WorldWideScience

Sample records for genes evolve faster

  1. Having your cake and eating it - Staphylococcus aureus small colony variants can evolve faster growth rate without losing their antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Gerrit Brandis

    2017-08-01

    Full Text Available Staphylococcus aureus can produce small colony variants (SCVs during infections. These cause significant clinical problems because they are difficult to detect in standard microbiological screening and are associated with persistent infections. The major causes of the SCV phenotype are mutations that inhibit respiration by inactivation of genes of the menadione or hemin biosynthesis pathways. This reduces the production of ATP required to support fast growth. Importantly, it also decreases cross-membrane potential in SCVs, resulting in decreased uptake of cationic compounds, with reduced susceptibility to aminoglycoside antibiotics as a consequence. Because SCVs are slow-growing (mutations in men genes are associated with growth rates in rich medium ~30% of the wild-type growth rate bacterial cultures are very susceptible to rapid takeover by faster-growing mutants (revertants or suppressors. In the case of reversion, the resulting fast growth is obviously associated with the loss of antibiotic resistance. However, direct reversion is relatively rare due to the very small genetic target size for such mutations. We explored the phenotypic consequences of SCVs evolving faster growth by routes other than direct reversion, and in particular whether any of those routes allowed for the maintenance of antibiotic resistance. In a recent paper (mBio 8: e00358-17 we demonstrated the existence of several different routes of SCV evolution to faster growth, one of which maintained the antibiotic resistance phenotype. This discovery suggests that SCVs might be more adaptable and problematic that previously thought. They are capable of surviving as a slow-growing persistent form, before evolving into a significantly faster-growing form without sacrificing their antibiotic resistance phenotype.

  2. Evolving chromosomes and gene regulatory networks

    Indian Academy of Sciences (India)

    Aswin

    Genes under H NS control can be. (a) regulated by H NS. (b) regulated by H NS and StpA. Because backup by StpA is partial. Page 19. Gene expression level. H NS regulated xenogenes. Other genes. Page 20 ... recollect: H&NS silences highl transcribable genes. Gene expression level unilateral. Other genes epistatic ...

  3. The Evolving Definition of the Term "Gene".

    Science.gov (United States)

    Portin, Petter; Wilkins, Adam

    2017-04-01

    This paper presents a history of the changing meanings of the term "gene," over more than a century, and a discussion of why this word, so crucial to genetics, needs redefinition today. In this account, the first two phases of 20th century genetics are designated the "classical" and the "neoclassical" periods, and the current molecular-genetic era the "modern period." While the first two stages generated increasing clarity about the nature of the gene, the present period features complexity and confusion. Initially, the term "gene" was coined to denote an abstract "unit of inheritance," to which no specific material attributes were assigned. As the classical and neoclassical periods unfolded, the term became more concrete, first as a dimensionless point on a chromosome, then as a linear segment within a chromosome, and finally as a linear segment in the DNA molecule that encodes a polypeptide chain. This last definition, from the early 1960s, remains the one employed today, but developments since the 1970s have undermined its generality. Indeed, they raise questions about both the utility of the concept of a basic "unit of inheritance" and the long implicit belief that genes are autonomous agents. Here, we review findings that have made the classic molecular definition obsolete and propose a new one based on contemporary knowledge. Copyright © 2017 by the Genetics Society of America.

  4. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai.

    Science.gov (United States)

    Choi, Mi-Jin; Kim, Gun-Do; Kim, Jong-Myoung; Lim, Han Kyu

    2015-11-18

    The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%-3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females) encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3), vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  5. Differentially-Expressed Genes Associated with Faster Growth of the Pacific Abalone, Haliotis discus hannai

    Directory of Open Access Journals (Sweden)

    Mi-Jin Choi

    2015-11-01

    Full Text Available The Pacific abalone Haliotis discus hannai is used for commercial aquaculture in Korea. We examined the transcriptome of Pacific abalone Haliotis discus hannai siblings using NGS technology to identify genes associated with high growth rates. Pacific abalones grown for 200 days post-fertilization were divided into small-, medium-, and large-size groups with mean weights of 0.26 ± 0.09 g, 1.43 ± 0.405 g, and 5.24 ± 1.09 g, respectively. RNA isolated from the soft tissues of each group was subjected to RNA sequencing. Approximately 1%–3% of the transcripts were differentially expressed in abalones, depending on the growth rate. RT-PCR was carried out on thirty four genes selected to confirm the relative differences in expression detected by RNA sequencing. Six differentially-expressed genes were identified as associated with faster growth of the Pacific abalone. These include five up-regulated genes (including one specific to females encoding transcripts homologous to incilarin A, perlucin, transforming growth factor-beta-induced protein immunoglobulin-heavy chain 3 (ig-h3, vitelline envelope zona pellucida domain 4, and defensin, and one down-regulated gene encoding tomoregulin in large abalones. Most of the transcripts were expressed predominantly in the hepatopancreas. The genes identified in this study will lead to development of markers for identification of high-growth-rate abalones and female abalones.

  6. EVOLVE

    CERN Document Server

    Deutz, André; Schütze, Oliver; Legrand, Pierrick; Tantar, Emilia; Tantar, Alexandru-Adrian

    2017-01-01

    This book comprises nine selected works on numerical and computational methods for solving multiobjective optimization, game theory, and machine learning problems. It provides extended versions of selected papers from various fields of science such as computer science, mathematics and engineering that were presented at EVOLVE 2013 held in July 2013 at Leiden University in the Netherlands. The internationally peer-reviewed papers include original work on important topics in both theory and applications, such as the role of diversity in optimization, statistical approaches to combinatorial optimization, computational game theory, and cell mapping techniques for numerical landscape exploration. Applications focus on aspects including robustness, handling multiple objectives, and complex search spaces in engineering design and computational biology.

  7. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    Science.gov (United States)

    Steinacher, Arno; Bates, Declan G; Akman, Ozgur E; Soyer, Orkun S

    2016-01-01

    Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability) under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest an explanation for

  8. Nonlinear Dynamics in Gene Regulation Promote Robustness and Evolvability of Gene Expression Levels.

    Directory of Open Access Journals (Sweden)

    Arno Steinacher

    Full Text Available Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary pressures to allow adaptation, but at the same time be robust to perturbations. This creates a conflict in which mutations affecting regulatory networks must both generate variance but also be tolerated at the phenotype level. Here, we perform mathematical analyses and simulations of regulatory networks to better understand the potential trade-off between robustness and evolvability. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics, through the creation of regions presenting sudden changes in phenotype with small changes in genotype. For genotypes embedding low levels of nonlinearity, robustness and evolvability correlate negatively and almost perfectly. By contrast, genotypes embedding nonlinear dynamics allow expression levels to be robust to small perturbations, while generating high diversity (evolvability under larger perturbations. Thus, nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allowing disparate responses to different mutations. Using analytical derivations of robustness and system sensitivity, we show that these findings extend to a large class of gene regulatory network architectures and also hold for experimentally observed parameter regimes. Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long as key parameters of the system display specific relations irrespective of their absolute values. We find that within this parameter regime genotypes display low and noisy expression levels. Examining the phenotypic effects of mutations, we find an inverse correlation between robustness and evolvability that breaks only with nonlinearity in the network dynamics. Our results provide a possible solution to the robustness-evolvability trade-off, suggest

  9. Nonsynonymous substitution rate (Ka is a relatively consistent parameter for defining fast-evolving and slow-evolving protein-coding genes

    Directory of Open Access Journals (Sweden)

    Wang Lei

    2011-02-01

    Full Text Available Abstract Background Mammalian genome sequence data are being acquired in large quantities and at enormous speeds. We now have a tremendous opportunity to better understand which genes are the most variable or conserved, and what their particular functions and evolutionary dynamics are, through comparative genomics. Results We chose human and eleven other high-coverage mammalian genome data–as well as an avian genome as an outgroup–to analyze orthologous protein-coding genes using nonsynonymous (Ka and synonymous (Ks substitution rates. After evaluating eight commonly-used methods of Ka and Ks calculation, we observed that these methods yielded a nearly uniform result when estimating Ka, but not Ks (or Ka/Ks. When sorting genes based on Ka, we noticed that fast-evolving and slow-evolving genes often belonged to different functional classes, with respect to species-specificity and lineage-specificity. In particular, we identified two functional classes of genes in the acquired immune system. Fast-evolving genes coded for signal-transducing proteins, such as receptors, ligands, cytokines, and CDs (cluster of differentiation, mostly surface proteins, whereas the slow-evolving genes were for function-modulating proteins, such as kinases and adaptor proteins. In addition, among slow-evolving genes that had functions related to the central nervous system, neurodegenerative disease-related pathways were enriched significantly in most mammalian species. We also confirmed that gene expression was negatively correlated with evolution rate, i.e. slow-evolving genes were expressed at higher levels than fast-evolving genes. Our results indicated that the functional specializations of the three major mammalian clades were: sensory perception and oncogenesis in primates, reproduction and hormone regulation in large mammals, and immunity and angiotensin in rodents. Conclusion Our study suggests that Ka calculation, which is less biased compared to Ks and Ka

  10. Environmental Noise, Genetic Diversity and the Evolution of Evolvability and Robustness in Model Gene Networks

    Science.gov (United States)

    Steiner, Christopher F.

    2012-01-01

    The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or “evolvability”) can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise) compared to populations in stable or randomly varying (white noise) environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions. PMID:23284934

  11. New genes expressed in human brains: implications for annotating evolving genomes.

    Science.gov (United States)

    Zhang, Yong E; Landback, Patrick; Vibranovski, Maria; Long, Manyuan

    2012-11-01

    New genes have frequently formed and spread to fixation in a wide variety of organisms, constituting abundant sets of lineage-specific genes. It was recently reported that an excess of primate-specific and human-specific genes were upregulated in the brains of fetuses and infants, and especially in the prefrontal cortex, which is involved in cognition. These findings reveal the prevalent addition of new genetic components to the transcriptome of the human brain. More generally, these findings suggest that genomes are continually evolving in both sequence and content, eroding the conservation endowed by common ancestry. Despite increasing recognition of the importance of new genes, we highlight here that these genes are still seriously under-characterized in functional studies and that new gene annotation is inconsistent in current practice. We propose an integrative approach to annotate new genes, taking advantage of functional and evolutionary genomic methods. We finally discuss how the refinement of new gene annotation will be important for the detection of evolutionary forces governing new gene origination. Copyright © 2012 WILEY Periodicals, Inc.

  12. The impact of gene expression variation on the robustness and evolvability of a developmental gene regulatory network.

    Directory of Open Access Journals (Sweden)

    David A Garfield

    2013-10-01

    Full Text Available Regulatory interactions buffer development against genetic and environmental perturbations, but adaptation requires phenotypes to change. We investigated the relationship between robustness and evolvability within the gene regulatory network underlying development of the larval skeleton in the sea urchin Strongylocentrotus purpuratus. We find extensive variation in gene expression in this network throughout development in a natural population, some of which has a heritable genetic basis. Switch-like regulatory interactions predominate during early development, buffer expression variation, and may promote the accumulation of cryptic genetic variation affecting early stages. Regulatory interactions during later development are typically more sensitive (linear, allowing variation in expression to affect downstream target genes. Variation in skeletal morphology is associated primarily with expression variation of a few, primarily structural, genes at terminal positions within the network. These results indicate that the position and properties of gene interactions within a network can have important evolutionary consequences independent of their immediate regulatory role.

  13. Identification of fast-evolving genes in the scleractinian coral Acropora using comparative EST analysis.

    Directory of Open Access Journals (Sweden)

    Akira Iguchi

    Full Text Available To identify fast-evolving genes in reef-building corals, we performed direct comparative sequence analysis with expressed sequence tag (EST datasets from two acroporid species: Acropora palmata from the Caribbean Sea and A. millepora from the Great Barrier Reef in Australia. Comparison of 589 independent sequences from 1,421 A. palmata contigs, with 10,247 A. millepora contigs resulted in the identification of 196 putative homologues. Most of the homologous pairs demonstrated high amino acid similarities (over 90%. Comparisons of putative homologues showing low amino acid similarities (under 90% among the Acropora species to the near complete datasets from two other cnidarians (Hydra magnipapillata and Nematostella vectensis implied that some were non-orthologous. Within 86 homologous pairs, 39 exhibited dN/dS ratios significantly less than 1, suggesting that these genes are under purifying selection associated with functional constraints. Eight independent genes showed dN/dS ratios exceeding 1, while three deviated significantly from 1, suggesting that these genes may play important roles in the adaptive evolution of Acropora. Our results also indicated that CEL-III lectin was under positive selection, consistent with a possible role in immunity or symbiont recognition. Further studies are needed to clarify the possible functions of the genes under positive selection to provide insight into the evolutionary process of corals.

  14. Identification of fast-evolving genes in the scleractinian coral Acropora using comparative EST analysis.

    Science.gov (United States)

    Iguchi, Akira; Shinzato, Chuya; Forêt, Sylvain; Miller, David J

    2011-01-01

    To identify fast-evolving genes in reef-building corals, we performed direct comparative sequence analysis with expressed sequence tag (EST) datasets from two acroporid species: Acropora palmata from the Caribbean Sea and A. millepora from the Great Barrier Reef in Australia. Comparison of 589 independent sequences from 1,421 A. palmata contigs, with 10,247 A. millepora contigs resulted in the identification of 196 putative homologues. Most of the homologous pairs demonstrated high amino acid similarities (over 90%). Comparisons of putative homologues showing low amino acid similarities (under 90%) among the Acropora species to the near complete datasets from two other cnidarians (Hydra magnipapillata and Nematostella vectensis) implied that some were non-orthologous. Within 86 homologous pairs, 39 exhibited dN/dS ratios significantly less than 1, suggesting that these genes are under purifying selection associated with functional constraints. Eight independent genes showed dN/dS ratios exceeding 1, while three deviated significantly from 1, suggesting that these genes may play important roles in the adaptive evolution of Acropora. Our results also indicated that CEL-III lectin was under positive selection, consistent with a possible role in immunity or symbiont recognition. Further studies are needed to clarify the possible functions of the genes under positive selection to provide insight into the evolutionary process of corals.

  15. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate.

    Science.gov (United States)

    Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P

    2016-05-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. Copyright © 2016 by the Genetics Society of America.

  16. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    Science.gov (United States)

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  17. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Eugene V. Koonin

    2016-07-01

    Full Text Available The wide spread of gene exchange and loss in the prokaryotic world has prompted the concept of ‘lateral genomics’ to the point of an outright denial of the relevance of phylogenetic trees for evolution. However, the pronounced coherence congruence of the topologies of numerous gene trees, particularly those for (nearly universal genes, translates into the notion of a statistical tree of life (STOL, which reflects a central trend of vertical evolution. The STOL can be employed as a framework for reconstruction of the evolutionary processes in the prokaryotic world. Quantitatively, however, horizontal gene transfer (HGT dominates microbial evolution, with the rate of gene gain and loss being comparable to the rate of point mutations and much greater than the duplication rate. Theoretical models of evolution suggest that HGT is essential for the survival of microbial populations that otherwise deteriorate due to the Muller’s ratchet effect. Apparently, at least some bacteria and archaea evolved dedicated vehicles for gene transfer that evolved from selfish elements such as plasmids and viruses. Recent phylogenomic analyses suggest that episodes of massive HGT were pivotal for the emergence of major groups of organisms such as multiple archaeal phyla as well as eukaryotes. Similar analyses appear to indicate that, in addition to donating hundreds of genes to the emerging eukaryotic lineage, mitochondrial endosymbiosis severely curtailed HGT. These results shed new light on the routes of evolutionary transitions, but caution is due given the inherent uncertainty of deep phylogenies.

  18. Networks in biological systems: An investigation of the Gene Ontology as an evolving network

    International Nuclear Information System (INIS)

    Coronnello, C; Tumminello, M; Micciche, S; Mantegna, R.N.

    2009-01-01

    Many biological systems can be described as networks where different elements interact, in order to perform biological processes. We introduce a network associated with the Gene Ontology. Specifically, we construct a correlation-based network where the vertices are the terms of the Gene Ontology and the link between each two terms is weighted on the basis of the number of genes that they have in common. We analyze a filtered network obtained from the correlation-based network and we characterize its evolution over different releases of the Gene Ontology.

  19. Writing faster Python

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    Did you know that Python preallocates integers from -5 to 257 ? Reusing them 1000 times, instead of allocating memory for a bigger integer, can save you a couple of milliseconds of code’s execution time. If you want to learn more about this kind of optimizations then, … well, probably this presentation is not for you :) Instead of going into such small details, I will talk about more "sane" ideas for writing faster code. After a very brief overview of how to optimize Python code (rule 1: don’t do this; rule 2: don’t do this yet; rule 3: ok, but what if I really want to do this ?), I will show simple and fast ways of measuring the execution time and finally, discuss examples of how some code structures could be improved. You will see: - What is the fastest way of removing duplicates from a list - How much faster your code is when you reuse the built-in functions instead of trying to reinvent the wheel - What is faster than the good ol’ for loop - If the lookup is faster in a list or a set (and w...

  20. Rapidly evolving marmoset MSMB genes are differently expressed in the male genital tract

    Directory of Open Access Journals (Sweden)

    Ceder Yvonne

    2009-09-01

    Full Text Available Abstract Background Beta-microseminoprotein, an abundant component in prostatic fluid, is encoded by the potential tumor suppressor gene MSMB. Some New World monkeys carry several copies of this gene, in contrast to most mammals, including humans, which have one only. Here we have investigated the background for the species difference by analyzing the chromosomal organization and expression of MSMB in the common marmoset (Callithrix jacchus. Methods Genes were identified in the Callithrix jacchus genome database using bioinformatics and transcripts were analyzed by RT-PCR and quantified by real time PCR in the presence of SYBR green. Results The common marmoset has five MSMB: one processed pseudogene and four functional genes. The latter encompass homologous genomic regions of 32-35 kb, containing the genes of 12-14 kb and conserved upstream and downstream regions of 14-19 kb and 3-4 kb. One gene, MSMB1, occupies the same position on the chromosome as the single human gene. On the same chromosome, but several Mb away, is another MSMB locus situated with MSMB2, MSMB3 and MSMB4 arranged in tandem. Measurements of transcripts demonstrated that all functional genes are expressed in the male genital tract, generating very high transcript levels in the prostate. The transcript levels in seminal vesicles and testis are two and four orders of magnitude lower. A single gene, MSMB3, accounts for more than 90% of MSMB transcripts in both the prostate and the seminal vesicles, whereas in the testis around half of the transcripts originate from MSMB2. These genes display rapid evolution with a skewed distribution of mutated nucleotides; in MSMB2 they affect nucleotides encoding the N-terminal Greek key domain, whereas in MSMB3 it is the C-terminal MSMB-unique domain that is affected. Conclusion Callitrichide monkeys have four functional MSMB that are all expressed in the male genital tract, but the product from one gene, MSMB3, will predominate in seminal

  1. Preparing for faster filling

    CERN Multimedia

    CERN Bulletin

    2010-01-01

    Following the programmed technical stop last week, operators focussed on preparing the machine for faster filling, which includes multibunch injection and a faster pre-cycle phase.   The LHC1 screen shot during the first multibunch injection operation. The LHC operational schedule incorporates a technical stop for preventive maintenance roughly every six weeks of stable operation, during which several interventions on the various machines are carried out. Last week these included the replacement of a faulty magnet in the SPS pre-accelerator, which required the subsequent re-setting of the system of particle extraction and transfer to the LHC. At the end of last week, all the machines were handed back for operation and work could start on accommodating all the changes made into the complex systems in order for normal operation to be resumed. These ‘recovery’ operations continued through the weekend and into this week. At the beginning of this week, operators succeeded in pro...

  2. Bribes for Faster Delivery

    OpenAIRE

    Sanyal, Amal

    2000-01-01

    The paper models the practice of charging bribes for faster delivery of essential services in third world countries. It then examines the possibility of curbing corruption by supervision, and secondly, by introducing competition among delivery agents. It is argued that a supervisory solution eludes the problem because no hard evidence of the reduction of corruption can be established for this type of offenses. It is also shown that using more than one supplier cannot eliminate the practice, a...

  3. Gene Regulation in Primates Evolves under Tissue-Specific Selection Pressures

    OpenAIRE

    Blekhman, Ran; Oshlack, Alicia; Chabot, Adrien E.; Smyth, Gordon K.; Gilad, Yoav

    2008-01-01

    Author Summary It has long been hypothesized that in addition to structural changes to proteins, changes in gene regulation might underlie many of the anatomic and behavioral differences between humans and other primates. However, to date, there are only a handful of examples of regulatory adaptations in humans. In this work, we present a genome-wide study of gene expression levels in livers, kidneys, and hearts from three species: humans, chimpanzees, and rhesus macaques. These data allowed ...

  4. Identifying time-delayed gene regulatory networks via an evolvable hierarchical recurrent neural network.

    Science.gov (United States)

    Kordmahalleh, Mina Moradi; Sefidmazgi, Mohammad Gorji; Harrison, Scott H; Homaifar, Abdollah

    2017-01-01

    The modeling of genetic interactions within a cell is crucial for a basic understanding of physiology and for applied areas such as drug design. Interactions in gene regulatory networks (GRNs) include effects of transcription factors, repressors, small metabolites, and microRNA species. In addition, the effects of regulatory interactions are not always simultaneous, but can occur after a finite time delay, or as a combined outcome of simultaneous and time delayed interactions. Powerful biotechnologies have been rapidly and successfully measuring levels of genetic expression to illuminate different states of biological systems. This has led to an ensuing challenge to improve the identification of specific regulatory mechanisms through regulatory network reconstructions. Solutions to this challenge will ultimately help to spur forward efforts based on the usage of regulatory network reconstructions in systems biology applications. We have developed a hierarchical recurrent neural network (HRNN) that identifies time-delayed gene interactions using time-course data. A customized genetic algorithm (GA) was used to optimize hierarchical connectivity of regulatory genes and a target gene. The proposed design provides a non-fully connected network with the flexibility of using recurrent connections inside the network. These features and the non-linearity of the HRNN facilitate the process of identifying temporal patterns of a GRN. Our HRNN method was implemented with the Python language. It was first evaluated on simulated data representing linear and nonlinear time-delayed gene-gene interaction models across a range of network sizes and variances of noise. We then further demonstrated the capability of our method in reconstructing GRNs of the Saccharomyces cerevisiae synthetic network for in vivo benchmarking of reverse-engineering and modeling approaches (IRMA). We compared the performance of our method to TD-ARACNE, HCC-CLINDE, TSNI and ebdbNet across different network

  5. Structural organization of glycophorin A and B genes: Glycophorin B gene evolved by homologous recombination at Alu repeat sequences

    International Nuclear Information System (INIS)

    Kudo, Shinichi; Fukuda, Minoru

    1989-01-01

    Glycophorins A (GPA) and B (GPB) are two major sialoglycoproteins of the human erythrocyte membrane. Here the authors present a comparison of the genomic structures of GPA and GPB developed by analyzing DNA clones isolated from a K562 genomic library. Nucleotide sequences of exon-intron junctions and 5' and 3' flanking sequences revealed that the GPA and GPB genes consist of 7 and 5 exons, respectively, and both genes have >95% identical sequence from the 5' flanking region to the region ∼ 1 kilobase downstream from the exon encoding the transmembrane regions. In this homologous part of the genes, GPB lacks one exon due to a point mutation at the 5' splicing site of the third intron, which inactivates the 5' cleavage event of splicing and leads to ligation of the second to the fourth exon. Following these very homologous sequences, the genomic sequences for GPA and GPB diverge significantly and no homology can be detected in their 3' end sequences. The analysis of the Alu sequences and their flanking direct repeat sequences suggest that an ancestral genomic structure has been maintained in the GPA gene, whereas the GPB gene has arisen from the acquisition of 3' sequences different from those of the GPA gene by homologous recombination at the Alu repeats during or after gene duplication

  6. Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes

    Directory of Open Access Journals (Sweden)

    Krzywinski Jaroslaw

    2009-07-01

    Full Text Available Abstract Background Male mosquitoes do not feed on blood and are not involved in delivery of pathogens to humans. Consequently, they are seldom the subjects of research, which results in a very poor understanding of their biology. To gain insights into male developmental processes we sought to identify genes transcribed exclusively in the reproductive tissues of male Anopheles gambiae pupae. Results Using a cDNA subtraction strategy, five male-specifically or highly male-biased expressed genes were isolated, four of which remain unannotated in the An. gambiae genome. Spatial and temporal expression patterns suggest that each of these genes is involved in the mid-late stages of spermatogenesis. Their sequences are rapidly evolving; however, two genes possess clear homologs in a wide range of taxa and one of these probably acts in a sperm motility control mechanism conserved in many organisms, including humans. The other three genes have no match to sequences from non-mosquito taxa, thus can be regarded as orphans. RNA in situ hybridization demonstrated that one of the orphans is transcribed in spermatids, which suggests its involvement in sperm maturation. Two other orphans have unknown functions. Expression analysis of orthologs of all five genes indicated that male-biased transcription was not conserved in the majority of cases in Aedes and Culex. Conclusion Discovery of testis-expressed orphan genes in mosquitoes opens new prospects for the development of innovative control methods. The orphan encoded proteins may represent unique targets of selective anti-mosquito sterilizing agents that will not affect non-target organisms.

  7. Analysis of expression in the Anopheles gambiae developing testes reveals rapidly evolving lineage-specific genes in mosquitoes.

    Science.gov (United States)

    Krzywinska, Elzbieta; Krzywinski, Jaroslaw

    2009-07-06

    Male mosquitoes do not feed on blood and are not involved in delivery of pathogens to humans. Consequently, they are seldom the subjects of research, which results in a very poor understanding of their biology. To gain insights into male developmental processes we sought to identify genes transcribed exclusively in the reproductive tissues of male Anopheles gambiae pupae. Using a cDNA subtraction strategy, five male-specifically or highly male-biased expressed genes were isolated, four of which remain unannotated in the An. gambiae genome. Spatial and temporal expression patterns suggest that each of these genes is involved in the mid-late stages of spermatogenesis. Their sequences are rapidly evolving; however, two genes possess clear homologs in a wide range of taxa and one of these probably acts in a sperm motility control mechanism conserved in many organisms, including humans. The other three genes have no match to sequences from non-mosquito taxa, thus can be regarded as orphans. RNA in situ hybridization demonstrated that one of the orphans is transcribed in spermatids, which suggests its involvement in sperm maturation. Two other orphans have unknown functions. Expression analysis of orthologs of all five genes indicated that male-biased transcription was not conserved in the majority of cases in Aedes and Culex. Discovery of testis-expressed orphan genes in mosquitoes opens new prospects for the development of innovative control methods. The orphan encoded proteins may represent unique targets of selective anti-mosquito sterilizing agents that will not affect non-target organisms.

  8. Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes

    Directory of Open Access Journals (Sweden)

    Lane Robert P

    2007-09-01

    Full Text Available Abstract The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system.

  9. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice

    Science.gov (United States)

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E.; Qiang, Sheng

    2015-01-01

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China. PMID:26012494

  10. Cytoplasmic-genetic male sterility gene provides direct evidence for some hybrid rice recently evolving into weedy rice.

    Science.gov (United States)

    Zhang, Jingxu; Lu, Zuomei; Dai, Weimin; Song, Xiaoling; Peng, Yufa; Valverde, Bernal E; Qiang, Sheng

    2015-05-27

    Weedy rice infests paddy fields worldwide at an alarmingly increasing rate. There is substantial evidence indicating that many weedy rice forms originated from or are closely related to cultivated rice. There is suspicion that the outbreak of weedy rice in China may be related to widely grown hybrid rice due to its heterosis and the diversity of its progeny, but this notion remains unsupported by direct evidence. We screened weedy rice accessions by both genetic and molecular marker tests for the cytoplasmic male sterility (CMS) genes (Wild abortive, WA, and Boro type, BT) most widely used in the production of indica and japonica three-line hybrid rice as a diagnostic trait of direct parenthood. Sixteen weedy rice accessions of the 358 tested (4.5%) contained the CMS-WA gene; none contained the CMS-BT gene. These 16 accessions represent weedy rices recently evolved from maternal hybrid rice derivatives, given the primarily maternal inheritance of this trait. Our results provide key direct evidence that hybrid rice can be involved in the evolution of some weedy rice accessions, but is not a primary factor in the recent outbreak of weedy rice in China.

  11. Functions of two distinct prolactin-releasing peptides evolved from a common ancestral gene

    Directory of Open Access Journals (Sweden)

    Tetsuya eTachibana

    2014-11-01

    Full Text Available Prolactin-releasing peptide (PrRP is one of the RF-amide peptides and was originally identified in the bovine hypothalamus as a stimulator of prolactin (PRL release. Independently, another RF-amide peptide was found in Japanese crucian carp and named Carassius RFa (C-RFa, which shows high homology to PrRP and stimulates PRL secretion in teleost fish. Therefore, C-RFa has been recognized as fish PrRP. However, recent work has revealed that PrRP and C-RFa in non-mammalian vertebrates are encoded by separate genes originated through duplication of an ancestral gene. Indeed, both PrRP and C-RFa are suggested to exist in teleost, amphibian, reptile, and avian species. Therefore, we propose that non-mammalian PrRP (C-RFa be renamed PrRP2. Despite a common evolutionary origin, PrRP2 appears to be a physiological regulator of PRL, whereas this is not a consistent role for PrRP itself. Further work revealed that the biological functions of PrRP and PrRP2 are not limited solely to PRL release, because they are also neuromodulators of several hypothalamus-pituitary axes and are involved in some brain circuits related to the regulation of food intake, stress, and cardiovascular functions. However, these actions appear to be different among vertebrates. For example, central injection of PrRP inhibits feeding behavior in rodents and teleosts while it stimulates it in chicks. Therefore, both PrRP and PrRP2 have acquired diverse actions through evolution. In this review, we integrate the burgeoning information of structures, expression profiles, and multiple biological actions of PrRP in higher vertebrates, as well as those of PrRP2 in non-mammals.

  12. Longer - Faster - Purer

    CERN Multimedia

    Caroline Duc

    2013-01-01

    The MR-ToF-MS, a new ion trap, has been integrated into ISOLTRAP, the experiment that performs accurate mass measurements on short-lived nuclides produced at ISOLDE. When used as a mass separator and spectrometer, it extends ISOLTRAP’s experimental reach towards the limits of nuclear stability.   Susanne Kreim, the ISOLTRAP local group leader at CERN in front of a part of the ISOLTRAP device. When mass measurement experiments like ISOLTRAP* are placed in an on-line radioactive ion-beam facility they face a major challenge: the efficient and fast transfer of the nuclide of interest to the location where the mass measurement is performed. The biggest yield of one selected nuclide, without contaminants, needs to be transferred to the set-up as quickly as possible in order to measure its mass with the greatest precision. Recently, the ISOLTRAP collaboration installed a new device that provides a faster separation of isobars.** It has significantly improved ISOLTRAP’s purificat...

  13. Polymorphism in interleukin-7 receptor α gene is associated with faster CD4 T-cell recovery after initiation of combination antiretroviral therapy

    DEFF Research Database (Denmark)

    Hartling, Hans J; Thørner, Lise W; Erikstrup, Christian

    2014-01-01

    OBJECTIVES: To investigate single-nucleotide polymorphisms (SNPs) in the gene encoding interleukin-7 receptor α (IL7RA) as predictors for CD4⁺ T-cell change after initiation of combination antiretroviral therapy (cART) in HIV-infected whites. DESIGN: SNPs in IL7RA were determined in the Danish HIV...

  14. Maintaining evolvability.

    Science.gov (United States)

    Crow, James F

    2008-12-01

    Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p --> 1, p(1 - p) --> 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy

  15. How Genes Evolve

    Indian Academy of Sciences (India)

    focus on ecological and evolutionary genetics of ... construction of phylogenetic trees from molecular data. More recently, use of ... 500 MVA- Bony fishes. Ca 100 MVA - .... functional or structural domain of the proteins e.g. tropomysine chain ...

  16. Evaluating the phylogenetic signal limit from mitogenomes, slow evolving nuclear genes, and the concatenation approach. New insights into the Lacertini radiation using fast evolving nuclear genes and species trees.

    Science.gov (United States)

    Mendes, Joana; Harris, D James; Carranza, Salvador; Salvi, Daniele

    2016-07-01

    Estimating the phylogeny of lacertid lizards, and particularly the tribe Lacertini has been challenging, possibly due to the fast radiation of this group resulting in a hard polytomy. However this is still an open question, as concatenated data primarily from mitochondrial markers have been used so far whereas in a recent phylogeny based on a compilation of these data within a squamate supermatrix the basal polytomy seems to be resolved. In this study, we estimate phylogenetic relationships between all Lacertini genera using for the first time DNA sequences from five fast evolving nuclear genes (acm4, mc1r, pdc, βfib and reln) and two mitochondrial genes (nd4 and 12S). We generated a total of 529 sequences from 88 species and used Maximum Likelihood and Bayesian Inference methods based on concatenated multilocus dataset as well as a coalescent-based species tree approach with the aim of (i) shedding light on the basal relationships of Lacertini (ii) assessing the monophyly of genera which were previously questioned, and (iii) discussing differences between estimates from this and previous studies based on different markers, and phylogenetic methods. Results uncovered (i) a new phylogenetic clade formed by the monotypic genera Archaeolacerta, Zootoca, Teira and Scelarcis; and (ii) support for the monophyly of the Algyroides clade, with two sister species pairs represented by western (A. marchi and A. fitzingeri) and eastern (A. nigropunctatus and A. moreoticus) lineages. In both cases the members of these groups show peculiar morphology and very different geographical distributions, suggesting that they are relictual groups that were once diverse and widespread. They probably originated about 11-13 million years ago during early events of speciation in the tribe, and the split between their members is estimated to be only slightly older. This scenario may explain why mitochondrial markers (possibly saturated at higher divergence levels) or slower nuclear markers

  17. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    Energy Technology Data Exchange (ETDEWEB)

    Pejcha, Robert; Ludwig, Martha L. (Michigan)

    2010-03-08

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two ({beta}{alpha}){sub 8} barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys){sub 3}Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E {center_dot} Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  18. Cobalamin-Independent Methionine Synthase (MetE): A Face-to-Face Double Barrel that Evolved by Gene Duplication

    International Nuclear Information System (INIS)

    Pejcha, Robert; Ludwig, Martha L.

    2005-01-01

    Cobalamin-independent methionine synthase (MetE) catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy) without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH), both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (βα) 8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys) 3 Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E · Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  19. Cobalamin-independent methionine synthase (MetE: a face-to-face double barrel that evolved by gene duplication.

    Directory of Open Access Journals (Sweden)

    Robert Pejchal

    2005-02-01

    Full Text Available Cobalamin-independent methionine synthase (MetE catalyzes the transfer of a methyl group from methyltetrahydrofolate to L-homocysteine (Hcy without using an intermediate methyl carrier. Although MetE displays no detectable sequence homology with cobalamin-dependent methionine synthase (MetH, both enzymes require zinc for activation and binding of Hcy. Crystallographic analyses of MetE from T. maritima reveal an unusual dual-barrel structure in which the active site lies between the tops of the two (betaalpha(8 barrels. The fold of the N-terminal barrel confirms that it has evolved from the C-terminal polypeptide by gene duplication; comparisons of the barrels provide an intriguing example of homologous domain evolution in which binding sites are obliterated. The C-terminal barrel incorporates the zinc ion that binds and activates Hcy. The zinc-binding site in MetE is distinguished from the (Cys(3Zn site in the related enzymes, MetH and betaine-homocysteine methyltransferase, by its position in the barrel and by the metal ligands, which are histidine, cysteine, glutamate, and cysteine in the resting form of MetE. Hcy associates at the face of the metal opposite glutamate, which moves away from the zinc in the binary E.Hcy complex. The folate substrate is not intimately associated with the N-terminal barrel; instead, elements from both barrels contribute binding determinants in a binary complex in which the folate substrate is incorrectly oriented for methyl transfer. Atypical locations of the Hcy and folate sites in the C-terminal barrel presumably permit direct interaction of the substrates in a ternary complex. Structures of the binary substrate complexes imply that rearrangement of folate, perhaps accompanied by domain rearrangement, must occur before formation of a ternary complex that is competent for methyl transfer.

  20. NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3β resulting in the stabilization of MYCN in human neuroblastomas.

    Directory of Open Access Journals (Sweden)

    Yusuke Suenaga

    2014-01-01

    Full Text Available The rearrangement of pre-existing genes has long been thought of as the major mode of new gene generation. Recently, de novo gene birth from non-genic DNA was found to be an alternative mechanism to generate novel protein-coding genes. However, its functional role in human disease remains largely unknown. Here we show that NCYM, a cis-antisense gene of the MYCN oncogene, initially thought to be a large non-coding RNA, encodes a de novo evolved protein regulating the pathogenesis of human cancers, particularly neuroblastoma. The NCYM gene is evolutionally conserved only in the taxonomic group containing humans and chimpanzees. In primary human neuroblastomas, NCYM is 100% co-amplified and co-expressed with MYCN, and NCYM mRNA expression is associated with poor clinical outcome. MYCN directly transactivates both NCYM and MYCN mRNA, whereas NCYM stabilizes MYCN protein by inhibiting the activity of GSK3β, a kinase that promotes MYCN degradation. In contrast to MYCN transgenic mice, neuroblastomas in MYCN/NCYM double transgenic mice were frequently accompanied by distant metastases, behavior reminiscent of human neuroblastomas with MYCN amplification. The NCYM protein also interacts with GSK3β, thereby stabilizing the MYCN protein in the tumors of the MYCN/NCYM double transgenic mice. Thus, these results suggest that GSK3β inhibition by NCYM stabilizes the MYCN protein both in vitro and in vivo. Furthermore, the survival of MYCN transgenic mice bearing neuroblastoma was improved by treatment with NVP-BEZ235, a dual PI3K/mTOR inhibitor shown to destabilize MYCN via GSK3β activation. In contrast, tumors caused in MYCN/NCYM double transgenic mice showed chemo-resistance to the drug. Collectively, our results show that NCYM is the first de novo evolved protein known to act as an oncopromoting factor in human cancer, and suggest that de novo evolved proteins may functionally characterize human disease.

  1. Adaptation of Escherichia coli to glucose promotes evolvability in lactose.

    Science.gov (United States)

    Phillips, Kelly N; Castillo, Gerardo; Wünsche, Andrea; Cooper, Tim F

    2016-02-01

    The selective history of a population can influence its subsequent evolution, an effect known as historical contingency. We previously observed that five of six replicate populations that were evolved in a glucose-limited environment for 2000 generations, then switched to lactose for 1000 generations, had higher fitness increases in lactose than populations started directly from the ancestor. To test if selection in glucose systematically increased lactose evolvability, we started 12 replay populations--six from a population subsample and six from a single randomly selected clone--from each of the six glucose-evolved founder populations. These replay populations and 18 ancestral populations were evolved for 1000 generations in a lactose-limited environment. We found that replay populations were initially slightly less fit in lactose than the ancestor, but were more evolvable, in that they increased in fitness at a faster rate and to higher levels. This result indicates that evolution in the glucose environment resulted in genetic changes that increased the potential of genotypes to adapt to lactose. Genome sequencing identified four genes--iclR, nadR, spoT, and rbs--that were mutated in most glucose-evolved clones and are candidates for mediating increased evolvability. Our results demonstrate that short-term selective costs during selection in one environment can lead to changes in evolvability that confer longer term benefits. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  2. An evolvable oestrogen receptor activity sensor: development of a modular system for integrating multiple genes into the yeast genome

    NARCIS (Netherlands)

    Fox, J.E.; Bridgham, J.T.; Bovee, T.F.H.; Thornton, J.W.

    2007-01-01

    To study a gene interaction network, we developed a gene-targeting strategy that allows efficient and stable genomic integration of multiple genetic constructs at distinct target loci in the yeast genome. This gene-targeting strategy uses a modular plasmid with a recyclable selectable marker and a

  3. Intrinsic incompatibilities evolving as a by-product of divergent ecological selection: Considering them in empirical studies on divergence with gene flow.

    Science.gov (United States)

    Kulmuni, J; Westram, A M

    2017-06-01

    The possibility of intrinsic barriers to gene flow is often neglected in empirical research on local adaptation and speciation with gene flow, for example when interpreting patterns observed in genome scans. However, we draw attention to the fact that, even with gene flow, divergent ecological selection may generate intrinsic barriers involving both ecologically selected and other interacting loci. Mechanistically, the link between the two types of barriers may be generated by genes that have multiple functions (i.e., pleiotropy), and/or by gene interaction networks. Because most genes function in complex networks, and their evolution is not independent of other genes, changes evolving in response to ecological selection can generate intrinsic barriers as a by-product. A crucial question is to what extent such by-product barriers contribute to divergence and speciation-that is whether they stably reduce gene flow. We discuss under which conditions by-product barriers may increase isolation. However, we also highlight that, depending on the conditions (e.g., the amount of gene flow and the strength of selection acting on the intrinsic vs. the ecological barrier component), the intrinsic incompatibility may actually destabilize barriers to gene flow. In practice, intrinsic barriers generated as a by-product of divergent ecological selection may generate peaks in genome scans that cannot easily be interpreted. We argue that empirical studies on divergence with gene flow should consider the possibility of both ecological and intrinsic barriers. Future progress will likely come from work combining population genomic studies, experiments quantifying fitness and molecular studies on protein function and interactions. © 2017 The Authors. Molecular Ecology Published by John Wiley & Sons Ltd.

  4. Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages

    Science.gov (United States)

    Fungi that have the enzymes cyanase and carbonic anhydrase show a limited capacity to detoxify cyanate, a fungicide employed by both plants and humans. Here, we describe a novel two-gene cluster that comprises duplicated cyanase and carbonic anhydrase copies, which we name the CCA gene cluster, trac...

  5. The Asian Rice Gall Midge (Orseolia oryzae Mitogenome Has Evolved Novel Gene Boundaries and Tandem Repeats That Distinguish Its Biotypes.

    Directory of Open Access Journals (Sweden)

    Isha Atray

    Full Text Available The complete mitochondrial genome of the Asian rice gall midge, Orseolia oryzae (Diptera; Cecidomyiidae was sequenced, annotated and analysed in the present study. The circular genome is 15,286 bp with 13 protein-coding genes, 22 tRNAs and 2 ribosomal RNA genes, and a 578 bp non-coding control region. All protein coding genes used conventional start codons and terminated with a complete stop codon. The genome presented many unusual features: (1 rearrangement in the order of tRNAs as well as protein coding genes; (2 truncation and unusual secondary structures of tRNAs; (3 presence of two different repeat elements in separate non-coding regions; (4 presence of one pseudo-tRNA gene; (5 inversion of the rRNA genes; (6 higher percentage of non-coding regions when compared with other insect mitogenomes. Rearrangements of the tRNAs and protein coding genes are explained on the basis of tandem duplication and random loss model and why intramitochondrial recombination is a better model for explaining rearrangements in the O. oryzae mitochondrial genome is discussed. Furthermore, we evaluated the number of iterations of the tandem repeat elements found in the mitogenome. This led to the identification of genetic markers capable of differentiating rice gall midge biotypes and the two Orseolia species investigated.

  6. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions.

    Science.gov (United States)

    Smith, Eric E; Malik, Harmit S

    2009-05-01

    Apolipoprotein L1 (APOL1) is a human protein that confers immunity to Trypanosoma brucei infections but can be countered by a trypanosome-encoded antagonist SRA. APOL1 belongs to a family of programmed cell death genes whose proteins can initiate host apoptosis or autophagic death. We report here that all six members of the APOL gene family (APOL1-6) present in humans have rapidly evolved in simian primates. APOL6, furthermore, shows evidence of an adaptive sweep during recent human evolution. In each APOL gene tested, we found rapidly evolving codons in or adjacent to the SRA-interacting protein domain (SID), which is the domain of APOL1 that interacts with SRA. In APOL6, we also found a rapidly changing 13-amino-acid cluster in the membrane-addressing domain (MAD), which putatively functions as a pH sensor and regulator of cell death. We predict that APOL genes are antagonized by pathogens by at least two distinct mechanisms: SID antagonists, which include SRA, that interact with the SID of various APOL proteins, and MAD antagonists that interact with the MAD hinge base of APOL6. These antagonists either block or prematurely cause APOL-mediated programmed cell death of host cells to benefit the infecting pathogen. These putative interactions must occur inside host cells, in contrast to secreted APOL1 that trafficks to the trypanosome lysosome. Hence, the dynamic APOL gene family appears to be an important link between programmed cell death of host cells and immunity to pathogens.

  7. Zero bugs and program faster

    CERN Document Server

    Thompson, Kate

    2015-01-01

    A book about programming, improving skill, and avoiding mistakes. The author spent two years researching every bug avoidance technique she could find. This book contains the best of them. If you want to program faster, with fewer bugs, and write more secure code, buy this book! "This is the best book I have ever read." - Anonymous reviewer "Four score and seven years ago this book helped me debug my server code." -Abraham Lincoln "Would my Javascript have memory leaks without this book? Would fishes fly without water?" -Socrates "This book is the greatest victory since the Spanish Armada, and the best about programming." -Queen Elizabeth

  8. Size matters: bigger is faster.

    Science.gov (United States)

    Sereno, Sara C; O'Donnell, Patrick J; Sereno, Margaret E

    2009-06-01

    A largely unexplored aspect of lexical access in visual word recognition is "semantic size"--namely, the real-world size of an object to which a word refers. A total of 42 participants performed a lexical decision task on concrete nouns denoting either big or small objects (e.g., bookcase or teaspoon). Items were matched pairwise on relevant lexical dimensions. Participants' reaction times were reliably faster to semantically "big" versus "small" words. The results are discussed in terms of possible mechanisms, including more active representations for "big" words, due to the ecological importance attributed to large objects in the environment and the relative speed of neural responses to large objects.

