable gene segments. In contrast, the kappa locus contains only a single constant region gene, and two joining gene segments with a single family of 14 variable gene segments located upstream. Analysis of junctions of the recombined VJ transcripts reveals a paucity of N and P nucleotides in both expressed lambda and kappa sequences. These results help us to understand the generation of the immunoglobulin repertoire in reptiles and immunoglobulin evolution in vertebrates.

  10. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes

    Directory of Open Access Journals (Sweden)

    Schnitzler Christine E

    2012-12-01

    Full Text Available Abstract Background Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria and comb jellies (Phylum Ctenophora. The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. Results The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light

  11. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes.

    Science.gov (United States)

    Schnitzler, Christine E; Pang, Kevin; Powers, Meghan L; Reitzel, Adam M; Ryan, Joseph F; Simmons, David; Tada, Takashi; Park, Morgan; Gupta, Jyoti; Brooks, Shelise Y; Blakesley, Robert W; Yokoyama, Shozo; Haddock, Steven Hd; Martindale, Mark Q; Baxevanis, Andreas D

    2012-12-21

    Calcium-activated photoproteins are luciferase variants found in photocyte cells of bioluminescent jellyfish (Phylum Cnidaria) and comb jellies (Phylum Ctenophora). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism that uses this class of luciferase for bioluminescence and to look for genes involved in light reception. To determine when photoprotein genes first arose, we examined the genomic sequence from other early-branching taxa. We combined our genomic survey with gene trees, developmental expression patterns, and functional protein assays of photoproteins and opsins to provide a comprehensive view of light production and light reception in Mnemiopsis. The Mnemiopsis genome has 10 full-length photoprotein genes situated within two genomic clusters with high sequence conservation that are maintained due to strong purifying selection and concerted evolution. Photoprotein-like genes were also identified in the genomes of the non-luminescent sponge Amphimedon queenslandica and the non-luminescent cnidarian Nematostella vectensis, and phylogenomic analysis demonstrated that photoprotein genes arose at the base of all animals. Photoprotein gene expression in Mnemiopsis embryos begins during gastrulation in migrating precursors to photocytes and persists throughout development in the canals where photocytes reside. We identified three putative opsin genes in the Mnemiopsis genome and show that they do not group with well-known bilaterian opsin subfamilies. Interestingly, photoprotein transcripts are co-expressed with two of the putative opsins in developing photocytes. Opsin expression is also seen in the apical sensory organ. We present evidence that one opsin functions as a photopigment in vitro, absorbing light at wavelengths that overlap with peak photoprotein light emission, raising the hypothesis that light

  12. Comparative genomic organization and tissue-specific transcription of the duplicated fabp7 and fabp10 genes in teleost fishes.

    Science.gov (United States)

    Parmar, Manoj B; Wright, Jonathan M

    2013-11-01

    A whole-genome duplication (WGD) early in the teleost fish lineage makes fish ideal organisms to study the fate of duplicated genes and underlying evolutionary trajectories that have led to the retention of ohnologous gene duplicates in fish genomes. Here, we compare the genomic organization and tissue-specific transcription of the ohnologous fabp7 and fabp10 genes in medaka, three-spined stickleback, and spotted green pufferfish to the well-studied duplicated fabp7 and fabp10 genes of zebrafish. Teleost fabp7 and fabp10 genes contain four exons interrupted by three introns. Polypeptide sequences of Fabp7 and Fabp10 show the highest sequence identity and similarity with their orthologs from vertebrates. Orthology was evident as the ohnologous Fabp7 and Fabp10 polypeptides of teleost fishes each formed distinct clades and clustered together with their orthologs from other vertebrates in a phylogenetic tree. Furthermore, ohnologous teleost fabp7 and fabp10 genes exhibit conserved gene synteny with human FABP7 and chicken FABP10, respectively, which provides compelling evidence that the duplicated fabp7 and fabp10 genes of teleost fishes most likely arose from the well-documented WGD. The tissue-specific distribution of fabp7a, fabp7b, fabp10a, and fabp10b transcripts provides evidence of diverged spatial transcriptional regulation between ohnologous gene duplicates of fabp7 and fabp10 in teleost fishes.

  13. Core histone genes of Giardia intestinalis: genomic organization, promoter structure, and expression

    Directory of Open Access Journals (Sweden)

    Adam Rodney D

    2007-04-01

    Full Text Available Abstract Background Giardia intestinalis is a protist found in freshwaters worldwide, and is the most common cause of parasitic diarrhea in humans. The phylogenetic position of this parasite is still much debated. Histones are small, highly conserved proteins that associate tightly with DNA to form chromatin within the nucleus. There are two classes of core histone genes in higher eukaryotes: DNA replication-independent histones and DNA replication-dependent ones. Results We identified two copies each of the core histone H2a, H2b and H3 genes, and three copies of the H4 gene, at separate locations on chromosomes 3, 4 and 5 within the genome of Giardia intestinalis, but no gene encoding a H1 linker histone could be recognized. The copies of each gene share extensive DNA sequence identities throughout their coding and 5' noncoding regions, which suggests these copies have arisen from relatively recent gene duplications or gene conversions. The transcription start sites are at triplet A sequences 1–27 nucleotides upstream of the translation start codon for each gene. We determined that a 50 bp region upstream from the start of the histone H4 coding region is the minimal promoter, and a highly conserved 15 bp sequence called the histone motif (him is essential for its activity. The Giardia core histone genes are constitutively expressed at approximately equivalent levels and their mRNAs are polyadenylated. Competition gel-shift experiments suggest that a factor within the protein complex that binds him may also be a part of the protein complexes that bind other promoter elements described previously in Giardia. Conclusion In contrast to other eukaryotes, the Giardia genome has only a single class of core histone genes that encode replication-independent histones. Our inability to locate a gene encoding the linker histone H1 leads us to speculate that the H1 protein may not be required for the compaction of Giardia's small and gene-rich genome.

  14. Promoter characterization and genomic organization of the human X11β gene APBA2.

    LENUS (Irish Health Repository)

    Hao, Yan

    2012-02-15

    Overexpression of neuronal adaptor protein X11β has been shown to decrease the production of amyloid-β, a toxic peptide deposited in Alzheimer\\'s disease brains. Therefore, manipulation of the X11β level may represent a potential therapeutic strategy for Alzheimer\\'s disease. As X11β expression can be regulated at the transcription level, we determined the genomic organization and the promoter of the human X11β gene, amyloid β A4 precursor protein-binding family A member 2 (APBA2). By RNA ligase-mediated rapid amplification of cDNA ends, a single APBA2 transcription start site and the complete sequence of exon 1 were identified. The APBA2 promoter was located upstream of exon 1 and was more active in neurons. The core promoter contains several CpG dinucleotides, and was strongly suppressed by DNA methylation. In addition, mutagenesis analysis revealed a putative Pax5-binding site within the promoter. Together, APBA2 contains a potent neuronal promoter whose activity may be regulated by DNA methylation and Pax5.

  15. The genome of tolypocladium inflatum: evolution, organization, and expression of the cyclosporin biosynthetic gene cluster.

    Science.gov (United States)

    Bushley, Kathryn E; Raja, Rajani; Jaiswal, Pankaj; Cumbie, Jason S; Nonogaki, Mariko; Boyd, Alexander E; Owensby, C Alisha; Knaus, Brian J; Elser, Justin; Miller, Daniel; Di, Yanming; McPhail, Kerry L; Spatafora, Joseph W

    2013-06-01

    The ascomycete fungus Tolypocladium inflatum, a pathogen of beetle larvae, is best known as the producer of the immunosuppressant drug cyclosporin. The draft genome of T. inflatum strain NRRL 8044 (ATCC 34921), the isolate from which cyclosporin was first isolated, is presented along with comparative analyses of the biosynthesis of cyclosporin and other secondary metabolites in T. inflatum and related taxa. Phylogenomic analyses reveal previously undetected and complex patterns of homology between the nonribosomal peptide synthetase (NRPS) that encodes for cyclosporin synthetase (simA) and those of other secondary metabolites with activities against insects (e.g., beauvericin, destruxins, etc.), and demonstrate the roles of module duplication and gene fusion in diversification of NRPSs. The secondary metabolite gene cluster responsible for cyclosporin biosynthesis is described. In addition to genes necessary for cyclosporin biosynthesis, it harbors a gene for a cyclophilin, which is a member of a family of immunophilins known to bind cyclosporin. Comparative analyses support a lineage specific origin of the cyclosporin gene cluster rather than horizontal gene transfer from bacteria or other fungi. RNA-Seq transcriptome analyses in a cyclosporin-inducing medium delineate the boundaries of the cyclosporin cluster and reveal high levels of expression of the gene cluster cyclophilin. In medium containing insect hemolymph, weaker but significant upregulation of several genes within the cyclosporin cluster, including the highly expressed cyclophilin gene, was observed. T. inflatum also represents the first reference draft genome of Ophiocordycipitaceae, a third family of insect pathogenic fungi within the fungal order Hypocreales, and supports parallel and qualitatively distinct radiations of insect pathogens. The T. inflatum genome provides additional insight into the evolution and biosynthesis of cyclosporin and lays a foundation for further investigations of the role

  16. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress.

    Science.gov (United States)

    Arora, Rita; Agarwal, Pinky; Ray, Swatismita; Singh, Ashok Kumar; Singh, Vijay Pal; Tyagi, Akhilesh K; Kapoor, Sanjay

    2007-07-18

    MADS-box transcription factors, besides being involved in floral organ specification, have also been implicated in several aspects of plant growth and development. In recent years, there have been reports on genomic localization, protein motif structure, phylogenetic relationships, gene structure and expression of the entire MADS-box family in the model plant system, Arabidopsis. Though there have been some studies in rice as well, an analysis of the complete MADS-box family along with a comprehensive expression profiling was still awaited after the completion of rice genome sequencing. Furthermore, owing to the role of MADS-box family in flower development, an analysis involving structure, expression and functional aspects of MADS-box genes in rice and Arabidopsis was required to understand the role of this gene family in reproductive development. A genome-wide molecular characterization and microarray-based expression profiling of the genes encoding MADS-box transcription factor family in rice is presented. Using a thorough annotation exercise, 75 MADS-box genes have been identified in rice and categorized into MIKCc, MIKC*, Malpha, Mbeta and Mgamma groups based on phylogeny. Chromosomal localization of these genes reveals that 16 MADS-box genes, mostly MIKCc-type, are located within the duplicated segments of the rice genome, whereas most of the M-type genes, 20 in all, seem to have resulted from tandem duplications. Nine members belonging to the Mbeta group, which was considered absent in monocots, have also been identified. The expression profiles of all the MADS-box genes have been analyzed under 11 temporal stages of panicle and seed development, three abiotic stress conditions, along with three stages of vegetative development. Transcripts for 31 genes accumulate preferentially in the reproductive phase, of which, 12 genes are specifically expressed in seeds, and six genes show expression specific to panicle development. Differential expression of seven

  17. MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress

    Directory of Open Access Journals (Sweden)

    Tyagi Akhilesh K

    2007-07-01

    Full Text Available Abstract Background MADS-box transcription factors, besides being involved in floral organ specification, have also been implicated in several aspects of plant growth and development. In recent years, there have been reports on genomic localization, protein motif structure, phylogenetic relationships, gene structure and expression of the entire MADS-box family in the model plant system, Arabidopsis. Though there have been some studies in rice as well, an analysis of the complete MADS-box family along with a comprehensive expression profiling was still awaited after the completion of rice genome sequencing. Furthermore, owing to the role of MADS-box family in flower development, an analysis involving structure, expression and functional aspects of MADS-box genes in rice and Arabidopsis was required to understand the role of this gene family in reproductive development. Results A genome-wide molecular characterization and microarray-based expression profiling of the genes encoding MADS-box transcription factor family in rice is presented. Using a thorough annotation exercise, 75 MADS-box genes have been identified in rice and categorized into MIKCc, MIKC*, Mα, Mβ and Mγ groups based on phylogeny. Chromosomal localization of these genes reveals that 16 MADS-box genes, mostly MIKCc-type, are located within the duplicated segments of the rice genome, whereas most of the M-type genes, 20 in all, seem to have resulted from tandem duplications. Nine members belonging to the Mβ group, which was considered absent in monocots, have also been identified. The expression profiles of all the MADS-box genes have been analyzed under 11 temporal stages of panicle and seed development, three abiotic stress conditions, along with three stages of vegetative development. Transcripts for 31 genes accumulate preferentially in the reproductive phase, of which, 12 genes are specifically expressed in seeds, and six genes show expression specific to panicle development

  18. Human gene encoding prostacyclin synthase (PTGIS): Genomic organization, chromosomal localization, and promoter activity

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Chieko; Yabuki, Tomoko; Inoue, Hiroyasu [National Cardiovascular Center Research Institute, Osaka (Japan)] [and others

    1996-09-01

    The prostacyclin synthase gene isolated from human genomic libraries (PTGIS) consists of 10 exons spanning approximately 60 kb. All the splice donor and acceptor sites conform to the GT/AG rule. Genomic Southern blot and fluorescence in situ hybridization analyses revealed that the human prostacyclin synthase gene is present as a single copy per haploid genome and is localized on chromosome 20q13.11-q13.13. The 1.5-kb sequence of the 5{prime} of the translational initiation site contained both GC-rich and pyrimidine-rich regions and consensus sequences of the transcription factor recognition sites such as Sp1, AP-2, the interferon-{gamma} response element, GATA, NF-{kappa}B, the CACCC box, and the glucocorticoid response element. The core binding sequence (GAGACC) of the shear stress responsive element was also found in the 5{prime}-flanking region of the gene. The major product of the primer extension analysis suggested that the transcription of the gene started from the positions around 49 bp upstream of the translational initiation codon. Transient transfection experiments using human aortic and bovine arterial endothelial cells demonstrated that the GC-rich region (positions -145 to -10) possessed a significant promoter activity. The 6-kb downstream sequence of the translational termination codon contained multiple polyadenylation signals, Alu repeat sequences, and the consensus sequence of the primate-repetitive DNA element, MER1. Two sizes of the prostacyclin synthase mRNAs (approximately 6 and 3.3 kb) were detected with the human aorta and lung. RNA blot hybridization analysis using the 3{prime}-untranslated region as probe indicated that the sizes of the 3{prime}-flanking regions were different in the major 6-kb and minor 3.3-kb mRNAs. 54 refs., 7 figs.

  19. Sequences and gene organization of the mitochondrial genomes of the liver flukes Opisthorchis viverrini and Clonorchis sinensis (Trematoda).

    Science.gov (United States)

    Cai, X Q; Liu, G H; Song, H Q; Wu, C Y; Zou, F C; Yan, H K; Yuan, Z G; Lin, R Q; Zhu, X Q

    2012-01-01

    Opisthorchis viverrini and Clonorchis sinensis are important trematodes infecting humans and animals, belonging to the family Opisthorchiidae. In the present study, we sequenced the nearly complete mitochondrial (mt) DNA (mtDNA) sequences of O. viverrini from Laos, obtained the complete mtDNA sequences of C. sinensis from China and Korea, and revealed their gene annotations and genome organizations. The mtDNA sequences of O. viverrini, C. sinensis (China isolate), C. sinensis (Korea isolate) were 13,510, 13,879, and 13,877 bp in size, respectively. Each of the three mt genomes comprises 36 genes, consisting of 12 genes coding for proteins, two genes for rRNA, and 20 genes (O. viverrini) or 22 genes (C. sinensis) for tRNA. The gene content and arrangement are identical to that of Fasciola hepatica, and Paragonimus westermani, but distinct from Schistosoma spp. All genes are transcribed in the same direction and have a nucleotide composition high in T. The contents of A + T of the mt genomes were 59.39% for O. viverrini, 60.03% for C. sinensis (China isolate), and 59.99% for C. sinensis (Korea isolate). Phylogenetic analyses using concatenated amino acid sequences of the 12 protein-coding genes, with three different computational algorithms [maximum parsimony, maximum likelihood, and Bayesian analysis], all revealed distinct groups with high statistical support, indicating that O. viverrini and C. sinensis represent sister taxa. These data provide additional novel mtDNA markers for studying the molecular epidemiology and population genetics of the two liver flukes and should have implications for the molecular diagnosis, prevention, and control of opisthorchiasis and clonorchiasis in humans and animals.

  20. Identification, characterization and metagenome analysis of oocyte-specific genes organized in clusters in the mouse genome

    Directory of Open Access Journals (Sweden)

    Vaiman Daniel

    2005-05-01

    Full Text Available Abstract Background Genes specifically expressed in the oocyte play key roles in oogenesis, ovarian folliculogenesis, fertilization and/or early embryonic development. In an attempt to identify novel oocyte-specific genes in the mouse, we have used an in silico subtraction methodology, and we have focused our attention on genes that are organized in genomic clusters. Results In the present work, five clusters have been studied: a cluster of thirteen genes characterized by an F-box domain localized on chromosome 9, a cluster of six genes related to T-cell leukaemia/lymphoma protein 1 (Tcl1 on chromosome 12, a cluster composed of a SPErm-associated glutamate (E-Rich (Speer protein expressed in the oocyte in the vicinity of four unknown genes specifically expressed in the testis on chromosome 14, a cluster composed of the oocyte secreted protein-1 (Oosp-1 gene and two Oosp-related genes on chromosome 19, all three being characterized by a partial N-terminal zona pellucida-like domain, and another small cluster of two genes on chromosome 19 as well, composed of a TWIK-Related spinal cord K+ channel encoding-gene, and an unknown gene predicted in silico to be testis-specific. The specificity of expression was confirmed by RT-PCR and in situ hybridization for eight and five of them, respectively. Finally, we showed by comparing all of the isolated and clustered oocyte-specific genes identified so far in the mouse genome, that the oocyte-specific clusters are significantly closer to telomeres than isolated oocyte-specific genes are. Conclusion We have studied five clusters of genes specifically expressed in female, some of them being also expressed in male germ-cells. Moreover, contrarily to non-clustered oocyte-specific genes, those that are organized in clusters tend to map near chromosome ends, suggesting that this specific near-telomere position of oocyte-clusters in rodents could constitute an evolutionary advantage. Understanding the biological

  1. Identification of the HSP70-II gene in Leishmania braziliensis HSP70 locus: genomic organization and UTRs characterization

    Directory of Open Access Journals (Sweden)

    Puerta Concepción J

    2011-08-01

    Full Text Available Abstract Background The heat stress suffered by Leishmania sp during its digenetic life-cycle is a key trigger for its stage differentiation. In Leishmania subgenera two classes of HSP70 genes differing in their 3' UTR were described. Although the presence of HSP70-I genes was previously suggested in Leishmania (Viannia braziliensis, HSP70-II genes had been reluctant to be uncovered. Results Here, we report the existence of two types of HSP70 genes in L. braziliensis and the genomic organization of the HSP70 locus. RT-PCR experiments were used to map the untranslated regions (UTR of both types of genes. The 3' UTR-II has a low sequence identity (55-57% when compared with this region in other Leishmania species. In contrast, the 5' UTR, common to both types of genes, and the 3' UTR-I were found to be highly conserved among all Leishmania species (77-81%. Southern blot assays suggested that L. braziliensis HSP70 gene cluster may contain around 6 tandemly-repeated HSP70-I genes followed by one HSP70-II gene, located at chromosome 28. Northern blot analysis indicated that levels of both types of mRNAs are not affected by heat shock. Conclusions This study has led to establishing the composition and structure of the HSP70 locus of L. braziliensis, complementing the information available in the GeneDB genome database for this species. L. braziliensis HSP70 gene regulation does not seem to operate by mRNA stabilization as occurs in other Leishmania species.

  2. Rapid isolation of gene homologs across taxa: Efficient identification and isolation of gene orthologs from non-model organism genomes, a technical report

    Directory of Open Access Journals (Sweden)

    Heffer Alison

    2011-03-01

    Full Text Available Abstract Background Tremendous progress has been made in the field of evo-devo through comparisons of related genes from diverse taxa. While the vast number of species in nature precludes a complete analysis of the molecular evolution of even one single gene family, this would not be necessary to understand fundamental mechanisms underlying gene evolution if experiments could be designed to systematically sample representative points along the path of established phylogenies to trace changes in regulatory and coding gene sequence. This isolation of homologous genes from phylogenetically diverse, representative species can be challenging, especially if the gene is under weak selective pressure and evolving rapidly. Results Here we present an approach - Rapid Isolation of Gene Homologs across Taxa (RIGHT - to efficiently isolate specific members of gene families. RIGHT is based upon modification and a combination of degenerate polymerase chain reaction (PCR and gene-specific amplified fragment length polymorphism (AFLP. It allows targeted isolation of specific gene family members from any organism, only requiring genomic DNA. We describe this approach and how we used it to isolate members of several different gene families from diverse arthropods spanning millions of years of evolution. Conclusions RIGHT facilitates systematic isolation of one gene from large gene families. It allows for efficient gene isolation without whole genome sequencing, RNA extraction, or culturing of non-model organisms. RIGHT will be a generally useful method for isolation of orthologs from both distant and closely related species, increasing sample size and facilitating the tracking of molecular evolution of gene families and regulatory networks across the tree of life.

  3. Sheep (Ovis aries) T cell receptor alpha (TRA) and delta (TRD) genes and genomic organization of the TRA/TRD locus

    National Research Council Canada - National Science Library

    Piccinni, Barbara; Massari, Serafina; Caputi Jambrenghi, Anna; Giannico, Francesco; Lefranc, Marie-Paule; Ciccarese, Salvatrice; Antonacci, Rachele

    2015-01-01

    ..."). While the T cell receptor alpha (TRA) and delta (TRD) genes and the genomic organization of the TRA/TRD locus has been determined in human and mouse, this information is still poorly known in artiodactyl species, such as sheep...

  4. The complete chloroplast genome sequence of the chlorophycean green alga Scenedesmus obliquus reveals a compact gene organization and a biased distribution of genes on the two DNA strands

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-04-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. While the basal position of the Prasinophyceae is well established, the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae (UTC remains uncertain. The five complete chloroplast DNA (cpDNA sequences currently available for representatives of these classes display considerable variability in overall structure, gene content, gene density, intron content and gene order. Among these genomes, that of the chlorophycean green alga Chlamydomonas reinhardtii has retained the least ancestral features. The two single-copy regions, which are separated from one another by the large inverted repeat (IR, have similar sizes, rather than unequal sizes, and differ radically in both gene contents and gene organizations relative to the single-copy regions of prasinophyte and ulvophyte cpDNAs. To gain insights into the various changes that underwent the chloroplast genome during the evolution of chlorophycean green algae, we have sequenced the cpDNA of Scenedesmus obliquus, a member of a distinct chlorophycean lineage. Results The 161,452 bp IR-containing genome of Scenedesmus features single-copy regions of similar sizes, encodes 96 genes, i.e. only two additional genes (infA and rpl12 relative to its Chlamydomonas homologue and contains seven group I and two group II introns. It is clearly more compact than the four UTC algal cpDNAs that have been examined so far, displays the lowest proportion of short repeats among these algae and shows a stronger bias in clustering of genes on the same DNA strand compared to Chlamydomonas cpDNA. Like the latter genome, Scenedesmus cpDNA displays only a few ancestral gene clusters. The two chlorophycean genomes share 11 gene clusters that are not found in previously sequenced trebouxiophyte and ulvophyte cpDNAs as well as a few genes that have an unusual structure; however, their single

  5. Organization of the genome and gene expression in a nuclear environment lacking histones and nucleosomes: the amazing dinoflagellates.

    Science.gov (United States)

    Moreno Díaz de la Espina, Susana; Alverca, Elsa; Cuadrado, Angeles; Franca, Susana

    2005-03-01

    Dinoflagellates are fascinating protists that have attracted researchers from different fields. The free-living species are major primary producers and the cause of harmful algal blooms sometimes associated with red tides. Dinoflagellates lack histones and nucleosomes and present a unique genome and chromosome organization, being considered the only living knockouts of histones. Their plastids contain genes organized in unigenic minicircles. Basic cell structure, biochemistry and molecular phylogeny place the dinoflagellates firmly among the eukaryotes. They have G1-S-G2-M cell cycles, repetitive sequences, ribosomal genes in tandem, nuclear matrix, snRNAs, and eukaryotic cytoplasm, whereas their nuclear DNA is different, from base composition to chromosome organization. They have a high G + C content, highly methylated and rare bases such as 5-hydroxymethyluracil (HOMeU), no TATA boxes, and form distinct interphasic dinochromosomes with a liquid crystalline organization of DNA, stabilized by metal cations and structural RNA. Without histones and with a protein:DNA mass ratio (1:10) lower than prokaryotes, they need a different way of packing their huge amounts of DNA into a functional chromatin. In spite of the high interest in the dinoflagellate system in genetics, molecular and cellular biology, their analysis until now has been very restricted. We review here the main achievements in the characterization of the genome, nucleus and chromosomes in this diversified phylum. The recent discovery of a eukaryotic structural and functional differentiation in the dinochromosomes and of the organization of gene expression in them, demonstrate that in spite of the secondary loss of histones, that produce a lack of nucleosomal and supranucleosomal chromatin organization, they keep a functional nuclear organization closer to eukaryotes than to prokaryotes.

  6. Genomic organization and differential signature of positive selection in the alpha and beta globin gene clusters in two cetacean species.

    Science.gov (United States)

    Nery, Mariana F; Arroyo, José Ignacio; Opazo, Juan C

    2013-01-01

    The hemoglobin of jawed vertebrates is a heterotetramer protein that contains two α- and two β-chains, which are encoded by members of α- and β-globin gene families. Given the hemoglobin role in mediating an adaptive response to chronic hypoxia, it is likely that this molecule may have experienced a selective pressure during the evolution of cetaceans, which have to deal with hypoxia tolerance during prolonged diving. This selective pressure could have generated a complex history of gene turnover in these clusters and/or changes in protein structure themselves. Accordingly, we aimed to characterize the genomic organization of α- and β-globin gene clusters in two cetacean species and to detect a possible role of positive selection on them using a phylogenetic framework. Maximum likelihood and Bayesian phylogeny reconstructions revealed that both cetacean species had retained a similar complement of putatively functional genes. For the α-globin gene cluster, the killer whale presents a complement of genes composed of HBZ, HBK, and two functional copies of HBA and HBQ genes, whereas the dolphin possesses HBZ, HBK, HBA and HBQ genes, and one HBA pseudogene. For the β-globin gene cluster, both species retained a complement of four genes, two early expressed genes-HBE and HBH-and two adult expressed genes-HBD and HBB. Our natural selection analysis detected two positively selected sites in the HBB gene (56 and 62) and four in HBA (15, 21, 49, 120). Interestingly, only the genes that are expressed during the adulthood showed the signature of positive selection.

  7. Genomic organization and the tissue distribution of alternatively spliced isoforms of the mouse Spatial gene

    Directory of Open Access Journals (Sweden)

    Mattei Marie-Geneviève

    2004-07-01

    Full Text Available Abstract Background The stromal component of the thymic microenvironment is critical for T lymphocyte generation. Thymocyte differentiation involves a cascade of coordinated stromal genes controlling thymocyte survival, lineage commitment and selection. The "Stromal Protein Associated with Thymii And Lymph-node" (Spatial gene encodes a putative transcription factor which may be involved in T-cell development. In the testis, the Spatial gene is also expressed by round spermatids during spermatogenesis. Results The Spatial gene maps to the B3-B4 region of murine chromosome 10 corresponding to the human syntenic region 10q22.1. The mouse Spatial genomic DNA is organised into 10 exons and is alternatively spliced to generate two short isoforms (Spatial-α and -γ and two other long isoforms (Spatial-δ and -ε comprising 5 additional exons on the 3' site. Here, we report the cloning of a new short isoform, Spatial-β, which differs from other isoforms by an additional alternative exon of 69 bases. This new exon encodes an interesting proline-rich signature that could confer to the 34 kDa Spatial-β protein a particular function. By quantitative TaqMan RT-PCR, we have shown that the short isoforms are highly expressed in the thymus while the long isoforms are highly expressed in the testis. We further examined the inter-species conservation of Spatial between several mammals and identified that the protein which is rich in proline and positive amino acids, is highly conserved. Conclusions The Spatial gene generates at least five alternative spliced variants: three short isoforms (Spatial-α, -β and -γ highly expressed in the thymus and two long isoforms (Spatial-δ and -ε highly expressed in the testis. These alternative spliced variants could have a tissue specific function.

  8. Genomic organization, evolution, and expression of photoprotein and opsin genes in Mnemiopsis leidyi: a new view of ctenophore photocytes

    National Research Council Canada - National Science Library

    Schnitzler, Christine E; Pang, Kevin; Powers, Meghan L; Reitzel, Adam M; Ryan, Joseph F; Simmons, David; Tada, Takashi; Park, Morgan; Gupta, Jyoti; Brooks, Shelise Y; Blakesley, Robert W; Yokoyama, Shozo; Haddock, Steven Hd; Martindale, Mark Q; Baxevanis, Andreas D

    2012-01-01

    ...). The complete genomic sequence from the ctenophore Mnemiopsis leidyi, a representative of the earliest branch of animals that emit light, provided an opportunity to examine the genome of an organism...

  9. Genomic diversity of the Avian leukosis virus subgroup J gp85 gene in different organs of an infected chicken.

    Science.gov (United States)

    Meng, Fanfeng; Li, Xue; Fang, Jian; Gao, Yalong; Zhu, Lilong; Xing, Guiju; Tian, Fu; Gao, Yali; Dong, Xuan; Chang, Shuang; Zhao, Peng; Cui, Zhizhong; Liu, Zhihao

    2016-12-30

    The genomic diversity of Avian leukosis virus subgroup J (ALV-J) was investigated in an experimentally infected chicken. ALV-J variants in tissues from four different organs of the same bird were re-isolated in DF-1 cells, and their gp85 gene was amplified and cloned. Ten clones from each organ were sequenced and compared with the original inoculum strain, NX0101. The minimum homology of each organ ranged from 96.7 to 97.6%, and the lowest homology between organs was only 94.9%, which was much lower than the 99.1% homology of inoculum NX0101, indicating high diversity of ALV-J, even within the same bird. The gp85 mutations from the left kidney, which contained tumors, and the right kidney, which was tumor-free, had higher non-synonymous to synonymous mutation ratios than those in the tumor-bearing liver and lungs. Additionally, the mutational sites of gp85 gene in the kidney were similar, and they differed from those in the liver and lung, implying that organ- or tissue-specific selective pressure had a greater influence on the evolution of ALV-J diversity. These results suggest that more ALV-J clones from different organs and tissues should be sequenced and compared to better understand viral evolution and molecular epidemiology in the field.

  10. Genomic diversity of the Avian leukosis virus subgroup J gp85 gene in different organs of an infected chicken

    Science.gov (United States)

    Meng, Fanfeng; Li, Xue; Fang, Jian; Gao, Yalong; Zhu, Lilong; Xing, Guiju; Tian, Fu; Gao, Yali; Dong, Xuan; Chang, Shuang; Zhao, Peng; Liu, Zhihao

    2016-01-01

    The genomic diversity of Avian leukosis virus subgroup J (ALV-J) was investigated in an experimentally infected chicken. ALV-J variants in tissues from four different organs of the same bird were re-isolated in DF-1 cells, and their gp85 gene was amplified and cloned. Ten clones from each organ were sequenced and compared with the original inoculum strain, NX0101. The minimum homology of each organ ranged from 96.7 to 97.6%, and the lowest homology between organs was only 94.9%, which was much lower than the 99.1% homology of inoculum NX0101, indicating high diversity of ALV-J, even within the same bird. The gp85 mutations from the left kidney, which contained tumors, and the right kidney, which was tumor-free, had higher non-synonymous to synonymous mutation ratios than those in the tumor-bearing liver and lungs. Additionally, the mutational sites of gp85 gene in the kidney were similar, and they differed from those in the liver and lung, implying that organ- or tissue-specific selective pressure had a greater influence on the evolution of ALV-J diversity. These results suggest that more ALV-J clones from different organs and tissues should be sequenced and compared to better understand viral evolution and molecular epidemiology in the field. PMID:27456778

  11. Genomic organization and expression of the human fatty aldehyde dehydrogenase gene (FALDH)

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, G.R.; Markova, N.G.; Compton, J.G. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1997-01-15

    Mutations in the fatty aldehyde dehydrogenase (FALDH) gene cause Sjoegren-Larsson syndrome (SLS) - a disease characterized by mental retardation, spasticity, and congenital ichthyosis. To facilitate mutation analysis in SLS and to study the pathogenesis of FALDH deficiency, we have determined the structural organization and characterized expression of the FALDH (proposed designation ALDH10) gene. The gene consists of 10 exons spanning about 30.5 kb. A TATA-less promoter is associated with the major transcription initiation site found to be 258 hp upstream of the ATG codon. The G4C-rich sequences surrounding the transcription initiation site encompassed regulatory elements that interacted with proteins in HeLa nuclear extracts and were able to promote transcription in vitro. FALDH is widely expressed as three transcripts of 2, 3.8, and 4.0 kb, which originate from multiple polyadenylation signals in the 3{prime} UTR. An alternatively spliced mRNA was detected that contains an extra exon and encodes an enzyme that is likely to have altered membrane-binding properties. The FALDH gene lies only 50-85 kb from ALDH3, an aldehyde dehydrogenase gene that has homologous sequence and intron/exon structure. 25 refs., 4 figs., 1 tab.

  12. Genomic organization of the structural genes controlling the astaxanthin biosynthesis pathway of Xanthophyllomyces dendrorhous.

    Science.gov (United States)

    Niklitschek, Mauricio; Alcaíno, Jennifer; Barahona, Salvador; Sepúlveda, Dionisia; Lozano, Carla; Carmona, Marisela; Marcoleta, Andrés; Martínez, Claudio; Lodato, Patricia; Baeza, Marcelo; Cifuentes, Víctor

    2008-01-01

    The cloning and nucleotide sequence of the genes (idi, crtE, crtYB, crtl and crtS) controlling the astaxanthin biosynthesis pathway of the wild-type ATCC 24230 strain of Xanthophyllomyces dendrorhous in their genomic and cDNA version were obtained. The idi, crtE, crtYB, crtl and crtS genes were cloned, as fragments of 10.9, 11.5, 15.8, 5.9 and 4 kb respectively. The nucleotide sequence data analysis indicates that the idi, crtE, crtYB, crtl and crtS genes have 4, 8,4, 11, and 17 introns and 5, 9, 5, 12 and 18 exons respectively. In addition, a highly efficient site-directed mutagenesis system was developed by transformation by integration, followed by mitotic recombination (the double recombinant method). Heterozygote idi (idi+/idi-::hph), crtE (crtE+/crtE-::hph), crtYB (crtYB+/crtYB-::hph), crtI (crtI+/crtI-::hph) and crtS (crtS+/crtS-::hph) and homozygote mutants crtYB (crtYB-::hph/crtYB-::hph), crtI (crtI-::hph/crtI-::hph) and crtS (crtS-::hph/crtS-::hph) were constructed. All the heterozygote mutants have a pale phenotype and produce less carotenoids than the wild-type strain. The genetic analysis of the crtYB, crtl and crtS loci in the wild-type, heterozygote, and homozygote give evidence of the diploid constitution of ATCC 24230 strains. In addition, the cloning of a truncated form of the crtYB that lacks 153 amino acids of the N-terminal region derived from alternatively spliced mRNA was obtained. Their heterologous expression in Escherichia coli carrying the carotenogenic cluster of Erwinia uredovora result in trans-complementation and give evidence of its functionality in this bacterium, maintaining its phytoene synthase activity but not the lycopene cyclase activity.

  13. Insights into the Evolution of a Snake Venom Multi-Gene Family from the Genomic Organization of Echis ocellatus SVMP Genes

    Science.gov (United States)

    Sanz, Libia; Calvete, Juan J.

    2016-01-01

    The molecular events underlying the evolution of the Snake Venom Metalloproteinase (SVMP) family from an A Disintegrin And Metalloproteinase (ADAM) ancestor remain poorly understood. Comparative genomics may provide decisive information to reconstruct the evolutionary history of this multi-locus toxin family. Here, we report the genomic organization of Echis ocellatus genes encoding SVMPs from the PII and PI classes. Comparisons between them and between these genes and the genomic structures of Anolis carolinensis ADAM28 and E. ocellatus PIII-SVMP EOC00089 suggest that insertions and deletions of intronic regions played key roles along the evolutionary pathway that shaped the current diversity within the multi-locus SVMP gene family. In particular, our data suggest that emergence of EOC00028-like PI-SVMP from an ancestral PII(e/d)-type SVMP involved splicing site mutations that abolished both the 3′ splice AG acceptor site of intron 12* and the 5′ splice GT donor site of intron 13*, and resulted in the intronization of exon 13* and the consequent destruction of the structural integrity of the PII-SVMP characteristic disintegrin domain. PMID:27420095

  14. An original SERPINA3 gene cluster: Elucidation of genomic organization and gene expression in the Bos taurus 21q24 region

    Directory of Open Access Journals (Sweden)

    Ouali Ahmed

    2008-04-01

    Full Text Available Abstract Background The superfamily of serine proteinase inhibitors (serpins is involved in numerous fundamental biological processes as inflammation, blood coagulation and apoptosis. Our interest is focused on the SERPINA3 sub-family. The major human plasma protease inhibitor, α1-antichymotrypsin, encoded by the SERPINA3 gene, is homologous to genes organized in clusters in several mammalian species. However, although there is a similar genic organization with a high degree of sequence conservation, the reactive-centre-loop domains, which are responsible for the protease specificity, show significant divergences. Results We provide additional information by analyzing the situation of SERPINA3 in the bovine genome. A cluster of eight genes and one pseudogene sharing a high degree of identity and the same structural organization was characterized. Bovine SERPINA3 genes were localized by radiation hybrid mapping on 21q24 and only spanned over 235 Kilobases. For all these genes, we propose a new nomenclature from SERPINA3-1 to SERPINA3-8. They share approximately 70% of identity with the human SERPINA3 homologue. In the cluster, we described an original sub-group of six members with an unexpected high degree of conservation for the reactive-centre-loop domain, suggesting a similar peptidase inhibitory pattern. Preliminary expression analyses of these bovSERPINA3s showed different tissue-specific patterns and diverse states of glycosylation and phosphorylation. Finally, in the context of phylogenetic analyses, we improved our knowledge on mammalian SERPINAs evolution. Conclusion Our experimental results update data of the bovine genome sequencing, substantially increase the bovSERPINA3 sub-family and enrich the phylogenetic tree of serpins. We provide new opportunities for future investigations to approach the biological functions of this unusual subset of serine proteinase inhibitors.

  15. The complete sequence and gene organization of the mitochondrial genome of the gadilid scaphopod Siphonondentalium lobatum (Mollusca).

    Science.gov (United States)

    Dreyer, Hermann; Steiner, Gerhard

    2004-05-01

    Comparisons of mitochondrial gene sequences and gene arrangements can be informative for reconstructing high-level phylogenetic relationships. We determined the complete sequence of the mitochondrial genome of Siphonodentalium lobatum, (Mollusca, Scaphopoda). With only 13,932 bases, it is the shortest molluscan mitochondrial genome reported so far. The genome contains the usual 13 protein-coding genes, two rRNA and 22 tRNA genes. The ATPase subunit 8 gene is exceptionally short. Several transfer RNAs show truncated TpsiC arms or DHU arms. The gene arrangement of S. lobatum is markedly different from all other known molluscan mitochondrial genomes and shows low similarity even to an unpublished gene order of a dentaliid scaphopod. Phylogenetic analyses of all available complete molluscan mitochondrial genomes based on amino acid sequences of 11 protein-coding genes yield trees with low support for the basal branches. None of the traditionally accepted molluscan taxa and phylogenies are recovered in all analyses, except for the euthyneuran Gastropoda. S. lobatum appears as the sister taxon to two of the three bivalve species. We conclude that the deep molluscan phylogeny is probably beyond the resolution of mitochondrial protein sequences. Moreover, assessing the phylogenetic signal in gene order data requires a much larger taxon sample than is currently available, given the exceptional diversity of this character set in the Mollusca.

  16. Analysis of genome content evolution in pvc bacterial super-phylum: assessment of candidate genes associated with cellular organization and lifestyle.

    Science.gov (United States)

    Kamneva, Olga K; Knight, Stormy J; Liberles, David A; Ward, Naomi L

    2012-01-01

    The Planctomycetes, Verrucomicrobia, Chlamydiae (PVC) super-phylum contains bacteria with either complex cellular organization or simple cell structure; it also includes organisms of different lifestyles (pathogens, mutualists, commensal, and free-living). Genome content evolution of this group has not been studied in a systematic fashion, which would reveal genes underlying the emergence of PVC-specific phenotypes. Here, we analyzed the evolutionary dynamics of 26 PVC genomes and several outgroup species. We inferred HGT, duplications, and losses by reconciliation of 27,123 gene trees with the species phylogeny. We showed that genome expansion and contraction have driven evolution within Planctomycetes and Chlamydiae, respectively, and balanced each other in Verrucomicrobia and Lentisphaerae. We also found that for a large number of genes in PVC genomes the most similar sequences are present in Acidobacteria, suggesting past and/or current ecological interaction between organisms from these groups. We also found evidence of shared ancestry between carbohydrate degradation genes in the mucin-degrading human intestinal commensal Akkermansia muciniphila and sequences from Acidobacteria and Bacteroidetes, suggesting that glycoside hydrolases are transferred laterally between gut microbes and that the process of carbohydrate degradation is crucial for microbial survival within the human digestive system. Further, we identified a highly conserved genetic module preferentially present in compartmentalized PVC species and possibly associated with the complex cell plan in these organisms. This conserved machinery is likely to be membrane targeted and involved in electron transport, although its exact function is unknown. These genes represent good candidates for future functional studies.

  17. Short interspersed nuclear elements (SINEs) are abundant in Solanaceae and have a family-specific impact on gene structure and genome organization.

    Science.gov (United States)

    Seibt, Kathrin M; Wenke, Torsten; Muders, Katja; Truberg, Bernd; Schmidt, Thomas

    2016-05-01

    Short interspersed nuclear elements (SINEs) are highly abundant non-autonomous retrotransposons that are widespread in plants. They are short in size, non-coding, show high sequence diversity, and are therefore mostly not or not correctly annotated in plant genome sequences. Hence, comparative studies on genomic SINE populations are rare. To explore the structural organization and impact of SINEs, we comparatively investigated the genome sequences of the Solanaceae species potato (Solanum tuberosum), tomato (Solanum lycopersicum), wild tomato (Solanum pennellii), and two pepper cultivars (Capsicum annuum). Based on 8.5 Gbp sequence data, we annotated 82 983 SINE copies belonging to 10 families and subfamilies on a base pair level. Solanaceae SINEs are dispersed over all chromosomes with enrichments in distal regions. Depending on the genome assemblies and gene predictions, 30% of all SINE copies are associated with genes, particularly frequent in introns and untranslated regions (UTRs). The close association with genes is family specific. More than 10% of all genes annotated in the Solanaceae species investigated contain at least one SINE insertion, and we found genes harbouring up to 16 SINE copies. We demonstrate the involvement of SINEs in gene and genome evolution including the donation of splice sites, start and stop codons and exons to genes, enlargement of introns and UTRs, generation of tandem-like duplications and transduction of adjacent sequence regions. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Genomic organization of the mouse peroxisome proliferator-activated receptor beta/delta gene

    DEFF Research Database (Denmark)

    Larsen, Leif K; Amri, Ez-Zoubir; Mandrup, Susanne

    2002-01-01

    containing eight upstream AUG codons. We show that the presence of the 548 nt leader resulted in a low translational efficiency of the corresponding PPARbeta/delta mRNA and propose, based on structural features of the 5'-untranslated region, that translational initiation may be mediated via an internal...... gene encoding PPARbeta/delta. The gene spans approx. 41 kb and comprises 11 exons of which the six exons located in the 3'-end of the gene are included in all transcripts. Primer-extension and 5'-rapid amplification of cDNA ends experiments revealed the presence of multiple transcription start points...

  19. The Giardia lamblia vsp gene repertoire: characteristics, genomic organization, and evolution

    OpenAIRE

    2010-01-01

    Abstract Background Giardia lamblia trophozoites colonize the intestines of susceptible mammals and cause diarrhea, which can be prolonged despite an intestinal immune response. The variable expression of the variant-specific surface protein (VSP) genes may contribute to this prolonged infection. Only one is expressed at a time, and switching expression from one gene to another occurs by an epigenetic mechanism. Results The WB Giardia isolate has been sequenced at 10× coverage and assembled i...

  20. Genomic organization, tissue distribution and functional characterization of the rat Pate gene cluster.

    Directory of Open Access Journals (Sweden)

    Angireddy Rajesh

    Full Text Available The cysteine rich prostate and testis expressed (Pate proteins identified till date are thought to resemble the three fingered protein/urokinase-type plasminogen activator receptor proteins. In this study, for the first time, we report the identification, cloning and characterization of rat Pate gene cluster and also determine the expression pattern. The rat Pate genes are clustered on chromosome 8 and their predicted proteins retained the ten cysteine signature characteristic to TFP/Ly-6 protein family. PATE and PATE-F three dimensional protein structure was found to be similar to that of the toxin bucandin. Though Pate gene expression is thought to be prostate and testis specific, we observed that rat Pate genes are also expressed in seminal vesicle and epididymis and in tissues beyond the male reproductive tract. In the developing rats (20-60 day old, expression of Pate genes seem to be androgen dependent in the epididymis and testis. In the adult rat, androgen ablation resulted in down regulation of the majority of Pate genes in the epididymides. PATE and PATE-F proteins were found to be expressed abundantly in the male reproductive tract of rats and on the sperm. Recombinant PATE protein exhibited potent antibacterial activity, whereas PATE-F did not exhibit any antibacterial activity. Pate expression was induced in the epididymides when challenged with LPS. Based on our results, we conclude that rat PATE proteins may contribute to the reproductive and defense functions.

  1. Genome architecture: domain organization of interphase chromosomes.

    Science.gov (United States)

    Bickmore, Wendy A; van Steensel, Bas

    2013-03-14

    The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.

  2. The mitochondrial genome of the stingless bee Melipona bicolor (Hymenoptera, Apidae, Meliponini: sequence, gene organization and a unique tRNA translocation event conserved across the tribe Meliponini

    Directory of Open Access Journals (Sweden)

    Daniela Silvestre

    2008-01-01

    Full Text Available At present a complete mtDNA sequence has been reported for only two hymenopterans, the Old World honey bee, Apis mellifera and the sawfly Perga condei. Among the bee group, the tribe Meliponini (stingless bees has some distinction due to its Pantropical distribution, great number of species and large importance as main pollinators in several ecosystems, including the Brazilian rain forest. However few molecular studies have been conducted on this group of bees and few sequence data from mitochondrial genomes have been described. In this project, we PCR amplified and sequenced 78% of the mitochondrial genome of the stingless bee Melipona bicolor (Apidae, Meliponini. The sequenced region contains all of the 13 mitochondrial protein-coding genes, 18 of 22 tRNA genes, and both rRNA genes (one of them was partially sequenced. We also report the genome organization (gene content and order, gene translation, genetic code, and other molecular features, such as base frequencies, codon usage, gene initiation and termination. We compare these characteristics of M. bicolor to those of the mitochondrial genome of A. mellifera and other insects. A highly biased A+T content is a typical characteristic of the A. mellifera mitochondrial genome and it was even more extreme in that of M. bicolor. Length and compositional differences between M. bicolor and A. mellifera genes were detected and the gene order was compared. Eleven tRNA gene translocations were observed between these two species. This latter finding was surprising, considering the taxonomic proximity of these two bee tribes. The tRNA Lys gene translocation was investigated within Meliponini and showed high conservation across the Pantropical range of the tribe.

  3. Cloning and Genomic Organization of a Rhamnogalacturonase Gene from Locally Isolated Strain of Aspergillus niger.

    Science.gov (United States)

    Damak, Naourez; Abdeljalil, Salma; Taeib, Noomen Hadj; Gargouri, Ali

    2015-08-01

    The rhg gene encoding a rhamnogalacturonase was isolated from the novel strain A1 of Aspergillus niger. It consists of an ORF of 1.505 kb encoding a putative protein of 446 amino acids with a predicted molecular mass of 47 kDa, belonging to the family 28 of glycosyl hydrolases. The nature and position of amino acids comprising the active site as well as the three-dimensional structure were well conserved between the A. niger CTM10548 and fungal rhamnogalacturonases. The coding region of the rhg gene is interrupted by three short introns of 56 (introns 1 and 3) and 52 (intron 2) bp in length. The comparison of the peptide sequence with A. niger rhg sequences revealed that the A1 rhg should be an endo-rhamnogalacturonases, more homologous to rhg A than rhg B A. niger known enzymes. The comparison of rhg nucleotide sequence from A. niger A1 with rhg A from A. niger shows several base changes. Most of these changes (59 %) are located at the third base of codons suggesting maintaining the same enzyme function. We used the rhamnogalacturonase A from Aspergillus aculeatus as a template to build a structural model of rhg A1 that adopted a right-handed parallel β-helix.

  4. Genomic organization and promoter cloning of the human X11α gene APBA1.

    LENUS (Irish Health Repository)

    Chai, Ka-Ho

    2012-05-01

    X11α is a brain specific multi-modular protein that interacts with the Alzheimer\\'s disease amyloid precursor protein (APP). Aggregation of amyloid-β peptide (Aβ), an APP cleavage product, is believed to be central to the pathogenesis of Alzheimer\\'s disease. Recently, overexpression of X11α has been shown to reduce Aβ generation and to ameliorate memory deficit in a transgenic mouse model of Alzheimer\\'s disease. Therefore, manipulating the expression level of X11α may provide a novel route for the treatment of Alzheimer\\'s disease. Human X11α is encoded by the gene APBA1. As evidence suggests that X11α expression can be regulated at transcription level, we have determined the gene structure and cloned the promoter of APBA1. APBA1 spans over 244 kb on chromosome 9 and is composed of 13 exons and has multiple transcription start sites. A putative APBA1 promoter has been identified upstream of exon 1 and functional analysis revealed that this is highly active in neurons. By deletion analysis, the minimal promoter was found to be located between -224 and +14, a GC-rich region that contains a functional Sp3 binding site. In neurons, overexpression of Sp3 stimulates the APBA1 promoter while an Sp3 inhibitor suppresses the promoter activity. Moreover, inhibition of Sp3 reduces endogenous X11α expression and promotes the generation of Aβ. Our findings reveal that Sp3 play an essential role in APBA1 transcription.

  5. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes.

    Science.gov (United States)

    Li, Xinxin; Deng, Zhiping; Liu, Zhanzhi; Yan, Yongliang; Wang, Tianshu; Xie, Jianbo; Lin, Min; Cheng, Qi; Chen, Sanfeng

    2014-08-27

    Most biological nitrogen fixation is catalyzed by the molybdenum nitrogenase. This enzyme is a complex which contains the MoFe protein encoded by nifDK and the Fe protein encoded by nifH. In addition to nifHDK, nifHDK-like genes were found in some Archaea and Firmicutes, but their function is unclear. We sequenced the genome of Paenibacillus sabinae T27. A total of 4,793 open reading frames were predicted from its 5.27 Mb genome. The genome of P. sabinae T27 contains fifteen nitrogen fixation (nif) genes, including three nifH, one nifD, one nifK, four nifB, two nifE, two nifN, one nifX and one nifV. Of the 15 nif genes, eight nif genes (nifB, nifH, nifD, nifK, nifE, nifN, nifX and nifV) and two non-nif genes (orf1 and hesA) form a complete nif gene cluster. In addition to the nif genes, there are nitrogenase-like genes, including two nifH-like genes and five pairs of nifDK-like genes. IS elements on the flanking regions of nif and nif-like genes imply that these genes might have been obtained by horizontal gene transfer. Phylogenies of the concatenated 8 nif gene (nifB, nifH, nifD, nifK, nifE, nifN, nifX and nifV) products suggest that P. sabinae T27 is closely related to Frankia. RT-PCR analysis showed that the complete nif gene cluster is organized as an operon. We demonstrated that the complete nif gene cluster under the control of σ70-dependent promoter enabled Escherichia coli JM109 to fix nitrogen. Also, here for the first time we demonstrated that unlike nif genes, the transcriptions of nifHDK-like genes were not regulated by ammonium and oxygen, and nifH-like or nifD-like gene could not restore the nitrogenase activity of Klebsiella pneumonia nifH- and nifD- mutant strains, respectively, suggesting that nifHDK-like genes were not involved in nitrogen fixation. Our data and analysis reveal the contents and distribution of nif and nif-like genes and contribute to the study of evolutionary history of nitrogen fixation in Paenibacillus. For the first time we

  6. Functional Annotation, Genome Organization and Phylogeny of the Grapevine (Vitis vinifera) Terpene Synthase Gene Family Based on Genome Assembly, FLcDNA Cloning, and Enzyme Assays

    Science.gov (United States)

    2010-01-01

    Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and

  7. Gene finding in novel genomes

    Directory of Open Access Journals (Sweden)

    Korf Ian

    2004-05-01

    Full Text Available Abstract Background Computational gene prediction continues to be an important problem, especially for genomes with little experimental data. Results I introduce the SNAP gene finder which has been designed to be easily adaptable to a variety of genomes. In novel genomes without an appropriate gene finder, I demonstrate that employing a foreign gene finder can produce highly inaccurate results, and that the most compatible parameters may not come from the nearest phylogenetic neighbor. I find that foreign gene finders are more usefully employed to bootstrap parameter estimation and that the resulting parameters can be highly accurate. Conclusion Since gene prediction is sensitive to species-specific parameters, every genome needs a dedicated gene finder.

  8. The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis and phylogenetic relationships to other angiosperms

    Directory of Open Access Journals (Sweden)

    Gurusamy eRaman

    2016-03-01

    Full Text Available Ampelopsis brevipedunculata is an economically important plant that belongs to the Vitaceae family of angiosperms. The phylogenetic placement of Vitaceae is still unresolved. Recent phylogenetic studies suggested that it should be placed in various alternative families including Caryophyllaceae, asteraceae, Saxifragaceae, Dilleniaceae, or with the rest of the rosid families. However, these analyses provided weak supportive results because they were based on only one of several genes. Accordingly, complete chloroplast genome sequences are required to resolve the phylogenetic relationships among angiosperms. Recent phylogenetic analyses based on the complete chloroplast genome sequence suggested strong support for the position of Vitaceae as the earliest diverging lineage of rosids and placed it as a sister to the remaining rosids. These studies also revealed relationships among several major lineages of angiosperms; however, they highlighted the significance of taxon sampling for obtaining accurate phylogenies. In the present study, we sequenced the complete chloroplast genome of A. brevipedunculata and used these data to assess the relationships among 32 angiosperms, including 18 taxa of rosids. The Ampelopsis chloroplast genome is 161,090 bp in length, and includes a pair of inverted repeats of 26,394 bp that are separated by small and large single copy regions of 19,036 bp and 89,266 bp, respectively. The gene content and order of Ampelopsis is identical to many other unrearranged angiosperm chloroplast genomes, including Vitis and tobacco. A phylogenetic tree constructed based on 70 protein-coding genes of 33 angiosperms showed that both Saxifragales and Vitaceae diverged from the rosid clade and formed two clades with 100% bootstrap value. The position of the Vitaceae is sister to Saxifragales, and both are the basal and earliest diverging lineages. Moreover, Saxifragales forms a sister clade to Vitaceae of rosids. Overall, the results of

  9. Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses.