  9. AS3MT-mediated tolerance to arsenic evolved by multiple independent horizontal gene transfers from bacteria to eukaryotes

    DEFF Research Database (Denmark)

    Palmgren, Michael; Engström, Karin; Hallström, Björn M.

    2017-01-01

    the evolutionary origin of AS3MT and assessed the ability of different genotypes to produce methylated arsenic metabolites. Phylogenetic analysis suggests that multiple, independent horizontal gene transfers between different bacteria, and from bacteria to eukaryotes, increased tolerance to environmental arsenic...

  10. The Ever-Evolving Concept of the Gene: The Use of RNA/Protein Experimental Techniques to Understand Genome Functions

    Directory of Open Access Journals (Sweden)

    Andrea Cipriano

    2018-03-01

    Full Text Available The completion of the human genome sequence together with advances in sequencing technologies have shifted the paradigm of the genome, as composed of discrete and hereditable coding entities, and have shown the abundance of functional noncoding DNA. This part of the genome, previously dismissed as “junk” DNA, increases proportionally with organismal complexity and contributes to gene regulation beyond the boundaries of known protein-coding genes. Different classes of functionally relevant nonprotein-coding RNAs are transcribed from noncoding DNA sequences. Among them are the long noncoding RNAs (lncRNAs, which are thought to participate in the basal regulation of protein-coding genes at both transcriptional and post-transcriptional levels. Although knowledge of this field is still limited, the ability of lncRNAs to localize in different cellular compartments, to fold into specific secondary structures and to interact with different molecules (RNA or proteins endows them with multiple regulatory mechanisms. It is becoming evident that lncRNAs may play a crucial role in most biological processes such as the control of development, differentiation and cell growth. This review places the evolution of the concept of the gene in its historical context, from Darwin's hypothetical mechanism of heredity to the post-genomic era. We discuss how the original idea of protein-coding genes as unique determinants of phenotypic traits has been reconsidered in light of the existence of noncoding RNAs. We summarize the technological developments which have been made in the genome-wide identification and study of lncRNAs and emphasize the methodologies that have aided our understanding of the complexity of lncRNA-protein interactions in recent years.

  11. Maintaining evolvability

    Indian Academy of Sciences (India)

    2008-12-23

    % of the variance would have passed the stringent tests for inclusion in the ... genetic complication (e.g. a balanced lethal system) or in- compatibility of .... have important evolutionary roles (genes of large effect; du- plications ...

  12. The evolving role of the orphan nuclear receptor ftz-f1, a pair-rule segmentation gene.

    Science.gov (United States)

    Heffer, Alison; Grubbs, Nathaniel; Mahaffey, James; Pick, Leslie

    2013-01-01

    Segmentation is a critical developmental process that occurs by different mechanisms in diverse taxa. In insects, there are three common modes of embryogenesis-short-, intermediate-, and long-germ development-which differ in the number of segments specified at the blastoderm stage. While genes involved in segmentation have been extensively studied in the long-germ insect Drosophila melanogaster (Dm), it has been found that their expression and function in segmentation in short- and intermediate-germ insects often differ. Drosophila ftz-f1 encodes an orphan nuclear receptor that functions as a maternally expressed pair-rule segmentation gene, responsible for the formation of alternate body segments during Drosophila embryogenesis. Here we investigated the expression and function of ftz-f1 in the short-germ beetle, Tribolium castaneum (Tc). We found that Tc-ftz-f1 is expressed in stripes in Tribolium embryos. These stripes overlap alternate Tc-Engrailed (Tc-En) stripes, indicative of a pair-rule expression pattern. To test whether Tc-ftz-f1 has pair-rule function, we utilized embryonic RNAi, injecting double-stranded RNA corresponding to Tc-ftz-f1 coding or non-coding regions into early Tribolium embryos. Knockdown of Tc-ftz-f1 produced pair-rule segmentation defects, evidenced by loss of expression of alternate En stripes. In addition, a later role for Tc-ftz-f1 in cuticle formation was revealed. These results identify a new pair-rule gene in Tribolium and suggest that its role in segmentation may be shared among holometabolous insects. Interestingly, while Tc-ftz-f1 is expressed in pair-rule stripes, the gene is ubiquitously expressed in Drosophila embryos. Thus, the pair-rule function of ftz-f1 is conserved despite differences in expression patterns of ftz-f1 genes in different lineages. This suggests that ftz-f1 expression changed after the divergence of lineages leading to extant beetles and flies, likely due to differences in cis-regulatory sequences. We

  13. Targeted disruption in mice of a neural stem cell-maintaining, KRAB-Zn finger-encoding gene that has rapidly evolved in the human lineage.

    Directory of Open Access Journals (Sweden)

    Huan-Chieh Chien

    Full Text Available Understanding the genetic basis of the physical and behavioral traits that separate humans from other primates is a challenging but intriguing topic. The adaptive functions of the expansion and/or reduction in human brain size have long been explored. From a brain transcriptome project we have identified a KRAB-Zn finger protein-encoding gene (M003-A06 that has rapidly evolved since the human-chimpanzee separation. Quantitative RT-PCR analysis of different human tissues indicates that M003-A06 expression is enriched in the human fetal brain in addition to the fetal heart. Furthermore, analysis with use of immunofluorescence staining, neurosphere culturing and Western blotting indicates that the mouse ortholog of M003-A06, Zfp568, is expressed mainly in the embryonic stem (ES cells and fetal as well as adult neural stem cells (NSCs. Conditional gene knockout experiments in mice demonstrates that Zfp568 is both an NSC maintaining- and a brain size-regulating gene. Significantly, molecular genetic analyses show that human M003-A06 consists of 2 equilibrated allelic types, H and C, one of which (H is human-specific. Combined contemporary genotyping and database mining have revealed interesting genetic associations between the different genotypes of M003-A06 and the human head sizes. We propose that M003-A06 is likely one of the genes contributing to the uniqueness of the human brain in comparison to other higher primates.

  14. Slow light brings faster communications

    International Nuclear Information System (INIS)

    Gauthier, D.

    2006-01-01

    Two teams of researchers have managed to significantly reduce the speed of light in an optical fibre, which could open the door to all-optical routers for telecommunications, as Daniel Gauthier explains. Optical engineers around the globe are working hard to meet the ever-growing demand for higher-speed information networks, and the latest systems being developed operate at rates close to 160 GB per second - which is over 100 times quicker than the fastest broadband services currently available and a world away from the 56 kb per second dial-up connections of the early years of the Internet. Paradoxically, it seems that making light travel slower rather than faster might be the best way to meet these high-speed challenges. (U.K.)

  15. Fast Physics Testbed for the FASTER Project

    Energy Technology Data Exchange (ETDEWEB)

    Lin, W.; Liu, Y.; Hogan, R.; Neggers, R.; Jensen, M.; Fridlind, A.; Lin, Y.; Wolf, A.

    2010-03-15

    This poster describes the Fast Physics Testbed for the new FAst-physics System Testbed and Research (FASTER) project. The overall objective is to provide a convenient and comprehensive platform for fast turn-around model evaluation against ARM observations and to facilitate development of parameterizations for cloud-related fast processes represented in global climate models. The testbed features three major components: a single column model (SCM) testbed, an NWP-Testbed, and high-resolution modeling (HRM). The web-based SCM-Testbed features multiple SCMs from major climate modeling centers and aims to maximize the potential of SCM approach to enhance and accelerate the evaluation and improvement of fast physics parameterizations through continuous evaluation of existing and evolving models against historical as well as new/improved ARM and other complementary measurements. The NWP-Testbed aims to capitalize on the large pool of operational numerical weather prediction products. Continuous evaluations of NWP forecasts against observations at ARM sites are carried out to systematically identify the biases and skills of physical parameterizations under all weather conditions. The highresolution modeling (HRM) activities aim to simulate the fast processes at high resolution to aid in the understanding of the fast processes and their parameterizations. A four-tier HRM framework is established to augment the SCM- and NWP-Testbeds towards eventual improvement of the parameterizations.

  16. Genetic testing for the BRCA1 gene and the need for protection from discrimination: an evolving legislative and social issue.

    Science.gov (United States)

    Dressler, L

    1998-04-01

    Genetic testing for the BRCA1 gene is available commercially and clinically. The information gained from this test impacts not only on the individual tested, but on family members as well. The test can offer an individual and their family the opportunity to gain valuable information about their risks of developing certain forms of inherited breast cancer and other inherited cancers. In addition to its emotional and psychological impact, this information is associated with significant social and economic issues. This includes the potential for denial, loss, or increased rates for health insurance as well as denial and loss of employment based on genetic test information. The risk for such discrimination can lead to fear of seeking testing and can discourage participation in and potential benefit from prevention, screening, and treatment programs. Therefore, misuse of this information carries significant risk for the individual being tested and for their family members. It is imperative that the potential benefits of genetic testing and genetic information be afforded to all without this risk and fear. In addition to protecting all individuals from genetic discrimination, there is a need to protect the confidentiality of genetic information and an individual's right to privacy. This article discusses protection currently available through legislation at the federal and state level, focusing on the experience in North Carolina in developing and passing a genetic antidiscrimination bill. Although progress has been made, troublesome issues still remain.

  17. Faster than Hermitian Quantum Mechanics

    International Nuclear Information System (INIS)

    Bender, Carl M.; Brody, Dorje C.; Jones, Hugh F.; Meister, Bernhard K.

    2007-01-01

    Given an initial quantum state vertical bar ψ I > and a final quantum state vertical bar ψ F >, there exist Hamiltonians H under which vertical bar ψ I > evolves into vertical bar ψ F >. Consider the following quantum brachistochrone problem: subject to the constraint that the difference between the largest and smallest eigenvalues of H is held fixed, which H achieves this transformation in the least time τ? For Hermitian Hamiltonians τ has a nonzero lower bound. However, among non-Hermitian PT-symmetric Hamiltonians satisfying the same energy constraint, τ can be made arbitrarily small without violating the time-energy uncertainty principle. This is because for such Hamiltonians the path from vertical bar ψ I > to vertical bar ψ F > can be made short. The mechanism described here is similar to that in general relativity in which the distance between two space-time points can be made small if they are connected by a wormhole. This result may have applications in quantum computing

  18. FASTER Test Reactor Preconceptual Design Report

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-03-31

    The FASTER test reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  19. FASTER test reactor preconceptual design report summary

    Energy Technology Data Exchange (ETDEWEB)

    Grandy, C. [Argonne National Lab. (ANL), Argonne, IL (United States); Belch, H. [Argonne National Lab. (ANL), Argonne, IL (United States); Brunett, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Heidet, F. [Argonne National Lab. (ANL), Argonne, IL (United States); Hill, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hoffman, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Jin, E. [Argonne National Lab. (ANL), Argonne, IL (United States); Mohamed, W. [Argonne National Lab. (ANL), Argonne, IL (United States); Moisseytsev, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Passerini, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Sienicki, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Sumner, T. [Argonne National Lab. (ANL), Argonne, IL (United States); Vilim, R. [Argonne National Lab. (ANL), Argonne, IL (United States); Hayes, Steven [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-02-29

    The FASTER reactor plant is a sodium-cooled fast spectrum test reactor that provides high levels of fast and thermal neutron flux for scientific research and development. The 120MWe FASTER reactor plant has a superheated steam power conversion system which provides electrical power to a local grid allowing for recovery of operating costs for the reactor plant.

  20. Faster-X evolution: Theory and evidence from Drosophila.

    Science.gov (United States)

    Charlesworth, Brian; Campos, José L; Jackson, Benjamin C

    2018-02-12

    A faster rate of adaptive evolution of X-linked genes compared with autosomal genes can be caused by the fixation of recessive or partially recessive advantageous mutations, due to the full expression of X-linked mutations in hemizygous males. Other processes, including recombination rate and mutation rate differences between X chromosomes and autosomes, may also cause faster evolution of X-linked genes. We review population genetics theory concerning the expected relative values of variability and rates of evolution of X-linked and autosomal DNA sequences. The theoretical predictions are compared with data from population genomic studies of several species of Drosophila. We conclude that there is evidence for adaptive faster-X evolution of several classes of functionally significant nucleotides. We also find evidence for potential differences in mutation rates between X-linked and autosomal genes, due to differences in mutational bias towards GC to AT mutations. Many aspects of the data are consistent with the male hemizygosity model, although not all possible confounding factors can be excluded. © 2018 John Wiley & Sons Ltd.

  1. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  2. Evolving phenotypic networks in silico.

    Science.gov (United States)

    François, Paul

    2014-11-01

    Evolved gene networks are constrained by natural selection. Their structures and functions are consequently far from being random, as exemplified by the multiple instances of parallel/convergent evolution. One can thus ask if features of actual gene networks can be recovered from evolutionary first principles. I review a method for in silico evolution of small models of gene networks aiming at performing predefined biological functions. I summarize the current implementation of the algorithm, insisting on the construction of a proper "fitness" function. I illustrate the approach on three examples: biochemical adaptation, ligand discrimination and vertebrate segmentation (somitogenesis). While the structure of the evolved networks is variable, dynamics of our evolved networks are usually constrained and present many similar features to actual gene networks, including properties that were not explicitly selected for. In silico evolution can thus be used to predict biological behaviours without a detailed knowledge of the mapping between genotype and phenotype. Copyright © 2014 The Author. Published by Elsevier Ltd.. All rights reserved.

  3. A Comparison of Selective Pressures in Plant X-Linked and Autosomal Genes.

    Science.gov (United States)

    Krasovec, Marc; Nevado, Bruno; Filatov, Dmitry A

    2018-05-03

    Selection is expected to work differently in autosomal and X-linked genes because of their ploidy difference and the exposure of recessive X-linked mutations to haploid selection in males. However, it is not clear whether these expectations apply to recently evolved sex chromosomes, where many genes retain functional X- and Y-linked gametologs. We took advantage of the recently evolved sex chromosomes in the plant Silene latifolia and its closely related species to compare the selective pressures between hemizygous and non-hemizygous X-linked genes as well as between X-linked genes and autosomal genes. Our analysis, based on over 1000 genes, demonstrated that, similar to animals, X-linked genes in Silene evolve significantly faster than autosomal genes—the so-called faster-X effect. Contrary to expectations, faster-X divergence was detectable only for non-hemizygous X-linked genes. Our phylogeny-based analyses of selection revealed no evidence for faster adaptation in X-linked genes compared to autosomal genes. On the other hand, partial relaxation of purifying selection was apparent on the X-chromosome compared to the autosomes, consistent with a smaller genetic diversity in S. latifolia X-linked genes (π x = 0.016; π aut = 0.023). Thus, the faster-X divergence in S. latifolia appears to be a consequence of the smaller effective population size rather than of a faster adaptive evolution on the X-chromosome. We argue that this may be a general feature of “young” sex chromosomes, where the majority of X-linked genes are not hemizygous, preventing haploid selection in heterogametic sex.

  4. Faster than Nyquist signaling algorithms to silicon

    CERN Document Server

    Dasalukunte, Deepak; Rusek, Fredrik; Anderson, John B

    2014-01-01

    This book addresses the challenges and design trade-offs arising during the hardware design of Faster-than-Nyquist (FTN) signaling transceivers. The authors describe how to design for coexistence between the FTN system described and Orthogonal frequency-division multiplexing (OFDM) systems, enabling readers to design FTN specific processing blocks as add-ons to the conventional transceiver chain.   • Provides a comprehensive introduction to Faster-than-Nyquist (FTN) signaling transceivers, covering both theory and hardware implementation; • Enables readers to design systems that achieve bandwidth efficiency by making better use of the available spectrum resources; • Describes design techniques to achieve 2x improvement in bandwidth usage with similar performance as that of an OFDM system.  

  5. Pigeons home faster through polluted air

    OpenAIRE

    Zhongqiu Li; Franck Courchamp; Daniel T. Blumstein

    2016-01-01

    Air pollution, especially haze pollution, is creating health issues for both humans and other animals. However, remarkably little is known about how animals behaviourally respond to air pollution. We used multiple linear regression to analyse 415 pigeon races in the North China Plain, an area with considerable air pollution, and found that while the proportion of pigeons successfully homed was not influenced by air pollution, pigeons homed faster when the air was especially polluted. Our resu...

  6. Faster than light, slower than time

    International Nuclear Information System (INIS)

    Rucker, R.

    1981-01-01

    The problem with faster-than-light travel is that, in the framework of Special Relativity, it is logically equivalent to time-travel. The problem with time-travel is that it leads to two types of paradoxes. The paradoxes, and the various means of skirting them, are all discussed here. Virtually all the examples are drawn from science-fiction novels, which are a large and neglected source of thought-experiments. (Auth.)

  7. Compressing bitmap indexes for faster search operations

    International Nuclear Information System (INIS)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2002-01-01

    In this paper, we study the effects of compression on bitmap indexes. The main operations on the bitmaps during query processing are bitwise logical operations such as AND, OR, NOT, etc. Using the general purpose compression schemes, such as gzip, the logical operations on the compressed bitmaps are much slower than on the uncompressed bitmaps. Specialized compression schemes, like the byte-aligned bitmap code(BBC), are usually faster in performing logical operations than the general purpose schemes, but in many cases they are still orders of magnitude slower than the uncompressed scheme. To make the compressed bitmap indexes operate more efficiently, we designed a CPU-friendly scheme which we refer to as the word-aligned hybrid code (WAH). Tests on both synthetic and real application data show that the new scheme significantly outperforms well-known compression schemes at a modest increase in storage space. Compared to BBC, a scheme well-known for its operational efficiency, WAH performs logical operations about 12 times faster and uses only 60 percent more space. Compared to the uncompressed scheme, in most test cases WAH is faster while still using less space. We further verified with additional tests that the improvement in logical operation speed translates to similar improvement in query processing speed

  8. Compressing bitmap indexes for faster search operations

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kesheng; Otoo, Ekow J.; Shoshani, Arie

    2002-04-25

    In this paper, we study the effects of compression on bitmap indexes. The main operations on the bitmaps during query processing are bitwise logical operations such as AND, OR, NOT, etc. Using the general purpose compression schemes, such as gzip, the logical operations on the compressed bitmaps are much slower than on the uncompressed bitmaps. Specialized compression schemes, like the byte-aligned bitmap code(BBC), are usually faster in performing logical operations than the general purpose schemes, but in many cases they are still orders of magnitude slower than the uncompressed scheme. To make the compressed bitmap indexes operate more efficiently, we designed a CPU-friendly scheme which we refer to as the word-aligned hybrid code (WAH). Tests on both synthetic and real application data show that the new scheme significantly outperforms well-known compression schemes at a modest increase in storage space. Compared to BBC, a scheme well-known for its operational efficiency, WAH performs logical operations about 12 times faster and uses only 60 percent more space. Compared to the uncompressed scheme, in most test cases WAH is faster while still using less space. We further verified with additional tests that the improvement in logical operation speed translates to similar improvement in query processing speed.

  9. Fat: an evolving issue

    Directory of Open Access Journals (Sweden)

    John R. Speakman

    2012-09-01

    Work on obesity is evolving, and obesity is a consequence of our evolutionary history. In the space of 50 years, we have become an obese species. The reasons why can be addressed at a number of different levels. These include separating between whether the primary cause lies on the food intake or energy expenditure side of the energy balance equation, and determining how genetic and environmental effects contribute to weight variation between individuals. Opinion on whether increased food intake or decreased energy expenditure drives the obesity epidemic is still divided, but recent evidence favours the idea that food intake, rather than altered expenditure, is most important. There is more of a consensus that genetics explains most (probably around 65% of weight variation between individuals. Recent advances in genome-wide association studies have identified many polymorphisms that are linked to obesity, yet much of the genetic variance remains unexplained. Finding the causes of this unexplained variation will be an impetus of genetic and epigenetic research on obesity over the next decade. Many environmental factors – including gut microbiota, stress and endocrine disruptors – have been linked to the risk of developing obesity. A better understanding of gene-by-environment interactions will also be key to understanding obesity in the years to come.

  10. Better Faster Noise with the GPU

    DEFF Research Database (Denmark)

    Wyvill, Geoff; Frisvad, Jeppe Revall

    Filtered noise [Perlin 1985] has, for twenty years, been a fundamental tool for creating functional texture and it has many other applications; for example, animating water waves or the motion of grass waving in the wind. Perlin noise suffers from a number of defects and there have been many atte...... attempts to create better or faster noise but Perlin’s ‘Gradient Noise’ has consistently proved to be the best compromise between speed and quality. Our objective was to create a better noise cheaply by use of the GPU....

  11. Metschnikowia Species Share a Pool of Diverse rRNA Genes Differing in Regions That Determine Hairpin-Loop Structures and Evolve by Reticulation.

    Directory of Open Access Journals (Sweden)

    Matthias Sipiczki

    Full Text Available Modern taxonomy of yeasts is mainly based on phylogenetic analysis of conserved DNA and protein sequences. By far the most frequently used sequences are those of the repeats of the chromosomal rDNA array. It is generally accepted that the rDNA repeats of a genome have identical sequences due to the phenomenon of sequence homogenisation and can thus be used for identification and barcoding of species. Here we show that the rDNA arrays of the type strains of Metschnikowia andauensis and M. fructicola are not homogenised. Both have arrays consisting of diverse repeats that differ from each other in the D1/D2 domains by up to 18 and 25 substitutions. The variable sites are concentrated in two regions that correspond to back-folding stretches of hairpin loops in the predicted secondary structure of the RNA molecules. The substitutions do not alter significantly the overall hairpin-loop structure due to wobble base pairing at sites of C-T transitions and compensatory mutations in the complementary strand of the hairpin stem. The phylogenetic and network analyses of the cloned sequences revealed that the repeats had not evolved in a vertical tree-like way but reticulation might have shaped the rDNA arrays of both strains. The neighbour-net analysis of all cloned sequences of the type strains and the database sequences of different strains further showed that these species share a continuous pool of diverse repeats that appear to evolve by reticulate evolution.

  12. Faster and Energy-Efficient Signed Multipliers

    Directory of Open Access Journals (Sweden)

    B. Ramkumar

    2013-01-01

    Full Text Available We demonstrate faster and energy-efficient column compression multiplication with very small area overheads by using a combination of two techniques: partition of the partial products into two parts for independent parallel column compression and acceleration of the final addition using new hybrid adder structures proposed here. Based on the proposed techniques, 8-b, 16-b, 32-b, and 64-b Wallace (W, Dadda (D, and HPM (H reduction tree based Baugh-Wooley multipliers are developed and compared with the regular W, D, H based Baugh-Wooley multipliers. The performances of the proposed multipliers are analyzed by evaluating the delay, area, and power, with 65 nm process technologies on interconnect and layout using industry standard design and layout tools. The result analysis shows that the 64-bit proposed multipliers are as much as 29%, 27%, and 21% faster than the regular W, D, H based Baugh-Wooley multipliers, respectively, with a maximum of only 2.4% power overhead. Also, the power-delay products (energy consumption of the proposed 16-b, 32-b, and 64-b multipliers are significantly lower than those of the regular Baugh-Wooley multiplier. Applicability of the proposed techniques to the Booth-Encoded multipliers is also discussed.

  13. De novo transcriptome assembly facilitates characterisation of fast-evolving gene families, MHC class I in the bank vole (Myodes glareolus).

    Science.gov (United States)

    Migalska, M; Sebastian, A; Konczal, M; Kotlík, P; Radwan, J

    2017-04-01

    The major histocompatibility complex (MHC) plays a central role in the adaptive immune response and is the most polymorphic gene family in vertebrates. Although high-throughput sequencing has increasingly been used for genotyping families of co-amplifying MHC genes, its potential to facilitate early steps in the characterisation of MHC variation in nonmodel organism has not been fully explored. In this study we evaluated the usefulness of de novo transcriptome assembly in characterisation of MHC sequence diversity. We found that although de novo transcriptome assembly of MHC I genes does not reconstruct sequences of individual alleles, it does allow the identification of conserved regions for PCR primer design. Using the newly designed primers, we characterised MHC I sequences in the bank vole. Phylogenetic analysis of the partial MHC I coding sequence (2-4 exons) of the bank vole revealed a lack of orthology to MHC I of other Cricetidae, consistent with the high gene turnover of this region. The diversity of expressed alleles was characterised using ultra-deep sequencing of the third exon that codes for the peptide-binding region of the MHC molecule. High allelic diversity was demonstrated, with 72 alleles found in 29 individuals. Interindividual variation in the number of expressed loci was found, with the number of alleles per individual ranging from 5 to 14. Strong signatures of positive selection were found for 8 amino acid sites, most of which are inferred to bind antigens in human MHC, indicating conservation of structure despite rapid sequence evolution.

  14. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes.

    Directory of Open Access Journals (Sweden)

    Hisayoshi Nozaki

    Full Text Available Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs, intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates] was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA, disruption of the monophyly between haptophytes and SAR (or SA in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA clade in the absence of intracellular endoparasite/ciliate OTUs.

  15. Mentoring: An Evolving Relationship.

    Science.gov (United States)

    Block, Michelle; Florczak, Kristine L

    2017-04-01

    The column concerns itself with mentoring as an evolving relationship between mentor and mentee. The collegiate mentoring model, the transformational transcendence model, and the humanbecoming mentoring model are considered in light of a dialogue with mentors at a Midwest university and conclusions are drawn.

  16. Methods Evolved by Observation

    Science.gov (United States)

    Montessori, Maria

    2016-01-01

    Montessori's idea of the child's nature and the teacher's perceptiveness begins with amazing simplicity, and when she speaks of "methods evolved," she is unveiling a methodological system for observation. She begins with the early childhood explosion into writing, which is a familiar child phenomenon that Montessori has written about…

  17. EVOLVE 2014 International Conference

    CERN Document Server

    Tantar, Emilia; Sun, Jian-Qiao; Zhang, Wei; Ding, Qian; Schütze, Oliver; Emmerich, Michael; Legrand, Pierrick; Moral, Pierre; Coello, Carlos

    2014-01-01

    This volume encloses research articles that were presented at the EVOLVE 2014 International Conference in Beijing, China, July 1–4, 2014.The book gathers contributions that emerged from the conference tracks, ranging from probability to set oriented numerics and evolutionary computation; all complemented by the bridging purpose of the conference, e.g. Complex Networks and Landscape Analysis, or by the more application oriented perspective. The novelty of the volume, when considering the EVOLVE series, comes from targeting also the practitioner’s view. This is supported by the Machine Learning Applied to Networks and Practical Aspects of Evolutionary Algorithms tracks, providing surveys on new application areas, as in the networking area and useful insights in the development of evolutionary techniques, from a practitioner’s perspective. Complementary to these directions, the conference tracks supporting the volume, follow on the individual advancements of the subareas constituting the scope of the confe...

  18. Evolving Procurement Organizations

    DEFF Research Database (Denmark)

    Bals, Lydia; Laine, Jari; Mugurusi, Godfrey

    Procurement has to find further levers and advance its contribution to corporate goals continuously. This places pressure on its organization in order to facilitate its performance. Therefore, procurement organizations constantly have to evolve in order to match these demands. A conceptual model...... and external contingency factors and having a more detailed look at the structural dimensions chosen, beyond the well-known characteristics of centralization, formalization, participation, specialization, standardization and size. From a theoretical perspective, it opens up insights that can be leveraged...

  19. Symbiotic Composition and Evolvability

    OpenAIRE

    Watson, Richard A.; Pollack, Jordan B.

    2001-01-01

    Several of the Major Transitions in natural evolution, such as the symbiogenic origin of eukaryotes from prokaryotes, share the feature that existing entities became the components of composite entities at a higher level of organisation. This composition of pre-adapted extant entities into a new whole is a fundamentally different source of variation from the gradual accumulation of small random variations, and it has some interesting consequences for issues of evolvability. In this paper we p...

  20. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  1. Evolved H II regions

    International Nuclear Information System (INIS)

    Churchwell, E.

    1975-01-01

    A probable evolutionary sequence of H II regions based on six distinct types of observed objects is suggested. Two examples which may deviate from this idealized sequence, are discussed. Even though a size-mean density relation of H II regions can be used as a rough indication of whether a nebula is very young or evolved, it is argued that such a relation is not likely to be useful for the quantitative assignment of ages to H II regions. Evolved H II regions appear to fit into one of four structural types: rings, core-halos, smooth structures, and irregular or filamentary structures. Examples of each type are given with their derived physical parameters. The energy balance in these nebulae is considered. The mass of ionized gas in evolved H II regions is in general too large to trace the nebula back to single compact H II regions. Finally, the morphological type of the Galaxy is considered from its H II region content. 2 tables, 2 figs., 29 refs

  2. No evidence for faster male hybrid sterility in population crosses of an intertidal copepod (Tigriopus californicus).

    Science.gov (United States)

    Willett, Christopher S

    2008-06-01

    Two different forces are thought to contribute to the rapid accumulation of hybrid male sterility that has been observed in many inter-specific crosses, namely the faster male and the dominance theories. For male heterogametic taxa, both faster male and dominance would work in the same direction to cause the rapid evolution of male sterility; however, for taxa lacking differentiated sex chromosomes only the faster male theory would explain the rapid evolution of male hybrid sterility. It is currently unknown what causes the faster evolution of male sterility, but increased sexual selection on males and the sensitivity of genes involved in male reproduction are two hypotheses that could explain the observation. Here, patterns of hybrid sterility in crosses of genetically divergent copepod populations are examined to test potential mechanisms of faster male evolution. The study species, Tigriopus californicus, lacks differentiated, hemizygous sex chromosomes and appears to have low levels of divergence caused by sexual selection acting upon males. Hybrid sterility does not accumulate more rapidly in males than females in these crosses suggesting that in this taxon male reproductive genes are not inherently more prone to disruption in hybrids.

  3. Plant domestication and gene banks

    International Nuclear Information System (INIS)

    Perrino, P.

    1989-01-01

    At the time of the dawn of agriculture, plant domestication was very slow. As agriculture progressed, however, domestication began to evolve faster and reached its highest point with the advent of plant breeders who played a very important role in solving the world food problem. One of the fastest moving strategies was a better exploitation of genetic diversity, both natural and induced. However, intensive plant breeding activity caused a heavy fall in genetic variability. Gene banks then provided a further tool for modern agriculture, specifically to preserve genetic resources and to help breeders to further domesticate important crops and to introduce and domesticate new species. (author). 3 refs

  4. Evolving Procurement Organizations

    DEFF Research Database (Denmark)

    Bals, Lydia; Laiho, Aki; Laine, Jari

    Procurement has to find further levers and advance its contribution to corporate goals continuously. This places pressure on its organization in order to facilitate its performance. Therefore, Procurement organizations constantly have to evolve in order to match these demands. A conceptual model...... is presented and results of a first case study discussed. The findings highlight the importance of taking a contingency perspective on Procurement organization, understanding the internal and internal contingency factors. From a theoretical perspective, it opens up insights that can be furthermore leveraged...... in future studies in the fields of hybrid procurement organizations, global sourcing organizations as well as international procurement offices (IPOs). From a practical standpoint, an assessment of external and internal contingencies provides the opportunity to consciously match organization to its...

  5. Diffusion between evolving interfaces

    International Nuclear Information System (INIS)

    Juntunen, Janne; Merikoski, Juha

    2010-01-01

    Diffusion in an evolving environment is studied by continuous-time Monte Carlo simulations. Diffusion is modeled by continuous-time random walkers on a lattice, in a dynamic environment provided by bubbles between two one-dimensional interfaces driven symmetrically towards each other. For one-dimensional random walkers constrained by the interfaces, the bubble size distribution dominates diffusion. For two-dimensional random walkers, it is also controlled by the topography and dynamics of the interfaces. The results of the one-dimensional case are recovered in the limit where the interfaces are strongly driven. Even with simple hard-core repulsion between the interfaces and the particles, diffusion is found to depend strongly on the details of the dynamical rules of particles close to the interfaces.

  6. Why did heterospory evolve?

    Science.gov (United States)

    Petersen, Kurt B; Burd, Martin

    2017-08-01

    The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation-resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation - an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life-history patterns - suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm-producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency-dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex

  7. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  8. Evolving a photosynthetic organelle.

    Science.gov (United States)

    Nakayama, Takuro; Archibald, John M

    2012-04-24

    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles.The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis--the conversion of solar energy into chemical energy--and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  9. Communicability across evolving networks.

    Science.gov (United States)

    Grindrod, Peter; Parsons, Mark C; Higham, Desmond J; Estrada, Ernesto

    2011-04-01

    Many natural and technological applications generate time-ordered sequences of networks, defined over a fixed set of nodes; for example, time-stamped information about "who phoned who" or "who came into contact with who" arise naturally in studies of communication and the spread of disease. Concepts and algorithms for static networks do not immediately carry through to this dynamic setting. For example, suppose A and B interact in the morning, and then B and C interact in the afternoon. Information, or disease, may then pass from A to C, but not vice versa. This subtlety is lost if we simply summarize using the daily aggregate network given by the chain A-B-C. However, using a natural definition of a walk on an evolving network, we show that classic centrality measures from the static setting can be extended in a computationally convenient manner. In particular, communicability indices can be computed to summarize the ability of each node to broadcast and receive information. The computations involve basic operations in linear algebra, and the asymmetry caused by time's arrow is captured naturally through the noncommutativity of matrix-matrix multiplication. Illustrative examples are given for both synthetic and real-world communication data sets. We also discuss the use of the new centrality measures for real-time monitoring and prediction.

  10. Evolving Concepts of Asthma

    Science.gov (United States)

    Ray, Anuradha; Wenzel, Sally E.

    2015-01-01

    Our understanding of asthma has evolved over time from a singular disease to a complex of various phenotypes, with varied natural histories, physiologies, and responses to treatment. Early therapies treated most patients with asthma similarly, with bronchodilators and corticosteroids, but these therapies had varying degrees of success. Similarly, despite initial studies that identified an underlying type 2 inflammation in the airways of patients with asthma, biologic therapies targeted toward these type 2 pathways were unsuccessful in all patients. These observations led to increased interest in phenotyping asthma. Clinical approaches, both biased and later unbiased/statistical approaches to large asthma patient cohorts, identified a variety of patient characteristics, but they also consistently identified the importance of age of onset of disease and the presence of eosinophils in determining clinically relevant phenotypes. These paralleled molecular approaches to phenotyping that developed an understanding that not all patients share a type 2 inflammatory pattern. Using biomarkers to select patients with type 2 inflammation, repeated trials of biologics directed toward type 2 cytokine pathways saw newfound success, confirming the importance of phenotyping in asthma. Further research is needed to clarify additional clinical and molecular phenotypes, validate predictive biomarkers, and identify new areas for possible interventions. PMID:26161792

  11. UKAEA'S evolving contract philosophy

    International Nuclear Information System (INIS)

    Nicol, R. D.

    2003-01-01

    The United Kingdom Atomic Energy Authority (UKAEA) has gone through fundamental change over the last ten years. At the heart of this change has been UKAEA's relationship with the contracting and supply market. This paper describes the way in which UKAEA actively developed the market to support the decommissioning programme, and how the approach to contracting has evolved as external pressures and demands have changed. UKAEA's pro-active approach to industry has greatly assisted the development of a healthy, competitive market for services supporting decommissioning in the UK. There have been difficult changes and many challenges along the way, and some retrenchment was necessary to meet regulatory requirements. Nevertheless, UKAEA has sustained a high level of competition - now measured in terms of competed spend as a proportion of competable spend - with annual out-turns consistently over 80%. The prime responsibility for market development will pass to the new Nuclear Decommissioning Authority (NDA) in 2005, as the owner, on behalf of the Government, of the UK's civil nuclear liabilities. The preparatory work for the NDA indicates that the principles established by UKAEA will be carried forward. (author)

  12. Cortex Matures Faster in Youths With Highest IQ

    Science.gov (United States)

    ... NIH Cortex Matures Faster in Youths With Highest IQ Past Issues / Summer 2006 Table of Contents For ... on. Photo: Getty image (StockDisc) Youths with superior IQ are distinguished by how fast the thinking part ...

  13. Quantum mechanics and faster-than-light communication: methodological considerations

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Weber, T.

    1983-06-01

    A detailed quantum mechanical analysis of a recent proposal of faster than light communication through wave packet reduction is performed. The discussion allows us to focus on some methodological problems about critical investigations in physical theories. (author)

  14. Disgust: Evolved function and structure

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.; Kurzban, R.; DeScioli, P.

    2013-01-01

    Interest in and research on disgust has surged over the past few decades. The field, however, still lacks a coherent theoretical framework for understanding the evolved function or functions of disgust. Here we present such a framework, emphasizing 2 levels of analysis: that of evolved function and

  15. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  16. canEvolve: a web portal for integrative oncogenomics.

    Directory of Open Access Journals (Sweden)

    Mehmet Kemal Samur

    Full Text Available BACKGROUND & OBJECTIVE: Genome-wide profiles of tumors obtained using functional genomics platforms are being deposited to the public repositories at an astronomical scale, as a result of focused efforts by individual laboratories and large projects such as the Cancer Genome Atlas (TCGA and the International Cancer Genome Consortium. Consequently, there is an urgent need for reliable tools that integrate and interpret these data in light of current knowledge and disseminate results to biomedical researchers in a user-friendly manner. We have built the canEvolve web portal to meet this need. RESULTS: canEvolve query functionalities are designed to fulfill most frequent analysis needs of cancer researchers with a view to generate novel hypotheses. canEvolve stores gene, microRNA (miRNA and protein expression profiles, copy number alterations for multiple cancer types, and protein-protein interaction information. canEvolve allows querying of results of primary analysis, integrative analysis and network analysis of oncogenomics data. The querying for primary analysis includes differential gene and miRNA expression as well as changes in gene copy number measured with SNP microarrays. canEvolve provides results of integrative analysis of gene expression profiles with copy number alterations and with miRNA profiles as well as generalized integrative analysis using gene set enrichment analysis. The network analysis capability includes storage and visualization of gene co-expression, inferred gene regulatory networks and protein-protein interaction information. Finally, canEvolve provides correlations between gene expression and clinical outcomes in terms of univariate survival analysis. CONCLUSION: At present canEvolve provides different types of information extracted from 90 cancer genomics studies comprising of more than 10,000 patients. The presence of multiple data types, novel integrative analysis for identifying regulators of oncogenesis, network

  17. New analytical approaches for faster or greener phytochemical analyses

    NARCIS (Netherlands)

    Shen, Y.

    2015-01-01

    Summary

    Chapter 1 provides a short introduction into the constraints of phytochemical analysis. In order to make them faster, less laborious and greener, there is a clear scope for miniaturized and simplified sample preparation, solvent-free extractions

  18. ZKBoo: Faster Zero-Knowledge for Boolean Circuits

    DEFF Research Database (Denmark)

    Giacomelli, Irene; Madsen, Jesper; Orlandi, Claudio

    2016-01-01

    variants of IKOS, which highlights their pros and cons for practically rele- vant soundness parameters; ◦ A generalization and simplification of their approach, which leads to faster Σ-protocols (that can be made non-interactive using the Fiat-Shamir heuristic) for state- ments of the form “I know x...

  19. Faster and timing-attack resistant AES-GCM

    NARCIS (Netherlands)

    Käsper, E.; Schwabe, P.; Clavier, C.; Gaj, K.

    2009-01-01

    We present a bitsliced implementation of AES encryption in counter mode for 64-bit Intel processors. Running at 7.59 cycles/byte on a Core 2, it is up to 25% faster than previous implementations, while simultaneously offering protection against timing attacks. In particular, it is the only

  20. Increasing the Capital Income Tax Leads to Faster Growth

    NARCIS (Netherlands)

    Uhlig, H.F.H.V.S.; Yanagawa, N.

    1994-01-01

    This paper shows that under rather mild conditions, higher capital income taxes lead to faster growth in an overlapping generations economy with endogenous growth. Government expenditures are financed with labor income taxes as well as capital income taxes. Since capital income accrues to the old,

  1. Evolution and plasticity: Divergence of song discrimination is faster in birds with innate song than in song learners in Neotropical passerine birds.

    Science.gov (United States)

    Freeman, Benjamin G; Montgomery, Graham A; Schluter, Dolph

    2017-09-01

    Plasticity is often thought to accelerate trait evolution and speciation. For example, plasticity in birdsong may partially explain why clades of song learners are more diverse than related clades with innate song. This "song learning" hypothesis predicts that (1) differences in song traits evolve faster in song learners, and (2) behavioral discrimination against allopatric song (a proxy for premating reproductive isolation) evolves faster in song learners. We tested these predictions by analyzing acoustic traits and conducting playback experiments in allopatric Central American sister pairs of song learning oscines (N = 42) and nonlearning suboscines (N = 27). We found that nonlearners evolved mean acoustic differences slightly faster than did leaners, and that the mean evolutionary rate of song discrimination was 4.3 times faster in nonlearners than in learners. These unexpected results may be a consequence of significantly greater variability in song traits in song learners (by 54-79%) that requires song-learning oscines to evolve greater absolute differences in song before achieving the same level of behavioral song discrimination as nonlearning suboscines. This points to "a downside of learning" for the evolution of species discrimination, and represents an important example of plasticity reducing the rate of evolution and diversification by increasing variability. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Spacetimes containing slowly evolving horizons

    International Nuclear Information System (INIS)

    Kavanagh, William; Booth, Ivan

    2006-01-01

    Slowly evolving horizons are trapping horizons that are ''almost'' isolated horizons. This paper reviews their definition and discusses several spacetimes containing such structures. These include certain Vaidya and Tolman-Bondi solutions as well as (perturbatively) tidally distorted black holes. Taking into account the mass scales and orders of magnitude that arise in these calculations, we conjecture that slowly evolving horizons are the norm rather than the exception in astrophysical processes that involve stellar-scale black holes

  3. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  4. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  5. Robustness to Faults Promotes Evolvability: Insights from Evolving Digital Circuits.

    Science.gov (United States)

    Milano, Nicola; Nolfi, Stefano

    2016-01-01

    We demonstrate how the need to cope with operational faults enables evolving circuits to find more fit solutions. The analysis of the results obtained in different experimental conditions indicates that, in absence of faults, evolution tends to select circuits that are small and have low phenotypic variability and evolvability. The need to face operation faults, instead, drives evolution toward the selection of larger circuits that are truly robust with respect to genetic variations and that have a greater level of phenotypic variability and evolvability. Overall our results indicate that the need to cope with operation faults leads to the selection of circuits that have a greater probability to generate better circuits as a result of genetic variation with respect to a control condition in which circuits are not subjected to faults.

  6. Multiple Object Tracking Using the Shortest Path Faster Association Algorithm

    Directory of Open Access Journals (Sweden)

    Zhenghao Xi

    2014-01-01

    Full Text Available To solve the persistently multiple object tracking in cluttered environments, this paper presents a novel tracking association approach based on the shortest path faster algorithm. First, the multiple object tracking is formulated as an integer programming problem of the flow network. Then we relax the integer programming to a standard linear programming problem. Therefore, the global optimum can be quickly obtained using the shortest path faster algorithm. The proposed method avoids the difficulties of integer programming, and it has a lower worst-case complexity than competing methods but better robustness and tracking accuracy in complex environments. Simulation results show that the proposed algorithm takes less time than other state-of-the-art methods and can operate in real time.

  7. The faster-X effect: integrating theory and data.

    Science.gov (United States)

    Meisel, Richard P; Connallon, Tim

    2013-09-01

    Population genetics theory predicts that X (or Z) chromosomes could play disproportionate roles in speciation and evolutionary divergence, and recent genome-wide analyses have identified situations in which X or Z-linked divergence exceeds that on the autosomes (the so-called 'faster-X effect'). Here, we summarize the current state of both the theory and data surrounding the study of faster-X evolution. Our survey indicates that the faster-X effect is pervasive across a taxonomically diverse array of evolutionary lineages. These patterns could be informative of the dominance or recessivity of beneficial mutations and the nature of genetic variation acted upon by natural selection. We also identify several aspects of disagreement between these empirical results and the population genetic models used to interpret them. However, there are clearly delineated aspects of the problem for which additional modeling and collection of genomic data will address these discrepancies and provide novel insights into the population genetics of adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Adrenaline in cardiac arrest: Prefilled syringes are faster.

    Science.gov (United States)

    Helm, Claire; Gillett, Mark

    2015-08-01

    Standard ampoules and prefilled syringes of adrenaline are widely available in Australasian EDs for use in cardiac arrest. We hypothesise that prefilled syringes can be administered more rapidly and accurately when compared with the two available standard ampoules. This is a triple arm superiority study comparing the time to i.v. administration and accuracy of dosing of three currently available preparations of adrenaline. In their standard packaging, prefilled syringes were on average more than 12 s faster to administer than the 1 mL 1:1000 ampoules and more than 16 s faster than the 10 mL 1:10,000 ampoules (P adrenaline utilising a Minijet (CSL Limited, Parkville, Victoria, Australia) is faster than using adrenaline in glass ampoules presented in their plastic packaging. Removing the plastic packaging from the 1 mL (1 mg) ampoule might result in more rapid administration similar to the Minijet. Resuscitation personnel requiring rapid access to adrenaline should consider storing it as either Minijets or ampoules devoid of packaging. These results might be extrapolatable to other clinical scenarios, including pre-hospital and anaesthesia, where other drugs are required for rapid use. © 2015 Australasian College for Emergency Medicine and Australasian Society for Emergency Medicine.