    Science.gov (United States)

    Lopes-Caitar, Valéria S; de Carvalho, Mayra C C G; Darben, Luana M; Kuwahara, Marcia K; Nepomuceno, Alexandre L; Dias, Waldir P; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C

    2013-08-28

    The Hsp20 genes are associated with stress caused by HS and other abiotic factors, but have recently been found to be associated with the response to biotic stresses. These genes represent the most abundant class among the HSPs in plants, but little is known about this gene family in soybean. Because of their apparent multifunctionality, these proteins are promising targets for developing crop varieties that are better adapted to biotic and abiotic stresses. Thus, in the present study an in silico identification of GmHsp20 gene family members was performed, and the genes were characterized and subjected to in vivo expression analysis under biotic and abiotic stresses. A search of the available soybean genome databases revealed 51 gene models as potential GmHsp20 candidates. The 51 GmHsp20 genes were distributed across a total of 15 subfamilies where a specific predicted secondary structure was identified. Based on in vivo analysis, only 47 soybean Hsp20 genes were responsive to heat shock stress. Among the GmHsp20 genes that were potentials HSR, five were also cold-induced, and another five, in addition to one GmAcd gene, were responsive to Meloidogyne javanica infection. Furthermore, one predicted GmHsp20 was shown to be responsive only to nematode infection; no expression change was detected under other stress conditions. Some of the biotic stress-responsive GmHsp20 genes exhibited a divergent expression pattern between resistant and susceptible soybean genotypes under M. javanica infection. The putative regulatory elements presenting some conservation level in the GmHsp20 promoters included HSE, W-box, CAAT box, and TA-rich elements. Some of these putative elements showed a unique occurrence pattern among genes responsive to nematode infection. The evolution of Hsp20 family in soybean genome has most likely involved a total of 23 gene duplications. The obtained expression profiles revealed that the majority of the 51 GmHsp20 candidates are induced under HT, but

  10. Comparative mitogenomic analyses of three scallops (Bivalvia: Pectinidae reveal high level variation of genomic organization and a diversity of transfer RNA gene sets

    Directory of Open Access Journals (Sweden)

    Kong Xiaoyu

    2009-05-01

    Full Text Available Abstract Background It can be seen from the available mollusk mitogenomes that the family Pectinidae exhibits the most variation in genome organization. In this study, comparative mitogenomic analyses were performed for three scallops from the subfamily Chlamydinae (Pectinidae, with the goal of characterizing the degree of variability of mitogenome organization and other characteristics among species from the same subfamily and exploring their possible evolution route. Findings The complete or nearly complete mtDNA sequences of scallop Mimachlamys nobilis (17 935 bp, Mizuhopecten yessoensis (20 964 bp and Chlamys farreri (17 035 bp were determined using long PCR amplification and primer walking sequencing strategy. Highly variable size difference of the three genomes resulted primarily from length and number variations of non-coding regions, and the major difference in gene content of the three scallop species are due to varying tRNA gene sets. Only 21, 16, and 17 tRNA genes were detected in the mitogenomes of M. nobilis, M. yessoensis and C. farreri, respectively. Remarkably, no trnS gene could be identified in any of the three scallops. A newly-detected trnA-like sequence within the mitogenome of M. yessoensis seems to exemplify the functional loss of a tRNA gene, and the duplication of trnD in M. yessoensis raises a fundamental question of whether the retention of the tRNA gene copy of 2-tRNAs is easier than that of 4-tRNAs. Analysis of putative evolutionary pathways of gene rearrangement indicates that transposition of neighboring gene blocks may play an important role in the evolution of mitogenomes in scallops. Parsimonious analysis of the genomic variations implies that the mitogenomes of M. yessoensis and C. farreri are likely to derive independently from a common ancestor that was closely related to M. nobilis. Conclusion Comparative mitogenomic analyses among three species from the subfamily Chlamydinae show that the three genomes

  11. A Comprehensive Analysis of the Phylogeny, Genomic Organization and Expression of Immunoglobulin Light Chain Genes in Alligator sinensis, an Endangered Reptile Species.

    Directory of Open Access Journals (Sweden)

    Xifeng Wang

    Full Text Available Crocodilians are evolutionarily distinct reptiles that are distantly related to lizards and are thought to be the closest relatives of birds. Compared with birds and mammals, few studies have investigated the Ig light chain of crocodilians. Here, employing an Alligator sinensis genomic bacterial artificial chromosome (BAC library and available genome data, we characterized the genomic organization of the Alligator sinensis IgL gene loci. The Alligator sinensis has two IgL isotypes, λ and κ, the same as Anolis carolinensis. The Igλ locus contains 6 Cλ genes, each preceded by a Jλ gene, and 86 potentially functional Vλ genes upstream of (Jλ-Cλn. The Igκ locus contains a single Cκ gene, 6 Jκs and 62 functional Vκs. All VL genes are classified into a total of 31 families: 19 Vλ families and 12 Vκ families. Based on an analysis of the chromosomal location of the light chain genes among mammals, birds, lizards and frogs, the data further confirm that there are two IgL isotypes in the Alligator sinensis: Igλ and Igκ. By analyzing the cloned Igλ/κ cDNA, we identified a biased usage pattern of V families in the expressed Vλ and Vκ. An analysis of the junctions of the recombined VJ revealed the presence of N and P nucleotides in both expressed λ and κ sequences. Phylogenetic analysis of the V genes revealed V families shared by mammals, birds, reptiles and Xenopus, suggesting that these conserved V families are orthologous and have been retained during the evolution of IgL. Our data suggest that the Alligator sinensis IgL gene repertoire is highly diverse and complex and provide insight into immunoglobulin gene evolution in vertebrates.

  12. An overview on genome organization of marine organisms.

    Science.gov (United States)

    Costantini, Maria

    2015-12-01

    In this review we will concentrate on some general genome features of marine organisms and their evolution, ranging from vertebrate to invertebrates until unicellular organisms. Before genome sequencing, the ultracentrifugation in CsCl led to high resolution of mammalian DNA (without seeing at the sequence). The analytical profile of human DNA showed that the vertebrate genome is a mosaic of isochores, typically megabase-size DNA segments that belong in a small number of families characterized by different GC levels. The recent availability of a number of fully sequenced genomes allowed mapping very precisely the isochores, based on DNA sequences. Since isochores are tightly linked to biological properties such as gene density, replication timing and recombination, the new level of detail provided by the isochore map helped the understanding of genome structure, function and evolution. This led the current level of knowledge and to further insights.

  13. JGI Plant Genomics Gene Annotation Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Shu, Shengqiang; Rokhsar, Dan; Goodstein, David; Hayes, David; Mitros, Therese

    2014-07-14

    Plant genomes vary in size and are highly complex with a high amount of repeats, genome duplication and tandem duplication. Gene encodes a wealth of information useful in studying organism and it is critical to have high quality and stable gene annotation. Thanks to advancement of sequencing technology, many plant species genomes have been sequenced and transcriptomes are also sequenced. To use these vastly large amounts of sequence data to make gene annotation or re-annotation in a timely fashion, an automatic pipeline is needed. JGI plant genomics gene annotation pipeline, called integrated gene call (IGC), is our effort toward this aim with aid of a RNA-seq transcriptome assembly pipeline. It utilizes several gene predictors based on homolog peptides and transcript ORFs. See Methods for detail. Here we present genome annotation of JGI flagship green plants produced by this pipeline plus Arabidopsis and rice except for chlamy which is done by a third party. The genome annotations of these species and others are used in our gene family build pipeline and accessible via JGI Phytozome portal whose URL and front page snapshot are shown below.

  14. Genomic organization of the human heparan sulfate-N-deacetylase/N-sulfotransferase gene: Exclusion from a causative role in the pathogenesis of Treacher Collins syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Gladwin, A.J.; Dixon, J.; Loftus, S.K.; Wasmuth, J.J.; Dixon, M.J. [Univ. of Manchester (United Kingdom)]|[Univ. of California, Irvine, CA (United States)

    1996-03-05

    Heparan sulfate-N-deacetylase/N-sulfotransferase (HSST) catalyzes both the N-deacetylation and the N-sulfation of heparan sulfate. Previous studies have resulted in the isolation of the human HSST gene from within the Treacher Collins syndrome locus (TCOF1) critical region on 5q. In the present study, the genomic organization of the HSST gene has been elucidated, and the 14 exons identified have been tested for TCOF1-specific mutations. As a result of these studies, mutations within the coding sequence and adjacent splice junctions of HSST can be excluded from a causative role in the pathogenesis of Treacher Collins syndrome. 13 refs., 1 fig., 2 tabs.

  15. Genome-Wide Analysis of Soybean LATERAL ORGAN BOUNDARIES Domain-Containing Genes: A Functional Investigation of GmLBD12

    Directory of Open Access Journals (Sweden)

    Hui Yang

    2017-03-01

    Full Text Available Plant-specific ( genes play critical roles in various plant growth and development processes. However, the number and characteristics of genes in soybean [ (L. Merr.] remain unknown. Here, we identified 90 homologous genes in the soybean genome that phylogenetically clustered into two classes (I and II. The majority of the genes were evenly distributed across all 20 soybean chromosomes, and 77 (81.11% of them were detected in segmental duplicated regions. Furthermore, the exon–intron organization and motif composition for each were analyzed. A close phylogenetic relationship was identified between the soybean genes and 41 previously reported genes of different plants in the same group, providing insights into their putative functions. Expression analysis indicated that more than half of the genes were expressed, with the two gene classes showing differential tissue expression characteristics; in addition, they were differentially induced by biotic and abiotic stresses. To further explore the functions of genes in soybean, was selected for functional characterization. GmLBD12 was mainly localized to the nucleus and showed high expression in root and seed tissues. Overexpressing in (L. Heynh resulted in increases in lateral root (LR number and plant height. Quantitative real-time polymerase chain reaction (qRT-PCR analysis demonstrated that was induced by drought, salt, cold, indole acetic acid (IAA, abscisic acid (ABA, and salicylic acid SA treatments. This study provides the first comprehensive analysis of the soybean gene family and a valuable foundation for future functional studies of genes.

  16. Genomic evidence for adaptation by gene duplication.

    Science.gov (United States)

    Qian, Wenfeng; Zhang, Jianzhi

    2014-08-01

    Gene duplication is widely believed to facilitate adaptation, but unambiguous evidence for this hypothesis has been found in only a small number of cases. Although gene duplication may increase the fitness of the involved organisms by doubling gene dosage or neofunctionalization, it may also result in a simple division of ancestral functions into daughter genes, which need not promote adaptation. Hence, the general validity of the adaptation by gene duplication hypothesis remains uncertain. Indeed, a genome-scale experiment found similar fitness effects of deleting pairs of duplicate genes and deleting individual singleton genes from the yeast genome, leading to the conclusion that duplication rarely results in adaptation. Here we contend that the above comparison is unfair because of a known duplication bias among genes with different fitness contributions. To rectify this problem, we compare homologous genes from the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. We discover that simultaneously deleting a duplicate gene pair in S. cerevisiae reduces fitness significantly more than deleting their singleton counterpart in S. pombe, revealing post-duplication adaptation. The duplicates-singleton difference in fitness effect is not attributable to a potential increase in gene dose after duplication, suggesting that the adaptation is owing to neofunctionalization, which we find to be explicable by acquisitions of binary protein-protein interactions rather than gene expression changes. These results provide genomic evidence for the role of gene duplication in organismal adaptation and are important for understanding the genetic mechanisms of evolutionary innovation.

  17. Gene finding in the chicken genome

    Directory of Open Access Journals (Sweden)

    Antonarakis Stylianos E

    2005-05-01

    Full Text Available Abstract Background Despite the continuous production of genome sequence for a number of organisms, reliable, comprehensive, and cost effective gene prediction remains problematic. This is particularly true for genomes for which there is not a large collection of known gene sequences, such as the recently published chicken genome. We used the chicken sequence to test comparative and homology-based gene-finding methods followed by experimental validation as an effective genome annotation method. Results We performed experimental evaluation by RT-PCR of three different computational gene finders, Ensembl, SGP2 and TWINSCAN, applied to the chicken genome. A Venn diagram was computed and each component of it was evaluated. The results showed that de novo comparative methods can identify up to about 700 chicken genes with no previous evidence of expression, and can correctly extend about 40% of homology-based predictions at the 5' end. Conclusions De novo comparative gene prediction followed by experimental verification is effective at enhancing the annotation of the newly sequenced genomes provided by standard homology-based methods.

  18. Genome organization, instabilities, stem cells, and cancer

    Directory of Open Access Journals (Sweden)

    Senthil Kumar Pazhanisamy

    2009-01-01

    Full Text Available It is now widely recognized that advances in exploring genome organization provide remarkable insights on the induction and progression of chromosome abnormalities. Much of what we know about how mutations evolve and consequently transform into genome instabilities has been characterized in the spatial organization context of chromatin. Nevertheless, many underlying concepts of impact of the chromatin organization on perpetuation of multiple mutations and on propagation of chromosomal aberrations remain to be investigated in detail. Genesis of genome instabilities from accumulation of multiple mutations that drive tumorigenesis is increasingly becoming a focal theme in cancer studies. This review focuses on structural alterations evolve to raise a variety of genome instabilities that are manifested at the nucleotide, gene or sub-chromosomal, and whole chromosome level of genome. Here we explore an underlying connection between genome instability and cancer in the light of genome architecture. This review is limited to studies directed towards spatial organizational aspects of origin and propagation of aberrations into genetically unstable tumors.

  19. Tripartite ATP-independent periplasmic transporters: application of a relational database for genome-wide analysis of transporter gene frequency and organization.

    Science.gov (United States)

    Mulligan, Christopher; Kelly, David J; Thomas, Gavin H

    2007-01-01

    Tripartite ATP-independent periplasmic (TRAP) transporters are a family of extracytoplasmic solute receptor-dependent secondary transporters that are widespread in the prokaryotic world but which have not been extensively studied. Here, we present results of a genome-wide analysis of TRAP sequences and genome organization from application of TRAPDb, a relational database created for the collection, curation and analysis of TRAP sequences. This has revealed a specific enrichment in the number of TRAP transporters in several bacteria which is consistent with increased use of TRAP transporters in saline environments. Additionally, we report a number of new organizations of TRAP transporter genes and proteins which suggest the recruitment of TRAP transporter components for use in other biological contexts.

  20. Genomic organization, complete sequence, and chromosomal location of the gene for human eotaxin (SCYA11), an eosinophil-specific CC chemokine

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Zepeda, E.A.; Sarafi, M.N.; Luster, A.D. [Massachusetts General Hospital, Charlestown, MA (United States)]|[Harvard Medical School, Boston, MA (United States)] [and others

    1997-05-01

    Eotaxin is a CC chemokine that is a specific chemoattractant for eosinophils and is implicated in the pathogenesis of eosinophilic inflammatory diseases, such as asthma. We describe the genomic organization, complete sequence, including 1354 bp 5{prime} of the RNA initiation site, and chromosomal localization of the human eotaxin gene. Fluorescence in situ hybridization analysis localized eotaxin to human chromosome 17, in the region q21.1-q21.2, and the human gene name SCYA11 was assigned. We also present the 5{prime} flanking sequence of the mouse eotaxin gene and have identified several regulatory elements that are conserved between the murine and the human promoters. In particular, the presence of elements such as NF-{Kappa}B, interferon-{gamma} response element, and glucocorticoid response element may explain the observed regulation of the eotaxin gene by cytokines and glucocorticoids. 17 refs., 4 figs., 1 tab.

  1. Genomic signatures of local directional selection in a high gene flow marine organism; the Atlantic cod (Gadus morhua

    Directory of Open Access Journals (Sweden)

    Mittelholzer Christian

    2009-12-01

    Full Text Available Abstract Background Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene-associated single nucleotide polymorphisms (SNPs for evidence of selection in local populations of Atlantic cod (Gadus morhua L. across the species distribution. Results Our global genome scan analysis identified eight outlier gene loci with very high statistical support, likely to be subject to directional selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread and complex, i.e. outlier loci were generally not only associated with one of a few divergent local populations. Even on a limited geographical scale between the proximate North Sea and Baltic Sea populations four loci displayed evidence of adaptive evolution. Temporal genome scan analysis applied to DNA from archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation. We found that genetic variation at several of the outlier loci was better correlated with temperature and/or salinity conditions at spawning grounds at spawning time than with geographic distance per se. Conclusion These findings illustrate that adaptive population divergence may indeed be prevalent despite seemingly high levels of gene flow, as found in most marine fishes. Thus, results have important implications for our understanding of the interplay of

  2. Sheep (Ovis aries) T cell receptor alpha (TRA) and delta (TRD) genes and genomic organization of the TRA/TRD locus.

    Science.gov (United States)

    Piccinni, Barbara; Massari, Serafina; Caputi Jambrenghi, Anna; Giannico, Francesco; Lefranc, Marie-Paule; Ciccarese, Salvatrice; Antonacci, Rachele

    2015-09-18

    In mammals, T cells develop along two discrete pathways characterized by expression of either the αβ or the γδ T cell receptors. Human and mouse display a low peripheral blood γδ T cell percentage ("γδ low species") while sheep, bovine and pig accounts for a high proportion of γδ T lymphocytes ("γδ high species"). While the T cell receptor alpha (TRA) and delta (TRD) genes and the genomic organization of the TRA/TRD locus has been determined in human and mouse, this information is still poorly known in artiodactyl species, such as sheep. The analysis of the current Ovis aries whole genome assembly, Oar_v3.1, revealed that, as in the other mammalian species, the sheep TRD locus is nested within the TRA locus. In the most 5' part the TRA/TRD locus contains TRAV genes which are intermingled with TRDV genes, then TRD genes which include seven TRDD, four TRDJ genes, one TRDC and a single TRDV gene with an inverted transcriptional orientation, and finally in the most 3' part, the TRA locus is completed by 61 TRAJ genes and one TRAC gene. Comparative sequence and analysis and annotation led to the identification of 66 TRAV genes assigned to 34 TRAV subgroups and 25 TRDV genes belonging to the TRDV1 subgroup, while one gene was found for each TRDV2, TRDV3 and TRDV4 subgroups. Multiple duplication events within several TRAV subgroups have generated the sheep TRAV germline repertoire, which is substantially larger than the human one. A significant proportion of these TRAV gene duplications seems to have occurred simultaneously with the amplification of the TRDV1 subgroup genes. This dynamic of expansion has also generated novel multigene subgroups, which are species-specific. Ovis aries TRA and TRD genes identified in this study were assigned IMGT definitive or temporary names and were approved by the IMGT/WHO-IUIS nomenclature committee. The completeness of the genome assembly in the 3' part of the locus has allowed us to interpret rearranged CDR3 of cDNA from

  3. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes.

    Directory of Open Access Journals (Sweden)

    Jian-Bo Xie

    2014-03-01

    Full Text Available We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ(70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe-S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.

  4. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes.

    Science.gov (United States)

    Xie, Jian-Bo; Du, Zhenglin; Bai, Lanqing; Tian, Changfu; Zhang, Yunzhi; Xie, Jiu-Yan; Wang, Tianshu; Liu, Xiaomeng; Chen, Xi; Cheng, Qi; Chen, Sanfeng; Li, Jilun

    2014-03-01

    We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ(70)-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe-S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT) from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.

  5. Comparative genomic analysis of N2-fixing and non-N2-fixing Paenibacillus spp.: organization, evolution and expression of the nitrogen fixation genes.

    Directory of Open Access Journals (Sweden)

    Jian-Bo Xie

    2014-03-01

    Full Text Available We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprising nine genes nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV encoding Mo-nitrogenase is conserved in the 15 N2-fixing strains. The nif cluster is under control of a σ(70-depedent promoter and possesses a GlnR/TnrA-binding site in the promoter. Suf system encoding [Fe-S] cluster is highly conserved in N2-fixing and non-N2-fixing strains. Furthermore, we demonstrate that the nif cluster enabled Escherichia coli JM109 to fix nitrogen. Phylogeny of the concatenated NifHDK sequences indicates that Paenibacillus and Frankia are sister groups. Phylogeny of the concatenated 275 single-copy core genes suggests that the ancestral Paenibacillus did not fix nitrogen. The N2-fixing Paenibacillus strains were generated by acquiring the nif cluster via horizontal gene transfer (HGT from a source related to Frankia. During the history of evolution, the nif cluster was lost, producing some non-N2-fixing strains, and vnf encoding V-nitrogenase or anf encoding Fe-nitrogenase was acquired, causing further diversification of some strains. In addition, some N2-fixing strains have additional nif and nif-like genes which may result from gene duplications. The evolution of nitrogen fixation in Paenibacillus involves a mix of gain, loss, HGT and duplication of nif/anf/vnf genes. This study not only reveals the organization and distribution of nitrogen fixation genes in Paenibacillus, but also provides insight into the complex evolutionary history of nitrogen fixation.

  6. Mitochondrial genome organization and vertebrate phylogenetics

    Directory of Open Access Journals (Sweden)

    Pereira Sérgio Luiz

    2000-01-01

    Full Text Available With the advent of DNA sequencing techniques the organization of the vertebrate mitochondrial genome shows variation between higher taxonomic levels. The most conserved gene order is found in placental mammals, turtles, fishes, some lizards and Xenopus. Birds, other species of lizards, crocodilians, marsupial mammals, snakes, tuatara, lamprey, and some other amphibians and one species of fish have gene orders that are less conserved. The most probable mechanism for new gene rearrangements seems to be tandem duplication and multiple deletion events, always associated with tRNA sequences. Some new rearrangements seem to be typical of monophyletic groups and the use of data from these groups may be useful for answering phylogenetic questions involving vertebrate higher taxonomic levels. Other features such as the secondary structure of tRNA, and the start and stop codons of protein-coding genes may also be useful in comparisons of vertebrate mitochondrial genomes.

  7. Genome organization of epidemic Acinetobacter baumannii strains

    Directory of Open Access Journals (Sweden)

    Triassi Maria

    2011-10-01

    Full Text Available Abstract Background Acinetobacter baumannii is an opportunistic pathogen responsible for hospital-acquired infections. A. baumannii epidemics described world-wide were caused by few genotypic clusters of strains. The occurrence of epidemics caused by multi-drug resistant strains assigned to novel genotypes have been reported over the last few years. Results In the present study, we compared whole genome sequences of three A. baumannii strains assigned to genotypes ST2, ST25 and ST78, representative of the most frequent genotypes responsible for epidemics in several Mediterranean hospitals, and four complete genome sequences of A. baumannii strains assigned to genotypes ST1, ST2 and ST77. Comparative genome analysis showed extensive synteny and identified 3068 coding regions which are conserved, at the same chromosomal position, in all A. baumannii genomes. Genome alignments also identified 63 DNA regions, ranging in size from 4 o 126 kb, all defined as genomic islands, which were present in some genomes, but were either missing or replaced by non-homologous DNA sequences in others. Some islands are involved in resistance to drugs and metals, others carry genes encoding surface proteins or enzymes involved in specific metabolic pathways, and others correspond to prophage-like elements. Accessory DNA regions encode 12 to 19% of the potential gene products of the analyzed strains. The analysis of a collection of epidemic A. baumannii strains showed that some islands were restricted to specific genotypes. Conclusion The definition of the genome components of A. baumannii provides a scaffold to rapidly evaluate the genomic organization of novel clinical A. baumannii isolates. Changes in island profiling will be useful in genomic epidemiology of A. baumannii population.

  8. Mitochondrial genome organization and phylogeny of two vespid wasps.

    Science.gov (United States)

    Cameron, Stephen L; Dowton, Mark; Castro, Lyda R; Ruberu, Kalani; Whiting, Michael F; Austin, Andy D; Diement, Kieren; Stevens, Julia

    2008-10-01

    We sequenced the entire mitochondrial genome of Abispa ephippium (Hymenoptera: Vespoidea: Vespidae: Eumeninae) and most of the mitochondrial genome of Polistes humilis synoecus (Hymenoptera: Vespoidea: Vespidae: Polistinae). The arrangement of genes differed between the two genomes and also differed slightly from that inferred to be ancestral for the Hymenoptera. The genome organization for both vespids is different from that of all other mitochondrial genomes previously reported. A number of tRNA gene rearrangements were identified that represent potential synapomorphies for a subset of the Vespidae. Analysis of all available hymenopteran mitochondrial genome sequences recovered an uncontroversial phylogeny, one consistent with analyses of other types of data.

  9. Genomic organization, phylogenetic comparison, and expression profiles of the SPL family genes and their regulation in soybean.

    Science.gov (United States)

    Tripathi, Rajiv K; Goel, Ridhi; Kumari, Sweta; Dahuja, Anil

    2017-03-01

    SQUAMOSA Promoter-Binding Protein-Like (SPL) genes form a major family of plant-specific transcription factors and play an important role in plant growth and development. In this study, we report the identification of 41 SPL genes (GmSPLs) in the soybean genome. Phylogenetic analysis revealed that these genes were divided into five groups (groups 1-5). Further, exon/intron structure and motif composition revealed that the GmSPL genes are conserved within their same group. The N-terminal zinc finger 1 (Zn1) of the SBP domain was a CCCH (Cys3His1) and the C terminus zinc finger 2 (Zn2) was a CCHC (Cys2HisCys) type. The 41 GmSPL genes were distributed unevenly on 17 of the 20 chromosomes, with tandem and segmental duplication events. We found that segmental duplication has made an important contribution to soybean SPL gene family expansion. The Ka/Ks ratios revealed that the duplicated GmSPL genes evolved under the effect of purifying selection. In addition, 17 of the 41 GmSPLs were found as targets of miR156; these might be involved in their posttranscriptional regulation through miR156. Importantly, RLM-RACE analysis confirmed the GmmiR156-mediated cleavage of GmSPL2a transcript in 2-4 mm stage of soybean seed. Alternative splicing events in 9 GmSPLs were detected which produces transcripts and proteins of different lengths that may modulate protein signaling, binding, localization, stability, and other properties. Expression analysis of the soybean SPL genes in various tissues and different developmental stages of seed suggested distinct spatiotemporal patterns. Differences in the expression patterns of miR156-targeted and miR156-non-targeted soybean SPL genes suggest that miR156 plays key functions in soybean development. Our results provide an important foundation for further uncovering the crucial roles of GmSPLs in the development of soybean and other biological processes.

  10. Brief Guide to Genomics: DNA, Genes and Genomes

    Science.gov (United States)

    ... Breve guía de genómica A Brief Guide to Genomics DNA, Genes and Genomes Deoxyribonucleic acid (DNA) is ... genetic basis for health and disease. Implications of Genomics for Medical Science Virtually every human ailment has ...

  11. Genomic organization of the human osteopontin gene: Exclusion of the locus from a causative role in the pathogenesis of dentinogenesis imperfecta type II.

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, A.H.; Edwards, S.J.; Murray, J.C. [Univ. of Manchester (United Kingdom)] [and others

    1995-05-01

    Osteopontin (SPP1) is the principal phosphorylated glycoprotein of bone that is also expressed in a limited number of other tissues including dentine. In the current investigation the authors report the genomic organization of the SPP1 gene, which comprises seven exons, six of which contain coding sequence. The splice sites for exon donor and acceptor positions are in close agreement with previously published consensus sequences. Comparison of the human gene with its murine and bovine counterparts revealed a highly homologous organization. A highly informative short tandem repeat polymorphism isolated at the SPP1 locus showed no recombination with the autosomal dominant disorder dentinogenesis imperfecta type II. Nevertheless, sequencing of each exon in individuals affected by this disorder failed to reveal any disease-specific mutations. 25 refs., 2 figs., 2 tabs.

  12. Genomic disorders: A window into human gene and genome evolution

    Science.gov (United States)

    Carvalho, Claudia M. B.; Zhang, Feng; Lupski, James R.

    2010-01-01

    Gene duplications alter the genetic constitution of organisms and can be a driving force of molecular evolution in humans and the great apes. In this context, the study of genomic disorders has uncovered the essential role played by the genomic architecture, especially low copy repeats (LCRs) or segmental duplications (SDs). In fact, regardless of the mechanism, LCRs can mediate or stimulate rearrangements, inciting genomic instability and generating dynamic and unstable regions prone to rapid molecular evolution. In humans, copy-number variation (CNV) has been implicated in common traits such as neuropathy, hypertension, color blindness, infertility, and behavioral traits including autism and schizophrenia, as well as disease susceptibility to HIV, lupus nephritis, and psoriasis among many other clinical phenotypes. The same mechanisms implicated in the origin of genomic disorders may also play a role in the emergence of segmental duplications and the evolution of new genes by means of genomic and gene duplication and triplication, exon shuffling, exon accretion, and fusion/fission events. PMID:20080665

  13. Complete structure, genomic organization, and expression of channel catfish (Ictalurus punctatus, Rafinesque 1818) matrix metalloproteinase-9 gene.

    Science.gov (United States)

    Yeh, Hung-Yueh; Klesius, Phillip H

    2008-03-01

    In this study, the channel catfish (CC) matrix metalloproteinase-9 (MMP-9) gene was cloned, sequenced, and characterized at both the cDNA and the genomic DNA levels. The complete sequence of the CC MMP-9 cDNA consisted of 2,551 nucleotides, including one open reading frame and 5'- and 3'-end untranslated regions. The open reading frame potentially encoded a 686-amino-acid peptide with a calculated molecular mass (without glycosylation) of approximately 77.4 kDa, which included a signal peptide and potentially heavy O-glycosylation sites. CC MMP-9 did not have the tripeptide Arg-Gly-Asp motif. The degree of conservation of the CC MMP-9 amino acid sequence to human and mouse counterparts was 55%, while to those of other fish species was 67-74%. The full-length CC MMP-9 genomic DNA comprised 5,663 nucleotides, much shorter than human or mouse counterparts. The exon-intron structure followed the splice acceptor/donor consensus rule, and the sequence contained 13 exons. The MMP-9 transcript was constitutively expressed in restrictive CC tissues. This result should provide fundamental information for further exploration of the role of MMP-9 in fish pathophysiology.

  14. Genome editing for human gene therapy.

    Science.gov (United States)

    Meissner, Torsten B; Mandal, Pankaj K; Ferreira, Leonardo M R; Rossi, Derrick J; Cowan, Chad A

    2014-01-01

    The rapid advancement of genome-editing techniques holds much promise for the field of human gene therapy. From bacteria to model organisms and human cells, genome editing tools such as zinc-finger nucleases (ZNFs), TALENs, and CRISPR/Cas9 have been successfully used to manipulate the respective genomes with unprecedented precision. With regard to human gene therapy, it is of great interest to test the feasibility of genome editing in primary human hematopoietic cells that could potentially be used to treat a variety of human genetic disorders such as hemoglobinopathies, primary immunodeficiencies, and cancer. In this chapter, we explore the use of the CRISPR/Cas9 system for the efficient ablation of genes in two clinically relevant primary human cell types, CD4+ T cells and CD34+ hematopoietic stem and progenitor cells. By using two guide RNAs directed at a single locus, we achieve highly efficient and predictable deletions that ablate gene function. The use of a Cas9-2A-GFP fusion protein allows FACS-based enrichment of the transfected cells. The ease of designing, constructing, and testing guide RNAs makes this dual guide strategy an attractive approach for the efficient deletion of clinically relevant genes in primary human hematopoietic stem and effector cells and enables the use of CRISPR/Cas9 for gene therapy.

  15. Comparative genomics of the relationship between gene structure and expression

    NARCIS (Netherlands)

    Ren, X.

    2006-01-01

    The relationship between the structure of genes and their expression is a relatively new aspect of genome organization and regulation. With more genome sequences and expression data becoming available, bioinformatics approaches can help the further elucidation of the relationships between gene struc

  16. Identification and Categorization of Horizontally Transferred Genes in Prokaryotic Genomes

    Institute of Scientific and Technical Information of China (English)

    Shuo-Yong SHI; Xiao-Hui CAI; Da-fu DING

    2005-01-01

    Horizontal gene transfer (HGT), a process through which genomes acquire genetic materials from distantly related organisms, is believed to be one of the major forces in prokaryotic genome evolution.However, systematic investigation is still scarce to clarify two basic issues about HGT: (1) what types of genes are transferred; and (2) what influence HGT events over the organization and evolution of biological pathways. Genome-scale investigations of these two issues will advance the systematical understanding of HGT in the context of prokaryotic genome evolution. Having investigated 82 genomes, we constructed an HGT database across broad evolutionary timescales. We identified four function categories containing a high proportion of horizontally transferred genes: cell envelope, energy metabolism, regulatory functions, and transport/binding proteins. Such biased function distribution indicates that HGT is not completely random;instead, it is under high selective pressure, required by function restraints in organisms. Furthermore, we mapped the transferred genes onto the connectivity structure map of organism-specific pathways listed in Kyoto Encyclopedia of Genes and Genomes (KEGG). Our results suggest that recruitment of transferred genes into pathways is also selectively constrained because of the tuned interaction between original pathway members. Pathway organization structures still conserve well through evolution even with the recruitment of horizontally transferred genes. Interestingly, in pathways whose organization were significantly affected by HGT events, the operon-like arrangement of transferred genes was found to be prevalent. Such results suggest that operon plays an essential and directional role in the integration of alien genes into pathways.

  17. Comparative Genomic Analysis of N2-Fixing and Non-N2-Fixing Paenibacillus spp.: Organization, Evolution and Expression of the Nitrogen Fixation Genes

    OpenAIRE

    Jian-Bo Xie; Zhenglin Du; Lanqing Bai; Changfu Tian; Yunzhi Zhang; Jiu-Yan Xie; Tianshu Wang; Xiaomeng Liu; Xi Chen; Qi Cheng; Sanfeng Chen; Jilun Li

    2014-01-01

    We provide here a comparative genome analysis of 31 strains within the genus Paenibacillus including 11 new genomic sequences of N2-fixing strains. The heterogeneity of the 31 genomes (15 N2-fixing and 16 non-N2-fixing Paenibacillus strains) was reflected in the large size of the shell genome, which makes up approximately 65.2% of the genes in pan genome. Large numbers of transposable elements might be related to the heterogeneity. We discovered that a minimal and compact nif cluster comprisi...

  18. Characterization of genome-wide enhancer-promoter interactions reveals co-expression of interacting genes and modes of higher order chromatin organization

    Institute of Scientific and Technical Information of China (English)

    Iouri Chepelev; Gang Wei; Dara Wangsa; Qingsong Tang; Keji Zhao

    2012-01-01

    Recent epigenomic studies have predicted thousands of potential enhancers in the human genome.However,there has not been systematic characterization of target promoters for these potential enhancers.Using H3K4me2 as a mark for active enhancers,we identified genome-wide EP interactions in human CD4+ T cells.Among the 6 520 longdistance chromatin interactions,we identify 2 067 enhancers that interact with 1 619 promoters and enhance their expression.These enhancers exist in accessible chromatin regions and are associated with various histone modifications and polymerase Ⅱ binding.The promoters with interacting enhancers are expressed at higher levels than those without interacting enhancers,and their expression levels are positively correlated with the number of interacting enhancers.Interestingly,interacting promoters are co-expressed in a tissue-specific manner.We also find that chromosomes are organized into multiple levels of interacting domains.Our results define a global view of EP interactions and provide a data set to further understand mechanisms of enhancer targeting and long-range chromatin organization.The Gene Expression Omnibus accession number for the raw and analyzed chromatin interaction data is GSE32677.

  19. An intact F1ATPase alpha-subunit gene and a pseudogene with differing genomic organization are detected in both male-fertile and CMS petunia mitochondria.

    Science.gov (United States)

    Yesodi, V; Hauschner, H; Tabib, Y; Firon, N

    1997-11-01

    The gene copies for the alpha-subunit of the mitochondrial F1ATPase (atpA) were isolated and characterized in both male-fertile and cytoplasmic male sterile (CMS) petunia. Two copies, an intact gene and a truncated gene, were detected in both cytoplasms. The accumulated data, based upon a comparison of the sequences (the open reading frames as well as the 5' and 3' flanking regions) of the two atpA copies, both in male-fertile and CMS Petunia, indicate that: (1) they differ in their genomic organization and (2) a common progenitor cytoplasm, containing two copies of an intact atpA sequence, served as the origin for the atpA copies of the fertility and CMS-inducing cytoplasms. Homologous recombination through the progenitor intact atpA sequences is assumed to have caused the rearrangement in the 3' portion of the atpA open reading frame and the generation of the truncated atpA gene. It is thus suggested that the atpA pseudogenes, in both male-fertile and CMS cytoplasms, originated from a common progenitor atpA pseudogene sequence.

  20. The Genome Organization of Thermotoga maritima Reflects Its Lifestyle

    Energy Technology Data Exchange (ETDEWEB)

    Latif, Haythem; Lerman, Joshua A.; Portnoy, Vasiliy A.; Tarasova, Yekaterina; Nagarajan, Harish; Rutledge, Alexandra C.; Smith, Richard D.; Adkins, Joshua N.; Lee, Dae-Hee; Qiu, Yu; Zengler, Karsten

    2013-04-25

    Recent studies have revealed that microbial genomes have many more organizational features than previously thought. Here, an integrated approach utilizing multiple ‘omics’ datasets and bioinformatics tools is established that elucidates genomic features spanning various levels of cellular organization. This methodology produces gene annotation improvements and includes the definition of transcription units. These enhancements to the annotation enable identification of a set of genetic elements instrumental to gene expression and regulation including promoters, ribosome binding sites (RBSs) and untranslated regions (UTRs). This was applied to characterize the genome organization of Thermotoga maritima—a phylogenetically deep-branching, hyperthermophilic bacterium with a small 1.86 Mb genome. Analysis derived from this multiomics approach in combination with bioinformatics tools demonstrate that the genome organization of T. maritima reflects its lifestyle, both with respect to its extreme growth temperature and compact genome. Comparative analysis of genome features suggests that thermodynamic limitations on binding kinetics for RNA polymerase and the ribosome necessitate increased sequence conservation of promoters and RBSs. Thus, restricting the sequences capable of initiating transcription and translation. Furthermore, this organism has uncharacteristically short 5’UTRs (11-17 nucleotides), which reduce the potential for 5’UTR regulatory interactions. The short intergenic distances in the T. maritima genome (5 bp on average) leave little space for regulation through transcription factor binding. The net effect of these constraints, temperature and genomic space, is a reduced ability to tune gene expression. This effect is readily apparent in global gene expression patterns, which show a high fraction of genes expressed independent of growth state with a tight, linear mRNA/protein correlation (Pearson r = 0.62, p < 2.2 x 10-16 t-test). This methodology

  1. Synaptotagmin gene content of the sequenced genomes

    Directory of Open Access Journals (Sweden)

    Craxton Molly

    2004-07-01

    Full Text Available Abstract Background Synaptotagmins exist as a large gene family in mammals. There is much interest in the function of certain family members which act crucially in the regulated synaptic vesicle exocytosis required for efficient neurotransmission. Knowledge of the functions of other family members is relatively poor and the presence of Synaptotagmin genes in plants indicates a role for the family as a whole which is wider than neurotransmission. Identification of the Synaptotagmin genes within completely sequenced genomes can provide the entire Synaptotagmin gene complement of each sequenced organism. Defining the detailed structures of all the Synaptotagmin genes and their encoded products can provide a useful resource for functional studies and a deeper understanding of the evolution of the gene family. The current rapid increase in the number of sequenced genomes from different branches of the tree of life, together with the public deposition of evolutionarily diverse transcript sequences make such studies worthwhile. Results I have compiled a detailed list of the Synaptotagmin genes of Caenorhabditis, Anopheles, Drosophila, Ciona, Danio, Fugu, Mus, Homo, Arabidopsis and Oryza by examining genomic and transcript sequences from public sequence databases together with some transcript sequences obtained by cDNA library screening and RT-PCR. I have compared all of the genes and investigated the relationship between plant Synaptotagmins and their non-Synaptotagmin counterparts. Conclusions I have identified and compared 98 Synaptotagmin genes from 10 sequenced genomes. Detailed comparison of transcript sequences reveals abundant and complex variation in Synaptotagmin gene expression and indicates the presence of Synaptotagmin genes in all animals and land plants. Amino acid sequence comparisons indicate patterns of conservation and diversity in function. Phylogenetic analysis shows the origin of Synaptotagmins in multicellular eukaryotes and their

  2. Weeding out the genes: the Arabidopsis genome project.

    Science.gov (United States)

    Martienssen, R A

    2000-05-01

    The Arabidopsis genome sequence is scheduled for completion at the end of this year (December 2000). It will be the first higher plant genome to be sequenced, and will allow a detailed comparison with bacterial, yeast and animal genomes. Already, two of the five chromosomes have been sequenced, and we have had our first glimpse of higher eukaryotic centromeres, and the structure of heterochromatin. The implications for understanding plant gene function, genome structure and genome organization are profound. In this review, the lessons learned for future genome projects are reviewed as well as a summary of the initial findings in Arabidopsis.

  3. GO4genome: A Prokaryotic Phylogeny Based on Genome Organization

    OpenAIRE

    Merkl, Rainer; Wiezer, Arnim

    2009-01-01

    Determining the phylogeny of closely related prokaryotes may fail in an analysis of rRNA or a small set of sequences. Whole-genome phylogeny utilizes the maximally available sample space. For a precise determination of genome similarity, two aspects have to be considered when developing an algorithm of whole-genome phylogeny: (1) gene order conservation is a more precise signal than gene content; and (2) when using sequence similarity, failures in identifying orthologues or the in situ replac...

  4. Genome-wide analysis of the Hsp20 gene family in soybean: comprehensive sequence, genomic organization and expression profile analysis under abiotic and biotic stresses

    National Research Council Canada - National Science Library

    Lopes-Caitar, Valéria S; de Carvalho, Mayra C C G; Darben, Luana M; Kuwahara, Marcia K; Nepomuceno, Alexandre L; Dias, Waldir P; Abdelnoor, Ricardo V; Marcelino-Guimarães, Francismar C

    2013-01-01

    .... Thus, in the present study an in silico identification of GmHsp20 gene family members was performed, and the genes were characterized and subjected to in vivo expression analysis under biotic and abiotic stresses...

  5. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Directory of Open Access Journals (Sweden)

    Phillips Ruth B

    2010-10-01

    Full Text Available Abstract Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon

  6. Comparative genomic analysis of eutherian kallikrein genes

    Directory of Open Access Journals (Sweden)

    Marko Premzl

    2017-03-01

    Full Text Available The present study made attempts to update and revise eutherian kallikrein genes implicated in major physiological and pathological processes and in medical molecular diagnostics. Using eutherian comparative genomic analysis protocol and free available genomic sequence assemblies, the tests of reliability of eutherian public genomic sequences annotated most comprehensive curated third party data gene data set of eutherian kallikrein genes including 121 complete coding sequences among 335 potential coding sequences. The present analysis first described 13 major gene clusters of eutherian kallikrein genes, and explained their differential gene expansion patterns. One updated classification and nomenclature of eutherian kallikrein genes was proposed, as new framework of future experiments.

  7. Uses of antimicrobial genes from microbial genome

    Science.gov (United States)

    Sorek, Rotem; Rubin, Edward M.

    2013-08-20

    We describe a method for mining microbial genomes to discover antimicrobial genes and proteins having broad spectrum of activity. Also described are antimicrobial genes and their expression products from various microbial genomes that were found using this method. The products of such genes can be used as antimicrobial agents or as tools for molecular biology.

  8. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    Science.gov (United States)

    2011-01-01

    Background In the model system Drosophila melanogaster, doublesex (dsx) is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs. Results In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti (Aeadsx). Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR) led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators. Conclusions This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae Anopheles gambiae orthologue

  9. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Arcà Bruno

    2011-02-01

    Full Text Available Abstract Background In the model system Drosophila melanogaster, doublesex (dsx is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs. Results In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti (Aeadsx. Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators. Conclusions This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae

  10. Plant genomics and agriculture: From model organisms to crops, the role of data mining for gene discovery

    National Research Council Canada - National Science Library

    Mahalakshmi, Viswanathan; Ortiz, Rodomiro

    2003-01-01

    .... The increasing role of public databases of model organisms and bio-informatics in data mining, presents a new opportunity as well as a challenge to researchers to develop more focused molecular tools...

  11. Comparative genomic analysis of sixty mycobacteriophage genomes: Genome clustering, gene acquisition and gene size

    Science.gov (United States)

    Hatfull, Graham F.; Jacobs-Sera, Deborah; Lawrence, Jeffrey G.; Pope, Welkin H.; Russell, Daniel A.; Ko, Ching-Chung; Weber, Rebecca J.; Patel, Manisha C.; Germane, Katherine L.; Edgar, Robert H.; Hoyte, Natasha N.; Bowman, Charles A.; Tantoco, Anthony T.; Paladin, Elizabeth C.; Myers, Marlana S.; Smith, Alexis L.; Grace, Molly S.; Pham, Thuy T.; O'Brien, Matthew B.; Vogelsberger, Amy M.; Hryckowian, Andrew J.; Wynalek, Jessica L.; Donis-Keller, Helen; Bogel, Matt W.; Peebles, Craig L.; Cresawn, Steve G.; Hendrix, Roger W.

    2010-01-01

    Mycobacteriophages are viruses that infect mycobacterial hosts. Expansion of a collection of sequenced phage genomes to a total of sixty – all infecting a common bacterial host – provides further insight into their diversity and evolution. Of the sixty phage genomes, 55 can be grouped into nine clusters according to their nucleotide sequence similarities, five of which can be further divided into subclusters; five genomes do not cluster with other phages. The sequence diversity between genomes within a cluster varies greatly; for example, the six genomes in cluster D share more than 97.5% average nucleotide similarity with each other. In contrast, similarity between the two genomes in Cluster I is barely detectable by diagonal plot analysis. The total of 6,858 predicted ORFs have been grouped into 1523 phamilies (phams) of related sequences, 46% of which possess only a single member. Only 18.8% of the phams have sequence similarity to non-mycobacteriophage database entries and fewer than 10% of all phams can be assigned functions based on database searching or synteny. Genome clustering facilitates the identification of genes that are in greatest genetic flux and are more likely to have been exchanged horizontally in relatively recent evolutionary time. Although mycobacteriophage genes exhibit smaller average size than genes of their host (205 residues compared to 315), phage genes in higher flux average only ∼100 amino acids, suggesting that the primary units of genetic exchange correspond to single protein domains. PMID:20064525

  12. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes

    OpenAIRE

    Li, Xinxin; Deng, Zhiping; Liu, Zhanzhi; Yan, Yongliang; Wang, Tianshu; Xie, Jianbo; Lin, Min; CHENG, QI; Chen, Sanfeng

    2014-01-01

    Background Most biological nitrogen fixation is catalyzed by the molybdenum nitrogenase. This enzyme is a complex which contains the MoFe protein encoded by nifDK and the Fe protein encoded by nifH. In addition to nifHDK, nifHDK-like genes were found in some Archaea and Firmicutes, but their function is unclear. Results We sequenced the genome of Paenibacillus sabinae T27. A total of 4,793 open reading frames were predicted from its 5.27 Mb genome. The genome of P. sabinae T27 contains fiftee...

  13. The genome of Paenibacillus sabinae T27 provides insight into evolution, organization and functional elucidation of nif and nif-like genes

    OpenAIRE

    Li, Xinxin; Deng, Zhiping; Liu, Zhanzhi; Yan, Yongliang; Wang, Tianshu; Xie, Jianbo; Lin, Min; Cheng, Qi; Chen, Sanfeng

    2014-01-01

    Background Most biological nitrogen fixation is catalyzed by the molybdenum nitrogenase. This enzyme is a complex which contains the MoFe protein encoded by nifDK and the Fe protein encoded by nifH. In addition to nifHDK, nifHDK-like genes were found in some Archaea and Firmicutes, but their function is unclear. Results We sequenced the genome of Paenibacillus sabinae T27. A total of 4,793 open reading frames were predicted from its 5.27 Mb genome. The genome of P. sabinae T27 contains fiftee...

  14. Genomics of local adaptation with gene flow.

    Science.gov (United States)

    Tigano, Anna; Friesen, Vicki L

    2016-05-01

    Gene flow is a fundamental evolutionary force in adaptation that is especially important to understand as humans are rapidly changing both the natural environment and natural levels of gene flow. Theory proposes a multifaceted role for gene flow in adaptation, but it focuses mainly on the disruptive effect that gene flow has on adaptation when selection is not strong enough to prevent the loss of locally adapted alleles. The role of gene flow in adaptation is now better understood due to the recent development of both genomic models of adaptive evolution and genomic techniques, which both point to the importance of genetic architecture in the origin and maintenance of adaptation with gene flow. In this review, we discuss three main topics on the genomics of adaptation with gene flow. First, we investigate selection on migration and gene flow. Second, we discuss the three potential sources of adaptive variation in relation to the role of gene flow in the origin of adaptation. Third, we explain how local adaptation is maintained despite gene flow: we provide a synthesis of recent genomic models of adaptation, discuss the genomic mechanisms and review empirical studies on the genomics of adaptation with gene flow. Despite predictions on the disruptive effect of gene flow in adaptation, an increasing number of studies show that gene flow can promote adaptation, that local adaptations can be maintained despite high gene flow, and that genetic architecture plays a fundamental role in the origin and maintenance of local adaptation with gene flow.

  15. Genomic organization and chromosomal localization of the human and mouse genes encoding the alpha receptor component for ciliary neurotrophic factor.

    Science.gov (United States)

    Valenzuela, D M; Rojas, E; Le Beau, M M; Espinosa, R; Brannan, C I; McClain, J; Masiakowski, P; Ip, N Y; Copeland, N G; Jenkins, N A

    1995-01-01

    Ciliary neurotrophic factor (CNTF) has recently been found to share receptor components with, and to be structurally related to, a family of broadly acting cytokines, including interleukin-6, leukemia inhibitory factor, and oncostatin M. However, the CNTF receptor complex also includes a CNTF-specific component known as CNTF receptor alpha (CNTFR alpha). Here we describe the molecular cloning of the human and mouse genes encoding CNTFR. We report that the human and mouse genes have an identical intron-exon structure that correlates well with the domain structure of CNTFR alpha. That is, the signal peptide and the immunoglobulin-like domain are each encoded by single exons, the cytokine receptor-like domain is distributed among 4 exons, and the C-terminal glycosyl phosphatidylinositol recognition domain is encoded by the final coding exon. The position of the introns within the cytokine receptor-like domain corresponds to those found in other members of the cytokine receptor superfamily. Confirming a recent study using radiation hybrids, we have also mapped the human CNTFR gene to chromosome band 9p13 and the mouse gene to a syntenic region of chromosome 4.

  16. Gene and genome duplication in Acanthamoeba polyphaga Mimivirus.

    Science.gov (United States)

    Suhre, Karsten

    2005-11-01

    Gene duplication is key to molecular evolution in all three domains of life and may be the first step in the emergence of new gene function. It is a well-recognized feature in large DNA viruses but has not been studied extensively in the largest known virus to date, the recently discovered Acanthamoeba polyphaga Mimivirus. Here, I present a systematic analysis of gene and genome duplication events in the mimivirus genome. I found that one-third of the mimivirus genes are related to at least one other gene in the mimivirus genome, either through a large segmental genome duplication event that occurred in the more remote past or through more recent gene duplication events, which often occur in tandem. This shows that gene and genome duplication played a major role in shaping the mimivirus genome. Using multiple alignments, together with remote-homology detection methods based on Hidden Markov Model comparison, I assign putative functions to some of the paralogous gene families. I suggest that a large part of the duplicated mimivirus gene families are likely to interfere with important host cell processes, such as transcription control, protein degradation, and cell regulatory processes. My findings support the view that large DNA viruses are complex evolving organisms, possibly deeply rooted within the tree of life, and oppose the paradigm that viral evolution is dominated by lateral gene acquisition, at least in regard to large DNA viruses.

  17. Genomic signatures of local directional selection in a high gene flow marine organism, the Atlantic cod (Gadus morhua)

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Jakob Hemmer; Poulsen, Nina Aagaard;

    2009-01-01

    Background: Marine fishes have been shown to display low levels of genetic structuring and associated high levels of gene flow, suggesting shallow evolutionary trajectories and, possibly, limited or lacking adaptive divergence among local populations. We investigated variation in 98 gene...... selection in local demes, or closely linked to loci under selection. Likewise, on a regional south/north transect of central and eastern Atlantic populations, seven loci displayed strongly elevated levels of genetic differentiation. Selection patterns among populations appeared to be relatively widespread...... archived otoliths from a Faeroese population demonstrated stability of the intra-population variation over 24 years. An exploratory landscape genetic analysis was used to elucidate potential effects of the most likely environmental factors responsible for the signatures of local adaptation. We found...

  18. Genomic organization and mapping of the gene (SLC25A19) encoding the human mitochondrial deoxynucleotide carrier (DNC).

    Science.gov (United States)

    Iacobazzi, V; Ventura, M; Fiermonte, G; Prezioso, G; Rocchi, M; Palmieri, F

    2001-01-01

    The deoxynucleotide carrier (DNC) transports deoxynucleotides into mitochondria and is therefore essential for mtDNA synthesis. The human DNC gene (SLC25A19) spans about 16.5 kb and consists of nine exons with the translation start site in exon 4. It is located on chromosome 17q25.3. Three transcripts, which differ in their 5' ends and are generated by alternative splicing, have been identified.

  19. Organization and evolution of a gene-rich region of the mouse genome: a 12.7-Mb region deleted in the Del(13)Svea36H mouse.

    Science.gov (United States)

    Mallon, Ann-Marie; Wilming, Laurens; Weekes, Joseph; Gilbert, James G R; Ashurst, Jennifer; Peyrefitte, Sandrine; Matthews, Lucy; Cadman, Matthew; McKeone, Richard; Sellick, Chris A; Arkell, Ruth; Botcherby, Marc R M; Strivens, Mark A; Campbell, R Duncan; Gregory, Simon; Denny, Paul; Hancock, John M; Rogers, Jane; Brown, Steve D M

    2004-10-01

    Del(13)Svea36H (Del36H) is a deletion of approximately 20% of mouse chromosome 13 showing conserved synteny with human chromosome 6p22.1-6p22.3/6p25. The human region is lost in some deletion syndromes and is the site of several disease loci. Heterozygous Del36H mice show numerous phenotypes and may model aspects of human genetic disease. We describe 12.7 Mb of finished, annotated sequence from Del36H. Del36H has a higher gene density than the draft mouse genome, reflecting high local densities of three gene families (vomeronasal receptors, serpins, and prolactins) which are greatly expanded relative to human. Transposable elements are concentrated near these gene families. We therefore suggest that their neighborhoods are gene factories, regions of frequent recombination in which gene duplication is more frequent. The gene families show different proportions of pseudogenes, likely reflecting different strengths of purifying selection and/or gene conversion. They are also associated with relatively low simple sequence concentrations, which vary across the region with a periodicity of approximately 5 Mb. Del36H contains numerous evolutionarily conserved regions (ECRs). Many lie in noncoding regions, are detectable in species as distant as Ciona intestinalis, and therefore are candidate regulatory sequences. This analysis will facilitate functional genomic analysis of Del36H and provides insights into mouse genome evolution.

  20. Analysis of the grape MYB R2R3 subfamily reveals expanded wine quality-related clades and conserved gene structure organization across Vitis and Arabidopsis genomes

    Directory of Open Access Journals (Sweden)

    Arce-Johnson Patricio

    2008-07-01

    Full Text Available Abstract Background The MYB superfamily constitutes the most abundant group of transcription factors described in plants. Members control processes such as epidermal cell differentiation, stomatal aperture, flavonoid synthesis, cold and drought tolerance and pathogen resistance. No genome-wide characterization of this family has been conducted in a woody species such as grapevine. In addition, previous analysis of the recently released grape genome sequence suggested expansion events of several gene families involved in wine quality. Results We describe and classify 108 members of the grape R2R3 MYB gene subfamily in terms of their genomic gene structures and similarity to their putative Arabidopsis thaliana orthologues. Seven gene models were derived and analyzed in terms of gene expression and their DNA binding domain structures. Despite low overall sequence homology in the C-terminus of all proteins, even in those with similar functions across Arabidopsis and Vitis, highly conserved motif sequences and exon lengths were found. The grape epidermal cell fate clade is expanded when compared with the Arabidopsis and rice MYB subfamilies. Two anthocyanin MYBA related clusters were identified in chromosomes 2 and 14, one of which includes the previously described grape colour locus. Tannin related loci were also detected with eight candidate homologues in chromosomes 4, 9 and 11. Conclusion This genome wide transcription factor analysis in Vitis suggests that clade-specific grape R2R3 MYB genes are expanded while other MYB genes could be well conserved compared to Arabidopsis. MYB gene abundance, homology and orientation within particular loci also suggests that expanded MYB clades conferring quality attributes of grapes and wines, such as colour and astringency, could possess redundant, overlapping and cooperative functions.

  1. Genome classification by gene distribution: An overlapping subspace clustering approach

    Directory of Open Access Journals (Sweden)

    Halgamuge Saman K

    2008-04-01

    Full Text Available Abstract Background Genomes of lower organisms have been observed with a large amount of horizontal gene transfers, which cause difficulties in their evolutionary study. Bacteriophage genomes are a typical example. One recent approach that addresses this problem is the unsupervised clustering of genomes based on gene order and genome position, which helps to reveal species relationships that may not be apparent from traditional phylogenetic methods. Results We propose the use of an overlapping subspace clustering algorithm for such genome classification problems. The advantage of subspace clustering over traditional clustering is that it can associate clusters with gene arrangement patterns, preserving genomic information in the clusters produced. Additionally, overlapping capability is desirable for the discovery of multiple conserved patterns within a single genome, such as those acquired from different species via horizontal gene transfers. The proposed method involves a novel strategy to vectorize genomes based on their gene distribution. A number of existing subspace clustering and biclustering algorithms were evaluated to identify the best framework upon which to develop our algorithm; we extended a generic subspace clustering algorithm called HARP to incorporate overlapping capability. The proposed algorithm was assessed and applied on bacteriophage genomes. The phage grouping results are consistent overall with the Phage Proteomic Tree and showed common genomic characteristics among the TP901-like, Sfi21-like and sk1-like phage groups. Among 441 phage genomes, we identified four significantly conserved distribution patterns structured by the terminase, portal, integrase, holin and lysin genes. We also observed a subgroup of Sfi21-like phages comprising a distinctive divergent genome organization and identified nine new phage members to the Sfi21-like genus: Staphylococcus 71, phiPVL108, Listeria A118, 2389, Lactobacillus phi AT3, A2

  2. Genomic organization of the CC chemokine mip-3alpha/CCL20/larc/exodus/SCYA20, showing gene structure, splice variants, and chromosome localization.

    Science.gov (United States)

    Nelson, R T; Boyd, J; Gladue, R P; Paradis, T; Thomas, R; Cunningham, A C; Lira, P; Brissette, W H; Hayes, L; Hames, L M; Neote, K S; McColl, S R

    2001-04-01

    We describe the genomic organization of a recently identified CC chemokine, MIP3alpha/CCL20 (HGMW-approved symbol SCYA20). The MIP-3alpha/CCL20 gene was cloned and sequenced, revealing a four exon, three intron structure, and was localized by FISH analysis to 2q35-q36. Two distinct cDNAs were identified, encoding two forms of MIP-3alpha/CCL20, Ala MIP-3alpha/CCL20 and Ser MIP-3alpha/CCL20, that differ by one amino acid at the predicted signal peptide cleavage site. Examination of the sequence around the boundary of intron 1 and exon 2 showed that use of alternative splice acceptor sites could give rise to Ala MIP-3alpha/CCL20 or Ser MIP-3alpha/CCL20. Both forms of MIP-3alpha/CCL20 were chemically synthesized and tested for biological activity. Both flu antigen plus IL-2-activated CD4(+) and CD8(+) T lymphoblasts and cord blood-derived dendritic cells responded to Ser and Ala MIP-3alpha/CCL20. T lymphocytes exposed only to IL-2 responded inconsistently, while no response was detected in naive T lymphocytes, monocytes, or neutrophils. The biological activity of Ser MIP-3alpha/CCL20 and Ala MIP-3alpha/CCL20 and the tissue-specific preference of different splice acceptor sites are not yet known.

  3. Pichia stipitis genomics, transcriptomics, and gene clusters

    Science.gov (United States)

    Thomas W. Jeffries; Jennifer R. Headman Van Vleet

    2009-01-01

    Genome sequencing and subsequent global gene expression studies have advanced our understanding of the lignocellulose-fermenting yeast Pichia stipitis. These studies have provided an insight into its central carbon metabolism, and analysis of its genome has revealed numerous functional gene clusters and tandem repeats. Specialized physiological traits are often the...

  4. 5S ribosomal RNA genes in six species of Mediterranean grey mullets: genomic organization and phylogenetic inference.

    Science.gov (United States)

    Gornung, Ekaterina; Colangelo, Paolo; Annesi, Flavia

    2007-09-01

    This paper describes a study of the 5S ribosomal RNA genes (5S rDNA) in a group of 6 species belonging to 4 genera of Mugilidae. In these 6 species, the relatively short 5S rDNA repeat units, generated by PCR and ranging in size from 219 to 257 bp, show a high level of intragenomic homogeneity of both coding and spacer regions (NTS-I). Phylogenetic reconstructions based on this data set highlight the greater phylogenetic and genetic diversity of Mugil cephalus and Oedalechilus labeo compared with the genera Liza and Chelon. Comparative sequence analysis revealed significant conservation of the short 5S rDNA repeat units across Chelon and Liza. Moreover, a second size class of 5S rDNA repeat units, ranging from roughly 800 to 1100 bp, was produced in the Liza and Chelon samples. Only short 5S rDNA repeat units were found in M. cephalus and O. labeo. The sequences of the long 5S rDNA repeat units, obtained in Chelon labrosus and Liza ramada, differ owing to the presence of 2 large insertion/deletions (indels) in the spacers (NTS-II) and show considerable sequence identity with NTS-I spacers. Interspecific sequence variation of NTS-II spacers, excluding the indels, is low. Southern-blot hybridization patterns suggest an intermixed arrangement of short and long repeat units within a single chromosome locus.

  5. KEGG: kyoto encyclopedia of genes and genomes.

    Science.gov (United States)

    Kanehisa, M; Goto, S

    2000-01-01

    KEGG (Kyoto Encyclopedia of Genes and Genomes) is a knowledge base for systematic analysis of gene functions, linking genomic information with higher order functional information. The genomic information is stored in the GENES database, which is a collection of gene catalogs for all the completely sequenced genomes and some partial genomes with up-to-date annotation of gene functions. The higher order functional information is stored in the PATHWAY database, which contains graphical representations of cellular processes, such as metabolism, membrane transport, signal transduction and cell cycle. The PATHWAY database is supplemented by a set of ortholog group tables for the information about conserved subpathways (pathway motifs), which are often encoded by positionally coupled genes on the chromosome and which are especially useful in predicting gene functions. A third database in KEGG is LIGAND for the information about chemical compounds, enzyme molecules and enzymatic reactions. KEGG provides Java graphics tools for browsing genome maps, comparing two genome maps and manipulating expression maps, as well as computational tools for sequence comparison, graph comparison and path computation. The KEGG databases are daily updated and made freely available (http://www. genome.ad.jp/kegg/).

  6. Coelacanth genome sequence reveals the evolutionary history of vertebrate genes.

    Science.gov (United States)

    Noonan, James P; Grimwood, Jane; Danke, Joshua; Schmutz, Jeremy; Dickson, Mark; Amemiya, Chris T; Myers, Richard M

    2004-12-01

    The coelacanth is one of the nearest living relatives of tetrapods. However, a teleost species such as zebrafish or Fugu is typically used as the outgroup in current tetrapod comparative sequence analyses. Such studies are complicated by the fact that teleost genomes have undergone a whole-genome duplication event, as well as individual gene-duplication events. Here, we demonstrate the value of coelacanth genome sequence by complete sequencing and analysis of the protocadherin gene cluster of the Indonesian coelacanth, Latimeria menadoensis. We found that coelacanth has 49 protocadherin cluster genes organized in the same three ordered subclusters, alpha, beta, and gamma, as the 54 protocadherin cluster genes in human. In contrast, whole-genome and tandem duplications have generated two zebrafish protocadherin clusters comprised of at least 97 genes. Additionally, zebrafish protocadherins are far more prone to homogenizing gene conversion events than coelacanth protocadherins, suggesting that recombination- and duplication-driven plasticity may be a feature of teleost genomes. Our results indicate that coelacanth provides the ideal outgroup sequence against which tetrapod genomes can be measured. We therefore present L. menadoensis as a candidate for whole-genome sequencing.

  7. Conservation of ribosomal protein gene ordering in 16 complete genomes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and archaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacteria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variations in some operons across different organisms within each domain, and these variations are informative on the evolutionary relations among the organisms. This method provides a new potential for studying the origin and evolution of old species.

  8. Gene enrichment in plant genomic shotgun libraries.

    Science.gov (United States)

    Rabinowicz, Pablo D; McCombie, W Richard; Martienssen, Robert A

    2003-04-01

    The Arabidopsis genome (about 130 Mbp) has been completely sequenced; whereas a draft sequence of the rice genome (about 430 Mbp) is now available and the sequencing of this genome will be completed in the near future. The much larger genomes of several important crop species, such as wheat (about 16,000 Mbp) or maize (about 2500 Mbp), may not be fully sequenced with current technology. Instead, sequencing-analysis strategies are being developed to obtain sequencing and mapping information selectively for the genic fraction (gene space) of complex plant genomes.

  9. Correlation of microsynteny conservation and disease gene distribution in mammalian genomes

    Directory of Open Access Journals (Sweden)

    Li Xiting

    2009-11-01

    Full Text Available Abstract Background With the completion of the whole genome sequence for many organisms, investigations into genomic structure have revealed that gene distribution is variable, and that genes with similar function or expression are located within clusters. This clustering suggests that there are evolutionary constraints that determine genome architecture. However, as most of the evidence for constraints on genome evolution comes from studies on yeast, it is unclear how much of this prior work can be extrapolated to mammalian genomes. Therefore, in this work we wished to examine the constraints on regions of the mammalian genome containing conserved gene clusters. Results We first identified regions of the mouse genome with microsynteny conservation by comparing gene arrangement in the mouse genome to the human, rat, and dog genomes. We then asked if any particular gene types were found preferentially in conserved regions. We found a significant correlation between conserved microsynteny and the density of mouse orthologs of human disease genes, suggesting that disease genes are clustered in genomic regions of increased microsynteny conservation. Conclusion The correlation between microsynteny conservation and disease gene locations indicates that regions of the mouse genome with microsynteny conservation may contain undiscovered human disease genes. This study not only demonstrates that gene function constrains mammalian genome organization, but also identifies regions of the mouse genome that can be experimentally examined to produce mouse models of human disease.

  10. Biology, genome organization and evolution of parvoviruses in marine shrimp

    Science.gov (United States)

    A number of parvoviruses are now know to infect marine shrimp, and these viruses alone or in combination with other viruses have the potential to cause major losses in shrimp aquaculture globally. This review provides a comprehensive overview of the biology, genome organization, gene expression, and...

  11. Gene conversion in the rice genome

    DEFF Research Database (Denmark)

    Xu, Shuqing; Clark, Terry; Zheng, Hongkun;

    2008-01-01

    BACKGROUND: Gene conversion causes a non-reciprocal transfer of genetic information between similar sequences. Gene conversion can both homogenize genes and recruit point mutations thereby shaping the evolution of multigene families. In the rice genome, the large number of duplicated genes...... is not tightly linked to natural selection in the rice genome. To assess the contribution of segmental duplication on gene conversion statistics, we determined locations of conversion partners with respect to inter-chromosomal segment duplication. The number of conversions associated with segmentation is less...

  12. Clustering of gene ontology terms in genomes.

    Science.gov (United States)

    Tiirikka, Timo; Siermala, Markku; Vihinen, Mauno

    2014-10-25

    Although protein coding genes occupy only a small fraction of genomes in higher species, they are not randomly distributed within or between chromosomes. Clustering of genes with related function(s) and/or characteristics has been evident at several different levels. To study how common the clustering of functionally related genes is and what kind of functions the end products of these genes are involved, we collected gene ontology (GO) terms for complete genomes and developed a method to detect previously undefined gene clustering. Exhaustive analysis was performed for seven widely studied species ranging from human to Escherichia coli. To overcome problems related to varying gene lengths and densities, a novel method was developed and a fixed number of genes were analyzed irrespective of the genome span covered. Statistically very significant GO term clustering was apparent in all the investigated genomes. The analysis window, which ranged from 5 to 50 consecutive genes, revealed extensive GO term clusters for genes with widely varying functions. Here, the most interesting and significant results are discussed and the complete dataset for each analyzed species is available at the GOme database at http://bioinf.uta.fi/GOme. The results indicated that clusters of genes with related functions are very common, not only in bacteria, in which operons are frequent, but also in all the studied species irrespective of how complex they are. There are some differences between species but in all of them GO term clusters are common and of widely differing sizes. The presented method can be applied to analyze any genome or part of a genome for which descriptive features are available, and thus is not restricted to ontology terms. This method can also be applied to investigate gene and protein expression patterns. The results pave a way for further studies of mechanisms that shape genome structure and evolutionary forces related to them. Copyright © 2014 Elsevier B.V. All

  13. Genetics and Genomics of Single-Gene Cardiovascular Diseases : Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders

    NARCIS (Netherlands)

    Marian, Ali J; van Rooij, Eva; Roberts, Robert

    2016-01-01

    This is the first of 2 review papers on genetics and genomics appearing as part of the series on "omics." Genomics pertains to all components of an organism's genes, whereas genetics involves analysis of a specific gene or genes in the context of heredity. The paper provides introductory comments,

  14. Genetics and Genomics of Single-Gene Cardiovascular Diseases : Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders

    NARCIS (Netherlands)

    Marian, Ali J.; van Rooij, Eva; Roberts, Robert

    2016-01-01

    This is the first of 2 review papers on genetics and genomics appearing as part of the series on “omics.” Genomics pertains to all components of an organism's genes, whereas genetics involves analysis of a specific gene or genes in the context of heredity. The paper provides introductory comments,

  15. The cavefish genome reveals candidate genes for eye loss

    Science.gov (United States)

    McGaugh, Suzanne E.; Gross, Joshua B.; Aken, Bronwen; Blin, Maryline; Borowsky, Richard; Chalopin, Domitille; Hinaux, Hélène; Jeffery, William R.; Keene, Alex; Ma, Li; Minx, Patrick; Murphy, Daniel; O’Quin, Kelly E.; Rétaux, Sylvie; Rohner, Nicolas; Searle, Steve M. J.; Stahl, Bethany A.; Tabin, Cliff; Volff, Jean-Nicolas; Yoshizawa, Masato; Warren, Wesley C.

    2014-01-01

    Natural populations subjected to strong environmental selection pressures offer a window into the genetic underpinnings of evolutionary change. Cavefish populations, Astyanax mexicanus (Teleostei: Characiphysi), exhibit repeated, independent evolution for a variety of traits including eye degeneration, pigment loss, increased size and number of taste buds and mechanosensory organs, and shifts in many behavioural traits. Surface and cave forms are interfertile making this system amenable to genetic interrogation; however, lack of a reference genome has hampered efforts to identify genes responsible for changes in cave forms of A. mexicanus. Here we present the first de novo genome assembly for Astyanax mexicanus cavefish, contrast repeat elements to other teleost genomes, identify candidate genes underlying quantitative trait loci (QTL), and assay these candidate genes for potential functional and expression differences. We expect the cavefish genome to advance understanding of the evolutionary process, as well as, analogous human disease including retinal dysfunction. PMID:25329095

  16. Structural Genomics of Minimal Organisms: Pipeline and Results

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Hou; Shin, Dong-Hae; Kim, Rosalind; Adams, Paul; Chandonia, John-Marc

    2007-09-14

    The initial objective of the Berkeley Structural Genomics Center was to obtain a near complete three-dimensional (3D) structural information of all soluble proteins of two minimal organisms, closely related pathogens Mycoplasma genitalium and M. pneumoniae. The former has fewer than 500 genes and the latter has fewer than 700 genes. A semiautomated structural genomics pipeline was set up from target selection, cloning, expression, purification, and ultimately structural determination. At the time of this writing, structural information of more than 93percent of all soluble proteins of M. genitalium is avail able. This chapter summarizes the approaches taken by the authors' center.

  17. Ab initio gene identification: prokaryote genome annotation with GeneScan and GLIMMER

    Indian Academy of Sciences (India)

    Gautam Aggarwal; Ramakrishna Ramaswamy

    2002-02-01

    We compare the annotation of three complete genomes using the ab initio methods of gene identification GeneScan and GLIMMER. The annotation given in GenBank, the standard against which these are compared, has been made using GeneMark. We find a number of novel genes which are predicted by both methods used here, as well as a number of genes that are predicted by GeneMark, but are not identified by either of the nonconsensus methods that we have used. The three organisms studied here are all prokaryotic species with fairly compact genomes. The Fourier measure forms the basis for an efficient non-consensus method for gene prediction, and the algorithm GeneScan exploits this measure. We have bench-marked this program as well as GLIMMER using 3 complete prokaryotic genomes. An effort has also been made to study the limitations of these techniques for complete genome analysis. GeneScan and GLIMMER are of comparable accuracy insofar as gene-identification is concerned, with sensitivities and specificities typically greater than 0.9. The number of false predictions (both positive and negative) is higher for GeneScan as compared to GLIMMER, but in a significant number of cases, similar results are provided by the two techniques. This suggests that there could be some as-yet unidentified additional genes in these three genomes, and also that some of the putative identifications made hitherto might require re-evaluation. All these cases are discussed in detail.

  18. Organization of immunoglobulin genes.

    Science.gov (United States)

    Tonegawa, S; Brack, C; Hozumi, N; Pirrotta, V

    1978-01-01

    The nucleotide-sequence determination of a cloned, embryonic Vlambda gene directly demonstrated that V genes are separate from a corresponding C gene in embryonic cells. Analysis by restriction enzymes of total cellular DNA from various sources strongly suggested that the two separate immunoglobulin genes become continuous during differentiation of B lymphocytes. There seems to be a strict correlation between the joining event and activation of the joined genes. Cloning of more immunoglobulin genes from embryo and plasma cells will not only provide direct demonstration of such a gene-joining event but also help in the elucidation of a possible relationship of the event to gene activation mechanisms.

  19. Genome Binding and Gene Regulation by Stem Cell Transcription Factors

    NARCIS (Netherlands)

    J.H. Brandsma (Johan)

    2016-01-01

    markdownabstractNearly all cells of an individual organism contain the same genome. However, each cell type transcribes a different set of genes due to the presence of different sets of cell type-specific transcription factors. Such transcription factors bind to regulatory regions such as promoters

  20. Biased distribution of DNA uptake sequences towards genome maintenance genes

    DEFF Research Database (Denmark)

    Davidsen, T.; Rodland, E.A.; Lagesen, K.

    2004-01-01

    in these organisms. Pasteurella multocida also displayed high frequencies of a putative DUS identical to that previously identified in H. influenzae and with a skewed distribution towards genome maintenance genes, indicating that this bacterium might be transformation competent under certain conditions....

  1. Comparative genomic analysis of soybean flowering genes.

    Directory of Open Access Journals (Sweden)

    Chol-Hee Jung

    Full Text Available Flowering is an important agronomic trait that determines crop yield. Soybean is a major oilseed legume crop used for human and animal feed. Legumes have unique vegetative and floral complexities. Our understanding of the molecular basis of flower initiation and development in legumes is limited. Here, we address this by using a computational approach to examine flowering regulatory genes in the soybean genome in comparison to the most studied model plant, Arabidopsis. For this comparison, a genome-wide analysis of orthologue groups was performed, followed by an in silico gene expression analysis of the identified soybean flowering genes. Phylogenetic analyses of the gene families highlighted the evolutionary relationships among these candidates. Our study identified key flowering genes in soybean and indicates that the vernalisation and the ambient-temperature pathways seem to be the most variant in soybean. A comparison of the orthologue groups containing flowering genes indicated that, on average, each Arabidopsis flowering gene has 2-3 orthologous copies in soybean. Our analysis highlighted that the CDF3, VRN1, SVP, AP3 and PIF3 genes are paralogue-rich genes in soybean. Furthermore, the genome mapping of the soybean flowering genes showed that these genes are scattered randomly across the genome. A paralogue comparison indicated that the soybean genes comprising the largest orthologue group are clustered in a 1.4 Mb region on chromosome 16 of soybean. Furthermore, a comparison with the undomesticated soybean (Glycine soja revealed that there are hundreds of SNPs that are associated with putative soybean flowering genes and that there are structural variants that may affect the genes of the light-signalling and ambient-temperature pathways in soybean. Our study provides a framework for the soybean flowering pathway and insights into the relationship and evolution of flowering genes between a short-day soybean and the long-day plant

  2. Conservation of ribosomal protein gene ordering in 16 complete genomes

    Institute of Scientific and Technical Information of China (English)

    王宁; 陈润生; 王永雄

    2000-01-01

    The organization of ribosomal proteins in 16 prokaryotic genomes was studied as an example of comparative genome analyses of gene systems. Hypothetical ribosomal protein-containing operons were constructed. These operons also contained putative genes and other non-ribosomal genes. The correspondences among these genes across different organisms were clarified by sequence homology computations. In this way a cross tabulation of 70 ribosomal proteins genes was constructed. On average, these were organized into 9-14 operons in each genome. There were also 25 non-ribosomal or putative genes in these mainly ribosomal protein operons. Hence the table contains 95 genes in total. It was found that: (i) the conservation of the block of about 20 r-proteins in the L3 and L4 operons across almost the entire eubacteria and ar-chaebacteria is remarkable; (ii) some operons only belong to eubacteria or archaebacte-ria; (iii) although the ribosomal protein operons are highly conserved within domain, there are fine variat

  3. Identification and distribution of the NBS-LRR gene family in the cassava genome

    Science.gov (United States)

    Plant resistance genes (R genes) exist in large families and usually contain both a nucleotide-binding site domain and a leucine-rich repeat domain, denoted NBS-LRR. The genome sequence of cassava (Manihot esculenta) is a valuable resource for analyzing the genomic organization of resistance genes i...

  4. The footprint of metabolism in the organization of mammalian genomes

    Directory of Open Access Journals (Sweden)

    Berná Luisa

    2012-05-01

    Full Text Available Abstract Background At present five evolutionary hypotheses have been proposed to explain the great variability of the genomic GC content among and within genomes: the mutational bias, the biased gene conversion, the DNA breakpoints distribution, the thermal stability and the metabolic rate. Several studies carried out on bacteria and teleostean fish pointed towards the critical role played by the environment on the metabolic rate in shaping the base composition of genomes. In mammals the debate is still open, and evidences have been produced in favor of each evolutionary hypothesis. Human genes were assigned to three large functional categories (as well as to the corresponding functional classes according to the KOG database: (i information storage and processing, (ii cellular processes and signaling, and (iii metabolism. The classification was extended to the organisms so far analyzed performing a reciprocal Blastp and selecting the best reciprocal hit. The base composition was calculated for each sequence of the whole CDS dataset. Results The GC3 level of the above functional categories was increasing from (i to (iii. This specific compositional pattern was found, as footprint, in all mammalian genomes, but not in frog and lizard ones. Comparative analysis of human versus both frog and lizard functional categories showed that genes involved in the metabolic processes underwent the highest GC3 increment. Analyzing the KOG functional classes of genes, again a well defined intra-genomic pattern was found in all mammals. Not only genes of metabolic pathways, but also genes involved in chromatin structure and dynamics, transcription, signal transduction mechanisms and cytoskeleton, showed an average GC3 level higher than that of the whole genome. In the case of the human genome, the genes of the aforementioned functional categories showed a high probability to be associated with the chromosomal bands. Conclusions In the light of different

  5. Whole genome phylogeny of Prochlorococcus marinus group of cyanobacteria: genome alignment and overlapping gene approach.

    Science.gov (United States)

    Prabha, Ratna; Singh, Dhananjaya P; Gupta, Shailendra K; Rai, Anil

    2014-06-01

    Prochlorococcus is the smallest known oxygenic phototrophic marine cyanobacterium dominating the mid-latitude oceans. Physiologically and genetically distinct P. marinus isolates from many oceans in the world were assigned two different groups, a tightly clustered high-light (HL)-adapted and a divergent low-light (LL-) adapted clade. Phylogenetic analysis of this cyanobacterium on the basis of 16S rRNA and other conserved genes did not show consistency with its phenotypic behavior. We analyzed phylogeny of this genus on the basis of complete genome sequences through genome alignment, overlapping-gene content and gene-order approach. Phylogenetic tree of P. marinus obtained by comparing whole genome sequences in contrast to that based on 16S rRNA gene, corresponded well with the HL/LL ecotypic distinction of twelve strains and showed consistency with phenotypic classification of P. marinus. Evidence for the horizontal descent and acquisition of genes within and across the genus was observed. Many genes involved in metabolic functions were found to be conserved across these genomes and many were continuously gained by different strains as per their needs during the course of their evolution. Consistency in the physiological and genetic phylogeny based on whole genome sequence is established. These observations improve our understanding about the adaptation and diversification of these organisms under evolutionary pressure.

  6. Transcription factor CTCF and mammalian genome organization

    Directory of Open Access Journals (Sweden)

    Kotova E. S.

    2014-07-01

    Full Text Available The CTCF transcription factor is thought to be one of the main participants in various gene regulatory networks including transcription activation and repression, formation of independently functioning chromatin domains, regulation of imprinting etc. Sequencing of human and other genomes opened up a possibility to ascertain the genomic distribution of CTCF binding sites and to identify CTCF-dependent cis-regulatory elements, including insulators. In the review, we summarized recent data on CTCF functioning within a framework of the chromatin loop domain hypothesis of large-scale regulation of the genome activity. Its fundamental properties allow CTCF to serve as a transcription factor, an insulator protein and a dispersed genome-wide demarcation tool able to recruit various factors that emerge in response to diverse external and internal signals, and thus to exert its signal-specific function(s.

  7. Expression of a transferred nuclear gene in a mitochondrial genome

    Directory of Open Access Journals (Sweden)

    Yichun Qiu

    2014-08-01

    Full Text Available Transfer of mitochondrial genes to the nucleus, and subsequent gain of regulatory elements for expression, is an ongoing evolutionary process in plants. Many examples have been characterized, which in some cases have revealed sources of mitochondrial targeting sequences and cis-regulatory elements. In contrast, there have been no reports of a nuclear gene that has undergone intracellular transfer to the mitochondrial genome and become expressed. Here we show that the orf164 gene in the mitochondrial genome of several Brassicaceae species, including Arabidopsis, is derived from the nuclear ARF17 gene that codes for an auxin responsive protein and is present across flowering plants. Orf164 corresponds to a portion of ARF17, and the nucleotide and amino acid sequences are 79% and 81% identical, respectively. Orf164 is transcribed in several organ types of Arabidopsis thaliana, as detected by RT-PCR. In addition, orf164 is transcribed in five other Brassicaceae within the tribes Camelineae, Erysimeae and Cardamineae, but the gene is not present in Brassica or Raphanus. This study shows that nuclear genes can be transferred to the mitochondrial genome and become expressed, providing a new perspective on the movement of genes between the genomes of subcellular compartments.

  8. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  9. Nucleotide sequence and transcript organization of a region of the vaccinia virus genome which encodes a constitutively expressed gene required for DNA replication.

    Science.gov (United States)

    Roseman, N A; Hruby, D E

    1987-05-01

    A vaccinia virus (VV) gene required for DNA replication has been mapped to the left side of the 16-kilobase (kb) VV HindIII D DNA fragment by marker rescue of a DNA- temperature-sensitive mutant, ts17, using cloned fragments of the viral genome. The region of VV DNA containing the ts17 locus (3.6 kb) was sequenced. This nucleotide sequence contains one complete open reading frame (ORF) and two incomplete ORFs reading from left to right. Analysis of this region at early times revealed that transcription from the incomplete upstream ORF terminates coincidentally with the complete ORF encoding the ts17 gene product, which is directly downstream. The predicted proteins encoded by this region correlate well with polypeptides mapped by in vitro translation of hybrid-selected early mRNA. The nucleotide sequences of a 1.3-kb BglII fragment derived from ts17 and from two ts17 revertants were also determined, and the nature of the ts17 mutation was identified. S1 nuclease protection studies were carried out to determine the 5' and 3' ends of the transcripts and to examine the kinetics of expression of the ts17 gene during viral infection. The ts17 transcript is present at both early and late times postinfection, indicating that this gene is constitutively expressed. Surprisingly, the transcriptional start throughout infection occurs at the proposed late regulatory element TAA, which immediately precedes the putative initiation codon ATG. Although the biological activity of the ts17-encoded polypeptide was not identified, it was noted that in ts17-infected cells, expression of a nonlinked VV immediate-early gene (thymidine kinase) was deregulated at the nonpermissive temperature. This result may indicate that the ts17 gene product is functionally required at an early step of the VV replicative cycle.

  10. Gene discovery in the Entamoeba invadens genome.

    Science.gov (United States)

    Wang, Zheng; Samuelson, John; Clark, C Graham; Eichinger, Daniel; Paul, Jaishree; Van Dellen, Katrina; Hall, Neil; Anderson, Iain; Loftus, Brendan

    2003-06-01

    Entamoeba invadens, a parasite of reptiles, is a model for the study of encystation by the human enteric pathogen Entamoeba histolytica, because E. invadens form cysts in axenic culture. With approximately 0.5-fold sequence coverage of the genome, we were able to get insights into E. invadens gene and genome features. Overall, the E. invadens genome displays many of the features that are emerging from ongoing genome sequencing efforts in E. histolytica. At the nucleotide level the E. invadens genome has on average 60% sequence identity with that of E. histolytica. The presence of introns in E. invadens was predicted with similar consensus (GTTTGT em leader A/TAG) sequences to those identified in E. histolytica and Entamoeba dispar. Sequences highly repeated in the genome of E. histolytica (rRNAs, tRNAs, CXXC-rich proteins, and Leu-rich repeat proteins) were found to be highly repeated in the E. invadens genome. Numerous proteins homologous to those implicated in amoebic virulence, (Gal/GalNAc lectins, amoebapores, and cysteine proteinases) and drug resistance (p-glycoproteins) were identified. Homologs of proteins involved in cell cycle, vesicular trafficking and signal transduction were identified, which may be involved in en/excystation and cell growth of E. invadens. Finally, multiple copies of a number of E. invadens genes coding for predicted enzymes involved in core metabolism and the targets of anti-amoebic drugs were identified.

  11. The evolution of chloroplast genes and genomes in ferns.

    Science.gov (United States)

    Wolf, Paul G; Der, Joshua P; Duffy, Aaron M; Davidson, Jacob B; Grusz, Amanda L; Pryer, Kathleen M

    2011-07-01

    Most of the publicly available data on chloroplast (plastid) genes and genomes come from seed plants, with relatively little information from their sister group, the ferns. Here we describe several broad evolutionary patterns and processes in fern plastid genomes (plastomes), and we include some new plastome sequence data. We review what we know about the evolutionary history of plastome structure across the fern phylogeny and we compare plastome organization and patterns of evolution in ferns to those in seed plants. A large clade of ferns is characterized by a plastome that has been reorganized with respect to the ancestral gene order (a similar order that is ancestral in seed plants). We review the sequence of inversions that gave rise to this organization. We also explore global nucleotide substitution patterns in ferns versus those found in seed plants across plastid genes, and we review the high levels of RNA editing observed in fern plastomes.

  12. Cajal body function in genome organization and transcriptome diversity.

    Science.gov (United States)

    Sawyer, Iain A; Sturgill, David; Sung, Myong-Hee; Hager, Gordon L; Dundr, Miroslav

    2016-12-01

    Nuclear bodies contribute to non-random organization of the human genome and nuclear function. Using a major prototypical nuclear body, the Cajal body, as an example, we suggest that these structures assemble at specific gene loci located across the genome as a result of high transcriptional activity. Subsequently, target genes are physically clustered in close proximity in Cajal body-containing cells. However, Cajal bodies are observed in only a limited number of human cell types, including neuronal and cancer cells. Ultimately, Cajal body depletion perturbs splicing kinetics by reducing target small nuclear RNA (snRNA) transcription and limiting the levels of spliceosomal snRNPs, including their modification and turnover following each round of RNA splicing. As such, Cajal bodies are capable of shaping the chromatin interaction landscape and the transcriptome by influencing spliceosome kinetics. Future studies should concentrate on characterizing the direct influence of Cajal bodies upon snRNA gene transcriptional dynamics. Also see the video abstract here.

  13. Genomic Evidence Reveals the Extreme Diversity and Wide Distribution of the Arsenic-Related Genes in Burkholderiales

    OpenAIRE

    Xiangyang Li; Linshuang Zhang; Gejiao Wang

    2014-01-01

    So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes"). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a) compare...

  14. Transcription factories and nuclear organization of the genome.

    Science.gov (United States)

    Eskiw, C H; Cope, N F; Clay, I; Schoenfelder, S; Nagano, T; Fraser, P

    2010-01-01

    The dynamic compartmental organization of the transcriptional machinery in mammalian nuclei places particular constraints on the spatial organization of the genome. The clustering of active RNA polymerase I transcription units from several chromosomes at nucleoli is probably the best-characterized and universally accepted example. RNA polymerase II localization in mammalian nuclei occurs in distinct concentrated foci that are several-fold fewer in number compared to the number of active genes and transcription units. Individual transcribed genes cluster at these shared transcription factories in a nonrandom manner, preferentially associating with heterologous, coregulated genes. We suggest that the three-dimensional (3D) conformation and relative arrangement of chromosomes in the nucleus has a major role in delivering tissue-specific gene-expression programs.

  15. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  16. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  17. Tandemly Arrayed Genes in Vertebrate Genomes

    Directory of Open Access Journals (Sweden)

    Deng Pan

    2008-01-01

    Full Text Available Tandemly arrayed genes (TAGs are duplicated genes that are linked as neighbors on a chromosome, many of which have important physiological and biochemical functions. Here we performed a survey of these genes in 11 available vertebrate genomes. TAGs account for an average of about 14% of all genes in these vertebrate genomes, and about 25% of all duplications. The majority of TAGs (72–94% have parallel transcription orientation (i.e., they are encoded on the same strand in contrast to the genome, which has about 50% of its genes in parallel transcription orientation. The majority of tandem arrays have only two members. In all species, the proportion of genes that belong to TAGs tends to be higher in large gene families than in small ones; together with our recent finding that tandem duplication played a more important role than retroposition in large families, this fact suggests that among all types of duplication mechanisms, tandem duplication is the predominant mechanism of duplication, especially in large families. Finally, several species have a higher proportion of large tandem arrays that are species-specific than random expectation.

  18. Genome-wide identification of KANADI1 target genes.

    Directory of Open Access Journals (Sweden)

    Paz Merelo

    Full Text Available Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV. A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.

  19. The genome BLASTatlas-a GeneWiz extension for visualization of whole-genome homology.

    Science.gov (United States)

    Hallin, Peter F; Binnewies, Tim T; Ussery, David W

    2008-05-01

    The development of fast and inexpensive methods for sequencing bacterial genomes has led to a wealth of data, often with many genomes being sequenced of the same species or closely related organisms. Thus, there is a need for visualization methods that will allow easy comparison of many sequenced genomes to a defined reference strain. The BLASTatlas is one such tool that is useful for mapping and visualizing whole genome homology of genes and proteins within a reference strain compared to other strains or species of one or more prokaryotic organisms. We provide examples of BLASTatlases, including the Clostridium tetani plasmid p88, where homologues for toxin genes can be easily visualized in other sequenced Clostridium genomes, and for a Clostridium botulinum genome, compared to 14 other Clostridium genomes. DNA structural information is also included in the atlas to visualize the DNA chromosomal context of regions. Additional information can be added to these plots, and as an example we have added circles showing the probability of the DNA helix opening up under superhelical tension. The tool is SOAP compliant and WSDL (web services description language) files are located on our website: (http://www.cbs.dtu.dk/ws/BLASTatlas), where programming examples are available in Perl. By providing an interoperable method to carry out whole genome visualization of homology, this service offers bioinformaticians as well as biologists an easy-to-adopt workflow that can be directly called from the programming language of the user, hence enabling automation of repeated tasks. This tool can be relevant in many pangenomic as well as in metagenomic studies, by giving a quick overview of clusters of insertion sites, genomic islands and overall homology between a reference sequence and a data set.

  20. 鸿雁线粒体DNA全基因组序列测定及分析%Completely Sequencing and Gene Organization of the Anser cygnoides Mitochondrial Genome

    Institute of Scientific and Technical Information of China (English)

    穆春宇; 陈国宏; 黄正洋; 陈阳; 王彬; 苏燕辉; 李洋; 孙志明; 徐琪; 赵文明

    2014-01-01

    线粒体基因组(mitochondrial genome, mtDNA)具有进化速率快、多态性丰富、无重组、母系遗传等特点,是开展群体遗传学、系统发育学、分子生态学、分类学等研究的理想分子标记。本研究根据鸿雁(Anser cygnoides)同属近缘物种豆雁(Anser fabalis)线粒体全基因组序列(EU009397.1)设计引物,采用直接测序技术对鸿雁线粒体基因组全序列进行了综合分析,结果显示,鸿雁线粒体基因组序列(GenBank登录号:KJ124555)全长16739 bp,包含22个tRNA、2个rRNA基因、13种蛋白质编码基因和一个D-loop区。碱基组成T占22.49%,C占32.24%,A占30.21%,G占15.06%,无明显的AT偏好性。22种tRNA都为典型的三叶草结构,参照原鸡(Gallus gallus)、黑尾地鸦(Podoces hendersoni)的12SrRNA,对鸿雁12SrRNA的二级结构进行了预测,含有4个结构域、37个茎环和13个突出部。对D-loop控制区序列分析发现,含有LSP/HSP、ETAS1-2、Goose hairpin、E-box、F-box、D-box、C-box、Bird similarity-box、CSB1-box、CSB-like和OH。以原鸡作为外群,采用邻接法(N-J)和最大拟然法(ML)算法以及贝叶斯法,基于线粒体基因组全序列分别构建系统进化树,结果显示,鸿雁与灰雁(Anser anser)、豆雁(Anser fabalis)、白额雁(Anser albifrons)和加拿大黑雁(Branta canadensis)处于一个分支,亲缘关系较近。该研究结果丰富了鸭科线粒体基因组全序列,为研究鸿雁的系统发生和分子进化研究以及种质资源保护和合理利用提供新的基础资料。%Mitochondrial genome (mtDNA) has advantages in rapid evolution, rich polymorphism and maternally inheritance without gene recombinations, which has become an ideal molecular markers of population genetics, phylogenetics, molecular ecology and taxonomy. In this study, the primers were designed based on the mitochondrial genome sequence of Bean goose (Anser fabalis) which was a closely related

  1. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene.

    Science.gov (United States)

    Li, YanHua; Li, AiHua; Yang, Z Q

    2016-09-09

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  2. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    Energy Technology Data Exchange (ETDEWEB)

    Li, YanHua, E-mail: liyanhua.1982@aliyun.com [Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014 (China); Li, AiHua [Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing 404100 (China); Yang, Z.Q. [Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2016-09-09

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  3. Genomics of the human carnitine acyltransferase genes

    NARCIS (Netherlands)

    van der Leij, FR; Huijkman, NCA; Boomsma, C; Kuipers, JRG; Bartelds, B

    2000-01-01

    Five genes in the human genome are known to encode different active forms of related carnitine acyltransferases: CPT1A for liver-type carnitine palmitoyltransferase I, CPT1B for muscle-type carnitine palmitoyltransferase I, CPT2 for carnitine palmitoyltransferase II, CROT for carnitine octanoyltrans

  4. Genome organization and characteristics of soybean microRNAs

    Directory of Open Access Journals (Sweden)

    Turner Marie

    2012-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are key regulators of gene expression and play important roles in many aspects of plant biology. The role(s of miRNAs in nitrogen-fixing root nodules of leguminous plants such as soybean is not well understood. We examined a library of small RNAs from Bradyrhizobium japonicum-inoculated soybean roots and identified novel miRNAs. In order to enhance our understanding of miRNA evolution, diversification and function, we classified all known soybean miRNAs based on their phylogenetic conservation (conserved, legume- and soybean-specific miRNAs and examined their genome organization, family characteristics and target diversity. We predicted targets of these miRNAs and experimentally validated several of them. We also examined organ-specific expression of selected miRNAs and their targets. Results We identified 120 previously unknown miRNA genes from soybean including 5 novel miRNA families. In the soybean genome, genes encoding miRNAs are primarily intergenic and a small percentage were intragenic or less than 1000 bp from a protein-coding gene, suggesting potential co-regulation between the miRNA and its parent gene. Difference in number and orientation of tandemly duplicated miRNA genes between orthologous genomic loci indicated continuous evolution and diversification. Conserved miRNA families are often larger in size and produce less diverse mature miRNAs than legume- and soybean-specific families. In addition, the majority of conserved and legume-specific miRNA families produce 21 nt long mature miRNAs with distinct nucleotide distribution and regulate a more conserved set of target mRNAs compared to soybean-specific families. A set of nodule-specific target mRNAs and their cognate regulatory miRNAs had inverse expression between root and nodule tissues suggesting that spatial restriction of target gene transcripts by miRNAs might govern nodule-specific gene expression in soybean. Conclusions Genome

  5. Comparative genomics of Mycoplasma: analysis of conserved essential genes and diversity of the pan-genome.

    Directory of Open Access Journals (Sweden)

    Wei Liu

    Full Text Available Mycoplasma, the smallest self-replicating organism with a minimal metabolism and little genomic redundancy, is expected to be a close approximation to the minimal set of genes needed to sustain bacterial life. This study employs comparative evolutionary analysis of twenty Mycoplasma genomes to gain an improved understanding of essential genes. By analyzing the core genome of mycoplasmas, we finally revealed the conserved essential genes set for mycoplasma survival. Further analysis showed that the core genome set has many characteristics in common with experimentally identified essential genes. Several key genes, which are related to DNA replication and repair and can be disrupted in transposon mutagenesis studies, may be critical for bacteria survival especially over long period natural selection. Phylogenomic reconstructions based on 3,355 homologous groups allowed robust estimation of phylogenetic relatedness among mycoplasma strains. To obtain deeper insight into the relative roles of molecular evolution in pathogen adaptation to their hosts, we also analyzed the positive selection pressures on particular sites and lineages. There appears to be an approximate correlation between the divergence of species and the level of positive selection detected in corresponding lineages.

  6. Understanding Spatial Genome Organization:Methods and Insights

    Institute of Scientific and Technical Information of China (English)

    Vijay Ramani; Jay Shendure; Zhijun Duan

    2016-01-01

    The manner by which eukaryotic genomes are packaged into nuclei while maintaining crucial nuclear functions remains one of the fundamental mysteries in biology. Over the last ten years, we have witnessed rapid advances in both microscopic and nucleic acid-based approaches to map genome architecture, and the application of these approaches to the dissection of higher-order chromosomal structures has yielded much new information. It is becoming increasingly clear, for example, that interphase chromosomes form stable, multilevel hierarchical structures. Among them, self-associating domains like so-called topologically associating domains (TADs) appear to be building blocks for large-scale genomic organization. This review describes features of these broadly-defined hierarchical structures, insights into the mechanisms underlying their formation, our current understanding of how interactions in the nuclear space are linked to gene regulation, and important future directions for the field.

  7. Genome-wide patterns of Arabidopsis gene expression in nature.

    Directory of Open Access Journals (Sweden)

    Christina L Richards

    Full Text Available Organisms in the wild are subject to multiple, fluctuating environmental factors, and it is in complex natural environments that genetic regulatory networks actually function and evolve. We assessed genome-wide gene expression patterns in the wild in two natural accessions of the model plant Arabidopsis thaliana and examined the nature of transcriptional variation throughout its life cycle and gene expression correlations with natural environmental fluctuations. We grew plants in a natural field environment and measured genome-wide time-series gene expression from the plant shoot every three days, spanning the seedling to reproductive stages. We find that 15,352 genes were expressed in the A. thaliana shoot in the field, and accession and flowering status (vegetative versus flowering were strong components of transcriptional variation in this plant. We identified between ∼110 and 190 time-varying gene expression clusters in the field, many of which were significantly overrepresented by genes regulated by abiotic and biotic environmental stresses. The two main principal components of vegetative shoot gene expression (PC(veg correlate to temperature and precipitation occurrence in the field. The largest PC(veg axes included thermoregulatory genes while the second major PC(veg was associated with precipitation and contained drought-responsive genes. By exposing A. thaliana to natural environments in an open field, we provide a framework for further understanding the genetic networks that are deployed in natural environments, and we connect plant molecular genetics in the laboratory to plant organismal ecology in the wild.

  8. Chromosomal localization of rDNA genes and genomic organization of 5S rDNA in Oreochromis mossambicus, O. urolepis hornorum and their hybrid

    Indian Academy of Sciences (India)

    Hua Ping Zhu; Mai Xin Lu; Feng Ying Gao; Zhang Han Huang; Li Ping Yang; Jain Fang Gui

    2010-08-01

    In this study, classical and molecular cytogenetic analyses were performed in tilapia fishes, Oreochromis mossambicus (XX/XY sex determination system), O. urolepis hornorum (WZ/ZZ sex determination system) and their hybrid by crossing O. mossambicus female × O. u. hornorum male. An identical karyotype (($2n = 44$, NF (total number of chromosomal arms) = 50) was obtained from three examined tilapia samples. Genomic organization analysis of 5S rDNA revealed two different types of 5S rDNA sequences, 5S type I and 5S type II. Moreover, fluorescence in situ hybridization (FISH) with 5S rDNA probes showed six positive fluorescence signals on six chromosomes of all the analysed metaphases from the three tilapia samples. Subsequently, 45S rDNA probes were also prepared, and six positive fluorescence signals were observed on three chromosome pairs in all analysed metaphases of the three tilapia samples. The correlation between 45 rDNA localization and nucleolar organizer regions (NORs) was confirmed by silver nitrate staining in tilapia fishes. Further, different chromosomal localizations of 5S rDNA and 45S rDNA were verified by two different colour FISH probes. Briefly, the current data provide an insights for hybridization projects and breeding improvement of tilapias.

  9. Classical Oncogenes and Tumor Suppressor Genes: A Comparative Genomics Perspective

    Directory of Open Access Journals (Sweden)

    Oxana K. Pickeral

    2000-05-01

    Full Text Available We have curated a reference set of cancer-related genes and reanalyzed their sequences in the light of molecular information and resources that have become available since they were first cloned. Homology studies were carried out for human oncogenes and tumor suppressors, compared with the complete proteome of the nematode, Caenorhabditis elegans, and partial proteomes of mouse and rat and the fruit fly, Drosophila melanogaster. Our results demonstrate that simple, semi-automated bioinformatics approaches to identifying putative functionally equivalent gene products in different organisms may often be misleading. An electronic supplement to this article1 provides an integrated view of our comparative genomics analysis as well as mapping data, physical cDNA resources and links to published literature and reviews, thus creating a “window” into the genomes of humans and other organisms for cancer biology.

  10. Multidimensional gene set analysis of genomic data.

    Directory of Open Access Journals (Sweden)

    David Montaner

    Full Text Available Understanding the functional implications of changes in gene expression, mutations, etc., is the aim of most genomic experiments. To achieve this, several functional profiling methods have been proposed. Such methods study the behaviour of different gene modules (e.g. gene ontology terms in response to one particular variable (e.g. differential gene expression. In spite to the wealth of information provided by functional profiling methods, a common limitation to all of them is their inherent unidimensional nature. In order to overcome this restriction we present a multidimensional logistic model that allows studying the relationship of gene modules with different genome-scale measurements (e.g. differential expression, genotyping association, methylation, copy number alterations, heterozygosity, etc. simultaneously. Moreover, the relationship of such functional modules with the interactions among the variables can also be studied, which produces novel results impossible to be derived from the conventional unidimensional functional profiling methods. We report sound results of gene sets associations that remained undetected by the conventional one-dimensional gene set analysis in several examples. Our findings demonstrate the potential of the proposed approach for the discovery of new cell functionalities with complex dependences on more than one variable.

  11. Genomic organization of the Neurospora crassa gsn gene: possible involvement of the STRE and HSE elements in the modulation of transcription during heat shock.

    Science.gov (United States)

    Freitas, F Zanolli; Bertolini, M C

    2004-12-01

    Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase ( gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30 degrees C to 45 degrees C). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans -acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.

  12. Floral gene resources from basal angiosperms for comparative genomics research

    Directory of Open Access Journals (Sweden)

    Zhang Xiaohong

    2005-03-01

    Full Text Available Abstract Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04 generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii many known floral gene homologues have been captured, and (iii phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage

  13. Floral gene resources from basal angiosperms for comparative genomics research

    Science.gov (United States)

    Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H

    2005-01-01

    Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and

  14. A genome-wide MeSH-based literature mining system predicts implicit gene-to-gene relationships and networks.

    Science.gov (United States)

    Xiang, Zuoshuang; Qin, Tingting; Qin, Zhaohui S; He, Yongqun

    2013-10-16

    The large amount of literature in the post-genomics era enables the study of gene interactions and networks using all available articles published for a specific organism. MeSH is a controlled vocabulary of medical and scientific terms that is used by biomedical scientists to manually index articles in the PubMed literature database. We hypothesized that genome-wide gene-MeSH term associations from the PubMed literature database could be used to predict implicit gene-to-gene relationships and networks. While the gene-MeSH associations have been used to detect gene-gene interactions in some studies, different methods have not been well compared, and such a strategy has not been evaluated for a genome-wide literature analysis. Genome-wide literature mining of gene-to-gene interactions allows ranking of the best gene interactions and investigation of comprehensive biological networks at a genome level. The genome-wide GenoMesh literature mining algorithm was developed by sequentially generating a gene-article matrix, a normalized gene-MeSH term matrix, and a gene-gene matrix. The gene-gene matrix relies on the calculation of pairwise gene dissimilarities based on gene-MeSH relationships. An optimized dissimilarity score was identified from six well-studied functions based on a receiver operating characteristic (ROC) analysis. Based on the studies with well-studied Escherichia coli and less-studied Brucella spp., GenoMesh was found to accurately identify gene functions using weighted MeSH terms, predict gene-gene interactions not reported in the literature, and cluster all the genes studied from an organism using the MeSH-based gene-gene matrix. A web-based GenoMesh literature mining program is also available at: http://genomesh.hegroup.org. GenoMesh also predicts gene interactions and networks among genes associated with specific MeSH terms or user-selected gene lists. The GenoMesh algorithm and web program provide the first genome-wide, MeSH-based literature mining

  15. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes.

    Directory of Open Access Journals (Sweden)

    Yunsheng Wang

    Full Text Available In this study, we identified and compared nucleotide-binding site (NBS domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China. Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention.

  16. Genome-wide comparative analysis reveals similar types of NBS genes in hybrid Citrus sinensis genome and original Citrus clementine genome and provides new insights into non-TIR NBS genes.

    Science.gov (United States)

    Wang, Yunsheng; Zhou, Lijuan; Li, Dazhi; Dai, Liangying; Lawton-Rauh, Amy; Srimani, Pradip K; Duan, Yongping; Luo, Feng

    2015-01-01

    In this study, we identified and compared nucleotide-binding site (NBS) domain-containing genes from three Citrus genomes (C. clementina, C. sinensis from USA and C. sinensis from China). Phylogenetic analysis of all Citrus NBS genes across these three genomes revealed that there are three approximately evenly numbered groups: one group contains the Toll-Interleukin receptor (TIR) domain and two different Non-TIR groups in which most of proteins contain the Coiled Coil (CC) domain. Motif analysis confirmed that the two groups of CC-containing NBS genes are from different evolutionary origins. We partitioned NBS genes into clades using NBS domain sequence distances and found most clades include NBS genes from all three Citrus genomes. This suggests that three Citrus genomes have similar numbers and types of NBS genes. We also mapped the re-sequenced reads of three pomelo and three mandarin genomes onto the C. sinensis genome. We found that most NBS genes of the hybrid C. sinensis genome have corresponding homologous genes in both pomelo and mandarin genomes. The homologous NBS genes in pomelo and mandarin suggest that the parental species of C. sinensis may contain similar types of NBS genes. This explains why the hybrid C. sinensis and original C. clementina have similar types of NBS genes in this study. Furthermore, we found that sequence variation amongst Citrus NBS genes were shaped by multiple independent and shared accelerated mutation accumulation events among different groups of NBS genes and in different Citrus genomes. Our comparative analyses yield valuable insight into the structure, organization and evolution of NBS genes in Citrus genomes. Furthermore, our comprehensive analysis showed that the non-TIR NBS genes can be divided into two groups that come from different evolutionary origins. This provides new insights into non-TIR genes, which have not received much attention.

  17. Characterization of histone genes isolated from Xenopus laevis and Xenopus tropicalis genomic libraries.

    Science.gov (United States)

    Ruberti, I; Fragapane, P; Pierandrei-Amaldi, P; Beccari, E; Amaldi, F; Bozzoni, I

    1982-12-11

    Using a cDNA clone for the histone H3 we have isolated, from two genomic libraries of Xenopus laevis and Xenopus tropicalis, clones containing four different histone gene clusters. The structural organization of X. laevis histone genes has been determined by restriction mapping, Southern blot hybridization and translation of the mRNAs which hybridize to the various restriction fragments. The arrangement of the histone genes in X. tropicalis has been determined by Southern analysis using X. laevis genomic fragments, containing individual genes, as probes. Histone genes are clustered in the genome of X. laevis and X. tropicalis and, compared to invertebrates, show a higher organization heterogeneity as demonstrated by structural analysis of the four genomic clones. In fact, the order of the genes within individual clusters is not conserved.

  18. Phylogeny Inference of Closely Related Bacterial Genomes: Combining the Features of Both Overlapping Genes and Collinear Genomic Regions

    Science.gov (United States)

    Zhang, Yan-Cong; Lin, Kui

    2015-01-01

    Overlapping genes (OGs) represent one type of widespread genomic feature in bacterial genomes and have been used as rare genomic markers in phylogeny inference of closely related bacterial species. However, the inference may experience a decrease in performance for phylogenomic analysis of too closely or too distantly related genomes. Another drawback of OGs as phylogenetic markers is that they usually take little account of the effects of genomic rearrangement on the similarity estimation, such as intra-chromosome/genome translocations, horizontal gene transfer, and gene losses. To explore such effects on the accuracy of phylogeny reconstruction, we combine phylogenetic signals of OGs with collinear genomic regions, here called locally collinear blocks (LCBs). By putting these together, we refine our previous metric of pairwise similarity between two closely related bacterial genomes. As a case study, we used this new method to reconstruct the phylogenies of 88 Enterobacteriale genomes of the class Gammaproteobacteria. Our results demonstrated that the topological accuracy of the inferred phylogeny was improved when both OGs and LCBs were simultaneously considered, suggesting that combining these two phylogenetic markers may reduce, to some extent, the influence of gene loss on phylogeny inference. Such phylogenomic studies, we believe, will help us to explore a more effective approach to increasing the robustness of phylogeny reconstruction of closely related bacterial organisms. PMID:26715828

  19. Evolutionary history and genome organization of DUF1220 protein domains.

    Science.gov (United States)

    O'Bleness, Majesta S; Dickens, C Michael; Dumas, Laura J; Kehrer-Sawatzki, Hildegard; Wyckoff, Gerald J; Sikela, James M

    2012-09-01

    DUF1220 protein domains exhibit the most extreme human lineage-specific (HLS) copy number increase of any protein coding region in the human genome and have recently been linked to evolutionary and pathological changes in brain size (e.g., 1q21-associated microcephaly). These findings lend support to the view that DUF1220 domain dosage is a key factor in the determination of primate (and human) brain size. Here we analyze 41 animal genomes and present the most complete account to date of the evolutionary history and genome organization of DUF1220 domains and the gene family that encodes them (NBPF). Included among the novel features identified by this analysis is a DUF1220 domain precursor in nonmammalian vertebrates, a unique predicted promoter common to all mammalian NBPF genes, six distinct clades into which DUF1220 sequences can be subdivided, and a previously unknown member of the NBPF gene family (NBPF25). Most importantly, we show that the exceptional HLS increase in DUF1220 copy number (from 102 in our last common ancestor with chimp to 272 in human; an average HLS increase of ~28 copies every million years since the Homo/Pan split) was driven by intragenic domain hyperamplification. This increase primarily involved a 4.7 kb, tandemly repeated three DUF1220 domain unit we have named the HLS DUF1220 triplet, a motif that is a likely candidate to underlie key properties unique to the Homo sapiens brain. Interestingly, all copies of the HLS DUF1220 triplet lie within a human-specific pericentric inversion that also includes the 1q12 C-band, a polymorphic heterochromatin expansion that is unique to the human genome. Both cytogenetic features likely played key roles in the rapid HLS DUF1220 triplet hyperamplification, which is among the most striking genomic changes specific to the human lineage.

  20. A Probabilistic Genome-Wide Gene Reading Frame Sequence Model

    DEFF Research Database (Denmark)

    Have, Christian Theil; Mørk, Søren

    We introduce a new type of probabilistic sequence model, that model the sequential composition of reading frames of genes in a genome. Our approach extends gene finders with a model of the sequential composition of genes at the genome-level -- effectively producing a sequential genome annotation...... and are evaluated by the effect on prediction performance. Since bacterial gene finding to a large extent is a solved problem it forms an ideal proving ground for evaluating the explicit modeling of larger scale gene sequence composition of genomes. We conclude that the sequential composition of gene reading frames...... as output. The model can be used to obtain the most probable genome annotation based on a combination of i: a gene finder score of each gene candidate and ii: the sequence of the reading frames of gene candidates through a genome. The model --- as well as a higher order variant --- is developed and tested...

  1. Comparison of methods for genomic localization of gene trap sequences

    Directory of Open Access Journals (Sweden)

    Ferrin Thomas E

    2006-09-01

    Full Text Available Abstract Background Gene knockouts in a model organism such as mouse provide a valuable resource for the study of basic biology and human disease. Determining which gene has been inactivated by an untargeted gene trapping event poses a challenging annotation problem because gene trap sequence tags, which represent sequence near the vector insertion site of a trapped gene, are typically short and often contain unresolved residues. To understand better the localization of these sequences on the mouse genome, we compared stand-alone versions of the alignment programs BLAT, SSAHA, and MegaBLAST. A set of 3,369 sequence tags was aligned to build 34 of the mouse genome using default parameters for each algorithm. Known genome coordinates for the cognate set of full-length genes (1,659 sequences were used to evaluate localization results. Results In general, all three programs performed well in terms of localizing sequences to a general region of the genome, with only relatively subtle errors identified for a small proportion of the sequence tags. However, large differences in performance were noted with regard to correctly identifying exon boundaries. BLAT correctly identified the vast majority of exon boundaries, while SSAHA and MegaBLAST missed the majority of exon boundaries. SSAHA consistently reported the fewest false positives and is the fastest algorithm. MegaBLAST was comparable to BLAT in speed, but was the most susceptible to localizing sequence tags incorrectly to pseudogenes. Conclusion The differences in performance for sequence tags and full-length reference sequences were surprisingly small. Characteristic variations in localization results for each program were noted that affect the localization of sequence at exon boundaries, in particular.