  9. Rate of evolution in brain-expressed genes in humans and other primates.

    Directory of Open Access Journals (Sweden)

    Hurng-Yi Wang

    2007-02-01

    Full Text Available Brain-expressed genes are known to evolve slowly in mammals. Nevertheless, since brains of higher primates have evolved rapidly, one might expect acceleration in DNA sequence evolution in their brain-expressed genes. In this study, we carried out full-length cDNA sequencing on the brain transcriptome of an Old World monkey (OWM and then conducted three-way comparisons among (i mouse, OWM, and human, and (ii OWM, chimpanzee, and human. Although brain-expressed genes indeed appear to evolve more rapidly in species with more advanced brains (apes > OWM > mouse, a similar lineage effect is observable for most other genes. The broad inclusion of genes in the reference set to represent the genomic average is therefore critical to this type of analysis. Calibrated against the genomic average, the rate of evolution among brain-expressed genes is probably lower (or at most equal in humans than in chimpanzee and OWM. Interestingly, the trend of slow evolution in coding sequence is no less pronounced among brain-specific genes, vis-à-vis brain-expressed genes in general. The human brain may thus differ from those of our close relatives in two opposite directions: (i faster evolution in gene expression, and (ii a likely slowdown in the evolution of protein sequences. Possible explanations and hypotheses are discussed.

  10. A neighbourhood evolving network model

    International Nuclear Information System (INIS)

    Cao, Y.J.; Wang, G.Z.; Jiang, Q.Y.; Han, Z.X.

    2006-01-01

    Many social, technological, biological and economical systems are best described by evolved network models. In this short Letter, we propose and study a new evolving network model. The model is based on the new concept of neighbourhood connectivity, which exists in many physical complex networks. The statistical properties and dynamics of the proposed model is analytically studied and compared with those of Barabasi-Albert scale-free model. Numerical simulations indicate that this network model yields a transition between power-law and exponential scaling, while the Barabasi-Albert scale-free model is only one of its special (limiting) cases. Particularly, this model can be used to enhance the evolving mechanism of complex networks in the real world, such as some social networks development

  11. Even Faster Web Sites Performance Best Practices for Web Developers

    CERN Document Server

    Souders, Steve

    2009-01-01

    Performance is critical to the success of any web site, and yet today's web applications push browsers to their limits with increasing amounts of rich content and heavy use of Ajax. In this book, Steve Souders, web performance evangelist at Google and former Chief Performance Yahoo!, provides valuable techniques to help you optimize your site's performance. Souders' previous book, the bestselling High Performance Web Sites, shocked the web development world by revealing that 80% of the time it takes for a web page to load is on the client side. In Even Faster Web Sites, Souders and eight exp

  12. Faster magnet sorting with a threshold acceptance algorithm

    International Nuclear Information System (INIS)

    Lidia, S.; Carr, R.

    1995-01-01

    We introduce here a new technique for sorting magnets to minimize the field errors in permanent magnet insertion devices. Simulated annealing has been used in this role, but we find the technique of threshold acceptance produces results of equal quality in less computer time. Threshold accepting would be of special value in designing very long insertion devices, such as long free electron lasers (FELs). Our application of threshold acceptance to magnet sorting showed that it converged to equivalently low values of the cost function, but that it converged significantly faster. We present typical cases showing time to convergence for various error tolerances, magnet numbers, and temperature schedules

  13. Robustness of a bisimulation-type faster-than preorder

    Directory of Open Access Journals (Sweden)

    Katrin Iltgen

    2009-11-01

    Full Text Available TACS is an extension of CCS where upper time bounds for delays can be specified. Luettgen and Vogler defined three variants of bismulation-type faster-than relations and showed that they all three lead to the same preorder, demonstrating the robustness of their approach. In the present paper, the operational semantics of TACS is extended; it is shown that two of the variants still give the same preorder as before, underlining robustness. An explanation is given why this result fails for the third variant. It is also shown that another variant, which mixes old and new operational semantics, can lead to smaller relations that prove the same preorder.

  14. CSRtrack Faster Calculation of 3-D CSR Effects

    CERN Document Server

    Dohlus, Martin

    2004-01-01

    CSRtrack is a new code for the simulation of Coherent Synchrotron radiation effects on the beam dynamics of linear accelerators. It incorporates the physics of our previous code, TraFiC4, and adds new algorithms for the calculation of the CSR fields. A one-dimensional projected method allows quick estimates and a greens function method allows 3D calculations about ten times faster than with the `direct' method. The tracking code is written in standard FORTRAN77 and has its own parser for comfortable input of calculation parameters and geometry. Phase space input and the analysis of the traced particle distribution is done with MATLAB interface programs.

  15. Faster magnet sorting with a threshold acceptance algorithm

    International Nuclear Information System (INIS)

    Lidia, S.

    1994-08-01

    The authors introduce here a new technique for sorting magnets to minimize the field errors in permanent magnet insertion devices. Simulated annealing has been used in this role, but they find the technique of threshold acceptance produces results of equal quality in less computer time. Threshold accepting would be of special value in designing very long insertion devices, such as long FEL's. Their application of threshold acceptance to magnet sorting showed that it converged to equivalently low values of the cost function, but that it converged significantly faster. They present typical cases showing time to convergence for various error tolerances, magnet numbers, and temperature schedules

  16. 20 Recipes for Programming MVC 3 Faster, Smarter Web Development

    CERN Document Server

    Munro, Jamie

    2011-01-01

    There's no need to reinvent the wheel every time you run into a problem with ASP.NET's Model-View-Controller (MVC) framework. This concise cookbook provides recipes to help you solve tasks many web developers encounter every day. Each recipe includes the C# code you need, along with a complete working example of how to implement the solution. Learn practical techniques for applying user authentication, providing faster page reloads, validating user data, filtering search results, and many other issues related to MVC3 development. These recipes help you: Restrict access to views with password

  17. How to Elect a Leader Faster than a Tournament

    OpenAIRE

    Alistarh, Dan; Gelashvili, Rati; Vladu, Adrian

    2014-01-01

    The problem of electing a leader from among $n$ contenders is one of the fundamental questions in distributed computing. In its simplest formulation, the task is as follows: given $n$ processors, all participants must eventually return a win or lose indication, such that a single contender may win. Despite a considerable amount of work on leader election, the following question is still open: can we elect a leader in an asynchronous fault-prone system faster than just running a $\\Theta(\\log n...

  18. Faster than light motion does not imply time travel

    International Nuclear Information System (INIS)

    Andréka, Hajnal; Madarász, Judit X; Németi, István; Székely, Gergely; Stannett, Mike

    2014-01-01

    Seeing the many examples in the literature of causality violations based on faster than light (FTL) signals one naturally thinks that FTL motion leads inevitably to the possibility of time travel. We show that this logical inference is invalid by demonstrating a model, based on (3+1)-dimensional Minkowski spacetime, in which FTL motion is permitted (in every direction without any limitation on speed) yet which does not admit time travel. Moreover, the Principle of Relativity is true in this model in the sense that all observers are equivalent. In short, FTL motion does not imply time travel after all. (paper)

  19. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  20. Faster quantum chemistry simulation on fault-tolerant quantum computers

    International Nuclear Information System (INIS)

    Cody Jones, N; McMahon, Peter L; Yamamoto, Yoshihisa; Whitfield, James D; Yung, Man-Hong; Aspuru-Guzik, Alán; Van Meter, Rodney

    2012-01-01

    Quantum computers can in principle simulate quantum physics exponentially faster than their classical counterparts, but some technical hurdles remain. We propose methods which substantially improve the performance of a particular form of simulation, ab initio quantum chemistry, on fault-tolerant quantum computers; these methods generalize readily to other quantum simulation problems. Quantum teleportation plays a key role in these improvements and is used extensively as a computing resource. To improve execution time, we examine techniques for constructing arbitrary gates which perform substantially faster than circuits based on the conventional Solovay–Kitaev algorithm (Dawson and Nielsen 2006 Quantum Inform. Comput. 6 81). For a given approximation error ϵ, arbitrary single-qubit gates can be produced fault-tolerantly and using a restricted set of gates in time which is O(log ϵ) or O(log log ϵ); with sufficient parallel preparation of ancillas, constant average depth is possible using a method we call programmable ancilla rotations. Moreover, we construct and analyze efficient implementations of first- and second-quantized simulation algorithms using the fault-tolerant arbitrary gates and other techniques, such as implementing various subroutines in constant time. A specific example we analyze is the ground-state energy calculation for lithium hydride. (paper)

  1. Elastic coupling of limb joints enables faster bipedal walking

    Science.gov (United States)

    Dean, J.C.; Kuo, A.D.

    2008-01-01

    The passive dynamics of bipedal limbs alone are sufficient to produce a walking motion, without need for control. Humans augment these dynamics with muscles, actively coordinated to produce stable and economical walking. Present robots using passive dynamics walk much slower, perhaps because they lack elastic muscles that couple the joints. Elastic properties are well known to enhance running gaits, but their effect on walking has yet to be explored. Here we use a computational model of dynamic walking to show that elastic joint coupling can help to coordinate faster walking. In walking powered by trailing leg push-off, the model's speed is normally limited by a swing leg that moves too slowly to avoid stumbling. A uni-articular spring about the knee allows faster but uneconomical walking. A combination of uni-articular hip and knee springs can speed the legs for improved speed and economy, but not without the swing foot scuffing the ground. Bi-articular springs coupling the hips and knees can yield high economy and good ground clearance similar to humans. An important parameter is the knee-to-hip moment arm that greatly affects the existence and stability of gaits, and when selected appropriately can allow for a wide range of speeds. Elastic joint coupling may contribute to the economy and stability of human gait. PMID:18957360

  2. Ranking in evolving complex networks

    Science.gov (United States)

    Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang

    2017-05-01

    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.

  3. DOE translation tool: Faster and better than ever

    International Nuclear Information System (INIS)

    El-Chakieh, T.; Vincent, C.

    2006-01-01

    CAE's constant push to advance power plant simulation practices involves continued investment in our technologies. This commitment has yielded many advances in our simulation technologies and tools to provide faster maintenance updates, easier process updates and higher fidelity models for power plant simulators. Through this quest, a comprehensive, self-contained and user-friendly DCS translation tool for plant control system emulation was created. The translation tool converts an ABB Advant AC160 and/or AC450 control system, used in both gas turbine-based, fossil and nuclear power plants, into Linux or Windows-based ROSE[reg] simulation schematics. The translation for a full combined-cycle gas turbine (CCGT) plant that comprises more than 5,300 function plans distributed over 15 nodes is processed in less than five hours on a dual 2.8Ghz Xeon Linux platform in comparison to the 12 hours required by CAE's previous translation tool. The translation process, using the plant configuration files, includes the parsing of the control algorithms, the databases, the graphic and the interconnection between nodes. A Linux or Windows API is then used to automatically populate the ROSE[reg] database. Without such a translation, tool or if ?stimulation? of real control system is not feasible or too costly, simulation of the DCS manually takes months of error prone manual coding. The translation can be performed for all the nodes constituting the configuration files of the whole plant DCS, or in order to provide faster maintenance updates and easier process updates, partial builds are possible at 3 levels: a. single schematic updates, b. multi-schematic updates and c. single node updates based on the user inputs into the Graphical User Interface. improvements including: - Process time reduction of over 60%; - All communication connections between nodes are fully automated; - New partial build for one schematic, a group of schematics or a single node; - Availability on PC

  4. Faster and more accurate transport procedures for HZETRN

    International Nuclear Information System (INIS)

    Slaba, T.C.; Blattnig, S.R.; Badavi, F.F.

    2010-01-01

    The deterministic transport code HZETRN was developed for research scientists and design engineers studying the effects of space radiation on astronauts and instrumentation protected by various shielding materials and structures. In this work, several aspects of code verification are examined. First, a detailed derivation of the light particle (A ≤ 4) and heavy ion (A > 4) numerical marching algorithms used in HZETRN is given. References are given for components of the derivation that already exist in the literature, and discussions are given for details that may have been absent in the past. The present paper provides a complete description of the numerical methods currently used in the code and is identified as a key component of the verification process. Next, a new numerical method for light particle transport is presented, and improvements to the heavy ion transport algorithm are discussed. A summary of round-off error is also given, and the impact of this error on previously predicted exposure quantities is shown. Finally, a coupled convergence study is conducted by refining the discretization parameters (step-size and energy grid-size). From this study, it is shown that past efforts in quantifying the numerical error in HZETRN were hindered by single precision calculations and computational resources. It is determined that almost all of the discretization error in HZETRN is caused by the use of discretization parameters that violate a numerical convergence criterion related to charged target fragments below 50 AMeV. Total discretization errors are given for the old and new algorithms to 100 g/cm 2 in aluminum and water, and the improved accuracy of the new numerical methods is demonstrated. Run time comparisons between the old and new algorithms are given for one, two, and three layer slabs of 100 g/cm 2 of aluminum, polyethylene, and water. The new algorithms are found to be almost 100 times faster for solar particle event simulations and almost 10 times

  5. Simultaneous development of laparoscopy and robotics provides acceptable perioperative outcomes and shows robotics to have a faster learning curve and to be overall faster in rectal cancer surgery: analysis of novice MIS surgeon learning curves.

    Science.gov (United States)

    Melich, George; Hong, Young Ki; Kim, Jieun; Hur, Hyuk; Baik, Seung Hyuk; Kim, Nam Kyu; Sender Liberman, A; Min, Byung Soh

    2015-03-01

    Laparoscopy offers some evidence of benefit compared to open rectal surgery. Robotic rectal surgery is evolving into an accepted approach. The objective was to analyze and compare laparoscopic and robotic rectal surgery learning curves with respect to operative times and perioperative outcomes for a novice minimally invasive colorectal surgeon. One hundred and six laparoscopic and 92 robotic LAR rectal surgery cases were analyzed. All surgeries were performed by a surgeon who was primarily trained in open rectal surgery. Patient characteristics and perioperative outcomes were analyzed. Operative time and CUSUM plots were used for evaluating the learning curve for laparoscopic versus robotic LAR. Laparoscopic versus robotic LAR outcomes feature initial group operative times of 308 (291-325) min versus 397 (373-420) min and last group times of 220 (212-229) min versus 204 (196-211) min-reversed in favor of robotics; major complications of 4.7 versus 6.5 % (NS), resection margin involvement of 2.8 versus 4.4 % (NS), conversion rate of 3.8 versus 1.1 (NS), lymph node harvest of 16.3 versus 17.2 (NS), and estimated blood loss of 231 versus 201 cc (NS). Due to faster learning curves for extracorporeal phase and total mesorectal excision phase, the robotic surgery was observed to be faster than laparoscopic surgery after the initial 41 cases. CUSUM plots demonstrate acceptable perioperative surgical outcomes from the beginning of the study. Initial robotic operative times improved with practice rapidly and eventually became faster than those for laparoscopy. Developing both laparoscopic and robotic skills simultaneously can provide acceptable perioperative outcomes in rectal surgery. It might be suggested that in the current milieu of clashing interests between evolving technology and economic constrains, there might be advantages in embracing both approaches.

  6. The 'E' factor -- evolving endodontics.

    Science.gov (United States)

    Hunter, M J

    2013-03-01

    Endodontics is a constantly developing field, with new instruments, preparation techniques and sealants competing with trusted and traditional approaches to tooth restoration. Thus general dental practitioners must question and understand the significance of these developments before adopting new practices. In view of this, the aim of this article, and the associated presentation at the 2013 British Dental Conference & Exhibition, is to provide an overview of endodontic methods and constantly evolving best practice. The presentation will review current preparation techniques, comparing rotary versus reciprocation, and question current trends in restoration of the endodontically treated tooth.

  7. Local synteny and codon usage contribute to asymmetric sequence divergence of Saccharomyces cerevisiae gene duplicates

    Directory of Open Access Journals (Sweden)

    Bergthorsson Ulfar

    2011-09-01

    Full Text Available Abstract Background Duplicated genes frequently experience asymmetric rates of sequence evolution. Relaxed selective constraints and positive selection have both been invoked to explain the observation that one paralog within a gene-duplicate pair exhibits an accelerated rate of sequence evolution. In the majority of studies where asymmetric divergence has been established, there is no indication as to which gene copy, ancestral or derived, is evolving more rapidly. In this study we investigated the effect of local synteny (gene-neighborhood conservation and codon usage on the sequence evolution of gene duplicates in the S. cerevisiae genome. We further distinguish the gene duplicates into those that originated from a whole-genome duplication (WGD event (ohnologs versus small-scale duplications (SSD to determine if there exist any differences in their patterns of sequence evolution. Results For SSD pairs, the derived copy evolves faster than the ancestral copy. However, there is no relationship between rate asymmetry and synteny conservation (ancestral-like versus derived-like in ohnologs. mRNA abundance and optimal codon usage as measured by the CAI is lower in the derived SSD copies relative to ancestral paralogs. Moreover, in the case of ohnologs, the faster-evolving copy has lower CAI and lowered expression. Conclusions Together, these results suggest that relaxation of selection for codon usage and gene expression contribute to rate asymmetry in the evolution of duplicated genes and that in SSD pairs, the relaxation of selection stems from the loss of ancestral regulatory information in the derived copy.

  8. Innovations for competitiveness: European views on "better-faster-cheaper"

    Science.gov (United States)

    Atzei, A.; Groepper, P.; Novara, M.; Pseiner, K.

    1999-09-01

    The paper elaborates on " lessons learned" from two recent ESA workshops, one focussing on the role of Innovation in the competitiveness of the space sector and the second on technology and engineering aspects conducive to better, faster and cheaper space programmes. The paper focuses primarily on four major aspects, namely: a) the adaptations of industrial and public organisations to the global market needs; b) the understanding of the bottleneck factors limiting competitiveness; c) the trends toward new system architectures and new engineering and production methods; d) the understanding of the role of new technology in the future applications. Under the pressure of market forces and the influence of many global and regional players, applications of space systems and technology are becoming more and more competitive. It is well recognised that without major effort for innovation in industrial practices, organisations, R&D, marketing and financial approaches the European space sector will stagnate and loose its competence as well as its competitiveness. It is also recognised that a programme run according to the "better, faster, cheaper" philosophy relies on much closer integration of system design, development and verification, and draws heavily on a robust and comprehensive programme of technology development, which must run in parallel and off-line with respect to flight programmes. A company's innovation capabilities will determine its future competitive advantage (in time, cost, performance or value) and overall growth potential. Innovation must be a process that can be counted on to provide repetitive, sustainable, long-term performance improvements. As such, it needs not depend on great breakthroughs in technology and concepts (which are accidental and rare). Rather, it could be based on bold evolution through the establishment of know-how, application of best practices, process effectiveness and high standards, performance measurement, and attention to

  9. Bird on Your Smartphone: How to make identification faster?

    Science.gov (United States)

    Hidayat, T.; Kurniawan, I. S.; Tapilow, F. S.

    2018-01-01

    Identification skills of students are needed in the field activities of animal ecology course. Good identification skills will help students to understand the traits, determine differences and similarities in order to naming of birds’ species. This study aims to describe the identification skill of students by using smart phone applications designed in such a way as a support in the field activities. Research method used was quasi experiment involving 60 students which were divided into two groups, one group that use smartphone applications (SA) and other group using a guidebook (GB). This study was carried out in the classroom and outside (the field). Instruments used in this research included tests and questionnaire. The identification skills were measured by tests, indicated by an average score (AS). The results showed that the identification skills of SA students were higher (AS = 3.12) than those of GB one (AS = 2.91). These results are in accordance with response of students. The most of students (90.08%) mentioned that the use of smart phone applications in identifying birds is helpful, more effective and convenience to make identification faster. For further implementation, however, performance of the smartphone used here need to be enhanced to improve the identification skills of students and for wider use.

  10. Faster Double-Size Bipartite Multiplication out of Montgomery Multipliers

    Science.gov (United States)

    Yoshino, Masayuki; Okeya, Katsuyuki; Vuillaume, Camille

    This paper proposes novel algorithms for computing double-size modular multiplications with few modulus-dependent precomputations. Low-end devices such as smartcards are usually equipped with hardware Montgomery multipliers. However, due to progresses of mathematical attacks, security institutions such as NIST have steadily demanded longer bit-lengths for public-key cryptography, making the multipliers quickly obsolete. In an attempt to extend the lifespan of such multipliers, double-size techniques compute modular multiplications with twice the bit-length of the multipliers. Techniques are known for extending the bit-length of classical Euclidean multipliers, of Montgomery multipliers and the combination thereof, namely bipartite multipliers. However, unlike classical and bipartite multiplications, Montgomery multiplications involve modulus-dependent precomputations, which amount to a large part of an RSA encryption or signature verification. The proposed double-size technique simulates double-size multiplications based on single-size Montgomery multipliers, and yet precomputations are essentially free: in an 2048-bit RSA encryption or signature verification with public exponent e=216+1, the proposal with a 1024-bit Montgomery multiplier is at least 1.5 times faster than previous double-size Montgomery multiplications.

  11. A piece of paper falling faster than free fall

    International Nuclear Information System (INIS)

    Vera, F; Rivera, R

    2011-01-01

    We report a simple experiment that clearly demonstrates a common error in the explanation of the classic experiment where a small piece of paper is put over a book and the system is let fall. This classic demonstration is used in introductory physics courses to show that after eliminating the friction force with the air, the piece of paper falls with acceleration g. To test if the paper falls behind the book in a nearly free fall motion or if it is dragged by the book, we designed a version of this experiment that includes a ball and a piece of paper over a book that is forced to fall using elastic cords. We recorded a video of our experiment using a high-speed video camera at 300 frames per second that shows that the book and the paper fall faster than the ball, which falls well behind the book with an acceleration approximately equal to g. Our experiment shows that the piece of paper is dragged behind the book and therefore the paper and book demonstration should not be used to show that all objects fall with acceleration g independently of their mass.

  12. Higher Resolution and Faster MRI of 31Phosphorus in Bone

    Science.gov (United States)

    Frey, Merideth; Barrett, Sean; Sethna, Zachary; Insogna, Karl; Vanhouten, Joshua

    2013-03-01

    Probing the internal composition of bone on the sub-100 μm length scale is important to study normal features and to look for signs of disease. However, few useful non-destructive techniques are available to evaluate changes in the bone mineral chemical structure and functional micro-architecture on the interior of bones. MRI would be an excellent candidate, but bone is a particularly challenging tissue to study given the relatively low water density, wider linewidths of its solid components leading to low spatial resolution, and the long imaging time compared to conventional 1H MRI. Our lab has recently made advances in obtaining high spatial resolution (sub-400 μm)3 three-dimensional 31Phosphorus MRI of bone through use of the quadratic echo line-narrowing sequence (1). In this talk, we describe our current results using proton decoupling to push this technique even further towards the factor of 1000 increase in spatial resolution imposed by fundamental limits. We also discuss our work to speed up imaging through novel, faster reconstruction algorithms that can reconstruct the desired image from very sparse data sets. (1) M. Frey, et al. PNAS 109: 5190 (2012).

  13. Hexagonal undersampling for faster MRI near metallic implants.

    Science.gov (United States)

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2015-02-01

    Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.

  14. A piece of paper falling faster than free fall

    Energy Technology Data Exchange (ETDEWEB)

    Vera, F; Rivera, R, E-mail: fvera@ucv.cl [Instituto de Fisica, Pontificia Universidad Catolica de ValparaIso, Av. Universidad 330, Curauma, ValparaIso (Chile)

    2011-09-15

    We report a simple experiment that clearly demonstrates a common error in the explanation of the classic experiment where a small piece of paper is put over a book and the system is let fall. This classic demonstration is used in introductory physics courses to show that after eliminating the friction force with the air, the piece of paper falls with acceleration g. To test if the paper falls behind the book in a nearly free fall motion or if it is dragged by the book, we designed a version of this experiment that includes a ball and a piece of paper over a book that is forced to fall using elastic cords. We recorded a video of our experiment using a high-speed video camera at 300 frames per second that shows that the book and the paper fall faster than the ball, which falls well behind the book with an acceleration approximately equal to g. Our experiment shows that the piece of paper is dragged behind the book and therefore the paper and book demonstration should not be used to show that all objects fall with acceleration g independently of their mass.

  15. Learning Faster by Discovering and Exploiting Object Similarities

    Directory of Open Access Journals (Sweden)

    Tadej Janež

    2013-03-01

    Full Text Available In this paper we explore the question: “Is it possible to speed up the learning process of an autonomous agent by performing experiments in a more complex environment (i.e., an environment with a greater number of different objects?” To this end, we use a simple robotic domain, where the robot has to learn a qualitative model predicting the change in the robot's distance to an object. To quantify the environment's complexity, we defined cardinal complexity as the number of objects in the robot's world, and behavioural complexity as the number of objects' distinct behaviours. We propose Error reduction merging (ERM, a new learning method that automatically discovers similarities in the structure of the agent's environment. ERM identifies different types of objects solely from the data measured and merges the observations of objects that behave in the same or similar way in order to speed up the agent's learning. We performed a series of experiments in worlds of increasing complexity. The results in our simple domain indicate that ERM was capable of discovering structural similarities in the data which indeed made the learning faster, clearly superior to conventional learning. This observed trend occurred with various machine learning algorithms used inside the ERM method.

  16. Skin graft donor site: a procedure for a faster healing.

    Science.gov (United States)

    Cuomo, Roberto; Grimaldi, Luca; Brandi, Cesare; Nisi, Giuseppe; D'Aniello, Carlo

    2017-10-23

    The authors want to evaluate the efficacy of fibrillary tabotamp dressing in skin graft-donor site. A comparison was made with Vaseline gauzes. Tabotamp is an absorbable haemostatic product of Ethicon (Johnson and Johnson) obtained by sterile and oxidized regenerated cellulose (Rayon). It is used for mild to moderate bleeding. 276 patients were subject to skin graft and divided into two group: Group A and Group B. The donor site of patients in Group A was medicated with fibrillary tabotamp, while the patients of Group B were medicated only with Vaseline gauze. We recorded infection, timing of healing, number of dressing change, the pain felt during and after the dressing change with visual analog scale (VAS) and a questionnaire. Patients allocated in Group A healed faster than the Group B. Questionnaires and VAS analysis showed lower pain felt, lower intake of pain drugs and lower infection rate in the Group A than the Group B. Analysis of coast showed lower dressing change in Group A than the Group B. We believe that the use of tabotamp is a very viable alternative to improve healing.

  17. Causal events enter awareness faster than non-causal events

    Directory of Open Access Journals (Sweden)

    Pieter Moors

    2017-01-01

    Full Text Available Philosophers have long argued that causality cannot be directly observed but requires a conscious inference (Hume, 1967. Albert Michotte however developed numerous visual phenomena in which people seemed to perceive causality akin to primary visual properties like colour or motion (Michotte, 1946. Michotte claimed that the perception of causality did not require a conscious, deliberate inference but, working over 70 years ago, he did not have access to the experimental methods to test this claim. Here we employ Continuous Flash Suppression (CFS—an interocular suppression technique to render stimuli invisible (Tsuchiya & Koch, 2005—to test whether causal events enter awareness faster than non-causal events. We presented observers with ‘causal’ and ‘non-causal’ events, and found consistent evidence that participants become aware of causal events more rapidly than non-causal events. Our results suggest that, whilst causality must be inferred from sensory evidence, this inference might be computed at low levels of perceptual processing, and does not depend on a deliberative conscious evaluation of the stimulus. This work therefore supports Michotte’s contention that, like colour or motion, causality is an immediate property of our perception of the world.

  18. Evolution of trappin genes in mammals

    Directory of Open Access Journals (Sweden)

    Furutani Yutaka

    2010-01-01

    Full Text Available Abstract Background Trappin is a multifunctional host-defense peptide that has antiproteolytic, antiinflammatory, and antimicrobial activities. The numbers and compositions of trappin paralogs vary among mammalian species: human and sheep have a single trappin-2 gene; mouse and rat have no trappin gene; pig and cow have multiple trappin genes; and guinea pig has a trappin gene and two other derivativegenes. Independent duplications of trappin genes in pig and cow were observed recently after the species were separated. To determine whether these trappin gene duplications are restricted only to certain mammalian lineages, we analyzed recently-developed genome databases for the presence of duplicate trappin genes. Results The database analyses revealed that: 1 duplicated trappin multigenes were found recently in the nine-banded armadillo; 2 duplicated two trappin genes had been found in the Afrotherian species (elephant, tenrec, and hyrax since ancient days; 3 a single trappin-2 gene was found in various eutherians species; and 4 no typical trappin gene has been found in chicken, zebra finch, and opossum. Bayesian analysis estimated the date of the duplication of trappin genes in the Afrotheria, guinea pig, armadillo, cow, and pig to be 244, 35, 11, 13, and 3 million-years ago, respectively. The coding regions of trappin multigenes of almadillo, bovine, and pig evolved much faster than the noncoding exons, introns, and the flanking regions, showing that these genes have undergone accelerated evolution, and positive Darwinian selection was observed in pig-specific trappin paralogs. Conclusion These results suggest that trappin is an eutherian-specific molecule and eutherian genomes have the potential to form trappin multigenes.

  19. Peripartum hysterectomy: an evolving picture.

    LENUS (Irish Health Repository)

    Turner, Michael J

    2012-02-01

    Peripartum hysterectomy (PH) is one of the obstetric catastrophes. Evidence is emerging that the role of PH in modern obstetrics is evolving. Improving management of postpartum hemorrhage and newer surgical techniques should decrease PH for uterine atony. Rising levels of repeat elective cesarean deliveries should decrease PH following uterine scar rupture in labor. Increasing cesarean rates, however, have led to an increase in the number of PHs for morbidly adherent placenta. In the case of uterine atony or rupture where PH is required, a subtotal PH is often sufficient. In the case of pathological placental localization involving the cervix, however, a total hysterectomy is required. Furthermore, the involvement of other pelvic structures may prospectively make the diagnosis difficult and the surgery challenging. If resources permit, PH for pathological placental localization merits a multidisciplinary approach. Despite advances in clinical practice, it is likely that peripartum hysterectomy will be more challenging for obstetricians in the future.

  20. Infrared spectroscopy of evolved objects

    International Nuclear Information System (INIS)

    Aitken, D.K.; Roche, P.F.

    1984-01-01

    In this review, the authors are concerned with spectroscopic observations of evolved objects made in the wavelength range 1-300μm. Spectroscopic observations can conveniently be divided into studies of narrow lines, bands and broader continua. The vibrational frequencies of molecular groups fall mainly in this spectral region and appear as vibration-rotation bands from the gas phase, and as less structured, but often broader, features from the solid state. Many ionic lines, including recombination lines of abundant species and fine structure lines of astrophysically important ions also appear in this region. The continuum can arise from a number of mechanisms - photospheric emission, radiation from dust, free-free transitions in ionized gas and non-thermal processes. (Auth.)

  1. Shampoo-clay heals diaper rash faster than calendula officinalis.

    Science.gov (United States)

    Adib-Hajbaghery, Mohsen; Mahmoudi, Mansoreh; Mashaiekhi, Mahdi

    2014-06-01

    Diaper rash is one of the most common skin disorders of infancy and childhood. Some studies have shown that Shampoo-clay was effective to treat chronic dermatitis. Then, it is supposed that it may be effective in diaper rash; however, no published studies were found in this regard. This study aimed to compare the effects of Shampoo-clay (S.C) and Calendula officinalis (C.O) to improve infantile diaper rash. A randomized, double blind, parallel controlled, non-inferiority trial was conducted on 60 outpatient infants referred to health care centers or pediatric clinics in Khomein city and diagnosed with diaper rash. Patients were randomly assigned into two treatment groups including S.C group (n = 30) and C.O group (n = 30) by using one to one allocation ratio. The rate of complete recovery in three days was the primary outcome. Data was collected using a checklist and analyzed using t-test, Chi-square and Fisher's exact tests and risk ratio. Totally, 93.3% of lesions in the S.C group healed in the first 6 hours, while this rate was 40% in C.O group (P < 0.001). The healing ratio for improvement in the first 6 hours was 7 times more in the S.C group. In addition, 90% of infants in the SC group and 36.7% in the C.O group were improved completely in the first 3 days (P < 0.001). S.C was effective to heal diaper rash, and also had faster effects compared to C.O.

  2. Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.

    Science.gov (United States)

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2017-06-01

    Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.

  3. Simulating evolution of protein complexes through gene duplication and co-option.

    Science.gov (United States)

    Haarsma, Loren; Nelesen, Serita; VanAndel, Ethan; Lamine, James; VandeHaar, Peter

    2016-06-21

    We present a model of the evolution of protein complexes with novel functions through gene duplication, mutation, and co-option. Under a wide variety of input parameters, digital organisms evolve complexes of 2-5 bound proteins which have novel functions but whose component proteins are not independently functional. Evolution of complexes with novel functions happens more quickly as gene duplication rates increase, point mutation rates increase, protein complex functional probability increases, protein complex functional strength increases, and protein family size decreases. Evolution of complexity is inhibited when the metabolic costs of making proteins exceeds the fitness gain of having functional proteins, or when point mutation rates get so large the functional proteins undergo deleterious mutations faster than new functional complexes can evolve. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. CERN internal communication is evolving

    CERN Multimedia

    2016-01-01

    CERN news will now be regularly updated on the CERN People page (see here).      Dear readers, All over the world, communication is becoming increasingly instantaneous, with news published in real time on websites and social networks. In order to keep pace with these changes, CERN's internal communication is evolving too. From now on, you will be informed of what’s happening at CERN more often via the “CERN people” page, which will frequently be updated with news. The Bulletin is following this trend too: twice a month, we will compile the most important articles published on the CERN site, with a brand-new layout. You will receive an e-mail every two weeks as soon as this new form of the Bulletin is available. If you have interesting news or stories to share, tell us about them through the form at: https://communications.web.cern.ch/got-story-cern-website​. You can also find out about news from CERN in real time...

  5. Economies Evolve by Energy Dispersal

    Directory of Open Access Journals (Sweden)

    Stanley Salthe

    2009-10-01

    Full Text Available Economic activity can be regarded as an evolutionary process governed by the 2nd law of thermodynamics. The universal law, when formulated locally as an equation of motion, reveals that a growing economy develops functional machinery and organizes hierarchically in such a way as to tend to equalize energy density differences within the economy and in respect to the surroundings it is open to. Diverse economic activities result in flows of energy that will preferentially channel along the most steeply descending paths, leveling a non-Euclidean free energy landscape. This principle of 'maximal energy dispersal‘, equivalent to the maximal rate of entropy production, gives rise to economic laws and regularities. The law of diminishing returns follows from the diminishing free energy while the relation between supply and demand displays a quest for a balance among interdependent energy densities. Economic evolution is dissipative motion where the driving forces and energy flows are inseparable from each other. When there are multiple degrees of freedom, economic growth and decline are inherently impossible to forecast in detail. Namely, trajectories of an evolving economy are non-integrable, i.e. unpredictable in detail because a decision by a player will affect also future decisions of other players. We propose that decision making is ultimately about choosing from various actions those that would reduce most effectively subjectively perceived energy gradients.

  6. Recommendation in evolving online networks

    Science.gov (United States)

    Hu, Xiao; Zeng, An; Shang, Ming-Sheng

    2016-02-01

    Recommender system is an effective tool to find the most relevant information for online users. By analyzing the historical selection records of users, recommender system predicts the most likely future links in the user-item network and accordingly constructs a personalized recommendation list for each user. So far, the recommendation process is mostly investigated in static user-item networks. In this paper, we propose a model which allows us to examine the performance of the state-of-the-art recommendation algorithms in evolving networks. We find that the recommendation accuracy in general decreases with time if the evolution of the online network fully depends on the recommendation. Interestingly, some randomness in users' choice can significantly improve the long-term accuracy of the recommendation algorithm. When a hybrid recommendation algorithm is applied, we find that the optimal parameter gradually shifts towards the diversity-favoring recommendation algorithm, indicating that recommendation diversity is essential to keep a high long-term recommendation accuracy. Finally, we confirm our conclusions by studying the recommendation on networks with the real evolution data.

  7. Evolving Capabilities for Virtual Globes

    Science.gov (United States)

    Glennon, A.

    2006-12-01

    Though thin-client spatial visualization software like Google Earth and NASA World Wind enjoy widespread popularity, a common criticism is their general lack of analytical functionality. This concern, however, is rapidly being addressed; standard and advanced geographic information system (GIS) capabilities are being developed for virtual globes--though not centralized into a single implementation or software package. The innovation is mostly originating from the user community. Three such capabilities relevant to the earth science, education, and emergency management communities are modeling dynamic spatial phenomena, real-time data collection and visualization, and multi-input collaborative databases. Modeling dynamic spatial phenomena has been facilitated through joining virtual globe geometry definitions--like KML--to relational databases. Real-time data collection uses short scripts to transform user-contributed data into a format usable by virtual globe software. Similarly, collaborative data collection for virtual globes has become possible by dynamically referencing online, multi-person spreadsheets. Examples of these functions include mapping flows within a karst watershed, real-time disaster assessment and visualization, and a collaborative geyser eruption spatial decision support system. Virtual globe applications will continue to evolve further analytical capabilities, more temporal data handling, and from nano to intergalactic scales. This progression opens education and research avenues in all scientific disciplines.

  8. Idiopathic pulmonary fibrosis: evolving concepts.

    Science.gov (United States)

    Ryu, Jay H; Moua, Teng; Daniels, Craig E; Hartman, Thomas E; Yi, Eunhee S; Utz, James P; Limper, Andrew H

    2014-08-01

    Idiopathic pulmonary fibrosis (IPF) occurs predominantly in middle-aged and older adults and accounts for 20% to 30% of interstitial lung diseases. It is usually progressive, resulting in respiratory failure and death. Diagnostic criteria for IPF have evolved over the years, and IPF is currently defined as a disease characterized by the histopathologic pattern of usual interstitial pneumonia occurring in the absence of an identifiable cause of lung injury. Understanding of the pathogenesis of IPF has shifted away from chronic inflammation and toward dysregulated fibroproliferative repair in response to alveolar epithelial injury. Idiopathic pulmonary fibrosis is likely a heterogeneous disorder caused by various interactions between genetic components and environmental exposures. High-resolution computed tomography can be diagnostic in the presence of typical findings such as bilateral reticular opacities associated with traction bronchiectasis/bronchiolectasis in a predominantly basal and subpleural distribution, along with subpleural honeycombing. In other circumstances, a surgical lung biopsy may be needed. The clinical course of IPF can be unpredictable and may be punctuated by acute deteriorations (acute exacerbation). Although progress continues in unraveling the mechanisms of IPF, effective therapy has remained elusive. Thus, clinicians and patients need to reach informed decisions regarding management options including lung transplant. The findings in this review were based on a literature search of PubMed using the search terms idiopathic pulmonary fibrosis and usual interstitial pneumonia, limited to human studies in the English language published from January 1, 2000, through December 31, 2013, and supplemented by key references published before the year 2000. Copyright © 2014 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  9. QERx- A Faster than Real-Time Emulator for Space Processors

    Science.gov (United States)

    Carvalho, B.; Pidgeon, A.; Robinson, P.

    2012-08-01

    Developing software for space systems is challenging. Especially because, in order to be sure it can cope with the harshness of the environment and the imperative requirements and constrains imposed by the platform were it will run, it needs to be tested exhaustively. Software Validation Facilities (SVF) are known to the industry and developers, and provide the means to run the On-Board Software (OBSW) in a realistic environment, allowing the development team to debug and test the software.But the challenge is to be able to keep up with the performance of the new processors (LEON2 and LEON3), which need to be emulated within the SVF. Such processor emulators are also used in Operational Simulators, used to support mission preparation and train mission operators. These simulators mimic the satellite and its behaviour, as realistically as possible. For test/operational efficiency reasons and because they will need to interact with external systems, both these uses cases require the processor emulators to provide real-time, or faster, performance.It is known to the industry that the performance of previously available emulators is not enough to cope with the performance of the new processors available in the market. SciSys approached this problem with dynamic translation technology trying to keep costs down by avoiding a hardware solution and keeping the integration flexibility of full software emulation.SciSys presented “QERx: A High Performance Emulator for Software Validation and Simulations” [1], in a previous DASIA event. Since then that idea has evolved and QERx has been successfully validated. SciSys is now presenting QERx as a product that can be tailored to fit different emulation needs. This paper will present QERx latest developments and current status.

  10. Evolving expectations from international organisations

    International Nuclear Information System (INIS)

    Ruiz Lopez, C.

    2008-01-01

    The author stated that implementation of the geological disposal concept requires a strategy that provides national decision makers with sufficient confidence in the level of long-term safety and protection ultimately achieved. The concept of protection against harm has a broader meaning than radiological protection in terms of risk and dose. It includes the protection of the environment and socio-economic interests of communities. She recognised that a number of countries have established regulatory criteria already, and others are now discussing what constitutes a proper regulatory test and suitable time frame for judging the safety of long-term disposal. Each regulatory programme seeks to define reasonable tests of repository performance, using protection criteria and safety approaches consistent with the culture, values and expectations of the citizens of the country concerned. This means that there are differences in how protection and safety are addressed in national approaches to regulation and in the bases used for that. However, as was recognised in the Cordoba Workshop, it would be important to reach a minimum level of consistency and be able to explain the differences. C. Ruiz-Lopez presented an overview of the development of international guidance from ICRP, IAEA and NEA from the Cordoba workshop up to now, and positions of independent National Advisory Bodies. The evolution of these guidelines over time demonstrates an evolving understanding of long-term implications, with the recognition that dose and risk constraints should not be seen as measures of detriment beyond a few hundred years, the emphasis on sound engineering practices, and the introduction of new concepts and approaches which take into account social and economical aspects (e.g. constrained optimisation, BAT, managerial principles). In its new recommendations, ICRP (draft 2006) recognizes. in particular, that decision making processes may depend on other societal concerns and considers

  11. Evolving Stochastic Learning Algorithm based on Tsallis entropic index

    Science.gov (United States)

    Anastasiadis, A. D.; Magoulas, G. D.

    2006-03-01

    In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.

  12. Natural selection in avian protein-coding genes expressed in brain.

    Science.gov (United States)

    Axelsson, Erik; Hultin-Rosenberg, Lina; Brandström, Mikael; Zwahlén, Martin; Clayton, David F; Ellegren, Hans

    2008-06-01

    The evolution of birds from theropod dinosaurs took place approximately 150 million years ago, and was associated with a number of specific adaptations that are still evident among extant birds, including feathers, song and extravagant secondary sexual characteristics. Knowledge about the molecular evolutionary background to such adaptations is lacking. Here, we analyse the evolution of > 5000 protein-coding gene sequences expressed in zebra finch brain by comparison to orthologous sequences in chicken. Mean d(N)/d(S) is 0.085 and genes with their maximal expression in the eye and central nervous system have the lowest mean d(N)/d(S) value, while those expressed in digestive and reproductive tissues exhibit the highest. We find that fast-evolving genes (those which have higher than expected rate of nonsynonymous substitution, indicative of adaptive evolution) are enriched for biological functions such as fertilization, muscle contraction, defence response, response to stress, wounding and endogenous stimulus, and cell death. After alignment to mammalian orthologues, we identify a catalogue of 228 genes that show a significantly higher rate of protein evolution in the two bird lineages than in mammals. These accelerated bird genes, representing candidates for avian-specific adaptations, include genes implicated in vocal learning and other cognitive processes. Moreover, colouration genes evolve faster in birds than in mammals, which may have been driven by sexual selection for extravagant plumage characteristics.

  13. Evolving Technologies: A View to Tomorrow

    Science.gov (United States)

    Tamarkin, Molly; Rodrigo, Shelley

    2011-01-01

    Technology leaders must participate in strategy creation as well as operational delivery within higher education institutions. The future of higher education--the view to tomorrow--is irrevocably integrated and intertwined with evolving technologies. This article focuses on two specific evolving technologies: (1) alternative IT sourcing; and (2)…

  14. Faster Increases in Human Life Expectancy Could Lead to Slower Population Aging

    Science.gov (United States)

    2015-01-01

    Counterintuitively, faster increases in human life expectancy could lead to slower population aging. The conventional view that faster increases in human life expectancy would lead to faster population aging is based on the assumption that people become old at a fixed chronological age. A preferable alternative is to base measures of aging on people’s time left to death, because this is more closely related to the characteristics that are associated with old age. Using this alternative interpretation, we show that faster increases in life expectancy would lead to slower population aging. Among other things, this finding affects the assessment of the speed at which countries will age. PMID:25876033

  15. Sequence-based heuristics for faster annotation of non-coding RNA families.

    Science.gov (United States)

    Weinberg, Zasha; Ruzzo, Walter L

    2006-01-01

    Non-coding RNAs (ncRNAs) are functional RNA molecules that do not code for proteins. Covariance Models (CMs) are a useful statistical tool to find new members of an ncRNA gene family in a large genome database, using both sequence and, importantly, RNA secondary structure information. Unfortunately, CM searches are extremely slow. Previously, we created rigorous filters, which provably sacrifice none of a CM's accuracy, while making searches significantly faster for virtually all ncRNA families. However, these rigorous filters make searches slower than heuristics could be. In this paper we introduce profile HMM-based heuristic filters. We show that their accuracy is usually superior to heuristics based on BLAST. Moreover, we compared our heuristics with those used in tRNAscan-SE, whose heuristics incorporate a significant amount of work specific to tRNAs, where our heuristics are generic to any ncRNA. Performance was roughly comparable, so we expect that our heuristics provide a high-quality solution that--unlike family-specific solutions--can scale to hundreds of ncRNA families. The source code is available under GNU Public License at the supplementary web site.

  16. Evolvability Search: Directly Selecting for Evolvability in order to Study and Produce It

    DEFF Research Database (Denmark)

    Mengistu, Henok; Lehman, Joel Anthony; Clune, Jeff

    2016-01-01

    of evolvable digital phenotypes. Although some types of selection in evolutionary computation indirectly encourage evolvability, one unexplored possibility is to directly select for evolvability. To do so, we estimate an individual's future potential for diversity by calculating the behavioral diversity of its...... immediate offspring, and select organisms with increased offspring variation. While the technique is computationally expensive, we hypothesized that direct selection would better encourage evolvability than indirect methods. Experiments in two evolutionary robotics domains confirm this hypothesis: in both...... domains, such Evolvability Search produces solutions with higher evolvability than those produced with Novelty Search or traditional objective-based search algorithms. Further experiments demonstrate that the higher evolvability produced by Evolvability Search in a training environment also generalizes...

  17. Insect sex determination: it all evolves around transformer.

    Science.gov (United States)

    Verhulst, Eveline C; van de Zande, Louis; Beukeboom, Leo W

    2010-08-01

    Insects exhibit a variety of sex determining mechanisms including male or female heterogamety and haplodiploidy. The primary signal that starts sex determination is processed by a cascade of genes ending with the conserved switch doublesex that controls sexual differentiation. Transformer is the doublesex splicing regulator and has been found in all examined insects, indicating its ancestral function as a sex-determining gene. Despite this conserved function, the variation in transformer nucleotide sequence, amino acid composition and protein structure can accommodate a multitude of upstream sex determining signals. Transformer regulation of doublesex and its taxonomic distribution indicate that the doublesex-transformer axis is conserved among all insects and that transformer is the key gene around which variation in sex determining mechanisms has evolved.

  18. Sex determination: ways to evolve a hermaphrodite.

    OpenAIRE

    Braendle , Christian; Félix , Marie-Anne

    2006-01-01

    Most species of the nematode genus Caenorhabditis reproduce through males and females; C. elegans and C. briggsae, however, produce self-fertile hermaphrodites instead of females. These transitions to hermaphroditism evolved convergently through distinct modifications of germline sex determination mechanisms.

  19. WSC-07: Evolving the Web Services Challenge

    NARCIS (Netherlands)

    Blake, M. Brian; Cheung, William K.W.; Jaeger, Michael C.; Wombacher, Andreas

    Service-oriented architecture (SOA) is an evolving architectural paradigm where businesses can expose their capabilities as modular, network-accessible software services. By decomposing capabilities into modular services, organizations can share their offerings at multiple levels of granularity

  20. Marshal: Maintaining Evolving Models, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — SIFT proposes to design and develop the Marshal system, a mixed-initiative tool for maintaining task models over the course of evolving missions. Marshal-enabled...

  1. Satcom access in the Evolved Packet Core

    NARCIS (Netherlands)

    Cano Soveri, M.D.; Norp, A.H.J.; Popova, M.P.

    2011-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is

  2. Satcom access in the evolved packet core

    NARCIS (Netherlands)

    Cano, M.D.; Norp, A.H.J.; Popova, M.P.

    2012-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is

  3. Forces shaping the fastest evolving regions in the human genome

    DEFF Research Database (Denmark)

    Pollard, Katherine S; Salama, Sofie R; King, Bryan

    2006-01-01

    Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202...... genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements...... contributed to accelerated evolution of the fastest evolving elements in the human genome....

  4. Evolving effective incremental SAT solvers with GP

    OpenAIRE

    Bader, Mohamed; Poli, R.

    2008-01-01

    Hyper-Heuristics could simply be defined as heuristics to choose other heuristics, and it is a way of combining existing heuristics to generate new ones. In a Hyper-Heuristic framework, the framework is used for evolving effective incremental (Inc*) solvers for SAT. We test the evolved heuristics (IncHH) against other known local search heuristics on a variety of benchmark SAT problems.

  5. Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria.

    Directory of Open Access Journals (Sweden)

    Teresa Nogueira

    Full Text Available Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.

  6. Reading faster

    Directory of Open Access Journals (Sweden)

    Paul Nation

    2009-12-01

    Full Text Available This article describes the visual nature of the reading process as it relates to reading speed. It points out that there is a physical limit on normal reading speed and beyond this limit the reading process will be different from normal reading where almost every word is attended to. The article describes a range of activities for developing reading fluency, and suggests how the development of fluency can become part of a reading programme.

  7. Adaptive synonymous mutations in an experimentally evolved Pseudomonas fluorescens population

    DEFF Research Database (Denmark)

    Bailey, Susan; Hinz, Aaron; Kassen, Rees

    2014-01-01

    Conventional wisdom holds that synonymous mutations, nucleotide changes that do not alter the encoded amino acid, have no detectable effect on phenotype or fitness. However, a growing body of evidence from both comparative and experimental studies suggests otherwise. Synonymous mutations have been...... shown to impact gene expression, protein folding and fitness, however, direct evidence that they can be positively selected, and so contribute to adaptation, is lacking. Here we report the recovery of two beneficial synonymous single base pair changes that arose spontaneously and independently...... in an experimentally evolved population of Pseudomonas fluorescens. We show experimentally that these mutations increase fitness by an amount comparable to non-synonymous mutations and that the fitness increases stem from increased gene expression. These results provide unequivocal evidence that synonymous mutations...

  8. Genome diversity and divergence in Drosophila mauritiana: multiple signatures of faster X evolution.

    Science.gov (United States)

    Garrigan, Daniel; Kingan, Sarah B; Geneva, Anthony J; Vedanayagam, Jeffrey P; Presgraves, Daven C

    2014-09-04

    Drosophila mauritiana is an Indian Ocean island endemic species that diverged from its two sister species, Drosophila simulans and Drosophila sechellia, approximately 240,000 years ago. Multiple forms of incomplete reproductive isolation have evolved among these species, including sexual, gametic, ecological, and intrinsic postzygotic barriers, with crosses among all three species conforming to Haldane's rule: F(1) hybrid males are sterile and F(1) hybrid females are fertile. Extensive genetic resources and the fertility of hybrid females have made D. mauritiana, in particular, an important model for speciation genetics. Analyses between D. mauritiana and both of its siblings have shown that the X chromosome makes a disproportionate contribution to hybrid male sterility. But why the X plays a special role in the evolution of hybrid sterility in these, and other, species remains an unsolved problem. To complement functional genetic analyses, we have investigated the population genomics of D. mauritiana, giving special attention to differences between the X and the autosomes. We present a de novo genome assembly of D. mauritiana annotated with RNAseq data and a whole-genome analysis of polymorphism and divergence from ten individuals. Our analyses show that, relative to the autosomes, the X chromosome has reduced nucleotide diversity but elevated nucleotide divergence; an excess of recurrent adaptive evolution at its protein-coding genes; an excess of recent, strong selective sweeps; and a large excess of satellite DNA. Interestingly, one of two centimorgan-scale selective sweeps on the D. mauritiana X chromosome spans a region containing two sex-ratio meiotic drive elements and a high concentration of satellite DNA. Furthermore, genes with roles in reproduction and chromosome biology are enriched among genes that have histories of recurrent adaptive protein evolution. Together, these genome-wide analyses suggest that genetic conflict and frequent positive natural

  9. Population level analysis of evolved mutations underlying improvements in plant hemicellulose and cellulose fermentation by Clostridium phytofermentans.

    Directory of Open Access Journals (Sweden)

    Supratim Mukherjee

    Full Text Available The complexity of plant cell walls creates many challenges for microbial decomposition. Clostridium phytofermentans, an anaerobic bacterium isolated from forest soil, directly breaks down and utilizes many plant cell wall carbohydrates. The objective of this research is to understand constraints on rates of plant decomposition by Clostridium phytofermentans and identify molecular mechanisms that may overcome these limitations.Experimental evolution via repeated serial transfers during exponential growth was used to select for C. phytofermentans genotypes that grow more rapidly on cellobiose, cellulose and xylan. To identify the underlying mutations an average of 13,600,000 paired-end reads were generated per population resulting in ∼300 fold coverage of each site in the genome. Mutations with allele frequencies of 5% or greater could be identified with statistical confidence. Many mutations are in carbohydrate-related genes including the promoter regions of glycoside hydrolases and amino acid substitutions in ABC transport proteins involved in carbohydrate uptake, signal transduction sensors that detect specific carbohydrates, proteins that affect the export of extracellular enzymes, and regulators of unknown specificity. Structural modeling of the ABC transporter complex proteins suggests that mutations in these genes may alter the recognition of carbohydrates by substrate-binding proteins and communication between the intercellular face of the transmembrane and the ATPase binding proteins.Experimental evolution was effective in identifying molecular constraints on the rate of hemicellulose and cellulose fermentation and selected for putative gain of function mutations that do not typically appear in traditional molecular genetic screens. The results reveal new strategies for evolving and engineering microorganisms for faster growth on plant carbohydrates.

  10. Adaptively evolved yeast mutants on galactose show trade-offs in carbon utilization on glucose

    DEFF Research Database (Denmark)

    Hong, Kuk-Ki; Nielsen, Jens

    2013-01-01

    the molecular mechanisms. In this study, adaptively evolved yeast mutants with improved galactose utilization ability showed impaired glucose utilization. The molecular genetic basis of this trade-off was investigated using a systems biology approach. Transcriptional and metabolic changes resulting from...... the improvement of galactose utilization were found maintained during growth on glucose. Moreover, glucose repression related genes showed conserved expression patterns during growth on both sugars. Mutations in the RAS2 gene that were identified as beneficial for galactose utilization in evolved mutants...

  11. The aldehyde dehydrogenase, AldA, is essential for L-1,2-propanediol utilization in laboratory-evolved Escherichia coli

    DEFF Research Database (Denmark)

    Aziz, Ramy K.; Monk, Jonathan M.; Andrews, Kathleen A.

    2017-01-01

    is highly conserved among members of the family Enterobacteriacea. To test this hypothesis, we first performed computational model simulation, which confirmed the essentiality of the aldA gene for 1,2-PDO utilization by the evolved PDO-degrading E. coli. Next, we deleted the aldA gene from the evolved...

  12. Evolving Intelligent Systems Methodology and Applications

    CERN Document Server

    Angelov, Plamen; Kasabov, Nik

    2010-01-01

    From theory to techniques, the first all-in-one resource for EIS. There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on th

  13. Interactively Evolving Compositional Sound Synthesis Networks

    DEFF Research Database (Denmark)

    Jónsson, Björn Þór; Hoover, Amy K.; Risi, Sebastian

    2015-01-01

    the space of potential sounds that can be generated through such compositional sound synthesis networks (CSSNs). To study the effect of evolution on subjective appreciation, participants in a listener study ranked evolved timbres by personal preference, resulting in preferences skewed toward the first......While the success of electronic music often relies on the uniqueness and quality of selected timbres, many musicians struggle with complicated and expensive equipment and techniques to create their desired sounds. Instead, this paper presents a technique for producing novel timbres that are evolved...

  14. Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions.

    Science.gov (United States)

    Kobayashi, Tetsuya

    2016-01-01

    Many plant-parasite interactions that include major plant resistance genes have subsequently been shown to exhibit features of gene-for-gene interactions between plant Resistance genes and parasite Avirulence genes. The brown planthopper (BPH) Nilaparvata lugens is an important pest of rice (Oryza sativa). Historically, major Resistance genes have played an important role in agriculture. As is common in gene-for-gene interactions, evolution of BPH virulence compromises the effectiveness of singly-deployed resistance genes. It is therefore surprising that laboratory studies of BPH have supported the conclusion that virulence is conferred by changes in many genes rather than a change in a single gene, as is proposed by the gene-for-gene model. Here we review the behaviour, physiology and genetics of the BPH in the context of host plant resistance. A problem for genetic understanding has been the use of various insect populations that differ in frequencies of virulent genotypes. We show that the previously proposed polygenic inheritance of BPH virulence can be explained by the heterogeneity of parental populations. Genetic mapping of Avirulence genes indicates that virulence is a monogenic trait. These evolving concepts, which have brought the gene-for-gene model back into the picture, are accelerating our understanding of rice-BPH interactions at the molecular level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Accelerated Distributed Dual Averaging Over Evolving Networks of Growing Connectivity

    Science.gov (United States)

    Liu, Sijia; Chen, Pin-Yu; Hero, Alfred O.

    2018-04-01

    We consider the problem of accelerating distributed optimization in multi-agent networks by sequentially adding edges. Specifically, we extend the distributed dual averaging (DDA) subgradient algorithm to evolving networks of growing connectivity and analyze the corresponding improvement in convergence rate. It is known that the convergence rate of DDA is influenced by the algebraic connectivity of the underlying network, where better connectivity leads to faster convergence. However, the impact of network topology design on the convergence rate of DDA has not been fully understood. In this paper, we begin by designing network topologies via edge selection and scheduling. For edge selection, we determine the best set of candidate edges that achieves the optimal tradeoff between the growth of network connectivity and the usage of network resources. The dynamics of network evolution is then incurred by edge scheduling. Further, we provide a tractable approach to analyze the improvement in the convergence rate of DDA induced by the growth of network connectivity. Our analysis reveals the connection between network topology design and the convergence rate of DDA, and provides quantitative evaluation of DDA acceleration for distributed optimization that is absent in the existing analysis. Lastly, numerical experiments show that DDA can be significantly accelerated using a sequence of well-designed networks, and our theoretical predictions are well matched to its empirical convergence behavior.

  16. Research Notes - Openness and Evolvability - Standards Assessment

    Science.gov (United States)

    2016-08-01

    an unfair advantage. The company not only has the opportunity to be faster to market , but can also impose a level of control on its competitors...The independence of different vendors’ implementations must be carefully assessed to ensure a monopolistic or oligopolistic condition does not exist...political affiliation they may have with other implementation vendors. However, this is unlikely to be practical in markets where the customer is not a

  17. On the Benefits of Divergent Search for Evolved Representations

    DEFF Research Database (Denmark)

    Lehman, Joel; Risi, Sebastian; Stanley, Kenneth O

    2012-01-01

    Evolved representations in evolutionary computation are often fragile, which can impede representation-dependent mechanisms such as self-adaptation. In contrast, evolved representations in nature are robust, evolvable, and creatively exploit available representational features. This paper provide...

  18. Preface: evolving rotifers, evolving science: Proceedings of the XIV International Rotifer Symposium

    Czech Academy of Sciences Publication Activity Database

    Devetter, Miloslav; Fontaneto, D.; Jersabek, Ch.D.; Welch, D.B.M.; May, L.; Walsh, E.J.

    2017-01-01

    Roč. 796, č. 1 (2017), s. 1-6 ISSN 0018-8158 Institutional support: RVO:60077344 Keywords : evolving rotifers * 14th International Rotifer Symposium * evolving science Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.056, year: 2016

  19. Evolution of networks for body plan patterning; interplay of modularity, robustness and evolvability.

    Directory of Open Access Journals (Sweden)

    Kirsten H Ten Tusscher

    2011-10-01

    Full Text Available A major goal of evolutionary developmental biology (evo-devo is to understand how multicellular body plans of increasing complexity have evolved, and how the corresponding developmental programs are genetically encoded. It has been repeatedly argued that key to the evolution of increased body plan complexity is the modularity of the underlying developmental gene regulatory networks (GRNs. This modularity is considered essential for network robustness and evolvability. In our opinion, these ideas, appealing as they may sound, have not been sufficiently tested. Here we use computer simulations to study the evolution of GRNs' underlying body plan patterning. We select for body plan segmentation and differentiation, as these are considered to be major innovations in metazoan evolution. To allow modular networks to evolve, we independently select for segmentation and differentiation. We study both the occurrence and relation of robustness, evolvability and modularity of evolved networks. Interestingly, we observed two distinct evolutionary strategies to evolve a segmented, differentiated body plan. In the first strategy, first segments and then differentiation domains evolve (SF strategy. In the second scenario segments and domains evolve simultaneously (SS strategy. We demonstrate that under indirect selection for robustness the SF strategy becomes dominant. In addition, as a byproduct of this larger robustness, the SF strategy is also more evolvable. Finally, using a combined functional and architectural approach, we determine network modularity. We find that while SS networks generate segments and domains in an integrated manner, SF networks use largely independent modules to produce segments and domains. Surprisingly, we find that widely used, purely architectural methods for determining network modularity completely fail to establish this higher modularity of SF networks. Finally, we observe that, as a free side effect of evolving segmentation

  20. Views on Evolvability of Embedded Systems

    NARCIS (Netherlands)

    Laar, P. van de; Punter, T.

    2011-01-01

    Evolvability, the ability to respond effectively to change, represents a major challenge to today's high-end embedded systems, such as those developed in the medical domain by Philips Healthcare. These systems are typically developed by multi-disciplinary teams, located around the world, and are in

  1. Views on evolvability of embedded systems

    NARCIS (Netherlands)

    Laar, van de P.J.L.J.; Punter, H.T.

    2011-01-01

    Evolvability, the ability to respond effectively to change, represents a major challenge to today's high-end embedded systems, such as those developed in the medical domain by Philips Healthcare. These systems are typically developed by multi-disciplinary teams, located around the world, and are in

  2. Designing Garments to Evolve Over Time

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Grose, Lynda

    2017-01-01

    This paper proposes a REDO of the current fashion paradigm by investigating how garments might be designed to evolve over time. The purpose is to discuss ways of expanding the traditional role of the designer to include temporal dimensions of creating, producing and using clothes and to suggest...... to a REDO of design education, to further research and the future fashion and textile industry....

  3. EVOLVING AN EMPIRICAL METHODOLOGY DOR DETERMINING ...

    African Journals Online (AJOL)

    The uniqueness of this approach, is that it can be applied to any forest or dynamic feature on the earth, and can enjoy universal application as well. KEY WORDS: Evolving empirical methodology, innovative mathematical model, appropriate interval, remote sensing, forest environment planning and management. Global Jnl ...

  4. Continual Learning through Evolvable Neural Turing Machines

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Risi, Sebastian

    2016-01-01

    Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENTM...

  5. Did Language Evolve Like the Vertebrate Eye?

    Science.gov (United States)

    Botha, Rudolf P.

    2002-01-01

    Offers a critical appraisal of the way in which the idea that human language or some of its features evolved like the vertebrate eye by natural selection is articulated in Pinker and Bloom's (1990) selectionist account of language evolution. Argues that this account is less than insightful because it fails to draw some of the conceptual…

  6. Páramo is the world’s fastest evolving and coolest biodiversity hotspot

    Directory of Open Access Journals (Sweden)

    Santiago eMadriñán

    2013-10-01

    Full Text Available Understanding the processes that cause speciation is a key aim of evolutionary biology. Lineages or biomes that exhibit recent and rapid diversification are ideal model systems for determining these processes. Species rich biomes reported to be of relatively recent origin, i.e., since the beginning of the Miocene, include Mediterranean ecosystems such as the California Floristic Province, oceanic islands such as the Hawaiian archipelago and the Neotropical high elevation ecosystem of the Páramos. Páramos constitute grasslands above the forest tree-line (at elevations of c. 2800–4700 m with high species endemism. Organisms that occupy this ecosystem are a likely product of unique adaptations to an extreme environment that evolved during the last three to five million years when the Andes reached an altitude that was capable of sustaining this type of vegetation. We compared net diversification rates of lineages in fast evolving biomes using 73 dated molecular phylogenies. Based on our sample, we demonstrate that average net diversification rates of Páramo plant lineages are faster than those of other reportedly fast evolving hotspots and that the faster evolving lineages are more likely to be found in Páramos than the other hotspots. Páramos therefore represent the ideal model system for studying diversification processes. Most of the speciation events that we observed in the Páramos (144 out of 177 occurred during the Pleistocene possibly due to the effects of species range contraction and expansion that may have resulted from the well-documented climatic changes during that period. Understanding these effects will assist with efforts to determine how future climatic changes will impact plant populations.

  7. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids.

    Science.gov (United States)

    Llopart, Ana

    2012-12-01

    The X chromosome has a large effect on hybrid dysfunction, particularly on hybrid male sterility. Although the evidence for this so-called large-X effect is clear, its molecular causes are not yet fully understood. One possibility is that, under certain conditions, evolution proceeds faster in X-linked than in autosomal loci (i.e., faster-X effect) due to both natural selection and their hemizygosity in males, an effect that is expected to be greatest in genes with male-biased expression. Here, I study genome-wide variation in transcript abundance between Drosophila yakuba and D. santomea, within these species and in their hybrid males to evaluate both the faster-X and large-X effects at the level of expression. I find that in X-linked male-biased genes (MBGs) expression evolves faster than in their autosomal counterparts, an effect that is accompanied by a unique reduction in expression polymorphism. This suggests that Darwinian selection is driving expression differences between species, likely enhanced by the hemizygosity of the X chromosome in males. Despite the recent split of the two sister species under study, abundant changes in both cis- and trans-regulatory elements underlie expression divergence in the majority of the genes analyzed, with significant differences in allelic ratios of transcript abundance between the two reciprocal F(1) hybrid males. Cis-trans coevolution at molecular level, evolved shortly after populations become isolated, may therefore contribute to explain the breakdown of the regulation of gene expression in hybrid males. Additionally, the X chromosome plays a large role in this hybrid male misexpression, which affects not only MBG but also, to a lesser degree, nonsex-biased genes. Interestingly, hybrid male misexpression is concentrated mostly in autosomal genes, likely facilitated by the rapid evolution of sex-linked trans-acting factors. I suggest that the faster evolution of X-linked MBGs, at both protein and expression levels

  8. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences.

    Directory of Open Access Journals (Sweden)

    Josephine A Reinhardt

    Full Text Available How non-coding DNA gives rise to new protein-coding genes (de novo genes is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs, while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important.

  9. Vehicle parts detection based on Faster - RCNN with location constraints of vehicle parts feature point

    Science.gov (United States)

    Yang, Liqin; Sang, Nong; Gao, Changxin

    2018-03-01

    Vehicle parts detection plays an important role in public transportation safety and mobility. The detection of vehicle parts is to detect the position of each vehicle part. We propose a new approach by combining Faster RCNN and three level cascaded convolutional neural network (DCNN). The output of Faster RCNN is a series of bounding boxes with coordinate information, from which we can locate vehicle parts. DCNN can precisely predict feature point position, which is the center of vehicle part. We design an output strategy by combining these two results. There are two advantages for this. The quality of the bounding boxes are greatly improved, which means vehicle parts feature point position can be located more precise. Meanwhile we preserve the position relationship between vehicle parts and effectively improve the validity and reliability of the result. By using our algorithm, the performance of the vehicle parts detection improve obviously compared with Faster RCNN.

  10. Delineating slowly and rapidly evolving fractions of the Drosophila genome.

    Science.gov (United States)

    Keith, Jonathan M; Adams, Peter; Stephen, Stuart; Mattick, John S

    2008-05-01

    Evolutionary conservation is an important indicator of function and a major component of bioinformatic methods to identify non-protein-coding genes. We present a new Bayesian method for segmenting pairwise alignments of eukaryotic genomes while simultaneously classifying segments into slowly and rapidly evolving fractions. We also describe an information criterion similar to the Akaike Information Criterion (AIC) for determining the number of classes. Working with pairwise alignments enables detection of differences in conservation patterns among closely related species. We analyzed three whole-genome and three partial-genome pairwise alignments among eight Drosophila species. Three distinct classes of conservation level were detected. Sequences comprising the most slowly evolving component were consistent across a range of species pairs, and constituted approximately 62-66% of the D. melanogaster genome. Almost all (>90%) of the aligned protein-coding sequence is in this fraction, suggesting much of it (comprising the majority of the Drosophila genome, including approximately 56% of non-protein-coding sequences) is functional. The size and content of the most rapidly evolving component was species dependent, and varied from 1.6% to 4.8%. This fraction is also enriched for protein-coding sequence (while containing significant amounts of non-protein-coding sequence), suggesting it is under positive selection. We also classified segments according to conservation and GC content simultaneously. This analysis identified numerous sub-classes of those identified on the basis of conservation alone, but was nevertheless consistent with that classification. Software, data, and results available at www.maths.qut.edu.au/-keithj/. Genomic segments comprising the conservation classes available in BED format.

  11. The evolving definition of systemic arterial hypertension.

    Science.gov (United States)

    Ram, C Venkata S; Giles, Thomas D

    2010-05-01

    Systemic hypertension is an important risk factor for premature cardiovascular disease. Hypertension also contributes to excessive morbidity and mortality. Whereas excellent therapeutic options are available to treat hypertension, there is an unsettled issue about the very definition of hypertension. At what level of blood pressure should we treat hypertension? Does the definition of hypertension change in the presence of co-morbid conditions? This article covers in detail the evolving concepts in the diagnosis and management of hypertension.

  12. The evolving epidemiology of inflammatory bowel disease.

    LENUS (Irish Health Repository)

    Shanahan, Fergus

    2009-07-01

    Epidemiologic studies in inflammatory bowel disease (IBD) include assessments of disease burden and evolving patterns of disease presentation. Although it is hoped that sound epidemiologic studies provide aetiological clues, traditional risk factor-based epidemiology has provided limited insights into either Crohn\\'s disease or ulcerative colitis etiopathogenesis. In this update, we will summarize how the changing epidemiology of IBD associated with modernization can be reconciled with current concepts of disease mechanisms and will discuss studies of clinically significant comorbidity in IBD.

  13. Development and the evolvability of human limbs

    OpenAIRE

    Young, Nathan M.; Wagner, Günter P.; Hallgrímsson, Benedikt

    2010-01-01

    The long legs and short arms of humans are distinctive for a primate, the result of selection acting in opposite directions on each limb at different points in our evolutionary history. This mosaic pattern challenges our understanding of the relationship of development and evolvability because limbs are serially homologous and genetic correlations should act as a significant constraint on their independent evolution. Here we test a developmental model of limb covariation in anthropoid primate...

  14. Quantum games on evolving random networks

    OpenAIRE

    Pawela, Łukasz

    2015-01-01

    We study the advantages of quantum strategies in evolutionary social dilemmas on evolving random networks. We focus our study on the two-player games: prisoner's dilemma, snowdrift and stag-hunt games. The obtained result show the benefits of quantum strategies for the prisoner's dilemma game. For the other two games, we obtain regions of parameters where the quantum strategies dominate, as well as regions where the classical strategies coexist.

  15. The Evolving Leadership Path of Visual Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Kluse, Michael; Peurrung, Anthony J.; Gracio, Deborah K.

    2012-01-02

    This is a requested book chapter for an internationally authored book on visual analytics and related fields, coordianted by a UK university and to be published by Springer in 2012. This chapter is an overview of the leadship strategies that PNNL's Jim Thomas and other stakeholders used to establish visual analytics as a field, and how those strategies may evolve in the future.

  16. The Faster, Better, Cheaper Approach to Space Missions: An Engineering Management Assessment

    Science.gov (United States)

    Hamaker, Joe

    2000-01-01

    This paper describes, in viewgraph form, the faster, better, cheaper approach to space missions. The topics include: 1) What drives "Faster, Better, Cheaper"? 2) Why Space Programs are Costly; 3) Background; 4) Aerospace Project Management (Old Culture); 5) Aerospace Project Management (New Culture); 6) Scope of Analysis Limited to Engineering Management Culture; 7) Qualitative Analysis; 8) Some Basic Principles of the New Culture; 9) Cause and Effect; 10) "New Ways of Doing Business" Survey Results; 11) Quantitative Analysis; 12) Recent Space System Cost Trends; 13) Spacecraft Dry Weight Trend; 14) Complexity Factor Trends; 15) Cost Normalization; 16) Cost Normalization Algorithm; 17) Unnormalized Cost vs. Normalized Cost; and 18) Concluding Observations.

  17. Real-time vehicle detection and tracking in video based on faster R-CNN

    Science.gov (United States)

    Zhang, Yongjie; Wang, Jian; Yang, Xin

    2017-08-01

    Vehicle detection and tracking is a significant part in auxiliary vehicle driving system. Using the traditional detection method based on image information has encountered enormous difficulties, especially in complex background. To solve this problem, a detection method based on deep learning, Faster R-CNN, which has very high detection accuracy and flexibility, is introduced. An algorithm of target tracking with the combination of Camshift and Kalman filter is proposed for vehicle tracking. The computation time of Faster R-CNN cannot achieve realtime detection. We use multi-thread technique to detect and track vehicle by parallel computation for real-time application.

  18. Dedicated workspaces: Faster resumption times and reduced cognitive load in sequential multitasking

    DEFF Research Database (Denmark)

    Jeuris, Steven; Bardram, Jakob Eyvind

    2016-01-01

    Studies show that virtual desktops have become a widespread approach to window management within desktop environments. However, despite their success, there is no experimental evidence of their effect on multitasking. In this paper, we present an experimental study incorporating 16 participants...... to perform the same tasks. Results show that adopting virtual desktops as dedicated workspaces allows for faster task resumption (10 s faster on average) and reduced cognitive load during sequential multitasking. Within our experiment the majority of users already benefited from using dedicated workspaces...

  19. Evolving artificial metalloenzymes via random mutagenesis

    Science.gov (United States)

    Yang, Hao; Swartz, Alan M.; Park, Hyun June; Srivastava, Poonam; Ellis-Guardiola, Ken; Upp, David M.; Lee, Gihoon; Belsare, Ketaki; Gu, Yifan; Zhang, Chen; Moellering, Raymond E.; Lewis, Jared C.

    2018-03-01

    Random mutagenesis has the potential to optimize the efficiency and selectivity of protein catalysts without requiring detailed knowledge of protein structure; however, introducing synthetic metal cofactors complicates the expression and screening of enzyme libraries, and activity arising from free cofactor must be eliminated. Here we report an efficient platform to create and screen libraries of artificial metalloenzymes (ArMs) via random mutagenesis, which we use to evolve highly selective dirhodium cyclopropanases. Error-prone PCR and combinatorial codon mutagenesis enabled multiplexed analysis of random mutations, including at sites distal to the putative ArM active site that are difficult to identify using targeted mutagenesis approaches. Variants that exhibited significantly improved selectivity for each of the cyclopropane product enantiomers were identified, and higher activity than previously reported ArM cyclopropanases obtained via targeted mutagenesis was also observed. This improved selectivity carried over to other dirhodium-catalysed transformations, including N-H, S-H and Si-H insertion, demonstrating that ArMs evolved for one reaction can serve as starting points to evolve catalysts for others.

  20. CMIP6 Data Citation of Evolving Data

    Directory of Open Access Journals (Sweden)

    Martina Stockhause

    2017-06-01

    Full Text Available Data citations have become widely accepted. Technical infrastructures as well as principles and recommendations for data citation are in place but best practices or guidelines for their implementation are not yet available. On the other hand, the scientific climate community requests early citations on evolving data for credit, e.g. for CMIP6 (Coupled Model Intercomparison Project Phase 6. The data citation concept for CMIP6 is presented. The main challenges lie in limited resources, a strict project timeline and the dependency on changes of the data dissemination infrastructure ESGF (Earth System Grid Federation to meet the data citation requirements. Therefore a pragmatic, flexible and extendible approach for the CMIP6 data citation service was developed, consisting of a citation for the full evolving data superset and a data cart approach for citing the concrete used data subset. This two citation approach can be implemented according to the RDA recommendations for evolving data. Because of resource constraints and missing project policies, the implementation of the second part of the citation concept is postponed to CMIP7.

  1. MDOT innovation leading to faster, longer-lasting pavement repairs : research spotlight.

    Science.gov (United States)

    2015-01-01

    Current methods of patching pavement must evolve to meet increasing mobility demands. : To address this need, MDOT has been testing a new generation of rapid set full-depth : pavement repair materials. Initial results are promising. The new materials...

  2. Evolving cell models for systems and synthetic biology.

    Science.gov (United States)

    Cao, Hongqing; Romero-Campero, Francisco J; Heeb, Stephan; Cámara, Miguel; Krasnogor, Natalio

    2010-03-01

    This paper proposes a new methodology for the automated design of cell models for systems and synthetic biology. Our modelling framework is based on P systems, a discrete, stochastic and modular formal modelling language. The automated design of biological models comprising the optimization of the model structure and its stochastic kinetic constants is performed using an evolutionary algorithm. The evolutionary algorithm evolves model structures by combining different modules taken from a predefined module library and then it fine-tunes the associated stochastic kinetic constants. We investigate four alternative objective functions for the fitness calculation within the evolutionary algorithm: (1) equally weighted sum method, (2) normalization method, (3) randomly weighted sum method, and (4) equally weighted product method. The effectiveness of the methodology is tested on four case studies of increasing complexity including negative and positive autoregulation as well as two gene networks implementing a pulse generator and a bandwidth detector. We provide a systematic analysis of the evolutionary algorithm's results as well as of the resulting evolved cell models.

  3. Modeling promoter grammars with evolving hidden Markov models

    DEFF Research Database (Denmark)

    Won, Kyoung-Jae; Sandelin, Albin; Marstrand, Troels Torben

    2008-01-01

    MOTIVATION: Describing and modeling biological features of eukaryotic promoters remains an important and challenging problem within computational biology. The promoters of higher eukaryotes in particular display a wide variation in regulatory features, which are difficult to model. Often several...... factors are involved in the regulation of a set of co-regulated genes. If so, promoters can be modeled with connected regulatory features, where the network of connections is characteristic for a particular mode of regulation. RESULTS: With the goal of automatically deciphering such regulatory structures......, we present a method that iteratively evolves an ensemble of regulatory grammars using a hidden Markov Model (HMM) architecture composed of interconnected blocks representing transcription factor binding sites (TFBSs) and background regions of promoter sequences. The ensemble approach reduces the risk...

  4. The evolving genetic foundations of eating disorders.

    Science.gov (United States)

    Klump, K L; Kaye, W H; Strober, M

    2001-06-01

    Data described earlier are clear in establishing a role for genes in the development of eating abnormalities. Estimates from the most rigorous studies suggest that more than 50% of the variance in eating disorders and disordered eating behaviors can be accounted for by genetic effects. These high estimates indicate a need for studies identifying the specific genes contributing to this large proportion of variance. Twin and family studies suggest that several heritable characteristics that are commonly comorbid with AN and BN may share genetic transmission with these disorders, including anxiety disorders or traits, body weight, and possibly major depression. Moreover, some developmental research suggests that the genes involved in ovarian hormones or the genes that these steroids affect also may be genetically linked to eating abnormalities. Molecular genetic research of these disorders is in its infant stages. However, promising areas for future research have already been identified (e.g., 5-HT2A receptor gene, UCP-2/UCP-3 gene, and estrogen receptor beta gene), and several large-scale linkage and association studies are underway. These studies likely will provide invaluable information regarding the appropriate phenotypes to be included in genetic studies and the genes with the most influence on the development of these disorders.

  5. Breaking the Myth That Relay Swimming Is Faster Than Individual Swimming.

    Science.gov (United States)

    Skorski, Sabrina; Etxebarria, Naroa; Thompson, Kevin G

    2016-04-01

    To investigate if swimming performance is better in a relay race than in the corresponding individual race. The authors analyzed 166 elite male swimmers from 15 nations in the same competition (downloaded from www.swimrankings.net). Of 778 observed races, 144 were Olympic Games performances (2000, 2004, 2012), with the remaining 634 performed in national or international competitions. The races were 100-m (n = 436) and 200-m (n = 342) freestyle events. Relay performance times for the 2nd-4th swimmers were adjusted (+ 0.73 s) to allow for the "flying start." Without any adjustment, mean individual relay performances were significantly faster for the first 50 m and overall time in the 100-m events. Furthermore, the first 100 m of the 200-m relay was significantly faster (P > .001). During relays, swimmers competing in 1st position did not show any difference compared with their corresponding individual performance (P > .16). However, swimmers competing in 2nd-4th relay-team positions demonstrated significantly faster times in the 100-m (P individual events (P team positions were adjusted for the flying start no differences were detected between relay and individual race performance for any event or split time (P > .17). Highly trained swimmers do not swim (or turn) faster in relay events than in their individual races. Relay exchange times account for the difference observed in individual vs relay performance.

  6. Pedestrian crowd dynamics in merging sections: Revisiting the ;faster-is-slower; phenomenon

    Science.gov (United States)

    Shahhoseini, Zahra; Sarvi, Majid; Saberi, Meead

    2018-02-01

    The study of the discharge of active or self-driven matter in narrow passages has become of the growing interest in a variety of fields. The question has particularly important practical applications for the safety of pedestrian human flows notably in emergency scenarios. It has been suggested predominantly through simulation in some theoretical studies as well as through few experimentations that under certain circumstances, an elevated vigour to escape may exacerbate the outflow and cause further delay although the experimental evidence is rather mixed. The dimensions of this complex phenomenon known as the "faster-is slower" effect are of crucial importance to be understood owing to its potential practical implications for the emergency management. The contextual requirements of observing this phenomenon are yet to be identified. It is not clear whether a "do not speed up" policy is universally beneficial and advisable in an evacuation scenario. Here for the first time we experimentally examine this phenomenon in relation to the pedestrian flows at merging sections as a common geometric feature of crowd egress. Various merging angles and three different speed regimes were examined in high-density laboratory experiments. The measurements of flow interruptions and egress efficiency all indicated that the pedestrians were discharged faster when moving at elevated speed levels. We also observed clear dependencies between the discharge rate and the physical layout of the merging with certain designs clearly outperforming others. But regardless of the design, we observed faster throughput and greater avalanche sizes when we instructed pedestrians to run. Our results give the suggestion that observation of the faster-is-slower effect may necessitate certain critical conditions including passages being overly narrow relative to the size of participles (pedestrians) to create long-lasting blockages. The faster-is-slower assumption may not be universal and there may be

  7. Will the Amaranthus tuberculatus Resistance Mechanism to PPO-Inhibiting Herbicides Evolve in Other Amaranthus Species?

    Directory of Open Access Journals (Sweden)

    Chance W. Riggins

    2012-01-01

    Full Text Available Resistance to herbicides that inhibit protoporphyrinogen oxidase (PPO has been slow to evolve and, to date, is confirmed for only four weed species. Two of these species are members of the genus Amaranthus L. Previous research has demonstrated that PPO-inhibitor resistance in A. tuberculatus (Moq. Sauer, the first weed to have evolved this type of resistance, involves a unique codon deletion in the PPX2 gene. Our hypothesis is that A. tuberculatus may have been predisposed to evolving this resistance mechanism due to the presence of a repetitive motif at the mutation site and that lack of this motif in other amaranth species is why PPO-inhibitor resistance has not become more common despite strong herbicide selection pressure. Here we investigate inter- and intraspecific variability of the PPX2 gene—specifically exon 9, which includes the mutation site—in ten amaranth species via sequencing and a PCR-RFLP assay. Few polymorphisms were observed in this region of the gene, and intraspecific variation was observed only in A. quitensis. However, sequencing revealed two distinct repeat patterns encompassing the mutation site. Most notably, A. palmeri S. Watson possesses the same repetitive motif found in A. tuberculatus. We thus predict that A. palmeri will evolve resistance to PPO inhibitors via the same PPX2 codon deletion that evolved in A. tuberculatus.

  8. Evolving herbal formulations in management of dengue fever.

    Science.gov (United States)

    Singh, Pawan Kumar; Rawat, Pooja

    Dengue is endemic in more than 100 countries and it is estimated that annually above 390 million infections occur globally. During the period between 1996-2015, a massive increase of more than 500 per cent has been recorded in number of dengue cases reported in India. Till date, there are no specific globally accepted treatments for dengue fever in any system of medicine. Dengue does not cause very high mortality if properly handled and is currently being managed by clinicians through various adjuvant and alternative therapeutic options. Various plant based preparations have been used in different parts of India for combating dengue and are simultaneously also being scientifically validated by researchers. However, number of such scientific validation studies on phytomedicines are very less in India. Out of twenty-two plants reported against dengue, only four have been studied scientifically. Azadirachta indica, Carica papaya, Hippophae rhamnoides and Cissampelos pareira extracts were found effective and demonstrated improvement in clinical symptoms and direct inhibitory effect on dengue virus. C. papaya clinical trial showed increase in platelet count and faster recovery. These plants may be explored further as probable candidates for drug discovery against dengue. There is a need to search more such herbal formulations, which are being practiced at local level, document properly and validate them scientifically to confirm efficacy, mechanistic action and safety, before use. The herbal formulations being used by communities are the low hanging fruits which may provide alternative or adjuvant therapy if proper validation, value addition and product development steps are followed. This paper aims to review the recent status of dengue cases, deaths and evolving curative herbal solutions adapted and reported from India to combat the disease. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights

  9. Motivational salience signal in the basal forebrain is coupled with faster and more precise decision speed.

    Science.gov (United States)

    Avila, Irene; Lin, Shih-Chieh

    2014-03-01

    The survival of animals depends critically on prioritizing responses to motivationally salient stimuli. While it is generally believed that motivational salience increases decision speed, the quantitative relationship between motivational salience and decision speed, measured by reaction time (RT), remains unclear. Here we show that the neural correlate of motivational salience in the basal forebrain (BF), defined independently of RT, is coupled with faster and also more precise decision speed. In rats performing a reward-biased simple RT task, motivational salience was encoded by BF bursting response that occurred before RT. We found that faster RTs were tightly coupled with stronger BF motivational salience signals. Furthermore, the fraction of RT variability reflecting the contribution of intrinsic noise in the decision-making process was actively suppressed in faster RT distributions with stronger BF motivational salience signals. Artificially augmenting the BF motivational salience signal via electrical stimulation led to faster and more precise RTs and supports a causal relationship. Together, these results not only describe for the first time, to our knowledge, the quantitative relationship between motivational salience and faster decision speed, they also reveal the quantitative coupling relationship between motivational salience and more precise RT. Our results further establish the existence of an early and previously unrecognized step in the decision-making process that determines both the RT speed and variability of the entire decision-making process and suggest that this novel decision step is dictated largely by the BF motivational salience signal. Finally, our study raises the hypothesis that the dysregulation of decision speed in conditions such as depression, schizophrenia, and cognitive aging may result from the functional impairment of the motivational salience signal encoded by the poorly understood noncholinergic BF neurons.

  10. Evolvability Is an Evolved Ability: The Coding Concept as the Arch-Unit of Natural Selection.

    Science.gov (United States)

    Janković, Srdja; Ćirković, Milan M

    2016-03-01

    Physical processes that characterize living matter are qualitatively distinct in that they involve encoding and transfer of specific types of information. Such information plays an active part in the control of events that are ultimately linked to the capacity of the system to persist and multiply. This algorithmicity of life is a key prerequisite for its Darwinian evolution, driven by natural selection acting upon stochastically arising variations of the encoded information. The concept of evolvability attempts to define the total capacity of a system to evolve new encoded traits under appropriate conditions, i.e., the accessible section of total morphological space. Since this is dependent on previously evolved regulatory networks that govern information flow in the system, evolvability itself may be regarded as an evolved ability. The way information is physically written, read and modified in living cells (the "coding concept") has not changed substantially during the whole history of the Earth's biosphere. This biosphere, be it alone or one of many, is, accordingly, itself a product of natural selection, since the overall evolvability conferred by its coding concept (nucleic acids as information carriers with the "rulebook of meanings" provided by codons, as well as all the subsystems that regulate various conditional information-reading modes) certainly played a key role in enabling this biosphere to survive up to the present, through alterations of planetary conditions, including at least five catastrophic events linked to major mass extinctions. We submit that, whatever the actual prebiotic physical and chemical processes may have been on our home planet, or may, in principle, occur at some time and place in the Universe, a particular coding concept, with its respective potential to give rise to a biosphere, or class of biospheres, of a certain evolvability, may itself be regarded as a unit (indeed the arch-unit) of natural selection.

  11. Criticality is an emergent property of genetic networks that exhibit evolvability.

    Directory of Open Access Journals (Sweden)

    Christian Torres-Sosa

    Full Text Available Accumulating experimental evidence suggests that the gene regulatory networks of living organisms operate in the critical phase, namely, at the transition between ordered and chaotic dynamics. Such critical dynamics of the network permits the coexistence of robustness and flexibility which are necessary to ensure homeostatic stability (of a given phenotype while allowing for switching between multiple phenotypes (network states as occurs in development and in response to environmental change. However, the mechanisms through which genetic networks evolve such critical behavior have remained elusive. Here we present an evolutionary model in which criticality naturally emerges from the need to balance between the two essential components of evolvability: phenotype conservation and phenotype innovation under mutations. We simulated the Darwinian evolution of random Boolean networks that mutate gene regulatory interactions and grow by gene duplication. The mutating networks were subjected to selection for networks that both (i preserve all the already acquired phenotypes (dynamical attractor states and (ii generate new ones. Our results show that this interplay between extending the phenotypic landscape (innovation while conserving the existing phenotypes (conservation suffices to cause the evolution of all the networks in a population towards criticality. Furthermore, the networks produced by this evolutionary process exhibit structures with hubs (global regulators similar to the observed topology of real gene regulatory networks. Thus, dynamical criticality and certain elementary topological properties of gene regulatory networks can emerge as a byproduct of the evolvability of the phenotypic landscape.