  2. Global Metabolic Reconstruction and Metabolic Gene Evolution in the Cattle Genome.

    Science.gov (United States)

    Kim, Woonsu; Park, Hyesun; Seo, Seongwon

    2016-01-01

    The sequence of cattle genome provided a valuable opportunity to systematically link genetic and metabolic traits of cattle. The objectives of this study were 1) to reconstruct genome-scale cattle-specific metabolic pathways based on the most recent and updated cattle genome build and 2) to identify duplicated metabolic genes in the cattle genome for better understanding of metabolic adaptations in cattle. A bioinformatic pipeline of an organism for amalgamating genomic annotations from multiple sources was updated. Using this, an amalgamated cattle genome database based on UMD_3.1, was created. The amalgamated cattle genome database is composed of a total of 33,292 genes: 19,123 consensus genes between NCBI and Ensembl databases, 8,410 and 5,493 genes only found in NCBI or Ensembl, respectively, and 266 genes from NCBI scaffolds. A metabolic reconstruction of the cattle genome and cattle pathway genome database (PGDB) was also developed using Pathway Tools, followed by an intensive manual curation. The manual curation filled or revised 68 pathway holes, deleted 36 metabolic pathways, and added 23 metabolic pathways. Consequently, the curated cattle PGDB contains 304 metabolic pathways, 2,460 reactions including 2,371 enzymatic reactions, and 4,012 enzymes. Furthermore, this study identified eight duplicated genes in 12 metabolic pathways in the cattle genome compared to human and mouse. Some of these duplicated genes are related with specific hormone biosynthesis and detoxifications. The updated genome-scale metabolic reconstruction is a useful tool for understanding biology and metabolic characteristics in cattle. There has been significant improvements in the quality of cattle genome annotations and the MetaCyc database. The duplicated metabolic genes in the cattle genome compared to human and mouse implies evolutionary changes in the cattle genome and provides a useful information for further research on understanding metabolic adaptations of cattle.

  3. CGUG: in silico proteome and genome parsing tool for the determination of "core" and unique genes in the analysis of genomes up to ca. 1.9 Mb

    Directory of Open Access Journals (Sweden)

    Mahadevan Padmanabhan

    2009-08-01

    Full Text Available Abstract Background Viruses and small-genome bacteria (~2 megabases and smaller comprise a considerable population in the biosphere and are of interest to many researchers. These genomes are now sequenced at an unprecedented rate and require complementary computational tools to analyze. "CoreGenesUniqueGenes" (CGUG is an in silico genome data mining tool that determines a "core" set of genes from two to five organisms with genomes in this size range. Core and unique genes may reflect similar niches and needs, and may be used in classifying organisms. Findings CGUG is available at http://binf.gmu.edu/geneorder.html as a web-based on-the-fly tool that performs iterative BLASTP analyses using a reference genome and up to four query genomes to provide a table of genes common to these genomes. The result is an in silico display of genomes and their proteomes, allowing for further analysis. CGUG can be used for "genome annotation by homology", as demonstrated with Chlamydophila and Francisella genomes. Conclusion CGUG is used to reanalyze the ICTV-based classifications of bacteriophages, to reconfirm long-standing relationships and to explore new classifications. These genomes have been problematic in the past, due largely to horizontal gene transfers. CGUG is validated as a tool for reannotating small genome bacteria using more up-to-date annotations by similarity or homology. These serve as an entry point for wet-bench experiments to confirm the functions of these "hypothetical" and "unknown" proteins.

  4. FGF: a web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) program...... to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF...... is freely available on a web server at http://fgf.genomics.org.cn/...

  5. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) program...... to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF...... is freely available on a web server at http://fgf.genomics.org.cn/...

  6. Bioinformatics Assisted Gene Discovery and Annotation of Human Genome

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    As the sequencing stage of human genome project is near the end, the work has begun for discovering novel genes from genome sequences and annotating their biological functions. Here are reviewed current major bioinformatics tools and technologies available for large scale gene discovery and annotation from human genome sequences. Some ideas about possible future development are also provided.

  7. Genome Editing and Its Applications in Model Organisms

    Directory of Open Access Journals (Sweden)

    Dongyuan Ma

    2015-12-01

    Full Text Available Technological advances are important for innovative biological research. Development of molecular tools for DNA manipulation, such as zinc finger nucleases (ZFNs, transcription activator-like effector nucleases (TALENs, and the clustered regularly-interspaced short palindromic repeat (CRISPR/CRISPR-associated (Cas, has revolutionized genome editing. These approaches can be used to develop potential therapeutic strategies to effectively treat heritable diseases. In the last few years, substantial progress has been made in CRISPR/Cas technology, including technical improvements and wide application in many model systems. This review describes recent advancements in genome editing with a particular focus on CRISPR/Cas, covering the underlying principles, technological optimization, and its application in zebrafish and other model organisms, disease modeling, and gene therapy used for personalized medicine.

  8. Genomic Organization and Expression in E. coli of Zebrafish Terra

    Institute of Scientific and Technical Information of China (English)

    赵知行; 华正春; 孟安明

    2001-01-01

    Zebrafish terra encodes a transcription factor that is specifically expressed in developing somites.Previous studies suggested that this gene is involved in vertebrate somitogenesis. In this study, the genomic DNA of terra locus was isolated and its organization was investigated. The analysis showed that terra locus consists of 3 introns and occupies 3154 bp in the genome of zebrafish. The exon-intron junctions of the second and third introns conform to the GT-AG rule, while the first intron has the unusual junction sequences of GT-AC. An IPTG-inducible expression system was established to produce terra protein in bacterial cells. Overexpression of terra protein leads to the formation of inclusion bodies in the bacterial ceils. The protein will be used to study its structure and function.

  9. Genome Editing and Its Applications in Model Organisms.

    Science.gov (United States)

    Ma, Dongyuan; Liu, Feng

    2015-12-01

    Technological advances are important for innovative biological research. Development of molecular tools for DNA manipulation, such as zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the clustered regularly-interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas), has revolutionized genome editing. These approaches can be used to develop potential therapeutic strategies to effectively treat heritable diseases. In the last few years, substantial progress has been made in CRISPR/Cas technology, including technical improvements and wide application in many model systems. This review describes recent advancements in genome editing with a particular focus on CRISPR/Cas, covering the underlying principles, technological optimization, and its application in zebrafish and other model organisms, disease modeling, and gene therapy used for personalized medicine.

  10. Global genome nucleotide excision repair is organized into domains that promote efficient DNA repair in chromatin

    Science.gov (United States)

    Yu, Shirong; Evans, Katie; Bennett, Mark; Webster, Richard M.; Leadbitter, Matthew; Teng, Yumin; Waters, Raymond

    2016-01-01

    The rates at which lesions are removed by DNA repair can vary widely throughout the genome, with important implications for genomic stability. To study this, we measured the distribution of nucleotide excision repair (NER) rates for UV-induced lesions throughout the budding yeast genome. By plotting these repair rates in relation to genes and their associated flanking sequences, we reveal that, in normal cells, genomic repair rates display a distinctive pattern, suggesting that DNA repair is highly organized within the genome. Furthermore, by comparing genome-wide DNA repair rates in wild-type cells and cells defective in the global genome–NER (GG-NER) subpathway, we establish how this alters the distribution of NER rates throughout the genome. We also examined the genomic locations of GG-NER factor binding to chromatin before and after UV irradiation, revealing that GG-NER is organized and initiated from specific genomic locations. At these sites, chromatin occupancy of the histone acetyl-transferase Gcn5 is controlled by the GG-NER complex, which regulates histone H3 acetylation and chromatin structure, thereby promoting efficient DNA repair of UV-induced lesions. Chromatin remodeling during the GG-NER process is therefore organized into these genomic domains. Importantly, loss of Gcn5 significantly alters the genomic distribution of NER rates; this has implications for the effects of chromatin modifiers on the distribution of mutations that arise throughout the genome. PMID:27470111

  11. Revisiting the protein-coding gene catalog of Drosophila melanogaster using 12 fly genomes.

    Science.gov (United States)

    Lin, Michael F; Carlson, Joseph W; Crosby, Madeline A; Matthews, Beverley B; Yu, Charles; Park, Soo; Wan, Kenneth H; Schroeder, Andrew J; Gramates, L Sian; St Pierre, Susan E; Roark, Margaret; Wiley, Kenneth L; Kulathinal, Rob J; Zhang, Peili; Myrick, Kyl V; Antone, Jerry V; Celniker, Susan E; Gelbart, William M; Kellis, Manolis

    2007-12-01

    The availability of sequenced genomes from 12 Drosophila species has enabled the use of comparative genomics for the systematic discovery of functional elements conserved within this genus. We have developed quantitative metrics for the evolutionary signatures specific to protein-coding regions and applied them genome-wide, resulting in 1193 candidate new protein-coding exons in the D. melanogaster genome. We have reviewed these predictions by manual curation and validated a subset by directed cDNA screening and sequencing, revealing both new genes and new alternative splice forms of known genes. We also used these evolutionary signatures to evaluate existing gene annotations, resulting in the validation of 87% of genes lacking descriptive names and identifying 414 poorly conserved genes that are likely to be spurious predictions, noncoding, or species-specific genes. Furthermore, our methods suggest a variety of refinements to hundreds of existing gene models, such as modifications to translation start codons and exon splice boundaries. Finally, we performed directed genome-wide searches for unusual protein-coding structures, discovering 149 possible examples of stop codon readthrough, 125 new candidate ORFs of polycistronic mRNAs, and several candidate translational frameshifts. These results affect >10% of annotated fly genes and demonstrate the power of comparative genomics to enhance our understanding of genome organization, even in a model organism as intensively studied as Drosophila melanogaster.

  12. Normalization of Complete Genome Characteristics: Application to Evolution from Primitive Organisms to Homo sapiens.

    Science.gov (United States)

    Sorimachi, Kenji; Okayasu, Teiji; Ohhira, Shuji

    2015-04-01

    Normalized nucleotide and amino acid contents of complete genome sequences can be visualized as radar charts. The shapes of these charts depict the characteristics of an organism's genome. The normalized values calculated from the genome sequence theoretically exclude experimental errors. Further, because normalization is independent of both target size and kind, this procedure is applicable not only to single genes but also to whole genomes, which consist of a huge number of different genes. In this review, we discuss the applications of the normalization of the nucleotide and predicted amino acid contents of complete genomes to the investigation of genome structure and to evolutionary research from primitive organisms to Homo sapiens. Some of the results could never have been obtained from the analysis of individual nucleotide or amino acid sequences but were revealed only after the normalization of nucleotide and amino acid contents was applied to genome research. The discovery that genome structure was homogeneous was obtained only after normalization methods were applied to the nucleotide or predicted amino acid contents of genome sequences. Normalization procedures are also applicable to evolutionary research. Thus, normalization of the contents of whole genomes is a useful procedure that can help to characterize organisms.

  13. Genomic variation in Salmonella enterica core genes for epidemiological typing

    DEFF Research Database (Denmark)

    Leekitcharoenphon, Pimlapas; Lukjancenko, Oksana; Rundsten, Carsten Friis

    2012-01-01

    Background: Technological advances in high throughput genome sequencing are making whole genome sequencing (WGS) available as a routine tool for bacterial typing. Standardized procedures for identification of relevant genes and of variation are needed to enable comparison between studies and over...... genomes and evaluate their value as typing targets, comparing whole genome typing and traditional methods such as 16S and MLST. A consensus tree based on variation of core genes gives much better resolution than 16S and MLST; the pan-genome family tree is similar to the consensus tree, but with higher...... that there is a positive selection towards mutations leading to amino acid changes. Conclusions: Genomic variation within the core genome is useful for investigating molecular evolution and providing candidate genes for bacterial genome typing. Identification of genes with different degrees of variation is important...

  14. Genomic variation in Salmonella enterica core genes for epidemiological typing

    Directory of Open Access Journals (Sweden)

    Leekitcharoenphon Pimlapas

    2012-03-01

    Full Text Available Abstract Background Technological advances in high throughput genome sequencing are making whole genome sequencing (WGS available as a routine tool for bacterial typing. Standardized procedures for identification of relevant genes and of variation are needed to enable comparison between studies and over time. The core genes--the genes that are conserved in all (or most members of a genus or species--are potentially good candidates for investigating genomic variation in phylogeny and epidemiology. Results We identify a set of 2,882 core genes clusters based on 73 publicly available Salmonella enterica genomes and evaluate their value as typing targets, comparing whole genome typing and traditional methods such as 16S and MLST. A consensus tree based on variation of core genes gives much better resolution than 16S and MLST; the pan-genome family tree is similar to the consensus tree, but with higher confidence. The core genes can be divided into two categories: a few highly variable genes and a larger set of conserved core genes, with low variance. For the most variable core genes, the variance in amino acid sequences is higher than for the corresponding nucleotide sequences, suggesting that there is a positive selection towards mutations leading to amino acid changes. Conclusions Genomic variation within the core genome is useful for investigating molecular evolution and providing candidate genes for bacterial genome typing. Identification of genes with different degrees of variation is important especially in trend analysis.

  15. Spatial Genome Organization and its emerging role as a Potential Diagnosis Tool

    Directory of Open Access Journals (Sweden)

    Karen Meaburn

    2016-07-01

    Full Text Available In eukaryotic cells the genome is highly spatially organized. Functional relevance of higher order genome organization is implied by the fact that specific genes, and even whole chromosomes, alter spatial position in concert with functional changes within the nucleus, for example with modifications to chromatin or transcription. The exact molecular pathways that regulate spatial genome organization and the full implication to the cell of such an organization remain to be determined. However, there is a growing realization that the spatial organization of the genome can be used as a marker of disease. While global genome organization patterns remain largely conserved in disease, some genes and chromosomes occupy distinct nuclear positions in diseased cells compared to their normal counterparts, with the patterns of reorganization differing between diseases. Importantly, mapping the spatial positioning patterns of specific genomic loci can distinguish cancerous tissue from benign with high accuracy. Genome positioning is an attractive novel biomarker since additional quantitative biomarkers are urgently required in many cancer types. Current diagnostic techniques are often subjective and generally lack the ability to identify aggressive cancer from indolent, which can lead to over- or under-treatment of patients. Proof-of-principle for the use of genome positioning as a diagnostic tool has been provided based on small scale retrospective studies. Future large-scale studies are required to assess the feasibility of bringing spatial genome organization-based diagnostics to the clinical setting and to determine if the positioning patterns of specific loci can be useful biomarkers for cancer prognosis. Since spatial reorganization of the genome has been identified in multiple human diseases, it is likely that spatial genome positioning patterns as a diagnostic biomarker may be applied to many diseases.

  16. Putative essential and core-essential genes in Mycoplasma genomes.

    Science.gov (United States)

    Lin, Yan; Zhang, Randy Ren

    2011-01-01

    Mycoplasma, which was used to create the first "synthetic life", has been an important species in the emerging field, synthetic biology. However, essential genes, an important concept of synthetic biology, for both M. mycoides and M. capricolum, as well as 14 other Mycoplasma with available genomes, are still unknown. We have developed a gene essentiality prediction algorithm that incorporates information of biased gene strand distribution, homologous search and codon adaptation index. The algorithm, which achieved an accuracy of 80.8% and 78.9% in self-consistence and cross-validation tests, respectively, predicted 5880 essential genes in the 16 Mycoplasma genomes. The intersection set of essential genes in available Mycoplasma genomes consists of 153 core essential genes. The predicted essential genes (available from pDEG, tubic.tju.edu.cn/pdeg) and the proposed algorithm can be helpful for studying minimal Mycoplasma genomes as well as essential genes in other genomes.

  17. Gene and genome parameters of mammalian liver circadian genes (LCGs.

    Directory of Open Access Journals (Sweden)

    Gang Wu

    Full Text Available The mammalian circadian system controls various physiology processes and behavior responses by regulating thousands of circadian genes with rhythmic expressions. In this study, we redefined circadian-regulated genes based on published results in the mouse liver and compared them with other gene groups defined relative to circadian regulations, especially the non-circadian-regulated genes expressed in liver at multiple molecular levels from gene position to protein expression based on integrative analyses of different datasets from the literature. Based on the intra-tissue analysis, the liver circadian genes or LCGs show unique features when compared to other gene groups. First, LCGs in general have less neighboring genes and larger in both genomic and 3'-UTR lengths but shorter in CDS (coding sequence lengths. Second, LCGs have higher mRNA and protein abundance, higher temporal expression variations, and shorter mRNA half-life. Third, more than 60% of LCGs form major co-expression clusters centered in four temporal windows: dawn, day, dusk, and night. In addition, larger and smaller LCGs are found mainly expressed in the day and night temporal windows, respectively, and we believe that LCGs are well-partitioned into the gene expression regulatory network that takes advantage of gene size, expression constraint, and chromosomal architecture. Based on inter-tissue analysis, more than half of LCGs are ubiquitously expressed in multiple tissues but only show rhythmical expression in one or limited number of tissues. LCGs show at least three-fold lower expression variations across the temporal windows than those among different tissues, and this observation suggests that temporal expression variations regulated by the circadian system is relatively subtle as compared with the tissue expression variations formed during development. Taken together, we suggest that the circadian system selects gene parameters in a cost effective way to improve tissue

  18. Comparative Genomic Study of the Thioredoxin Family in Photosynthetic Organisms with Emphasis on Populus trichocarpa

    Institute of Scientific and Technical Information of China (English)

    Kamel Chibani; Gunnar Wingsle; Jean-Pierre Jacquot; Eric Gelhaye; Nicolas Rouhier

    2009-01-01

    The recent genome sequencing of Populus trichocarpa and Vitis vinifera, two models of woody plants, of Sorghum bicolor, a model of monocot using C4 metabolism, and of the moss Physcomitrella patens, together with the availability of photosynthetic organism genomes allows performance of a comparative genomic study with organisms having different ways of life, reproduction modes, biological traits, and physiologies. Thioredoxins (Trxs) are small ubiq-uitous proteins involved in the reduction of disulfide bridges in a variety of target enzymes present in all sub-cellular compartments and involved in many biochemical reactions. The genes coding for these enzymes have been identified in these newly sequenced genomes and annotated. The gene content, organization and distribution were compared to other photosynthetic organisms, leading to a refined classification. This analysis revealed that higher plants and bryo-phytes have a more complex family compared to algae and cyanobacteria and to non-photosynthetic organisms, since poplar exhibits 49 genes coding for typical and atypical thioredoxins and thioredoxin reductases, namely one-third more than monocots such as Oryza sativa and S. bicolor. The higher number of Trxs in poplar is partially explained by gene duplication in the Trx m, h, and nucleoredoxin classes. Particular attention was paid to poplar genes with emphasis on Trx-like classes called Clot, thioredoxin-like, thioredoxins of the lilium type and nucleoredoxins, which were not described in depth in previous genomic studies.

  19. Computational prediction of microRNA genes in silkworm genome

    Institute of Scientific and Technical Information of China (English)

    TONG Chuan-zhou; JIN Yong-feng; ZHANG Yao-zhou

    2006-01-01

    MicroRNAs (miRNAs) constitute a novel, extensive class of small RNAs (~21 nucleotides), and play important gene-regulation roles during growth and development in various organisms. Here we conducted a homology search to identify homologs of previously validated miRNAs from silkworm genome. We identified 24 potential miRNA genes, and gave each of them a name according to the common criteria. Interestingly, we found that a great number of newly identified miRNAs were conserved in silkworm and Drosophila, and family alignment revealed that miRNA families might possess single nucleotide polymorphisms. miRNA gene clusters and possible functions of complement miRNA pairs are discussed.

  20. Genomic organization of Bruton`s tyrosine kinase

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, J.; Conley, M.E. [Univ. of Tennessee, Memphis, TN (United States)

    1994-09-01

    Bruton`s tyrosine kinase (Btk), is a nonreceptor tyrosine kinase that has been identified as the defective gene in X-linked agammaglobulinemia (XLA). XLA patients have profound hypogammaglobulinemia and markedly reduced numbers of B cells while their T cell and phagocyte numbers remain normal. To determine the genomic organization of Btk, intron/exon borders were identified by sequencing cosmid DNA using cDNA primers. Nineteen exons spanning 37 kb of genomic DNA were identified. All the intron/exon splice junctions followed the GT/AG rule. The translational ATG start codon was in exon 2 which was 6 kb downstream of exon 1. Exon 19, 519 bp in length and 3.8 kb distal to exon 18, was the largest exon and included the 450 bp of the 3{prime} untranslated region. Exons 6 through 18 formed the largest cluster of exons with no intron being longer than 1550 bp. There was no apparent correlation between the exon boundaries of Btk and the functional domains of the protein or the exon boundaries of src, the nonreceptor protein tyrosine kinase prototype. The region 500 bp upstream of the presumed transcriptional start site was sequenced and found to have a G+C content of 52%. No TATA-type promoter elements in the -20 bp to -30 bp region were identified. However, at position -48 bp, a TGTGAA motif was found that bears some similarity to the TATA box. This sequence was preceded by a perfect inverted CCAAT box at position -90 bp. Three retinoic acid binding sites were also identified at positions -50 bp, -83 bp and -197 bp. Defining the genomic structure of Btk will permit us to identify regulatory elements in this gene and to identify mutations in genomic DNA of patients with XLA.

  1. Computational workflow for analysis of gain and loss of genes in distantly related genomes

    Directory of Open Access Journals (Sweden)

    Ptitsyn Andrey

    2012-09-01

    Full Text Available Abstract Background Early evolution of animals led to profound changes in body plan organization, symmetry and the rise of tissue complexity including formation of muscular and nervous systems. This process was associated with massive restructuring of animal genomes as well as deletion, acquisition and rapid differentiation of genes from a common metazoan ancestor. Here, we present a simple but efficient workflow for elucidation of gene gain and gene loss within major branches of the animal kingdom. Methods We have designed a pipeline of sequence comparison, clustering and functional annotation using 12 major phyla as illustrative examples. Specifically, for the input we used sets of ab initio predicted gene models from the genomes of six bilaterians, three basal metazoans (Cnidaria, Placozoa, Porifera, two unicellular eukaryotes (Monosiga and Capsospora and the green plant Arabidopsis as an out-group. Due to the large amounts of data the software required a high-performance Linux cluster. The final results can be imported into standard spreadsheet analysis software and queried for the numbers and specific sets of genes absent in specific genomes, uniquely present or shared among different taxons. Results and conclusions The developed software is open source and available free of charge on Open Source principles. It allows the user to address a number of specific questions regarding gene gain and gene loss in particular genomes, and user-defined groups of genomes can be formulated in a type of logical expression. For example, our analysis of 12 sequenced genomes indicated that these genomes possess at least 90,000 unique genes and gene families, suggesting enormous diversity of the genome repertoire in the animal kingdom. Approximately 9% of these gene families are shared universally (homologous among all genomes, 53% are unique to specific taxa, and the rest are shared between two or more distantly related genomes.

  2. Three-Dimensional Genome Organization and Function in Drosophila.

    Science.gov (United States)

    Schwartz, Yuri B; Cavalli, Giacomo

    2017-01-01

    Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques. Copyright © 2017 Schwartz and Cavalli.

  3. Three-Dimensional Genome Organization and Function in Drosophila

    Science.gov (United States)

    Schwartz, Yuri B.; Cavalli, Giacomo

    2017-01-01

    Understanding how the metazoan genome is used during development and cell differentiation is one of the major challenges in the postgenomic era. Early studies in Drosophila suggested that three-dimensional (3D) chromosome organization plays important regulatory roles in this process and recent technological advances started to reveal connections at the molecular level. Here we will consider general features of the architectural organization of the Drosophila genome, providing historical perspective and insights from recent work. We will compare the linear and spatial segmentation of the fly genome and focus on the two key regulators of genome architecture: insulator components and Polycomb group proteins. With its unique set of genetic tools and a compact, well annotated genome, Drosophila is poised to remain a model system of choice for rapid progress in understanding principles of genome organization and to serve as a proving ground for development of 3D genome-engineering techniques. PMID:28049701

  4. Nucleolar organizer regions: genomic 'dark matter' requiring illumination.

    Science.gov (United States)

    McStay, Brian

    2016-07-15

    Nucleoli form around tandem arrays of a ribosomal gene repeat, termed nucleolar organizer regions (NORs). During metaphase, active NORs adopt a characteristic undercondensed morphology. Recent evidence indicates that the HMG-box-containing DNA-binding protein UBF (upstream binding factor) is directly responsible for this morphology and provides a mitotic bookmark to ensure rapid nucleolar formation beginning in telophase in human cells. This is likely to be a widely employed strategy, as UBF is present throughout metazoans. In higher eukaryotes, NORs are typically located within regions of chromosomes that form perinucleolar heterochromatin during interphase. Typically, the genomic architecture of NORs and the chromosomal regions within which they lie is very poorly described, yet recent evidence points to a role for context in their function. In Arabidopsis, NOR silencing appears to be controlled by sequences outside the rDNA (ribosomal DNA) array. Translocations reveal a role for context in the expression of the NOR on the X chromosome in Drosophila Recent work has begun on characterizing the genomic architecture of human NORs. A role for distal sequences located in perinucleolar heterochromatin has been inferred, as they exhibit a complex transcriptionally active chromatin structure. Links between rDNA genomic stability and aging in Saccharomyces cerevisiae are now well established, and indications are emerging that this is important in aging and replicative senescence in higher eukaryotes. This, combined with the fact that rDNA arrays are recombinational hot spots in cancer cells, has focused attention on DNA damage responses in NORs. The introduction of DNA double-strand breaks into rDNA arrays leads to a dramatic reorganization of nucleolar structure. Damaged rDNA repeats move from the nucleolar interior to form caps at the nucleolar periphery, presumably to facilitate repair, suggesting that the chromosomal context of human NORs contributes to their genomic

  5. Genomic sequence around butterfly wing development genes: annotation and comparative analysis.

    Directory of Open Access Journals (Sweden)

    Inês C Conceição

    Full Text Available BACKGROUND: Analysis of genomic sequence allows characterization of genome content and organization, and access beyond gene-coding regions for identification of functional elements. BAC libraries, where relatively large genomic regions are made readily available, are especially useful for species without a fully sequenced genome and can increase genomic coverage of phylogenetic and biological diversity. For example, no butterfly genome is yet available despite the unique genetic and biological properties of this group, such as diversified wing color patterns. The evolution and development of these patterns is being studied in a few target species, including Bicyclus anynana, where a whole-genome BAC library allows targeted access to large genomic regions. METHODOLOGY/PRINCIPAL FINDINGS: We characterize ∼1.3 Mb of genomic sequence around 11 selected genes expressed in B. anynana developing wings. Extensive manual curation of in silico predictions, also making use of a large dataset of expressed genes for this species, identified repetitive elements and protein coding sequence, and highlighted an expansion of Alcohol dehydrogenase genes. Comparative analysis with orthologous regions of the lepidopteran reference genome allowed assessment of conservation of fine-scale synteny (with detection of new inversions and translocations and of DNA sequence (with detection of high levels of conservation of non-coding regions around some, but not all, developmental genes. CONCLUSIONS: The general properties and organization of the available B. anynana genomic sequence are similar to the lepidopteran reference, despite the more than 140 MY divergence. Our results lay the groundwork for further studies of new interesting findings in relation to both coding and non-coding sequence: 1 the Alcohol dehydrogenase expansion with higher similarity between the five tandemly-repeated B. anynana paralogs than with the corresponding B. mori orthologs, and 2 the high

  6. Phylogenetic analyses of cyanobacterial genomes: Quantification of horizontal gene transfer events

    OpenAIRE

    Zhaxybayeva, Olga; Gogarten, J. Peter; Charlebois, Robert L.; Doolittle, W Ford; Papke, R Thane

    2006-01-01

    Using 1128 protein-coding gene families from 11 completely sequenced cyanobacterial genomes, we attempt to quantify horizontal gene transfer events within cyanobacteria, as well as between cyanobacteria and other phyla. A novel method of detecting and enumerating potential horizontal gene transfer events within a group of organisms based on analyses of “embedded quartets” allows us to identify phylogenetic signal consistent with a plurality of gene families, as well as to delineate cases of c...

  7. Composition and genomic organization of arthropod Hox clusters

    Directory of Open Access Journals (Sweden)

    Ryan M. Pace

    2016-05-01

    Full Text Available Abstract Background The ancestral arthropod is believed to have had a clustered arrangement of ten Hox genes. Within arthropods, Hox gene mutations result in transformation of segment identities. Despite the fact that variation in segment number/character was common in the diversification of arthropods, few examples of Hox gene gains/losses have been correlated with morphological evolution. Furthermore, a full appreciation of the variation in the genomic arrangement of Hox genes in extant arthropods has not been recognized, as genome sequences from each major arthropod clade have not been reported until recently. Initial genomic analysis of the chelicerate Tetranychus urticae suggested that loss of Hox genes and Hox gene clustering might be more common than previously assumed. To further characterize the genomic evolution of arthropod Hox genes, we compared the genomic arrangement and general characteristics of Hox genes from representative taxa from each arthropod subphylum. Results In agreement with others, we find arthropods generally contain ten Hox genes arranged in a common orientation in the genome, with an increasing number of sampled species missing either Hox3 or abdominal-A orthologs. The genomic clustering of Hox genes in species we surveyed varies significantly, ranging from 0.3 to 13.6 Mb. In all species sampled, arthropod Hox genes are dispersed in the genome relative to the vertebrate Mus musculus. Differences in Hox cluster size arise from variation in the number of intervening genes, intergenic spacing, and the size of introns and UTRs. In the arthropods surveyed, Hox gene duplications are rare and four microRNAs are, in general, conserved in similar genomic positions relative to the Hox genes. Conclusions The tightly clustered Hox complexes found in the vertebrates are not evident within arthropods, and differential patterns of Hox gene dispersion are found throughout the arthropods. The comparative genomic data continue to

  8. A systematic genome-wide analysis of zebrafish protein-coding gene function

    NARCIS (Netherlands)

    Kettleborough, R.N.; Busch-Nentwich, E.M.; Harvey, S.A.; Dooley, C.M.; de Bruijn, E.; van Eeden, F.; Sealy, I.; White, R.J.; Herd, C.; Nijman, I.J.; Fenyes, F.; Mehroke, S.; Scahill, C.; Gibbons, R.; Wali, N.; Carruthers, S.; Hall, A.; Yen, J.; Cuppen, E.; Stemple, D.L.

    2013-01-01

    Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typical

  9. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.

    Science.gov (United States)

    Szałaj, Przemysław; Tang, Zhonghui; Michalski, Paul; Pietal, Michal J; Luo, Oscar J; Sadowski, Michał; Li, Xingwang; Radew, Kamen; Ruan, Yijun; Plewczynski, Dariusz

    2016-12-01

    ChIA-PET is a high-throughput mapping technology that reveals long-range chromatin interactions and provides insights into the basic principles of spatial genome organization and gene regulation mediated by specific protein factors. Recently, we showed that a single ChIA-PET experiment provides information at all genomic scales of interest, from the high-resolution locations of binding sites and enriched chromatin interactions mediated by specific protein factors, to the low resolution of nonenriched interactions that reflect topological neighborhoods of higher-order chromosome folding. This multilevel nature of ChIA-PET data offers an opportunity to use multiscale 3D models to study structural-functional relationships at multiple length scales, but doing so requires a structural modeling platform. Here, we report the development of 3D-GNOME (3-Dimensional Genome Modeling Engine), a complete computational pipeline for 3D simulation using ChIA-PET data. 3D-GNOME consists of three integrated components: a graph-distance-based heat map normalization tool, a 3D modeling platform, and an interactive 3D visualization tool. Using ChIA-PET and Hi-C data derived from human B-lymphocytes, we demonstrate the effectiveness of 3D-GNOME in building 3D genome models at multiple levels, including the entire genome, individual chromosomes, and specific segments at megabase (Mb) and kilobase (kb) resolutions of single average and ensemble structures. Further incorporation of CTCF-motif orientation and high-resolution looping patterns in 3D simulation provided additional reliability of potential biologically plausible topological structures.

  10. Genome-enabled Discovery of Carbon Sequestration Genes

    Energy Technology Data Exchange (ETDEWEB)

    Tuskan, Gerald A [ORNL; Tschaplinski, Timothy J [ORNL; Kalluri, Udaya C [ORNL; Yin, Tongming [ORNL; Yang, Xiaohan [ORNL; Zhang, Xinye [ORNL; Engle, Nancy L [ORNL; Ranjan, Priya [ORNL; Basu, Manojit M [ORNL; Gunter, Lee E [ORNL; Jawdy, Sara [ORNL; Martin, Madhavi Z [ORNL; Campbell, Alina S [ORNL; DiFazio, Stephen P [ORNL; Davis, John M [University of Florida; Hinchee, Maud [ORNL; Pinnacchio, Christa [U.S. Department of Energy, Joint Genome Institute; Meilan, R [Purdue University; Busov, V. [Michigan Technological University; Strauss, S [Oregon State University

    2009-01-01

    The fate of carbon below ground is likely to be a major factor determining the success of carbon sequestration strategies involving plants. Despite their importance, molecular processes controlling belowground C allocation and partitioning are poorly understood. This project is leveraging the Populus trichocarpa genome sequence to discover genes important to C sequestration in plants and soils. The focus is on the identification of genes that provide key control points for the flow and chemical transformations of carbon in roots, concentrating on genes that control the synthesis of chemical forms of carbon that result in slower turnover rates of soil organic matter (i.e., increased recalcitrance). We propose to enhance carbon allocation and partitioning to roots by 1) modifying the auxin signaling pathway, and the invertase family, which controls sucrose metabolism, and by 2) increasing root proliferation through transgenesis with genes known to control fine root proliferation (e.g., ANT), 3) increasing the production of recalcitrant C metabolites by identifying genes controlling secondary C metabolism by a major mQTL-based gene discovery effort, and 4) increasing aboveground productivity by enhancing drought tolerance to achieve maximum C sequestration. This broad, integrated approach is aimed at ultimately enhancing root biomass as well as root detritus longevity, providing the best prospects for significant enhancement of belowground C sequestration.

  11. Expression of four genes of bacteriophage MB78 from contiguous open reading frames: the genomic organization as deduced by sequence analysis.

    Science.gov (United States)

    Sharma, R; Datta, P; Chakravorty, M

    2000-01-01

    Four proteins of bacteriophage MB78 having apparent molecular weights as 35, 14, 21 and 16 kDa are expressed from 3.9 kb SalI-HindIII fragment located almost in the middle of the phage genome. Analysis of the sequence supported by some experimental evidences suggest that these four proteins are expressed from polycistronic message without any intercistronic gap. Stop and start codons of consecutive ORFs overlap and rare initiation codons are used. Computer analysis of the sequence suggests the presence of two more open reading frames within the ORFs of 35 and 16 kDa proteins but in the opposite orientation, i.e. in the complementary strand.

  12. Sequence-Based Analysis of Structural Organization and Composition of the Cultivated Sunflower (Helianthus annuus L.) Genome

    OpenAIRE

    Navdeep Gill; Matteo Buti; Nolan Kane; Arnaud Bellec; Nicolas Helmstetter; Hélène Berges; Loren H. Rieseberg

    2014-01-01

    Sunflower is an important oilseed crop, as well as a model system for evolutionary studies, but its 3.6 gigabase genome has proven difficult to assemble, in part because of the high repeat content of its genome. Here we report on the sequencing, assembly, and analyses of 96 randomly chosen BACs from sunflower to provide additional information on the repeat content of the sunflower genome, assess how repetitive elements in the sunflower genome are organized relative to genes, and compare the g...

  13. The genome BLASTatlas - a GeneWiz extension for visualization of whole-genome homology

    DEFF Research Database (Denmark)

    Hallin, Peter Fischer; Binnewies, Tim Terence; Ussery, David

    2008-01-01

    the Clostridium tetani plasmid p88, where homologues for toxin genes can be easily visualized in other sequenced Clostridium genomes, and for a Clostridium botulinum genome, compared to 14 other Clostridium genomes. DNA structural information is also included in the atlas to visualize the DNA chromosomal context...

  14. High-Diversity Genes in the Arabidopsis Genome

    OpenAIRE

    Cork, Jennifer M.; Purugganan, Michael D.

    2005-01-01

    High-diversity genes represent an important class of loci in organismal genomes. Since elevated levels of nucleotide variation are a key component of the molecular signature for balancing selection or local adaptation, high-diversity genes may represent loci whose alleles are selectively maintained as balanced polymorphisms. Comparison of 4300 random shotgun sequence fragments of the Arabidopsis thaliana Ler ecotype genome with the whole genomic sequence of the Col-0 ecotype identified 60 gen...

  15. Multiple Whole Genome Alignments Without a Reference Organism

    Energy Technology Data Exchange (ETDEWEB)

    Dubchak, Inna; Poliakov, Alexander; Kislyuk, Andrey; Brudno, Michael

    2009-01-16

    Multiple sequence alignments have become one of the most commonly used resources in genomics research. Most algorithms for multiple alignment of whole genomes rely either on a reference genome, against which all of the other sequences are laid out, or require a one-to-one mapping between the nucleotides of the genomes, preventing the alignment of recently duplicated regions. Both approaches have drawbacks for whole-genome comparisons. In this paper we present a novel symmetric alignment algorithm. The resulting alignments not only represent all of the genomes equally well, but also include all relevant duplications that occurred since the divergence from the last common ancestor. Our algorithm, implemented as a part of the VISTA Genome Pipeline (VGP), was used to align seven vertebrate and sixDrosophila genomes. The resulting whole-genome alignments demonstrate a higher sensitivity and specificity than the pairwise alignments previously available through the VGP and have higher exon alignment accuracy than comparable public whole-genome alignments. Of the multiple alignment methods tested, ours performed the best at aligning genes from multigene families?perhaps the most challenging test for whole-genome alignments. Our whole-genome multiple alignments are available through the VISTA Browser at http://genome.lbl.gov/vista/index.shtml.

  16. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    OpenAIRE

    Arcà Bruno; Zazzaro Vincenzo; Milano Andreina; Lombardo Fabrizio; Mauro Umberto; Salvemini Marco; Polito Lino C; Saccone Giuseppe

    2011-01-01

    Abstract Background In the model system Drosophila melanogaster, doublesex (dsx) is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are tr...

  17. Evolution of closely linked gene pairs in vertebrate genomes

    NARCIS (Netherlands)

    Franck, E.; Hulsen, T.; Huynen, M.A.; Jong, de W.W.; Lunsen, N.H.; Madsen, O.

    2008-01-01

    The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of interge

  18. The First Myriapod Genome Sequence Reveals Conservative Arthropod Gene Content and Genome Organisation in the Centipede Strigamia maritima

    Science.gov (United States)

    Chipman, Ariel D.; Ferrier, David E. K.; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S. T.; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C.; Alonso, Claudio R.; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C. J.; Blankenburg, Kerstin P.; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K.; Du Pasquier, Louis; Duncan, Elizabeth J.; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D.; Extavour, Cassandra G.; Francisco, Liezl; Gabaldón, Toni; Gillis, William J.; Goodwin-Horn, Elizabeth A.; Green, Jack E.; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J. P.; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H. L.; Hunn, Julia P.; Hunnekuhl, Vera S.; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N.; Jiggins, Francis M.; Jones, Tamsin E.; Kaiser, Tobias S.; Kalra, Divya; Kenny, Nathan J.; Korchina, Viktoriya; Kovar, Christie L.; Kraus, F. Bernhard; Lapraz, François; Lee, Sandra L.; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N.; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J.; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H.; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C.; Robertson, Helen E.; Robertson, Hugh M.; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E.; Schurko, Andrew M.; Siggens, Kenneth W.; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J.; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M.; Willis, Judith H.; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M.; Worley, Kim C.; Gibbs, Richard A.; Akam, Michael; Richards, Stephen

    2014-01-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  19. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Directory of Open Access Journals (Sweden)

    Ariel D Chipman

    2014-11-01

    Full Text Available Myriapods (e.g., centipedes and millipedes display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations

  20. The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima.

    Science.gov (United States)

    Chipman, Ariel D; Ferrier, David E K; Brena, Carlo; Qu, Jiaxin; Hughes, Daniel S T; Schröder, Reinhard; Torres-Oliva, Montserrat; Znassi, Nadia; Jiang, Huaiyang; Almeida, Francisca C; Alonso, Claudio R; Apostolou, Zivkos; Aqrawi, Peshtewani; Arthur, Wallace; Barna, Jennifer C J; Blankenburg, Kerstin P; Brites, Daniela; Capella-Gutiérrez, Salvador; Coyle, Marcus; Dearden, Peter K; Du Pasquier, Louis; Duncan, Elizabeth J; Ebert, Dieter; Eibner, Cornelius; Erikson, Galina; Evans, Peter D; Extavour, Cassandra G; Francisco, Liezl; Gabaldón, Toni; Gillis, William J; Goodwin-Horn, Elizabeth A; Green, Jack E; Griffiths-Jones, Sam; Grimmelikhuijzen, Cornelis J P; Gubbala, Sai; Guigó, Roderic; Han, Yi; Hauser, Frank; Havlak, Paul; Hayden, Luke; Helbing, Sophie; Holder, Michael; Hui, Jerome H L; Hunn, Julia P; Hunnekuhl, Vera S; Jackson, LaRonda; Javaid, Mehwish; Jhangiani, Shalini N; Jiggins, Francis M; Jones, Tamsin E; Kaiser, Tobias S; Kalra, Divya; Kenny, Nathan J; Korchina, Viktoriya; Kovar, Christie L; Kraus, F Bernhard; Lapraz, François; Lee, Sandra L; Lv, Jie; Mandapat, Christigale; Manning, Gerard; Mariotti, Marco; Mata, Robert; Mathew, Tittu; Neumann, Tobias; Newsham, Irene; Ngo, Dinh N; Ninova, Maria; Okwuonu, Geoffrey; Ongeri, Fiona; Palmer, William J; Patil, Shobha; Patraquim, Pedro; Pham, Christopher; Pu, Ling-Ling; Putman, Nicholas H; Rabouille, Catherine; Ramos, Olivia Mendivil; Rhodes, Adelaide C; Robertson, Helen E; Robertson, Hugh M; Ronshaugen, Matthew; Rozas, Julio; Saada, Nehad; Sánchez-Gracia, Alejandro; Scherer, Steven E; Schurko, Andrew M; Siggens, Kenneth W; Simmons, DeNard; Stief, Anna; Stolle, Eckart; Telford, Maximilian J; Tessmar-Raible, Kristin; Thornton, Rebecca; van der Zee, Maurijn; von Haeseler, Arndt; Williams, James M; Willis, Judith H; Wu, Yuanqing; Zou, Xiaoyan; Lawson, Daniel; Muzny, Donna M; Worley, Kim C; Gibbs, Richard A; Akam, Michael; Richards, Stephen

    2014-11-01

    Myriapods (e.g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific

  1. Genes encoding calmodulin-binding proteins in the Arabidopsis genome

    Science.gov (United States)

    Reddy, Vaka S.; Ali, Gul S.; Reddy, Anireddy S N.

    2002-01-01

    Analysis of the recently completed Arabidopsis genome sequence indicates that approximately 31% of the predicted genes could not be assigned to functional categories, as they do not show any sequence similarity with proteins of known function from other organisms. Calmodulin (CaM), a ubiquitous and multifunctional Ca(2+) sensor, interacts with a wide variety of cellular proteins and modulates their activity/function in regulating diverse cellular processes. However, the primary amino acid sequence of the CaM-binding domain in different CaM-binding proteins (CBPs) is not conserved. One way to identify most of the CBPs in the Arabidopsis genome is by protein-protein interaction-based screening of expression libraries with CaM. Here, using a mixture of radiolabeled CaM isoforms from Arabidopsis, we screened several expression libraries prepared from flower meristem, seedlings, or tissues treated with hormones, an elicitor, or a pathogen. Sequence analysis of 77 positive clones that interact with CaM in a Ca(2+)-dependent manner revealed 20 CBPs, including 14 previously unknown CBPs. In addition, by searching the Arabidopsis genome sequence with the newly identified and known plant or animal CBPs, we identified a total of 27 CBPs. Among these, 16 CBPs are represented by families with 2-20 members in each family. Gene expression analysis revealed that CBPs and CBP paralogs are expressed differentially. Our data suggest that Arabidopsis has a large number of CBPs including several plant-specific ones. Although CaM is highly conserved between plants and animals, only a few CBPs are common to both plants and animals. Analysis of Arabidopsis CBPs revealed the presence of a variety of interesting domains. Our analyses identified several hypothetical proteins in the Arabidopsis genome as CaM targets, suggesting their involvement in Ca(2+)-mediated signaling networks.

  2. Repertoire, genealogy and genomic organization of cruzipain and homologous genes in Trypanosoma cruzi, T. cruzi-like and other trypanosome species.

    Science.gov (United States)

    Lima, Luciana; Ortiz, Paola A; da Silva, Flávia Maia; Alves, João Marcelo P; Serrano, Myrna G; Cortez, Alane P; Alfieri, Silvia C; Buck, Gregory A; Teixeira, Marta M G

    2012-01-01

    Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine

  3. Gene finding with a hidden Markov model of genome structure and evolution

    DEFF Research Database (Denmark)

    Pedersen, Jakob Skou; Hein, Jotun

    2003-01-01

    annotation. The modelling of evolution by the existing comparative gene finders leaves room for improvement. Results: A probabilistic model of both genome structure and evolution is designed. This type of model is called an Evolutionary Hidden Markov Model (EHMM), being composed of an HMM and a set of region......Motivation: A growing number of genomes are sequenced. The differences in evolutionary pattern between functional regions can thus be observed genome-wide in a whole set of organisms. The diverse evolutionary pattern of different functional regions can be exploited in the process of genomic...

  4. Missing genes in the annotation of prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Feng Wu-chun

    2010-03-01

    Full Text Available Abstract Background Protein-coding gene detection in prokaryotic genomes is considered a much simpler problem than in intron-containing eukaryotic genomes. However there have been reports that prokaryotic gene finder programs have problems with small genes (either over-predicting or under-predicting. Therefore the question arises as to whether current genome annotations have systematically missing, small genes. Results We have developed a high-performance computing methodology to investigate this problem. In this methodology we compare all ORFs larger than or equal to 33 aa from all fully-sequenced prokaryotic replicons. Based on that comparison, and using conservative criteria requiring a minimum taxonomic diversity between conserved ORFs in different genomes, we have discovered 1,153 candidate genes that are missing from current genome annotations. These missing genes are similar only to each other and do not have any strong similarity to gene sequences in public databases, with the implication that these ORFs belong to missing gene families. We also uncovered 38,895 intergenic ORFs, readily identified as putative genes by similarity to currently annotated genes (we call these absent annotations. The vast majority of the missing genes found are small (less than 100 aa. A comparison of select examples with GeneMark, EasyGene and Glimmer predictions yields evidence that some of these genes are escaping detection by these programs. Conclusions Prokaryotic gene finders and prokaryotic genome annotations require improvement for accurate prediction of small genes. The number of missing gene families found is likely a lower bound on the actual number, due to the conservative criteria used to determine whether an ORF corresponds to a real gene.

  5. Evolution of paralogous genes: Reconstruction of genome rearrangements through comparison of multiple genomes within Staphylococcus aureus.

    Science.gov (United States)

    Tsuru, Takeshi; Kawai, Mikihiko; Mizutani-Ui, Yoko; Uchiyama, Ikuo; Kobayashi, Ichizo

    2006-06-01

    Analysis of evolution of paralogous genes in a genome is central to our understanding of genome evolution. Comparison of closely related bacterial genomes, which has provided clues as to how genome sequences evolve under natural conditions, would help in such an analysis. With species Staphylococcus aureus, whole-genome sequences have been decoded for seven strains. We compared their DNA sequences to detect large genome polymorphisms and to deduce mechanisms of genome rearrangements that have formed each of them. We first compared strains N315 and Mu50, which make one of the most closely related strain pairs, at the single-nucleotide resolution to catalogue all the middle-sized (more than 10 bp) to large genome polymorphisms such as indels and substitutions. These polymorphisms include two paralogous gene sets, one in a tandem paralogue gene cluster for toxins in a genomic island and the other in a ribosomal RNA operon. We also focused on two other tandem paralogue gene clusters and type I restriction-modification (RM) genes on the genomic islands. Then we reconstructed rearrangement events responsible for these polymorphisms, in the paralogous genes and the others, with reference to the other five genomes. For the tandem paralogue gene clusters, we were able to infer sequences for homologous recombination generating the change in the repeat number. These sequences were conserved among the repeated paralogous units likely because of their functional importance. The sequence specificity (S) subunit of type I RM systems showed recombination, likely at the homology of a conserved region, between the two variable regions for sequence specificity. We also noticed novel alleles in the ribosomal RNA operons and suggested a role for illegitimate recombination in their formation. These results revealed importance of recombination involving long conserved sequence in the evolution of paralogous genes in the genome.

  6. Alkane biosynthesis genes in cyanobacteria and their transcriptional organization

    Directory of Open Access Journals (Sweden)

    Stephan eKlähn

    2014-07-01

    Full Text Available In cyanobacteria, alkanes are synthesized from a fatty acyl-ACP by two enzymes, acyl-acyl carrier protein reductase (AAR and aldehyde deformylating oxygenase (ADO. Despite the great interest in the exploitation for biofuel production, nothing is known about the transcriptional organization of their genes or the physiological function of alkane synthesis. The comparison of 115 microarray datasets indicates the relatively constitutive expression of aar and ado genes. The analysis of 181 available genomes showed that in 90% of the genomes both genes are present, likely indicating their physiological relevance. In 61% of them they cluster together with genes encoding acetyl-CoA carboxyl transferase and a short chain dehydrogenase, strengthening the link to fatty acid metabolism and in 76% of the genomes they are located in tandem, suggesting constraints on the gene arrangement. However, contrary to the expectations for an operon, we found in Synechocystis sp. PCC 6803 specific promoters for the two genes, sll0208 (ado and sll0209 (aar, that give rise to monocistronic transcripts. Moreover, the upstream located ado gene is driven by a proximal as well as a second, distal, promoter, from which a third transcript, the ~160 nt sRNA SyR9 is transcribed. Thus, the transcriptional organization of the alkane biosynthesis genes in Synechocystis sp. PCC 6803 is of substantial complexity. We verified all three promoters to function independently from each other and show a similar promoter arrangement also in the more distant Nodularia spumigena, Trichodesmium erythraeum, Anabaena sp. PCC 7120, Prochlorococcus MIT9313 and MED4. The presence of separate regulatory elements and the dominance of monocistronic mRNAs suggest the possible autonomous regulation of ado and aar. The complex transcriptional organization of the alkane synthesis gene cluster has possible metabolic implications and should be considered when manipulating the expression of these genes in

  7. Microfluidic gene arrays for rapid genomic profiling

    Science.gov (United States)

    West, Jay A.; Hukari, Kyle W.; Hux, Gary A.; Shepodd, Timothy J.

    2004-12-01

    Genomic analysis tools have recently become an indispensable tool for the evaluation of gene expression in a variety of experiment protocols. Two of the main drawbacks to this technology are the labor and time intensive process for sample preparation and the relatively long times required for target/probe hybridization. In order to overcome these two technological barriers we have developed a microfluidic chip to perform on chip sample purification and labeling, integrated with a high density genearray. Sample purification was performed using a porous polymer monolithic material functionalized with an oligo dT nucleotide sequence for the isolation of high purity mRNA. These purified mRNA"s can then rapidly labeled using a covalent fluorescent molecule which forms a selective covalent bond at the N7 position of guanine residues. These labeled mRNA"s can then released from the polymer monolith to allow for direct hybridization with oligonucletide probes deposited in microfluidic channel. To allow for rapid target/probe hybridization high density microarray were printed in microchannels. The channels can accommodate array densities as high as 4000 probes. When oligonucleotide deposition is complete, these channels are sealed using a polymer film which forms a pressure tight seal to allow sample reagent flow to the arrayed probes. This process will allow for real time target to probe hybridization monitoring using a top mounted CCD fiber bundle combination. Using this process we have been able to perform a multi-step sample preparation to labeled target/probe hybridization in less than 30 minutes. These results demonstrate the capability to perform rapid genomic screening on a high density microfluidic microarray of oligonucleotides.

  8. Genome-scale analysis of positional clustering of mouse testis-specific genes

    Directory of Open Access Journals (Sweden)

    Lee Bernett TK

    2005-01-01

    Full Text Available Abstract Background Genes are not randomly distributed on a chromosome as they were thought even after removal of tandem repeats. The positional clustering of co-expressed genes is known in prokaryotes and recently reported in several eukaryotic organisms such as Caenorhabditis elegans, Drosophila melanogaster, and Homo sapiens. In order to further investigate the mode of tissue-specific gene clustering in higher eukaryotes, we have performed a genome-scale analysis of positional clustering of the mouse testis-specific genes. Results Our computational analysis shows that a large proportion of testis-specific genes are clustered in groups of 2 to 5 genes in the mouse genome. The number of clusters is much higher than expected by chance even after removal of tandem repeats. Conclusion Our result suggests that testis-specific genes tend to cluster on the mouse chromosomes. This provides another piece of evidence for the hypothesis that clusters of tissue-specific genes do exist.

  9. Genic regions of a large salamander genome contain long introns and novel genes

    Directory of Open Access Journals (Sweden)

    Bryant Susan V

    2009-01-01

    Full Text Available Abstract Background The basis of genome size variation remains an outstanding question because DNA sequence data are lacking for organisms with large genomes. Sixteen BAC clones from the Mexican axolotl (Ambystoma mexicanum: c-value = 32 × 109 bp were isolated and sequenced to characterize the structure of genic regions. Results Annotation of genes within BACs showed that axolotl introns are on average 10× longer than orthologous vertebrate introns and they are predicted to contain more functional elements, including miRNAs and snoRNAs. Loci were discovered within BACs for two novel EST transcripts that are differentially expressed during spinal cord regeneration and skin metamorphosis. Unexpectedly, a third novel gene was also discovered while manually annotating BACs. Analysis of human-axolotl protein-coding sequences suggests there are 2% more lineage specific genes in the axolotl genome than the human genome, but the great majority (86% of genes between axolotl and human are predicted to be 1:1 orthologs. Considering that axolotl genes are on average 5× larger than human genes, the genic component of the salamander genome is estimated to be incredibly large, approximately 2.8 gigabases! Conclusion This study shows that a large salamander genome has a correspondingly large genic component, primarily because genes have incredibly long introns. These intronic sequences may harbor novel coding and non-coding sequences that regulate biological processes that are unique to salamanders.

  10. Gene targeting, genome editing: from Dolly to editors.

    Science.gov (United States)

    Tan, Wenfang; Proudfoot, Chris; Lillico, Simon G; Whitelaw, C Bruce A

    2016-06-01

    One of the most powerful strategies to investigate biology we have as scientists, is the ability to transfer genetic material in a controlled and deliberate manner between organisms. When applied to livestock, applications worthy of commercial venture can be devised. Although initial methods used to generate transgenic livestock resulted in random transgene insertion, the development of SCNT technology enabled homologous recombination gene targeting strategies to be used in livestock. Much has been accomplished using this approach. However, now we have the ability to change a specific base in the genome without leaving any other DNA mark, with no need for a transgene. With the advent of the genome editors this is now possible and like other significant technological leaps, the result is an even greater diversity of possible applications. Indeed, in merely 5 years, these 'molecular scissors' have enabled the production of more than 300 differently edited pigs, cattle, sheep and goats. The advent of genome editors has brought genetic engineering of livestock to a position where industry, the public and politicians are all eager to see real use of genetically engineered livestock to address societal needs. Since the first transgenic livestock reported just over three decades ago the field of livestock biotechnology has come a long way-but the most exciting period is just starting.

  11. Gene prediction using the Self-Organizing Map: automatic generation of multiple gene models

    Directory of Open Access Journals (Sweden)

    Smith Terry J

    2004-03-01

    Full Text Available Abstract Background Many current gene prediction methods use only one model to represent protein-coding regions in a genome, and so are less likely to predict the location of genes that have an atypical sequence composition. It is likely that future improvements in gene finding will involve the development of methods that can adequately deal with intra-genomic compositional variation. Results This work explores a new approach to gene-prediction, based on the Self-Organizing Map, which has the ability to automatically identify multiple gene models within a genome. The current implementation, named RescueNet, uses relative synonymous codon usage as the indicator of protein-coding potential. Conclusions While its raw accuracy rate can be less than other methods, RescueNet consistently identifies some genes that other methods do not, and should therefore be of interest to gene-prediction software developers and genome annotation teams alike. RescueNet is recommended for use in conjunction with, or as a complement to, other gene prediction methods.

  12. Long-range chromatin contacts in embryonic stem cells reveal a role for pluripotency factors and polycomb proteins in genome organization

    NARCIS (Netherlands)

    Denholtz, M.; Bonora, G.; Chronis, C.; Splinter, E.; de Laat, W.; Ernst, J.; Pellegrini, M.; Plath, K.