  12. CISN ShakeAlert: Faster Warning Information Through Multiple Threshold Event Detection in the Virtual Seismologist (VS) Early Warning Algorithm

    Science.gov (United States)

    Cua, G. B.; Fischer, M.; Caprio, M.; Heaton, T. H.; Cisn Earthquake Early Warning Project Team

    2010-12-01

    The Virtual Seismologist (VS) earthquake early warning (EEW) algorithm is one of 3 EEW approaches being incorporated into the California Integrated Seismic Network (CISN) ShakeAlert system, a prototype EEW system that could potentially be implemented in California. The VS algorithm, implemented by the Swiss Seismological Service at ETH Zurich, is a Bayesian approach to EEW, wherein the most probable source estimate at any given time is a combination of contributions from a likehihood function that evolves in response to incoming data from the on-going earthquake, and selected prior information, which can include factors such as network topology, the Gutenberg-Richter relationship or previously observed seismicity. The VS codes have been running in real-time at the Southern California Seismic Network since July 2008, and at the Northern California Seismic Network since February 2009. We discuss recent enhancements to the VS EEW algorithm that are being integrated into CISN ShakeAlert. We developed and continue to test a multiple-threshold event detection scheme, which uses different association / location approaches depending on the peak amplitudes associated with an incoming P pick. With this scheme, an event with sufficiently high initial amplitudes can be declared on the basis of a single station, maximizing warning times for damaging events for which EEW is most relevant. Smaller, non-damaging events, which will have lower initial amplitudes, will require more picks to initiate an event declaration, with the goal of reducing false alarms. This transforms the VS codes from a regional EEW approach reliant on traditional location estimation (and the requirement of at least 4 picks as implemented by the Binder Earthworm phase associator) into an on-site/regional approach capable of providing a continuously evolving stream of EEW information starting from the first P-detection. Real-time and offline analysis on Swiss and California waveform datasets indicate that the

  13. Revealing evolved massive stars with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  14. Evolving Random Forest for Preference Learning

    DEFF Research Database (Denmark)

    Abou-Zleikha, Mohamed; Shaker, Noor

    2015-01-01

    This paper introduces a novel approach for pairwise preference learning through a combination of an evolutionary method and random forest. Grammatical evolution is used to describe the structure of the trees in the Random Forest (RF) and to handle the process of evolution. Evolved random forests ...... obtained for predicting pairwise self-reports of users for the three emotional states engagement, frustration and challenge show very promising results that are comparable and in some cases superior to those obtained from state-of-the-art methods....

  15. An evolving network model with community structure

    International Nuclear Information System (INIS)

    Li Chunguang; Maini, Philip K

    2005-01-01

    Many social and biological networks consist of communities-groups of nodes within which connections are dense, but between which connections are sparser. Recently, there has been considerable interest in designing algorithms for detecting community structures in real-world complex networks. In this paper, we propose an evolving network model which exhibits community structure. The network model is based on the inner-community preferential attachment and inter-community preferential attachment mechanisms. The degree distributions of this network model are analysed based on a mean-field method. Theoretical results and numerical simulations indicate that this network model has community structure and scale-free properties

  16. Radio Imaging of Envelopes of Evolved Stars

    Science.gov (United States)

    Cotton, Bill

    2018-04-01

    This talk will cover imaging of stellar envelopes using radio VLBI techniques; special attention will be paid to the technical differences between radio and optical/IR interferomery. Radio heterodyne receivers allow a straightforward way to derive spectral cubes and full polarization observations. Milliarcsecond resolution of very bright, i.e. non thermal, emission of molecular masers in the envelopes of evolved stars can be achieved using VLBI techniques with baselines of thousands of km. Emission from SiO, H2O and OH masers are commonly seen at increasing distance from the photosphere. The very narrow maser lines allow accurate measurements of the velocity field within the emitting region.

  17. Mobile computing acceptance grows as applications evolve.

    Science.gov (United States)

    Porn, Louis M; Patrick, Kelly

    2002-01-01

    Handheld devices are becoming more cost-effective to own, and their use in healthcare environments is increasing. Handheld devices currently are being used for e-prescribing, charge capture, and accessing daily schedules and reference tools. Future applications may include education on medications, dictation, order entry, and test-results reporting. Selecting the right handheld device requires careful analysis of current and future applications, as well as vendor expertise. It is important to recognize the technology will continue to evolve over the next three years.

  18. Evolved Minimal Frustration in Multifunctional Biomolecules.

    Science.gov (United States)

    Röder, Konstantin; Wales, David J

    2018-05-25

    Protein folding is often viewed in terms of a funnelled potential or free energy landscape. A variety of experiments now indicate the existence of multifunnel landscapes, associated with multifunctional biomolecules. Here, we present evidence that these systems have evolved to exhibit the minimal number of funnels required to fulfil their cellular functions, suggesting an extension to the principle of minimum frustration. We find that minimal disruptive mutations result in additional funnels, and the associated structural ensembles become more diverse. The same trends are observed in an atomic cluster. These observations suggest guidelines for rational design of engineered multifunctional biomolecules.

  19. SALT Spectroscopy of Evolved Massive Stars

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  20. The evolving genetic risk for sporadic ALS.

    Science.gov (United States)

    Gibson, Summer B; Downie, Jonathan M; Tsetsou, Spyridoula; Feusier, Julie E; Figueroa, Karla P; Bromberg, Mark B; Jorde, Lynn B; Pulst, Stefan M

    2017-07-18

    To estimate the genetic risk conferred by known amyotrophic lateral sclerosis (ALS)-associated genes to the pathogenesis of sporadic ALS (SALS) using variant allele frequencies combined with predicted variant pathogenicity. Whole exome sequencing and repeat expansion PCR of C9orf72 and ATXN2 were performed on 87 patients of European ancestry with SALS seen at the University of Utah. DNA variants that change the protein coding sequence of 31 ALS-associated genes were annotated to determine which were rare and deleterious as predicted by MetaSVM. The percentage of patients with SALS with a rare and deleterious variant or repeat expansion in an ALS-associated gene was calculated. An odds ratio analysis was performed comparing the burden of ALS-associated genes in patients with SALS vs 324 normal controls. Nineteen rare nonsynonymous variants in an ALS-associated gene, 2 of which were found in 2 different individuals, were identified in 21 patients with SALS. Further, 5 deleterious C9orf72 and 2 ATXN2 repeat expansions were identified. A total of 17.2% of patients with SALS had a rare and deleterious variant or repeat expansion in an ALS-associated gene. The genetic burden of ALS-associated genes in patients with SALS as predicted by MetaSVM was significantly higher than in normal controls. Previous analyses have identified SALS-predisposing variants only in terms of their rarity in normal control populations. By incorporating variant pathogenicity as well as variant frequency, we demonstrated that the genetic risk contributed by these genes for SALS is substantially lower than previous estimates. © 2017 American Academy of Neurology.

  1. BOOK REVIEW: OPENING SCIENCE, THE EVOLVING GUIDE ...

    Science.gov (United States)

    The way we get our funding, collaborate, do our research, and get the word out has evolved over hundreds of years but we can imagine a more open science world, largely facilitated by the internet. The movement towards this more open way of doing and presenting science is coming, and it is not taking hundreds of years. If you are interested in these trends, and would like to find out more about where this is all headed and what it means to you, consider downloding Opening Science, edited by Sönke Bartling and Sascha Friesike, subtitled The Evolving Guide on How the Internet is Changing Research, Collaboration, and Scholarly Publishing. In 26 chapters by various authors from a range of disciplines the book explores the developing world of open science, starting from the first scientific revolution and bringing us to the next scientific revolution, sometimes referred to as “Science 2.0”. Some of the articles deal with the impact of the changing landscape of how science is done, looking at the impact of open science on Academia, or journal publishing, or medical research. Many of the articles look at the uses, pitfalls, and impact of specific tools, like microblogging (think Twitter), social networking, and reference management. There is lots of discussion and definition of terms you might use or misuse like “altmetrics” and “impact factor”. Science will probably never be completely open, and Twitter will probably never replace the journal article,

  2. Evolving NASA's Earth Science Data Systems

    Science.gov (United States)

    Walter, J.; Behnke, J.; Murphy, K. J.; Lowe, D. R.

    2013-12-01

    NASA's Earth Science Data and Information System Project (ESDIS) is charged with managing, maintaining, and evolving NASA's Earth Observing System Data and Information System (EOSDIS) and is responsible for processing, archiving, and distributing NASA Earth science data. The system supports a multitude of missions and serves diverse science research and other user communities. Keeping up with ever-changing information technology and figuring out how to leverage those changes across such a large system in order to continuously improve and meet the needs of a diverse user community is a significant challenge. Maintaining and evolving the system architecture and infrastructure is a continuous and multi-layered effort. It requires a balance between a "top down" management paradigm that provides a coherent system view and maintaining the managerial, technological, and functional independence of the individual system elements. This presentation will describe some of the key elements of the current system architecture, some of the strategies and processes we employ to meet these challenges, current and future challenges, and some ideas for meeting those challenges.

  3. The Comet Cometh: Evolving Developmental Systems.

    Science.gov (United States)

    Jaeger, Johannes; Laubichler, Manfred; Callebaut, Werner

    In a recent opinion piece, Denis Duboule has claimed that the increasing shift towards systems biology is driving evolutionary and developmental biology apart, and that a true reunification of these two disciplines within the framework of evolutionary developmental biology (EvoDevo) may easily take another 100 years. He identifies methodological, epistemological, and social differences as causes for this supposed separation. Our article provides a contrasting view. We argue that Duboule's prediction is based on a one-sided understanding of systems biology as a science that is only interested in functional, not evolutionary, aspects of biological processes. Instead, we propose a research program for an evolutionary systems biology, which is based on local exploration of the configuration space in evolving developmental systems. We call this approach-which is based on reverse engineering, simulation, and mathematical analysis-the natural history of configuration space. We discuss a number of illustrative examples that demonstrate the past success of local exploration, as opposed to global mapping, in different biological contexts. We argue that this pragmatic mode of inquiry can be extended and applied to the mathematical analysis of the developmental repertoire and evolutionary potential of evolving developmental mechanisms and that evolutionary systems biology so conceived provides a pragmatic epistemological framework for the EvoDevo synthesis.

  4. On the Interplay between the Evolvability and Network Robustness in an Evolutionary Biological Network: A Systems Biology Approach

    Science.gov (United States)

    Chen, Bor-Sen; Lin, Ying-Po

    2011-01-01

    In the evolutionary process, the random transmission and mutation of genes provide biological diversities for natural selection. In order to preserve functional phenotypes between generations, gene networks need to evolve robustly under the influence of random perturbations. Therefore, the robustness of the phenotype, in the evolutionary process, exerts a selection force on gene networks to keep network functions. However, gene networks need to adjust, by variations in genetic content, to generate phenotypes for new challenges in the network’s evolution, ie, the evolvability. Hence, there should be some interplay between the evolvability and network robustness in evolutionary gene networks. In this study, the interplay between the evolvability and network robustness of a gene network and a biochemical network is discussed from a nonlinear stochastic system point of view. It was found that if the genetic robustness plus environmental robustness is less than the network robustness, the phenotype of the biological network is robust in evolution. The tradeoff between the genetic robustness and environmental robustness in evolution is discussed from the stochastic stability robustness and sensitivity of the nonlinear stochastic biological network, which may be relevant to the statistical tradeoff between bias and variance, the so-called bias/variance dilemma. Further, the tradeoff could be considered as an antagonistic pleiotropic action of a gene network and discussed from the systems biology perspective. PMID:22084563

  5. Meiosis evolves: adaptation to external and internal environments.

    Science.gov (United States)

    Bomblies, Kirsten; Higgins, James D; Yant, Levi

    2015-10-01

    306 I. 306 II. 307 III. 312 IV. 317 V. 318 319 References 319 SUMMARY: Meiosis is essential for the fertility of most eukaryotes and its structures and progression are conserved across kingdoms. Yet many of its core proteins show evidence of rapid or adaptive evolution. What drives the evolution of meiosis proteins? How can constrained meiotic processes be modified in response to challenges without compromising their essential functions? In surveying the literature, we found evidence of two especially potent challenges to meiotic chromosome segregation that probably necessitate adaptive evolutionary responses: whole-genome duplication and abiotic environment, especially temperature. Evolutionary solutions to both kinds of challenge are likely to involve modification of homologous recombination and synapsis, probably via adjustments of core structural components important in meiosis I. Synthesizing these findings with broader patterns of meiosis gene evolution suggests that the structural components of meiosis coevolve as adaptive modules that may change in primary sequence and function while maintaining three-dimensional structures and protein interactions. The often sharp divergence of these genes among species probably reflects periodic modification of entire multiprotein complexes driven by genomic or environmental changes. We suggest that the pressures that cause meiosis to evolve to maintain fertility may cause pleiotropic alterations of global crossover rates. We highlight several important areas for future research. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  6. The evolving diagnostic and genetic landscapes of autism spectrum disorder

    Directory of Open Access Journals (Sweden)

    Mark Nicholas Ziats

    2016-04-01

    Full Text Available The autism spectrum disorders (ASD are a heterogeneous set of neurodevelopmental syndromes defined by impairments in verbal and non-verbal communication, restricted social interaction, and the presence of stereotyped patterns of behavior. The prevalence of ASD is rising, and the diagnostic criteria and clinical perspectives on the disorder continue to evolve in parallel. Although the majority of individuals with ASD will not have an identifiable genetic cause, almost 25% of cases have identifiable causative DNA variants. The rapidly improving ability to identify genetic mutations because of advances in next generation sequencing, coupled with previous epidemiological studies demonstrating high heritability of ASD, have led to many recent attempts to identify causative genetic mutations underlying the ASD phenotype. However, although hundreds of mutations have been identified to date, they are either rare variants affecting only a handful of ASD patients, or are common variants in the general population conferring only a small risk for ASD. Furthermore, the genes implicated thus far are heterogeneous in their structure and function, hampering attempts to understand shared molecular mechanisms among all ASD patients; an understanding that is crucial for the development of targeted diagnostics and therapies. However, new work is beginning to suggest that the heterogeneous set of genes implicated in ASD may ultimately converge on a few common pathways. In this review, we discuss the parallel evolution of our diagnostic and genetic understanding of autism spectrum disorders, and highlight recent attempts to infer common biology underlying this complicated syndrome.

  7. The Evolving Diagnostic and Genetic Landscapes of Autism Spectrum Disorder.

    Science.gov (United States)

    Ziats, Mark N; Rennert, Owen M

    2016-01-01

    The autism spectrum disorders (ASD) are a heterogeneous set of neurodevelopmental syndromes defined by impairments in verbal and non-verbal communication, restricted social interaction, and the presence of stereotyped patterns of behavior. The prevalence of ASD is rising, and the diagnostic criteria and clinical perspectives on the disorder continue to evolve in parallel. Although the majority of individuals with ASD will not have an identifiable genetic cause, almost 25% of cases have identifiable causative DNA variants. The rapidly improving ability to identify genetic mutations because of advances in next generation sequencing, coupled with previous epidemiological studies demonstrating high heritability of ASD, have led to many recent attempts to identify causative genetic mutations underlying the ASD phenotype. However, although hundreds of mutations have been identified to date, they are either rare variants affecting only a handful of ASD patients, or are common variants in the general population conferring only a small risk for ASD. Furthermore, the genes implicated thus far are heterogeneous in their structure and function, hampering attempts to understand shared molecular mechanisms among all ASD patients; an understanding that is crucial for the development of targeted diagnostics and therapies. However, new work is beginning to suggest that the heterogeneous set of genes implicated in ASD may ultimately converge on a few common pathways. In this review, we discuss the parallel evolution of our diagnostic and genetic understanding of autism spectrum disorders, and highlight recent attempts to infer common biology underlying this complicated syndrome.

  8. Foldability of a Natural De Novo Evolved Protein.

    Science.gov (United States)

    Bungard, Dixie; Copple, Jacob S; Yan, Jing; Chhun, Jimmy J; Kumirov, Vlad K; Foy, Scott G; Masel, Joanna; Wysocki, Vicki H; Cordes, Matthew H J

    2017-11-07

    The de novo evolution of protein-coding genes from noncoding DNA is emerging as a source of molecular innovation in biology. Studies of random sequence libraries, however, suggest that young de novo proteins will not fold into compact, specific structures typical of native globular proteins. Here we show that Bsc4, a functional, natural de novo protein encoded by a gene that evolved recently from noncoding DNA in the yeast S. cerevisiae, folds to a partially specific three-dimensional structure. Bsc4 forms soluble, compact oligomers with high β sheet content and a hydrophobic core, and undergoes cooperative, reversible denaturation. Bsc4 lacks a specific quaternary state, however, existing instead as a continuous distribution of oligomer sizes, and binds dyes indicative of amyloid oligomers or molten globules. The combination of native-like and non-native-like properties suggests a rudimentary fold that could potentially act as a functional intermediate in the emergence of new folded proteins de novo. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Tumor biology and cancer therapy – an evolving relationship

    Directory of Open Access Journals (Sweden)

    Lother Ulrike

    2009-08-01

    Full Text Available Abstract The aim of palliative chemotherapy is to increase survival whilst maintaining maximum quality of life for the individual concerned. Although we are still continuing to explore the optimum use of traditional chemotherapy agents, the introduction of targeted therapies has significantly broadened the therapeutic options. Interestingly, the results from current trials put the underlying biological concept often into a new, less favorable perspective. Recent data suggested that altered pathways underlie cancer, and not just altered genes. Thus, an effective therapeutic agent will sometimes have to target downstream parts of a signaling pathway or physiological effects rather than individual genes. In addition, over the past few years increasing evidence has suggested that solid tumors represent a very heterogeneous group of cells with different susceptibility to cancer therapy. Thus, since therapeutic concepts and pathophysiological understanding are continuously evolving a combination of current concepts in tumor therapy and tumor biology is needed. This review aims to present current problems of cancer therapy by highlighting exemplary results from recent clinical trials with colorectal and pancreatic cancer patients and to discuss the current understanding of the underlying reasons.

  10. Forces shaping the fastest evolving regions in the human genome.

    Directory of Open Access Journals (Sweden)

    Katherine S Pollard

    2006-10-01

    Full Text Available Comparative genomics allow us to search the human genome for segments that were extensively changed in the last approximately 5 million years since divergence from our common ancestor with chimpanzee, but are highly conserved in other species and thus are likely to be functional. We found 202 genomic elements that are highly conserved in vertebrates but show evidence of significantly accelerated substitution rates in human. These are mostly in non-coding DNA, often near genes associated with transcription and DNA binding. Resequencing confirmed that the five most accelerated elements are dramatically changed in human but not in other primates, with seven times more substitutions in human than in chimp. The accelerated elements, and in particular the top five, show a strong bias for adenine and thymine to guanine and cytosine nucleotide changes and are disproportionately located in high recombination and high guanine and cytosine content environments near telomeres, suggesting either biased gene conversion or isochore selection. In addition, there is some evidence of directional selection in the regions containing the two most accelerated regions. A combination of evolutionary forces has contributed to accelerated evolution of the fastest evolving elements in the human genome.

  11. A rapidly evolving secretome builds and patterns a sea shell

    Directory of Open Access Journals (Sweden)

    Green Kathryn

    2006-11-01

    Full Text Available Abstract Background Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks. Results Here we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl deposition. Conclusion The unexpected complexity and evolvability of this secretome and the modular design of the molluskan mantle enables

  12. Experimental study of electromagnetic radiation from a faster-than-light vacuum macroscopic source

    Energy Technology Data Exchange (ETDEWEB)

    Bessarab, A.V. [Russian Federal Nuclear Center-All-Russia Scientific Research Institute of Experimental Physics, Sarov, Nizhni Novgorod region, 607188 (Russian Federation); Martynenko, S.P. [Russian Federal Nuclear Center-All-Russia Scientific Research Institute of Experimental Physics, Sarov, Nizhni Novgorod region, 607188 (Russian Federation); Prudkoi, N.A. [Russian Federal Nuclear Center-All-Russia Scientific Research Institute of Experimental Physics, Sarov, Nizhni Novgorod region, 607188 (Russian Federation); Soldatov, A.V. [Russian Federal Nuclear Center-All-Russia Scientific Research Institute of Experimental Physics, Sarov, Nizhni Novgorod region, 607188 (Russian Federation)]. E-mail: soldatov@vniief.ru; Terekhin, V.A. [Russian Federal Nuclear Center-All-Russia Scientific Research Institute of Experimental Physics, Sarov, Nizhni Novgorod region, 607188 (Russian Federation)

    2006-08-15

    The effect which manifests itself in the form of directed electromagnetic pulses (EMP) initiated by an X-ray incident obliquely upon a conducting surface has been confirmed and investigated experimentally in detail. A planar accelerating diode comprising a metallic cathode and grid anode was initiated with an oblique short soft-X-ray pulse from a point laser-plasma source. Then a source of directed EMP-a current of accelerated photoelectrons-was formed whose boundary ran along the anode external surface with a faster-than-light velocity. The plasma was formed when short-pulse ({approx}0.3ns) laser radiation from ISKRA-5 facility was focused on a plane Au target. The amplitude-in-time and spatial characteristics of radiation emitted by the faster-than-light source have been measured. Parameters of the accelerated electron current have been measured too.

  13. Withholding response to self-face is faster than to other-face.

    Science.gov (United States)

    Zhu, Min; Hu, Yinying; Tang, Xiaochen; Luo, Junlong; Gao, Xiangping

    2015-01-01

    Self-face advantage refers to adults' response to self-face is faster than that to other-face. A stop-signal task was used to explore how self-face advantage interacted with response inhibition. The results showed that reaction times of self-face were faster than that of other-face not in the go task but in the stop response trials. The novelty of the finding was that self-face has shorter stop-signal reaction time compared to other-face in the successful inhibition trials. These results indicated the processing mechanism of self-face may be characterized by a strong response tendency and a corresponding strong inhibition control.

  14. Object Detection Based on Fast/Faster RCNN Employing Fully Convolutional Architectures

    Directory of Open Access Journals (Sweden)

    Yun Ren

    2018-01-01

    Full Text Available Modern object detectors always include two major parts: a feature extractor and a feature classifier as same as traditional object detectors. The deeper and wider convolutional architectures are adopted as the feature extractor at present. However, many notable object detection systems such as Fast/Faster RCNN only consider simple fully connected layers as the feature classifier. In this paper, we declare that it is beneficial for the detection performance to elaboratively design deep convolutional networks (ConvNets of various depths for feature classification, especially using the fully convolutional architectures. In addition, this paper also demonstrates how to employ the fully convolutional architectures in the Fast/Faster RCNN. Experimental results show that a classifier based on convolutional layer is more effective for object detection than that based on fully connected layer and that the better detection performance can be achieved by employing deeper ConvNets as the feature classifier.

  15. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication.

    Science.gov (United States)

    Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li

    2015-11-24

    Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.

  16. Investigating the Mpemba Effect: When Hot Water Freezes Faster than Cold Water

    Science.gov (United States)

    Ibekwe, R. T.; Cullerne, J. P.

    2016-01-01

    Under certain conditions a body of hot liquid may cool faster and freeze before a body of colder liquid, a phenomenon known as the Mpemba Effect. An initial difference in temperature of 3.2 °C enabled warmer water to reach 0 °C in 14% less time than colder water. Convection currents in the liquid generate a temperature gradient that causes more…

  17. Faster dissolution of PuO2 in nitrous media by means of electrolytic oxidation

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, J.I.; Luckner, N.; Brueckl, N.; Lieberer, E.

    1984-03-01

    The contribution shows that the dissolution of PuO 2 in HNO 3 can be accelerated considerably by means of electrolytic oxidation. A glass apparatus has been developed which uses platinum electrodes providing for sufficient contact between electrodes and solids. Increase of temperature, acid concentration, and electrode current density, and a good contact between electrode and metal oxide will improve the dissolution kinetics. The reaction could be made even faster by addition of Ce 4+ . (orig.) [de

  18. Earlier time to aerobic exercise is associated with faster recovery following acute sport concussion.

    Science.gov (United States)

    Lawrence, David Wyndham; Richards, Doug; Comper, Paul; Hutchison, Michael G

    2018-01-01

    To determine whether earlier time to initiation of aerobic exercise following acute concussion is associated with time to full return to (1) sport and (2) school or work. A retrospective stratified propensity score survival analysis of acute (≤14 days) concussion was used to determine whether time (days) to initiation of aerobic exercise post-concussion was associated with, both, time (days) to full return to (1) sport and (2) school or work. A total of 253 acute concussions [median (IQR) age, 17.0 (15.0-20.0) years; 148 (58.5%) males] were included in this study. Multivariate Cox regression models identified that earlier time to aerobic exercise was associated with faster return to sport and school/work adjusting for other covariates, including quintile propensity strata. For each successive day in delay to initiation of aerobic exercise, individuals had a less favourable recovery trajectory. Initiating aerobic exercise at 3 and 7 days following injury was associated with a respective 36.5% (HR, 0.63; 95% CI, 0.53-0.76) and 73.2% (HR, 0.27; 95% CI, 0.16-0.45) reduced probability of faster full return to sport compared to within 1 day; and a respective 45.9% (HR, 0.54; 95% CI, 0.44-0.66) and 83.1% (HR, 0.17; 95% CI, 0.10-0.30) reduced probability of faster full return to school/work. Additionally, concussion history, symptom severity, LOC deleteriously influenced concussion recovery. Earlier initiation of aerobic exercise was associated with faster full return to sport and school or work. This study provides greater insight into the benefits and safety of aerobic exercise within the first week of the injury.

  19. Learning to Play in a Day: Faster Deep Reinforcement Learning by Optimality Tightening

    OpenAIRE

    He, Frank S.; Liu, Yang; Schwing, Alexander G.; Peng, Jian

    2016-01-01

    We propose a novel training algorithm for reinforcement learning which combines the strength of deep Q-learning with a constrained optimization approach to tighten optimality and encourage faster reward propagation. Our novel technique makes deep reinforcement learning more practical by drastically reducing the training time. We evaluate the performance of our approach on the 49 games of the challenging Arcade Learning Environment, and report significant improvements in both training time and...

  20. Evolvability as a Quality Attribute of Software Architectures

    NARCIS (Netherlands)

    Ciraci, S.; van den Broek, P.M.; Duchien, Laurence; D'Hondt, Maja; Mens, Tom

    We review the definition of evolvability as it appears on the literature. In particular, the concept of software evolvability is compared with other system quality attributes, such as adaptability, maintainability and modifiability.

  1. Evolving colon injury management: a review.

    Science.gov (United States)

    Greer, Lauren T; Gillern, Suzanne M; Vertrees, Amy E

    2013-02-01

    The colon is the second most commonly injured intra-abdominal organ in penetrating trauma. Management of traumatic colon injuries has evolved significantly over the past 200 years. Traumatic colon injuries can have a wide spectrum of severity, presentation, and management options. There is strong evidence that most non-destructive colon injuries can be successfully managed with primary repair or primary anastomosis. The management of destructive colon injuries remains controversial with most favoring resection with primary anastomosis and others favor colonic diversion in specific circumstances. The historical management of traumatic colon injuries, common mechanisms of injury, demographics, presentation, assessment, diagnosis, management, and complications of traumatic colon injuries both in civilian and military practice are reviewed. The damage control revolution has added another layer of complexity to management with continued controversy.

  2. Pulmonary Sporotrichosis: An Evolving Clinical Paradigm.

    Science.gov (United States)

    Aung, Ar K; Spelman, Denis W; Thompson, Philip J

    2015-10-01

    In recent decades, sporotrichosis, caused by thermally dimorphic fungi Sporothrix schenckii complex, has become an emerging infection in many parts of the world. Pulmonary infection with S. schenckii still remains relatively uncommon, possibly due to underrecognition. Pulmonary sporotrichosis presents with distinct clinical and radiological patterns in both immunocompetent and immunocompromised hosts and can often result in significant morbidity and mortality despite treatment. Current understanding regarding S. schenckii biology, epidemiology, immunopathology, clinical diagnostics, and treatment options has been evolving in the recent years with increased availability of molecular sequencing techniques. However, this changing knowledge has not yet been fully translated into a better understanding of the clinical aspects of pulmonary sporotrichosis, as such current management guidelines remain unsupported by high-level clinical evidence. This article examines recent advances in the knowledge of sporotrichosis and its application to the difficult challenges of managing pulmonary sporotrichosis. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  3. Resiliently evolving supply-demand networks

    Science.gov (United States)

    Rubido, Nicolás; Grebogi, Celso; Baptista, Murilo S.

    2014-01-01

    The ability to design a transport network such that commodities are brought from suppliers to consumers in a steady, optimal, and stable way is of great importance for distribution systems nowadays. In this work, by using the circuit laws of Kirchhoff and Ohm, we provide the exact capacities of the edges that an optimal supply-demand network should have to operate stably under perturbations, i.e., without overloading. The perturbations we consider are the evolution of the connecting topology, the decentralization of hub sources or sinks, and the intermittence of supplier and consumer characteristics. We analyze these conditions and the impact of our results, both on the current United Kingdom power-grid structure and on numerically generated evolving archetypal network topologies.

  4. Development and the evolvability of human limbs.

    Science.gov (United States)

    Young, Nathan M; Wagner, Günter P; Hallgrímsson, Benedikt

    2010-02-23

    The long legs and short arms of humans are distinctive for a primate, the result of selection acting in opposite directions on each limb at different points in our evolutionary history. This mosaic pattern challenges our understanding of the relationship of development and evolvability because limbs are serially homologous and genetic correlations should act as a significant constraint on their independent evolution. Here we test a developmental model of limb covariation in anthropoid primates and demonstrate that both humans and apes exhibit significantly reduced integration between limbs when compared to quadrupedal monkeys. This result indicates that fossil hominins likely escaped constraints on independent limb variation via reductions to genetic pleiotropy in an ape-like last common ancestor (LCA). This critical change in integration among hominoids, which is reflected in macroevolutionary differences in the disparity between limb lengths, facilitated selection for modern human limb proportions and demonstrates how development helps shape evolutionary change.

  5. Evolving spiking networks with variable resistive memories.

    Science.gov (United States)

    Howard, Gerard; Bull, Larry; de Lacy Costello, Ben; Gale, Ella; Adamatzky, Andrew

    2014-01-01

    Neuromorphic computing is a brainlike information processing paradigm that requires adaptive learning mechanisms. A spiking neuro-evolutionary system is used for this purpose; plastic resistive memories are implemented as synapses in spiking neural networks. The evolutionary design process exploits parameter self-adaptation and allows the topology and synaptic weights to be evolved for each network in an autonomous manner. Variable resistive memories are the focus of this research; each synapse has its own conductance profile which modifies the plastic behaviour of the device and may be altered during evolution. These variable resistive networks are evaluated on a noisy robotic dynamic-reward scenario against two static resistive memories and a system containing standard connections only. The results indicate that the extra behavioural degrees of freedom available to the networks incorporating variable resistive memories enable them to outperform the comparative synapse types.

  6. Life cycle planning: An evolving concept

    International Nuclear Information System (INIS)

    Moore, P.J.R.; Gorman, I.G.

    1994-01-01

    Life-cycle planning is an evolving concept in the management of oil and gas projects. BHP Petroleum now interprets this idea to include all development planning from discovery and field appraisal to final abandonment and includes safety, environmental, technical, plant, regulatory, and staffing issues. This article describes in the context of the Timor Sea, how despite initial successes and continuing facilities upgrades, BHPP came to perceive that current operations could be the victim of early development successes, particularly in the areas of corrosion and maintenance. The search for analogies elsewhere lead to the UK North Sea, including the experiences of Britoil and BP, both of which performed detailed Life of Field studies in the later eighties. These materials have been used to construct a format and content for total Life-cycle plans in general and the social changes required to ensure their successful application in Timor Sea operations and deployment throughout Australia

  7. Argentina and Brazil: an evolving nuclear relationship

    International Nuclear Information System (INIS)

    Redick, J.R.

    1990-01-01

    Argentina and Brazil have Latin America's most advanced nuclear research and power programs. Both nations reject the Non-Proliferation Treaty (NPT), and have not formally embraced the Tlatelolco Treaty creating a regional nuclear-weapon-free zone. Disturbing ambiguities persist regarding certain indigenous nuclear facilities and growing nuclear submarine and missile capabilities. For these, and other reasons, the two nations are widely considered potential nuclear weapon states. However both nations have been active supporters of the International Atomic Energy Agency (IAEA) and have, in recent years, assumed a generally responsible position in regard to their own nuclear export activities (requiring IAEA safeguards). Most important, however, has been the advent of bilateral nuclear cooperation. This paper considers the evolving nuclear relationship in the context of recent and dramatic political change in Argentina and Brazil. It discusses current political and nuclear developments and the prospects for maintaining and expanding present bilateral cooperation into an effective non-proliferation arrangement. (author)

  8. The genotype-phenotype map of an evolving digital organism

    OpenAIRE

    Fortuna, Miguel A.; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-01-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms fr...

  9. Key role of lipid management in nitrogen and aroma metabolism in an evolved wine yeast strain.

    Science.gov (United States)

    Rollero, Stéphanie; Mouret, Jean-Roch; Sanchez, Isabelle; Camarasa, Carole; Ortiz-Julien, Anne; Sablayrolles, Jean-Marie; Dequin, Sylvie

    2016-02-09

    Fermentative aromas play a key role in the organoleptic profile of young wines. Their production depends both on yeast strain and fermentation conditions. A present-day trend in the wine industry consists in developing new strains with aromatic properties using adaptive evolution approaches. An evolved strain, Affinity™ ECA5, overproducing esters, was recently obtained. In this study, dynamics of nitrogen consumption and of the fermentative aroma synthesis of the evolved and its ancestral strains were compared and coupled with a transcriptomic analysis approach to better understand the metabolic reshaping of Affinity™ ECA5. Nitrogen assimilation was different between the two strains, particularly amino acids transported by carriers regulated by nitrogen catabolite repression. We also observed differences in the kinetics of fermentative aroma production, especially in the bioconversion of higher alcohols into acetate esters. Finally, transcriptomic data showed that the enhanced bioconversion into acetate esters by the evolved strain was associated with the repression of genes involved in sterol biosynthesis rather than an enhanced expression of ATF1 and ATF2 (genes coding for the enzymes responsible for the synthesis of acetate esters from higher alcohols). An integrated approach to yeast metabolism-combining transcriptomic analyses and online monitoring data-showed differences between the two strains at different levels. Differences in nitrogen source consumption were observed suggesting modifications of NCR in the evolved strain. Moreover, the evolved strain showed a different way of managing the lipid source, which notably affected the production of acetate esters, likely because of a greater availability of acetyl-CoA for the evolved strain.

  10. When Darwin meets Lorenz: Evolving new chaotic attractors through genetic programming

    International Nuclear Information System (INIS)

    Pan, Indranil; Das, Saptarshi

    2015-01-01

    Highlights: •New 3D continuous time chaotic systems with analytical expressions are obtained. •The multi-gene genetic programming (MGGP) paradigm is employed to achieve this. •Extends earlier works for evolving generalised family of Lorenz attractors. •Over one hundred of new chaotic attractors along with their parameters are reported. •The MGGP method have the potential for finding other similar chaotic attractors. -- Abstract: In this paper, we propose a novel methodology for automatically finding new chaotic attractors through a computational intelligence technique known as multi-gene genetic programming (MGGP). We apply this technique to the case of the Lorenz attractor and evolve several new chaotic attractors based on the basic Lorenz template. The MGGP algorithm automatically finds new nonlinear expressions for the different state variables starting from the original Lorenz system. The Lyapunov exponents of each of the attractors are calculated numerically based on the time series of the state variables using time delay embedding techniques. The MGGP algorithm tries to search the functional space of the attractors by aiming to maximise the largest Lyapunov exponent (LLE) of the evolved attractors. To demonstrate the potential of the proposed methodology, we report over one hundred new chaotic attractor structures along with their parameters, which are evolved from just the Lorenz system alone

  11. The evolving energy budget of accretionary wedges

    Science.gov (United States)

    McBeck, Jessica; Cooke, Michele; Maillot, Bertrand; Souloumiac, Pauline

    2017-04-01

    The energy budget of evolving accretionary systems reveals how deformational processes partition energy as faults slip, topography uplifts, and layer-parallel shortening produces distributed off-fault deformation. The energy budget provides a quantitative framework for evaluating the energetic contribution or consumption of diverse deformation mechanisms. We investigate energy partitioning in evolving accretionary prisms by synthesizing data from physical sand accretion experiments and numerical accretion simulations. We incorporate incremental strain fields and cumulative force measurements from two suites of experiments to design numerical simulations that represent accretionary wedges with stronger and weaker detachment faults. One suite of the physical experiments includes a basal glass bead layer and the other does not. Two physical experiments within each suite implement different boundary conditions (stable base versus moving base configuration). Synthesizing observations from the differing base configurations reduces the influence of sidewall friction because the force vector produced by sidewall friction points in opposite directions depending on whether the base is fixed or moving. With the numerical simulations, we calculate the energy budget at two stages of accretion: at the maximum force preceding the development of the first thrust pair, and at the minimum force following the development of the pair. To identify the appropriate combination of material and fault properties to apply in the simulations, we systematically vary the Young's modulus and the fault static and dynamic friction coefficients in numerical accretion simulations, and identify the set of parameters that minimizes the misfit between the normal force measured on the physical backwall and the numerically simulated force. Following this derivation of the appropriate material and fault properties, we calculate the components of the work budget in the numerical simulations and in the

  12. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation

    Directory of Open Access Journals (Sweden)

    Rognes Torbjørn

    2011-06-01

    Full Text Available Abstract Background The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. Results A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Conclusions Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.

  13. Paying more for faster care? Individuals' attitude toward price-based priority access in health care.

    Science.gov (United States)

    Benning, Tim M; Dellaert, Benedict G C

    2013-05-01

    Increased competition in the health care sector has led hospitals and other health care institutions to experiment with new access allocation policies that move away from traditional expert based allocation of care to price-based priority access (i.e., the option to pay more for faster care). To date, little is known about individuals' attitude toward price-based priority access and the evaluation process underlying this attitude. This paper addresses the role of individuals' evaluations of collective health outcomes as an important driver of their attitude toward (price-based) allocation policies in health care. The authors investigate how individuals evaluate price-based priority access by means of scenario-based survey data collected in a representative sample from the Dutch population (N = 1464). They find that (a) offering individuals the opportunity to pay for faster care negatively affects their evaluations of both the total and distributional collective health outcome achieved, (b) however, when health care supply is not restricted (i.e., when treatment can be offered outside versus within the regular working hours of the hospital) offering price-based priority access affects total collective health outcome evaluations positively instead of negatively, but it does not change distributional collective health outcome evaluations. Furthermore, (c) the type of health care treatment (i.e., life saving liver transplantation treatment vs. life improving cosmetic ear correction treatment - priced at the same level to the individual) moderates the effect of collective health outcome evaluations on individuals' attitude toward allocation policies. For policy makers and hospital managers the results presented in this article are helpful because they provide a better understanding of what drives individuals' preferences for health care allocation policies. In particular, the results show that policies based on the "paying more for faster care" principle are more

  14. Faster native vowel discrimination learning in musicians is mediated by an optimization of mnemonic functions.

    Science.gov (United States)

    Elmer, Stefan; Greber, Marielle; Pushparaj, Arethy; Kühnis, Jürg; Jäncke, Lutz

    2017-09-01

    The ability to discriminate phonemes varying in spectral and temporal attributes constitutes one of the most basic intrinsic elements underlying language learning mechanisms. Since previous work has consistently shown that professional musicians are characterized by perceptual and cognitive advantages in a variety of language-related tasks, and since vowels can be considered musical sounds within the domain of speech, here we investigated the behavioral and electrophysiological correlates of native vowel discrimination learning in a sample of professional musicians and non-musicians. We evaluated the contribution of both the neurophysiological underpinnings of perceptual (i.e., N1/P2 complex) and mnemonic functions (i.e., N400 and P600 responses) while the participants were instructed to judge whether pairs of native consonant-vowel (CV) syllables manipulated in the first formant transition of the vowel (i.e., from /tu/ to /to/) were identical or not. Results clearly demonstrated faster learning in musicians, compared to non-musicians, as reflected by shorter reaction times and higher accuracy. Most notably, in terms of morphology, time course, and voltage strength, this steeper learning curve was accompanied by distinctive N400 and P600 manifestations between the two groups. In contrast, we did not reveal any group differences during the early stages of auditory processing (i.e., N1/P2 complex), suggesting that faster learning was mediated by an optimization of mnemonic but not perceptual functions. Based on a clear taxonomy of the mnemonic functions involved in the task, results are interpreted as pointing to a relationship between faster learning mechanisms in musicians and an optimization of echoic (i.e., N400 component) and working memory (i.e., P600 component) functions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Faster self-paced rate of drinking for alcohol mixed with energy drinks versus alcohol alone.

    Science.gov (United States)

    Marczinski, Cecile A; Fillmore, Mark T; Maloney, Sarah F; Stamates, Amy L

    2017-03-01

    The consumption of alcohol mixed with energy drinks (AmED) has been associated with higher rates of binge drinking and impaired driving when compared with alcohol alone. However, it remains unclear why the risks of use of AmED are heightened compared with alcohol alone even when the doses of alcohol consumed are similar. Therefore, the purpose of this laboratory study was to investigate if the rate of self-paced beverage consumption was faster for a dose of AmED versus alcohol alone using a double-blind, within-subjects, placebo-controlled study design. Participants (n = 16) of equal gender who were social drinkers attended 4 separate test sessions that involved consumption of alcohol (1.97 ml/kg vodka) and energy drinks, alone and in combination. On each test day, the dose assigned was divided into 10 cups. Participants were informed that they would have a 2-h period to consume the 10 drinks. After the self-paced drinking period, participants completed a cued go/no-go reaction time (RT) task and subjective ratings of stimulation and sedation. The results indicated that participants consumed the AmED dose significantly faster (by ∼16 min) than the alcohol dose. For the performance task, participants' mean RTs were slower in the alcohol conditions and faster in the energy-drink conditions. In conclusion, alcohol consumers should be made aware that rapid drinking might occur for AmED beverages, thus heightening alcohol-related safety risks. The fast rate of drinking may be related to the generalized speeding of responses after energy-drink consumption. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  16. Faster Smith-Waterman database searches with inter-sequence SIMD parallelisation.

    Science.gov (United States)

    Rognes, Torbjørn

    2011-06-01

    The Smith-Waterman algorithm for local sequence alignment is more sensitive than heuristic methods for database searching, but also more time-consuming. The fastest approach to parallelisation with SIMD technology has previously been described by Farrar in 2007. The aim of this study was to explore whether further speed could be gained by other approaches to parallelisation. A faster approach and implementation is described and benchmarked. In the new tool SWIPE, residues from sixteen different database sequences are compared in parallel to one query residue. Using a 375 residue query sequence a speed of 106 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon X5650 six-core processor system, which is over six times more rapid than software based on Farrar's 'striped' approach. SWIPE was about 2.5 times faster when the programs used only a single thread. For shorter queries, the increase in speed was larger. SWIPE was about twice as fast as BLAST when using the BLOSUM50 score matrix, while BLAST was about twice as fast as SWIPE for the BLOSUM62 matrix. The software is designed for 64 bit Linux on processors with SSSE3. Source code is available from http://dna.uio.no/swipe/ under the GNU Affero General Public License. Efficient parallelisation using SIMD on standard hardware makes it possible to run Smith-Waterman database searches more than six times faster than before. The approach described here could significantly widen the potential application of Smith-Waterman searches. Other applications that require optimal local alignment scores could also benefit from improved performance.

  17. The Faster, Better, Cheaper Approach to Space Missions: An Engineering Management Assessment

    Science.gov (United States)

    Hamaker, Joseph W.

    1999-01-01

    NASA was chartered as an independent civilian space agency in 1958 following the Soviet Union's dramatic launch of the Sputnik 1 (1957). In his state of the union address in May of 1961, President Kennedy issued to the fledging organization his famous challenge for a manned lunar mission by the end of the decade. The Mercury, Gemini and Apollo programs that followed put the utmost value on high quality, low risk (as low as possible within the context of space flight), quick results, all with little regard for cost. These circumstances essentially melded NASAs culture as an organization capable of great technological achievement but at extremely high cost. The Space Shuttle project, the next major agency endeavor, was put under severe annual budget constraints in the 1970's. NASAs response was to hold to the high quality standards, low risk and annual cost and let schedule suffer. The result was a significant delay in the introduction of the Shuttle as well as overall total cost growth. By the early 1990's, because NASA's budget was declining, the number of projects was also declining. Holding the same cost and schedule productivity levels as before was essentially causing NASA to price itself out of business. In 1992, the helm of NASA was turned over to a new Administrator. Dan Goldin's mantra was "faster, better, cheaper" and his enthusiasm and determination to change the NASA culture was not to be ignored. This research paper documents the various implementations of "faster, better, cheaper" that have been attempted, analyzes their impact and compares the cost performance of these new projects to previous NASA benchmarks. Fundamentally, many elements of "faster, better, cheaper" are found to be working well, especially on smaller projects. Some of the initiatives are found to apply only to smaller or experimental projects however, so that extrapolation to "flagship" projects may be problematic.

  18. Lactobacilli evolve by cumulative DNA degeneration

    OpenAIRE

    Bringel , Françoise; Hubert , Jean-Claude

    2004-01-01

    International audience; Lactic acid bacteria require rich media since, due to mutations in their biosynthetic genes, they are unable to synthesise numerous amino acids and nucleobases. The extent of genetic lesions was investigated in two biosynthetic pathways for 150 Lactobacillus plantarum isolates from various origins. Arginine biosynthesis and pyrimidine biosynthesis share a common intermediate, carbamoyl phosphate (CP). No pyrimidine auxotrophs were detected and only 7 L. plantarum strai...

  19. Simulating spontaneous aseismic and seismic slip events on evolving faults

    Science.gov (United States)

    Herrendörfer, Robert; van Dinther, Ylona; Pranger, Casper; Gerya, Taras

    2017-04-01

    Plate motion along tectonic boundaries is accommodated by different slip modes: steady creep, seismic slip and slow slip transients. Due to mainly indirect observations and difficulties to scale results from laboratory experiments to nature, it remains enigmatic which fault conditions favour certain slip modes. Therefore, we are developing a numerical modelling approach that is capable of simulating different slip modes together with the long-term fault evolution in a large-scale tectonic setting. We extend the 2D, continuum mechanics-based, visco-elasto-plastic thermo-mechanical model that was designed to simulate slip transients in large-scale geodynamic simulations (van Dinther et al., JGR, 2013). We improve the numerical approach to accurately treat the non-linear problem of plasticity (see also EGU 2017 abstract by Pranger et al.). To resolve a wide slip rate spectrum on evolving faults, we develop an invariant reformulation of the conventional rate-and-state dependent friction (RSF) and adapt the time step (Lapusta et al., JGR, 2000). A crucial part of this development is a conceptual ductile fault zone model that relates slip rates along discrete planes to the effective macroscopic plastic strain rates in the continuum. We test our implementation first in a simple 2D setup with a single fault zone that has a predefined initial thickness. Results show that deformation localizes in case of steady creep and for very slow slip transients to a bell-shaped strain rate profile across the fault zone, which suggests that a length scale across the fault zone may exist. This continuum length scale would overcome the common mesh-dependency in plasticity simulations and question the conventional treatment of aseismic slip on infinitely thin fault zones. We test the introduction of a diffusion term (similar to the damage description in Lyakhovsky et al., JMPS, 2011) into the state evolution equation and its effect on (de-)localization during faster slip events. We compare

  20. Semantic Size Does Not Matter: “Bigger” Words Are Not Recognised Faster

    OpenAIRE

    Kang, Sean H.K.; Yap, Melvin J.; Tse, Chi-Shing; Kurby, Christopher A.

    2011-01-01

    Sereno, O’Donnell, and Sereno (2009) reported that words are recognised faster in a lexical decision task when their referents are physically large rather than small, suggesting that “semantic size” might be an important variable that should be considered in visual word recognition research and modelling. We sought to replicate their size effect, but failed to find a significant latency advantage in lexical decision for “big” words (cf. “small” words), even though we used the same word stimul...

  1. Two-ply channels for faster wicking in paper-based microfluidic devices.

    Science.gov (United States)

    Camplisson, Conor K; Schilling, Kevin M; Pedrotti, William L; Stone, Howard A; Martinez, Andres W

    2015-12-07

    This article describes the development of porous two-ply channels for paper-based microfluidic devices that wick fluids significantly faster than conventional, porous, single-ply channels. The two-ply channels were made by stacking two single-ply channels on top of each other and were fabricated entirely out of paper, wax and toner using two commercially available printers, a convection oven and a thermal laminator. The wicking in paper-based channels was studied and modeled using a modified Lucas-Washburn equation to account for the effect of evaporation, and a paper-based titration device incorporating two-ply channels was demonstrated.

  2. Faster-than-real-time robot simulation for plan development and robot safety

    International Nuclear Information System (INIS)

    Crane, C.D. III; Dalton, R.; Ogles, J.; Tulenko, J.S.; Zhou, X.

    1990-01-01

    The University of Florida, in cooperation with the Universities of Texas, Tennessee, and Michigan and Oak Ridge National Laboratory (ORNL), is developing an advanced robotic system for the US Department of Energy under the University Program for Robotics for Advanced Reactors. As part of this program, the University of Florida has been pursuing the development of a faster-than-real-time robotic simulation program for planning and control of mobile robotic operations to ensure the efficient and safe operation of mobile robots in nuclear power plants and other hazardous environments

  3. Faster Simulation Methods for the Non-Stationary Random Vibrations of Non-Linear MDOF Systems

    DEFF Research Database (Denmark)

    Askar, A.; Köylüoglu, H. U.; Nielsen, Søren R. K.

    subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...

  4. Faster Simulation Methods for the Nonstationary Random Vibrations of Non-linear MDOF Systems

    DEFF Research Database (Denmark)

    Askar, A.; Köylüo, U.; Nielsen, Søren R.K.

    1996-01-01

    subject to nonstationary Gaussian white noise excitation, as an alternative to conventional direct simulation methods. These alternative simulation procedures rely on an assumption of local Gaussianity during each time step. This assumption is tantamount to various linearizations of the equations....... Such a treatment offers higher rates of convergence, faster speed and higher accuracy. These procedures are compared to the direct Monte Carlo simulation procedure, which uses a fourth order Runge-Kutta scheme with the white noise process approximated by a broad band Ruiz-Penzien broken line process...

  5. On the Critical Role of Divergent Selection in Evolvability

    Directory of Open Access Journals (Sweden)

    Joel Lehman

    2016-08-01

    Full Text Available An ambitious goal in evolutionary robotics is to evolve increasingly complex robotic behaviors with minimal human design effort. Reaching this goal requires evolutionary algorithms that can unlock from genetic encodings their latent potential for evolvability. One issue clouding this goal is conceptual confusion about evolvability, which often obscures the aspects of evolvability that are important or desirable. The danger from such confusion is that it may establish unrealistic goals for evolvability that prove unproductive in practice. An important issue separate from conceptual confusion is the common misalignment between selection and evolvability in evolutionary robotics. While more expressive encodings can represent higher-level adaptations (e.g. sexual reproduction or developmental systems that increase long-term evolutionary potential (i.e. evolvability, realizing such potential requires gradients of fitness and evolvability to align. In other words, selection is often a critical factor limiting increasing evolvability. Thus, drawing from a series of recent papers, this article seeks to both (1 clarify and focus the ways in which the term evolvability is used within artificial evolution, and (2 argue for the importance of one type of selection, i.e. divergent selection, for enabling evolvability. The main argument is that there is a fundamental connection between divergent selection and evolvability (on both the individual and population level that does not hold for typical goal-oriented selection. The conclusion is that selection pressure plays a critical role in realizing the potential for evolvability, and that divergent selection in particular provides a principled mechanism for encouraging evolvability in artificial evolution.

  6. Approximating centrality in evolving graphs: toward sublinearity

    Science.gov (United States)

    Priest, Benjamin W.; Cybenko, George

    2017-05-01

    The identification of important nodes is a ubiquitous problem in the analysis of social networks. Centrality indices (such as degree centrality, closeness centrality, betweenness centrality, PageRank, and others) are used across many domains to accomplish this task. However, the computation of such indices is expensive on large graphs. Moreover, evolving graphs are becoming increasingly important in many applications. It is therefore desirable to develop on-line algorithms that can approximate centrality measures using memory sublinear in the size of the graph. We discuss the challenges facing the semi-streaming computation of many centrality indices. In particular, we apply recent advances in the streaming and sketching literature to provide a preliminary streaming approximation algorithm for degree centrality utilizing CountSketch and a multi-pass semi-streaming approximation algorithm for closeness centrality leveraging a spanner obtained through iteratively sketching the vertex-edge adjacency matrix. We also discuss possible ways forward for approximating betweenness centrality, as well as spectral measures of centrality. We provide a preliminary result using sketched low-rank approximations to approximate the output of the HITS algorithm.

  7. Functional Topology of Evolving Urban Drainage Networks

    Science.gov (United States)

    Yang, Soohyun; Paik, Kyungrock; McGrath, Gavan S.; Urich, Christian; Krueger, Elisabeth; Kumar, Praveen; Rao, P. Suresh C.

    2017-11-01

    We investigated the scaling and topology of engineered urban drainage networks (UDNs) in two cities, and further examined UDN evolution over decades. UDN scaling was analyzed using two power law scaling characteristics widely employed for river networks: (1) Hack's law of length (L)-area (A) [L∝Ah] and (2) exceedance probability distribution of upstream contributing area (δ) [P>(A≥δ>)˜aδ-ɛ]. For the smallest UDNs ((A≥δ>) plots for river networks are abruptly truncated, those for UDNs display exponential tempering [P>(A≥δ>)=aδ-ɛexp⁡>(-cδ>)]. The tempering parameter c decreases as the UDNs grow, implying that the distribution evolves in time to resemble those for river networks. However, the power law exponent ɛ for large UDNs tends to be greater than the range reported for river networks. Differences in generative processes and engineering design constraints contribute to observed differences in the evolution of UDNs and river networks, including subnet heterogeneity and nonrandom branching.

  8. An Evolving Worldview: Making Open Source Easy

    Science.gov (United States)

    Rice, Z.

    2017-12-01

    NASA Worldview is an interactive interface for browsing full-resolution, global satellite imagery. Worldview supports an open data policy so that academia, private industries and the general public can use NASA's satellite data to address Earth science related issues. Worldview was open sourced in 2014. By shifting to an open source approach, the Worldview application has evolved to better serve end-users. Project developers are able to have discussions with end-users and community developers to understand issues and develop new features. Community developers are able to track upcoming features, collaborate on them and make their own contributions. Developers who discover issues are able to address those issues and submit a fix. This reduces the time it takes for a project developer to reproduce an issue or develop a new feature. Getting new developers to contribute to the project has been one of the most important and difficult aspects of open sourcing Worldview. After witnessing potential outside contributors struggle, a focus has been made on making the installation of Worldview simple to reduce the initial learning curve and make contributing code easy. One way we have addressed this is through a simplified setup process. Our setup documentation includes a set of prerequisites and a set of straightforward commands to clone, configure, install and run. This presentation will emphasize our focus to simplify and standardize Worldview's open source code so that more people are able to contribute. The more people who contribute, the better the application will become over time.

  9. Extreme insular dwarfism evolved in a mammoth.

    Science.gov (United States)

    Herridge, Victoria L; Lister, Adrian M

    2012-08-22

    The insular dwarfism seen in Pleistocene elephants has come to epitomize the island rule; yet our understanding of this phenomenon is hampered by poor taxonomy. For Mediterranean dwarf elephants, where the most extreme cases of insular dwarfism are observed, a key systematic question remains unresolved: are all taxa phyletic dwarfs of a single mainland species Palaeoloxodon antiquus (straight-tusked elephant), or are some referable to Mammuthus (mammoths)? Ancient DNA and geochronological evidence have been used to support a Mammuthus origin for the Cretan 'Palaeoloxodon' creticus, but these studies have been shown to be flawed. On the basis of existing collections and recent field discoveries, we present new, morphological evidence for the taxonomic status of 'P'. creticus, and show that it is indeed a mammoth, most probably derived from Early Pleistocene Mammuthus meridionalis or possibly Late Pliocene Mammuthus rumanus. We also show that Mammuthus creticus is smaller than other known insular dwarf mammoths, and is similar in size to the smallest dwarf Palaeoloxodon species from Sicily and Malta, making it the smallest mammoth species known to have existed. These findings indicate that extreme insular dwarfism has evolved to a similar degree independently in two elephant lineages.

  10. How does cognition evolve? Phylogenetic comparative psychology.

    Science.gov (United States)

    MacLean, Evan L; Matthews, Luke J; Hare, Brian A; Nunn, Charles L; Anderson, Rindy C; Aureli, Filippo; Brannon, Elizabeth M; Call, Josep; Drea, Christine M; Emery, Nathan J; Haun, Daniel B M; Herrmann, Esther; Jacobs, Lucia F; Platt, Michael L; Rosati, Alexandra G; Sandel, Aaron A; Schroepfer, Kara K; Seed, Amanda M; Tan, Jingzhi; van Schaik, Carel P; Wobber, Victoria

    2012-03-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution.

  11. An evolving network model with modular growth

    International Nuclear Information System (INIS)

    Zou Zhi-Yun; Liu Peng; Lei Li; Gao Jian-Zhi

    2012-01-01

    In this paper, we propose an evolving network model growing fast in units of module, according to the analysis of the evolution characteristics in real complex networks. Each module is a small-world network containing several interconnected nodes and the nodes between the modules are linked by preferential attachment on degree of nodes. We study the modularity measure of the proposed model, which can be adjusted by changing the ratio of the number of inner-module edges and the number of inter-module edges. In view of the mean-field theory, we develop an analytical function of the degree distribution, which is verified by a numerical example and indicates that the degree distribution shows characteristics of the small-world network and the scale-free network distinctly at different segments. The clustering coefficient and the average path length of the network are simulated numerically, indicating that the network shows the small-world property and is affected little by the randomness of the new module. (interdisciplinary physics and related areas of science and technology)

  12. How does cognition evolve? Phylogenetic comparative psychology

    Science.gov (United States)

    Matthews, Luke J.; Hare, Brian A.; Nunn, Charles L.; Anderson, Rindy C.; Aureli, Filippo; Brannon, Elizabeth M.; Call, Josep; Drea, Christine M.; Emery, Nathan J.; Haun, Daniel B. M.; Herrmann, Esther; Jacobs, Lucia F.; Platt, Michael L.; Rosati, Alexandra G.; Sandel, Aaron A.; Schroepfer, Kara K.; Seed, Amanda M.; Tan, Jingzhi; van Schaik, Carel P.; Wobber, Victoria

    2014-01-01

    Now more than ever animal studies have the potential to test hypotheses regarding how cognition evolves. Comparative psychologists have developed new techniques to probe the cognitive mechanisms underlying animal behavior, and they have become increasingly skillful at adapting methodologies to test multiple species. Meanwhile, evolutionary biologists have generated quantitative approaches to investigate the phylogenetic distribution and function of phenotypic traits, including cognition. In particular, phylogenetic methods can quantitatively (1) test whether specific cognitive abilities are correlated with life history (e.g., lifespan), morphology (e.g., brain size), or socio-ecological variables (e.g., social system), (2) measure how strongly phylogenetic relatedness predicts the distribution of cognitive skills across species, and (3) estimate the ancestral state of a given cognitive trait using measures of cognitive performance from extant species. Phylogenetic methods can also be used to guide the selection of species comparisons that offer the strongest tests of a priori predictions of cognitive evolutionary hypotheses (i.e., phylogenetic targeting). Here, we explain how an integration of comparative psychology and evolutionary biology will answer a host of questions regarding the phylogenetic distribution and history of cognitive traits, as well as the evolutionary processes that drove their evolution. PMID:21927850

  13. A local-world evolving hypernetwork model

    International Nuclear Information System (INIS)

    Yang Guang-Yong; Liu Jian-Guo

    2014-01-01

    Complex hypernetworks are ubiquitous in the real system. It is very important to investigate the evolution mechanisms. In this paper, we present a local-world evolving hypernetwork model by taking into account the hyperedge growth and local-world hyperedge preferential attachment mechanisms. At each time step, a newly added hyperedge encircles a new coming node and a number of nodes from a randomly selected local world. The number of the selected nodes from the local world obeys the uniform distribution and its mean value is m. The analytical and simulation results show that the hyperdegree approximately obeys the power-law form and the exponent of hyperdegree distribution is γ = 2 + 1/m. Furthermore, we numerically investigate the node degree, hyperedge degree, clustering coefficient, as well as the average distance, and find that the hypernetwork model shares the scale-free and small-world properties, which shed some light for deeply understanding the evolution mechanism of the real systems. (interdisciplinary physics and related areas of science and technology)

  14. Evolving autonomous learning in cognitive networks.

    Science.gov (United States)

    Sheneman, Leigh; Hintze, Arend

    2017-12-01

    There are two common approaches for optimizing the performance of a machine: genetic algorithms and machine learning. A genetic algorithm is applied over many generations whereas machine learning works by applying feedback until the system meets a performance threshold. These methods have been previously combined, particularly in artificial neural networks using an external objective feedback mechanism. We adapt this approach to Markov Brains, which are evolvable networks of probabilistic and deterministic logic gates. Prior to this work MB could only adapt from one generation to the other, so we introduce feedback gates which augment their ability to learn during their lifetime. We show that Markov Brains can incorporate these feedback gates in such a way that they do not rely on an external objective feedback signal, but instead can generate internal feedback that is then used to learn. This results in a more biologically accurate model of the evolution of learning, which will enable us to study the interplay between evolution and learning and could be another step towards autonomously learning machines.

  15. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  16. Diverticular Disease: Traditional and Evolving Paradigms.

    Science.gov (United States)

    Lamanna, Lenore; Moran, Patricia E

    Diverticular disease includes diverticulosis, which are sac protrusions of the intestinal mucosa, and diverticulitis, inflammation of the diverticula. Diverticular disease is listed as one of the top 10 leading physician diagnoses for gastrointestinal disorders in outpatient clinic visits in the United States. There are several classifications of diverticular disease ranging from asymptomatic diverticulosis to diverticulitis with complications. Several theories are linked to the development of diverticula which includes the physiology of the colon itself, collagen cross-linking, and recently challenged, low-fiber intake. The differential diagnoses of lower abdominal pain in addition to diverticular disease have overlapping signs and symptoms, which can make a diagnosis challenging. Identification of the distinct signs and symptoms of each classification will assist the practitioner in making the correct diagnosis and lead to appropriate management. The findings from recent studies have changed the paradigm of diverticular disease. The purpose of this article is to discuss traditional dogma and evolving concepts in the pathophysiology, prevention, and management of diverticular disease. Practitioners must be knowledgeable about diverticular disease for improved outcomes.

  17. Minority games, evolving capitals and replicator dynamics

    International Nuclear Information System (INIS)

    Galla, Tobias; Zhang, Yi-Cheng

    2009-01-01

    We discuss a simple version of the minority game (MG) in which agents hold only one strategy each, but in which their capitals evolve dynamically according to their success and in which the total trading volume varies in time accordingly. This feature is known to be crucial for MGs to reproduce stylized facts of real market data. The stationary states and phase diagram of the model can be computed, and we show that the ergodicity breaking phase transition common for MGs, and marked by a divergence of the integrated response, is present also in this simplified model. An analogous majority game turns out to be relatively void of interesting features, and the total capital is found to diverge in time. Introducing a restraining force leads to a model akin to the replicator dynamics of evolutionary game theory, and we demonstrate that here a different type of phase transition is observed. Finally we briefly discuss the relation of this model with one strategy per player to more sophisticated minority games with dynamical capitals and several trading strategies per agent

  18. An evolving model of online bipartite networks

    Science.gov (United States)

    Zhang, Chu-Xu; Zhang, Zi-Ke; Liu, Chuang

    2013-12-01

    Understanding the structure and evolution of online bipartite networks is a significant task since they play a crucial role in various e-commerce services nowadays. Recently, various attempts have been tried to propose different models, resulting in either power-law or exponential degree distributions. However, many empirical results show that the user degree distribution actually follows a shifted power-law distribution, the so-called Mandelbrot’s law, which cannot be fully described by previous models. In this paper, we propose an evolving model, considering two different user behaviors: random and preferential attachment. Extensive empirical results on two real bipartite networks, Delicious and CiteULike, show that the theoretical model can well characterize the structure of real networks for both user and object degree distributions. In addition, we introduce a structural parameter p, to demonstrate that the hybrid user behavior leads to the shifted power-law degree distribution, and the region of power-law tail will increase with the increment of p. The proposed model might shed some lights in understanding the underlying laws governing the structure of real online bipartite networks.

  19. The Evolving Classification of Pulmonary Hypertension.

    Science.gov (United States)

    Foshat, Michelle; Boroumand, Nahal

    2017-05-01

    - An explosion of information on pulmonary hypertension has occurred during the past few decades. The perception of this disease has shifted from purely clinical to incorporate new knowledge of the underlying pathology. This transfer has occurred in light of advancements in pathophysiology, histology, and molecular medical diagnostics. - To update readers about the evolving understanding of the etiology and pathogenesis of pulmonary hypertension and to demonstrate how pathology has shaped the current classification. - Information presented at the 5 World Symposia on pulmonary hypertension held since 1973, with the last meeting occurring in 2013, was used in this review. - Pulmonary hypertension represents a heterogeneous group of disorders that are differentiated based on differences in clinical, hemodynamic, and histopathologic features. Early concepts of pulmonary hypertension were largely influenced by pharmacotherapy, hemodynamic function, and clinical presentation of the disease. The initial nomenclature for pulmonary hypertension segregated the clinical classifications from pathologic subtypes. Major restructuring of this disease classification occurred between the first and second symposia, which was the first to unite clinical and pathologic information in the categorization scheme. Additional changes were introduced in subsequent meetings, particularly between the third and fourth World Symposia meetings, when additional pathophysiologic information was gained. Discoveries in molecular diagnostics significantly progressed the understanding of idiopathic pulmonary arterial hypertension. Continued advancements in imaging modalities, mechanistic pathogenicity, and molecular biomarkers will enable physicians to define pulmonary hypertension phenotypes based on the pathobiology and allow for treatment customization.

  20. Evolving application of biomimetic nanostructured hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Norberto Roveri

    2010-11-01

    Full Text Available Norberto Roveri, Michele IafiscoLaboratory of Environmental and Biological Structural Chemistry (LEBSC, Dipartimento di Chimica ‘G. Ciamician’, Alma Mater Studiorum, Università di Bologna, Bologna, ItalyAbstract: By mimicking Nature, we can design and synthesize inorganic smart materials that are reactive to biological tissues. These smart materials can be utilized to design innovative third-generation biomaterials, which are able to not only optimize their interaction with biological tissues and environment, but also mimic biogenic materials in their functionalities. The biomedical applications involve increasing the biomimetic levels from chemical composition, structural organization, morphology, mechanical behavior, nanostructure, and bulk and surface chemical–physical properties until the surface becomes bioreactive and stimulates cellular materials. The chemical–physical characteristics of biogenic hydroxyapatites from bone and tooth have been described, in order to point out the elective sides, which are important to reproduce the design of a new biomimetic synthetic hydroxyapatite. This review outlines the evolving applications of biomimetic synthetic calcium phosphates, details the main characteristics of bone and tooth, where the calcium phosphates are present, and discusses the chemical–physical characteristics of biomimetic calcium phosphates, methods of synthesizing them, and some of their biomedical applications.Keywords: hydroxyapatite, nanocrystals, biomimetism, biomaterials, drug delivery, remineralization

  1. Selective Advantage of Recombination in Evolving Protein Populations:. a Lattice Model Study

    Science.gov (United States)

    Williams, Paul D.; Pollock, David D.; Goldstein, Richard A.

    Recent research has attempted to clarify the contributions of several mutational processes, such as substitutions or homologous recombination. Simplistic, tractable protein models, which determine the compact native structure phenotype from the sequence genotype, are well-suited to such studies. In this paper, we use a lattice-protein model to examine the effects of point mutation and homologous recombination on evolving populations of proteins. We find that while the majority of mutation and recombination events are neutral or deleterious, recombination is far more likely to be beneficial. This results in a faster increase in fitness during evolution, although the final fitness level is not significantly changed. This transient advantage provides an evolutionary advantage to subpopulations that undergo recombination, allowing fixation of recombination to occur in the population.

  2. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    Science.gov (United States)

    Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James

    2016-05-01

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  3. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    International Nuclear Information System (INIS)

    Basu, Rajratan; Kinnamon, Daniel; Skaggs, Nicole; Womack, James

    2016-01-01

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  4. The Development of Future Orientation is Associated with Faster Decline in Hopelessness during Adolescence.

    Science.gov (United States)

    Mac Giollabhui, Naoise; Nielsen, Johanna; Seidman, Sam; Olino, Thomas M; Abramson, Lyn Y; Alloy, Lauren B

    2018-01-05

    Hopelessness is implicated in multiple psychological disorders. Little is known, however, about the trajectory of hopelessness during adolescence or how emergent future orientation may influence its trajectory. Parallel process latent growth curve modelling tested whether (i) trajectories of future orientation and hopelessness and (ii) within-individual change in future orientation and hopelessness were related. The study was comprised of 472 adolescents [52% female, 47% Caucasian, 47% received free lunch] recruited at ages 12-13 who completed measures of future orientation and hopelessness at five annual assessments. The results indicate that a general decline in hopelessness across adolescence occurs quicker for those experiencing faster development of future orientation, when controlling for age, sex, low socio-economic status in addition to stressful life events in childhood and adolescence. Stressful childhood life events were associated with worse future orientation at baseline and negative life events experienced during adolescence were associated with both an increase in the trajectory of hopelessness as well as a decrease in the trajectory of future orientation. This study provides compelling evidence that the development of future orientation during adolescence is associated with a faster decline in hopelessness.

  5. National health expenditure projections, 2013-23: faster growth expected with expanded coverage and improving economy.

    Science.gov (United States)

    Sisko, Andrea M; Keehan, Sean P; Cuckler, Gigi A; Madison, Andrew J; Smith, Sheila D; Wolfe, Christian J; Stone, Devin A; Lizonitz, Joseph M; Poisal, John A

    2014-10-01

    In 2013 health spending growth is expected to have remained slow, at 3.6 percent, as a result of the sluggish economic recovery, the effects of sequestration, and continued increases in private health insurance cost-sharing requirements. The combined effects of the Affordable Care Act's coverage expansions, faster economic growth, and population aging are expected to fuel health spending growth this year and thereafter (5.6 percent in 2014 and 6.0 percent per year for 2015-23). However, the average rate of increase through 2023 is projected to be slower than the 7.2 percent average growth experienced during 1990-2008. Because health spending is projected to grow 1.1 percentage points faster than the average economic growth during 2013-23, the health share of the gross domestic product is expected to rise from 17.2 percent in 2012 to 19.3 percent in 2023. Project HOPE—The People-to-People Health Foundation, Inc.

  6. Faster in-plane switching and reduced rotational viscosity characteristics in a graphene-nematic suspension

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Rajratan, E-mail: basu@usna.edu; Kinnamon, Daniel; Skaggs, Nicole; Womack, James [Soft Matter and Nanomaterials Laboratory, Department of Physics, The United States Naval Academy, Annapolis, Maryland 21402 (United States)

    2016-05-14

    The in-plane switching (IPS) for a nematic liquid crystal (LC) was found to be considerably faster when the LC was doped with dilute concentrations of monolayer graphene flakes. Additional studies revealed that the presence of graphene reduced the rotational viscosity of the LC, permitting the nematic director to respond quicker in IPS mode on turning the electric field on. The studies were carried out with several graphene concentrations in the LC, and the experimental results coherently suggest that there exists an optimal concentration of graphene, allowing a reduction in the IPS response time and rotational viscosity in the LC. Above this optimal graphene concentration, the rotational viscosity was found to increase, and consequently, the LC no longer switched faster in IPS mode. The presence of graphene suspension was also found to decrease the LC's pretilt angle significantly due to the π-π electron stacking between the LC molecules and graphene flakes. To understand the π-π stacking interaction, the anchoring mechanism of the LC on a CVD grown monolayer graphene film on copper substrate was studied by reflected crossed polarized microscopy. Optical microphotographs revealed that the LC alignment direction depended on monolayer graphene's hexagonal crystal structure and its orientation.

  7. They all like it hot: faster cleanup of contaminated soil and groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Newmark, R., LLNL

    1998-03-01

    Clean up a greasy kitchen spill with cold water and the going is slow. Us hot water instead and progress improves markedly. So it makes sense that cleanup of greasy underground contaminants such as gasoline might go faster if hot water or steam were somehow added to the process. The Environmental Protection Agency named hundreds of sites to the Superfund list - sites that have been contaminated with petroleum products or petroleum products or solvents. Elsewhere across the country, thousands of properties not identified on federal cleanup lists are contaminated as well. Given that under current regulations, underground accumulations of solvent and hydrocarbon contaminants (the most serious cause of groundwater pollution) must be cleaned up, finding a rapid and effective method of removing them is imperative. In the early 1990`s, in collaboration with the School of Engineering at the University of California at Berkeley, Lawrence Livermore developed dynamic underground stripping. This method for treating underground contaminants with heat is much faster and more effective than traditional treatment methods.

  8. Ear Detection under Uncontrolled Conditions with Multiple Scale Faster Region-Based Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    2017-04-01

    Full Text Available Ear detection is an important step in ear recognition approaches. Most existing ear detection techniques are based on manually designing features or shallow learning algorithms. However, researchers found that the pose variation, occlusion, and imaging conditions provide a great challenge to the traditional ear detection methods under uncontrolled conditions. This paper proposes an efficient technique involving Multiple Scale Faster Region-based Convolutional Neural Networks (Faster R-CNN to detect ears from 2D profile images in natural images automatically. Firstly, three regions of different scales are detected to infer the information about the ear location context within the image. Then an ear region filtering approach is proposed to extract the correct ear region and eliminate the false positives automatically. In an experiment with a test set of 200 web images (with variable photographic conditions, 98% of ears were accurately detected. Experiments were likewise conducted on the Collection J2 of University of Notre Dame Biometrics Database (UND-J2 and University of Beira Interior Ear dataset (UBEAR, which contain large occlusion, scale, and pose variations. Detection rates of 100% and 98.22%, respectively, demonstrate the effectiveness of the proposed approach.

  9. Faster recovery of a diatom from UV damage under ocean acidification.

    Science.gov (United States)

    Wu, Yaping; Campbell, Douglas A; Gao, Kunshan

    2014-11-01

    Diatoms are the most important group of primary producers in marine ecosystems. As oceanic pH declines and increased stratification leads to the upper mixing layer becoming shallower, diatoms are interactively affected by both lower pH and higher average exposures to solar ultraviolet radiation. The photochemical yields of a model diatom, Phaeodactylum tricornutum, were inhibited by ultraviolet radiation under both growth and excess light levels, while the functional absorbance cross sections of the remaining photosystem II increased. Cells grown under ocean acidification (OA) were less affected during UV exposure. The recovery of PSII under low photosynthetically active radiation was much faster than in the dark, indicating that photosynthetic processes were essential for the full recovery of photosystem II. This light dependent recovery required de novo synthesized protein. Cells grown under ocean acidification recovered faster, possibly attributable to higher CO₂ availability for the Calvin cycle producing more resources for repair. The lower UV inhibition combined with higher recovery rate under ocean acidification could benefit species such as P.tricornutum, and change their competitiveness in the future ocean. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. The impact of accelerating faster than exponential population growth on genetic variation.

    Science.gov (United States)

    Reppell, Mark; Boehnke, Michael; Zöllner, Sebastian

    2014-03-01

    Current human sequencing projects observe an abundance of extremely rare genetic variation, suggesting recent acceleration of population growth. To better understand the impact of such accelerating growth on the quantity and nature of genetic variation, we present a new class of models capable of incorporating faster than exponential growth in a coalescent framework. Our work shows that such accelerated growth affects only the population size in the recent past and thus large samples are required to detect the models' effects on patterns of variation. When we compare models with fixed initial growth rate, models with accelerating growth achieve very large current population sizes and large samples from these populations contain more variation than samples from populations with constant growth. This increase is driven almost entirely by an increase in singleton variation. Moreover, linkage disequilibrium decays faster in populations with accelerating growth. When we instead condition on current population size, models with accelerating growth result in less overall variation and slower linkage disequilibrium decay compared to models with exponential growth. We also find that pairwise linkage disequilibrium of very rare variants contains information about growth rates in the recent past. Finally, we demonstrate that models of accelerating growth may substantially change estimates of present-day effective population sizes and growth times.

  11. Quantum mechanics in an evolving Hilbert space

    Science.gov (United States)

    Artacho, Emilio; O'Regan, David D.

    2017-03-01

    Many basis sets for electronic structure calculations evolve with varying external parameters, such as moving atoms in dynamic simulations, giving rise to extra derivative terms in the dynamical equations. Here we revisit these derivatives in the context of differential geometry, thereby obtaining a more transparent formalization, and a geometrical perspective for better understanding the resulting equations. The effect of the evolution of the basis set within the spanned Hilbert space separates explicitly from the effect of the turning of the space itself when moving in parameter space, as the tangent space turns when moving in a curved space. New insights are obtained using familiar concepts in that context such as the Riemann curvature. The differential geometry is not strictly that for curved spaces as in general relativity, a more adequate mathematical framework being provided by fiber bundles. The language used here, however, will be restricted to tensors and basic quantum mechanics. The local gauge implied by a smoothly varying basis set readily connects with Berry's formalism for geometric phases. Generalized expressions for the Berry connection and curvature are obtained for a parameter-dependent occupied Hilbert space spanned by nonorthogonal Wannier functions. The formalism is applicable to basis sets made of atomic-like orbitals and also more adaptative moving basis functions (such as in methods using Wannier functions as intermediate or support bases), but should also apply to other situations in which nonorthogonal functions or related projectors should arise. The formalism is applied to the time-dependent quantum evolution of electrons for moving atoms. The geometric insights provided here allow us to propose new finite-difference time integrators, and also better understand those already proposed.

  12. Public participation at Fernald: FERMCO's evolving role

    International Nuclear Information System (INIS)

    Williams, J.B.; Fellman, R.W.; Brettschneider, D.J.

    1995-01-01

    In an effort to improve public involvement in the site restoration decision making process, the DOE has established site specific advisory boards, of which the Fernald Citizens Task Force is one. The Fernald Task Force is focused on making recommendations in four areas: (1) What should be the future use of the site? (2) Determinations of cleanup levels (how clean is clean?) (3) Where should the wastes be disposed of? (4) What should be the cleanup priorities? Because these questions are being asked very early in the decision-making process, the answers are necessarily qualified, and are based on a combination of preliminary data, assumptions, and professional judgment. The requirement to make progress in the absence of accurate data has necessitated FERMCO and the Task Force to employ an approach similar to sensitivity analysis, in which a range of possible data values are evaluated and the relative importance of the various factors is assessed. Because of its charter to provide recommendations of future site use, the Task Force has developed a sitewide perspective, compared to the more common operable unit specific focus of public participation under CERCLA. The relationship between FERMCO and the Task Force is evolving toward one of partnership with DOE in managing the obstacles and hidden opportunities for success. The Task Force likely will continue to participate in the Fernald project long after its initial recommendations have been made. DOE already has made the commitment that the process of public participation will extend into the Remedial Design phase. There is substantial reason for optimism that continuing the Task Force process through the design phase will assist in developing the appropriate balance of cost and engineered protectiveness

  13. Genes and Gene Therapy

    Science.gov (United States)

    ... correctly, a child can have a genetic disorder. Gene therapy is an experimental technique that uses genes to ... or prevent disease. The most common form of gene therapy involves inserting a normal gene to replace an ...

  14. Unequal rates of Y chromosome gene divergence during speciation of the family Ursidae.

    Science.gov (United States)

    Nakagome, Shigeki; Pecon-Slattery, Jill; Masuda, Ryuichi

    2008-07-01

    Evolution of the bear family Ursidae is well investigated in terms of morphological, paleontological, and genetic features. However, several phylogenetic ambiguities occur within the subfamily Ursinae (the family Ursidae excluding the giant panda and spectacled bear), which may correlate with behavioral traits of female philopatry and male-biased dispersal which form the basis of the observed matriarchal population structure in these species. In the process of bear evolution, we investigate the premise that such behavioral traits may be reflected in patterns of variation among genes with different modes of inheritance: matrilineal mitochondrial DNA (mtDNA), patrilineal Y chromosome, biparentally inherited autosomes, and the X chromosome. In the present study, we sequenced 3 Y-linked genes (3,453 bp) and 4 X-linked genes (4,960 bp) and reanalyzed previously published sequences from autosome genes (2,347 bp) in ursid species to investigate differences in evolutionary rates associated with patterns of inheritance. The results describe topological incongruence between sex-linked genes and autosome genes and between nuclear DNA and mtDNA. In more ancestral branches within the bear phylogeny, Y-linked genes evolved faster than autosome and X-linked genes, consistent with expectations based on male-driven evolution. However, this pattern changes among branches leading to each species within the lineage of Ursinae whereby the evolutionary rates of Y-linked genes have fewer than expected substitutions. This inconsistency between more recent nodes of the bear phylogeny with more ancestral nodes may reflect the influences of sex-biased dispersal as well as molecular evolutionary characteristics of the Y chromosome, and stochastic events in species natural history, and phylogeography unique to ursine bears.

  15. Faster gastric emptying of a liquid meal in rats after hypothalamic dorsomedial nucleus lesion

    Directory of Open Access Journals (Sweden)

    Denofre-Carvalho S.

    1997-01-01

    Full Text Available The effects of dorsomedial hypothalamic (DMH nucleus lesion on body weight, plasma glucose levels, and the gastric emptying of a liquid meal were investigated in male Wistar rats (170-250 g. DMH lesions were produced stereotaxically by delivering a 2.0-mA current for 20 s through nichrome electrodes (0.3-mm tip exposure. In a second set of experiments, the DMH and the ventromedial hypothalamic (VMH nucleus were lesioned with a 1.0-mA current for 10 s (0.1-mm tip exposure. The medial hypothalamus (MH was also lesioned separately using a nichrome electrode (0.3-mm tip exposure with a 2.0-mA current for 20 s. Gastric emptying was measured following the orogastric infusion of a liquid test meal consisting of physiological saline (0.9% NaCl, w/v plus phenol red dye (6 mg/dl as a marker. Plasma glucose levels were determined after an 18-h fast before the lesion and on the 7th and 15th postoperative day. Body weight was determined before lesioning and before sacrificing the rats. The DMH-lesioned rats showed a significantly faster (P<0.05 gastric emptying (24.7% gastric retention, N = 11 than control (33.0% gastric retention, N = 8 and sham-lesioned (33.5% gastric retention, N = 12 rats, with a transient hypoglycemia on the 7th postoperative day which returned to normal by the 15th postoperative day. In all cases, weight gain was slower among lesioned rats. Additional experiments using a smaller current to induce lesions confirmed that DMH-lesioned rats had a faster gastric emptying (25.1% gastric retention, N = 7 than control (33.4% gastric retention, N = 17 and VMH-lesioned (34.6% gastric retention, N = 7 rats. MH lesions resulted in an even slower gastric emptying (43.7% gastric retention, N = 7 than in the latter two groups. We conclude that although DMH lesions reduce weight gain, they do not produce consistent changes in plasma glucose levels. These lesions also promote faster gastric emptying of an inert liquid meal, thus suggesting a role for

  16. Evolving R Coronae Borealis Stars with MESA

    Science.gov (United States)

    Clayton, Geoffrey C.; Lauer, Amber; Chatzopoulos, Emmanouil; Frank, Juhan

    2018-01-01

    being a WD. Solving the mystery of how the RCB stars evolve will lead to a better understanding of other important types of stellar merger events such as Type Ia SNe.

  17. The evolving integrated vascular surgery residency curriculum.

    Science.gov (United States)

    Smith, Brigitte K; Greenberg, Jacob A; Mitchell, Erica L

    2014-10-01

    PDs voiced concern over the lack of standardization among the differing programs and most of the PDs agree that some degree of programmatic standardization is critical for the continued success of the 0 + 5 training paradigm. Qualitative evaluation of PD experiences with the development of 0 + 5 vascular surgery residency programs reveals the key factors that commonly influence program design. Programs continue to evolve in both structure and content as PDs respond to these influences. Learning from the collective experience of PDs and some standardization of the curricula may help current and future programs avoid common pitfalls in curricular development. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Mechanics of evolving thin film structures

    Science.gov (United States)

    Liang, Jim

    In the Stranski-Krastanov system, the lattice mismatch between the film and the substrate causes the film to break into islands. During annealing, both the surface energy and the elastic energy drive the islands to coarsen. Motivated by several related studies, we suggest that stable islands should form when a stiff ceiling is placed at a small gap above the film. We show that the role of elasticity is reversed: with the ceiling, the total elastic energy stored in the system increases as the islands coarsen laterally. Consequently, the islands select an equilibrium size to minimize the combined elastic energy and surface energy. In lithographically-induced self-assembly, when a two-phase fluid confined between parallel substrates is subjected to an electric field, one phase can self-assemble into a triangular lattice of islands in another phase. We describe a theory of the stability of the island lattice. The islands select the equilibrium diameter to minimize the combined interface energy and electrostatic energy. Furthermore, we study compressed SiGe thin film islands fabricated on a glass layer, which itself lies on a silicon wafer. Upon annealing, the glass flows, and the islands relax. A small island relaxes by in-plane expansion. A large island, however, wrinkles at the center before the in-plane relaxation arrives. The wrinkles may cause significant tensile stress in the island, leading to fracture. We model the island by the von Karman plate theory and the glass layer by the Reynolds lubrication theory. Numerical simulations evolve the in-plane expansion and the wrinkles simultaneously. We determine the critical island size, below which in-plane expansion prevails over wrinkling. Finally, in devices that integrate dissimilar materials in small dimensions, crack extension in one material often accompanies inelastic deformation in another. We analyze a channel crack advancing in an elastic film under tension, while an underlayer creeps. We use a two

  19. Drought evolution: greater and faster impacts on blue water than on green water

    Science.gov (United States)

    Destouni, G.; Orth, R.

    2017-12-01

    Drought propagates through the terrestrial water cycle, affecting different interlinked geospheres which have so far been mostly investigated separately and without direct comparison. By use of comprehensive multi-decadal data from >400 near-natural catchments along a steep climate gradient across Europe we here analyze drought propagation from precipitation (deficits) through soil moisture to runoff (blue water) and evapotranspiration (green water). We show that soil-moisture droughts reduce runoff stronger and faster than evapotranspiration. While runoff responds within weeks, evapotranspiration can be unaffected for months, or even entirely as in central and northern Europe. Understanding these different drought pathways towards blue and green water resources contributes to improve food and water security and offers early warning potential to mitigate (future) drought impacts on society and ecosystems.

  20. Process Fragment Libraries for Easier and Faster Development of Process-based Applications

    Directory of Open Access Journals (Sweden)

    David Schumm

    2011-01-01

    Full Text Available The term “process fragment” is recently gaining momentum in business process management research. We understand a process fragment as a connected and reusable process structure, which has relaxed completeness and consistency criteria compared to executable processes. We claim that process fragments allow for an easier and faster development of process-based applications. As evidence to this claim we present a process fragment concept and show a sample collection of concrete, real-world process fragments. We present advanced application scenarios for using such fragments in development of process-based applications. Process fragments are typically managed in a repository, forming a process fragment library. On top of a process fragment library from previous work, we discuss the potential impact of using process fragment libraries in cross-enterprise collaboration and application integration.

  1. Registered nurse supply grows faster than projected amid surge in new entrants ages 23-26.

    Science.gov (United States)

    Auerbach, David I; Buerhaus, Peter I; Staiger, Douglas O

    2011-12-01

    The vast preponderance of the nation's registered nurses are women. In the 1980s and 1990 s, a decline in the number of women ages 23-26 who were choosing nursing as a career led to concerns that there would be future nurse shortages unless the trend was reversed. Between 2002 and 2009, however, the number of full-time-equivalent registered nurses ages 23-26 increased by 62 percent. If these young nurses follow the same life-cycle employment patterns as those who preceded them--as they appear to be thus far--then they will be the largest cohort of registered nurses ever observed. Because of this surge in the number of young people entering nursing during the past decade, the nurse workforce is projected to grow faster during the next two decades than previously anticipated. However, it is uncertain whether interest in nursing will continue to grow in the future.

  2. A faster sample preparation method for determination of polonium-210 in fish

    International Nuclear Information System (INIS)

    Sadi, B.B.; Jing Chen; Kochermin, Vera; Godwin Tung; Sorina Chiorean

    2016-01-01

    In order to facilitate Health Canada’s study on background radiation levels in country foods, an in-house radio-analytical method has been developed for determination of polonium-210 ( 210 Po) in fish samples. The method was validated by measurement of 210 Po in a certified reference material. It was also evaluated by comparing 210 Po concentrations in a number of fish samples by another method. The in-house method offers faster sample dissolution using an automated digestion system compared to currently used wet-ashing on a hot plate. It also utilizes pre-packed Sr-resin® cartridges for rapid and reproducible separation of 210 Po versus time-consuming manually packed Sr-resin® columns. (author)

  3. The Development of Functional Overreaching Is Associated with a Faster Heart Rate Recovery in Endurance Athletes.

    Directory of Open Access Journals (Sweden)

    Anaël Aubry

    Full Text Available The aim of the study was to investigate whether heart rate recovery (HRR may represent an effective marker of functional overreaching (f-OR in endurance athletes.Thirty-one experienced male triathletes were tested (10 control and 21 overload subjects before (Pre, and immediately after an overload training period (Mid and after a 2-week taper (Post. Physiological responses were assessed during an incremental cycling protocol to exhaustion, including heart rate, catecholamine release and blood lactate concentration. Ten participants from the overload group developed signs of f-OR at Mid (i.e. -2.1 ± 0.8% change in performance associated with concomitant high perceived fatigue. Additionally, only the f-OR group demonstrated a 99% chance of increase in HRR during the overload period (+8 ± 5 bpm, large effect size. Concomitantly, this group also revealed a >80% chance of decreasing blood lactate (-11 ± 14%, large, plasma norepinephrine (-12 ± 37%, small and plasma epinephrine peak concentrations (-51 ± 22%, moderate. These blood measures returned to baseline levels at Post. HRR change was negatively correlated to changes in performance, peak HR and peak blood metabolites concentrations.These findings suggest that i a faster HRR is not systematically associated with improved physical performance, ii changes in HRR should be interpreted in the context of the specific training phase, the athletes perceived level of fatigue and the performance response; and, iii the faster HRR associated with f-OR may be induced by a decreased central command and by a lower chemoreflex activity.