    2013-01-01

    The relationship between 3D organization of the genome and gene-regulatory networks is poorly understood. Here, we examined long-range chromatin interactions genome-wide in mouse embryonic stem cells (ESCs), iPSCs, and fibroblasts and uncovered a pluripotency-specific genome organization that is gra

  13. Elucidation of the genome organization of tobacco mosaic virus.

    OpenAIRE

    Zaitlin, M

    1999-01-01

    Proteins unique to tobacco mosaic virus (TMV)-infected plants were detected in the 1970s by electrophoretic analyses of extracts of virus-infected tissues, comparing their proteins to those generated in extracts of uninfected tissues. The genome organization of TMV was deduced principally from studies involving in vitro translation of proteins from the genomic and subgenomic messenger RNAs. The ultimate analysis of the TMV genome came in 1982 when P. Goelet and colleagues sequenced the entire...

  14. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF......Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) program...

  15. Selective Amplification of the Genome Surrounding Key Placental Genes in Trophoblast Giant Cells.

    Science.gov (United States)

    Hannibal, Roberta L; Baker, Julie C

    2016-01-25

    While most cells maintain a diploid state, polyploid cells exist in many organisms and are particularly prevalent within the mammalian placenta [1], where they can generate more than 900 copies of the genome [2]. Polyploidy is thought to be an efficient method of increasing the content of the genome by avoiding the costly and slow process of cytokinesis [1, 3, 4]. Polyploidy can also affect gene regulation by amplifying a subset of genomic regions required for specific cellular function [1, 3, 4]. This mechanism is found in the fruit fly Drosophila melanogaster, where polyploid ovarian follicle cells amplify genomic regions containing chorion genes, which facilitate secretion of eggshell proteins [5]. Here, we report that genomic amplification also occurs in mammals at selective regions of the genome in parietal trophoblast giant cells (p-TGCs) of the mouse placenta. Using whole-genome sequencing (WGS) and digital droplet PCR (ddPCR) of mouse p-TGCs, we identified five amplified regions, each containing a gene family known to be involved in mammalian placentation: the prolactins (two clusters), serpins, cathepsins, and the natural killer (NK)/C-type lectin (CLEC) complex [6-12]. We report here the first description of amplification at selective genomic regions in mammals and present evidence that this is an important mode of genome regulation in placental TGCs.

  16. Structural features of conopeptide genes inferred from partial sequences of the Conus tribblei genome.

    Science.gov (United States)

    Barghi, Neda; Concepcion, Gisela P; Olivera, Baldomero M; Lluisma, Arturo O

    2016-02-01

    The evolvability of venom components (in particular, the gene-encoded peptide toxins) in venomous species serves as an adaptive strategy allowing them to target new prey types or respond to changes in the prey field. The structure, organization, and expression of the venom peptide genes may provide insights into the molecular mechanisms that drive the evolution of such genes. Conus is a particularly interesting group given the high chemical diversity of their venom peptides, and the rapid evolution of the conopeptide-encoding genes. Conus genomes, however, are large and characterized by a high proportion of repetitive sequences. As a result, the structure and organization of conopeptide genes have remained poorly known. In this study, a survey of the genome of Conus tribblei was undertaken to address this gap. A partial assembly of C. tribblei genome was generated; the assembly, though consisting of a large number of fragments, accounted for 2160.5 Mb of sequence. A large number of repetitive genomic elements consisting of 642.6 Mb of retrotransposable elements, simple repeats, and novel interspersed repeats were observed. We characterized the structural organization and distribution of conotoxin genes in the genome. A significant number of conopeptide genes (estimated to be between 148 and 193) belonging to different superfamilies with complete or nearly complete exon regions were observed, ~60 % of which were expressed. The unexpressed conopeptide genes represent hidden but significant conotoxin diversity. The conotoxin genes also differed in the frequency and length of the introns. The interruption of exons by long introns in the conopeptide genes and the presence of repeats in the introns may indicate the importance of introns in facilitating recombination, evolution and diversification of conotoxins. These findings advance our understanding of the structural framework that promotes the gene-level molecular evolution of venom peptides.

  17. Genome-wide experimental determination of barriers to horizontal gene transfer

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward; Sorek, Rotem; Zhu, Yiwen; Creevey, Christopher J.; Francino, M. Pilar; Bork, Peer; Rubin, Edward M.

    2007-09-24

    Horizontal gene transfer, in which genetic material is transferred from the genome of one organism to another, has been investigated in microbial species mainly through computational sequence analyses. To address the lack of experimental data, we studied the attempted movement of 246,045 genes from 79 prokaryotic genomes into E. coli and identified genes that consistently fail to transfer. We studied the mechanisms underlying transfer inhibition by placing coding regions from different species under the control of inducible promoters. Their toxicity to the host inhibited transfer regardless of the species of origin and our data suggest that increased gene dosage and associated increased expression is a predominant cause for transfer failure. While these experimental studies examined transfer solely into E. coli, a computational analysis of gene transfer rates across available bacterial and archaeal genomes indicates that the barriers observed in our study are general across the tree of life.

  18. A GeneTrek analysis of the maize genome.

    Science.gov (United States)

    Liu, Renyi; Vitte, Clémentine; Ma, Jianxin; Mahama, A Assibi; Dhliwayo, Thanda; Lee, Michael; Bennetzen, Jeffrey L

    2007-07-10

    Analysis of the sequences of 74 randomly selected BACs demonstrated that the maize nuclear genome contains approximately 37,000 candidate genes with homologues in other plant species. An additional approximately 5,500 predicted genes are severely truncated and probably pseudogenes. The distribution of genes is uneven, with approximately 30% of BACs containing no genes. BAC gene density varies from 0 to 7.9 per 100 kb, whereas most gene islands contain only one gene. The average number of genes per gene island is 1.7. Only 72% of these genes show collinearity with the rice genome. Particular LTR retrotransposon families (e.g., Gyma) are enriched on gene-free BACs, most of which do not come from pericentromeres or other large heterochromatic regions. Gene-containing BACs are relatively enriched in different families of LTR retrotransposons (e.g., Ji). Two major bursts of LTR retrotransposon activity in the last 2 million years are responsible for the large size of the maize genome, but only the more recent of these is well represented in gene-containing BACs, suggesting that LTR retrotransposons are more efficiently removed in these domains. The results demonstrate that sample sequencing and careful annotation of a few randomly selected BACs can provide a robust description of a complex plant genome.

  19. Approaching the Sequential and Three-Dimensional Organization of Genomes

    NARCIS (Netherlands)

    T.A. Knoch (Tobias)

    2006-01-01

    textabstractGenomes are one of the major foundations of life due to their role in information storage, process regulation and evolution. To achieve a deeper unterstanding of the human genome the three-dimensional organization of the human cell nucleus, the structural-, scaling- and dynamic prope

  20. Comparative genomics of free-living Gammaproteobacteria: pathogenesis-related genes or interaction-related genes?

    Science.gov (United States)

    Vázquez-Rosas-Landa, Mirna; Ponce-Soto, Gabriel Yaxal; Eguiarte, Luis E; Souza, V

    2017-07-31

    Bacteria have numerous strategies to interact with themselves and with their environment, but genes associated with these interactions are usually cataloged as pathogenic. To understand the role that these genes have not only in pathogenesis but also in bacterial interactions, we compared the genomes of eight bacteria from human-impacted environments with those of free-living bacteria from the Cuatro Ciénegas Basin (CCB), a relatively pristine oligotrophic site. Fifty-one genomes from CCB bacteria, including Pseudomonas, Vibrio, Photobacterium and Aeromonas, were analyzed. We found that the CCB strains had several virulence-related genes, 15 of which were common to all strains and were related to flagella and chemotaxis. We also identified the presence of Type III and VI secretion systems, which leads us to propose that these systems play an important role in interactions among bacterial communities beyond pathogenesis. None of the CCB strains had pathogenicity islands, despite having genes associated with antibiotics. Integrons were rare, while CRISPR elements were common. The idea that pathogenicity-related genes in many cases form part of a wider strategy used by bacteria to interact with other organisms could help us to understand the role of pathogenicity-related elements in an ecological and evolutionary framework leading toward a more inclusive One Health concept. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. A Method for Identification of Selenoprotein Genes in Archaeal Genomes

    Institute of Scientific and Technical Information of China (English)

    Mingfeng Li; Yanzhao Huang; Yi Xiao

    2009-01-01

    The genetic codon UGA has a dual function: serving as a terminator and encoding selenocysteine. However, most popular gene annotation programs only take it as a stop signal, resulting in misannotation or completely missing selenoprotein genes. We developed a computational method named Asec-Prediction that is specific for the prediction of archaeal selenoprotein genes. To evaluate its effectiveness, we first applied it to 14 archaeal genomes with previously known selenoprotein genes, and Asec-Prediction identified all reported selenoprotein genes without redundant results. When we applied it to 12 archaeal genomes that had not been researched for selenoprotein genes, Asec-Prediction detected a novel selenoprotein gene in Methanosarcina acetivorans. Further evidence was also collected to support that the predicted gene should be a real selenoprotein gene. The result shows that Asec-Prediction is effective for the prediction of archaeal selenoprotein genes.

  2. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    among isolates but also functionally essential for a given species and to further evaluate the stability or flexibility of such genome structures across lineages are of importance. Based on a large number of multi-isolate pangenomic data, our analysis reveals that a subset of core genes is organized into a core-gene-defined genome organizational framework, or cGOF. Furthermore, the lineage-associated cGOFs among Gram-positive and Gram-negative bacteria behave differently: the former, composed of 2 to 4 segments, have their fragments symmetrically rearranged around the origin-terminus axis, whereas the latter show more complex segmentation and are partitioned asymmetrically into chromosomal structures. The definition of cGOFs provides new insights into prokaryotic genome organization and efficient guidance for genome assembly and analysis. Copyright © 2014 Kang et al.

  3. The Genome of Sulfolobus acidocaldarius, a Model Organism of the Crenarchaeota

    DEFF Research Database (Denmark)

    Chen, Lanming; Brügger, Kim; Skovgaard, M.

    2005-01-01

    to the Sulfolobus genus. Moreover, 82 genes for untranslated RNAs were identified and annotated. Owing to the probable absence of active autonomous and nonautonomous mobile elements, the genome stability and organization of S. acidocaldarius differ radically from those of Sulfolobus solfataricus and Sulfolobus...

  4. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota

    DEFF Research Database (Denmark)

    Chen, L.M.; Brugger, K.; Skovgaard, Marie

    2005-01-01

    to the Sulfolobus genus. Moreover, 82 genes for untranslated RNAs were identified and annotated. Owing to the probable absence of active autonomous and nonautonomous mobile elements, the genome stability and organization of S. acidocaldarius differ radically from those of Sulfolobus solfataricus and Sulfolobus...

  5. Genomic Organization of Zebrafish microRNAs

    Directory of Open Access Journals (Sweden)

    Paydar Ima

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are small (~22 nt non-coding RNAs that regulate cell movement, specification, and development. Expression of miRNAs is highly regulated, both spatially and temporally. Based on direct cloning, sequence conservation, and predicted secondary structures, a large number of miRNAs have been identified in higher eukaryotic genomes but whether these RNAs are simply a subset of a much larger number of noncoding RNA families is unknown. This is especially true in zebrafish where genome sequencing and annotation is not yet complete. Results We analyzed the zebrafish genome to identify the number and location of proven and predicted miRNAs resulting in the identification of 35 new miRNAs. We then grouped all 415 zebrafish miRNAs into families based on seed sequence identity as a means to identify possible functional redundancy. Based on genomic location and expression analysis, we also identified those miRNAs that are likely to be encoded as part of polycistronic transcripts. Lastly, as a resource, we compiled existing zebrafish miRNA expression data and, where possible, listed all experimentally proven mRNA targets. Conclusion Current analysis indicates the zebrafish genome encodes 415 miRNAs which can be grouped into 44 families. The largest of these families (the miR-430 family contains 72 members largely clustered in two main locations along chromosome 4. Thus far, most zebrafish miRNAs exhibit tissue specific patterns of expression.

  6. Genome-editing Technologies for Gene and Cell Therapy

    Science.gov (United States)

    Maeder, Morgan L; Gersbach, Charles A

    2016-01-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed. PMID:26755333

  7. Genome-editing Technologies for Gene and Cell Therapy.

    Science.gov (United States)

    Maeder, Morgan L; Gersbach, Charles A

    2016-03-01

    Gene therapy has historically been defined as the addition of new genes to human cells. However, the recent advent of genome-editing technologies has enabled a new paradigm in which the sequence of the human genome can be precisely manipulated to achieve a therapeutic effect. This includes the correction of mutations that cause disease, the addition of therapeutic genes to specific sites in the genome, and the removal of deleterious genes or genome sequences. This review presents the mechanisms of different genome-editing strategies and describes each of the common nuclease-based platforms, including zinc finger nucleases, transcription activator-like effector nucleases (TALENs), meganucleases, and the CRISPR/Cas9 system. We then summarize the progress made in applying genome editing to various areas of gene and cell therapy, including antiviral strategies, immunotherapies, and the treatment of monogenic hereditary disorders. The current challenges and future prospects for genome editing as a transformative technology for gene and cell therapy are also discussed.

  8. A unified gene catalog for the laboratory mouse reference genome.

    Science.gov (United States)

    Zhu, Y; Richardson, J E; Hale, P; Baldarelli, R M; Reed, D J; Recla, J M; Sinclair, R; Reddy, T B K; Bult, C J

    2015-08-01

    We report here a semi-automated process by which mouse genome feature predictions and curated annotations (i.e., genes, pseudogenes, functional RNAs, etc.) from Ensembl, NCBI and Vertebrate Genome Annotation database (Vega) are reconciled with the genome features in the Mouse Genome Informatics (MGI) database (http://www.informatics.jax.org) into a comprehensive and non-redundant catalog. Our gene unification method employs an algorithm (fjoin--feature join) for efficient detection of genome coordinate overlaps among features represented in two annotation data sets. Following the analysis with fjoin, genome features are binned into six possible categories (1:1, 1:0, 0:1, 1:n, n:1, n:m) based on coordinate overlaps. These categories are subsequently prioritized for assessment of annotation equivalencies and differences. The version of the unified catalog reported here contains more than 59,000 entries, including 22,599 protein-coding coding genes, 12,455 pseudogenes, and 24,007 other feature types (e.g., microRNAs, lincRNAs, etc.). More than 23,000 of the entries in the MGI gene catalog have equivalent gene models in the annotation files obtained from NCBI, Vega, and Ensembl. 12,719 of the features are unique to NCBI relative to Ensembl/Vega; 11,957 are unique to Ensembl/Vega relative to NCBI, and 3095 are unique to MGI. More than 4000 genome features fall into categories that require manual inspection to resolve structural differences in the gene models from different annotation sources. Using the MGI unified gene catalog, researchers can easily generate a comprehensive report of mouse genome features from a single source and compare the details of gene and transcript structure using MGI's mouse genome browser.

  9. Genomic Prediction of Gene Bank Wheat Landraces

    Directory of Open Access Journals (Sweden)

    José Crossa

    2016-07-01

    Full Text Available This study examines genomic prediction within 8416 Mexican landrace accessions and 2403 Iranian landrace accessions stored in gene banks. The Mexican and Iranian collections were evaluated in separate field trials, including an optimum environment for several traits, and in two separate environments (drought, D and heat, H for the highly heritable traits, days to heading (DTH, and days to maturity (DTM. Analyses accounting and not accounting for population structure were performed. Genomic prediction models include genotype × environment interaction (G × E. Two alternative prediction strategies were studied: (1 random cross-validation of the data in 20% training (TRN and 80% testing (TST (TRN20-TST80 sets, and (2 two types of core sets, “diversity” and “prediction”, including 10% and 20%, respectively, of the total collections. Accounting for population structure decreased prediction accuracy by 15–20% as compared to prediction accuracy obtained when not accounting for population structure. Accounting for population structure gave prediction accuracies for traits evaluated in one environment for TRN20-TST80 that ranged from 0.407 to 0.677 for Mexican landraces, and from 0.166 to 0.662 for Iranian landraces. Prediction accuracy of the 20% diversity core set was similar to accuracies obtained for TRN20-TST80, ranging from 0.412 to 0.654 for Mexican landraces, and from 0.182 to 0.647 for Iranian landraces. The predictive core set gave similar prediction accuracy as the diversity core set for Mexican collections, but slightly lower for Iranian collections. Prediction accuracy when incorporating G × E for DTH and DTM for Mexican landraces for TRN20-TST80 was around 0.60, which is greater than without the G × E term. For Iranian landraces, accuracies were 0.55 for the G × E model with TRN20-TST80. Results show promising prediction accuracies for potential use in germplasm enhancement and rapid introgression of exotic germplasm

  10. Identifying losses and expansions of selected gene families in incomplete genomic datasets

    OpenAIRE

    2013-01-01

    Plantae (Archaeplastida) are a natural group of organisms with plastids of primary endosymbiotic origin. Within this group, members of the red algae show evidence of a reduction of their genomic content. In this work, we designed a bioinformatics approach to investigate the few, sometimes incomplete, genomic datasets available for red algae, with the purpose of pointing out possible gene family losses and expansions. Our pipeline first populates a relational database with precomputed ortholog...

  11. A method to find groups of orthogous genes across multiple genomes

    Directory of Open Access Journals (Sweden)

    ALMEIDA, N.F.

    2013-12-01

    Full Text Available In this work we propose a simple method to obtain groups of homologous genes across multiple (k organisms, called kGC. Our method takes as input all-against-all Blastp comparisons and produces groups of homologous sequences. First, homologies among groups of paralogs of all the k compared genomes are found, followed by homologies of groups among k - 1 genomes and so on, until groups belonging exclusively to only one genome, that is, groups of one genome not presenting strong similarities with any group of any other genome, are identified. We have used our method to determine homologous groups across six Actinobacterial complete genomes. To validate kGC, we first investigate the Pfam classification of the homologous groups, and after compare our results with those produced by OrthoMCL. Although kGC is much simpler than OrthoMCL it presented similar results with respect to Pfam classification.

  12. Genes but not genomes reveal bacterial domestication of Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Delphine Passerini

    Full Text Available BACKGROUND: The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE. METHODOLOGY/PRINCIPAL FINDINGS: The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE: The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable

  13. The Isochores as a Fundamental Level of Genome Structure and Organization: A General Overview.

    Science.gov (United States)

    Costantini, Maria; Musto, Héctor

    2017-03-01

    The recent availability of a number of fully sequenced genomes (including marine organisms) allowed to map very precisely the isochores, based on DNA sequences, confirming the results obtained before genome sequencing by the ultracentrifugation in CsCl. In fact, the analytical profile of human DNA showed that the vertebrate genome is a mosaic of isochores, typically megabase-size DNA segments that belong to a small number of families characterized by different GC levels. In this review, we will concentrate on some general genome features regarding the compositional organization from different organisms and their evolution, ranging from vertebrates to invertebrates until unicellular organisms. Since isochores are tightly linked to biological properties such as gene density, replication timing, and recombination, the new level of detail provided by the isochore map helped the understanding of genome structure, function, and evolution. All the findings reported here confirm the idea that the isochores can be considered as a "fundamental level of genome structure and organization." We stress that we do not discuss in this review the origin of isochores, which is still a matter of controversy, but we focus on well established structural and physiological aspects.

  14. Genome Variability and Gene Content in Chordopoxviruses: Dependence on Microsatellites

    Science.gov (United States)

    Hatcher, Eneida L.; Wang, Chunlin; Lefkowitz, Elliot J.

    2015-01-01

    To investigate gene loss in poxviruses belonging to the Chordopoxvirinae subfamily, we assessed the gene content of representative members of the subfamily, and determined whether individual genes present in each genome were intact, truncated, or fragmented. When nonintact genes were identified, the early stop mutations (ESMs) leading to gene truncation or fragmentation were analyzed. Of all the ESMs present in these poxvirus genomes, over 65% co-localized with microsatellites—simple sequence nucleotide repeats. On average, microsatellites comprise 24% of the nucleotide sequence of these poxvirus genomes. These simple repeats have been shown to exhibit high rates of variation, and represent a target for poxvirus protein variation, gene truncation, and reductive evolution. PMID:25912716

  15. Genome engineering and gene expression control for bacterial strain development.

    Science.gov (United States)

    Song, Chan Woo; Lee, Joungmin; Lee, Sang Yup

    2015-01-01

    In recent years, a number of techniques and tools have been developed for genome engineering and gene expression control to achieve desired phenotypes of various bacteria. Here we review and discuss the recent advances in bacterial genome manipulation and gene expression control techniques, and their actual uses with accompanying examples. Genome engineering has been commonly performed based on homologous recombination. During such genome manipulation, the counterselection systems employing SacB or nucleases have mainly been used for the efficient selection of desired engineered strains. The recombineering technology enables simple and more rapid manipulation of the bacterial genome. The group II intron-mediated genome engineering technology is another option for some bacteria that are difficult to be engineered by homologous recombination. Due to the increasing demands on high-throughput screening of bacterial strains having the desired phenotypes, several multiplex genome engineering techniques have recently been developed and validated in some bacteria. Another approach to achieve desired bacterial phenotypes is the repression of target gene expression without the modification of genome sequences. This can be performed by expressing antisense RNA, small regulatory RNA, or CRISPR RNA to repress target gene expression at the transcriptional or translational level. All of these techniques allow efficient and rapid development and screening of bacterial strains having desired phenotypes, and more advanced techniques are expected to be seen.

  16. Maximum likelihood for genome phylogeny on gene content.

    Science.gov (United States)

    Zhang, Hongmei; Gu, Xun

    2004-01-01

    With the rapid growth of entire genome data, reconstructing the phylogenetic relationship among different genomes has become a hot topic in comparative genomics. Maximum likelihood approach is one of the various approaches, and has been very successful. However, there is no reported study for any applications in the genome tree-making mainly due to the lack of an analytical form of a probability model and/or the complicated calculation burden. In this paper we studied the mathematical structure of the stochastic model of genome evolution, and then developed a simplified likelihood function for observing a specific phylogenetic pattern under four genome situation using gene content information. We use the maximum likelihood approach to identify phylogenetic trees. Simulation results indicate that the proposed method works well and can identify trees with a high correction rate. Real data application provides satisfied results. The approach developed in this paper can serve as the basis for reconstructing phylogenies of more than four genomes.

  17. Recent Achievement in Gene Cloning and Functional Genomics in Soybean

    Directory of Open Access Journals (Sweden)

    Zhengjun Xia

    2013-01-01

    Full Text Available Soybean is a model plant for photoperiodism as well as for symbiotic nitrogen fixation. However, a rather low efficiency in soybean transformation hampers functional analysis of genes isolated from soybean. In comparison, rapid development and progress in flowering time and photoperiodic response have been achieved in Arabidopsis and rice. As the soybean genomic information has been released since 2008, gene cloning and functional genomic studies have been revived as indicated by successfully characterizing genes involved in maturity and nematode resistance. Here, we review some major achievements in the cloning of some important genes and some specific features at genetic or genomic levels revealed by the analysis of functional genomics of soybean.

  18. Pattern Genes Suggest Functional Connectivity of Organs

    Science.gov (United States)

    Qin, Yangmei; Pan, Jianbo; Cai, Meichun; Yao, Lixia; Ji, Zhiliang

    2016-05-01

    Human organ, as the basic structural and functional unit in human body, is made of a large community of different cell types that organically bound together. Each organ usually exerts highly specified physiological function; while several related organs work smartly together to perform complicated body functions. In this study, we present a computational effort to understand the roles of genes in building functional connection between organs. More specifically, we mined multiple transcriptome datasets sampled from 36 human organs and tissues, and quantitatively identified 3,149 genes whose expressions showed consensus modularly patterns: specific to one organ/tissue, selectively expressed in several functionally related tissues and ubiquitously expressed. These pattern genes imply intrinsic connections between organs. According to the expression abundance of the 766 selective genes, we consistently cluster the 36 human organs/tissues into seven functional groups: adipose & gland, brain, muscle, immune, metabolism, mucoid and nerve conduction. The organs and tissues in each group either work together to form organ systems or coordinate to perform particular body functions. The particular roles of specific genes and selective genes suggest that they could not only be used to mechanistically explore organ functions, but also be designed for selective biomarkers and therapeutic targets.

  19. De novo mutations in the genome organizer CTCF cause intellectual disability

    DEFF Research Database (Denmark)

    Gregor, Anne; Oti, Martin; Kouwenhoven, Evelyn N

    2013-01-01

    mutations and one de novo missense mutation in CTCF in individuals with intellectual disability, microcephaly, and growth retardation. Furthermore, an individual with a larger deletion including CTCF was identified. CTCF (CCCTC-binding factor) is one of the most important chromatin organizers in vertebrates...... and emphasized the role of CTCF in enhancer-driven expression of genes. Our findings indicate that haploinsufficiency of CTCF affects genomic interaction of enhancers and their regulated gene promoters that drive developmental processes and cognition....

  20. Natural products discovery from micro-organisms in the post-genome era.

    Science.gov (United States)

    Ikeda, Haruo

    2017-01-01

    With the decision to award the Nobel Prize in Physiology or Medicine to Drs. S. Ōmura, W.C. Campbell, and Y. Tu, the importance and usefulness of natural drug discovery and development have been revalidated. Since the end of the twentieth century, many genome analyses of organisms have been conducted, and accordingly, numerous microbial genomes have been decoded. In particular, genomic studies of actinomycetes, micro-organisms that readily produce natural products, led to the discovery of biosynthetic gene clusters responsible for producing natural products. New explorations for natural products through a comprehensive approach combining genomic information with conventional methods show great promise for the discovery of new natural products and even systematic generation of unnaturally occurring compounds.

  1. GenePRIMP: A GENE PRediction IMprovement Pipeline for Prokaryotic genomes

    Energy Technology Data Exchange (ETDEWEB)

    Pati, Amrita; Ivanova, Natalia N.; Mikhailova, Natalia; Ovchinnikova, Galina; Hooper, Sean D.; Lykidis, Athanasios; Kyrpides, Nikos C.

    2010-04-01

    We present 'gene prediction improvement pipeline' (GenePRIMP; http://geneprimp.jgi-psf.org/), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missed genes and split genes. We found that manual curation of gene models using the anomaly reports generated by GenePRIMP improved their quality, and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome-sequencing and annotation technologies.

  2. Genomic location and characterisation of MIC genes in cattle.

    Science.gov (United States)

    Birch, James; De Juan Sanjuan, Cristina; Guzman, Efrain; Ellis, Shirley A

    2008-08-01

    Major histocompatibility complex (MHC) class I chain-related (MIC) genes have been previously identified and characterised in human. They encode polymorphic class I-like molecules that are stress-inducible, and constitute one of the ligands of the activating natural killer cell receptor NKG2D. We have identified three MIC genes within the cattle genome, located close to three non-classical MHC class I genes. The genomic position relative to other genes is very similar to the arrangement reported in the pig MHC region. Analysis of MIC cDNA sequences derived from a range of cattle cell lines suggest there may be four MIC genes in total. We have investigated the presence of the genes in distinct and well-defined MHC haplotypes, and show that one gene is consistently present, while configuration of the other three genes appears variable.

  3. Molecular Assemblies, Genes and Genomics Integrated Efficiently (MAGGIE)

    Energy Technology Data Exchange (ETDEWEB)

    Baliga, Nitin S

    2011-05-26

    Final report on MAGGIE. We set ambitious goals to model the functions of individual organisms and their community from molecular to systems scale. These scientific goals are driving the development of sophisticated algorithms to analyze large amounts of experimental measurements made using high throughput technologies to explain and predict how the environment influences biological function at multiple scales and how the microbial systems in turn modify the environment. By experimentally evaluating predictions made using these models we will test the degree to which our quantitative multiscale understanding wilt help to rationally steer individual microbes and their communities towards specific tasks. Towards this end we have made substantial progress towards understanding evolution of gene families, transcriptional structures, detailed structures of keystone molecular assemblies (proteins and complexes), protein interactions, biological networks, microbial interactions, and community structure. Using comparative analysis we have tracked the evolutionary history of gene functions to understand how novel functions evolve. One level up, we have used proteomics data, high-resolution genome tiling microarrays, and 5' RNA sequencing to revise genome annotations, discover new genes including ncRNAs, and map dynamically changing operon structures of five model organisms: For Desulfovibrio vulgaris Hildenborough, Pyrococcus furiosis, Sulfolobus solfataricus, Methanococcus maripaludis and Haiobacterium salinarum NROL We have developed machine learning algorithms to accurately identify protein interactions at a near-zero false positive rate from noisy data generated using tagfess complex purification, TAP purification, and analysis of membrane complexes. Combining other genome-scale datasets produced by ENIGMA (in particular, microarray data) and available from literature we have been able to achieve a true positive rate as high as 65% at almost zero false positives

  4. Distinct gene number-genome size relationships for eukaryotes and non-eukaryotes: gene content estimation for dinoflagellate genomes.

    Directory of Open Access Journals (Sweden)

    Yubo Hou

    Full Text Available The ability to predict gene content is highly desirable for characterization of not-yet sequenced genomes like those of dinoflagellates. Using data from completely sequenced and annotated genomes from phylogenetically diverse lineages, we investigated the relationship between gene content and genome size using regression analyses. Distinct relationships between log(10-transformed protein-coding gene number (Y' versus log(10-transformed genome size (X', genome size in kbp were found for eukaryotes and non-eukaryotes. Eukaryotes best fit a logarithmic model, Y' = ln(-46.200+22.678X', whereas non-eukaryotes a linear model, Y' = 0.045+0.977X', both with high significance (p0.91. Total gene number shows similar trends in both groups to their respective protein coding regressions. The distinct correlations reflect lower and decreasing gene-coding percentages as genome size increases in eukaryotes (82%-1% compared to higher and relatively stable percentages in prokaryotes and viruses (97%-47%. The eukaryotic regression models project that the smallest dinoflagellate genome (3x10(6 kbp contains 38,188 protein-coding (40,086 total genes and the largest (245x10(6 kbp 87,688 protein-coding (92,013 total genes, corresponding to 1.8% and 0.05% gene-coding percentages. These estimates do not likely represent extraordinarily high functional diversity of the encoded proteome but rather highly redundant genomes as evidenced by high gene copy numbers documented for various dinoflagellate species.

  5. Snf2 family gene distribution in higher plant genomes reveals DRD1 expansion and diversification in the tomato genome.

    Directory of Open Access Journals (Sweden)

    Joachim W Bargsten

    Full Text Available As part of large protein complexes, Snf2 family ATPases are responsible for energy supply during chromatin remodeling, but the precise mechanism of action of many of these proteins is largely unknown. They influence many processes in plants, such as the response to environmental stress. This analysis is the first comprehensive study of Snf2 family ATPases in plants. We here present a comparative analysis of 1159 candidate plant Snf2 genes in 33 complete and annotated plant genomes, including two green algae. The number of Snf2 ATPases shows considerable variation across plant genomes (17-63 genes. The DRD1, Rad5/16 and Snf2 subfamily members occur most often. Detailed analysis of the plant-specific DRD1 subfamily in related plant genomes shows the occurrence of a complex series of evolutionary events. Notably tomato carries unexpected gene expansions of DRD1 gene members. Most of these genes are expressed in tomato, although at low levels and with distinct tissue or organ specificity. In contrast, the Snf2 subfamily genes tend to be expressed constitutively in tomato. The results underpin and extend the Snf2 subfamily classification, which could help to determine the various functional roles of Snf2 ATPases and to target environmental stress tolerance and yield in future breeding.

  6. Genetics and Genomics of Single-Gene Cardiovascular Diseases: Common Hereditary Cardiomyopathies as Prototypes of Single-Gene Disorders.

    Science.gov (United States)

    Marian, Ali J; van Rooij, Eva; Roberts, Robert

    2016-12-27

    This is the first of 2 review papers on genetics and genomics appearing as part of the series on "omics." Genomics pertains to all components of an organism's genes, whereas genetics involves analysis of a specific gene or genes in the context of heredity. The paper provides introductory comments, describes the basis of human genetic diversity, and addresses the phenotypic consequences of genetic variants. Rare variants with large effect sizes are responsible for single-gene disorders, whereas complex polygenic diseases are typically due to multiple genetic variants, each exerting a modest effect size. To illustrate the clinical implications of genetic variants with large effect sizes, 3 common forms of hereditary cardiomyopathies are discussed as prototypic examples of single-gene disorders, including their genetics, clinical manifestations, pathogenesis, and treatment. The genetic basis of complex traits is discussed in a separate paper. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  7. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    Science.gov (United States)

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  8. The genomes of two key bumblebee species with primitive eusocial organization

    DEFF Research Database (Denmark)

    Sadd, Ben M.; Barribeau, Seth M.; Bloch, Guy;

    2015-01-01

    features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including...... development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. CONCLUSIONS: These two bumblebee...... genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation....

  9. Widespread Horizontal Gene Transfer from Circular Single-stranded DNA Viruses to Eukaryotic Genomes

    Directory of Open Access Journals (Sweden)

    Xie Jiatao

    2011-09-01

    Full Text Available Abstract Background In addition to vertical transmission, organisms can also acquire genes from other distantly related species or from their extra-chromosomal elements (plasmids and viruses via horizontal gene transfer (HGT. It has been suggested that phages represent substantial forces in prokaryotic evolution. In eukaryotes, retroviruses, which can integrate into host genome as an obligate step in their replication strategy, comprise approximately 8% of the human genome. Unlike retroviruses, few members of other virus families are known to transfer genes to host genomes. Results Here we performed a systematic search for sequences related to circular single-stranded DNA (ssDNA viruses in publicly available eukaryotic genome databases followed by comprehensive phylogenetic analysis. We conclude that the replication initiation protein (Rep-related sequences of geminiviruses, nanoviruses and circoviruses have been frequently transferred to a broad range of eukaryotic species, including plants, fungi, animals and protists. Some of the transferred viral genes were conserved and expressed, suggesting that these genes have been coopted to assume cellular functions in the host genomes. We also identified geminivirus-like and parvovirus-like transposable elements in genomes of fungi and lower animals, respectively, and thereby provide direct evidence that eukaryotic transposons could derive from ssDNA viruses. Conclusions Our discovery extends the host range of circular ssDNA viruses and sheds light on the origin and evolution of these viruses. It also suggests that ssDNA viruses act as an unforeseen source of genetic innovation in their hosts.

  10. [A review of the genomic and gene cloning studies in trees].

    Science.gov (United States)

    Yin, Tong-Ming

    2010-07-01

    Supported by the Department of Energy (DOE) of U.S., the first tree genome, black cottonwood (Populus trichocarpa), has been completely sequenced and publicly release. This is the milestone that indicates the beginning of post-genome era for forest trees. Identification and cloning genes underlying important traits are one of the main tasks for the post-genome-era tree genomic studies. Recently, great achievements have been made in cloning genes coordinating important domestication traits in some crops, such as rice, tomato, maize and so on. Molecular breeding has been applied in the practical breeding programs for many crops. By contrast, molecular studies in trees are lagging behind. Trees possess some characteristics that make them as difficult organisms for studying on locating and cloning of genes. With the advances in techniques, given also the fast growth of tree genomic resources, great achievements are desirable in cloning unknown genes from trees, which will facilitate tree improvement programs by means of molecular breeding. In this paper, the author reviewed the progress in tree genomic and gene cloning studies, and prospected the future achievements in order to provide a useful reference for researchers working in this area.

  11. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota.

    Science.gov (United States)

    Chen, Lanming; Brügger, Kim; Skovgaard, Marie; Redder, Peter; She, Qunxin; Torarinsson, Elfar; Greve, Bo; Awayez, Mariana; Zibat, Arne; Klenk, Hans-Peter; Garrett, Roger A

    2005-07-01

    Sulfolobus acidocaldarius is an aerobic thermoacidophilic crenarchaeon which grows optimally at 80 degrees C and pH 2 in terrestrial solfataric springs. Here, we describe the genome sequence of strain DSM639, which has been used for many seminal studies on archaeal and crenarchaeal biology. The circular genome carries 2,225,959 bp (37% G+C) with 2,292 predicted protein-encoding genes. Many of the smaller genes were identified for the first time on the basis of comparison of three Sulfolobus genome sequences. Of the protein-coding genes, 305 are exclusive to S. acidocaldarius and 866 are specific to the Sulfolobus genus. Moreover, 82 genes for untranslated RNAs were identified and annotated. Owing to the probable absence of active autonomous and nonautonomous mobile elements, the genome stability and organization of S. acidocaldarius differ radically from those of Sulfolobus solfataricus and Sulfolobus tokodaii. The S. acidocaldarius genome contains an integrated, and probably encaptured, pARN-type conjugative plasmid which may facilitate intercellular chromosomal gene exchange in S. acidocaldarius. Moreover, it contains genes for a characteristic restriction modification system, a UV damage excision repair system, thermopsin, and an aromatic ring dioxygenase, all of which are absent from genomes of other Sulfolobus species. However, it lacks genes for some of their sugar transporters, consistent with it growing on a more limited range of carbon sources. These results, together with the many newly identified protein-coding genes for Sulfolobus, are incorporated into a public Sulfolobus database which can be accessed at http://dac.molbio.ku.dk/dbs/Sulfolobus.

  12. Evolution of genes and genomes on the Drosophila phylogeny.

    Science.gov (United States)

    Clark, Andrew G; Eisen, Michael B; Smith, Douglas R; Bergman, Casey M; Oliver, Brian; Markow, Therese A; Kaufman, Thomas C; Kellis, Manolis; Gelbart, William; Iyer, Venky N; Pollard, Daniel A; Sackton, Timothy B; Larracuente, Amanda M; Singh, Nadia D; Abad, Jose P; Abt, Dawn N; Adryan, Boris; Aguade, Montserrat; Akashi, Hiroshi; Anderson, Wyatt W; Aquadro, Charles F; Ardell, David H; Arguello, Roman; Artieri, Carlo G; Barbash, Daniel A; Barker, Daniel; Barsanti, Paolo; Batterham, Phil; Batzoglou, Serafim; Begun, Dave; Bhutkar, Arjun; Blanco, Enrico; Bosak, Stephanie A; Bradley, Robert K; Brand, Adrianne D; Brent, Michael R; Brooks, Angela N; Brown, Randall H; Butlin, Roger K; Caggese, Corrado; Calvi, Brian R; Bernardo de Carvalho, A; Caspi, Anat; Castrezana, Sergio; Celniker, Susan E; Chang, Jean L; Chapple, Charles; Chatterji, Sourav; Chinwalla, Asif; Civetta, Alberto; Clifton, Sandra W; Comeron, Josep M; Costello, James C; Coyne, Jerry A; Daub, Jennifer; David, Robert G; Delcher, Arthur L; Delehaunty, Kim; Do, Chuong B; Ebling, Heather; Edwards, Kevin; Eickbush, Thomas; Evans, Jay D; Filipski, Alan; Findeiss, Sven; Freyhult, Eva; Fulton, Lucinda; Fulton, Robert; Garcia, Ana C L; Gardiner, Anastasia; Garfield, David A; Garvin, Barry E; Gibson, Greg; Gilbert, Don; Gnerre, Sante; Godfrey, Jennifer; Good, Robert; Gotea, Valer; Gravely, Brenton; Greenberg, Anthony J; Griffiths-Jones, Sam; Gross, Samuel; Guigo, Roderic; Gustafson, Erik A; Haerty, Wilfried; Hahn, Matthew W; Halligan, Daniel L; Halpern, Aaron L; Halter, Gillian M; Han, Mira V; Heger, Andreas; Hillier, LaDeana; Hinrichs, Angie S; Holmes, Ian; Hoskins, Roger A; Hubisz, Melissa J; Hultmark, Dan; Huntley, Melanie A; Jaffe, David B; Jagadeeshan, Santosh; Jeck, William R; Johnson, Justin; Jones, Corbin D; Jordan, William C; Karpen, Gary H; Kataoka, Eiko; Keightley, Peter D; Kheradpour, Pouya; Kirkness, Ewen F; Koerich, Leonardo B; Kristiansen, Karsten; Kudrna, Dave; Kulathinal, Rob J; Kumar, Sudhir; Kwok, Roberta; Lander, Eric; Langley, Charles H; Lapoint, Richard; Lazzaro, Brian P; Lee, So-Jeong; Levesque, Lisa; Li, Ruiqiang; Lin, Chiao-Feng; Lin, Michael F; Lindblad-Toh, Kerstin; Llopart, Ana; Long, Manyuan; Low, Lloyd; Lozovsky, Elena; Lu, Jian; Luo, Meizhong; Machado, Carlos A; Makalowski, Wojciech; Marzo, Mar; Matsuda, Muneo; Matzkin, Luciano; McAllister, Bryant; McBride, Carolyn S; McKernan, Brendan; McKernan, Kevin; Mendez-Lago, Maria; Minx, Patrick; Mollenhauer, Michael U; Montooth, Kristi; Mount, Stephen M; Mu, Xu; Myers, Eugene; Negre, Barbara; Newfeld, Stuart; Nielsen, Rasmus; Noor, Mohamed A F; O'Grady, Patrick; Pachter, Lior; Papaceit, Montserrat; Parisi, Matthew J; Parisi, Michael; Parts, Leopold; Pedersen, Jakob S; Pesole, Graziano; Phillippy, Adam M; Ponting, Chris P; Pop, Mihai; Porcelli, Damiano; Powell, Jeffrey R; Prohaska, Sonja; Pruitt, Kim; Puig, Marta; Quesneville, Hadi; Ram, Kristipati Ravi; Rand, David; Rasmussen, Matthew D; Reed, Laura K; Reenan, Robert; Reily, Amy; Remington, Karin A; Rieger, Tania T; Ritchie, Michael G; Robin, Charles; Rogers, Yu-Hui; Rohde, Claudia; Rozas, Julio; Rubenfield, Marc J; Ruiz, Alfredo; Russo, Susan; Salzberg, Steven L; Sanchez-Gracia, Alejandro; Saranga, David J; Sato, Hajime; Schaeffer, Stephen W; Schatz, Michael C; Schlenke, Todd; Schwartz, Russell; Segarra, Carmen; Singh, Rama S; Sirot, Laura; Sirota, Marina; Sisneros, Nicholas B; Smith, Chris D; Smith, Temple F; Spieth, John; Stage, Deborah E; Stark, Alexander; Stephan, Wolfgang; Strausberg, Robert L; Strempel, Sebastian; Sturgill, David; Sutton, Granger; Sutton, Granger G; Tao, Wei; Teichmann, Sarah; Tobari, Yoshiko N; Tomimura, Yoshihiko; Tsolas, Jason M; Valente, Vera L S; Venter, Eli; Venter, J Craig; Vicario, Saverio; Vieira, Filipe G; Vilella, Albert J; Villasante, Alfredo; Walenz, Brian; Wang, Jun; Wasserman, Marvin; Watts, Thomas; Wilson, Derek; Wilson, Richard K; Wing, Rod A; Wolfner, Mariana F; Wong, Alex; Wong, Gane Ka-Shu; Wu, Chung-I; Wu, Gabriel; Yamamoto, Daisuke; Yang, Hsiao-Pei; Yang, Shiaw-Pyng; Yorke, James A; Yoshida, Kiyohito; Zdobnov, Evgeny; Zhang, Peili; Zhang, Yu; Zimin, Aleksey V; Baldwin, Jennifer; Abdouelleil, Amr; Abdulkadir, Jamal; Abebe, Adal; Abera, Brikti; Abreu, Justin; Acer, St Christophe; Aftuck, Lynne; Alexander, Allen; An, Peter; Anderson, Erica; Anderson, Scott; Arachi, Harindra; Azer, Marc; Bachantsang, Pasang; Barry, Andrew; Bayul, Tashi; Berlin, Aaron; Bessette, Daniel; Bloom, Toby; Blye, Jason; Boguslavskiy, Leonid; Bonnet, Claude; Boukhgalter, Boris; Bourzgui, Imane; Brown, Adam; Cahill, Patrick; Channer, Sheridon; Cheshatsang, Yama; Chuda, Lisa; Citroen, Mieke; Collymore, Alville; Cooke, Patrick; Costello, Maura; D'Aco, Katie; Daza, Riza; De Haan, Georgius; DeGray, Stuart; DeMaso, Christina; Dhargay, Norbu; Dooley, Kimberly; Dooley, Erin; Doricent, Missole; Dorje, Passang; Dorjee, Kunsang; Dupes, Alan; Elong, Richard; Falk, Jill; Farina, Abderrahim; Faro, Susan; Ferguson, Diallo; Fisher, Sheila; Foley, Chelsea D; Franke, Alicia; Friedrich, Dennis; Gadbois, Loryn; Gearin, Gary; Gearin, Christina R; Giannoukos, Georgia; Goode, Tina; Graham, Joseph; Grandbois, Edward; Grewal, Sharleen; Gyaltsen, Kunsang; Hafez, Nabil; Hagos, Birhane; Hall, Jennifer; Henson, Charlotte; Hollinger, Andrew; Honan, Tracey; Huard, Monika D; Hughes, Leanne; Hurhula, Brian; Husby, M Erii; Kamat, Asha; Kanga, Ben; Kashin, Seva; Khazanovich, Dmitry; Kisner, Peter; Lance, Krista; Lara, Marcia; Lee, William; Lennon, Niall; Letendre, Frances; LeVine, Rosie; Lipovsky, Alex; Liu, Xiaohong; Liu, Jinlei; Liu, Shangtao; Lokyitsang, Tashi; Lokyitsang, Yeshi; Lubonja, Rakela; Lui, Annie; MacDonald, Pen; Magnisalis, Vasilia; Maru, Kebede; Matthews, Charles; McCusker, William; McDonough, Susan; Mehta, Teena; Meldrim, James; Meneus, Louis; Mihai, Oana; Mihalev, Atanas; Mihova, Tanya; Mittelman, Rachel; Mlenga, Valentine; Montmayeur, Anna; Mulrain, Leonidas; Navidi, Adam; Naylor, Jerome; Negash, Tamrat; Nguyen, Thu; Nguyen, Nga; Nicol, Robert; Norbu, Choe; Norbu, Nyima; Novod, Nathaniel; O'Neill, Barry; Osman, Sahal; Markiewicz, Eva; Oyono, Otero L; Patti, Christopher; Phunkhang, Pema; Pierre, Fritz; Priest, Margaret; Raghuraman, Sujaa; Rege, Filip; Reyes, Rebecca; Rise, Cecil; Rogov, Peter; Ross, Keenan; Ryan, Elizabeth; Settipalli, Sampath; Shea, Terry; Sherpa, Ngawang; Shi, Lu; Shih, Diana; Sparrow, Todd; Spaulding, Jessica; Stalker, John; Stange-Thomann, Nicole; Stavropoulos, Sharon; Stone, Catherine; Strader, Christopher; Tesfaye, Senait; Thomson, Talene; Thoulutsang, Yama; Thoulutsang, Dawa; Topham, Kerri; Topping, Ira; Tsamla, Tsamla; Vassiliev, Helen; Vo, Andy; Wangchuk, Tsering; Wangdi, Tsering; Weiand, Michael; Wilkinson, Jane; Wilson, Adam; Yadav, Shailendra; Young, Geneva; Yu, Qing; Zembek, Lisa; Zhong, Danni; Zimmer, Andrew; Zwirko, Zac; Jaffe, David B; Alvarez, Pablo; Brockman, Will; Butler, Jonathan; Chin, CheeWhye; Gnerre, Sante; Grabherr, Manfred; Kleber, Michael; Mauceli, Evan; MacCallum, Iain

    2007-11-08

    Comparative analysis of multiple genomes in a phylogenetic framework dramatically improves the precision and sensitivity of evolutionary inference, producing more robust results than single-genome analyses can provide. The genomes of 12 Drosophila species, ten of which are presented here for the first time (sechellia, simulans, yakuba, erecta, ananassae, persimilis, willistoni, mojavensis, virilis and grimshawi), illustrate how rates and patterns of sequence divergence across taxa can illuminate evolutionary processes on a genomic scale. These genome sequences augment the formidable genetic tools that have made Drosophila melanogaster a pre-eminent model for animal genetics, and will further catalyse fundamental research on mechanisms of development, cell biology, genetics, disease, neurobiology, behaviour, physiology and evolution. Despite remarkable similarities among these Drosophila species, we identified many putatively non-neutral changes in protein-coding genes, non-coding RNA genes, and cis-regulatory regions. These may prove to underlie differences in the ecology and behaviour of these diverse species.

  13. Gene fusions and gene duplications: relevance to genomic annotation and functional analysis

    Directory of Open Access Journals (Sweden)

    Riley Monica

    2005-03-01

    Full Text Available Abstract Background Escherichia coli a model organism provides information for annotation of other genomes. Our analysis of its genome has shown that proteins encoded by fused genes need special attention. Such composite (multimodular proteins consist of two or more components (modules encoding distinct functions. Multimodular proteins have been found to complicate both annotation and generation of sequence similar groups. Previous work overstated the number of multimodular proteins in E. coli. This work corrects the identification of modules by including sequence information from proteins in 50 sequenced microbial genomes. Results Multimodular E. coli K-12 proteins were identified from sequence similarities between their component modules and non-fused proteins in 50 genomes and from the literature. We found 109 multimodular proteins in E. coli containing either two or three modules. Most modules had standalone sequence relatives in other genomes. The separated modules together with all the single (un-fused proteins constitute the sum of all unimodular proteins of E. coli. Pairwise sequence relationships among all E. coli unimodular proteins generated 490 sequence similar, paralogous groups. Groups ranged in size from 92 to 2 members and had varying degrees of relatedness among their members. Some E. coli enzyme groups were compared to homologs in other bacterial genomes. Conclusion The deleterious effects of multimodular proteins on annotation and on the formation of groups of paralogs are emphasized. To improve annotation results, all multimodular proteins in an organism should be detected and when known each function should be connected with its location in the sequence of the protein. When transferring functions by sequence similarity, alignment locations must be noted, particularly when alignments cover only part of the sequences, in order to enable transfer of the correct function. Separating multimodular proteins into module units makes

  14. Reproduction-related genes in the pearl oyster genome.

    Science.gov (United States)

    Matsumoto, Toshie; Masaoka, Tetsuji; Fujiwara, Atsushi; Nakamura, Yoji; Satoh, Nori; Awaji, Masahiko

    2013-10-01

    Molluscan reproduction has been a target of biological research because of the various reproductive strategies that have evolved in this phylum. It has also been studied for the development of fisheries technologies, particularly aquaculture. Although fundamental processes of reproduction in other phyla, such as vertebrates and arthropods, have been well studied, information on the molecular mechanisms of molluscan reproduction remains limited. The recently released draft genome of the pearl oyster Pinctada fucata provides a novel and powerful platform for obtaining structural information on the genes and proteins involved in bivalve reproduction. In the present study, we analyzed the pearl oyster draft genome to screen reproduction-related genes. Analysis was mainly conducted for genes reported from other molluscs for encoding orthologs of reproduction-related proteins in other phyla. The gene search in the P. fucata gene models (version 1.1) and genome assembly (version 1.0) were performed using Genome Browser and BLAST software. The obtained gene models were then BLASTP searched against a public database to confirm the best-hit sequences. As a result, more than 40 gene models were identified with high accuracy to encode reproduction-related genes reported for P. fucata and other molluscs. These include vasa, nanos, doublesex- and mab-3-related transcription factor, 5-hydroxytryptamine (5-HT) receptors, vitellogenin, estrogen receptor, and others. The set of reproduction-related genes of P. fucata identified in the present study constitute a new tool for research on bivalve reproduction at the molecular level.

  15. Genome-Wide Detection and Analysis of Multifunctional Genes

    Science.gov (United States)

    Pritykin, Yuri; Ghersi, Dario; Singh, Mona

    2015-01-01

    Many genes can play a role in multiple biological processes or molecular functions. Identifying multifunctional genes at the genome-wide level and studying their properties can shed light upon the complexity of molecular events that underpin cellular functioning, thereby leading to a better understanding of the functional landscape of the cell. However, to date, genome-wide analysis of multifunctional genes (and the proteins they encode) has been limited. Here we introduce a computational approach that uses known functional annotations to extract genes playing a role in at least two distinct biological processes. We leverage functional genomics data sets for three organisms—H. sapiens, D. melanogaster, and S. cerevisiae—and show that, as compared to other annotated genes, genes involved in multiple biological processes possess distinct physicochemical properties, are more broadly expressed, tend to be more central in protein interaction networks, tend to be more evolutionarily conserved, and are more likely to be essential. We also find that multifunctional genes are significantly more likely to be involved in human disorders. These same features also hold when multifunctionality is defined with respect to molecular functions instead of biological processes. Our analysis uncovers key features about multifunctional genes, and is a step towards a better genome-wide understanding of gene multifunctionality. PMID:26436655

  16. Complete mitochondrial genome sequence of three Tetrahymena species reveals mutation hot spots and accelerated nonsynonymous substitutions in Ymf genes.

    Directory of Open Access Journals (Sweden)

    Mike M Moradian

    Full Text Available The ciliate Tetrahymena, a model organism, contains divergent mitochondrial (Mt genome with unusual properties, where half of its 44 genes still remain without a definitive function. These genes could be categorized into two major groups of KPC (known protein coding and Ymf (genes without an identified function. To gain insights into the mechanisms underlying gene divergence and molecular evolution of Tetrahymena (T. Mt genomes, we sequenced three Mt genomes of T.paravorax, T.pigmentosa, and T.malaccensis. These genomes were aligned and the analyses were carried out using several programs that calculate distance, nucleotide substitution (dn/ds, and their rate ratios (omega on individual codon sites and via a sliding window approach. Comparative genomic analysis indicated a conserved putative transcription control sequence, a GC box, in a region where presumably transcription and replication initiate. We also found distinct features in Mt genome of T.paravorax despite similar genome organization among these approximately 47 kb long linear genomes. Another significant finding was the presence of at least one or more highly variable regions in Ymf genes where majority of substitutions were concentrated. These regions were mutation hotspots where elevated distances and the dn/ds ratios were primarily due to an increase in the number of nonsynonymous substitutions, suggesting relaxed selective constraint. However, in a few Ymf genes, accelerated rates of nonsynonymous substitutions may be due to positive selection. Similarly, on protein level the majority of amino acid replacements occurred in these regions. Ymf genes comprise half of the genes in Tetrahymena Mt genomes, so understanding why they have not been assigned definitive functions is an important aspect of molecular evolution. Importantly, nucleotide substitution types and rates suggest possible reasons for not being able to find homologues for Ymf genes. Additionally, comparative genomic

  17. Use of designer nucleases for targeted gene and genome editing in plants.

    Science.gov (United States)

    Weeks, Donald P; Spalding, Martin H; Yang, Bing

    2016-02-01

    The ability to efficiently inactivate or replace genes in model organisms allowed a rapid expansion of our understanding of many of the genetic, biochemical, molecular and cellular mechanisms that support life. With the advent of new techniques for manipulating genes and genomes that are applicable not only to single-celled organisms, but also to more complex organisms such as animals and plants, the speed with which scientists and biotechnologists can expand fundamental knowledge and apply that knowledge to improvements in medicine, industry and agriculture is set to expand in an exponential fashion. At the heart of these advancements will be the use of gene editing tools such as zinc finger nucleases, modified meganucleases, hybrid DNA/RNA oligonucleotides, TAL effector nucleases and modified CRISPR/Cas9. Each of these tools has the ability to precisely target one specific DNA sequence within a genome and (except for DNA/RNA oligonucleotides) to create a double-stranded DNA break. DNA repair to such breaks sometimes leads to gene knockouts or gene replacement by homologous recombination if exogenously supplied homologous DNA fragments are made available. Genome rearrangements are also possible to engineer. Creation and use of such genome rearrangements, gene knockouts and gene replacements by the plant science community is gaining significant momentum. To document some of this progress and to explore the technology's longer term potential, this review highlights present and future uses of designer nucleases to greatly expedite research with model plant systems and to engineer genes and genomes in major and minor crop species for enhanced food production.

  18. Pinpointing disease genes through phenomic and genomic data fusion.

    Science.gov (United States)

    Jiang, Rui; Wu, Mengmeng; Li, Lianshuo

    2015-01-01

    Pinpointing genes involved in inherited human diseases remains a great challenge in the post-genomics era. Although approaches have been proposed either based on the guilt-by-association principle or making use of disease phenotype similarities, the low coverage of both diseases and genes in existing methods has been preventing the scan of causative genes for a significant proportion of diseases at the whole-genome level. To overcome this limitation, we proposed a rigorous statistical method called pgFusion to prioritize candidate genes by integrating one type of disease phenotype similarity derived from the Unified Medical Language System (UMLS) and seven types of gene functional similarities calculated from gene expression, gene ontology, pathway membership, protein sequence, protein domain, protein-protein interaction and regulation pattern, respectively. Our method covered a total of 7,719 diseases and 20,327 genes, achieving the highest coverage thus far for both diseases and genes. We performed leave-one-out cross-validation experiments to demonstrate the superior performance of our method and applied it to a real exome sequencing dataset of epileptic encephalopathies, showing the capability of this approach in finding causative genes for complex diseases. We further provided the standalone software and online services of pgFusion at http://bioinfo.au.tsinghua.edu.cn/jianglab/pgfusion. pgFusion not only provided an effective way for prioritizing candidate genes, but also demonstrated feasible solutions to two fundamental questions in the analysis of big genomic data: the comparability of heterogeneous data and the integration of multiple types of data. Applications of this method in exome or whole genome sequencing studies would accelerate the finding of causative genes for human diseases. Other research fields in genomics could also benefit from the incorporation of our data fusion methodology.

  19. Preferential duplication of intermodular hub genes: an evolutionary signature in eukaryotes genome networks.

    Directory of Open Access Journals (Sweden)

    Ricardo M Ferreira

    Full Text Available Whole genome protein-protein association networks are not random and their topological properties stem from genome evolution mechanisms. In fact, more connected, but less clustered proteins are related to genes that, in general, present more paralogs as compared to other genes, indicating frequent previous gene duplication episodes. On the other hand, genes related to conserved biological functions present few or no paralogs and yield proteins that are highly connected and clustered. These general network characteristics must have an evolutionary explanation. Considering data from STRING database, we present here experimental evidence that, more than not being scale free, protein degree distributions of organisms present an increased probability for high degree nodes. Furthermore, based on this experimental evidence, we propose a simulation model for genome evolution, where genes in a network are either acquired de novo using a preferential attachment rule, or duplicated with a probability that linearly grows with gene degree and decreases with its clustering coefficient. For the first time a model yields results that simultaneously describe different topological distributions. Also, this model correctly predicts that, to produce protein-protein association networks with number of links and number of nodes in the observed range for Eukaryotes, it is necessary 90% of gene duplication and 10% of de novo gene acquisition. This scenario implies a universal mechanism for genome evolution.

  20. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss.

    Science.gov (United States)

    den Bakker, Henk C; Cummings, Craig A; Ferreira, Vania; Vatta, Paolo; Orsi, Renato H; Degoricija, Lovorka; Barker, Melissa; Petrauskene, Olga; Furtado, Manohar R; Wiedmann, Martin

    2010-12-02

    The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i) a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii) a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii) divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i) a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii) conserved genome size (between 2.8 and 3.2 Mb), and (iii) a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus Listeria thus provides an example of a group of

  1. Comparative genomics of the bacterial genus Listeria: Genome evolution is characterized by limited gene acquisition and limited gene loss

    Directory of Open Access Journals (Sweden)

    Barker Melissa

    2010-12-01

    Full Text Available Abstract Background The bacterial genus Listeria contains pathogenic and non-pathogenic species, including the pathogens L. monocytogenes and L. ivanovii, both of which carry homologous virulence gene clusters such as the prfA cluster and clusters of internalin genes. Initial evidence for multiple deletions of the prfA cluster during the evolution of Listeria indicates that this genus provides an interesting model for studying the evolution of virulence and also presents practical challenges with regard to definition of pathogenic strains. Results To better understand genome evolution and evolution of virulence characteristics in Listeria, we used a next generation sequencing approach to generate draft genomes for seven strains representing Listeria species or clades for which genome sequences were not available. Comparative analyses of these draft genomes and six publicly available genomes, which together represent the main Listeria species, showed evidence for (i a pangenome with 2,032 core and 2,918 accessory genes identified to date, (ii a critical role of gene loss events in transition of Listeria species from facultative pathogen to saprotroph, even though a consistent pattern of gene loss seemed to be absent, and a number of isolates representing non-pathogenic species still carried some virulence associated genes, and (iii divergence of modern pathogenic and non-pathogenic Listeria species and strains, most likely circa 47 million years ago, from a pathogenic common ancestor that contained key virulence genes. Conclusions Genome evolution in Listeria involved limited gene loss and acquisition as supported by (i a relatively high coverage of the predicted pan-genome by the observed pan-genome, (ii conserved genome size (between 2.8 and 3.2 Mb, and (iii a highly syntenic genome. Limited gene loss in Listeria did include loss of virulence associated genes, likely associated with multiple transitions to a saprotrophic lifestyle. The genus

  2. Azolla - A Model Organism for Plant Genomic Studies

    Institute of Scientific and Technical Information of China (English)

    Yin-Long Qiu; Jun Yu

    2003-01-01

    The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation. Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture, its unique position in plant evolution, its symbiotic relationship with the N2-fixing cyanobacterium, Anabaena azollae, and its moderate-sized genome. The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes. Together with the strategic and technical improvement as well as cost reduction of DNA sequencing, the deciphering of their genetic code is imminent.

  3. Azolla—A Model Organism for Plant Genomic Studies

    Institute of Scientific and Technical Information of China (English)

    Yin-LongQiu; JunYu

    2003-01-01

    The aquatic ferns of the genus Azolla are nitrogen-fixing plants that have great potentials in agricultural production and environmental conservation.Azolla in many aspects is qualified to serve as a model organism for genomic studies because of its importance in agriculture,its unique position in plant evolution,its symbiotic relationship with the N2-fixing cyanobacterium,Anabaena azollae,and its moderate-sized genome.The goals of this genome project are not only to understand the biology of the Azolla genome to promote its applications in biological research and agriculture practice but also to gain critical insights about evolution of plant genomes.Together with the strategic and technical improvement as well as cost reduction of DNA sequencing,the deciphering of their genetic code is imminent.

  4. Genome organization of herpesvirus aotus type 2.

    OpenAIRE

    1985-01-01

    Herpesvirus aotus type 2, a virus commonly found in owl monkeys without overt disease, has a similar genome structure to the oncogenic herpesviruses of nonhuman primates (herpesvirus saimiri, herpesvirus ateles). Virion DNA of herpesvirus aotus type 2 (M-DNA) has an unique 110-kilobase-pair region of low G + C content (40.2%, L-DNA), inserted between stretches of repetitive H-DNA (68.7% G + C, about 41 kilobase pairs per molecule) that are variable in length. A minority of virions contain def...

  5. The use of multiple hierarchically independent gene ontology terms in gene function prediction and genome annotation

    NARCIS (Netherlands)

    Kourmpetis, Y.I.A.; Burgt, van der A.; Bink, M.C.A.M.; Braak, ter C.J.F.; Ham, van R.C.H.J.

    2007-01-01

    The Gene Ontology (GO) is a widely used controlled vocabulary for the description of gene function. In this study we quantify the usage of multiple and hierarchically independent GO terms in the curated genome annotations of seven well-studied species. In most genomes, significant proportions (6 -

  6. Molecular cloning and organization of two leghaemoglobin genomic sequences of soybean

    Science.gov (United States)

    Sullivan, D.; Brisson, N.; Goodchild, B.; Verma, D. P. S.

    1981-02-01

    The leghaemoglobins (Lb) are myoglobin-like proteins found in all nitrogen-fixing root nodules of legumes1-3. They are encoded by plant nuclear genes4 which are specifically induced and form the predominant protein in nodules developed in symbiosis with the appropriate species of Rhizobium. The Lb is located in the host-cell cytoplasm of the infected cell5 and is thought to facilitate oxygen diffusion6,7. Amino acid sequencing of the soybean Lbs has revealed at least four primary structures differing only in a few amino acids8-10. We have previously estimated about 40 copies of Lb sequences in the soybean (Glycine max L.) genome by cDNA hybridization4. To investigate Lb gene organization and function, we prepared and characterized a Lb cDNA recombinant molecule, pLb1, and used it to isolate two genomic Lb sequences from a library constructed in Charon 4. We report here that the organization of the two genomic Lb sequences is quite distinct and one of them seems to have an intervening sequence(s). Hybridization of pLb1 with genomic DNA from various tissues showed that Lb sequences are dispersed through more than 30 kilobases of genomic DNA and that there is no apparent sequence rearrangement or methylation changes following induction of Lb genes.

  7. Genomic basis for the convergent evolution of electric organs

    Science.gov (United States)

    Gallant, Jason R.; Traeger, Lindsay L.; Volkening, Jeremy D.; Moffett, Howell; Chen, Po-Hao; Novina, Carl D.; Phillips, George N.; Anand, Rene; Wells, Gregg B.; Pinch, Matthew; Güth, Robert; Unguez, Graciela A.; Albert, James S.; Zakon, Harold H.; Samanta, Manoj P.; Sussman, Michael R.

    2017-01-01

    Little is known about the genetic basis of convergent traits that originate repeatedly over broad taxonomic scales. The myogenic electric organ has evolved six times in fishes to produce electric fields used in communication, navigation, predation, or defense. We have examined the genomic basis of the convergent anatomical and physiological origins of these organs by assembling the genome of the electric eel (Electrophorus electricus) and sequencing electric organ and skeletal muscle transcriptomes from three lineages that have independently evolved electric organs. Our results indicate that, despite millions of years of evolution and large differences in the morphology of electric organ cells, independent lineages have leveraged similar transcription factors and developmental and cellular pathways in the evolution of electric organs. PMID:24970089

  8. Genome-wide gene expression analysis of anguillid herpesvirus 1

    NARCIS (Netherlands)

    Beurden, van S.J.; Peeters, B.P.H.; Rottier, P.J.M.; Davison, A.A.; Engelsma, M.Y.

    2013-01-01

    Background Whereas temporal gene expression in mammalian herpesviruses has been studied extensively, little is known about gene expression in fish herpesviruses. Here we report a genome-wide transcription analysis of a fish herpesvirus, anguillid herpesvirus 1, in cell culture, studied during the

  9. Whole genome homology-based identification of candidate genes ...

    African Journals Online (AJOL)

    Josephine Erhiakporeh

    2016-07-06

    Jul 6, 2016 ... identification of a set of 75 candidate genes (42, 22 and 11 from Arabidopsis, potato and tomato, ... understanding on the genetic basis of drought tolerance by using the .... Comparative genomics and genes expression assay ... Primer code ... physiological and molecular responses to drought stress.

  10. Analyses of genome architecture and gene expression reveal novel candidate virulence factors in the secretome of Phytophthora infestans

    Directory of Open Access Journals (Sweden)

    Cano Liliana M

    2010-11-01

    Full Text Available Abstract Background Phytophthora infestans is the most devastating pathogen of potato and a model organism for the oomycetes. It exhibits high evolutionary potential and rapidly adapts to host plants. The P. infestans genome experienced a repeat-driven expansion relative to the genomes of Phytophthora sojae and Phytophthora ramorum and shows a discontinuous distribution of gene density. Effector genes, such as members of the RXLR and Crinkler (CRN families, localize to expanded, repeat-rich and gene-sparse regions of the genome. This distinct genomic environment is thought to contribute to genome plasticity and host adaptation. Results We used in silico approaches to predict and describe the repertoire of P. infestans secreted proteins (the secretome. We defined the "plastic secretome" as a subset of the genome that (i encodes predicted secreted proteins, (ii is excluded from genome segments orthologous to the P. sojae and P. ramorum genomes and (iii is encoded by genes residing in gene sparse regions of P. infestans genome. Although including only ~3% of P. infestans genes, the plastic secretome contains ~62% of known effector genes and shows >2 fold enrichment in genes induced in planta. We highlight 19 plastic secretome genes induced in planta but distinct from previously described effectors. This list includes a trypsin-like serine protease, secreted oxidoreductases, small cysteine-rich proteins and repeat containing proteins that we propose to be novel candidate virulence factors. Conclusions This work revealed a remarkably diverse plastic secretome. It illustrates the value of combining genome architecture with comparative genomics to identify novel candidate virulence factors from pathogen genomes.

  11. Chiropteran types I and II interferon genes inferred from genome sequencing traces by a statistical gene-family assembler

    Directory of Open Access Journals (Sweden)

    Haines Albert

    2010-07-01

    Full Text Available Abstract Background The rate of emergence of human pathogens is steadily increasing; most of these novel agents originate in wildlife. Bats, remarkably, are the natural reservoirs of many of the most pathogenic viruses in humans. There are two bat genome projects currently underway, a circumstance that promises to speed the discovery host factors important in the coevolution of bats with their viruses. These genomes, however, are not yet assembled and one of them will provide only low coverage, making the inference of most genes of immunological interest error-prone. Many more wildlife genome projects are underway and intend to provide only shallow coverage. Results We have developed a statistical method for the assembly of gene families from partial genomes. The method takes full advantage of the quality scores generated by base-calling software, incorporating them into a complete probabilistic error model, to overcome the limitation inherent in the inference of gene family members from partial sequence information. We validated the method by inferring the human IFNA genes from the genome trace archives, and used it to infer 61 type-I interferon genes, and single type-II interferon genes in the bats Pteropus vampyrus and Myotis lucifugus. We confirmed our inferences by direct cloning and sequencing of IFNA, IFNB, IFND, and IFNK in P. vampyrus, and by demonstrating transcription of some of the inferred genes by known interferon-inducing stimuli. Conclusion The statistical trace assembler described here provides a reliable method for extracting information from the many available and forthcoming partial or shallow genome sequencing projects, thereby facilitating the study of a wider variety of organisms with ecological and biomedical significance to humans than would otherwise be possible.

  12. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  13. Gene calling and bacterial genome annotation with BG7.

    Science.gov (United States)

    Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo

    2015-01-01

    New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).

  14. Carotenoid biosynthetic genes in Brassica rapa: comparative genomic analysis, phylogenetic analysis, and expression profiling

    OpenAIRE

    Li, Peirong; Zhang, Shujiang; Zhang, Shifan; Li, Fei; Zhang, Hui; Cheng, Feng; Wu, Jian; Wang, Xiaowu; Sun, Rifei

    2015-01-01

    Background Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa. Results We identified 67 carotenoid biosynthetic genes in B. rapa, which were ort...

  15. Genomic analysis reveals extensive gene duplication within the bovine TRB locus

    Directory of Open Access Journals (Sweden)

    Law Andy

    2009-04-01

    Full Text Available Abstract Background Diverse TR and IG repertoires are generated by V(DJ somatic recombination. Genomic studies have been pivotal in cataloguing the V, D, J and C genes present in the various TR/IG loci and describing how duplication events have expanded the number of these genes. Such studies have also provided insights into the evolution of these loci and the complex mechanisms that regulate TR/IG expression. In this study we analyze the sequence of the third bovine genome assembly to characterize the germline repertoire of bovine TRB genes and compare the organization, evolution and regulatory structure of the bovine TRB locus with that of humans and mice. Results The TRB locus in the third bovine genome assembly is distributed over 5 scaffolds, extending to ~730 Kb. The available sequence contains 134 TRBV genes, assigned to 24 subgroups, and 3 clusters of DJC genes, each comprising a single TRBD gene, 5–7 TRBJ genes and a single TRBC gene. Seventy-nine of the TRBV genes are predicted to be functional. Comparison with the human and murine TRB loci shows that the gene order, as well as the sequences of non-coding elements that regulate TRB expression, are highly conserved in the bovine. Dot-plot analyses demonstrate that expansion of the genomic TRBV repertoire has occurred via a complex and extensive series of duplications, predominantly involving DNA blocks containing multiple genes. These duplication events have resulted in massive expansion of several TRBV subgroups, most notably TRBV6, 9 and 21 which contain 40, 35 and 16 members respectively. Similarly, duplication has lead to the generation of a third DJC cluster. Analyses of cDNA data confirms the diversity of the TRBV genes and, in addition, identifies a substantial number of TRBV genes, predominantly from the larger subgroups, which are still absent from the genome assembly. The observed gene duplication within the bovine TRB locus has created a repertoire of phylogenetically

  16. LATERAL GENE TRANSFER AND THE HISTORY OF BACTERIAL GENOMES

    Energy Technology Data Exchange (ETDEWEB)

    Howard Ochman

    2006-02-22

    The aims of this research were to elucidate the role and extent of lateral transfer in the differentiation of bacterial strains and species, and to assess the impact of gene transfer on the evolution of bacterial genomes. The ultimate goal of the project is to examine the dynamics of a core set of protein-coding genes (i.e., those that are distributed universally among Bacteria) by developing conserved primers that would allow their amplification and sequencing in any bacterial taxa. In addition, we adopted a bioinformatic approach to elucidate the extent of lateral gene transfer in sequenced genome.

  17. Building phylogenetic trees by using gene Nucleotide Genomic Signals.

    Science.gov (United States)

    Cristea, Paul Dan

    2012-01-01

    Nucleotide genomic signal (NuGS) methodology allows a molecular level approach to determine distances between homologous genes or between conserved equivalent non-coding genome regions in various species or individuals of the same species. Therefore, distances between the genes of species or individuals can be computed and phylogenetic trees can be built. The paper illustrates the use of the nucleotide imbalance (N) and nucleotide pair imbalance (P) signals to determine the distances between the genes of several Hominidae. The results are in accordance with those of other genetic or phylogenetic approaches to establish distances between Hominidae species.

  18. From trees to the forest: genes to genomics.

    Science.gov (United States)

    Mullighan, Charles; Petersdorf, Effie; Davies, Stella M; DiPersio, John

    2011-01-01

    Crick, Watson, and colleagues revealed the genetic code in 1953, and since that time, remarkable progress has been made in understanding what makes each of us who we are. Identification of single genes important in disease, and the development of a mechanistic understanding of genetic elements that regulate gene function, have cast light on the pathophysiology of many heritable and acquired disorders. In 1990, the human genome project commenced, with the goal of sequencing the entire human genome, and a "first draft" was published with astonishing speed in 2001. The first draft, although an extraordinary achievement, reported essentially an imaginary haploid mix of alleles rather than a true diploid genome. In the years since 2001, technology has further improved, and efforts have been focused on filling in the gaps in the initial genome and starting the huge task of looking at normal variation in the human genome. This work is the beginning of understanding human genetics in the context of the structure of the genome as a complete entity, and as more than simply the sum of a series of genes. We present 3 studies in this review that apply genomic approaches to leukemia and to transplantation to improve and extend therapies.

  19. Strong genome-wide selection early in the evolution of Prochlorococcus resulted in a reduced genome through the loss of a large number of small effect genes.

    Directory of Open Access Journals (Sweden)

    Zhiyi Sun

    Full Text Available The smallest genomes of any photosynthetic organisms are found in a group of free-living marine cyanobacteria, Prochlorococcus. To determine the underlying evolutionary mechanisms, we developed a new method to reconstruct the steps leading to the Prochlorococcus genome reduction using 12 Prochlorococcus and 6 marine Synechococcus genomes. Our results reveal that small genome sizes within Prochlorococcus were largely determined shortly after the split of Prochlorococcus and Synechococcus (an early big shrink and thus for the first time decouple the genome reduction from Prochlorococcus diversification. A maximum likelihood approach was then used to estimate changes of nucleotide substitution rate and selection strength along Prochlorococcus evolution in a phylogenetic framework. Strong genome wide purifying selection was associated with the loss of many genes in the early evolutionary stage. The deleted genes were distributed around the genome, participated in many different functional categories and in general had been under relaxed selection pressure. We propose that shortly after Prochlorococcus diverged from its common ancestor with marine Synechococcus, its population size increased quickly thus increasing efficacy of selection. Due to limited nutrients and a relatively constant environment, selection favored a streamlined genome for maximum economy. Strong genome wide selection subsequently caused the loss of genes with small functional effect including the loss of some DNA repair genes. In summary, genome reduction in Prochlorococcus resulted in genome features that are similar to symbiotic bacteria and pathogens, however, the small genome sizes resulted from an increase in genome wide selection rather than a consequence of a reduced ecological niche or relaxed selection due to genetic drift.

  20. Discovery of germline-related genes in Cephalochordate amphioxus: A genome wide survey using genome annotation and transcriptome data.

    Science.gov (United States)

    Yue, Jia-Xing; Li, Kun-Lung; Yu, Jr-Kai

    2015-12-01

    The generation of germline cells is a critical process in the reproduction of multicellular organisms. Studies in animal models have identified a common repertoire of genes that play essential roles in primordial germ cell (PGC) formation. However, comparative studies also indicate that the timing and regulation of this core genetic program vary considerably in different animals, raising the intriguing questions regarding the evolution of PGC developmental mechanisms in metazoans. Cephalochordates (commonly called amphioxus or lancelets) represent one of the invertebrate chordate groups and can provide important information about the evolution of developmental mechanisms in the chordate lineage. In this study, we used genome and transcriptome data to identify germline-related genes in two distantly related cephalochordate species, Branchiostoma floridae and Asymmetron lucayanum. Branchiostoma and Asymmetron diverged more than 120 MYA, and the most conspicuous difference between them is their gonadal morphology. We used important germline developmental genes in several model animals to search the amphioxus genome and transcriptome dataset for conserved homologs. We also annotated the assembled transcriptome data using Gene Ontology (GO) terms to facilitate the discovery of putative genes associated with germ cell development and reproductive functions in amphioxus. We further confirmed the expression of 14 genes in developing oocytes or mature eggs using whole mount in situ hybridization, suggesting their potential functions in amphioxus germ cell development. The results of this global survey provide a useful resource for testing potential functions of candidate germline-related genes in cephalochordates and for investigating differences in gonad developmental mechanisms between Branchiostoma and Asymmetron species.

  1. The Mouse Genome Database (MGD): from genes to mice--a community resource for mouse biology.

    Science.gov (United States)

    Eppig, Janan T; Bult, Carol J; Kadin, James A; Richardson, Joel E; Blake, Judith A; Anagnostopoulos, A; Baldarelli, R M; Baya, M; Beal, J S; Bello, S M; Boddy, W J; Bradt, D W; Burkart, D L; Butler, N E; Campbell, J; Cassell, M A; Corbani, L E; Cousins, S L; Dahmen, D J; Dene, H; Diehl, A D; Drabkin, H J; Frazer, K S; Frost, P; Glass, L H; Goldsmith, C W; Grant, P L; Lennon-Pierce, M; Lewis, J; Lu, I; Maltais, L J; McAndrews-Hill, M; McClellan, L; Miers, D B; Miller, L A; Ni, L; Ormsby, J E; Qi, D; Reddy, T B K; Reed, D J; Richards-Smith, B; Shaw, D R; Sinclair, R; Smith, C L; Szauter, P; Walker, M B; Walton, D O; Washburn, L L; Witham, I T; Zhu, Y

    2005-01-01

    The Mouse Genome Database (MGD) forms the core of the Mouse Genome Informatics (MGI) system (http://www.informatics.jax.org), a model organism database resource for the laboratory mouse. MGD provides essential integration of experimental knowledge for the mouse system with information annotated from both literature and online sources. MGD curates and presents consensus and experimental data representations of genotype (sequence) through phenotype information, including highly detailed reports about genes and gene products. Primary foci of integration are through representations of relationships among genes, sequences and phenotypes. MGD collaborates with other bioinformatics groups to curate a definitive set of information about the laboratory mouse and to build and implement the data and semantic standards that are essential for comparative genome analysis. Recent improvements in MGD discussed here include the enhancement of phenotype resources, the re-development of the International Mouse Strain Resource, IMSR, the update of mammalian orthology datasets and the electronic publication of classic books in mouse genetics.

  2. Genome engineering using a synthetic gene circuit in Bacillus subtilis.

    Science.gov (United States)

    Jeong, Da-Eun; Park, Seung-Hwan; Pan, Jae-Gu; Kim, Eui-Joong; Choi, Soo-Keun

    2015-03-31

    Genome engineering without leaving foreign DNA behind requires an efficient counter-selectable marker system. Here, we developed a genome engineering method in Bacillus subtilis using a synthetic gene circuit as a counter-selectable marker system. The system contained two repressible promoters (B. subtilis xylA (Pxyl) and spac (Pspac)) and two repressor genes (lacI and xylR). Pxyl-lacI was integrated into the B. subtilis genome with a target gene containing a desired mutation. The xylR and Pspac-chloramphenicol resistant genes (cat) were located on a helper plasmid. In the presence of xylose, repression of XylR by xylose induced LacI expression, the LacIs repressed the Pspac promoter and the cells become chloramphenicol sensitive. Thus, to survive in the presence of chloramphenicol, the cell must delete Pxyl-lacI by recombination between the wild-type and mutated target genes. The recombination leads to mutation of the target gene. The remaining helper plasmid was removed easily under the chloramphenicol absent condition. In this study, we showed base insertion, deletion and point mutation of the B. subtilis genome without leaving any foreign DNA behind. Additionally, we successfully deleted a 2-kb gene (amyE) and a 38-kb operon (ppsABCDE). This method will be useful to construct designer Bacillus strains for various industrial applications.

  3. Putative essential and core-essential genes in Mycoplasma genomes

    OpenAIRE

    Lin, Yan; Zhang, Randy Ren

    2011-01-01

    Mycoplasma, which was used to create the first “synthetic life”, has been an important species in the emerging field, synthetic biology. However, essential genes, an important concept of synthetic biology, for both M. mycoides and M. capricolum, as well as 14 other Mycoplasma with available genomes, are still unknown. We have developed a gene essentiality prediction algorithm that incorporates information of biased gene strand distribution, homologous search and codon adaptation index. The al...

  4. Gene set analyses for interpreting microarray experiments on prokaryotic organisms.

    Energy Technology Data Exchange (ETDEWEB)

    Tintle, Nathan; Best, Aaron; Dejongh, Matthew; VanBruggen, Dirk; Heffron, Fred; Porwollik, Steffen; Taylor, Ronald C.

    2008-11-05

    Background: Recent advances in microarray technology have brought with them the need for enhanced methods of biologically interpreting gene expression data. Recently, methods like Gene Set Enrichment Analysis (GSEA) and variants of Fisher’s exact test have been proposed which utilize a priori biological information. Typically, these methods are demonstrated with a priori biological information from the Gene Ontology. Results: Alternative gene set definitions are presented based on gene sets inferred from the SEED: open-source software environment for comparative genome annotation and analysis of microbial organisms. Many of these gene sets are then shown to provide consistent expression across a series of experiments involving Salmonella Typhimurium. Implementation of the gene sets in an analysis of microarray data is then presented for the Salmonella Typhimurium data. Conclusions: SEED inferred gene sets can be naturally defined based on subsystems in the SEED. The consistent expression values of these SEED inferred gene sets suggest their utility for statistical analyses of gene expression data based on a priori biological information

  5. Evolution of the mitochondrial genome in snakes: Gene rearrangements and phylogenetic relationships

    Directory of Open Access Journals (Sweden)

    Zhou Kaiya

    2008-11-01

    Full Text Available Abstract Background Snakes as a major reptile group display a variety of morphological characteristics pertaining to their diverse behaviours. Despite abundant analyses of morphological characters, molecular studies using mitochondrial and nuclear genes are limited. As a result, the phylogeny of snakes remains controversial. Previous studies on mitochondrial genomes of snakes have demonstrated duplication of the control region and translocation of trnL to be two notable features of the alethinophidian (all serpents except blindsnakes and threadsnakes mtDNAs. Our purpose is to further investigate the gene organizations, evolution of the snake mitochondrial genome, and phylogenetic relationships among several major snake families. Results The mitochondrial genomes were sequenced for four taxa representing four different families, and each had a different gene arrangement. Comparative analyses with other snake mitochondrial genomes allowed us to summarize six types of mitochondrial gene arrangement in snakes. Phylogenetic reconstruction with commonly used methods of phylogenetic inference (BI, ML, MP, NJ arrived at a similar topology, which was used to reconstruct the evolution of mitochondrial gene arrangements in snakes. Conclusion The phylogenetic relationships among the major families of snakes are in accordance with the mitochondrial genomes in terms of gene arrangements. The gene arrangement in Ramphotyphlops braminus mtDNA is inferred to be ancestral for snakes. After the divergence of the early Ramphotyphlops lineage, three types of rearrangements occurred. These changes involve translocations within the IQM tRNA gene cluster and the duplication of the CR. All phylogenetic methods support the placement of Enhydris plumbea outside of the (Colubridae + Elapidae cluster, providing mitochondrial genomic evidence for the familial rank of Homalopsidae.

  6. Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin.

    Science.gov (United States)

    Merhej, Vicky; Raoult, Didier

    2012-01-01

    Darwin's theory about the evolution of species has been the object of considerable dispute. In this review, we have described seven key principles in Darwin's book The Origin of Species and tried to present how genomics challenge each of these concepts and improve our knowledge about evolution. Darwin believed that species evolution consists on a positive directional selection ensuring the "survival of the fittest." The most developed state of the species is characterized by increasing complexity. Darwin proposed the theory of "descent with modification" according to which all species evolve from a single common ancestor through a gradual process of small modification of their vertical inheritance. Finally, the process of evolution can be depicted in the form of a tree. However, microbial genomics showed that evolution is better described as the "biological changes over time." The mode of change is not unidirectional and does not necessarily favors advantageous mutations to increase fitness it is rather subject to random selection as a result of catastrophic stochastic processes. Complexity is not necessarily the completion of development: several complex organisms have gone extinct and many microbes including bacteria with intracellular lifestyle have streamlined highly effective genomes. Genomes evolve through large events of gene deletions, duplications, insertions, and genomes rearrangements rather than a gradual adaptative process. Genomes are dynamic and chimeric entities with gene repertoires that result from vertical and horizontal acquisitions as well as de novo gene creation. The chimeric character of microbial genomes excludes the possibility of finding a single common ancestor for all the genes recorded currently. Genomes are collections of genes with different evolutionary histories that cannot be represented by a single tree of life (TOL). A forest, a network or a rhizome of life may be more accurate to represent evolutionary relationships among

  7. Rhizome of life, catastrophes, sequence exchanges, gene creations and giant viruses: How microbial genomics challenges Darwin

    Directory of Open Access Journals (Sweden)

    Vicky eMerhej

    2012-08-01

    Full Text Available Darwin’s theory about the evolution of species has been the object of considerable dispute. In this review, we have described seven key principles in Darwin’s book The Origin of Species and tried to present how genomics challenge each of these concepts and improve our knowledge about evolution. Darwin believed that species evolution consists on a positive directional selection ensuring the survival of the fittest. The most developed state of the species is characterized by increasing complexity. Darwin proposed the theory of descent with modification according to which all species evolve from a single common ancestor through a gradual process of small modification of their vertical inheritance. Finally, the process of evolution can be depicted in the form of a tree. However, microbial genomics showed that evolution is better described as the biological changes over time." The mode of change is not unidirectional and does not necessarily favors advantageous mutations to increase fitness it is rather subject to random selection as a result of catastrophic stochastic processes. Complexity is not necessarily the completion of development: several complex organisms have gone extinct and many microbes including bacteria with intracellular lifestyle have streamlined highly effective genomes. Genomes evolve through large events of gene deletions, duplications, insertions and genomes rearrangements rather than a gradual adaptative process. Genomes are dynamic and chimeric entities with gene repertoires that result from vertical and horizontal acquisitions as well as de novo gene creation. The chimeric character of microbial genomes excludes the possibility of finding a single common ancestor for all the genes recorded currently. Genomes are collections of genes with different evolutionary histories that cannot be represented by a single tree of life. A forest, a network or a rhizome of life may be more accurate to represent evolutionary relationships

  8. The Dynamic Organization of the Yeast Genome

    OpenAIRE

    Joyner, Ryan Preston

    2014-01-01

    Regardless of size, shape, or function, all cells must rapidly respond to a changing environment, especially in adverse conditions. Various environmental stresses including heat shock, osmotic stress, and nutrient starvation consequently induce dramatic changes in the molecular composition of cellular machinery. Importantly, the cell's adjustment to a new homeostasis is accomplished through a variety of mechanisms, but most predominantly through the regulation of gene expression which is no...

  9. HCMI Organization | Office of Cancer Genomics

    Science.gov (United States)

    Consortium HCMI was created and funded by the National Cancer Institute, Cancer Research UK, foundation Hubrecht Organoid Technology, and Wellcome Trust Sanger Institute. Together, these organizations develop policy and make programmatic decisions to contribute to the function of the HCMI. National Cancer Institute

  10. Bacterial Cellular Engineering by Genome Editing and Gene Silencing

    Directory of Open Access Journals (Sweden)

    Nobutaka Nakashima

    2014-02-01

    Full Text Available Genome editing is an important technology for bacterial cellular engineering, which is commonly conducted by homologous recombination-based procedures, including gene knockout (disruption, knock-in (insertion, and allelic exchange. In addition, some new recombination-independent approaches have emerged that utilize catalytic RNAs, artificial nucleases, nucleic acid analogs, and peptide nucleic acids. Apart from these methods, which directly modify the genomic structure, an alternative approach is to conditionally modify the gene expression profile at the posttranscriptional level without altering the genomes. This is performed by expressing antisense RNAs to knock down (silence target mRNAs in vivo. This review describes the features and recent advances on methods used in genomic engineering and silencing technologies that are advantageously used for bacterial cellular engineering.

  11. The genomic environment around the Aromatase gene: evolutionary insights

    Directory of Open Access Journals (Sweden)

    Reis-Henriques Maria A

    2005-08-01

    Full Text Available Abstract Background The cytochrome P450 aromatase (CYP19, catalyses the aromatisation of androgens to estrogens, a key mechanism in vertebrate reproductive physiology. A current evolutionary hypothesis suggests that CYP19 gene arose at the origin of vertebrates, given that it has not been found outside this clade. The human CYP19 gene is located in one of the proposed MHC-paralogon regions (HSA15q. At present it is unclear whether this genomic location is ancestral (which would suggest an invertebrate origin for CYP19 or derived (genomic location with no evolutionary meaning. The distinction between these possibilities should help to clarify the timing of the CYP19 emergence and which taxa should be investigated. Results Here we determine the "genomic environment" around CYP19 in three vertebrate species Homo sapiens, Tetraodon nigroviridis and Xenopus tropicalis. Paralogy studies and phylogenetic analysis of six gene families suggests that the CYP19 gene region was structured through "en bloc" genomic duplication (as part of the MHC-paralogon formation. Four gene families have specifically duplicated in the vertebrate lineage. Moreover, the mapping location of the different paralogues is consistent with a model of "en bloc" duplication. Furthermore, we also determine that this region has retained the same gene content since the divergence of Actinopterygii and Tetrapods. A single inversion in gene order has taken place, probably in the mammalian lineage. Finally, we describe the first invertebrate CYP19 sequence, from Branchiostoma floridae. Conclusion Contrary to previous suggestions, our data indicates an invertebrate origin for the aromatase gene, given the striking conservation pattern in both gene order and gene content, and the presence of aromatase in amphioxus. We propose that CYP19 duplicated in the vertebrate lineage to yield four paralogues, followed by the subsequent loss of all but one gene in vertebrate evolution. Finally, we

  12. Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779.

    Directory of Open Access Journals (Sweden)

    Astrid Vieler

    Full Text Available Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis

  13. Bacillus anthracis genome organization in light of whole transcriptome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey; Zhu, Wenhan; Passalacqua, Karla D.; Bergman, Nicholas; Borodovsky, Mark

    2010-03-22

    Emerging knowledge of whole prokaryotic transcriptomes could validate a number of theoretical concepts introduced in the early days of genomics. What are the rules connecting gene expression levels with sequence determinants such as quantitative scores of promoters and terminators? Are translation efficiency measures, e.g. codon adaptation index and RBS score related to gene expression? We used the whole transcriptome shotgun sequencing of a bacterial pathogen Bacillus anthracis to assess correlation of gene expression level with promoter, terminator and RBS scores, codon adaptation index, as well as with a new measure of gene translational efficiency, average translation speed. We compared computational predictions of operon topologies with the transcript borders inferred from RNA-Seq reads. Transcriptome mapping may also improve existing gene annotation. Upon assessment of accuracy of current annotation of protein-coding genes in the B. anthracis genome we have shown that the transcriptome data indicate existence of more than a hundred genes missing in the annotation though predicted by an ab initio gene finder. Interestingly, we observed that many pseudogenes possess not only a sequence with detectable coding potential but also promoters that maintain transcriptional activity.

  14. Leveraging Comparative Genomics to Identify and Functionally Characterize Genes Associated with Sperm Phenotypes in Python bivittatus (Burmese Python).

    Science.gov (United States)

    Irizarry, Kristopher J L; Rutllant, Josep

    2016-01-01

    Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.

  15. Composition and organization of active centromere sequences in complex genomes

    Directory of Open Access Journals (Sweden)

    Hayden Karen E

    2012-07-01

    Full Text Available Abstract Background Centromeres are sites of chromosomal spindle attachment during mitosis and meiosis. While the sequence basis for centromere identity remains a subject of considerable debate, one approach is to examine the genomic organization at these active sites that are correlated with epigenetic marks of centromere function. Results We have developed an approach to characterize both satellite and non-satellite centromeric sequences that are missing from current assemblies in complex genomes, using the dog genome as an example. Combining this genomic reference with an epigenetic dataset corresponding to sequences associated with the histone H3 variant centromere protein A (CENP-A, we identify active satellite sequence domains that appear to be both functionally and spatially distinct within the overall definition of satellite families. Conclusions These findings establish a genomic and epigenetic foundation for exploring the functional role of centromeric sequences in the previously sequenced dog genome and provide a model for similar studies within the context of less-characterized genomes.

  16. Annotated genes and nonannotated genomes: cross-species use of Gene Ontology in ecology and evolution research.

    Science.gov (United States)

    Primmer, C R; Papakostas, S; Leder, E H; Davis, M J; Ragan, M A

    2013-06-01

    Recent advances in molecular technologies have opened up unprecedented opportunities for molecular ecologists to better understand the molecular basis of traits of ecological and evolutionary importance in almost any organism. Nevertheless, reliable and systematic inference of functionally relevant information from these masses of data remains challenging. The aim of this review is to highlight how the Gene Ontology (GO) database can be of use in resolving this challenge. The GO provides a largely species-neutral source of information on the molecular function, biological role and cellular location of tens of thousands of gene products. As it is designed to be species-neutral, the GO is well suited for cross-species use, meaning that, functional annotation derived from model organisms can be transferred to inferred orthologues in newly sequenced species. In other words, the GO can provide gene annotation information for species with nonannotated genomes. In this review, we describe the GO database, how functional information is linked with genes/gene products in model organisms, and how molecular ecologists can utilize this information to annotate their own data. Then, we outline various applications of GO for enhancing the understanding of molecular basis of traits in ecologically relevant species. We also highlight potential pitfalls, provide step-by-step recommendations for conducting a sound study in nonmodel organisms, suggest avenues for future research and outline a strategy for maximizing the benefits of a more ecological and evolutionary genomics-oriented ontology by ensuring its compatibility with the GO. © 2013 John Wiley & Sons Ltd.

  17. Gene prediction in the fathead minnow [Pimephales promelas] genome

    Science.gov (United States)

    The fathead minnow is a well-established model organism which has been widely used for regulatory ecotoxicity testing and research for over half century. While much information has been gathered on the organism over the years, the fathead minnow genome, a critical source of infor...

  18. Construction of gene targeting vectors from lambda KOS genomic libraries.

    Science.gov (United States)

    Wattler, S; Kelly, M; Nehls, M

    1999-06-01

    We describe a highly redundant murine genomic library in a new lambda phage, lambda knockout shuttle (lambda KOS) that facilitates the very rapid construction of replacement-type gene targeting vectors. The library consists of 94 individually amplified subpools, each containing an average of 40,000 independent genomic clones. The subpools are arrayed into a 96-well format that allows a PCR-based efficient recovery of independent genomic clones. The lambda KOS vector backbone permits the CRE-mediated conversion into high-copy number pKOS plasmids, wherein the genomic inserts are automatically flanked by negative-selection cassettes. The lambda KOS vector system exploits the yeast homologous recombination machinery to simplify the construction of replacement-type gene targeting vectors independent of restriction sites within the genomic insert. We outline procedures that allow the generation of simple and more sophisticated conditional gene targeting vectors within 3-4 weeks, beginning with the screening of the lambda KOS genomic library.

  19. Gene duplication in the genome of parasitic Giardia lamblia

    Directory of Open Access Journals (Sweden)

    Flores Roberto

    2010-02-01

    Full Text Available Abstract Background Giardia are a group of widespread intestinal protozoan parasites in a number of vertebrates. Much evidence from G. lamblia indicated they might be the most primitive extant eukaryotes. When and how such a group of the earliest branching unicellular eukaryotes developed the ability to successfully parasitize the latest branching higher eukaryotes (vertebrates is an intriguing question. Gene duplication has long been thought to be the most common mechanism in the production of primary resources for the origin of evolutionary novelties. In order to parse the evolutionary trajectory of Giardia parasitic lifestyle, here we carried out a genome-wide analysis about gene duplication patterns in G. lamblia. Results Although genomic comparison showed that in G. lamblia the contents of many fundamental biologic pathways are simplified and the whole genome is very compact, in our study 40% of its genes were identified as duplicated genes. Evolutionary distance analyses of these duplicated genes indicated two rounds of large scale duplication events had occurred in G. lamblia genome. Functional annotation of them further showed that the majority of recent duplicated genes are VSPs (Variant-specific Surface Proteins, which are essential for the successful parasitic life of Giardia in hosts. Based on evolutionary comparison with their hosts, it was found that the rapid expansion of VSPs in G. lamblia is consistent with the evolutionary radiation of placental mammals. Conclusions Based on the genome-wide analysis of duplicated genes in G. lamblia, we found that gene duplication was essential for the origin and evolution of Giardia parasitic lifestyle. The recent expansion of VSPs uniquely occurring in G. lamblia is consistent with the increment of its hosts. Therefore we proposed a hypothesis that the increment of Giradia hosts might be the driving force for the rapid expansion of VSPs.

  20. Comparative genome sequencing of drosophila pseudoobscura: Chromosomal, gene and cis-element evolution

    Energy Technology Data Exchange (ETDEWEB)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.; Hradecky, Pavel; Letovsky, Stan; Nielsen, Rasmus; Thornton, Kevin; Todd, Melissa J.; Chen, Rui; Meisel, Richard P.; Couronne, Olivier; Hua, Sujun; Smith, Mark A.; Bussemaker, Harmen J.; van Batenburg, Marinus F.; Howells, Sally L.; Scherer, Steven E.; Sodergren, Erica; Matthews, Beverly B.; Crosby, Madeline A.; Schroeder, Andrew J.; Ortiz-Barrientos, Daniel; Rives, Catherine M.; Metzker, Michael L.; Muzny, Donna M.; Scott, Graham; Steffen, David; Wheeler, David A.; Worley, Kim C.; Havlak, Paul; Durbin, K. James; Egan, Amy; Gill, Rachel; Hume, Jennifer; Morgan, Margaret B.; Miner, George; Hamilton, Cerissa; Huang, Yanmei; Waldron, Lenee; Verduzco, Daniel; Blankenburg, Kerstin P.; Dubchak, Inna; Noor, Mohamed A.F.; Anderson, Wyatt; White, Kevin P.; Clark, Andrew G.; Schaeffer, Stephen W.; Gelbart, William; Weinstock, George M.; Gibbs, Richard A.

    2004-04-01

    The genome sequence of a second fruit fly, D. pseudoobscura, presents an opportunity for comparative analysis of a primary model organism D. melanogaster. The vast majority of Drosophila genes have remained on the same arm, but within each arm gene order has been extensively reshuffled leading to the identification of approximately 1300 syntenic blocks. A repetitive sequence is found in the D. pseudoobscura genome at many junctions between adjacent syntenic blocks. Analysis of this novel repetitive element family suggests that recombination between offset elements may have given rise to many paracentric inversions, thereby contributing to the shuffling of gene order in the D. pseudoobscura lineage. Based on sequence similarity and synteny, 10,516 putative orthologs have been identified as a core gene set conserved over 35 My since divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome wide average consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than control sequences between the species but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a picture of repeat mediated chromosomal rearrangement, and high co-adaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence between these species of Drosophila.

  1. Plant DNA barcoding: from gene to genome.

    Science.gov (United States)

    Li, Xiwen; Yang, Yang; Henry, Robert J; Rossetto, Maurizio; Wang, Yitao; Chen, Shilin

    2015-02-01

    DNA barcoding is currently a widely used and effective tool that enables rapid and accurate identification of plant species; however, none of the available loci work across all species. Because single-locus DNA barcodes lack adequate variations in closely related taxa, recent barcoding studies have placed high emphasis on the use of whole-chloroplast genome sequences which are now more readily available as a consequence of improving sequencing technologies. While chloroplast genome sequencing can already deliver a reliable barcode for accurate plant identification it is not yet resource-effective and does not yet offer the speed of analysis provided by single-locus barcodes to unspecialized laboratory facilities. Here, we review the development of candidate barcodes and discuss the feasibility of using the chloroplast genome as a super-barcode. We advocate a new approach for DNA barcoding that, for selected groups of taxa, combines the best use of single-locus barcodes and super-barcodes for efficient plant identification. Specific barcodes might enhance our ability to distinguish closely related plants at the species and population levels.

  2. Evolutionary genomics of LysM genes in land plants

    Directory of Open Access Journals (Sweden)

    Stacey Gary

    2009-08-01

    Full Text Available Abstract Background The ubiquitous LysM motif recognizes peptidoglycan, chitooligosaccharides (chitin and, presumably, other structurally-related oligosaccharides. LysM-containing proteins were first shown to be involved in bacterial cell wall degradation and, more recently, were implicated in perceiving chitin (one of the established pathogen-associated molecular patterns and lipo-chitin (nodulation factors in flowering plants. However, the majority of LysM genes in plants remain functionally uncharacterized and the evolutionary history of complex LysM genes remains elusive. Results We show that LysM-containing proteins display a wide range of complex domain architectures. However, only a simple core architecture is conserved across kingdoms. Each individual kingdom appears to have evolved a distinct array of domain architectures. We show that early plant lineages acquired four characteristic architectures and progressively lost several primitive architectures. We report plant LysM phylogenies and associated gene, protein and genomic features, and infer the relative timing of duplications of LYK genes. Conclusion We report a domain architecture catalogue of LysM proteins across all kingdoms. The unique pattern of LysM protein domain architectures indicates the presence of distinctive evolutionary paths in individual kingdoms. We describe a comparative and evolutionary genomics study of LysM genes in plant kingdom. One of the two groups of tandemly arrayed plant LYK genes likely resulted from an ancient genome duplication followed by local genomic rearrangement, while the origin of the other groups of tandemly arrayed LYK genes remains obscure. Given the fact that no animal LysM motif-containing genes have been functionally characterized, this study provides clues to functional characterization of plant LysM genes and is also informative with regard to evolutionary and functional studies of animal LysM genes.

  3. Evolutionary genomics of LysM genes in land plants.

    Science.gov (United States)

    Zhang, Xue-Cheng; Cannon, Steven B; Stacey, Gary

    2009-08-03

    The ubiquitous LysM motif recognizes peptidoglycan, chitooligosaccharides (chitin) and, presumably, other structurally-related oligosaccharides. LysM-containing proteins were first shown to be involved in bacterial cell wall degradation and, more recently, were implicated in perceiving chitin (one of the established pathogen-associated molecular patterns) and lipo-chitin (nodulation factors) in flowering plants. However, the majority of LysM genes in plants remain functionally uncharacterized and the evolutionary history of complex LysM genes remains elusive. We show that LysM-containing proteins display a wide range of complex domain architectures. However, only a simple core architecture is conserved across kingdoms. Each individual kingdom appears to have evolved a distinct array of domain architectures. We show that early plant lineages acquired four characteristic architectures and progressively lost several primitive architectures. We report plant LysM phylogenies and associated gene, protein and genomic features, and infer the relative timing of duplications of LYK genes. We report a domain architecture catalogue of LysM proteins across all kingdoms. The unique pattern of LysM protein domain architectures indicates the presence of distinctive evolutionary paths in individual kingdoms. We describe a comparative and evolutionary genomics study of LysM genes in plant kingdom. One of the two groups of tandemly arrayed plant LYK genes likely resulted from an ancient genome duplication followed by local genomic rearrangement, while the origin of the other groups of tandemly arrayed LYK genes remains obscure. Given the fact that no animal LysM motif-containing genes have been functionally characterized, this study provides clues to functional characterization of plant LysM genes and is also informative with regard to evolutionary and functional studies of animal LysM genes.

  4. Identification of neural outgrowth genes using genome-wide RNAi.

    Directory of Open Access Journals (Sweden)

    Katharine J Sepp

    2008-07-01

    Full Text Available While genetic screens have identified many genes essential for neurite outgrowth, they have been limited in their ability to identify neural genes that also have earlier critical roles in the gastrula, or neural genes for which maternally contributed RNA compensates for gene mutations in the zygote. To address this, we developed methods to screen the Drosophila genome using RNA-interference (RNAi on primary neural cells and present the results of the first full-genome RNAi screen in neurons. We used live-cell imaging and quantitative image analysis to characterize the morphological phenotypes of fluorescently labelled primary neurons and glia in response to RNAi-mediated gene knockdown. From the full genome screen, we focused our analysis on 104 evolutionarily conserved genes that when downregulated by RNAi, have morphological defects such as reduced axon extension, excessive branching, loss of fasciculation, and blebbing. To assist in the phenotypic analysis of the large data sets, we generated image analysis algorithms that could assess the statistical significance of the mutant phenotypes. The algorithms were essential for the analysis of the thousands of images generated by the screening process and will become a valuable tool for future genome-wide screens in primary neurons. Our analysis revealed unexpected, essential roles in neurite outgrowth for genes representing a wide range of functional categories including signalling molecules, enzymes, channels, receptors, and cytoskeletal proteins. We also found that genes known to be involved in protein and vesicle trafficking showed similar RNAi phenotypes. We confirmed phenotypes of the protein trafficking genes Sec61alpha and Ran GTPase using Drosophila embryo and mouse embryonic cerebral cortical neurons, respectively. Collectively, our results showed that RNAi phenotypes in primary neural culture can parallel in vivo phenotypes, and the screening technique can be used to identify many new

  5. Genomic architecture of MHC-linked odorant receptor gene repertoires among 16 vertebrate species.

    Science.gov (United States)

    Santos, Pablo Sandro Carvalho; Kellermann, Thomas; Uchanska-Ziegler, Barbara; Ziegler, Andreas

    2010-09-01

    The recent sequencing and assembly of the genomes of different organisms have shown that almost all vertebrates studied in detail so far have one or more clusters of genes encoding odorant receptors (OR) in close physical linkage to the major histocompatibility complex (MHC). It has been postulated that MHC-linked OR genes could be involved in MHC-influenced mate choice, comprising both pre- as well as post-copulatory mechanisms. We have therefore carried out a systematic comparison of protein sequences of these receptors from the genomes of man, chimpanzee, gorilla, orangutan, rhesus macaque, mouse, rat, dog, cat, cow, pig, horse, elephant, opossum, frog and zebra fish (amounting to a total of 559 protein sequences) in order to identify OR families exhibiting evolutionarily conserved MHC linkage. In addition, we compared the genomic structure of this region within these 16 species, accounting for presence or absence of OR gene families, gene order, transcriptional orientation and linkage to the MHC or framework genes. The results are presented in the form of gene maps and phylogenetic analyses that reveal largely concordant repertoires of gene families, at least among tetrapods, although each of the eight taxa studied (primates, rodents, ungulates, carnivores, proboscids, marsupials, amphibians and teleosts) exhibits a typical architecture of MHC (or MHC framework loci)-linked OR genes. Furthermore, the comparison of the genomic organization of this region has implications for phylogenetic relationships between closely related taxa, especially in disputed cases such as the evolutionary history of even- and odd-toed ungulates and carnivores. Finally, the largely conserved linkage between distinct OR genes and the MHC supports the concept that particular alleles within a given haplotype function in a concerted fashion during self-/non-self-discrimination processes in reproduction.

  6. Cephalopod genomics: A plan of strategies and organization

    Science.gov (United States)

    Albertin, Caroline B.; Bonnaud, Laure; Brown, C. Titus; Crookes-Goodson, Wendy J.; da Fonseca, Rute R.; Di Cristo, Carlo; Dilkes, Brian P.; Edsinger-Gonzales, Eric; Freeman, Robert M.; Hanlon, Roger T.; Koenig, Kristen M.; Lindgren, Annie R.; Martindale, Mark Q.; Minx, Patrick; Moroz, Leonid L.; Nödl, Marie-Therese; Nyholm, Spencer V.; Ogura, Atsushi; Pungor, Judit R.; Rosenthal, Joshua J. C.; Schwarz, Erich M.; Shigeno, Shuichi; Strugnell, Jan M.; Wollesen, Tim; Zhang, Guojie; Ragsdale, Clifton W.

    2012-01-01

    The Cephalopod Sequencing Consortium (CephSeq Consortium) was established at a NESCent Catalysis Group Meeting, “Paths to Cephalopod Genomics- Strategies, Choices, Organization,” held in Durham, North Carolina, USA on May 24-27, 2012. Twenty-eight participants representing nine countries (Austria, Australia, China, Denmark, France, Italy, Japan, Spain and the USA) met to address the pressing need for genome sequencing of cephalopod mollusks. This group, drawn from cephalopod biologists, neuroscientists, developmental and evolutionary biologists, materials scientists, bioinformaticians and researchers active in sequencing, assembling and annotating genomes, agreed on a set of cephalopod species of particular importance for initial sequencing and developed strategies and an organization (CephSeq Consortium) to promote this sequencing. The conclusions and recommendations of this meeting are described in this white paper. PMID:23451296

  7. Biased distribution of DNA uptake sequences towards genome maintenance genes

    DEFF Research Database (Denmark)

    Davidsen, T.; Rodland, E.A.; Lagesen, K.

    2004-01-01

    coding regions are the DNA uptake sequences (DUS) required for natural genetic transformation. More importantly, we found a significantly higher density of DUS within genes involved in DNA repair, recombination, restriction-modification and replication than in any other annotated gene group......Repeated sequence signatures are characteristic features of all genomic DNA. We have made a rigorous search for repeat genomic sequences in the human pathogens Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae and found that by far the most frequent 9-10mers residing within...

  8. The draft genome of a termite illuminates alternative social organization

    Science.gov (United States)

    Termites have substantial economic and ecological impact worldwide. They are also the oldest organisms living in complex societies, having evolved a caste system independent of that of eusocial Hymenoptera (ants, bees and wasps). Here we provide the first genome sequence for a termite, Zootermopsis ...

  9. Resequencing of the common marmoset genome improves genome assemblies and gene-coding sequence analysis.

    Science.gov (United States)

    Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi

    2015-11-20

    The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.

  10. Genome-wide gene amplification during differentiation of neural progenitor cells in vitro.

    Science.gov (United States)

    Fischer, Ulrike; Keller, Andreas; Voss, Meike; Backes, Christina; Welter, Cornelius; Meese, Eckart

    2012-01-01

    DNA sequence amplification is a phenomenon that occurs predictably at defined stages during normal development in some organisms. Developmental gene amplification was first described in amphibians during gametogenesis and has not yet been described in humans. To date gene amplification in humans is a hallmark of many tumors. We used array-CGH (comparative genomic hybridization) and FISH (fluorescence in situ hybridization) to discover gene amplifications during in vitro differentiation of human neural progenitor cells. Here we report a complex gene amplification pattern two and five days after induction of differentiation of human neural progenitor cells. We identified several amplified genes in neural progenitor cells that are known to be amplified in malignant tumors. There is also a striking overlap of amplified chromosomal regions between differentiating neural progenitor cells and malignant tumor cells derived from astrocytes. Gene amplifications in normal human cells as physiological process has not been reported yet and may bear resemblance to developmental gene amplifications in amphibians and insects.

  11. Mining Bacterial Genomes for Secondary Metabolite Gene Clusters.

    Science.gov (United States)

    Adamek, Martina; Spohn, Marius; Stegmann, Evi; Ziemert, Nadine

    2017-01-01

    With the emergence of bacterial resistance against frequently used antibiotics, novel antibacterial compounds are urgently needed. Traditional bioactivity-guided drug discovery strategies involve laborious screening efforts and display high rediscovery rates. With the progress in next generation sequencing methods and the knowledge that the majority of antibiotics in clinical use are produced as secondary metabolites by bacteria, mining bacterial genomes for secondary metabolites with antimicrobial activity is a promising approach, which can guide a more time and cost-effective identification of novel compounds. However, what sounds easy to accomplish, comes with several challenges. To date, several tools for the prediction of secondary metabolite gene clusters are available, some of which are based on the detection of signature genes, while others are searching for specific patterns in gene content or regulation.Apart from the mere identification of gene clusters, several other factors such as determining cluster boundaries and assessing the novelty of the detected cluster are important. For this purpose, comparison of the predicted secondary metabolite genes with different cluster and compound databases is necessary. Furthermore, it is advisable to classify detected clusters into gene cluster families. So far, there is no standardized procedure for genome mining; however, different approaches to overcome all of these challenges exist and are addressed in this chapter. We give practical guidance on the workflow for secondary metabolite gene cluster identification, which includes the determination of gene cluster boundaries, addresses problems occurring with the use of draft genomes, and gives an outlook on the different methods for gene cluster classification. Based on comprehensible examples a protocol is set, which should enable the readers to mine their own genome data for interesting secondary metabolites.

  12. [Evolution of gene orders in genomes of cyanobacteria].