  4. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Science.gov (United States)

    Cazzato, Roberto Luigi; Battistuzzi, Jean-Benoit; Catena, Vittorio; Grasso, Rosario Francesco; Zobel, Bruno Beomonte; Schena, Emiliano; Buy, Xavier; Palussiere, Jean

    2015-10-01

    To compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours. Patients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported. Forty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = -9.45, t = -3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %). CBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  5. Cone-Beam Computed Tomography (CBCT) Versus CT in Lung Ablation Procedure: Which is Faster?

    Energy Technology Data Exchange (ETDEWEB)

    Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Battistuzzi, Jean-Benoit, E-mail: j.battistuzzi@bordeaux.unicancer.fr; Catena, Vittorio, E-mail: vittoriocatena@gmail.com [Institut Bergonié, Department of Radiology (France); Grasso, Rosario Francesco, E-mail: r.grasso@unicampus.it; Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Università Campus Bio-Medico di Roma, Department of Radiology and Diagnostic Imaging (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Università Campus Bio-Medico di Roma, Unit of Measurements and Biomedical Instrumentations, Biomedical Engineering Laboratory (Italy); Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Palussiere, Jean, E-mail: j.palussiere@bordeaux.unicancer.fr [Institut Bergonié, Department of Radiology (France)

    2015-10-15

    AimTo compare cone-beam CT (CBCT) versus computed tomography (CT) guidance in terms of time needed to target and place the radiofrequency ablation (RFA) electrode on lung tumours.Materials and MethodsPatients at our institution who received CBCT- or CT-guided RFA for primary or metastatic lung tumours were retrospectively included. Time required to target and place the RFA electrode within the lesion was registered and compared across the two groups. Lesions were stratified into three groups according to their size (<10, 10–20, >20 mm). Occurrences of electrode repositioning, repositioning time, RFA complications, and local recurrence after RFA were also reported.ResultsForty tumours (22 under CT, 18 under CBCT guidance) were treated in 27 patients (19 male, 8 female, median age 67.25 ± 9.13 years). Thirty RFA sessions (16 under CBCT and 14 under CT guidance) were performed. Multivariable linear regression analysis showed that CBCT was faster than CT to target and place the electrode within the tumour independently from its size (β = −9.45, t = −3.09, p = 0.004). Electrode repositioning was required in 10/22 (45.4 %) tumours under CT guidance and 5/18 (27.8 %) tumours under CBCT guidance. Pneumothoraces occurred in 6/14 (42.8 %) sessions under CT guidance and in 6/16 (37.5 %) sessions under CBCT guidance. Two recurrences were noted for tumours receiving CBCT-guided RFA (2/17, 11.7 %) and three after CT-guided RFA (3/19, 15.8 %).ConclusionCBCT with live 3D needle guidance is a useful technique for percutaneous lung ablation. Despite lesion size, CBCT allows faster lung RFA than CT.

  6. Faster but not smarter: effects of caffeine and caffeine withdrawal on alertness and performance.

    Science.gov (United States)

    Rogers, Peter J; Heatherley, Susan V; Mullings, Emma L; Smith, Jessica E

    2013-03-01

    Despite 100 years of psychopharmacological research, the extent to which caffeine consumption benefits human functioning remains unclear. To measure the effects of overnight caffeine abstinence and caffeine administration as a function of level of habitual caffeine consumption. Medium-high (n = 212) and non-low (n = 157) caffeine consumers completed self-report measures and computer-based tasks before (starting at 10:30 AM) and after double-blind treatment with either caffeine (100 mg, then 150 mg) or placebo. The first treatment was given at 11:15 AM and the second at 12:45 PM, with post-treatment measures repeated twice between 1:45 PM and 3:30 PM. Caffeine withdrawal was associated with some detrimental effects at 10:30 AM, and more severe effects, including greater sleepiness, lower mental alertness, and poorer performance on simple reaction time, choice reaction time and recognition memory tasks, later in the afternoon. Caffeine improved these measures in medium-high consumers but, apart from decreasing sleepiness, had little effect on them in non-low consumers. The failure of caffeine to increase mental alertness and improve mental performance in non-low consumers was related to a substantial caffeine-induced increase in anxiety/jitteriness that offset the benefit of decreased sleepiness. Caffeine enhanced physical performance (faster tapping speed and faster simple and choice reaction times) in both medium-high and non-low consumers. While caffeine benefits motor performance and tolerance develops to its tendency to increase anxiety/jitteriness, tolerance to its effects on sleepiness means that frequent consumption fails to enhance mental alertness and mental performance.

  7. Faster Movement Speed Results in Greater Tendon Strain during the Loaded Squat Exercise

    Science.gov (United States)

    Earp, Jacob E.; Newton, Robert U.; Cormie, Prue; Blazevich, Anthony J.

    2016-01-01

    Introduction: Tendon dynamics influence movement performance and provide the stimulus for long-term tendon adaptation. As tendon strain increases with load magnitude and decreases with loading rate, changes in movement speed during exercise should influence tendon strain. Methods: Ten resistance-trained men [squat one repetition maximum (1RM) to body mass ratio: 1.65 ± 0.12] performed parallel-depth back squat lifts with 60% of 1RM load at three different speeds: slow fixed-tempo (TS: 2-s eccentric, 1-s pause, 2-s concentric), volitional-speed without a pause (VS) and maximum-speed jump (JS). In each condition joint kinetics, quadriceps tendon length (LT), patellar tendon force (FT), and rate of force development (RFDT) were estimated using integrated ultrasonography, motion-capture, and force platform recordings. Results: Peak LT, FT, and RFDT were greater in JS than TS (p < 0.05), however no differences were observed between VS and TS. Thus, moving at faster speeds resulted in both greater tendon stress and strain despite an increased RFDT, as would be predicted of an elastic, but not a viscous, structure. Temporal comparisons showed that LT was greater in TS than JS during the early eccentric phase (10–14% movement duration) where peak RFDT occurred, demonstrating that the tendon's viscous properties predominated during initial eccentric loading. However, during the concentric phase (61–70 and 76–83% movement duration) differing FT and similar RFDT between conditions allowed for the tendon's elastic properties to predominate such that peak tendon strain was greater in JS than TS. Conclusions: Based on our current understanding, there may be an additional mechanical stimulus for tendon adaptation when performing large range-of-motion isoinertial exercises at faster movement speeds. PMID:27630574

  8. The genotype-phenotype map of an evolving digital organism.

    Directory of Open Access Journals (Sweden)

    Miguel A Fortuna

    2017-02-01

    Full Text Available To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences, which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  9. The genotype-phenotype map of an evolving digital organism.

    Science.gov (United States)

    Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-02-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  10. An Evolving Asymmetric Game for Modeling Interdictor-Smuggler Problems

    Science.gov (United States)

    2016-06-01

    ASYMMETRIC GAME FOR MODELING INTERDICTOR-SMUGGLER PROBLEMS by Richard J. Allain June 2016 Thesis Advisor: David L. Alderson Second Reader: W...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE AN EVOLVING ASYMMETRIC GAME FOR MODELING INTERDICTOR- SMUGGLER PROBLEMS 5. FUNDING NUMBERS 6...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited AN EVOLVING

  11. PCBA demand forecasting using an evolving Takagi-Sugeno system

    NARCIS (Netherlands)

    van Rooijen, M.; Almeida, R.J.; Kaymak, U.

    2016-01-01

    This paper investigates the use of using an evolving fuzzy system for printed circuit board (PCBA) demand forecasting. The algorithm is based on the evolving Takagi-Sugeno (eTS) fuzzy system, which has the ability to incorporate new patterns by changing its internal structure in an on-line fashion.

  12. The Dynamics of Lateral Gene Transfer in Genus Leishmania - A Route for Adaptation and Species Diversification.

    Science.gov (United States)

    Vikeved, Elisabet; Backlund, Anders; Alsmark, Cecilia

    2016-01-01

    The genome of Leishmania major harbours a comparably high proportion of genes of prokaryote origin, acquired by lateral gene transfer (LGT). Some of these are present in closely related trypanosomatids, while some are detected in Leishmania only. We have evaluated the impact and destiny of LGT in genus Leishmania. To study the dynamics and fate of LGTs we have performed phylogenetic, as well as nucleotide and amino acid composition analyses within orthologous groups of LGTs detected in Leishmania. A set of universal trypanosomatid LGTs was added as a reference group. Both groups of LGTs have, to some extent, ameliorated to resemble the recipient genomes. However, while virtually all of the universal trypanosomatid LGTs are distributed and conserved in the entire genus Leishmania, the LGTs uniquely present in genus Leishmania are more prone to gene loss and display faster rates of evolution. Furthermore, a PCR based approach has been employed to ascertain the presence of a set of twenty LGTs uniquely present in genus Leishmania, and three universal trypanosomatid LGTs, in ten additional strains of Leishmania. Evolutionary rates and predicted expression levels of these LGTs have also been estimated. Ten of the twenty LGTs are distributed and conserved in all species investigated, while the remainder have been subjected to modifications, or undergone pseudogenization, degradation or loss in one or more species. LGTs unique to the genus Leishmania have been acquired after the divergence of Leishmania from the other trypanosomatids, and are evolving faster than their recipient genomes. This implies that LGT in genus Leishmania is a continuous and dynamic process contributing to species differentiation and speciation. This study also highlights the importance of carefully evaluating these dynamic genes, e.g. as LGTs have been suggested as potential drug targets.

  13. The Dynamics of Lateral Gene Transfer in Genus Leishmania - A Route for Adaptation and Species Diversification.

    Directory of Open Access Journals (Sweden)

    Elisabet Vikeved

    2016-01-01

    Full Text Available The genome of Leishmania major harbours a comparably high proportion of genes of prokaryote origin, acquired by lateral gene transfer (LGT. Some of these are present in closely related trypanosomatids, while some are detected in Leishmania only. We have evaluated the impact and destiny of LGT in genus Leishmania.To study the dynamics and fate of LGTs we have performed phylogenetic, as well as nucleotide and amino acid composition analyses within orthologous groups of LGTs detected in Leishmania. A set of universal trypanosomatid LGTs was added as a reference group. Both groups of LGTs have, to some extent, ameliorated to resemble the recipient genomes. However, while virtually all of the universal trypanosomatid LGTs are distributed and conserved in the entire genus Leishmania, the LGTs uniquely present in genus Leishmania are more prone to gene loss and display faster rates of evolution. Furthermore, a PCR based approach has been employed to ascertain the presence of a set of twenty LGTs uniquely present in genus Leishmania, and three universal trypanosomatid LGTs, in ten additional strains of Leishmania. Evolutionary rates and predicted expression levels of these LGTs have also been estimated. Ten of the twenty LGTs are distributed and conserved in all species investigated, while the remainder have been subjected to modifications, or undergone pseudogenization, degradation or loss in one or more species.LGTs unique to the genus Leishmania have been acquired after the divergence of Leishmania from the other trypanosomatids, and are evolving faster than their recipient genomes. This implies that LGT in genus Leishmania is a continuous and dynamic process contributing to species differentiation and speciation. This study also highlights the importance of carefully evaluating these dynamic genes, e.g. as LGTs have been suggested as potential drug targets.

  14. The Dynamics of Lateral Gene Transfer in Genus Leishmania - A Route for Adaptation and Species Diversification

    Science.gov (United States)

    Vikeved, Elisabet; Backlund, Anders; Alsmark, Cecilia

    2016-01-01

    Background The genome of Leishmania major harbours a comparably high proportion of genes of prokaryote origin, acquired by lateral gene transfer (LGT). Some of these are present in closely related trypanosomatids, while some are detected in Leishmania only. We have evaluated the impact and destiny of LGT in genus Leishmania. Methodology/Principal Findings To study the dynamics and fate of LGTs we have performed phylogenetic, as well as nucleotide and amino acid composition analyses within orthologous groups of LGTs detected in Leishmania. A set of universal trypanosomatid LGTs was added as a reference group. Both groups of LGTs have, to some extent, ameliorated to resemble the recipient genomes. However, while virtually all of the universal trypanosomatid LGTs are distributed and conserved in the entire genus Leishmania, the LGTs uniquely present in genus Leishmania are more prone to gene loss and display faster rates of evolution. Furthermore, a PCR based approach has been employed to ascertain the presence of a set of twenty LGTs uniquely present in genus Leishmania, and three universal trypanosomatid LGTs, in ten additional strains of Leishmania. Evolutionary rates and predicted expression levels of these LGTs have also been estimated. Ten of the twenty LGTs are distributed and conserved in all species investigated, while the remainder have been subjected to modifications, or undergone pseudogenization, degradation or loss in one or more species. Conclusions/Significance LGTs unique to the genus Leishmania have been acquired after the divergence of Leishmania from the other trypanosomatids, and are evolving faster than their recipient genomes. This implies that LGT in genus Leishmania is a continuous and dynamic process contributing to species differentiation and speciation. This study also highlights the importance of carefully evaluating these dynamic genes, e.g. as LGTs have been suggested as potential drug targets. PMID:26730948

  15. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    Directory of Open Access Journals (Sweden)

    Yilun Shang

    Full Text Available Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  16. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs.

    Science.gov (United States)

    Shang, Yilun

    2015-01-01

    Large-scale time-evolving networks have been generated by many natural and technological applications, posing challenges for computation and modeling. Thus, it is of theoretical and practical significance to probe mathematical tools tailored for evolving networks. In this paper, on top of the dynamic Estrada index, we study the dynamic Laplacian Estrada index and the dynamic normalized Laplacian Estrada index of evolving graphs. Using linear algebra techniques, we established general upper and lower bounds for these graph-spectrum-based invariants through a couple of intuitive graph-theoretic measures, including the number of vertices or edges. Synthetic random evolving small-world networks are employed to show the relevance of the proposed dynamic Estrada indices. It is found that neither the static snapshot graphs nor the aggregated graph can approximate the evolving graph itself, indicating the fundamental difference between the static and dynamic Estrada indices.

  17. Diverse CRISPRs evolving in human microbiomes.

    Directory of Open Access Journals (Sweden)

    Mina Rho

    Full Text Available CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats loci, together with cas (CRISPR-associated genes, form the CRISPR/Cas adaptive immune system, a primary defense strategy that eubacteria and archaea mobilize against foreign nucleic acids, including phages and conjugative plasmids. Short spacer sequences separated by the repeats are derived from foreign DNA and direct interference to future infections. The availability of hundreds of shotgun metagenomic datasets from the Human Microbiome Project (HMP enables us to explore the distribution and diversity of known CRISPRs in human-associated microbial communities and to discover new CRISPRs. We propose a targeted assembly strategy to reconstruct CRISPR arrays, which whole-metagenome assemblies fail to identify. For each known CRISPR type (identified from reference genomes, we use its direct repeat consensus sequence to recruit reads from each HMP dataset and then assemble the recruited reads into CRISPR loci; the unique spacer sequences can then be extracted for analysis. We also identified novel CRISPRs or new CRISPR variants in contigs from whole-metagenome assemblies and used targeted assembly to more comprehensively identify these CRISPRs across samples. We observed that the distributions of CRISPRs (including 64 known and 86 novel ones are largely body-site specific. We provide detailed analysis of several CRISPR loci, including novel CRISPRs. For example, known streptococcal CRISPRs were identified in most oral microbiomes, totaling ∼8,000 unique spacers: samples resampled from the same individual and oral site shared the most spacers; different oral sites from the same individual shared significantly fewer, while different individuals had almost no common spacers, indicating the impact of subtle niche differences on the evolution of CRISPR defenses. We further demonstrate potential applications of CRISPRs to the tracing of rare species and the virus exposure of individuals

  18. Evolving a polymerase for hydrophobic base analogues.

    Science.gov (United States)

    Loakes, David; Gallego, José; Pinheiro, Vitor B; Kool, Eric T; Holliger, Philipp

    2009-10-21

    Hydrophobic base analogues (HBAs) have shown great promise for the expansion of the chemical and coding potential of nucleic acids but are generally poor polymerase substrates. While extensive synthetic efforts have yielded examples of HBAs with favorable substrate properties, their discovery has remained challenging. Here we describe a complementary strategy for improving HBA substrate properties by directed evolution of a dedicated polymerase using compartmentalized self-replication (CSR) with the archetypal HBA 5-nitroindole (d5NI) and its derivative 5-nitroindole-3-carboxamide (d5NIC) as selection substrates. Starting from a repertoire of chimeric polymerases generated by molecular breeding of DNA polymerase genes from the genus Thermus, we isolated a polymerase (5D4) with a generically enhanced ability to utilize HBAs. The selected polymerase. 5D4 was able to form and extend d5NI and d5NIC (d5NI(C)) self-pairs as well as d5NI(C) heteropairs with all four bases with efficiencies approaching, or exceeding, those of the cognate Watson-Crick pairs, despite significant distortions caused by the intercalation of the d5NI(C) heterocycles into the opposing strand base stack, as shown by nuclear magnetic resonance spectroscopy (NMR). Unlike Taq polymerase, 5D4 was also able to extend HBA pairs such as Pyrene: varphi (abasic site), d5NI: varphi, and isocarbostyril (ICS): 7-azaindole (7AI), allowed bypass of a chemically diverse spectrum of HBAs, and enabled PCR amplification with primers comprising multiple d5NI(C)-substitutions, while maintaining high levels of catalytic activity and fidelity. The selected polymerase 5D4 promises to expand the range of nucleobase analogues amenable to replication and should find numerous applications, including the synthesis and replication of nucleic acid polymers with expanded chemical and functional diversity.

  19. Evolving regulatory paradigm for proarrhythmic risk assessment for new drugs.

    Science.gov (United States)

    Vicente, Jose; Stockbridge, Norman; Strauss, David G

    Fourteen drugs were removed from the market worldwide because their potential to cause torsade de pointes (torsade), a potentially fatal ventricular arrhythmia. The observation that most drugs that cause torsade block the potassium channel encoded by the human ether-à-go-go related gene (hERG) and prolong the heart rate corrected QT interval (QTc) on the ECG, led to a focus on screening new drugs for their potential to block the hERG potassium channel and prolong QTc. This has been a successful strategy keeping torsadogenic drugs off the market, but has resulted in drugs being dropped from development, sometimes inappropriately. This is because not all drugs that block the hERG potassium channel and prolong QTc cause torsade, sometimes because they block other channels. The regulatory paradigm is evolving to improve proarrhythmic risk prediction. ECG studies can now use exposure-response modeling for assessing the effect of a drug on the QTc in small sample size first-in-human studies. Furthermore, the Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative is developing and validating a new in vitro paradigm for cardiac safety evaluation of new drugs that provides a more accurate and comprehensive mechanistic-based assessment of proarrhythmic potential. Under CiPA, the prediction of proarrhythmic potential will come from in vitro ion channel assessments coupled with an in silico model of the human ventricular myocyte. The preclinical assessment will be checked with an assessment of human phase 1 ECG data to determine if there are unexpected ion channel effects in humans compared to preclinical ion channel data. While there is ongoing validation work, the heart rate corrected J-T peak interval is likely to be assessed under CiPA to detect inward current block in presence of hERG potassium channel block. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Revisiting Robustness and Evolvability: Evolution in Weighted Genotype Spaces

    Science.gov (United States)

    Partha, Raghavendran; Raman, Karthik

    2014-01-01

    Robustness and evolvability are highly intertwined properties of biological systems. The relationship between these properties determines how biological systems are able to withstand mutations and show variation in response to them. Computational studies have explored the relationship between these two properties using neutral networks of RNA sequences (genotype) and their secondary structures (phenotype) as a model system. However, these studies have assumed every mutation to a sequence to be equally likely; the differences in the likelihood of the occurrence of various mutations, and the consequence of probabilistic nature of the mutations in such a system have previously been ignored. Associating probabilities to mutations essentially results in the weighting of genotype space. We here perform a comparative analysis of weighted and unweighted neutral networks of RNA sequences, and subsequently explore the relationship between robustness and evolvability. We show that assuming an equal likelihood for all mutations (as in an unweighted network), underestimates robustness and overestimates evolvability of a system. In spite of discarding this assumption, we observe that a negative correlation between sequence (genotype) robustness and sequence evolvability persists, and also that structure (phenotype) robustness promotes structure evolvability, as observed in earlier studies using unweighted networks. We also study the effects of base composition bias on robustness and evolvability. Particularly, we explore the association between robustness and evolvability in a sequence space that is AU-rich – sequences with an AU content of 80% or higher, compared to a normal (unbiased) sequence space. We find that evolvability of both sequences and structures in an AU-rich space is lesser compared to the normal space, and robustness higher. We also observe that AU-rich populations evolving on neutral networks of phenotypes, can access less phenotypic variation compared to

  1. Faster algorithms for RNA-folding using the Four-Russians method.

    Science.gov (United States)

    Venkatachalam, Balaji; Gusfield, Dan; Frid, Yelena

    2014-03-06

    The secondary structure that maximizes the number of non-crossing matchings between complimentary bases of an RNA sequence of length n can be computed in O(n3) time using Nussinov's dynamic programming algorithm. The Four-Russians method is a technique that reduces the running time for certain dynamic programming algorithms by a multiplicative factor after a preprocessing step where solutions to all smaller subproblems of a fixed size are exhaustively enumerated and solved. Frid and Gusfield designed an O(n3logn) algorithm for RNA folding using the Four-Russians technique. In their algorithm the preprocessing is interleaved with the algorithm computation. We simplify the algorithm and the analysis by doing the preprocessing once prior to the algorithm computation. We call this the two-vector method. We also show variants where instead of exhaustive preprocessing, we only solve the subproblems encountered in the main algorithm once and memoize the results. We give a simple proof of correctness and explore the practical advantages over the earlier method.The Nussinov algorithm admits an O(n2) time parallel algorithm. We show a parallel algorithm using the two-vector idea that improves the time bound to O(n2logn). We have implemented the parallel algorithm on graphics processing units using the CUDA platform. We discuss the organization of the data structures to exploit coalesced memory access for fast running times. The ideas to organize the data structures also help in improving the running time of the serial algorithms. For sequences of length up to 6000 bases the parallel algorithm takes only about 2.5 seconds and the two-vector serial method takes about 57 seconds on a desktop and 15 seconds on a server. Among the serial algorithms, the two-vector and memoized versions are faster than the Frid-Gusfield algorithm by a factor of 3, and are faster than Nussinov by up to a factor of 20. The source-code for the algorithms is available at http://github.com/ijalabv/FourRussiansRNAFolding.

  2. Homospermidine synthase, the first pathway-specific enzyme of pyrrolizidine alkaloid biosynthesis, evolved from deoxyhypusine synthase

    Science.gov (United States)

    Ober, Dietrich; Hartmann, Thomas

    1999-01-01

    Pyrrolizidine alkaloids are preformed plant defense compounds with sporadic phylogenetic distribution. They are thought to have evolved in response to the selective pressure of herbivory. The first pathway-specific intermediate of these alkaloids is the rare polyamine homospermidine, which is synthesized by homospermidine synthase (HSS). The HSS gene from Senecio vernalis was cloned and shown to be derived from the deoxyhypusine synthase (DHS) gene, which is highly conserved among all eukaryotes and archaebacteria. DHS catalyzes the first step in the activation of translation initiation factor 5A (eIF5A), which is essential for eukaryotic cell proliferation and which acts as a cofactor of the HIV-1 Rev regulatory protein. Sequence comparison provides direct evidence for the evolutionary recruitment of an essential gene of primary metabolism (DHS) for the origin of the committing step (HSS) in the biosynthesis of pyrrolizidine alkaloids. PMID:10611289

  3. With medium-chain triglycerides, higher and faster oxygen radical production by stimulated polymorphonuclear leukocytes occurs.

    Science.gov (United States)

    Kruimel, J W; Naber, A H; Curfs, J H; Wenker, M A; Jansen, J B

    2000-01-01

    Parenteral lipid emulsions are suspected of suppressing the immune function. However, study results are contradictory and mainly concern the conventional long-chain triglyceride emulsions. Polymorphonuclear leukocytes were preincubated with parenteral lipid emulsions. The influence of the lipid emulsions on the production of oxygen radicals by these stimulated leukocytes was studied by measuring chemiluminescence. Three different parenteral lipid emulsions were tested: long-chain triglycerides, a physical mixture of medium- and long-chain triglycerides, and structured triglycerides. Structured triglycerides consist of triglycerides where the medium- and long-chain fatty acids are attached to the same glycerol molecule. Stimulated polymorphonuclear leukocytes preincubated with the physical mixture of medium- and long-chain triglycerides showed higher levels of oxygen radicals (p triglycerides or structured triglycerides. Additional studies indicated that differences in results of various lipid emulsions were not caused by differences in emulsifier. The overall production of oxygen radicals was significantly lower after preincubation with the three lipid emulsions compared with controls without lipid emulsion. A physical mixture of medium- and long-chain triglycerides induced faster production of oxygen radicals, resulting in higher levels of oxygen radicals, compared with long-chain triglycerides or structured triglycerides. This can be detrimental in cases where oxygen radicals play either a pathogenic role or a beneficial one, such as when rapid phagocytosis and killing of bacteria is needed. The observed lower production of oxygen radicals by polymorphonuclear leukocytes in the presence of parenteral lipid emulsions may result in immunosuppression by these lipids.

  4. Soft robotics: a review and progress towards faster and higher torque actuators (presentation video)

    Science.gov (United States)

    Shepherd, Robert

    2014-03-01

    Last year, nearly 160,000 industrial robots were shipped worldwide—into a total market valued at 26 Bn (including hardware, software, and peripherals).[1] Service robots for professional (e.g., defense, medical, agriculture) and personal (e.g., household, handicap assistance, toys, and education) use accounted for 16,000 units, 3.4 Bn and 3,000,000 units, $1.2 Bn respectively.[1] The vast majority of these robotic systems use fully actuated, rigid components that take little advantage of passive dynamics. Soft robotics is a field that is taking advantage of compliant actuators and passive dynamics to achieve several goals: reduced design, manufacturing and control complexity, improved energy efficiency, more sophisticated motions, and safe human-machine interactions to name a few. The potential for societal impact is immense. In some instances, soft actuators have achieved commercial success; however, large scale adoption will require improved methods of controlling non-linear systems, greater reliability in their function, and increased utility from faster and more forceful actuation. In my talk, I will describe efforts from my work in the Whitesides group at Harvard to prove sophisticated motions in these machines using simple controls, as well capabilities unique to soft machines. I will also describe the potential for combinations of different classes of soft actuators (e.g., electrically and pneumatically actuated systems) to improve the utility of soft robots. 1. World Robotics - Industrial Robots 2013, 2013, International Federation of Robotics.

  5. World oil demand's shift toward faster growing and less price-responsive products and regions

    International Nuclear Information System (INIS)

    Dargay, Joyce M.; Gately, Dermot

    2010-01-01

    Using data for 1971-2008, we estimate the effects of changes in price and income on world oil demand, disaggregated by product - transport oil, fuel oil (residual and heating oil), and other oil - for six groups of countries. Most of the demand reductions since 1973-74 were due to fuel-switching away from fuel oil, especially in the OECD; in addition, the collapse of the Former Soviet Union (FSU) reduced their oil consumption substantially. Demand for transport and other oil was much less price-responsive, and has grown almost as rapidly as income, especially outside the OECD and FSU. World oil demand has shifted toward products and regions that are faster growing and less price-responsive. In contrast to projections to 2030 of declining per-capita demand for the world as a whole - by the U.S. Department of Energy (DOE), International Energy Agency (IEA) and OPEC - we project modest growth. Our projections for total world demand in 2030 are at least 20% higher than projections by those three institutions, using similar assumptions about income growth and oil prices, because we project rest-of-world growth that is consistent with historical patterns, in contrast to the dramatic slowdowns which they project. (author)

  6. In a warmer Arctic, mosquitoes avoid increased mortality from predators by growing faster.

    Science.gov (United States)

    Culler, Lauren E; Ayres, Matthew P; Virginia, Ross A

    2015-09-22

    Climate change is altering environmental temperature, a factor that influences ectothermic organisms by controlling rates of physiological processes. Demographic effects of warming, however, are determined by the expression of these physiological effects through predator-prey and other species interactions. Using field observations and controlled experiments, we measured how increasing temperatures in the Arctic affected development rates and mortality rates (from predation) of immature Arctic mosquitoes in western Greenland. We then developed and parametrized a demographic model to evaluate how temperature affects survival of mosquitoes from the immature to the adult stage. Our studies showed that warming increased development rate of immature mosquitoes (Q10 = 2.8) but also increased daily mortality from increased predation rates by a dytiscid beetle (Q10 = 1.2-1.5). Despite increased daily mortality, the model indicated that faster development and fewer days exposed to predators resulted in an increased probability of mosquito survival to the adult stage. Warming also advanced mosquito phenology, bringing mosquitoes into phenological synchrony with caribou. Increases in biting pests will have negative consequences for caribou and their role as a subsistence resource for local communities. Generalizable frameworks that account for multiple effects of temperature are needed to understand how climate change impacts coupled human-natural systems. © 2015 The Author(s).

  7. A faster numerical scheme for a coupled system modeling soil erosion and sediment transport

    Science.gov (United States)

    Le, M.-H.; Cordier, S.; Lucas, C.; Cerdan, O.

    2015-02-01

    Overland flow and soil erosion play an essential role in water quality and soil degradation. Such processes, involving the interactions between water flow and the bed sediment, are classically described by a well-established system coupling the shallow water equations and the Hairsine-Rose model. Numerical approximation of this coupled system requires advanced methods to preserve some important physical and mathematical properties; in particular, the steady states and the positivity of both water depth and sediment concentration. Recently, finite volume schemes based on Roe's solver have been proposed by Heng et al. (2009) and Kim et al. (2013) for one and two-dimensional problems. In their approach, an additional and artificial restriction on the time step is required to guarantee the positivity of sediment concentration. This artificial condition can lead the computation to be costly when dealing with very shallow flow and wet/dry fronts. The main result of this paper is to propose a new and faster scheme for which only the CFL condition of the shallow water equations is sufficient to preserve the positivity of sediment concentration. In addition, the numerical procedure of the erosion part can be used with any well-balanced and positivity preserving scheme of the shallow water equations. The proposed method is tested on classical benchmarks and also on a realistic configuration.

  8. Emotion, Etmnooi, or Emitoon?--Faster lexical access to emotional than to neutral words during reading.

    Science.gov (United States)

    Kissler, Johanna; Herbert, Cornelia

    2013-03-01

    Cortical processing of emotional words differs from that of neutral words. Using EEG event-related potentials (ERPs), the present study examines the functional stage(s) of this differentiation. Positive, negative, and neutral nouns were randomly mixed with pseudowords and letter strings derived from words within each valence and presented for reading while participants' EEG was recorded. Results indicated emotion effects in the N1 (110-140 ms), early posterior negativity (EPN, 216-320) and late positive potential (LPP, 432-500 ms) time windows. Across valence, orthographic word-form effects occurred from about 180 ms after stimulus presentation. Crucially, in emotional words, lexicality effects (real words versus pseudowords) were identified from 216 ms, words being more negative over posterior cortex, coinciding with EPN effects, whereas neutral words differed from pseudowords only after 320 ms. Emotional content affects word processing at pre-lexical, lexical and post-lexical levels, but remarkably lexical access to emotional words is faster than access to neutral words. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A light and faster regional convolutional neural network for object detection in optical remote sensing images

    Science.gov (United States)

    Ding, Peng; Zhang, Ye; Deng, Wei-Jian; Jia, Ping; Kuijper, Arjan

    2018-07-01

    Detection of objects from satellite optical remote sensing images is very important for many commercial and governmental applications. With the development of deep convolutional neural networks (deep CNNs), the field of object detection has seen tremendous advances. Currently, objects in satellite remote sensing images can be detected using deep CNNs. In general, optical remote sensing images contain many dense and small objects, and the use of the original Faster Regional CNN framework does not yield a suitably high precision. Therefore, after careful analysis we adopt dense convoluted networks, a multi-scale representation and various combinations of improvement schemes to enhance the structure of the base VGG16-Net for improving the precision. We propose an approach to reduce the test-time (detection time) and memory requirements. To validate the effectiveness of our approach, we perform experiments using satellite remote sensing image datasets of aircraft and automobiles. The results show that the improved network structure can detect objects in satellite optical remote sensing images more accurately and efficiently.

  10. Processing language in face-to-face conversation: Questions with gestures get faster responses.

    Science.gov (United States)

    Holler, Judith; Kendrick, Kobin H; Levinson, Stephen C

    2017-09-08

    The home of human language use is face-to-face interaction, a context in which communicative exchanges are characterised not only by bodily signals accompanying what is being said but also by a pattern of alternating turns at talk. This transition between turns is astonishingly fast-typically a mere 200-ms elapse between a current and a next speaker's contribution-meaning that comprehending, producing, and coordinating conversational contributions in time is a significant challenge. This begs the question of whether the additional information carried by bodily signals facilitates or hinders language processing in this time-pressured environment. We present analyses of multimodal conversations revealing that bodily signals appear to profoundly influence language processing in interaction: Questions accompanied by gestures lead to shorter turn transition times-that is, to faster responses-than questions without gestures, and responses come earlier when gestures end before compared to after the question turn has ended. These findings hold even after taking into account prosodic patterns and other visual signals, such as gaze. The empirical findings presented here provide a first glimpse of the role of the body in the psycholinguistic processes underpinning human communication.

  11. Revisit the faster-is-slower effect for an exit at a corner

    Science.gov (United States)

    Chen, Jun Min; Lin, Peng; Wu, Fan Yu; Li Gao, Dong; Wang, Guo Yuan

    2018-02-01

    The faster-is-slower effect (FIS), which means that crowd at a high enough velocity could significantly increase the evacuation time to escape through an exit, is an interesting phenomenon in pedestrian dynamics. Such phenomenon had been studied widely and has been experimentally verified in different systems of discrete particles flowing through a centre exit. To experimentally validate this phenomenon by using people under high pressure is difficult due to ethical issues. A mouse, similar to a human, is a kind of self-driven and soft body creature with competitive behaviour under stressed conditions. Therefore, mice are used to escape through an exit at a corner. A number of repeated tests are conducted and the average escape time per mouse at different levels of stimulus are analysed. The escape times do not increase obviously with the level of stimulus for the corner exit, which is contrary to the experiment with the center exit. The experimental results show that the FIS effect is not necessary a universal law for any discrete system. The observation could help the design of buildings by relocating their exits to the corner in rooms to avoid the formation of FIS effect.

  12. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    Science.gov (United States)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.

  13. Detection of vehicle parts based on Faster R-CNN and relative position information

    Science.gov (United States)

    Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong

    2018-03-01

    Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.

  14. Development of Novel Faster-Dissolving Microneedle Patches for Transcutaneous Vaccine Delivery.

    Science.gov (United States)

    Ono, Akihiko; Ito, Sayami; Sakagami, Shun; Asada, Hideo; Saito, Mio; Quan, Ying-Shu; Kamiyama, Fumio; Hirobe, Sachiko; Okada, Naoki

    2017-08-03

    Microneedle (MN) patches are promising for transcutaneous vaccination because they enable vaccine antigens to physically penetrate the stratum corneum via low-invasive skin puncturing, and to be effectively delivered to antigen-presenting cells in the skin. In second-generation MN patches, the dissolving MNs release the loaded vaccine antigen into the skin. To shorten skin application time for clinical practice, this study aims to develop novel faster-dissolving MNs. We designed two types of MNs made from a single thickening agent, carboxymethylcellulose (CMC) or hyaluronan (HN). Both CMC-MN and HN-MN completely dissolved in rat skin after a 5-min application. In pre-clinical studies, both MNs could demonstrably increase antigen-specific IgG levels after vaccination and prolong antigen deposition compared with conventional injections, and deliver antigens into resected human dermal tissue. In clinical research, we demonstrated that both MNs could reliably and safely puncture human skin without any significant skin irritation from transepidermal water loss measurements and ICDRG (International Contact Dermatitis Research Group) evaluation results.

  15. Semantic size does not matter: "bigger" words are not recognized faster.

    Science.gov (United States)

    Kang, Sean H K; Yap, Melvin J; Tse, Chi-Shing; Kurby, Christopher A

    2011-06-01

    Sereno, O'Donnell, and Sereno (2009) reported that words are recognized faster in a lexical decision task when their referents are physically large than when they are small, suggesting that "semantic size" might be an important variable that should be considered in visual word recognition research and modelling. We sought to replicate their size effect, but failed to find a significant latency advantage in lexical decision for "big" words (cf. "small" words), even though we used the same word stimuli as Sereno et al. and had almost three times as many subjects. We also examined existing data from visual word recognition megastudies (e.g., English Lexicon Project) and found that semantic size is not a significant predictor of lexical decision performance after controlling for the standard lexical variables. In summary, the null results from our lab experiment--despite a much larger subject sample size than Sereno et al.--converged with our analysis of megastudy lexical decision performance, leading us to conclude that semantic size does not matter for word recognition. Discussion focuses on why semantic size (unlike some other semantic variables) is unlikely to play a role in lexical decision.

  16. Faster acquisition of laparoscopic skills in virtual reality with haptic feedback and 3D vision.

    Science.gov (United States)

    Hagelsteen, Kristine; Langegård, Anders; Lantz, Adam; Ekelund, Mikael; Anderberg, Magnus; Bergenfelz, Anders

    2017-10-01

    The study investigated whether 3D vision and haptic feedback in combination in a virtual reality environment leads to more efficient learning of laparoscopic skills in novices. Twenty novices were allocated to two groups. All completed a training course in the LapSim ® virtual reality trainer consisting of four tasks: 'instrument navigation', 'grasping', 'fine dissection' and 'suturing'. The study group performed with haptic feedback and 3D vision and the control group without. Before and after the LapSim ® course, the participants' metrics were recorded when tying a laparoscopic knot in the 2D video box trainer Simball ® Box. The study group completed the training course in 146 (100-291) minutes compared to 215 (175-489) minutes in the control group (p = .002). The number of attempts to reach proficiency was significantly lower. The study group had significantly faster learning of skills in three out of four individual tasks; instrument navigation, grasping and suturing. Using the Simball ® Box, no difference in laparoscopic knot tying after the LapSim ® course was noted when comparing the groups. Laparoscopic training in virtual reality with 3D vision and haptic feedback made training more time efficient and did not negatively affect later video box-performance in 2D. [Formula: see text].

  17. Introducing difference recurrence relations for faster semi-global alignment of long sequences.

    Science.gov (United States)

    Suzuki, Hajime; Kasahara, Masahiro

    2018-02-19

    The read length of single-molecule DNA sequencers is reaching 1 Mb. Popular alignment software tools widely used for analyzing such long reads often take advantage of single-instruction multiple-data (SIMD) operations to accelerate calculation of dynamic programming (DP) matrices in the Smith-Waterman-Gotoh (SWG) algorithm with a fixed alignment start position at the origin. Nonetheless, 16-bit or 32-bit integers are necessary for storing the values in a DP matrix when sequences to be aligned are long; this situation hampers the use of the full SIMD width of modern processors. We proposed a faster semi-global alignment algorithm, "difference recurrence relations," that runs more rapidly than the state-of-the-art algorithm by a factor of 2.1. Instead of calculating and storing all the values in a DP matrix directly, our algorithm computes and stores mainly the differences between the values of adjacent cells in the matrix. Although the SWG algorithm and our algorithm can output exactly the same result, our algorithm mainly involves 8-bit integer operations, enabling us to exploit the full width of SIMD operations (e.g., 32) on modern processors. We also developed a library, libgaba, so that developers can easily integrate our algorithm into alignment programs. Our novel algorithm and optimized library implementation will facilitate accelerating nucleotide long-read analysis algorithms that use pairwise alignment stages. The library is implemented in the C programming language and available at https://github.com/ocxtal/libgaba .

  18. Level of headaches after surgical aneurysm clipping decreases significantly faster compared to endovascular coiled patients

    Directory of Open Access Journals (Sweden)

    Athanasios K. Petridis

    2017-04-01

    Full Text Available In incidental aneurysms, endovascular treatment can lead to post-procedural headaches. We studied the difference of surgical clipping vs. endovascular coiling in concern to post-procedural headaches in patients with ruptured aneurysms. Sixtyseven patients with aneurysmal subarachnoidal haemorrhage were treated in our department from September 1st 2015 - September 1st 2016. 43 Patients were included in the study and the rest was excluded because of late recovery or highgrade subarachnoid bleedings. Twenty-two were surgical treated and twenty-one were interventionally treated. We compared the post-procedural headaches at the time points of 24 h, 21 days, and 3 months after treatment using the visual analog scale (VAS for pain. After surgical clipping the headache score decreased for 8.8 points in the VAS, whereas the endovascular treated population showed a decrease of headaches of 3.3 points. This difference was highly statistical significant and remained significant even after 3 weeks where the pain score for the surgically treated patients was 0.68 and for the endovascular treated 1.8. After 3 months the pain was less than 1 for both groups with surgically treated patients scoring 0.1 and endovascular treated patients 0.9 (not significant. Clipping is relieving the headaches of patients with aneurysm rupture faster and more effective than endovascular coiling. This effect stays significant for at least 3 weeks and plays a crucial role in stress relieve during the acute and subacute ICU care of such patients.

  19. Faster-Than-Real-Time Simulation of Lithium Ion Batteries with Full Spatial and Temporal Resolution

    Directory of Open Access Journals (Sweden)

    Sandip Mazumder

    2013-01-01

    Full Text Available A one-dimensional coupled electrochemical-thermal model of a lithium ion battery with full temporal and normal-to-electrode spatial resolution is presented. Only a single pair of electrodes is considered in the model. It is shown that simulation of a lithium ion battery with the inclusion of detailed transport phenomena and electrochemistry is possible with faster-than-real-time compute times. The governing conservation equations of mass, charge, and energy are discretized using the finite volume method and solved using an iterative procedure. The model is first successfully validated against experimental data for both charge and discharge processes in a LixC6-LiyMn2O4 battery. Finally, it is demonstrated for an arbitrary rapidly changing transient load typical of a hybrid electric vehicle drive cycle. The model is able to predict the cell voltage of a 15-minute drive cycle in less than 12 seconds of compute time on a laptop with a 2.33 GHz Intel Pentium 4 processor.

  20. Variability among the Most Rapidly Evolving Plastid Genomic Regions is Lineage-Specific: Implications of Pairwise Genome Comparisons in Pyrus (Rosaceae) and Other Angiosperms for Marker Choice

    Science.gov (United States)

    Ter-Voskanyan, Hasmik; Allgaier, Martin; Borsch, Thomas

    2014-01-01

    Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae)—a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC–trnV, trnR–atpA, ndhF–rpl32, psbM–trnD, and trnQ–rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters). Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid), Olea (asterids) and Cymbidium (monocots) showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF–rpl32 and trnK–rps16) were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations

  1. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae and other angiosperms for marker choice.

    Directory of Open Access Journals (Sweden)

    Nadja Korotkova

    Full Text Available Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae-a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC-trnV, trnR-atpA, ndhF-rpl32, psbM-trnD, and trnQ-rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters. Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid, Olea (asterids and Cymbidium (monocots showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF-rpl32 and trnK-rps16 were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing

  2. Faster, better, and cheaper” at NASA: Lessons learned in managing and accepting risk

    Science.gov (United States)

    Paxton, Larry J.

    2007-11-01

    Can Earth observing missions be done "better, faster and cheaper"? In this paper I explore the management and technical issues that arose from the attempt to do things "faster, better and cheaper" at NASA. The FBC mantra lead to some failures and, more significantly, an increase in the cadence of missions. Mission cadence is a major enabler of innovation and the driver for the training and testing of the next generation of managers, engineers, and scientists. A high mission cadence is required to maintain and develop competence in mission design, management, and execution and, for an exploration-driven organization, to develop and train the next generation of leaders: the time between missions must be short enough that careers span the complete life of more than a few missions. This process reduces risk because the "lessons learned" are current and widely held. Increasing the cadence of missions has the added benefit of reducing the pressure to do everything on one particular mission thus reducing mission complexity. Since failures are inevitable in such a complex endeavor, a higher mission cadence has the advantage of providing some resiliency to the scientific program the missions support. Some failures are avoidable (often only in hindsight) but most are due to some combination of interacting factors. This interaction is often only appreciated as a potential failure mode after the fact. There is always the pressure to do more with less: the scope of the project may become too ambitious or the management and oversight of the project may be reduced to fit the money allocated, or the project time line may be lengthened due to external factors (launcher availability, budgetary constraints) without a concomitant increase in the total funding. This leads to increased risk. Risks are always deemed acceptable until they change from a "risk" to a "failure mode". Identifying and managing those risks are particularly difficult when the activities are dispersed

  3. Faster processing of multiple spatially-heterodyned direct to digital holograms

    Science.gov (United States)

    Hanson, Gregory R [Clinton, TN; Bingham, Philip R [Knoxville, TN

    2008-09-09

    Systems and methods are described for faster processing of multiple spatially-heterodyned direct to digital holograms. A method includes of obtaining multiple spatially-heterodyned holograms, includes: digitally recording a first spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; digitally recording a second spatially-heterodyned hologram including spatial heterodyne fringes for Fourier analysis; Fourier analyzing the recorded first spatially-heterodyned hologram by shifting a first original origin of the recorded first spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a first angle between a first reference beam and a first object beam; applying a first digital filter to cut off signals around the first original origin and performing an inverse Fourier transform on the result; Fourier analyzing the recorded second spatially-heterodyned hologram by shifting a second original origin of the recorded second spatially-heterodyned hologram including spatial heterodyne fringes in Fourier space to sit on top of a spatial-heterodyne carrier frequency defined as a second angle between a second reference beam and a second object beam; and applying a second digital filter to cut off signals around the second original origin and performing an inverse Fourier transform on the result, wherein digitally recording the first spatially-heterodyned hologram is completed before digitally recording the second spatially-heterodyned hologram and a single digital image includes both the first spatially-heterodyned hologram and the second spatially-heterodyned hologram.