    Science.gov (United States)

    Markov, A V; Zakharov, I A

    2009-08-01

    Genomes of 23 strains of cyanobacteria were comparatively analyzed using quantitative methods of estimation of gene order similarity. It has been found that reconstructions of phylogenesis of cyanobacteria based on the comparison of the orders of genes in chromosomes and nucleotide sequences appear to be similar. This confirms the applicability of quantitative measures of similarity of gene orders for phylogenetic reconstructions. In the evolution of marine unicellular plankton cyanobacteria, genome rearrangements are fixed with a low rate (about 3% of gene order changes per 1% of 16S rRNA changes), whereas in other groups of cyanobacteria the gene order can change several times more rapidly. The gene orders in genomes of cyanobacteria and chloroplasts preserve a considerable degree of similarity. The closest relatives of chloroplasts among the analyzed cyanobacteria are likely to be strains from hot springs belonging to the genus Synechococcus. Comparative analysis of gene orders and nucleotide sequences strongly suggests that Synechococcus strains from diferent environments (sea, fresh waters, hot springs) are not related and belong to evolutionally distant lines.

  13. Gene mutations of acute myeloid leukemia in the genome era.

    Science.gov (United States)

    Naoe, Tomoki; Kiyoi, Hitoshi

    2013-02-01

    Ten years ago, gene mutations found in acute myeloid leukemia (AML) were conceptually grouped into class I mutation, which causes constitutive activation of intracellular signals that contribute to the growth and survival, and class II mutation, which blocks differentiation and/or enhance self-renewal by altered transcription factors. A cooperative model between two classes of mutations has been suggested by murine experiments and partly supported by epidemiological findings. In the last 5 years, comprehensive genomic analysis proceeded to find new gene mutations, which are found in the epigenome-associated enzymes and the molecules never noticed so far. These new mutations apparently increase the complexity and heterogeneity of AML. Although a long list of gene mutations might have been compiled, the entire picture of molecular pathogenesis in AML remains to be elucidated because gene rearrangement, gene copy number, DNA methylation and expression profiles are not fully studied in conjunction with gene mutations. Comprehensive genome research will deepen the understanding of AML to promote the development of new classification and treatment. This review focuses on gene mutations that were recently discovered by genome sequencing.

  14. GeneTack database: genes with frameshifts in prokaryotic genomes and eukaryotic mRNA sequences.

    Science.gov (United States)

    Antonov, Ivan; Baranov, Pavel; Borodovsky, Mark

    2013-01-01

    Database annotations of prokaryotic genomes and eukaryotic mRNA sequences pay relatively low attention to frame transitions that disrupt protein-coding genes. Frame transitions (frameshifts) could be caused by sequencing errors or indel mutations inside protein-coding regions. Other observed frameshifts are related to recoding events (that evolved to control expression of some genes). Earlier, we have developed an algorithm and software program GeneTack for ab initio frameshift finding in intronless genes. Here, we describe a database (freely available at http://topaz.gatech.edu/GeneTack/db.html) containing genes with frameshifts (fs-genes) predicted by GeneTack. The database includes 206 991 fs-genes from 1106 complete prokaryotic genomes and 45 295 frameshifts predicted in mRNA sequences from 100 eukaryotic genomes. The whole set of fs-genes was grouped into clusters based on sequence similarity between fs-proteins (conceptually translated fs-genes), conservation of the frameshift position and frameshift direction (-1, +1). The fs-genes can be retrieved by similarity search to a given query sequence via a web interface, by fs-gene cluster browsing, etc. Clusters of fs-genes are characterized with respect to their likely origin, such as pseudogenization, phase variation, etc. The largest clusters contain fs-genes with programed frameshifts (related to recoding events).

  15. An atlas of bovine gene expression reveals novel distinctive tissue characteristics and evidence for improving genome annotation

    Science.gov (United States)

    Background A comprehensive transcriptome survey, or gene atlas, provides information essential for a complete understanding of the genomic biology of an organism. We present an atlas of RNA abundance for 92 adult, juvenile and fetal cattle tissues and three cattle cell lines. Results The Bovine Gene...

  16. Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host.

    Directory of Open Access Journals (Sweden)

    Naruo Nikoh

    2010-02-01

    Full Text Available Genome reduction is typical of obligate symbionts. In cellular organelles, this reduction partly reflects transfer of ancestral bacterial genes to the host genome, but little is known about gene transfer in other obligate symbioses. Aphids harbor anciently acquired obligate mutualists, Buchnera aphidicola (Gammaproteobacteria, which have highly reduced genomes (420-650 kb, raising the possibility of gene transfer from ancestral Buchnera to the aphid genome. In addition, aphids often harbor other bacteria that also are potential sources of transferred genes. Previous limited sampling of genes expressed in bacteriocytes, the specialized cells that harbor Buchnera, revealed that aphids acquired at least two genes from bacteria. The newly sequenced genome of the pea aphid, Acyrthosiphon pisum, presents the first opportunity for a complete inventory of genes transferred from bacteria to the host genome in the context of an ancient obligate symbiosis. Computational screening of the entire A. pisum genome, followed by phylogenetic and experimental analyses, provided strong support for the transfer of 12 genes or gene fragments from bacteria to the aphid genome: three LD-carboxypeptidases (LdcA1, LdcA2,psiLdcA, five rare lipoprotein As (RlpA1-5, N-acetylmuramoyl-L-alanine amidase (AmiD, 1,4-beta-N-acetylmuramidase (bLys, DNA polymerase III alpha chain (psiDnaE, and ATP synthase delta chain (psiAtpH. Buchnera was the apparent source of two highly truncated pseudogenes (psiDnaE and psiAtpH. Most other transferred genes were closely related to genes from relatives of Wolbachia (Alphaproteobacteria. At least eight of the transferred genes (LdcA1, AmiD, RlpA1-5, bLys appear to be functional, and expression of seven (LdcA1, AmiD, RlpA1-5 are highly upregulated in bacteriocytes. The LdcAs and RlpAs appear to have been duplicated after transfer. Our results excluded the hypothesis that genome reduction in Buchnera has been accompanied by gene transfer to the

  17. Gene discovery in the Acanthamoeba castellanii genome

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain J.; Watkins, Russell F.; Samuelson, John; Spencer,David F.; Majoros, William H.; Gray, Michael W.; Loftus, Brendan J.

    2005-08-01

    Acanthamoeba castellanii is a free-living amoeba found in soil, freshwater, and marine environments and an important predator of bacteria. Acanthamoeba castellanii is also an opportunistic pathogen of clinical interest, responsible for several distinct diseases in humans. In order to provide a genomic platform for the study of this ubiquitous and important protist, we generated a sequence survey of approximately 0.5 x coverage of the genome. The data predict that A. castellanii exhibits a greater biosynthetic capacity than the free-living Dictyostelium discoideum and the parasite Entamoeba histolytica, providing an explanation for the ability of A. castellanii to inhabit adversity of environments. Alginate lyase may provide access to bacteria within biofilms by breaking down the biofilm matrix, and polyhydroxybutyrate depolymerase may facilitate utilization of the bacterial storage compound polyhydroxybutyrate as a food source. Enzymes for the synthesis and breakdown of cellulose were identified, and they likely participate in encystation and excystation as in D. discoideum. Trehalose-6-phosphate synthase is present, suggesting that trehalose plays a role in stress adaptation. Detection and response to a number of stress conditions is likely accomplished with a large set of signal transduction histidine kinases and a set of putative receptorserine/threonine kinases similar to those found in E. histolytica. Serine, cysteine and metalloproteases were identified, some of which are likely involved in pathogenicity.

  18. Characterization and distribution of repetitive elements in association with genes in the human genome.

    Science.gov (United States)

    Liang, Kai-Chiang; Tseng, Joseph T; Tsai, Shaw-Jenq; Sun, H Sunny

    2015-08-01

    Repetitive elements constitute more than 50% of the human genome. Recent studies implied that the complexity of living organisms is not just a direct outcome of a number of coding sequences; the repetitive elements, which do not encode proteins, may also play a significant role. Though scattered studies showed that repetitive elements in the regulatory regions of a gene control gene expression, no systematic survey has been done to report the characterization and distribution of various types of these repetitive elements in the human genome. Sequences from 5' and 3' untranslated regions and upstream and downstream of a gene were downloaded from the Ensembl database. The repetitive elements in the neighboring of each gene were identified and classified using cross-matching implemented in the RepeatMasker. The annotation and distribution of distinct classes of repetitive elements associated with individual gene were collected to characterize genes in association with different types of repetitive elements using systems biology program. We identified a total of 1,068,400 repetitive elements which belong to 37-class families and 1235 subclasses that are associated with 33,761 genes and 57,365 transcripts. In addition, we found that the tandem repeats preferentially locate proximal to the transcription start site (TSS) of genes and the major function of these genes are involved in developmental processes. On the other hand, interspersed repetitive elements showed a tendency to be accumulated at distal region from the TSS and the function of interspersed repeat-containing genes took part in the catabolic/metabolic processes. Results from the distribution analysis were collected and used to construct a gene-based repetitive element database (GBRED; http://www.binfo.ncku.edu.tw/GBRED/index.html). A user-friendly web interface was designed to provide the information of repetitive elements associated with any particular gene(s). This is the first study focusing on the gene

  19. Gene therapy during cardiac surgery: role of surgical technique to minimize collateral organ gene expression.

    Science.gov (United States)

    Katz, Michael G; Swain, JaBaris D; Fargnoli, Anthony S; Bridges, Charles R

    2010-12-01

    Effective gene therapy for heart failure has not yet been achieved clinically. The aim of this study is to quantitatively assess the cardiac isolation efficiency of the molecular cardiac surgery with recirculating delivery (MCARD™) and to evaluate its efficacy as a means to limit collateral organ gene expression. 10(14) genome copies (GC) of recombinant adeno-associated viral vector 6 encoding green fluorescent protein under control of the cytomegalovirus promoter was delivered to the nine arrested sheep hearts. Blood samples were assessed using real-time quantitative polymerase chain reaction (RT QPCR). Collateral organ gene expression was assessed at four-weeks using immunohistochemical staining. The blood vector GC concentration in the cardiac circuit during complete isolation trended from 9.59±0.73 to 9.05±0.65 (log GC/cm(3)), and no GC were detectable in the systemic circuit (P800-fold (P99% isolation efficiency. Conversely, incomplete isolation resulted in equalization of vector GC concentration in the circuits, leading to robust collateral organ gene expression. MCARD™ is an efficient, clinically translatable myocardial delivery platform for cardiac specific gene therapy. The cardiac surgical techniques utilized are critically important to limit collateral organ gene expression.

  20. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    IP-seq and small RNA-seq, we delineated the landscape of the promoters with bidirectional transcriptions that yield steady-state RNA in only one directions (Paper III). A subsequent motif analysis enabled us to uncover specific DNA signals – early polyA sites – that make RNA on the reverse strand sensitive...... they regulated or if the sites had global elevated usage rates by multiple TFs. Using RNA-seq, 5’end-seq in combination with depletion of 5’exonuclease as well as nonsensemediated decay (NMD) factors, we systematically analyzed NMD substrates as well as their degradation intermediates in human cells (Paper V......). Gene enrichment analysis on the detected NMD substrates revealed an unappreciated NMD-based regulatory mechanism of the genes hosting multiple intronic snoRNAs, which can facilitate differential expression of individual snoRNAs from a single host gene locus. Finally, supported by RNA-seq and small RNA-seq...

  1. Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales.

    Science.gov (United States)

    Li, Xiangyang; Zhang, Linshuang; Wang, Gejiao

    2014-01-01

    So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes"). However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a) compared to a low frequency of distribution for aio (arsenite oxidase) (12 strains), arr (arsenate respiratory reductase) (1 strain) and arsM (arsenite methytransferase)-like genes (4 strains), the ars (arsenic resistance system)-like genes were identified in 174 strains including 1,051 genes; b) 2/3 ars-like genes were clustered as ars operon and displayed a high diversity of gene organizations (68 forms) which may suggest the rapid movement and evolution for ars-like genes in bacterial genomes; c) the arsenite efflux system was dominant with ACR3 form rather than ArsB in Burkholderiales; d) only a few numbers of arsM and arrAB are found indicating neither As III biomethylation nor AsV respiration is the primary mechanism in Burkholderiales members; (e) the aio-like gene is mostly flanked with ars-like genes and phosphate transport system, implying the close functional relatedness between arsenic and phosphorus metabolisms. On average, the number of arsenic-related genes per genome of strains isolated from arsenic-rich environments is more than four times higher than the strains from other environments. Compared with human, plant and animal pathogens, the environmental strains possess a larger average number of arsenic-related genes, which indicates that habitat is likely a key driver for bacterial arsenic resistance.

  2. Genomic evidence reveals the extreme diversity and wide distribution of the arsenic-related genes in Burkholderiales.

    Directory of Open Access Journals (Sweden)

    Xiangyang Li

    Full Text Available So far, numerous genes have been found to associate with various strategies to resist and transform the toxic metalloid arsenic (here, we denote these genes as "arsenic-related genes". However, our knowledge of the distribution, redundancies and organization of these genes in bacteria is still limited. In this study, we analyzed the 188 Burkholderiales genomes and found that 95% genomes harbored arsenic-related genes, with an average of 6.6 genes per genome. The results indicated: a compared to a low frequency of distribution for aio (arsenite oxidase (12 strains, arr (arsenate respiratory reductase (1 strain and arsM (arsenite methytransferase-like genes (4 strains, the ars (arsenic resistance system-like genes were identified in 174 strains including 1,051 genes; b 2/3 ars-like genes were clustered as ars operon and displayed a high diversity of gene organizations (68 forms which may suggest the rapid movement and evolution for ars-like genes in bacterial genomes; c the arsenite efflux system was dominant with ACR3 form rather than ArsB in Burkholderiales; d only a few numbers of arsM and arrAB are found indicating neither As III biomethylation nor AsV respiration is the primary mechanism in Burkholderiales members; (e the aio-like gene is mostly flanked with ars-like genes and phosphate transport system, implying the close functional relatedness between arsenic and phosphorus metabolisms. On average, the number of arsenic-related genes per genome of strains isolated from arsenic-rich environments is more than four times higher than the strains from other environments. Compared with human, plant and animal pathogens, the environmental strains possess a larger average number of arsenic-related genes, which indicates that habitat is likely a key driver for bacterial arsenic resistance.

  3. Evolving aphids: one genome-one organism insects or holobionts?

    Directory of Open Access Journals (Sweden)

    M Mandrioli

    2013-01-01

    Full Text Available Aphids have obligate mutualistic relationships with microorganisms that provide them with essential substances lacking in their diet, together with symbionts conferring them conditional adaptive advantages related, for instance, to the thermal tolerance and to the resistance to parasitoid wasps. The presence/absence of a secondary symbiont may have a relevant phenotypic effect so that aphid microbial symbionts constitute a sort of second genome with its own genetic inheritance. On the whole, genes important for aphid survival and reproduction are not uniquely present in the aphid nuclear and mitochondrial genomes, but also in the chromosomes of each symbiont. As a consequence, aphids should be viewed as holobionts with an extended genome (the hologenome including the host and its symbiotic microbiome. In this connection, the true unit of selection in evolution must be considered the aphid holobiont, in place of the single host as individual separated from its symbionts.

  4. Genome-wide analysis of homeobox genes from Mesobuthus martensii reveals Hox gene duplication in scorpions.

    Science.gov (United States)

    Di, Zhiyong; Yu, Yao; Wu, Yingliang; Hao, Pei; He, Yawen; Zhao, Huabin; Li, Yixue; Zhao, Guoping; Li, Xuan; Li, Wenxin; Cao, Zhijian

    2015-06-01

    Homeobox genes belong to a large gene group, which encodes the famous DNA-binding homeodomain that plays a key role in development and cellular differentiation during embryogenesis in animals. Here, one hundred forty-nine homeobox genes were identified from the Asian scorpion, Mesobuthus martensii (Chelicerata: Arachnida: Scorpiones: Buthidae) based on our newly assembled genome sequence with approximately 248 × coverage. The identified homeobox genes were categorized into eight classes including 82 families: 67 ANTP class genes, 33 PRD genes, 11 LIM genes, five POU genes, six SINE genes, 14 TALE genes, five CUT genes, two ZF genes and six unclassified genes. Transcriptome data confirmed that more than half of the genes were expressed in adults. The homeobox gene diversity of the eight classes is similar to the previously analyzed Mandibulata arthropods. Interestingly, it is hypothesized that the scorpion M. martensii may have two Hox clusters. The first complete genome-wide analysis of homeobox genes in Chelicerata not only reveals the repertoire of scorpion, arachnid and chelicerate homeobox genes, but also shows some insights into the evolution of arthropod homeobox genes.

  5. No evidence for extensive horizontal gene transfer in the genome of the tardigrade Hypsibius dujardini.

    Science.gov (United States)

    Koutsovoulos, Georgios; Kumar, Sujai; Laetsch, Dominik R; Stevens, Lewis; Daub, Jennifer; Conlon, Claire; Maroon, Habib; Thomas, Fran; Aboobaker, Aziz A; Blaxter, Mark

    2016-05-03

    Tardigrades are meiofaunal ecdysozoans that are key to understanding the origins of Arthropoda. Many species of Tardigrada can survive extreme conditions through cryptobiosis. In a recent paper [Boothby TC, et al. (2015) Proc Natl Acad Sci USA 112(52):15976-15981], the authors concluded that the tardigrade Hypsibius dujardini had an unprecedented proportion (17%) of genes originating through functional horizontal gene transfer (fHGT) and speculated that fHGT was likely formative in the evolution of cryptobiosis. We independently sequenced the genome of H. dujardini As expected from whole-organism DNA sampling, our raw data contained reads from nontarget genomes. Filtering using metagenomics approaches generated a draft H. dujardini genome assembly of 135 Mb with superior assembly metrics to the previously published assembly. Additional microbial contamination likely remains. We found no support for extensive fHGT. Among 23,021 gene predictions we identified 0.2% strong candidates for fHGT from bacteria and 0.2% strong candidates for fHGT from nonmetazoan eukaryotes. Cross-comparison of assemblies showed that the overwhelming majority of HGT candidates in the Boothby et al. genome derived from contaminants. We conclude that fHGT into H. dujardini accounts for at most 1-2% of genes and that the proposal that one-sixth of tardigrade genes originate from functional HGT events is an artifact of undetected contamination.

  6. In-silico human genomics with GeneCards

    Directory of Open Access Journals (Sweden)

    Stelzer Gil

    2011-10-01

    Full Text Available Abstract Since 1998, the bioinformatics, systems biology, genomics and medical communities have enjoyed a synergistic relationship with the GeneCards database of human genes (http://www.genecards.org. This human gene compendium was created to help to introduce order into the increasing chaos of information flow. As a consequence of viewing details and deep links related to specific genes, users have often requested enhanced capabilities, such that, over time, GeneCards has blossomed into a suite of tools (including GeneDecks, GeneALaCart, GeneLoc, GeneNote and GeneAnnot for a variety of analyses of both single human genes and sets thereof. In this paper, we focus on inhouse and external research activities which have been enabled, enhanced, complemented and, in some cases, motivated by GeneCards. In turn, such interactions have often inspired and propelled improvements in GeneCards. We describe here the evolution and architecture of this project, including examples of synergistic applications in diverse areas such as synthetic lethality in cancer, the annotation of genetic variations in disease, omics integration in a systems biology approach to kidney disease, and bioinformatics tools.

  7. GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS J M

    2007-10-11

    Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, the ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.

  8. Daysleeper : from genomic parasite to indispensable gene

    NARCIS (Netherlands)

    Knip, Marijn

    2012-01-01

    In this thesis the evolutionary background, function and localization of the domesticated transposase DAYSLEEPER are described. We found that DAYSLEEPER-like genes can be found in angiosperms, but not in lower plants. We also found that DAYSLEEPER interacts with several proteins and is probably

  9. Five Complete Chloroplast Genome Sequences from Diospyros: Genome Organization and Comparative Analysis.

    Directory of Open Access Journals (Sweden)

    Jianmin Fu

    Full Text Available Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.

  10. Gene hunting : molecular analysis of the chicken genome

    NARCIS (Netherlands)

    Crooijmans, R.P.M.A.

    2000-01-01

    This dissertation describes the development of molecular tools to identify genes that are involved in production and health traits in poultry. To unravel the chicken genome, fluorescent molecular markers (microsatellite markers) were developed and optimized to perform high throughput screening of re

  11. Re-Examining the Gene in Personalized Genomics

    Science.gov (United States)

    Bartol, Jordan

    2013-01-01

    Personalized genomics companies (PG; also called "direct-to-consumer genetics") are businesses marketing genetic testing to consumers over the Internet. While much has been written about these new businesses, little attention has been given to their roles in science communication. This paper provides an analysis of the gene concept…

  12. Complete mitochondrial genome organization of Tor tor (Hamilton, 1822).

    Science.gov (United States)

    Kumar, Rohit; Goel, Chirag; Kumari Sahoo, Prabhati; Singh, Atul K; Barat, Ashoktaru

    2016-07-01

    The complete mitochondrial genome of Tor tor, a threatened "Mahseer" was sequenced for the first time. The mitochondrial genome size determined to be 16,554 bp in length and consisted of 13 protein-coding genes (PCGs), 22 tRNAs, 2 rRNA genes and a control region or displacement loop (D-Loop) region, resembling the typical organizational pattern of most of the teleost. The overall base composition found was A: 31.8%, T: 25%, G: 15.7% and C: 27.4%; A + T: 56.9% and G + C: 43.1%. The phylogenetic tree constructed using 11 other cyprinids' total mtDNA datasets confirmed the location of present species among mahseers. The total sequence data could support further study in molecular systematics, species identification, evolutionary and conservation genetics.

  13. Genomic expansion of Domain Archaea highlights roles for organisms from new phyla in anaerobic carbon cycling

    Energy Technology Data Exchange (ETDEWEB)

    Castelle, Cindy; Wrighton, Kelly C.; Thomas, Brian C.; Hug, Laura A.; Brown, Christopher T.; Wilkins, Michael J.; Frischkorn, Kyle R.; Tringe, Susannah G.; Singh, Andrea; Markillie, Lye Meng; Taylor, Ronald C.; Williams, Kenneth H.; Banfield, Jillian F.

    2015-03-01

    Domain Archaea is currently represented by one phylum (Euryarchaeota) and two superphyla (TACK and DPANN). However, gene surveys indicate the existence of a vast diversity of uncultivated archaea for which metabolic information is lacking. We sequenced DNA from complex sediment- and groundwater-associated microbial communities sampled prior to and during an acetate biostimulation field experiment to investigate the diversity and physiology of uncultivated subsurface archaea. We sampled 15 genomes that improve resolution of a new phylum within the TACK superphylum and 119 DPANN genomes that highlight a major subdivision within the archaeal domain that separates DPANN from TACK/Euryarchaeota lineages. Within the DPANN superphylum, which lacks any isolated representatives, we defined two new phyla using sequences from 100 newly sampled genomes. The first new phylum, for which we propose the name Woesearchaeota, was defined using 54 new sequences. We reconstructed a complete (finished) genome for an archaeon from this phylum that is only 0.8 Mb in length and lacks almost all core biosynthetic pathways, but has genes encoding enzymes predicted to interact with bacterial cell walls, consistent with a symbiotic lifestyle. The second new phylum, for which we propose the name Pacearchaeota, was defined based on 46 newly sampled archaeal genomes. This phylum includes the first non-methanogen with an intermediate Type II/III RuBisCO. We also reconstructed a complete (1.24 Mb) genome for another DPANN archaeon, a member of the Diapherotrites phylum. Metabolic prediction and transcriptomic data indicate that this organism has a fermentation-based lifestyle. In fact, genomic analyses consistently indicate lack of recognizable pathways for sulfur, nitrogen, methane, oxygen, and metal cycling, and suggest that symbiotic and fermentation-based lifestyles are widespread across the DPANN superphylum. Thus, as for a recently identified superphylum of bacteria with small genomes and no

  14. The role of patient advocacy organizations in shaping genomic science.

    Science.gov (United States)

    Koay, Pei P; Sharp, Richard R

    2013-01-01

    Patient advocacy organizations (PAOs) are nonprofit groups that represent patients and families affected by a significant medical condition or disease. We review some of the different approaches that humanities and social researchers use to study PAOs. Drawing on this recent scholarship, we describe some contemporary patient groups and explore how PAOs can collaborate with biomedical researchers to advance genomic science. We highlight research that aims to describe how PAOs are contributing to multiple aspects of biomedical research, including study design, definition of research goals, data collection and analysis, dissemination of results, and research funding. We also describe several challenges that genomic researchers may encounter in collaborations with PAOs. Throughout our review, we focus on the manner in which new PAO roles challenge traditional boundaries between researchers and subjects, thereby redefining the relationship of patients to science. We consider how this shift may affect our view of scientific collaborations and impact genomic researchers in the future.

  15. Hidden histories of gene flow in highland birds revealed with genomic markers.

    Science.gov (United States)

    Zarza, Eugenia; Faircloth, Brant C; Tsai, Whitney L E; Bryson, Robert W; Klicka, John; McCormack, John E

    2016-10-01

    Genomic studies are revealing that divergence and speciation are marked by gene flow, but it is not clear whether gene flow has played a prominent role during the generation of biodiversity in species-rich regions of the world where vicariance is assumed to be the principal mode by which new species form. We revisit a well-studied organismal system in the Mexican Highlands, Aphelocoma jays, to test for gene flow among Mexican sierras. Prior results from mitochondrial DNA (mtDNA) largely conformed to the standard model of allopatric divergence, although there was also evidence for more obscure histories of gene flow in a small sample of nuclear markers. We tested for these 'hidden histories' using genomic markers known as ultraconserved elements (UCEs) in concert with phylogenies, clustering algorithms and newer introgression tests specifically designed to detect ancient gene flow (e.g. ABBA/BABA tests). Results based on 4303 UCE loci and 2500 informative SNPs are consistent with varying degrees of gene flow among highland areas. In some cases, gene flow has been extensive and recent (although perhaps not ongoing today), whereas in other cases there is only a trace signature of ancient gene flow among species that diverged as long as 5 million years ago. These results show how a species complex thought to be a model for vicariance can reveal a more reticulate history when a broader portion of the genome is queried. As more organisms are studied with genomic data, we predict that speciation-with-bouts-of-gene-flow will turn out to be a common mode of speciation.

  16. Genome-wide analysis of gene expression during early Arabidopsis flower development.

    Directory of Open Access Journals (Sweden)

    Frank Wellmer

    2006-07-01

    Full Text Available Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene regulatory networks underlying development. Here, we describe the global gene expression dynamics during early flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with differential expression at distinct stages of flower development. We found that the onset of flower formation is characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance of gene activation during the differentiation of floral organs. Among the genes we identified as differentially expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The expression profiles of these related genes were often highly correlated, indicating similar temporal expression patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant manner, these results suggest a high degree of functional redundancy during early flower development, but also that its extent may vary in a stage-specific manner.

  17. Genomic organization and sequence dynamics of the AvrPiz-t locus in Magnaporthe oryzae

    Institute of Scientific and Technical Information of China (English)

    Ping LI; Bin BAI; Hong-yan ZHANG; Heng ZHOU; Bo ZHOU

    2012-01-01

    Plants utilize multiple layers of defense mechanisms to fight against the invasion of diverse pathogens.The R gene mediates resistance,in most cases,dependent on the co-existence of its cognate pathogen-derived avirulence (Avr) gene.The rice blast R gene Piz-t corresponds in gene-for-gene fashion to the Magnaporthe oryzae Avrgene AvrPiz-t.In this study,we determined and compared the genomic sequences surrounding the AvrPiz-t gene in both avirulent and virulent isolates,designating as AvrPiz-t-ZB15 and avrPiz-t-70-15 regions,respectively.The sequence of the AvrPiz-t-ZB15 region is 120966 bp whereas avrPiz-t-70-15 is 146292 bp in length.The extreme sequence similarity and good synteny in gene order and content along with the absence of two predicted genes in the avrPiz-t-70-15 region were observed in the predicted protein-coding regions in the AvrPiz-t locus.Nevertheless,frequent presence/absence and highly dynamic organization of transposable elements (TEs) were identified,representing the major variation of the AvrPiz-t locus between different isolates.Moreover,TEs constitute 27.3% and 43.2%of the genomic contents of the AvrPiz-t-ZB15 and avrPiz-t-70-15 regions,respectively,indicating that TEs contribute largely to the organization and evolution of AvrPiz-t locus.The findings of this study suggest that M.oryzae could benefit in an evolutionary sense from the presence of active TEs in genes conferring avirulence and provide an ability to rapidly change and thus to overcome host R genes.

  18. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants.

    Science.gov (United States)

    Sugiyama, Y; Watase, Y; Nagase, M; Makita, N; Yagura, S; Hirai, A; Sugiura, M

    2005-02-01

    Tobacco is a valuable model system for investigating the origin of mitochondrial DNA (mtDNA) in amphidiploid plants and studying the genetic interaction between mitochondria and chloroplasts in the various functions of the plant cell. As a first step, we have determined the complete mtDNA sequence of Nicotiana tabacum. The mtDNA of N. tabacum can be assumed to be a master circle (MC) of 430,597 bp. Sequence comparison of a large number of clones revealed that there are four classes of boundaries derived from homologous recombination, which leads to a multipartite organization with two MCs and six subgenomic circles. The mtDNA of N. tabacum contains 36 protein-coding genes, three ribosomal RNA genes and 21 tRNA genes. Among the first class, we identified the genes rps1 and psirps14, which had previously been thought to be absent in tobacco mtDNA on the basis of Southern analysis. Tobacco mtDNA was compared with those of Arabidopsis thaliana, Beta vulgaris, Oryza sativa and Brassica napus. Since repeated sequences show no homology to each other among the five angiosperms, it can be supposed that these were independently acquired by each species during the evolution of angiosperms. The gene order and the sequences of intergenic spacers in mtDNA also differ widely among the five angiosperms, indicating multiple reorganizations of genome structure during the evolution of higher plants. Among the conserved genes, the same potential conserved nonanucleotide-motif-type promoter could only be postulated for rrn18-rrn5 in four of the dicotyledonous plants, suggesting that a coding sequence does not necessarily move with the promoter upon reorganization of the mitochondrial genome.

  19. An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution

    Directory of Open Access Journals (Sweden)

    Hood Leroy

    2004-11-01

    Full Text Available Abstract Background The runt domain transcription factors are key regulators of developmental processes in bilaterians, involved both in cell proliferation and differentiation, and their disruption usually leads to disease. Three runt domain genes have been described in each vertebrate genome (the RUNX gene family, but only one in other chordates. Therefore, the common ancestor of vertebrates has been thought to have had a single runt domain gene. Results Analysis of the genome draft of the fugu pufferfish (Takifugu rubripes reveals the existence of a fourth runt domain gene, FrRUNT, in addition to the orthologs of human RUNX1, RUNX2 and RUNX3. The tiny FrRUNT packs six exons and two putative promoters in just 3 kb of genomic sequence. The first exon is located within an intron of FrSUPT3H, the ortholog of human SUPT3H, and the first exon of FrSUPT3H resides within the first intron of FrRUNT. The two gene structures are therefore "interlocked". In the human genome, SUPT3H is instead interlocked with RUNX2. FrRUNT has no detectable ortholog in the genomes of mammals, birds or amphibians. We consider alternative explanations for an apparent contradiction between the phylogenetic data and the comparison of the genomic neighborhoods of human and fugu runt domain genes. We hypothesize that an ancient RUNT locus was lost in the tetrapod lineage, together with FrFSTL6, a member of a novel family of follistatin-like genes. Conclusions Our results suggest that the runt domain family may have started expanding in chordates much earlier than previously thought, and exemplify the importance of detailed analysis of whole-genome draft sequence to provide new insights into gene evolution.

  20. Evolution of endogenous non-retroviral genes integrated into plant genomes

    Directory of Open Access Journals (Sweden)

    Hyosub Chu

    2014-08-01

    Full Text Available Numerous comparative genome analyses have revealed the wide extent of horizontal gene transfer (HGT in living organisms, which contributes to their evolution and genetic diversity. Viruses play important roles in HGT. Endogenous viral elements (EVEs are defined as viral DNA sequences present within the genomes of non-viral organisms. In eukaryotic cells, the majority of EVEs are derived from RNA viruses using reverse transcription. In contrast, endogenous non-retroviral elements (ENREs are poorly studied. However, the increasing availability of genomic data and the rapid development of bioinformatics tools have enabled the identification of several ENREs in various eukaryotic organisms. To date, a small number of ENREs integrated into plant genomes have been identified. Of the known non-retroviruses, most identified ENREs are derived from double-strand (ds RNA viruses, followed by single-strand (ss DNA and ssRNA viruses. At least eight virus families have been identified. Of these, viruses in the family Partitiviridae are dominant, followed by viruses of the families Chrysoviridae and Geminiviridae. The identified ENREs have been primarily identified in eudicots, followed by monocots. In this review, we briefly discuss the current view on non-retroviral sequences integrated into plant genomes that are associated with plant-virus evolution and their possible roles in antiviral resistance.

  1. Whole genome amplification of DNA for genotyping pharmacogenetics candidate genes.

    Directory of Open Access Journals (Sweden)

    Santosh ePhilips

    2012-03-01

    Full Text Available Whole genome amplification (WGA technologies can be used to amplify genomic DNA when only small amounts of DNA are available. The Multiple Displacement Amplification Phi polymerase based amplification has been shown to accurately amplify DNA for a variety of genotyping assays; however, it has not been tested for genotyping many of the clinically relevant genes important for pharmacogenetic studies, such as the cytochrome P450 genes, that are typically difficult to genotype due to multiple pseudogenes, copy number variations, and high similarity to other related genes. We evaluated whole genome amplified samples for Taqman™ genotyping of SNPs in a variety of pharmacogenetic genes. In 24 DNA samples from the Coriell human diversity panel, the call rates and concordance between amplified (~200-fold amplification and unamplified samples was 100% for two SNPs in CYP2D6 and one in ESR1. In samples from a breast cancer clinical trial (Trial 1, we compared the genotyping results in samples before and after WGA for four SNPs in CYP2D6, one SNP in CYP2C19, one SNP in CYP19A1, two SNPs in ESR1, and two SNPs in ESR2. The concordance rates were all >97%. Finally, we compared the allele frequencies of 143 SNPs determined in Trial 1 (whole genome amplified DNA to the allele frequencies determined in unamplified DNA samples from a separate trial (Trial 2 that enrolled a similar population. The call rates and allele frequencies between the two trials were 98% and 99.7%, respectively. We conclude that the whole genome amplified DNA is suitable for Taqman™ genotyping for a wide variety of pharmacogenetically relevant SNPs.

  2. Genome-Wide Associations of Gene Expression Variation in Humans.

    Directory of Open Access Journals (Sweden)

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  3. Genome-wide associations of gene expression variation in humans.

    Directory of Open Access Journals (Sweden)

    Barbara E Stranger

    2005-12-01

    Full Text Available The exploration of quantitative variation in human populations has become one of the major priorities for medical genetics. The successful identification of variants that contribute to complex traits is highly dependent on reliable assays and genetic maps. We have performed a genome-wide quantitative trait analysis of 630 genes in 60 unrelated Utah residents with ancestry from Northern and Western Europe using the publicly available phase I data of the International HapMap project. The genes are located in regions of the human genome with elevated functional annotation and disease interest including the ENCODE regions spanning 1% of the genome, Chromosome 21 and Chromosome 20q12-13.2. We apply three different methods of multiple test correction, including Bonferroni, false discovery rate, and permutations. For the 374 expressed genes, we find many regions with statistically significant association of single nucleotide polymorphisms (SNPs with expression variation in lymphoblastoid cell lines after correcting for multiple tests. Based on our analyses, the signal proximal (cis- to the genes of interest is more abundant and more stable than distal and trans across statistical methodologies. Our results suggest that regulatory polymorphism is widespread in the human genome and show that the 5-kb (phase I HapMap has sufficient density to enable linkage disequilibrium mapping in humans. Such studies will significantly enhance our ability to annotate the non-coding part of the genome and interpret functional variation. In addition, we demonstrate that the HapMap cell lines themselves may serve as a useful resource for quantitative measurements at the cellular level.

  4. The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.

    Science.gov (United States)

    Carvalho, Natalia D M; Pinheiro, Vanessa S S; Carmo, Edson J; Goll, Leonardo G; Schneider, Carlos H; Gross, Maria C

    2015-01-01

    Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes.

  5. Diversity of 23S rRNA genes within individual prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anna Pei

    Full Text Available BACKGROUND: The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. METHODOLOGY/PRINCIPAL FINDINGS: Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4% genomes (mean 0.40%, range 0.01%-4.04%. Significant (1.17%-4.04% intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition. In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS, ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes. CONCLUSIONS/SIGNIFICANCE: These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

  6. Genome wide identification, phylogeny and expression of zinc transporter genes in common carp.

    Directory of Open Access Journals (Sweden)

    Yanliang Jiang

    Full Text Available BACKGROUND: Zinc is an essential trace element in organisms, which serves as a cofactor for hundreds of enzymes that are involved in many pivotal biological processes including growth, development, reproduction and immunity. Therefore, the homeostasis of zinc in the cell is fundamental. The zinc transporter gene family is a large gene family that encodes proteins which regulate the movement of zinc across cellular and intracellular membranes. However, studies on teleost zinc transporters are mainly limited to model species. METHODOLOGY/PRINCIPAL FINDINGS: We identified a set of 37 zinc transporters in common carp genome, including 17 from SLC30 family (ZnT, and 20 from SLC39 family (ZIP. Phylogenetic and syntenic analysis revealed that most of the zinc transporters are highly conserved, though recent gene duplication and gene losses do exist. Through examining the copy number of zinc transporter genes across several vertebrate genomes, thirteen zinc transporters in common carp are found to have undergone the gene duplications, including SLC30A1, SLC30A2, SLC30A5, SLC30A7, SLC30A9, SLC30A10, SLC39A1, SLC39A3, SLC39A4, SLC39A5, SLC39A6, SLC39A7 and SLC39A9. The expression patterns of all zinc transporters were established in various tissues, including blood, brain, gill, heart, intestine, liver, muscle, skin, spleen and kidney, and showed that most of the zinc transporters were ubiquitously expressed, indicating the critical role of zinc transporters in common carp. CONCLUSIONS: To some extent, examination of gene families with detailed phylogenetic or orthology analysis could verify the authenticity and accuracy of assembly and annotation of the recently published common carp whole genome sequences. The gene families are also considered as a unique source for evolutionary studies. Moreover, the whole set of common carp zinc transporters provides an important genomic resource for future biochemical, toxicological and physiological studies of zinc

  7. Analyses of the complete genome and gene expression of chloroplast of sweet potato [Ipomoea batata].

    Science.gov (United States)

    Yan, Lang; Lai, Xianjun; Li, Xuedan; Wei, Changhe; Tan, Xuemei; Zhang, Yizheng

    2015-01-01

    Sweet potato [Ipomoea batatas (L.) Lam] ranks among the top seven most important food crops cultivated worldwide and is hexaploid plant (2n=6x=90) in the Convolvulaceae family with a genome size between 2,200 to 3,000 Mb. The genomic resources for this crop are deficient due to its complicated genetic structure. Here, we report the complete nucleotide sequence of the chloroplast (cp) genome of sweet potato, which is a circular molecule of 161,303 bp in the typical quadripartite structure with large (LSC) and small (SSC) single-copy regions separated by a pair of inverted repeats (IRs). The chloroplast DNA contains a total of 145 genes, including 94 protein-encoding genes of which there are 72 single-copy and 11 double-copy genes. The organization and structure of the chloroplast genome (gene content and order, IR expansion/contraction, random repeating sequences, structural rearrangement) of sweet potato were compared with those of Ipomoea (L.) species and some basal important angiosperms, respectively. Some boundary gene-flow and gene gain-and-loss events were identified at intra- and inter-species levels. In addition, by comparing with the transcriptome sequences of sweet potato, the RNA editing events and differential expressions of the chloroplast functional-genes were detected. Moreover, phylogenetic analysis was conducted based on 77 protein-coding genes from 33 taxa and the result may contribute to a better understanding of the evolution progress of the genus Ipomoea (L.), including phylogenetic relationships, intraspecific differentiation and interspecific introgression.

  8. Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation.

    Science.gov (United States)

    Filatov, Victor; Dowdle, John; Smirnoff, Nicholas; Ford-Lloyd, Brian; Newbury, H John; Macnair, Mark R

    2006-09-01

    One of the challenges of comparative genomics is to identify specific genetic changes associated with the evolution of a novel adaptation or trait. We need to be able to disassociate the genes involved with a particular character from all the other genetic changes that take place as lineages diverge. Here we show that by comparing the transcriptional profile of segregating families with that of parent species differing in a novel trait, it is possible to narrow down substantially the list of potential target genes. In addition, by assuming synteny with a related model organism for which the complete genome sequence is available, it is possible to use the cosegregation of markers differing in transcription level to identify regions of the genome which probably contain quantitative trait loci (QTLs) for the character. This novel combination of genomics and classical genetics provides a very powerful tool to identify candidate genes. We use this methodology to investigate zinc hyperaccumulation in Arabidopsis halleri, the sister species to the model plant, Arabidopsis thaliana. We compare the transcriptional profile of A. halleri with that of its sister nonaccumulator species, Arabidopsis petraea, and between accumulator and nonaccumulator F(3)s derived from the cross between the two species. We identify eight genes which consistently show greater expression in accumulator phenotypes in both roots and shoots, including two metal transporter genes (NRAMP3 and ZIP6), and cytoplasmic aconitase, a gene involved in iron homeostasis in mammals. We also show that there appear to be two QTLs for zinc accumulation, on chromosomes 3 and 7.

  9. The Rhodomonas salina mitochondrial genome: bacteria-like operons, compact gene arrangement and complex repeat region.

    Science.gov (United States)

    Hauth, Amy M; Maier, Uwe G; Lang, B Franz; Burger, Gertraud

    2005-01-01

    To gain insight into the mitochondrial genome structure and gene content of a putatively ancestral group of eukaryotes, the cryptophytes, we sequenced the complete mitochondrial DNA of Rhodomonas salina. The 48 063 bp circular-mapping molecule codes for 2 rRNAs, 27 tRNAs and 40 proteins including 23 components of oxidative phosphorylation, 15 ribosomal proteins and two subunits of tat translocase. One potential protein (ORF161) is without assigned function. Only two introns occur in the genome; both are present within cox1 belong to group II and contain RT open reading frames. Primitive genome features include bacteria-like rRNAs and tRNAs, ribosomal protein genes organized in large clusters resembling bacterial operons and the presence of the otherwise rare genes such as rps1 and tatA. The highly compact gene organization contrasts with the presence of a 4.7 kb long, repeat-containing intergenic region. Repeat motifs approximately 40-700 bp long occur up to 31 times, forming a complex repeat structure. Tandem repeats are the major arrangement but the region also includes a large, approximately 3 kb, inverted repeat and several potentially stable approximately 40-80 bp long hairpin structures. We provide evidence that the large repeat region is involved in replication and transcription initiation, predict a promoter motif that occurs in three locations and discuss two likely scenarios of how this highly structured repeat region might have evolved.

  10. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes

    DEFF Research Database (Denmark)

    Kaas, Rolf Sommer; Rundsten, Carsten Friis; Ussery, David

    2012-01-01

    more biologically relevant, especially considering that many of these genome sequences are draft quality. The E. coli pan-genome for this set of isolates contains 16,373 gene clusters. A core-gene tree, based on alignment and a pan-genome tree based on gene presence/absence, maps the relatedness...

  11. Evolutionary maintenance of filovirus-like genes in bat genomes

    Directory of Open Access Journals (Sweden)

    Taylor Derek J

    2011-11-01

    Full Text Available Abstract Background Little is known of the biological significance and evolutionary maintenance of integrated non-retroviral RNA virus genes in eukaryotic host genomes. Here, we isolated novel filovirus-like genes from bat genomes and tested for evolutionary maintenance. We also estimated the age of filovirus VP35-like gene integrations and tested the phylogenetic hypotheses that there is a eutherian mammal clade and a marsupial/ebolavirus/Marburgvirus dichotomy for filoviruses. Results We detected homologous copies of VP35-like and NP-like gene integrations in both Old World and New World species of Myotis (bats. We also detected previously unknown VP35-like genes in rodents that are positionally homologous. Comprehensive phylogenetic estimates for filovirus NP-like and VP35-like loci support two main clades with a marsupial and a rodent grouping within the ebolavirus/Lloviu virus/Marburgvirus clade. The concordance of VP35-like, NP-like and mitochondrial gene trees with the expected species tree supports the notion that the copies we examined are orthologs that predate the global spread and radiation of the genus Myotis. Parametric simulations were consistent with selective maintenance for the open reading frame (ORF of VP35-like genes in Myotis. The ORF of the filovirus-like VP35 gene has been maintained in bat genomes for an estimated 13. 4 MY. ORFs were disrupted for the NP-like genes in Myotis. Likelihood ratio tests revealed that a model that accommodates positive selection is a significantly better fit to the data than a model that does not allow for positive selection for VP35-like sequences. Moreover, site-by-site analysis of selection using two methods indicated at least 25 sites in the VP35-like alignment are under positive selection in Myotis. Conclusions Our results indicate that filovirus-like elements have significance beyond genomic imprints of prior infection. That is, there appears to be, or have been, functionally maintained

  12. Genome-Wide Architecture of Disease Resistance Genes in Lettuce.

    Science.gov (United States)

    Christopoulou, Marilena; Wo, Sebastian Reyes-Chin; Kozik, Alex; McHale, Leah K; Truco, Maria-Jose; Wroblewski, Tadeusz; Michelmore, Richard W

    2015-10-08

    Genome-wide motif searches identified 1134 genes in the lettuce reference genome of cv. Salinas that are potentially involved in pathogen recognition, of which 385 were predicted to encode nucleotide binding-leucine rich repeat receptor (NLR) proteins. Using a maximum-likelihood approach, we grouped the NLRs into 25 multigene families and 17 singletons. Forty-one percent of these NLR-encoding genes belong to three families, the largest being RGC16 with 62 genes in cv. Salinas. The majority of NLR-encoding genes are located in five major resistance clusters (MRCs) on chromosomes 1, 2, 3, 4, and 8 and cosegregate with multiple disease resistance phenotypes. Most MRCs contain primarily members of a single NLR gene family but a few are more complex. MRC2 spans 73 Mb and contains 61 NLRs of six different gene families that cosegregate with nine disease resistance phenotypes. MRC3, which is 25 Mb, contains 22 RGC21 genes and colocates with Dm13. A library of 33 transgenic RNA interference tester stocks was generated for functional analysis of NLR-encoding genes that cosegregated with disease resistance phenotypes in each of the MRCs. Members of four NLR-encoding families, RGC1, RGC2, RGC21, and RGC12 were shown to be required for 16 disease resistance phenotypes in lettuce. The general composition of MRCs is conserved across different genotypes; however, the specific repertoire of NLR-encoding genes varied particularly of the rapidly evolving Type I genes. These tester stocks are valuable resources for future analyses of additional resistance phenotypes. Copyright © 2015 Christopoulou et al.

  13. Genomic Analyses of Bacterial Porin-Cytochrome Gene Clusters

    Directory of Open Access Journals (Sweden)

    Liang eShi

    2014-11-01

    Full Text Available The porin-cytochrome (Pcc protein complex is responsible for trans-outer membrane electron transfer during extracellular reduction of Fe(III by the dissimilatory metal-reducing bacterium Geobacter sulfurreducens PCA. The identified and characterized Pcc complex of G. sulfurreducens PCA consists of a porin-like outer-membrane protein, a periplasmic 8-heme c-type cytochrome (c-Cyt and an outer-membrane 12-heme c-Cyt, and the genes encoding the Pcc proteins are clustered in the same regions of genome (i.e., the pcc gene clusters of G. sulfurreducens PCA. A survey of additionally microbial genomes has identified the pcc gene clusters in all sequenced Geobacter spp. and other bacteria from six different phyla, including Anaeromyxobacter dehalogenans 2CP-1, A. dehalogenans 2CP-C, Anaeromyxobacter sp. K, Candidatus Kuenenia stuttgartiensis, Denitrovibrio acetiphilus DSM 12809, Desulfurispirillum indicum S5, Desulfurivibrio alkaliphilus AHT2, Desulfurobacterium thermolithotrophum DSM 11699, Desulfuromonas acetoxidans DSM 684, Ignavibacterium album JCM 16511, and Thermovibrio ammonificans HB-1. The numbers of genes in the pcc gene clusters vary, ranging from two to nine. Similar to the metal-reducing (Mtr gene clusters of other Fe(III-reducing bacteria, such as Shewanella spp., additional genes that encode putative c-Cyts with predicted cellular localizations at the cytoplasmic membrane, periplasm and outer membrane often associate with the pcc gene clusters. This suggests that the Pcc-associated c-Cyts may be part of the pathways for extracellular electron transfer reactions. The presence of pcc gene clusters in the microorganisms that do not reduce solid-phase Fe(III and Mn(IV oxides, such as D. alkaliphilus AHT2 and I. album JCM 16511, also suggests that some of the pcc gene clusters may be involved in extracellular electron transfer reactions with the substrates other than Fe(III and Mn(IV oxides.

  14. Genome Organization of the SARS-CoV

    Institute of Scientific and Technical Information of China (English)

    Jing Xu; Zizhang Zhang; Wei Wei; Songgang Li; Jun Wang; Jian Wang; Jun Yu; Huanming Yang; Jianfei Hu; Jing Wang; Yujun Han; Yongwu Hu; Jie Wen; Yan Li; Jia Ji; Jia Ye

    2003-01-01

    Annotation of the genome sequence of the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) is indispensable to understand its evolution and pathogenesis. We have performed a full annotation of the SARS-CoV genome sequences by using annotation programs publicly available or developed by ourselves.Totally, 21 open reading frames (ORFs) of genes or putative uncharacterized proteins (PUPs) were predicted. Seven PUPs had not been reported previously, and two of them were predicted to contain transmembrane regions. Eight ORFs partially overlapped with or embedded into those of known genes, revealing that the SARS-CoV genome is a small and compact one with overlapped coding regions.The most striking discovery is that an ORF locates on the minus strand. We have also annotated non-coding regions and identified the transcription regulating sequences (TRS) in the intergenic regions. The analysis of TRS supports the minus strand extending transcription mechanism of coronavirus. The SNP analysis of different isolates reveals that mutations of the sequences do not affect the prediction results of ORFs.

  15. Proteome organization in a genome-reduced bacterium.

    Science.gov (United States)

    Kühner, Sebastian; van Noort, Vera; Betts, Matthew J; Leo-Macias, Alejandra; Batisse, Claire; Rode, Michaela; Yamada, Takuji; Maier, Tobias; Bader, Samuel; Beltran-Alvarez, Pedro; Castaño-Diez, Daniel; Chen, Wei-Hua; Devos, Damien; Güell, Marc; Norambuena, Tomas; Racke, Ines; Rybin, Vladimir; Schmidt, Alexander; Yus, Eva; Aebersold, Ruedi; Herrmann, Richard; Böttcher, Bettina; Frangakis, Achilleas S; Russell, Robert B; Serrano, Luis; Bork, Peer; Gavin, Anne-Claude

    2009-11-27

    The genome of Mycoplasma pneumoniae is among the smallest found in self-replicating organisms. To study the basic principles of bacterial proteome organization, we used tandem affinity purification-mass spectrometry (TAP-MS) in a proteome-wide screen. The analysis revealed 62 homomultimeric and 116 heteromultimeric soluble protein complexes, of which the majority are novel. About a third of the heteromultimeric complexes show higher levels of proteome organization, including assembly into larger, multiprotein complex entities, suggesting sequential steps in biological processes, and extensive sharing of components, implying protein multifunctionality. Incorporation of structural models for 484 proteins, single-particle electron microscopy, and cellular electron tomograms provided supporting structural details for this proteome organization. The data set provides a blueprint of the minimal cellular machinery required for life.

  16. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Directory of Open Access Journals (Sweden)

    Weber Andreas PM

    2011-04-01

    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  17. Genome-Wide Characterization and Expression Profiles of the Superoxide Dismutase Gene Family in Gossypium

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    2016-01-01

    Full Text Available Superoxide dismutase (SOD as a group of significant and ubiquitous enzymes plays a critical function in plant growth and development. Previously this gene family has been investigated in Arabidopsis and rice; it has not yet been characterized in cotton. In our study, it was the first time for us to perform a genome-wide analysis of SOD gene family in cotton. Our results showed that 10 genes of SOD gene family were identified in Gossypium arboreum and Gossypium raimondii, including 6 Cu-Zn-SODs, 2 Fe-SODs, and 2 Mn-SODs. The chromosomal distribution analysis revealed that SOD genes are distributed across 7 chromosomes in Gossypium arboreum and 8 chromosomes in Gossypium raimondii. Segmental duplication is predominant duplication event and major contributor for expansion of SOD gene family. Gene structure and protein structure analysis showed that SOD genes have conserved exon/intron arrangement and motif composition. Microarray-based expression analysis revealed that SOD genes have important function in abiotic stress. Moreover, the tissue-specific expression profile reveals the functional divergence of SOD genes in different organs development of cotton. Taken together, this study has imparted new insights into the putative functions of SOD gene family in cotton. Findings of the present investigation could help in understanding the role of SOD gene family in various aspects of the life cycle of cotton.

  18. Genomic organization of four novel nondisulfide-bridged peptides from scorpion Mesobuthus martensii Karsch: gaining insight into evolutionary mechanism.

    Science.gov (United States)

    Luo, Feng; Zeng, Xian-Chun; Hahin, Richard; Cao, Zhi-Jian; Liu, Hui; Li, Wen-Xin

    2005-12-01

    At least 25 nondisulfide-bridged peptides (NDBPs) have been identified and characterized from scorpions. However, the genomic organization of the genes that encode these peptides have not been reported yet. BmKa1, BmKa2 and BmKb1 are three novel genes that code for NDBPs identified by our group from Mesobuthus martensii Karsch. Based on their cDNA sequences, the genomic DNA sequences encoding these peptides were obtained using the PCR method. Sequence analysis showed that three distinct genomic structural patterns are used to encode these three peptides. The BmKa1 gene is not interrupted by any introns. However, the BmKa2 gene is composed of two exons, interrupted by a 67 bp intron that is located in the DNA region encoding the mature peptide. Two genomic homologues of the BmKb1 cDNA sequence, named BmKb1' and BmKb2, respectively, were obtained. The BmKb1' gene contains one intron of 593 bp, inserted into the DNA region that encodes the signal peptide. Similarly, the BmKb2 gene also contains an intron that interrupts the exon that encodes the NDBP signal peptide. The amino acid sequences deduced for BmKb2 and BmKb1' differ only at one position. The data suggest that the genomic organizational pattern of NDBPs displays more divergence than that exhibited by the genes that encode disulfide-bridged peptides from scorpions.

  19. Systematically fragmented genes in a multipartite mitochondrial genome

    Science.gov (United States)

    Vlcek, Cestmir; Marande, William; Teijeiro, Shona; Lukeš, Julius; Burger, Gertraud

    2011-01-01

    Arguably, the most bizarre mitochondrial DNA (mtDNA) is that of the euglenozoan eukaryote Diplonema papillatum. The genome consists of numerous small circular chromosomes none of which appears to encode a complete gene. For instance, the cox1 coding sequence is spread out over nine different chromosomes in non-overlapping pieces (modules), which are transcribed separately and joined to a contiguous mRNA by trans-splicing. Here, we examine how many genes are encoded by Diplonema mtDNA and whether all are fragmented and their transcripts trans-spliced. Module identification is challenging due to the sequence divergence of Diplonema mitochondrial genes. By employing most sensitive protein profile search algorithms and comparing genomic with cDNA sequence, we recognize a total of 11 typical mitochondrial genes. The 10 protein-coding genes are systematically chopped up into three to 12 modules of 60–350 bp length. The corresponding mRNAs are all trans-spliced. Identification of ribosomal RNAs is most difficult. So far, we only detect the 3′-module of the large subunit ribosomal RNA (rRNA); it does not trans-splice with other pieces. The small subunit rRNA gene remains elusive. Our results open new intriguing questions about the biochemistry and evolution of mitochondrial trans-splicing in Diplonema. PMID:20935050

  20. Comparative genomics of Neisseria meningitidis: core genome, islands of horizontal transfer and pathogen-specific genes.

    Science.gov (United States)

    Dunning Hotopp, Julie C; Grifantini, Renata; Kumar, Nikhil; Tzeng, Yih Ling; Fouts, Derrick; Frigimelica, Elisabetta; Draghi, Monia; Giuliani, Marzia Monica; Rappuoli, Rino; Stephens, David S; Grandi, Guido; Tettelin, Hervé

    2006-12-01

    To better understand Neisseria meningitidis genomes and virulence, microarray comparative genome hybridization (mCGH) data were collected from one Neisseria cinerea, two Neisseria lactamica, two Neisseria gonorrhoeae and 48 Neisseria meningitidis isolates. For N. meningitidis, these isolates are from diverse clonal complexes, invasive and carriage strains, and all major serogroups. The microarray platform represented N. meningitidis strains MC58, Z2491 and FAM18, and N. gonorrhoeae FA1090. By comparing hybridization data to genome sequences, the core N. meningitidis genome and insertions/deletions (e.g. capsule locus, type I secretion system) related to pathogenicity were identified, including further characterization of the capsule locus, bioinformatics analysis of a type I secretion system, and identification of some metabolic pathways associated with intracellular survival in pathogens. Hybridization data clustered meningococcal isolates from similar clonal complexes that were distinguished by the differential presence of six distinct islands of horizontal transfer. Several of these islands contained prophage or other mobile elements, including a novel prophage and a transposon carrying portions of a type I secretion system. Acquisition of some genetic islands appears to have occurred in multiple lineages, including transfer between N. lactamica and N. meningitidis. However, island acquisition occurs infrequently, such that the genomic-level relationship is not obscured within clonal complexes. The N. meningitidis genome is characterized by the horizontal acquisition of multiple genetic islands; the study of these islands reveals important sets of genes varying between isolates and likely to be related to pathogenicity.

  1. Genome-wide analysis of homeobox gene family in legumes: identification, gene duplication and expression profiling.

    Science.gov (United States)

    Bhattacharjee, Annapurna; Ghangal, Rajesh; Garg, Rohini; Jain, Mukesh

    2015-01-01

    Homeobox genes encode transcription factors that are known to play a major role in different aspects of plant growth and development. In the present study, we identified homeobox genes belonging to 14 different classes in five legume species, including chickpea, soybean, Medicago, Lotus and pigeonpea. The characteristic differences within homeodomain sequences among various classes of homeobox gene family were quite evident. Genome-wide expression analysis using publicly available datasets (RNA-seq and microarray) indicated that homeobox genes are differentially expressed in various tissues/developmental stages and under stress conditions in different legumes. We validated the differential expression of selected chickpea homeobox genes via quantitative reverse transcription polymerase chain reaction. Genome duplication analysis in soybean indicated that segmental duplication has significantly contributed in the expansion of homeobox gene family. The Ka/Ks ratio of duplicated homeobox genes in soybean showed that several members of this family have undergone purifying selection. Moreover, expression profiling indicated that duplicated genes might have been retained due to sub-functionalization. The genome-wide identification and comprehensive gene expression profiling of homeobox gene family members in legumes will provide opportunities for functional analysis to unravel their exact role in plant growth and development.

  2. Deep genome-wide measurement of meiotic gene conversion using tetrad analysis in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Yujin Sun

    Full Text Available Gene conversion, the non-reciprocal exchange of genetic information, is one of the potential products of meiotic recombination. It can shape genome structure by acting on repetitive DNA elements, influence allele frequencies at the population level, and is known to be implicated in human disease. But gene conversion is hard to detect directly except in organisms, like fungi, that group their gametes following meiosis. We have developed a novel visual assay that enables us to detect gene conversion events directly in the gametes of the flowering plant Arabidopsis thaliana. Using this assay we measured gene conversion events across the genome of more than one million meioses and determined that the genome-wide average frequency is 3.5×10(-4 conversions per locus per meiosis. We also detected significant locus-to-locus variation in conversion frequency but no intra-locus variation. Significantly, we found one locus on the short arm of chromosome 4 that experienced 3-fold to 6-fold more gene conversions than the other loci tested. Finally, we demonstrated that we could modulate conversion frequency by varying experimental conditions.

  3. A genomics based discovery of secondary metabolite biosynthetic gene clusters in Aspergillus ustus.

    Directory of Open Access Journals (Sweden)

    Borui Pi

    Full Text Available Secondary metabolites (SMs produced by Aspergillus have been extensively studied for their crucial roles in human health, medicine and industrial production. However, the resulting information is almost exclusively derived from a few model organisms, including A. nidulans and A. fumigatus, but little is known about rare pathogens. In this study, we performed a genomics based discovery of SM biosynthetic gene clusters in Aspergillus ustus, a rare human pathogen. A total of 52 gene clusters were identified in the draft genome of A. ustus 3.3904, such as the sterigmatocystin biosynthesis pathway that was commonly found in Aspergillus species. In addition, several SM biosynthetic gene clusters were firstly identified in Aspergillus that were possibly acquired by horizontal gene transfer, including the vrt cluster that is responsible for viridicatumtoxin production. Comparative genomics revealed that A. ustus shared the largest number of SM biosynthetic gene clusters with A. nidulans, but much fewer with other Aspergilli like A. niger and A. oryzae. These findings would help to understand the diversity and evolution of SM biosynthesis pathways in genus Aspergillus, and we hope they will also promote the development of fungal identification methodology in clinic.

  4. GtRNAdb 2.0: an expanded database of transfer RNA genes identified in complete and draft genomes.

    Science.gov (United States)

    Chan, Patricia P; Lowe, Todd M

    2016-01-01

    Transfer RNAs represent the largest, most ubiquitous class of non-protein coding RNA genes found in all living organisms. The tRNAscan-SE search tool has become the de facto standard for annotating tRNA genes in genomes, and the Genomic tRNA Database (GtRNAdb) was created as a portal for interactive exploration of these gene predictions. Since its published description in 2009, the GtRNAdb has steadily grown in content, and remains the most commonly cited web-based source of tRNA gene information. In this update, we describe not only a major increase in the number of tRNA predictions (>367000) and genomes analyzed (>4370), but more importantly, the integration of new analytic and functional data to improve the quality and biological context of tRNA gene predictions. New information drawn from other sources includes tRNA modification data, epigenetic data, single nucleotide polymorphisms, gene expression and evolutionary conservation. A richer set of analytic data is also presented, including better tRNA functional prediction, non-canonical features, predicted structural impacts from sequence variants and minimum free energy structural predictions. Views of tRNA genes in genomic context are provided via direct links to the UCSC genome browsers. The database can be searched by sequence or gene features, and is available at http://gtrnadb.ucsc.edu/.

  5. The CanOE strategy: integrating genomic and metabolic contexts across multiple prokaryote genomes to find candidate genes for orphan enzymes.

    Directory of Open Access Journals (Sweden)

    Adam Alexander Thil Smith

    2012-05-01

    Full Text Available Of all biochemically characterized metabolic reactions formalized by the IUBMB, over one out of four have yet to be associated with a nucleic or protein sequence, i.e. are sequence-orphan enzymatic activities. Few bioinformatics annotation tools are able to propose candidate genes for such activities by exploiting context-dependent rather than sequence-dependent data, and none are readily accessible and propose result integration across multiple genomes. Here, we present CanOE (Candidate genes for Orphan Enzymes, a four-step bioinformatics strategy that proposes ranked candidate genes for sequence-orphan enzymatic activities (or orphan enzymes for short. The first step locates "genomic metabolons", i.e. groups of co-localized genes coding proteins catalyzing reactions linked by shared metabolites, in one genome at a time. These metabolons can be particularly helpful for aiding bioanalysts to visualize relevant metabolic data. In the second step, they are used to generate candidate associations between un-annotated genes and gene-less reactions. The third step integrates these gene-reaction associations over several genomes using gene families, and summarizes the strength of family-reaction associations by several scores. In the final step, these scores are used to rank members of gene families which are proposed for metabolic reactions. These associations are of particular interest when the metabolic reaction is a sequence-orphan enzymatic activity. Our strategy found over 60,000 genomic metabolons in more than 1,000 prokaryote organisms from the MicroScope platform, generating candidate genes for many metabolic reactions, of which more than 70 distinct orphan reactions. A computational validation of the approach is discussed. Finally, we present a case study on the anaerobic allantoin degradation pathway in Escherichia coli K-12.

  6. The mitochondrial genome of the red alga Kappaphycus striatus ("Green Sacol" variety): complete nucleotide sequence, genome structure and organization, and comparative analysis.

    Science.gov (United States)

    Tablizo, Francis A; Lluisma, Arturo O

    2014-12-01

    The complete mitochondrial (mt) DNA sequence of the rhodophyte Kappaphycus striatus ("Green Sacol" variety) was determined. The mtDNA is circular, 25,242 bases long (A+T content: 69.94%), and contains 50 densely packed genes comprising 93.22% of the mitochondrial genome, with genes encoded on both strands. Through comparative analysis, the overall sequence, genome structure, and organization of K. striatus mtDNA were seen to be highly similar with other fully sequenced mitochondrial genomes of the class Florideophyceae. On the other hand, certain degrees of genome rearrangements and greater sequence dissimilarities were observed for the mtDNAs of other evolutionarily distant red algae, such as those from the class Bangiophyceae and Cyanidiophyceae, compared to that of K. striatus. Furthermore, a trend was observed wherein the red algal mtDNAs tend to encode lesser number of protein-coding genes, albeit not necessarily shorter, as the organism becomes more morphologically complex. This trend is supported by the phylogenetic tree inferred from the concatenated amino acid sequences of the deduced protein products of cytochrome c oxidase subunit genes (cox1, 2, and 3).

  7. Equine immunoglobulins and organization of immunoglobulin genes.

    Science.gov (United States)

    Walther, Stefanie; Rusitzka, Tamara V; Diesterbeck, Ulrike S; Czerny, Claus-Peter

    2015-12-01

    Our understanding of how equine immunoglobulin genes are organized has increased significantly in recent years. For equine heavy chains, 52 IGHV, 40 IGHD, 8 IGHJ and 11 IGHC are present. Seven of these IGHCs are gamma chain genes. Sequence diversity is increasing between fetal, neonatal, foal and adult age. The kappa light chain contains 60 IGKV, 5 IGKJ and 1 IGKC, whereas there are 144 IGLV, 7 IGLJ, and 7 IGLC for the lambda light chain, which is expressed predominantly in horses. Significant transcriptional differences for IGLV and IGLC are identified in different breeds. Allotypic and allelic variants are observed for IGLC1, IGLC5, and IGLC6/7, and two IGLV pseudogenes are also transcribed. During age development, a decrease in IGLVs is noted, although nucleotide diversity and significant differences in gene usage increased. The following paper suggests a standardization of the existing nomenclature of immunoglobulin genes.

  8. Genomic discovery of potent chromatin insulators for human gene therapy.

    Science.gov (United States)

    Liu, Mingdong; Maurano, Matthew T; Wang, Hao; Qi, Heyuan; Song, Chao-Zhong; Navas, Patrick A; Emery, David W; Stamatoyannopoulos, John A; Stamatoyannopoulos, George

    2015-02-01

    Insertional mutagenesis and genotoxicity, which usually manifest as hematopoietic malignancy, represent major barriers to realizing the promise of gene therapy. Although insulator sequences that block transcriptional enhancers could mitigate or eliminate these risks, so far no human insulators with high functional potency have been identified. Here we describe a genomic approach for the identification of compact sequence elements that function as insulators. These elements are highly occupied by the insulator protein CTCF, are DNase I hypersensitive and represent only a small minority of the CTCF recognition sequences in the human genome. We show that the elements identified acted as potent enhancer blockers and substantially decreased the risk of tumor formation in a cancer-prone animal model. The elements are small, can be efficiently accommodated by viral vectors and have no detrimental effects on viral titers. The insulators we describe here are expected to increase the safety of gene therapy for genetic diseases.

  9. A whole genome RNAi screen identifies replication stress response genes.

    Science.gov (United States)

    Kavanaugh, Gina; Ye, Fei; Mohni, Kareem N; Luzwick, Jessica W; Glick, Gloria; Cortez, David

    2015-11-01

    Proper DNA replication is critical to maintain genome stability. When the DNA replication machinery encounters obstacles to replication, replication forks stall and the replication stress response is activated. This response includes activation of cell cycle checkpoints, stabilization of the replication fork, and DNA damage repair and tolerance mechanisms. Defects in the replication stress response can result in alterations to the DNA sequence causing changes in protein function and expression, ultimately leading to disease states such as cancer. To identify additional genes that control the replication stress response, we performed a three-parameter, high content, whole genome siRNA screen measuring DNA replication before and after a challenge with replication stress as well as a marker of checkpoint kinase signalling. We identified over 200 replication stress response genes and subsequently analyzed how they influence cellular viability in response to replication stress. These data will serve as a useful resource for understanding the replication stress response.

  10. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Wolf Paul G

    2010-02-01

    Full Text Available Abstract Background Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-tolerant plant. Results The Tortula chloroplast genome is ~123,500 bp, and differs in a number of ways from that of Physcomitrella patens, the first published moss chloroplast genome. For example, Tortula lacks the ~71 kb inversion found in the large single copy region of the Physcomitrella genome and other members of the Funariales. Also, the Tortula chloroplast genome lacks petN, a gene found in all known land plant plastid genomes. In addition, an unusual case of nucleotide polymorphism was discovered. Conclusions Although the chloroplast genome of Tortula ruralis differs from that of the only other sequenced moss, Physcomitrella patens, we have yet to determine the biological significance of the differences. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for mosses of the generation of DNA markers for fine-level phylogenetic studies, or to investigate individual variation within populations.

  11. Genome-wide analysis of the R2R3-MYB transcription factor gene family in sweet orange (Citrus sinensis).

    Science.gov (United States)

    Liu, Chaoyang; Wang, Xia; Xu, Yuantao; Deng, Xiuxin; Xu, Qiang

    2014-10-01

    MYB transcription factor represents one of the largest gene families in plant genomes. Sweet orange (Citrus sinensis) is one of the most important fruit crops worldwide, and recently the genome has been sequenced. This provides an opportunity to investigate the organization and evolutionary characteristics of sweet orange MYB genes from whole genome view. In the present study, we identified 100 R2R3-MYB genes in the sweet orange genome. A comprehensive analysis of this gene family was performed, including the phylogeny, gene structure, chromosomal localization and expression pattern analyses. The 100 genes were divided into 29 subfamilies based on the sequence similarity and phylogeny, and the classification was also well supported by the highly conserved exon/intron structures and motif composition. The phylogenomic comparison of MYB gene family among sweet orange and related plant species, Arabidopsis, cacao and papaya suggested the existence of functional divergence during evolution. Expression profiling indicated that sweet orange R2R3-MYB genes exhibited distinct temporal and spatial expression patterns. Our analysis suggested that the sweet orange MYB genes may play important roles in different plant biological processes, some of which may be potentially involved in citrus fruit quality. These results will be useful for future functional analysis of the MYB gene family in sweet orange.

  12. Functional Genomics of Allergen Gene Families in Fruits

    Directory of Open Access Journals (Sweden)

    Fatemeh Maghuly

    2009-10-01

    Full Text Available Fruit consumption is encouraged for health reasons; however, fruits may harbour a series of allergenic proteins that may cause discomfort or even represent serious threats to certain individuals. Thus, the identification and characterization of allergens in fruits requires novel approaches involving genomic and proteomic tools. Since avoidance of fruits also negatively affects the quality of patients’ lives, biotechnological interventions are ongoing to produce low allergenic fruits by down regulating specific genes. In this respect, the control of proteins associated with allergenicity could be achieved by fine tuning the spatial and temporal expression of the relevant genes.

  13. Metabolic Genes within Cyanophage Genomes: Implications for Diversity and Evolution

    Directory of Open Access Journals (Sweden)

    E-Bin Gao

    2016-09-01

    Full Text Available Cyanophages, a group of viruses specifically infecting cyanobacteria, are genetically diverse and extensively abundant in water environments. As a result of selective pressure, cyanophages often acquire a range of metabolic genes from host genomes. The host-derived genes make a significant contribution to the ecological success of cyanophages. In this review, we summarize the host-derived metabolic genes, as well as their origin and roles in cyanophage evolution and important host metabolic pathways, such as the light-dependent reactions of photosynthesis, the pentose phosphate pathway, nutrient acquisition and nucleotide biosynthesis. We also discuss the suitability of the host-derived metabolic genes as potential diagnostic markers for the detection of genetic diversity of cyanophages in natural environments.

  14. Gene deletion of cytosolic ATP: citrate lyase leads to altered organic acid production in Aspergillus niger

    DEFF Research Database (Denmark)

    Meijer, Susan Lisette; Nielsen, Michael Lynge; Olsson, Lisbeth

    2009-01-01

    With the availability of the genome sequence of the filamentous fungus Aspergillus niger, the use of targeted genetic modifications has become feasible. This, together with the fact that A. niger is well established industrially, makes this fungus an attractive micro-organism for creating a cell...... factory platform for production of chemicals. Using molecular biology techniques, this study focused on metabolic engineering of A. niger to manipulate its organic acid production in the direction of succinic acid. The gene target for complete gene deletion was cytosolic ATP: citrate lyase (acl), which...... the acl gene. Additionally, the total amount of organic acids produced in the deletion strain was significantly increased. Genome-scale stoichiometric metabolic model predictions can be used for identifying gene targets. Deletion of the acl led to increased succinic acid production by A. niger....

  15. Regulatory Features for Odorant Receptor Genes in the Mouse Genome.

    Science.gov (United States)

    Degl'Innocenti, Andrea; D'Errico, Anna

    2017-01-01

    The odorant receptor genes, seven transmembrane receptor genes constituting the vastest mammalian gene multifamily, are expressed monogenically and monoallelicaly in each sensory neuron in the olfactory epithelium. This characteristic, often referred to as the one neuron-one receptor rule, is driven by mostly uncharacterized molecular dynamics, generally named odorant receptor gene choice. Much attention has been paid by the scientific community to the identification of sequences regulating the expression of odorant receptor genes within their loci, where related genes are usually arranged in genomic clusters. A number of studies identified transcription factor binding sites on odorant receptor promoter sequences. Similar binding sites were also found on a number of enhancers that regulate in cis their transcription, but have been proposed to form interchromosomal networks. Odorant receptor gene choice seems to occur via the local removal of strongly repressive epigenetic markings, put in place during the maturation of the sensory neuron on each odorant receptor locus. Here we review the fast-changing state of art for the study of regulatory features for odorant receptor genes.

  16. GeneViTo: Visualizing gene-product functional and structural features in genomic datasets

    Directory of Open Access Journals (Sweden)

    Promponas Vasilis J

    2003-10-01

    Full Text Available Abstract Background The availability of increasing amounts of sequence data from completely sequenced genomes boosts the development of new computational methods for automated genome annotation and comparative genomics. Therefore, there is a need for tools that facilitate the visualization of raw data and results produced by bioinformatics analysis, providing new means for interactive genome exploration. Visual inspection can be used as a basis to assess the quality of various analysis algorithms and to aid in-depth genomic studies. Results GeneViTo is a JAVA-based computer application that serves as a workbench for genome-wide analysis through visual interaction. The application deals with various experimental information concerning both DNA and protein sequences (derived from public sequence databases or proprietary data sources and meta-data obtained by various prediction algorithms, classification schemes or user-defined features. Interaction with a Graphical User Interface (GUI allows easy extraction of genomic and proteomic data referring to the sequence itself, sequence features, or general structural and functional features. Emphasis is laid on the potential comparison between annotation and prediction data in order to offer a supplement to the provided information, especially in cases of "poor" annotation, or an evaluation of available predictions. Moreover, desired information can be output in high quality JPEG image files for further elaboration and scientific use. A compilation of properly formatted GeneViTo input data for demonstration is available to interested readers for two completely sequenced prokaryotes, Chlamydia trachomatis and Methanococcus jannaschii. Conclusions GeneViTo offers an inspectional view of genomic functional elements, concerning data stemming both from database annotation and analysis tools for an overall analysis of existing genomes. The application is compatible with Linux or Windows ME-2000-XP operating

  17. New Markov Model Approaches to Deciphering Microbial Genome Function and Evolution: Comparative Genomics of Laterally Transferred Genes

    Energy Technology Data Exchange (ETDEWEB)

    Borodovsky, M.

    2013-04-11

    Algorithmic methods for gene prediction have been developed and successfully applied to many different prokaryotic genome sequences. As the set of genes in a particular genome is not homogeneous with respect to DNA sequence composition features, the GeneMark.hmm program utilizes two Markov models representing distinct classes of protein coding genes denoted "typical" and "atypical". Atypical genes are those whose DNA features deviate significantly from those classified as typical and they represent approximately 10% of any given genome. In addition to the inherent interest of more accurately predicting genes, the atypical status of these genes may also reflect their separate evolutionary ancestry from other genes in that genome. We hypothesize that atypical genes are largely comprised of those genes that have been relatively recently acquired through lateral gene transfer (LGT). If so, what fraction of atypical genes are such bona fide LGTs? We have made atypical gene predictions for all fully completed prokaryotic genomes; we have been able to compare these results to other "surrogate" methods of LGT prediction.

  18. From Genes to Genomes Chances and boundaries of the New Biology

    CERN Document Server

    Winnaker, E L

    1997-01-01

    The goal of my lecture is to show the new dimensions of genome research. It is replacing classic recombinant DNA technologies. The search for single genes is being replaced by the analysis of gene activities of whole cells, organs or organisms. This development changes radically basic biomedical research and points to new therapeutic strategies (examples:cancer,Alzheimer's disease). I will also show the rapid changes of our understanding of gene activity. Mendel's definition of genes is now replaced by molecular terms which teach us how gene expression is regulated and controlled. Finally I will try to outline the limits of genetic analysis and how it raises ethical and moral questions. If the analysis of changes in the genetic read-out are related to diseases for which there is no therapy or if such knowledge only predisposes to genetic diseases the handling of such information requires extraordinary care. The genome projects thus have to be and are being pursued in conjunction with careful ethical analyses ...

  19. Genomic organization and dynamics of repetitive DNA sequences in representatives of three Fagaceae genera.

    Science.gov (United States)

    Alves, Sofia; Ribeiro, Teresa; Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor

    2012-05-01

    Oaks, chestnuts, and beeches are economically important species of the Fagaceae. To understand the relationship between these members of this family, a deep knowledge of their genome composition and organization is needed. In this work, we have isolated and characterized several AFLP fragments obtained from Quercus rotundifolia Lam. through homology searches in available databases. Genomic polymorphisms involving some of these sequences were evaluated in two species of Quercus, one of Castanea, and one of Fagus with specific primers. Comparative FISH analysis with generated sequences was performed in interphase nuclei of the four species, and the co-immunolocalization of 5-methylcytosine was also studied. Some of the sequences isolated proved to be genus-specific, while others were present in all the genera. Retroelements, either gypsy-like of the Tat/Athila clade or copia-like, are well represented, and most are dispersed in euchromatic regions of these species with no DNA methylation associated, pointing to an interspersed arrangement of these retroelements with potential gene-rich regions. A particular gypsy-sequence is dispersed in oaks and chestnut nuclei, but its confinement to chromocenters in beech evidences genome restructuring events during evolution of Fagaceae. Several sequences generated in this study proved to be good tools to comparatively study Fagaceae genome organization.

  20. Archaeal genome organization and stress responses: implications for the origin and evolution of cellular life.

    Science.gov (United States)

    Musgrave, David; Zhang, Xiaoying; Dinger, Marcel

    2002-01-01

    For DNA to be used as an informational molecule it must exist in the cell on the edge of stability because all genomic processes require local controlled melting. This presents mechanistic opportunities and problems for genomic DNA from hyperthermophilic organisms, whose unpackaged DNA could melt at optimal temperatures for growth. Hyperthermophiles are suggested to employ the novel positively supercoiling topoisomerase enzyme reverse gyrase (RG) to form positively supercoiled DNA that is intrinsically resistant to thermal denaturation. RG is presently the only archaeal gene that is uniquely found in hyperthermophiles and therefore is central to hypotheses suggesting a hypothermophilic origin of life. However, the suggestion that RG has evolved by the fusion of two pre-existing enzymes has led to hypotheses for a lower temperature for the origin of life. In addition to the action of topoisomerases, DNA packaging and the intracellular ionic environment can also manipulate DNA topology significantly. In the Euryarchaeota, nucleosomes containing minimal histones can adopt two alternate DNA topologies in a salt-dependent manner. From this we hypothesize that since internal salt concentrations are increased following an increase in temperature, the genomic effects of temperature fluctuations could also be accommodated by changes in nucleosome organization. In addition, stress-induced changes in the nucleoid proteins could also play a role in maintaining the genome in the optimal topological state in changing environments. The function of these systems could therefore be central to temperature adaptation and thus be implicated in origin of life scenarios involving hyperthermophiles.

  1. Genome-level identification, gene expression, and comparative analysis of porcine ß-defensin genes

    Directory of Open Access Journals (Sweden)

    Choi Min-Kyeung

    2012-11-01

    Full Text Available Abstract Background Beta-defensins (β-defensins are innate immune peptides with evolutionary conservation across a wide range of species and has been suggested to play important roles in innate immune reactions against pathogens. However, the complete β-defensin repertoire in the pig has not been fully addressed. Result A BLAST analysis was performed against the available pig genomic sequence in the NCBI database to identify β-defensin-related sequences using previously reported β-defensin sequences of pigs, humans, and cattle. The porcine β-defensin gene clusters were mapped to chromosomes 7, 14, 15 and 17. The gene expression analysis of 17 newly annotated porcine β-defensin genes across 15 tissues using semi-quantitative reverse transcription polymerase chain reaction (RT-PCR showed differences in their tissue distribution, with the kidney and testis having the largest pBD expression repertoire. We also analyzed single nucleotide polymorphisms (SNPs in the mature peptide region of pBD genes from 35 pigs of 7 breeds. We found 8 cSNPs in 7 pBDs. Conclusion We identified 29 porcine β-defensin (pBD gene-like sequences, including 17 unreported pBDs in the porcine genome. Comparative analysis of β-defensin genes in the pig genome with those in human and cattle genomes showed structural conservation of β-defensin syntenic regions among these species.

  2. Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Bruno Huettel

    2008-10-01

    Full Text Available Aneuploidy refers to losses and/or gains of individual chromosomes from the normal chromosome set. The resulting gene dosage imbalance has a noticeable affect on the phenotype, as illustrated by aneuploid syndromes, including Down syndrome in humans, and by human solid tumor cells, which are highly aneuploid. Although the phenotypic manifestations of aneuploidy are usually apparent, information about the underlying alterations in structure, expression, and interphase organization of unbalanced chromosome sets is still sparse. Plants generally tolerate aneuploidy better than animals, and, through colchicine treatment and breeding strategies, it is possible to obtain inbred sibling plants with different numbers of chromosomes. This possibility, combined with the genetic and genomics tools available for Arabidopsis thaliana, provides a powerful means to assess systematically the molecular and cytological consequences of aberrant numbers of specific chromosomes. Here, we report on the generation of Arabidopsis plants in which chromosome 5 is present in triplicate. We compare the global transcript profiles of normal diploids and chromosome 5 trisomics, and assess genome integrity using array comparative genome hybridization. We use live cell imaging to determine the interphase 3D arrangement of transgene-encoded fluorescent tags on chromosome 5 in trisomic and triploid plants. The results indicate that trisomy 5 disrupts gene expression throughout the genome and supports the production and/or retention of truncated copies of chromosome 5. Although trisomy 5 does not grossly distort the interphase arrangement of fluorescent-tagged sites on chromosome 5, it may somewhat enhance associations between transgene alleles. Our analysis reveals the complex genomic changes that can occur in aneuploids and underscores the importance of using multiple experimental approaches to investigate how chromosome numerical changes condition abnormal phenotypes and

  3. Robust Yet Fragile: Expression Noise, Protein Misfolding, and Gene Dosage in the Evolution of Genomes.

    Science.gov (United States)

    Pires, J Chris; Conant, Gavin C

    2016-11-23

    The complex manner in which organisms respond to changes in their gene dosage has long fascinated geneticists. Oddly, although the existence of dominance implies that dosage reductions often have mild phenotypes, extra copies of whole chromosomes (aneuploidy) are generally strongly deleterious. Even more paradoxically, an extra copy of the genome is better tolerated than is aneuploidy. We review the resolution of this paradox, highlighting the roles of biochemistry, protein aggregation, and disruption of cellular microstructure in that explanation. Returning to life's curious combination of robustness and sensitivity to dosage changes, we argue that understanding how biological robustness evolved makes these observations less inexplicable. We propose that noise in gene expression and evolutionary strategies for its suppression play a role in generating dosage phenotypes. Finally, we outline an unappreciated mechanism for the preservation of duplicate genes, namely preservation to limit expression noise, arguing that it is particularly relevant in polyploid organisms.

  4. Hi-C-constrained physical models of human chromosomes recover functionally-related properties of genome organization

    CERN Document Server

    Di Stefano, Marco; Lien, Tonje G; Hovig, Eivind; Micheletti, Cristian

    2016-01-01

    Combining genome-wide structural models with phenomenological data is at the forefront of efforts to understand the organizational principles regulating the human genome. Here, we use chromosome-chromosome contact data as knowledge-based constraints for large-scale three-dimensional models of the human diploid genome. The resulting models remain minimally entangled and acquire several functional features that are observed in vivo and that were never used as input for the model. We find, for instance, that gene-rich, active regions are drawn towards the nuclear center, while gene poor and lamina-associated domains are pushed to the periphery. These and other properties persist upon adding local contact constraints, suggesting their compatibility with non-local constraints for the genome organization. The results show that suitable combinations of data analysis and physical modelling can expose the unexpectedly rich functionally-related properties implicit in chromosome-chromosome contact data. Specific directi...

  5. Spatial organization of the budding yeast genome in the cell nucleus and identification of specific chromatin interactions from multi-chromosome constrained chromatin model

    Science.gov (United States)

    Gürsoy, Gamze; Xu, Yun

    2017-01-01

    Nuclear landmarks and biochemical factors play important roles in the organization of the yeast genome. The interaction pattern of budding yeast as measured from genome-wide 3C studies are largely recapitulated by model polymer genomes subject to landmark constraints. However, the origin of inter-chromosomal interactions, specific roles of individual landmarks, and the roles of biochemical factors in yeast genome organization remain unclear. Here we describe a multi-chromosome constrained self-avoiding chromatin model (mC-SAC) to gain understanding of the budding yeast genome organization. With significantly improved sampling of genome structures, both intra- and inter-chromosomal interaction patterns from genome-wide 3C studies are accurately captured in our model at higher resolution than previous studies. We show that nuclear confinement is a key determinant of the intra-chromosomal interactions, and centromere tethering is responsible for the inter-chromosomal interactions. In addition, important genomic elements such as fragile sites and tRNA genes are found to be clustered spatially, largely due to centromere tethering. We uncovered previously unknown interactions that were not captured by genome-wide 3C studies, which are found to be enriched with tRNA genes, RNAPIII and TFIIS binding. Moreover, we identified specific high-frequency genome-wide 3C interactions that are unaccounted for by polymer effects under landmark constraints. These interactions are enriched with important genes and likely play biological roles. PMID:28704374

  6. A salmonid EST genomic study: genes, duplications, phylogeny and microarrays

    Directory of Open Access Journals (Sweden)

    Brahmbhatt Sonal

    2008-11-01

    Full Text Available Abstract Background Salmonids are of interest because of their relatively recent genome duplication, and their extensive use in wild fisheries and aquaculture. A comprehensive gene list and a comparison of genes in some of the different species provide valuable genomic information for one of the most widely studied groups of fish. Results 298,304 expressed sequence tags (ESTs from Atlantic salmon (69% of the total, 11,664 chinook, 10,813 sockeye, 10,051 brook trout, 10,975 grayling, 8,630 lake whitefish, and 3,624 northern pike ESTs were obtained in this study and have been deposited into the public databases. Contigs were built and putative full-length Atlantic salmon clones have been identified. A database containing ESTs, assemblies, consensus sequences, open reading frames, gene predictions and putative annotation is available. The overall similarity between Atlantic salmon ESTs and those of rainbow trout, chinook, sockeye, brook trout, grayling, lake whitefish, northern pike and rainbow smelt is 93.4, 94.2, 94.6, 94.4, 92.5, 91.7, 89.6, and 86.2% respectively. An analysis of 78 transcript sets show Salmo as a sister group to Oncorhynchus and Salvelinus within Salmoninae, and Thymallinae as a sister group to Salmoninae and Coregoninae within Salmonidae. Extensive gene duplication is consistent with a genome duplication in the common ancestor of salmonids. Using all of the available EST data, a new expanded salmonid cDNA microarray of 32,000 features was created. Cross-species hybridizations to this cDNA microarray indicate that this resource will be useful for studies of all 68 salmonid species. Conclusion An extensive collection and analysis of salmonid RNA putative transcripts indicate that Pacific salmon, Atlantic salmon and charr are 94–96% similar while the more distant whitefish, grayling, pike and smelt are 93, 92, 89 and 86% similar to salmon. The salmonid transcriptome reveals a complex history of gene duplication that is

  7. Advances in plant cell type-specific genome-wide studies of gene expression

    Institute of Scientific and Technical Information of China (English)

    Ying WANG; Yuling JIAO

    2011-01-01

    Cell is the functional unit of life.To study the complex interactions of systems of biological molecules,it is crucial to dissect these molecules at the cell level.In recent years,major progresses have been made by plant biologists to profile gene expression in specific cell types at the genome-wide level.Approaches based on the isolation of cells,polysomes or nuclei have been developed and successfully used for studying the cell types from distinct organs of several plant species.These cell-level data sets revealed previously unrecognized cellular properties,such as cell-specific gene expression modules and hormone response centers,and should serve as essential resources for functional genomic analyses.Newly developed technologies are more affordable to many laboratories and should help to provide new insights at the cellular resolution in the near future.

  8. Gene transfer and genome-wide insertional mutagenesis by retroviral transduction in fish stem cells.

    Directory of Open Access Journals (Sweden)

    Qizhi Liu

    Full Text Available Retrovirus (RV is efficient for gene transfer and integration in dividing cells of diverse organisms. RV provides a powerful tool for insertional mutagenesis (IM to identify and functionally analyze genes essential for normal and pathological processes. Here we report RV-mediated gene transfer and genome-wide IM in fish stem cells from medaka and zebrafish. Three RVs were produced for fish cell transduction: rvLegfp and rvLcherry produce green fluorescent protein (GFP and mCherry fluorescent protein respectively under control of human cytomegalovirus immediate early promoter upon any chromosomal integration, whereas rvGTgfp contains a splicing acceptor and expresses GFP only upon gene trapping (GT via intronic in-frame integration and spliced to endogenous active genes. We show that rvLegfp and rvLcherry produce a transduction efficiency of 11~23% in medaka and zebrafish stem cell lines, which is as 30~67% efficient as the positive control in NIH/3T3. Upon co-infection with rvGTgfp and rvLcherry, GFP-positive cells were much fewer than Cherry-positive cells, consistent with rareness of productive gene trapping events versus random integration. Importantly, rvGTgfp infection in the medaka haploid embryonic stem (ES cell line HX1 generated GTgfp insertion on all 24 chromosomes of the haploid genome. Similar to the mammalian haploid cells, these insertion events were presented predominantly in intergenic regions and introns but rarely in exons. RV-transduced HX1 retained the ES cell properties such as stable growth, embryoid body formation and pluripotency gene expression. Therefore, RV is proficient for gene transfer and IM in fish stem cells. Our results open new avenue for genome-wide IM in medaka haploid ES cells in culture.

  9. Genome organization of the tomato sun locus and characterization of the unusual retrotransposon Rider.

    Science.gov (United States)

    Jiang, Ning; Gao, Dongying; Xiao, Han; van der Knaap, Esther

    2009-10-01

    DNA sequences provide useful insights into genome structure and organization as well as evolution of species. We report on a detailed analysis of the locus surrounding the tomato (Solanum lycopersicum) fruit-shape gene SUN to determine the driving force and genome environment that foster the appearance of novel phenotypes. The gene density at the sun locus is similar to that described in other euchromatic portions of the tomato genome despite the relatively high number of transposable elements. Genes at the sun locus include protein-coding as well as RNA genes, are small in size, and belong to families that were duplicated at the locus an estimated 5-74 million years ago. In general, the DNA transposons at the sun locus are older than the RNA transposons, and their insertion pre-dates the speciation of S. lycopersicum and S. pimpinellifolium. Gene redundancy and large intergenic regions may explain the tolerance of the sun locus to frequent rearrangements and transpositions. The most recent transposition event at the sun locus involved Rider, a recently discovered high-copy retrotransposon. Rider probably arose early during the speciation of tomato. The element inserts into or near to genes and may still be active, which are unusual features for a high-copy element. Rider full-length and read-through transcripts past the typical transcription termination stop are detected, and the latter are required for mobilizing nearby sequences. Rider activity has resulted in an altered phenotype in three known cases, and may therefore have played an important role in tomato evolution and domestication.

  10. Genomic analysis of primordial dwarfism reveals novel disease genes.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  11. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes.

    Science.gov (United States)

    Biankin, Andrew V; Waddell, Nicola; Kassahn, Karin S; Gingras, Marie-Claude; Muthuswamy, Lakshmi B; Johns, Amber L; Miller, David K; Wilson, Peter J; Patch, Ann-Marie; Wu, Jianmin; Chang, David K; Cowley, Mark J; Gardiner, Brooke B; Song, Sarah; Harliwong, Ivon; Idrisoglu, Senel; Nourse, Craig; Nourbakhsh, Ehsan; Manning, Suzanne; Wani, Shivangi; Gongora, Milena; Pajic, Marina; Scarlett, Christopher J; Gill, Anthony J; Pinho, Andreia V; Rooman, Ilse; Anderson, Matthew; Holmes, Oliver; Leonard, Conrad; Taylor, Darrin; Wood, Scott; Xu, Qinying; Nones, Katia; Fink, J Lynn; Christ, Angelika; Bruxner, Tim; Cloonan, Nicole; Kolle, Gabriel; Newell, Felicity; Pinese, Mark; Mead, R Scott; Humphris, Jeremy L; Kaplan, Warren; Jones, Marc D; Colvin, Emily K; Nagrial, Adnan M; Humphrey, Emily S; Chou, Angela; Chin, Venessa T; Chantrill, Lorraine A; Mawson, Amanda; Samra, Jaswinder S; Kench, James G; Lovell, Jessica A; Daly, Roger J; Merrett, Neil D; Toon, Christopher; Epari, Krishna; Nguyen, Nam Q; Barbour, Andrew; Zeps, Nikolajs; Kakkar, Nipun; Zhao, Fengmei; Wu, Yuan Qing; Wang, Min; Muzny, Donna M; Fisher, William E; Brunicardi, F Charles; Hodges, Sally E; Reid, Jeffrey G; Drummond, Jennifer; Chang, Kyle; Han, Yi; Lewis, Lora R; Dinh, Huyen; Buhay, Christian J; Beck, Timothy; Timms, Lee; Sam, Michelle; Begley, Kimberly; Brown, Andrew; Pai, Deepa; Panchal, Ami; Buchner, Nicholas; De Borja, Richard; Denroche, Robert E; Yung, Christina K; Serra, Stefano; Onetto, Nicole; Mukhopadhyay, Debabrata; Tsao, Ming-Sound; Shaw, Patricia A; Petersen, Gloria M; Gallinger, Steven; Hruban, Ralph H; Maitra, Anirban; Iacobuzio-Donahue, Christine A; Schulick, Richard D; Wolfgang, Christopher L; Morgan, Richard A; Lawlor, Rita T; Capelli, Paola; Corbo, Vincenzo; Scardoni, Maria; Tortora, Giampaolo; Tempero, Margaret A; Mann, Karen M; Jenkins, Nancy A; Perez-Mancera, Pedro A; Adams, David J; Largaespada, David A; Wessels, Lodewyk F A; Rust, Alistair G; Stein, Lincoln D; Tuveson, David A; Copeland, Neal G; Musgrove, Elizabeth A; Scarpa, Aldo; Eshleman, James R; Hudson, Thomas J; Sutherland, Robert L; Wheeler, David A; Pearson, John V; McPherson, John D; Gibbs, Richard A; Grimmond, Sean M

    2012-11-15

    Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.

  12. Integrase-directed recovery of functional genes from genomic libraries.

    Science.gov (United States)

    Rowe-Magnus, Dean A

    2009-09-01

    Large population sizes, rapid growth and 3.8 billion years of evolution firmly establish microorganisms as a major source of the planet's biological and genetic diversity. However, up to 99% of the microorganisms in a given environment cannot be cultured. Culture-independent methods that directly access the genetic potential of an environmental sample can unveil new proteins with diverse functions, but the sequencing of random DNA can generate enormous amounts of extraneous data. Integrons are recombination systems that accumulate open reading frames (gene cassettes), many of which code for functional proteins with enormous adaptive potential. Some integrons harbor hundreds of gene cassettes and evidence suggests that the gene cassette pool may be limitless in size. Accessing this genetic pool has been hampered since sequence-based techniques, such as hybridization or PCR, often recover only partial genes or a small subset of those present in the sample. Here, a three-plasmid genetic strategy for the sequence-independent recovery of gene cassettes from genomic libraries is described and its use by retrieving functional gene cassettes from the chromosomal integron of Vibrio vulnificus ATCC 27562 is demonstrated. By manipulating the natural activity of integrons, we can gain access to the caches of functional genes amassed by these structures.

  13. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms.

    Science.gov (United States)

    Bertelli, Claire; Greub, Gilbert

    2012-01-01

    Based on Darwin's concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions, and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host's factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT) that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms (ARMs).

  14. The genomic structure of human BTK, the defective gene in X-linked agammaglobulinemia

    Energy Technology Data Exchange (ETDEWEB)

    Rohrer, J.; Parolini, O. [St. Jude Children`s Research Hospital, Memphis, TN (United States); Conley, M.E. [St. Jude Children`s Research Hospital, Memphis, TN (United States)]|[Univ. of Tennessee College of Medicine, Memphis, TN (United States); Belmont, J.W. [Baylor College of Medicine, Houston, TX (United States)

    1994-12-31

    It has recently been demonstrated that mutations in the gene for Bruton`s tyrosine kinase (BTK) are responsible for X-linked agammaglobulinemia. Southern blot analysis and sequencing of cDNA were used to document deletions, insertions, and single base pair substitutions. To facilitate analysis of BTK regulation and to permit the development of assays that could be used to screen genomic DNA for mutations in BTK, the authors determined the genomic organization of this gene. Subcloning of a cosmid and a yeast artificial chromosome showed that BTK is divided into 19 exons spanning 37 kilobases of genomic DNA. Analysis of the region 5{prime} to the first untranslated exon revealed no consensus TATAA or CAAT boxes; however, three retinoic acid binding sites were identified in this region. Comparison of the structure of BTK with that of other nonreceptor tyrosine kinases, including SRC, FES, and CSK, demonstrated a lack of conservation of exon borders. Information obtained in this study will contribute to understanding of the evolution of nonreceptor tyrosine kinases. It will also be useful in diagnostic studies, including carrier detection, and in studies directed towards gene therapy or gene replacement. 29 refs., 2 figs., 2 tabs.

  15. Lateral gene exchanges shape the genomes of amoeba-resisting microorganisms

    Directory of Open Access Journals (Sweden)

    Claire eBertelli

    2012-08-01

    Full Text Available Based on Darwin’s concept of the tree of life, vertical inheritance was thought to be dominant, and mutations, deletions and duplication were streaming the genomes of living organisms. In the current genomic era, increasing data indicated that both vertical and lateral gene inheritance interact in space and time to trigger genome evolution, particularly among microorganisms sharing a given ecological niche. As a paradigm to their diversity and their survival in a variety of cell types, intracellular microorganisms, and notably intracellular bacteria, were considered as less prone to lateral genetic exchanges. Such specialized microorganisms generally have a smaller gene repertoire because they do rely on their host’s factors for some basic regulatory and metabolic functions. Here we review events of lateral gene transfer (LGT that illustrate the genetic exchanges among intra-amoebal microorganisms or between the microorganism and its amoebal host. We tentatively investigate the functions of laterally transferred genes in the light of the interaction with their host as they should confer a selective advantage and success to the amoeba-resisting microorganisms.

  16. Gene interactions in the DNA damage-response pathway identified by genome-wide RNA-interference analysis of synthetic lethality

    NARCIS (Netherlands)

    van Haaften, Gijs; Vastenhouw, Nadine L; Nollen, Ellen A A; Plasterk, Ronald H A; Tijsterman, Marcel

    2004-01-01

    Here, we describe a systematic search for synthetic gene interactions in a multicellular organism, the nematode Caenorhabditis elegans. We established a high-throughput method to determine synthetic gene interactions by genome-wide RNA interference and identified genes that are required to protect t

  17. Genome size diversity in angiosperms and its influence on gene space.

    Science.gov (United States)

    Dodsworth, Steven; Leitch, Andrew R; Leitch, Ilia J

    2015-12-01

    Genome size varies c. 2400-fold in angiosperms (flowering plants), although the range of genome size is skewed towards small genomes, with a mean genome size of 1C=5.7Gb. One of the most crucial factors governing genome size in angiosperms is the relative amount and activity of repetitive elements. Recently, there have been new insights into how these repeats, previously discarded as 'junk' DNA, can have a significant impact on gene space (i.e. the part of the genome comprising all the genes and gene-related DNA). Here we review these new findings and explore in what ways genome size itself plays a role in influencing how repeats impact genome dynamics and gene space, including gene expression. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Genome analysis of DNA repair genes in the alpha proteobacterium Caulobacter crescentus

    Directory of Open Access Journals (Sweden)

    Menck Carlos FM

    2007-03-01

    Full Text Available Abstract Background The integrity of DNA molecules is fundamental for maintaining life. The DNA repair proteins protect organisms against genetic damage, by removal of DNA lesions or helping to tolerate them. DNA repair genes are best known from the gamma-proteobacterium Escherichia coli, which is the most understood bacterial model. However, genome sequencing raises questions regarding uniformity and ubiquity of these DNA repair genes and pathways, reinforcing the need for identifying genes and proteins, which may respond to DNA damage in other bacteria. Results In this study, we employed a bioinformatic approach, to analyse and describe the open reading frames potentially related to DNA repair from the genome of the alpha-proteobacterium Caulobacter crescentus. This was performed by comparison with known DNA repair related genes found in public databases. As expected, although C. crescentus and E. coli bacteria belong to separate phylogenetic groups, many of their DNA repair genes are very similar. However, some important DNA repair genes are absent in the C. crescentus genome and other interesting functionally related gene duplications are present, which do not occur in E. coli. These include DNA ligases, exonuclease III (xthA, endonuclease III (nth, O6-methylguanine-DNA methyltransferase (ada gene, photolyase-like genes, and uracil-DNA-glycosylases. On the other hand, the genes imuA and imuB, which are involved in DNA damage induced mutagenesis, have recently been described in C. crescentus, but are absent in E. coli. Particularly interesting are the potential atypical phylogeny of one of the photolyase genes in alpha-proteobacteria, indicating an origin by horizontal transfer, and the duplication of the Ada orthologs, which have diverse structural configurations, including one that is still unique for C. crescentus. Conclusion The absence and the presence of certain genes are discussed and predictions are made considering the particular

  19. Genomic organization and expression of the HSP70 locus in New and Old World Leishmania species.

    Science.gov (United States)

    Folgueira, C; Cañavate, C; Chicharro, C; Requena, J M

    2007-03-01

    Heat shock is believed to be a developmental inductor of differentiation in Leishmania. Furthermore, heat shock genes are extensively studied as gene models to decipher mechanisms of gene regulation in kinetoplastids. Here, we describe the organization and expression of the HSP70 loci in representative Leishmania species (L. infantum, L. major, L. tropica, L. mexicana, L. amazonensis and L. braziliensis). With the exception of L. braziliensis, the organization of the HSP70 loci was found to be well conserved among the other Leishmania species. Two types of genes, HSP70-I and HSP70-II, were found to be present in these Leishmania species except for L. braziliensis that lacks HSP70-II gene. Polymorphisms in the HSP70 locus allow the differentiation of the Old and New World species within the subgenus Leishmania. A notable discrepancy between our data and those of the L. major genome database in relation to the gene copy number composing the L. major HSP70 locus was revealed. The temperature-dependent accumulation of the HSP70-I mRNAs is also conserved among the different Leishmania species with the exception of L. braziliensis. In spite of these differences, analysis of the HSP70 synthesis indicated that the HSP70 mRNAs are also preferentially translated during heat shock in L. braziliensis.

  20. The genomic structure and developmental expression patterns of the human OPA-containing gene (HOPA).

    Science.gov (United States)

    Philibert, R A; Winfield, S L; Damschroder-Williams, P; Tengstrom, C; Martin, B M; Ginns, E I

    1999-01-01

    We determined the genomic organization of the human OPA-containing gene (HOPA) and characterized its developmental expression. The gene encoding HOPA, which contains a rare polymorphism tightly associated with non-specific mental retardation, is 25 kb in length and consists of 44 exons. A promoter scan analysis demonstrates two possible transcription initiation sites without TATA boxes upstream from the putative translation initiation start site. Several informative polymorphisms are evident in the sequence including a large pentanucleotide repeat. Northern blot analysis of the gene transcript and its murine orthologue, MOPA-1, demonstrates that only one transcript is expressed throughout the soma and the CNS, and that the transcript is highly expressed during early fetal development. We conclude that the delineation of the function of the HOPA gene locus merits further study.

  1. Prosecutor: parameter-free inference of gene function for prokaryotes using DNA microarray data, genomic context and multiple gene annotation sources

    Directory of Open Access Journals (Sweden)

    van Hijum Sacha AFT

    2008-10-01

    Full Text Available Abstract Background Despite a plethora of functional genomic efforts, the function of many genes in sequenced genomes remains unknown. The increasing amount of microarray data for many species allows employing the guilt-by-association principle to predict function on a large scale: genes exhibiting similar expression patterns are more likely to participate in shared biological processes. Results We developed Prosecutor, an application that enables researchers to rapidly infer gene function based on available gene expression data and functional annotations. Our parameter-free functional prediction method uses a sensitive algorithm to achieve a high association rate of linking genes with unknown function to annotated genes. Furthermore, Prosecutor utilizes additional biological information such as genomic context and known regulatory mechanisms that are specific for prokaryotes. We analyzed publicly available transcriptome data sets and used literature sources to validate putative functions suggested by Prosecutor. We supply the complete results of our analysis for 11 prokaryotic organisms on a dedicated website. Conclusion The Prosecutor software and supplementary datasets available at http://www.prosecutor.nl allow researchers working on any of the analyzed organisms to quickly identify the putative functions of their genes of interest. A de novo analysis allows new organisms to be studied.

  2. Mapping our genes: The genome projects: How big, how fast

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for /open quotes/writing the rules/close quotes/ of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. OTA prepared this report with the assistance of several hundred experts throughout the world. 342 refs., 26 figs., 11 tabs.

  3. Mapping Our Genes: The Genome Projects: How Big, How Fast

    Science.gov (United States)

    1988-04-01

    For the past 2 years, scientific and technical journals in biology and medicine have extensively covered a debate about whether and how to determine the function and order of human genes on human chromosomes and when to determine the sequence of molecular building blocks that comprise DNA in those chromosomes. In 1987, these issues rose to become part of the public agenda. The debate involves science, technology, and politics. Congress is responsible for �writing the rules� of what various federal agencies do and for funding their work. This report surveys the points made so far in the debate, focusing on those that most directly influence the policy options facing the US Congress. Congressional interest focused on how to assess the rationales for conducting human genome projects, how to fund human genome projects (at what level and through which mechanisms), how to coordinate the scientific and technical programs of the several federal agencies and private interests already supporting various genome projects, and how to strike a balance regarding the impact of genome projects on international scientific cooperation and international economic competition in biotechnology. The Office of Technology Assessment (OTA) prepared this report with the assistance of several hundred experts throughout the world.

  4. Genomic and gene variation in Mycoplasma hominis strains

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Andersen, H; Birkelund, Svend

    1987-01-01

    DNAs from 14 strains of Mycoplasma hominis isolated from various habitats, including strain PG21, were analyzed for genomic heterogeneity. DNA-DNA filter hybridization values were from 51 to 91%. Restriction endonuclease digestion patterns, analyzed by agarose gel electrophoresis, revealed...... no identity or cluster formation between strains. Variation within M. hominis rRNA genes was analyzed by Southern hybridization of EcoRI-cleaved DNA hybridized with a cloned fragment of the rRNA gene from the mycoplasma strain PG50. Five of the M. hominis strains showed identical hybridization patterns....... These hybridization patterns were compared with those of 12 other mycoplasma species, which showed a much more complex band pattern. Cloned nonribosomal RNA gene fragments of M. hominis PG21 DNA were analyzed, and the fragments were used to demonstrate heterogeneity among the strains. A monoclonal antibody against...

  5. Genomic and gene expression signature of the pre-invasive testicular carcinoma in situ

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Ottesen, Anne Marie; Sonne, Si Brask

    2005-01-01

    on the pre-invasive CIS and its possible fetal origin by reviewing recent data originating from DNA microarrays and comparative genomic hybridisations. A comparison of gene expression and genomic aberrations reveal chromosomal "hot spots" with mutual clustering of gene expression and genomic amplification...

  6. Functional gene groups are concentrated within chromosomes, among chromosomes and in the nuclear space of the human genome.

    Science.gov (United States)

    Thévenin, Annelyse; Ein-Dor, Liat; Ozery-Flato, Michal; Shamir, Ron

    2014-09-01

    Genomes undergo changes in organization as a result of gene duplications, chromosomal rearrangements and local mutations, among other mechanisms. In contrast to prokaryotes, in which genes of a common function are often organized in operons and reside contiguously along the genome, most eukaryotes show much weaker clustering of genes by function, except for few concrete functional groups. We set out to check systematically if there is a relation between gene function and gene organization in the human genome. We test this question for three types of functional groups: pairs of interacting proteins, complexes and pathways. We find a significant concentration of functional groups both in terms of their distance within the same chromosome and in terms of their dispersal over several chromosomes. Moreover, using Hi-C contact map of the tendency of chromosomal segments to appear close in the 3D space of the nucleus, we show that members of the same functional group that reside on distinct chromosomes tend to co-localize in space. The result holds for all three types of functional groups that we tested. Hence, the human genome shows substantial concentration of functional groups within chromosomes and across chromosomes in space.

  7. A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis

    Directory of Open Access Journals (Sweden)

    Stajich Jason E

    2006-11-01

    Full Text Available Abstract Background To date, most fungal phylogenies have been derived from single gene comparisons, or from concatenated alignments of a small number of genes. The increase in fungal genome sequencing presents an opportunity to reconstruct evolutionary events using entire genomes. As a tool for future comparative, phylogenomic and phylogenetic studies, we used both supertrees and concatenated alignments to infer relationships between 42 species of fungi for which complete genome sequences are available. Results A dataset of 345,829 genes was extracted from 42 publicly available fungal genomes. Supertree methods were employed to derive phylogenies from 4,805 single gene families. We found that the average consensus supertree method may suffer from long-branch attraction artifacts, while matrix representation with parsimony (MRP appears to be immune from these. A genome phylogeny was also reconstructed from a concatenated alignment of 153 universally distributed orthologs. Our MRP supertree and concatenated phylogeny are highly congruent. Within the Ascomycota, the sub-phyla Pezizomycotina and Saccharomycotina were resolved. Both phylogenies infer that the Leotiomycetes are the closest sister group to the Sordariomycetes. There is some ambiguity regarding the placement of Stagonospora nodurum, the sole member of the class Dothideomycetes present in the dataset. Within the Saccharomycotina, a monophyletic clade containing organisms that translate CTG as serine instead of leucine is evident. There is also strong support for two groups within the CTG clade, one containing the fully sexual species Candida lusitaniae, Candida guilliermondii and Debaryomyces hansenii, and the second group containing Candida albicans, Candida dubliniensis, Candida tropicalis, Candida parapsilosis and Lodderomyces elongisporus. The second major clade within the Saccharomycotina contains species whose genomes have undergone a whole genome duplication (WGD, and their close

  8. Chromosome mapping of dragline silk genes in the genomes of widow spiders (Araneae, Theridiidae.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhao

    Full Text Available With its incredible strength and toughness, spider dragline silk is widely lauded for its impressive material properties. Dragline silk is composed of two structural proteins, MaSp1 and MaSp2, which are encoded by members of the spidroin gene family. While previous studies have characterized the genes that encode the constituent proteins of spider silks, nothing is known about the physical location of these genes. We determined karyotypes and sex chromosome organization for the widow spiders, Latrodectus hesperus and L. geometricus (Araneae, Theridiidae. We then used fluorescence in situ hybridization to map the genomic locations of the genes for the silk proteins that compose the remarkable spider dragline. These genes included three loci for the MaSp1 protein and the single locus for the MaSp2 protein. In addition, we mapped a MaSp1 pseudogene. All the MaSp1 gene copies and pseudogene localized to a single chromosomal region while MaSp2 was located on a different chromosome of L. hesperus. Using probes derived from L. hesperus, we comparatively mapped all three MaSp1 loci to a single region of a L. geometricus chromosome. As with L. hesperus, MaSp2 was found on a separate L. geometricus chromosome, thus again unlinked to the MaSp1 loci. These results