  4. Faster but Less Careful Prehension in Presence of High, Rather than Low, Social Status Attendees.

    Directory of Open Access Journals (Sweden)

    Carlo Fantoni

    Full Text Available Ample evidence attests that social intention, elicited through gestures explicitly signaling a request of communicative intention, affects the patterning of hand movement kinematics. The current study goes beyond the effect of social intention and addresses whether the same action of reaching to grasp an object for placing it in an end target position within or without a monitoring attendee's peripersonal space, can be moulded by pure social factors in general, and by social facilitation in particular. A motion tracking system (Optotrak Certus was used to record motor acts. We carefully avoided the usage of communicative intention by keeping constant both the visual information and the positional uncertainty of the end target position, while we systematically varied the social status of the attendee (a high, or a low social status in separated blocks. Only thirty acts performed in the presence of a different social status attendee, revealed a significant change of kinematic parameterization of hand movement, independently of the attendee's distance. The amplitude of peak velocity reached by the hand during the reach-to-grasp and the lift-to-place phase of the movement was larger in the high rather than in the low social status condition. By contrast, the deceleration time of the reach-to-grasp phase and the maximum grasp aperture was smaller in the high rather than in the low social status condition. These results indicated that the hand movement was faster but less carefully shaped in presence of a high, but not of a low social status attendee. This kinematic patterning suggests that being monitored by a high rather than a low social status attendee might lead participants to experience evaluation apprehension that informs the control of motor execution. Motor execution would rely more on feedforward motor control in the presence of a high social status human attendee, vs. feedback motor control, in the presence of a low social status attendee.

  5. Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction.

    Science.gov (United States)

    de Oliveira, Saulo H P; Law, Eleanor C; Shi, Jiye; Deane, Charlotte M

    2018-04-01

    Most current de novo structure prediction methods randomly sample protein conformations and thus require large amounts of computational resource. Here, we consider a sequential sampling strategy, building on ideas from recent experimental work which shows that many proteins fold cotranslationally. We have investigated whether a pseudo-greedy search approach, which begins sequentially from one of the termini, can improve the performance and accuracy of de novo protein structure prediction. We observed that our sequential approach converges when fewer than 20 000 decoys have been produced, fewer than commonly expected. Using our software, SAINT2, we also compared the run time and quality of models produced in a sequential fashion against a standard, non-sequential approach. Sequential prediction produces an individual decoy 1.5-2.5 times faster than non-sequential prediction. When considering the quality of the best model, sequential prediction led to a better model being produced for 31 out of 41 soluble protein validation cases and for 18 out of 24 transmembrane protein cases. Correct models (TM-Score > 0.5) were produced for 29 of these cases by the sequential mode and for only 22 by the non-sequential mode. Our comparison reveals that a sequential search strategy can be used to drastically reduce computational time of de novo protein structure prediction and improve accuracy. Data are available for download from: http://opig.stats.ox.ac.uk/resources. SAINT2 is available for download from: https://github.com/sauloho/SAINT2. saulo.deoliveira@dtc.ox.ac.uk. Supplementary data are available at Bioinformatics online.

  6. Faster diffraction-based overlay measurements with smaller targets using 3D gratings

    Science.gov (United States)

    Li, Jie; Kritsun, Oleg; Liu, Yongdong; Dasari, Prasad; Volkman, Catherine; Hu, Jiangtao

    2012-03-01

    Diffraction-based overlay (DBO) technologies have been developed to address the overlay metrology challenges for 22nm technology node and beyond. Most DBO technologies require specially designed targets that consist of multiple measurement pads, which consume too much space and increase measurement time. The traditional empirical approach (eDBO) using normal incidence spectroscopic reflectometry (NISR) relies on linear response of the reflectance with respect to overlay displacement within a small range. It offers convenience of quick recipe setup since there is no need to establish a model. However it requires three or four pads per direction (x or y) which adds burden to throughput and target size. Recent advances in modeling capability and computation power enabled mDBO, which allows overlay measurement with reduced number of pads, thus reducing measurement time and DBO target space. In this paper we evaluate the performance of single pad mDBO measurements using two 3D targets that have different grating shapes: squares in boxes and L-shapes in boxes. Good overlay sensitivities are observed for both targets. The correlation to programmed shifts and image-based overlay (IBO) is excellent. Despite the difference in shapes, the mDBO results are comparable for square and L-shape targets. The impact of process variations on overlay measurements is studied using a focus and exposure matrix (FEM) wafer. Although the FEM wafer has larger process variations, the correlation of mDBO results with IBO measurements is as good as the normal process wafer. We demonstrate the feasibility of single pad DBO measurements with faster throughput and smaller target size, which is particularly important in high volume manufacturing environment.

  7. Slower Perception Followed by Faster Lexical Decision in Longer Words: A Diffusion Model Analysis.

    Science.gov (United States)

    Oganian, Yulia; Froehlich, Eva; Schlickeiser, Ulrike; Hofmann, Markus J; Heekeren, Hauke R; Jacobs, Arthur M

    2015-01-01

    Effects of stimulus length on reaction times (RTs) in the lexical decision task are the topic of extensive research. While slower RTs are consistently found for longer pseudo-words, a finding coined the word length effect (WLE), some studies found no effects for words, and yet others reported faster RTs for longer words. Moreover, the WLE depends on the orthographic transparency of a language, with larger effects in more transparent orthographies. Here we investigate processes underlying the WLE in lexical decision in German-English bilinguals using a diffusion model (DM) analysis, which we compared to a linear regression approach. In the DM analysis, RT-accuracy distributions are characterized using parameters that reflect latent sub-processes, in particular evidence accumulation and decision-independent perceptual encoding, instead of typical parameters such as mean RT and accuracy. The regression approach showed a decrease in RTs with length for pseudo-words, but no length effect for words. However, DM analysis revealed that the null effect for words resulted from opposing effects of length on perceptual encoding and rate of evidence accumulation. Perceptual encoding times increased with length for words and pseudo-words, whereas the rate of evidence accumulation increased with length for real words but decreased for pseudo-words. A comparison between DM parameters in German and English suggested that orthographic transparency affects perceptual encoding, whereas effects of length on evidence accumulation are likely to reflect contextual information and the increase in available perceptual evidence with length. These opposing effects may account for the inconsistent findings on WLEs.

  8. CFD Analyses of Re-Evolved Iodine from an In-containment Water Pool

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Hyeon [KHNP CRI, Daejeon (Korea, Republic of); Yoon, Woo Sung; Jung, Ji Hwan [Pusan National University, Busan (Korea, Republic of)

    2016-10-15

    A good understanding of the behavior of iodine is required to evaluate the safety and emergency procedures after a LOCA. The quantity of re-evolved iodine is related to pH level, temperature, and iodine concentration of water pool. In the calculation of pH for water pool, sequence calculations must consider this variable if any aqueous iodine is present, even if it is initially present in stable forms. The present study consists of two parts: the pH evaluation and the evaluation of the iodine re-evolution. The current paper focuses on the pH evaluation method, the development of a user-defined function (UDF) and the iodine re-evolution from the water pool. CFD that incorporates the UDF was used in this study to calculate the local pH level in the transient condition. The amount of re-evolved iodine was calculated based on the iodine concentration, temperature, and pH. The transportation and resulting distribution of the iodine concentration, temperature, and pH were calculated using transient analyses with CFD. The quantity of reevolved iodine was obtained with several assumptions. The quantitative evaluation of re-evolved iodine during a LOCA in a commercial nuclear power plants is done in two stages. The first stage is to calculate the pH in the water pool, and the second stage is to calculate the quantity of re-evolved iodine. Evaporated iodine, from the water pool water to the containment atmosphere, can be estimated from characteristic iodine behaviors and pH calculations. The 3D CFD analysis results show that the pH reached 7.0 after 149.5 minutes. Near the spillway, the change in averaged pH was faster than the change in wholevolume averaged pH. Evaluating the amount of reevolved iodine were examined using four different methods. As a result of our evaluation of iodine reevolution, the initial molecular iodine concentration of a water pool has a significant impact on the amount of gaseous iodine, more so than the pH or temperature, due to the locally similar

  9. CFD Analyses of Re-Evolved Iodine from an In-containment Water Pool

    International Nuclear Information System (INIS)

    Kim, Tae Hyeon; Yoon, Woo Sung; Jung, Ji Hwan

    2016-01-01

    A good understanding of the behavior of iodine is required to evaluate the safety and emergency procedures after a LOCA. The quantity of re-evolved iodine is related to pH level, temperature, and iodine concentration of water pool. In the calculation of pH for water pool, sequence calculations must consider this variable if any aqueous iodine is present, even if it is initially present in stable forms. The present study consists of two parts: the pH evaluation and the evaluation of the iodine re-evolution. The current paper focuses on the pH evaluation method, the development of a user-defined function (UDF) and the iodine re-evolution from the water pool. CFD that incorporates the UDF was used in this study to calculate the local pH level in the transient condition. The amount of re-evolved iodine was calculated based on the iodine concentration, temperature, and pH. The transportation and resulting distribution of the iodine concentration, temperature, and pH were calculated using transient analyses with CFD. The quantity of reevolved iodine was obtained with several assumptions. The quantitative evaluation of re-evolved iodine during a LOCA in a commercial nuclear power plants is done in two stages. The first stage is to calculate the pH in the water pool, and the second stage is to calculate the quantity of re-evolved iodine. Evaporated iodine, from the water pool water to the containment atmosphere, can be estimated from characteristic iodine behaviors and pH calculations. The 3D CFD analysis results show that the pH reached 7.0 after 149.5 minutes. Near the spillway, the change in averaged pH was faster than the change in wholevolume averaged pH. Evaluating the amount of reevolved iodine were examined using four different methods. As a result of our evaluation of iodine reevolution, the initial molecular iodine concentration of a water pool has a significant impact on the amount of gaseous iodine, more so than the pH or temperature, due to the locally similar

  10. Project Seahorse evolves into major marine protector | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2012-10-29

    Oct 29, 2012 ... Project Seahorse evolves into major marine protector ... local people, have greatly improved the prospects of survival for threatened species. ... “We tackle issues on any political level or geographical scale, according to what ...

  11. Incremental Frequent Subgraph Mining on Large Evolving Graphs

    KAUST Repository

    Abdelhamid, Ehab; Canim, Mustafa; Sadoghi, Mohammad; Bhatta, Bishwaranjan; Chang, Yuan-Chi; Kalnis, Panos

    2017-01-01

    , such as social networks, utilize large evolving graphs. Mining these graphs using existing techniques is infeasible, due to the high computational cost. In this paper, we propose IncGM+, a fast incremental approach for continuous frequent subgraph mining problem

  12. Genetic Algorithms Evolve Optimized Transforms for Signal Processing Applications

    National Research Council Canada - National Science Library

    Moore, Frank; Babb, Brendan; Becke, Steven; Koyuk, Heather; Lamson, Earl, III; Wedge, Christopher

    2005-01-01

    .... The primary goal of the research described in this final report was to establish a methodology for using genetic algorithms to evolve coefficient sets describing inverse transforms and matched...

  13. Biofabrication : reappraising the definition of an evolving field

    NARCIS (Netherlands)

    Groll, Jürgen; Boland, Thomas; Blunk, Torsten; Burdick, Jason A; Cho, Dong-Woo; Dalton, Paul D; Derby, Brian; Forgacs, Gabor; Li, Qing; Mironov, Vladimir A; Moroni, Lorenzo; Nakamura, Makoto; Shu, Wenmiao; Takeuchi, Shoji; Vozzi, Giovanni; Woodfield, Tim B F; Xu, Tao; Yoo, James J; Malda, Jos|info:eu-repo/dai/nl/412461099

    2016-01-01

    Biofabrication is an evolving research field that has recently received significant attention. In particular, the adoption of Biofabrication concepts within the field of Tissue Engineering and Regenerative Medicine has grown tremendously, and has been accompanied by a growing inconsistency in

  14. Biofabrication : Reappraising the definition of an evolving field

    NARCIS (Netherlands)

    Groll, Jürgen; Boland, Thomas; Blunk, Torsten; Burdick, Jason A.; Cho, Dong Woo; Dalton, Paul D.; Derby, Brian; Forgacs, Gabor; Li, Qing; Mironov, Vladimir A.; Moroni, Lorenzo; Nakamura, Makoto; Shu, Wenmiao; Takeuchi, Shoji; Vozzi, Giovanni; Woodfield, Tim B.F.; Xu, Tao; Yoo, James J.; Malda, Jos

    2016-01-01

    Biofabrication is an evolving research field that has recently received significant attention. In particular, the adoption of Biofabrication concepts within the field of Tissue Engineering and Regenerative Medicine has grown tremendously, and has been accompanied by a growing inconsistency in

  15. Orthogonally Evolved AI to Improve Difficulty Adjustment in Video Games

    DEFF Research Database (Denmark)

    Hintze, Arend; Olson, Randal; Lehman, Joel Anthony

    2016-01-01

    Computer games are most engaging when their difficulty is well matched to the player's ability, thereby providing an experience in which the player is neither overwhelmed nor bored. In games where the player interacts with computer-controlled opponents, the difficulty of the game can be adjusted...... not only by changing the distribution of opponents or game resources, but also through modifying the skill of the opponents. Applying evolutionary algorithms to evolve the artificial intelligence that controls opponent agents is one established method for adjusting opponent difficulty. Less-evolved agents...... (i.e. agents subject to fewer generations of evolution) make for easier opponents, while highly-evolved agents are more challenging to overcome. In this publication we test a new approach for difficulty adjustment in games: orthogonally evolved AI, where the player receives support from collaborating...

  16. Evolving the Evolving: Territory, Place and Rewilding in the California Delta

    Directory of Open Access Journals (Sweden)

    Brett Milligan

    2017-10-01

    Full Text Available Current planning and legislation in California’s Sacramento-San Joaquin Delta call for the large-scale ecological restoration of aquatic and terrestrial habitats. These ecological mandates have emerged in response to the region’s infrastructural transformation and the Delta’s predominant use as the central logistical hub in the state’s vast water conveyance network. Restoration is an attempt to recover what was externalized by the logic and abstractions of this logistical infrastructure. However, based on findings from our research, which examined how people are using restored and naturalized landscapes in the Delta and how these landscapes are currently planned for, we argue that as mitigatory response, restoration planning continues some of the same spatial abstractions and inequities by failing to account for the Delta as an urbanized, cultural and unique place. In interpreting how these conditions have come to be, we give attention to a pluralistic landscape approach and a coevolutionary reading of planning, policy, science and landscapes to discuss the conservation challenges presented by “Delta as an Evolving Place”. We suggest that for rewilding efforts to be successful in the Delta, a range of proactive, opportunistic, grounded and participatory tactics will be required to shift towards a more socio-ecological approach.

  17. Q&A: What is human language, when did it evolve and why should we care?

    Science.gov (United States)

    Pagel, Mark

    2017-07-24

    Human language is unique among all forms of animal communication. It is unlikely that any other species, including our close genetic cousins the Neanderthals, ever had language, and so-called sign 'language' in Great Apes is nothing like human language. Language evolution shares many features with biological evolution, and this has made it useful for tracing recent human history and for studying how culture evolves among groups of people with related languages. A case can be made that language has played a more important role in our species' recent (circa last 200,000 years) evolution than have our genes.

  18. (N+1)-dimensional Lorentzian evolving wormholes supported by polytropic matter

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Arostica, Fernanda; Bahamonde, Sebastian [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile)

    2013-08-15

    In this paper we study (N+1)-dimensional evolving wormholes supported by energy satisfying a polytropic equation of state. The considered evolving wormhole models are described by a constant redshift function and generalizes the standard flat Friedmann-Robertson-Walker spacetime. The polytropic equation of state allows us to consider in (3+1)-dimensions generalizations of the phantom energy and the generalized Chaplygin gas sources. (orig.)

  19. Functional effects of treadmill-based gait training at faster speeds in stroke survivors: a prospective, single-group study.

    Science.gov (United States)

    Mohammadi, Roghayeh; Ershad, Navid; Rezayinejad, Marziyeh; Fatemi, Elham; Phadke, Chetan P

    2017-09-01

    To examine the functional effects of walking retraining at faster than self-selected speed (SSS). Ten individuals with chronic stroke participated in a 4-week training over a treadmill at walking speeds 40% faster than SSS, three times per week, 30 min/session. Outcome measures assessed before, after, and 2 months after the end of intervention were the Timed Up and Go, the 6-Minute Walk, the 10-Meter Walk test, the Modified Ashworth Scale, SSS, and fastest comfortable speed. After 4 weeks of training, all outcome measures showed clinically meaningful and statistically significant improvements (Ptraining. The results showed that a strategy of training at a speed 40% faster than SSS can improve functional activity in individuals with chronic stroke, with effects lasting up to 2 months after the intervention.

  20. A new evolutionary system for evolving artificial neural networks.

    Science.gov (United States)

    Yao, X; Liu, Y

    1997-01-01

    This paper presents a new evolutionary system, i.e., EPNet, for evolving artificial neural networks (ANNs). The evolutionary algorithm used in EPNet is based on Fogel's evolutionary programming (EP). Unlike most previous studies on evolving ANN's, this paper puts its emphasis on evolving ANN's behaviors. Five mutation operators proposed in EPNet reflect such an emphasis on evolving behaviors. Close behavioral links between parents and their offspring are maintained by various mutations, such as partial training and node splitting. EPNet evolves ANN's architectures and connection weights (including biases) simultaneously in order to reduce the noise in fitness evaluation. The parsimony of evolved ANN's is encouraged by preferring node/connection deletion to addition. EPNet has been tested on a number of benchmark problems in machine learning and ANNs, such as the parity problem, the medical diagnosis problems, the Australian credit card assessment problem, and the Mackey-Glass time series prediction problem. The experimental results show that EPNet can produce very compact ANNs with good generalization ability in comparison with other algorithms.

  1. Are OPERA neutrinos faster than light because of non-inertial reference frames?

    Science.gov (United States)

    Germanà, C.

    2012-02-01

    Context. Recent results from the OPERA experiment reported a neutrino beam traveling faster than light. The challenging experiment measured the neutrino time of flight (TOF) over a baseline from the CERN to the Gran Sasso site, concluding that the neutrino beam arrives ~60 ns earlier than a light ray would do. Because the result, if confirmed, has an enormous impact on science, it might be worth double-checking the time definitions with respect to the non-inertial system in which the neutrino travel time was measured. An observer with a clock measuring the proper time τ free of non-inertial effects is the one located at the solar system barycenter (SSB). Aims: Potential problems in the OPERA data analysis connected with the definition of the reference frame and time synchronization are emphasized. We aim to investigate the synchronization of non-inertial clocks on Earth by relating this time to the proper time of an inertial observer at SSB. Methods: The Tempo2 software was used to time-stamp events observed on the geoid with respect to the SSB inertial observer time. Results: Neutrino results from OPERA might carry the fingerprint of non-inertial effects because they are timed by terrestrial clocks. The CERN-Gran Sasso clock synchronization is accomplished by applying corrections that depend on special and general relativistic time dilation effects at the clocks, depending on the position of the clocks in the solar system gravitational well. As a consequence, TOF distributions are centered on values shorter by tens of nanoseconds than expected, integrating over a period from April to December, longer if otherwise. It is worth remarking that the OPERA runs have always been carried out from April/May to November. Conclusions: If the analysis by Tempo2 holds for the OPERA experiment, the excellent measurement by the OPERA collaboration will turn into a proof of the general relativity theory in a weak field approximation. The analysis presented here is falsifiable

  2. Second generation stationary digital breast tomosynthesis system with faster scan time and wider angular span.

    Science.gov (United States)

    Calliste, Jabari; Wu, Gongting; Laganis, Philip E; Spronk, Derrek; Jafari, Houman; Olson, Kyle; Gao, Bo; Lee, Yueh Z; Zhou, Otto; Lu, Jianping

    2017-09-01

    The aim of this study was to characterize a new generation stationary digital breast tomosynthesis system with higher tube flux and increased angular span over a first generation system. The linear CNT x-ray source was designed, built, and evaluated to determine its performance parameters. The second generation system was then constructed using the CNT x-ray source and a Hologic gantry. Upon construction, test objects and phantoms were used to characterize system resolution as measured by the modulation transfer function (MTF), and artifact spread function (ASF). The results indicated that the linear CNT x-ray source was capable of stable operation at a tube potential of 49 kVp, and measured focal spot sizes showed source-to-source consistency with a nominal focal spot size of 1.1 mm. After construction, the second generation (Gen 2) system exhibited entrance surface air kerma rates two times greater the previous s-DBT system. System in-plane resolution as measured by the MTF is 7.7 cycles/mm, compared to 6.7 cycles/mm for the Gen 1 system. As expected, an increase in the z-axis depth resolution was observed, with a decrease in the ASF from 4.30 mm to 2.35 mm moving from the Gen 1 system to the Gen 2 system as result of an increased angular span. The results indicate that the Gen 2 stationary digital breast tomosynthesis system, which has a larger angular span, increased entrance surface air kerma, and faster image acquisition time over the Gen 1 s-DBT system, results in higher resolution images. With the detector operating at full resolution, the Gen 2 s-DBT system can achieve an in-plane resolution of 7.7 cycles per mm, which is better than the current commercial DBT systems today, and may potentially result in better patient diagnosis. © 2017 American Association of Physicists in Medicine.

  3. PET/CT Biograph trademark Sensation 16. Performance improvement using faster electronics

    International Nuclear Information System (INIS)

    Martinez, M.J.; Schwaiger, M.; Ziegler, S.I.; Bercier, Y.

    2006-01-01

    Aim: the new PET/CT biograph sensation 16 (BS16) tomographs have faster detector electronics which allow a reduced timing coincidence window and an increased lower energy threshold (from 350 to 400 keV). This paper evaluates the performance of the BS16 PET scanner before and after the Pico-3D electronics upgrade. Methods: four NEMA NU 2-2001 protocols, (i) spatial resolution, (ii) scatter fraction, count losses and random measurement, (iii) sensitivity, and (iv) image quality, have been performed. Results: a considerable change in both PET count-rate performance and image quality is observed after electronics upgrade. The new scatter fraction obtained using Pico-3D electronics showed a 14% decrease compared to that obtained with the previous electronics. At the typical patient background activity (5.3 kBq/ml), the new scatter fraction was approximately 0.42. The noise equivalent count-rate (R NEC ) performance was also improved. The value at which the R NEC curve peaked, increased from 3.7 . 10 4 s -1 at 14 kBq/ml to 6.4 . 10 4 s -1 at 21 kBq/ml (2R-NEC rate). Likewise, the peak true count-rate value increased from 1.9 . 10 5 s -1 at 22 kBq/ml to 3.4 . 10 5 s -1 at 33 kBq/ml. An average increase of 45% in contrast was observed for hot spheres when using AW-OSEM (4ix8s) as the reconstruction algorithm. For cold spheres, the average increase was 12%. Conclusion: the performance of the PET scanners in the BS16 tomographs is improved by the optimization of the signal processing. The narrower energy and timing coincidence windows lead to a considerable increase of signal-to-noise ratio. The existing combination of fast detectors and adapted electronics in the BS16 tomographs allow imaging protocols with reduced acquisition time, providing higher patient throughput. (orig.)

  4. Evolutionary Dynamics of the Gametologous CTNNB1 Gene on the Z and W Chromosomes of Snakes.

    Science.gov (United States)

    Laopichienpong, Nararat; Muangmai, Narongrit; Chanhome, Lawan; Suntrarachun, Sunutcha; Twilprawat, Panupon; Peyachoknagul, Surin; Srikulnath, Kornsorn

    2017-03-01

    Snakes exhibit genotypic sex determination with female heterogamety (ZZ males and ZW females), and the state of sex chromosome differentiation also varies among lineages. To investigate the evolutionary history of homologous genes located in the nonrecombining region of differentiated sex chromosomes in snakes, partial sequences of the gametologous CTNNB1 gene were analyzed for 12 species belonging to henophid (Cylindrophiidae, Xenopeltidae, and Pythonidae) and caenophid snakes (Viperidae, Elapidae, and Colubridae). Nonsynonymous/synonymous substitution ratios (Ka/Ks) in coding sequences were low (Ka/Ks < 1) between CTNNB1Z and CTNNB1W, suggesting that these 2 genes may have similar functional properties. However, frequencies of intron sequence substitutions and insertion–deletions were higher in CTNNB1Z than CTNNB1W, suggesting that Z-linked sequences evolved faster than W-linked sequences. Molecular phylogeny based on both intron and exon sequences showed the presence of 2 major clades: 1) Z-linked sequences of Caenophidia and 2) W-linked sequences of Caenophidia clustered with Z-linked sequences of Henophidia, which suggests that the sequence divergence between CTNNB1Z and CTNNB1W in Caenophidia may have occurred by the cessation of recombination after the split from Henophidia.

  5. Refining discordant gene trees.

    Science.gov (United States)

    Górecki, Pawel; Eulenstein, Oliver

    2014-01-01

    Evolutionary studies are complicated by discordance between gene trees and the species tree in which they evolved. Dealing with discordant trees often relies on comparison costs between gene and species trees, including the well-established Robinson-Foulds, gene duplication, and deep coalescence costs. While these costs have provided credible results for binary rooted gene trees, corresponding cost definitions for non-binary unrooted gene trees, which are frequently occurring in practice, are challenged by biological realism. We propose a natural extension of the well-established costs for comparing unrooted and non-binary gene trees with rooted binary species trees using a binary refinement model. For the duplication cost we describe an efficient algorithm that is based on a linear time reduction and also computes an optimal rooted binary refinement of the given gene tree. Finally, we show that similar reductions lead to solutions for computing the deep coalescence and the Robinson-Foulds costs. Our binary refinement of Robinson-Foulds, gene duplication, and deep coalescence costs for unrooted and non-binary gene trees together with the linear time reductions provided here for computing these costs significantly extends the range of trees that can be incorporated into approaches dealing with discordance.

  6. Evolving role of MeCP2 in Rett syndrome and autism.

    Science.gov (United States)

    LaSalle, Janine M; Yasui, Dag H

    2009-10-01

    Rett syndrome is an X-linked autism-spectrum disorder caused by mutations in MECP2, encoding methyl CpG-binding protein 2. Since the discovery of MECP2 mutations as the genetic cause of Rett syndrome, the understanding of MeCP2 function has evolved. Although MeCP2 was predicted to be a global transcriptional repressor of methylated promoters, large-scale combined epigenomic approaches of MeCP2 binding, methylation and gene expression have demonstrated that MeCP2 binds preferentially to intergenic and intronic regions, and sparsely methylated promoters of active genes. This review compares the evolution of thought within two ‘classic’ epigenetic mechanisms of parental imprinting and X chromosome inactivation to that of the MeCP2 field, and considers the future relevance of integrated epigenomic databases to understanding autism and Rett syndrome.

  7. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.

    Science.gov (United States)

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-04-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to

  8. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.

    Directory of Open Access Journals (Sweden)

    Kai Olav Ellefsen

    2015-04-01

    Full Text Available A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand. To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1 that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2 that one benefit of the modularity ubiquitous in the brains of natural animals

  9. Neural Modularity Helps Organisms Evolve to Learn New Skills without Forgetting Old Skills

    Science.gov (United States)

    Ellefsen, Kai Olav; Mouret, Jean-Baptiste; Clune, Jeff

    2015-01-01

    A long-standing goal in artificial intelligence is creating agents that can learn a variety of different skills for different problems. In the artificial intelligence subfield of neural networks, a barrier to that goal is that when agents learn a new skill they typically do so by losing previously acquired skills, a problem called catastrophic forgetting. That occurs because, to learn the new task, neural learning algorithms change connections that encode previously acquired skills. How networks are organized critically affects their learning dynamics. In this paper, we test whether catastrophic forgetting can be reduced by evolving modular neural networks. Modularity intuitively should reduce learning interference between tasks by separating functionality into physically distinct modules in which learning can be selectively turned on or off. Modularity can further improve learning by having a reinforcement learning module separate from sensory processing modules, allowing learning to happen only in response to a positive or negative reward. In this paper, learning takes place via neuromodulation, which allows agents to selectively change the rate of learning for each neural connection based on environmental stimuli (e.g. to alter learning in specific locations based on the task at hand). To produce modularity, we evolve neural networks with a cost for neural connections. We show that this connection cost technique causes modularity, confirming a previous result, and that such sparsely connected, modular networks have higher overall performance because they learn new skills faster while retaining old skills more and because they have a separate reinforcement learning module. Our results suggest (1) that encouraging modularity in neural networks may help us overcome the long-standing barrier of networks that cannot learn new skills without forgetting old ones, and (2) that one benefit of the modularity ubiquitous in the brains of natural animals might be to

  10. When to Blink and when to Think: Preference for Intuitive Decisions Results in Faster and Better Tactical Choices

    Science.gov (United States)

    Raab, Markus; Laborde, Sylvain

    2011-01-01

    Intuition is often considered an effective manner of decision making in sports. In this study we investigated whether a preference for intuition over deliberation results in faster and better lab-based choices in team handball attack situations with 54 male and female handball players of different expertise levels. We assumed that intuitive…

  11. An Adaptive Tuning Mechanism for Phase-Locked Loop Algorithms for Faster Time Performance of Interconnected Renewable Energy Sources

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2015-01-01

    Interconnected renewable energy sources (RES) require fast and accurate fault ride through (FRT) operation, in order to support the power grid, when faults occur. This paper proposes an adaptive phase-locked loop (adaptive dαβPLL) algorithm, which can be used for a faster and more accurate response...

  12. Dyslexics' faster decay of implicit memory for sounds and words is manifested in their shorter neural adaptation.

    Science.gov (United States)

    Jaffe-Dax, Sagi; Frenkel, Or; Ahissar, Merav

    2017-01-24

    Dyslexia is a prevalent reading disability whose underlying mechanisms are still disputed. We studied the neural mechanisms underlying dyslexia using a simple frequency-discrimination task. Though participants were asked to compare the two tones in each trial, implicit memory of previous trials affected their responses. We hypothesized that implicit memory decays faster among dyslexics. We tested this by increasing the temporal intervals between consecutive trials, and by measuring the behavioral impact and ERP responses from the auditory cortex. Dyslexics showed a faster decay of implicit memory effects on both measures, with similar time constants. Finally, faster decay of implicit memory also characterized the impact of sound regularities in benefitting dyslexics' oral reading rate. Their benefit decreased faster as a function of the time interval from the previous reading of the same non-word. We propose that dyslexics' shorter neural adaptation paradoxically accounts for their longer reading times, since it reduces their temporal window of integration of past stimuli, resulting in noisier and less reliable predictions for both simple and complex stimuli. Less reliable predictions limit their acquisition of reading expertise.

  13. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng

    2012-09-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users\\' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users\\' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  14. Modeling and clustering users with evolving profiles in usage streams

    KAUST Repository

    Zhang, Chongsheng; Masseglia, Florent; Zhang, Xiangliang

    2012-01-01

    Today, there is an increasing need of data stream mining technology to discover important patterns on the fly. Existing data stream models and algorithms commonly assume that users' records or profiles in data streams will not be updated or revised once they arrive. Nevertheless, in various applications such asWeb usage, the records/profiles of the users can evolve along time. This kind of streaming data evolves in two forms, the streaming of tuples or transactions as in the case of traditional data streams, and more importantly, the evolving of user records/profiles inside the streams. Such data streams bring difficulties on modeling and clustering for exploring users' behaviors. In this paper, we propose three models to summarize this kind of data streams, which are the batch model, the Evolving Objects (EO) model and the Dynamic Data Stream (DDS) model. Through creating, updating and deleting user profiles, these models summarize the behaviors of each user as a profile object. Based upon these models, clustering algorithms are employed to discover interesting user groups from the profile objects. We have evaluated all the proposed models on a large real-world data set, showing that the DDS model summarizes the data streams with evolving tuples more efficiently and effectively, and provides better basis for clustering users than the other two models. © 2012 IEEE.

  15. Gene Therapy in Cardiac Arrhythmias

    OpenAIRE

    Praveen, S.V; Francis, Johnson; Venugopal, K

    2006-01-01

    Gene therapy has progressed from a dream to a bedside reality in quite a few human diseases. From its first application in adenosine deaminase deficiency, through the years, its application has evolved to vascular angiogenesis and cardiac arrhythmias. Gene based biological pacemakers using viral vectors or mesenchymal cells tested in animal models hold much promise. Induction of pacemaker activity within the left bundle branch can provide stable heart rates. Genetic modification of the AV...

  16. FY1995 evolvable hardware chip; 1995 nendo shinkasuru hardware chip

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project aims at the development of 'Evolvable Hardware' (EHW) which can adapt its hardware structure to the environment to attain better hardware performance, under the control of genetic algorithms. EHW is a key technology to explore the new application area requiring real-time performance and on-line adaptation. 1. Development of EHW-LSI for function level hardware evolution, which includes 15 DSPs in one chip. 2. Application of the EHW to the practical industrial applications such as data compression, ATM control, digital mobile communication. 3. Two patents : (1) the architecture and the processing method for programmable EHW-LSI. (2) The method of data compression for loss-less data, using EHW. 4. The first international conference for evolvable hardware was held by authors: Intl. Conf. on Evolvable Systems (ICES96). It was determined at ICES96 that ICES will be held every two years between Japan and Europe. So the new society has been established by us. (NEDO)

  17. Evolving Systems: An Outcome of Fondest Hopes and Wildest Dreams

    Science.gov (United States)

    Frost, Susan A.; Balas, Mark J.

    2012-01-01

    New theory is presented for evolving systems, which are autonomously controlled subsystems that self-assemble into a new evolved system with a higher purpose. Evolving systems of aerospace structures often require additional control when assembling to maintain stability during the entire evolution process. This is the concept of Adaptive Key Component Control that operates through one specific component to maintain stability during the evolution. In addition, this control must often overcome persistent disturbances that occur while the evolution is in progress. Theoretical results will be presented for Adaptive Key Component control for persistent disturbance rejection. An illustrative example will demonstrate the Adaptive Key Component controller on a system composed of rigid body and flexible body modes.

  18. Qualitative Functional Decomposition Analysis of Evolved Neuromorphic Flight Controllers

    Directory of Open Access Journals (Sweden)

    Sanjay K. Boddhu

    2012-01-01

    Full Text Available In the previous work, it was demonstrated that one can effectively employ CTRNN-EH (a neuromorphic variant of EH method methodology to evolve neuromorphic flight controllers for a flapping wing robot. This paper describes a novel frequency grouping-based analysis technique, developed to qualitatively decompose the evolved controllers into explainable functional control blocks. A summary of the previous work related to evolving flight controllers for two categories of the controller types, called autonomous and nonautonomous controllers, is provided, and the applicability of the newly developed decomposition analysis for both controller categories is demonstrated. Further, the paper concludes with appropriate discussion of ongoing work and implications for possible future work related to employing the CTRNN-EH methodology and the decomposition analysis techniques presented in this paper.

  19. Cosmic Biology How Life Could Evolve on Other Worlds

    CERN Document Server

    Irwin, Louis Neil

    2011-01-01

    It is very unlikely that little green humanoids are living on Mars. But what are the possible life forms that might exist in our Solar System and how might they have evolved? This uniquely authoritative and imaginative book on the possibilties for alien life addresses the intrinsic interest that we have about life on other worlds - reinforcing some of our assumptions and reshaping others. It introduces new possibilties that will enlarge our understanding of the issue overall, in particular the enormous range of environments and planetary conditions within which life might evolve. Cosmic Biology -discusses a broad range of possible environments where alien life might have evolved; -explains why carbon-based, water-borne life is more likely that its alternatives, but is not the only possiblity; -applies the principles of planetary science and modern biology to evolutionary scenarios on other worlds; -looks at the future fates of living systems, including those on Earth.

  20. Computational Genetic Regulatory Networks Evolvable, Self-organizing Systems

    CERN Document Server

    Knabe, Johannes F

    2013-01-01

    Genetic Regulatory Networks (GRNs) in biological organisms are primary engines for cells to enact their engagements with environments, via incessant, continually active coupling. In differentiated multicellular organisms, tremendous complexity has arisen in the course of evolution of life on earth. Engineering and science have so far achieved no working system that can compare with this complexity, depth and scope of organization. Abstracting the dynamics of genetic regulatory control to a computational framework in which artificial GRNs in artificial simulated cells differentiate while connected in a changing topology, it is possible to apply Darwinian evolution in silico to study the capacity of such developmental/differentiated GRNs to evolve. In this volume an evolutionary GRN paradigm is investigated for its evolvability and robustness in models of biological clocks, in simple differentiated multicellularity, and in evolving artificial developing 'organisms' which grow and express an ontogeny starting fr...

  1. Ebolavirus diagnosis made simple, comparable and faster than molecular detection methods: preparing for the future.

    Science.gov (United States)

    James, Ameh S; Todd, Shawn; Pollak, Nina M; Marsh, Glenn A; Macdonald, Joanne

    2018-04-23

    The 2014/2015 Ebolavirus outbreak resulted in more than 28,000 cases and 11,323 reported deaths, as of March 2016. Domestic transmission of the Guinea strain associated with the outbreak occurred mainly in six African countries, and international transmission was reported in four countries. Outbreak management was limited by the inability to rapidly diagnose infected cases. A further fifteen countries in Africa are predicted to be at risk of Ebolavirus outbreaks in the future as a consequence of climate change and urbanization. Early detection of cases and reduction of transmission rates is critical to prevent and manage future severe outbreaks. We designed a rapid assay for detection of Ebolavirus using recombinase polymerase amplification, a rapid isothermal amplification technology that can be combined with portable lateral flow detection technology. The developed rapid assay operates in 30 min and was comparable with real-time TaqMan™ PCR. Designed, screened, selected and optimized oligonucleotides using the NP coding region from Ebola Zaire virus (Guinea strain). We determined the analytical sensitivity of our Ebola rapid molecular test by testing selected primers and probe with tenfold serial dilutions (1.34 × 10 10-  1.34 × 10 1 copies/μL) of cloned NP gene from Mayinga strain of Zaire ebolavirus in pCAGGS vector, and serially diluted cultured Ebolavirus as established by real-time TaqMan™ PCR that was performed using ABI7500 in Fast Mode. We tested extracted and reverse transcribed RNA from cultured Zaire ebolavirus strains - Mayinga, Gueckedou C05, Gueckedou C07, Makona, Kissidougou and Kiwit. We determined the analytical specificity of our assay with related viruses: Marburg, Ebola Reston and Ebola Sudan. We further tested for Dengue virus 1-4, Plasmodium falciparum and West Nile Virus (Kunjin strain). The assay had a detection limit of 134 copies per μL of plasmid containing the NP gene of Ebolavirus Mayinga, and cultured Ebolavirus

  2. Evolving techniques of diagnosis. Toward establishment of new paradigm for human machine cooperation

    International Nuclear Information System (INIS)

    Kitamura, Masaharu; Takahashi, Makoto; Kanamoto, Shigeru; Saeki, Akira; Washio, Takashi; Ohga, Yukiharu; Furuta, Kazuo; Yoshikawa, Shinji

    1998-01-01

    By monitoring equipments of a plant and state of a process, the diagnostic technique to detect a sign of abnormality properly to identify its reason has often been advanced on a lot of researches in various industrial fields containing atomic force. Some fundamental studies expected for such diagnostic technique to play an important role to keep and improve operational safety of a nuclear plant have been conducted since early period of the nuclear reaction development, but their contents are evolved and changed rapidly, in recent. The technique on the diagnosis was related closely to a statistical analysis method on signal fluctuation component, so-called reactor noise analysis method in early 1980s, but technical innovation step of their recent advancement were remarkable by introduction of new techniques such as chaos theory, wavelet analysis, model base application of expert system, artificial intelligence, and so on at middle of 1980s. And, when diagnosing in the field of atomic force, owing to be required for much high ability, studies on a multi method integration system considered complementary application of a plurality of technical methods and a cooperative method between human and mechanical intelligences, are also forwarded actively faster than those in other industrial areas. In this paper, in each important item, its technical nature and present state of its application to diagnosis are described with their future technical view. (G.K.)

  3. Rapid divergence and convergence of life-history in experimentally evolved Drosophila melanogaster.

    Science.gov (United States)

    Burke, Molly K; Barter, Thomas T; Cabral, Larry G; Kezos, James N; Phillips, Mark A; Rutledge, Grant A; Phung, Kevin H; Chen, Richard H; Nguyen, Huy D; Mueller, Laurence D; Rose, Michael R

    2016-09-01

    Laboratory selection experiments are alluring in their simplicity, power, and ability to inform us about how evolution works. A longstanding challenge facing evolution experiments with metazoans is that significant generational turnover takes a long time. In this work, we present data from a unique system of experimentally evolved laboratory populations of Drosophila melanogaster that have experienced three distinct life-history selection regimes. The goal of our study was to determine how quickly populations of a certain selection regime diverge phenotypically from their ancestors, and how quickly they converge with independently derived populations that share a selection regime. Our results indicate that phenotypic divergence from an ancestral population occurs rapidly, within dozens of generations, regardless of that population's evolutionary history. Similarly, populations sharing a selection treatment converge on common phenotypes in this same time frame, regardless of selection pressures those populations may have experienced in the past. These patterns of convergence and divergence emerged much faster than expected, suggesting that intermediate evolutionary history has transient effects in this system. The results we draw from this system are applicable to other experimental evolution projects, and suggest that many relevant questions can be sufficiently tested on shorter timescales than previously thought. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  4. New Gene Evolution: Little Did We Know

    Science.gov (United States)

    Long, Manyuan; VanKuren, Nicholas W.; Chen, Sidi; Vibranovski, Maria D.

    2014-01-01

    Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and evolve as critical components of the genetic systems determining the biological diversity of life. Two decades of effort have shed light on the process of new gene origination, and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular and phenotypic functions. PMID:24050177

  5. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication.

    Science.gov (United States)

    Tanizawa, Yasuhiro; Fujisawa, Takatomo; Nakamura, Yasukazu

    2018-03-15

    We developed a prokaryotic genome annotation pipeline, DFAST, that also supports genome submission to public sequence databases. DFAST was originally started as an on-line annotation server, and to date, over 7000 jobs have been processed since its first launch in 2016. Here, we present a newly implemented background annotation engine for DFAST, which is also available as a standalone command-line program. The new engine can annotate a typical-sized bacterial genome within 10 min, with rich information such as pseudogenes, translation exceptions and orthologous gene assignment between given reference genomes. In addition, the modular framework of DFAST allows users to customize the annotation workflow easily and will also facilitate extensions for new functions and incorporation of new tools in the future. The software is implemented in Python 3 and runs in both Python 2.7 and 3.4-on Macintosh and Linux systems. It is freely available at https://github.com/nigyta/dfast_core/under the GPLv3 license with external binaries bundled in the software distribution. An on-line version is also available at https://dfast.nig.ac.jp/. yn@nig.ac.jp. Supplementary data are available at Bioinformatics online.

  6. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.

    Science.gov (United States)

    Liu, Zhenhua; Boachon, Benoît; Lugan, Raphaël; Tavares, Raquel; Erhardt, Mathieu; Mutterer, Jérôme; Demais, Valérie; Pateyron, Stéphanie; Brunaud, Véronique; Ohnishi, Toshiyuki; Pencik, Ales; Achard, Patrick; Gong, Fan; Hedden, Peter; Werck-Reichhart, Danièle; Renault, Hugues

    2015-12-07

    Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  7. Radionuclide reporter gene imaging for cardiac gene therapy

    International Nuclear Information System (INIS)

    Inubushi, Masayuki; Tamaki, Nagara

    2007-01-01

    In the field of cardiac gene therapy, angiogenic gene therapy has been most extensively investigated. The first clinical trial of cardiac angiogenic gene therapy was reported in 1998, and at the peak, more than 20 clinical trial protocols were under evaluation. However, most trials have ceased owing to the lack of decisive proof of therapeutic effects and the potential risks of viral vectors. In order to further advance cardiac angiogenic gene therapy, remaining open issues need to be resolved: there needs to be improvement of gene transfer methods, regulation of gene expression, development of much safer vectors and optimisation of therapeutic genes. For these purposes, imaging of gene expression in living organisms is of great importance. In radionuclide reporter gene imaging, ''reporter genes'' transferred into cell nuclei encode for a protein that retains a complementary ''reporter probe'' of a positron or single-photon emitter; thus expression of the reporter genes can be imaged with positron emission tomography or single-photon emission computed tomography. Accordingly, in the setting of gene therapy, the location, magnitude and duration of the therapeutic gene co-expression with the reporter genes can be monitored non-invasively. In the near future, gene therapy may evolve into combination therapy with stem/progenitor cell transplantation, so-called cell-based gene therapy or gene-modified cell therapy. Radionuclide reporter gene imaging is now expected to contribute in providing evidence on the usefulness of this novel therapeutic approach, as well as in investigating the molecular mechanisms underlying neovascularisation and safety issues relevant to further progress in conventional gene therapy. (orig.)

  8. Genome-wide analysis of the Solanum tuberosum (potato) trehalose-6-phosphate synthase (TPS) gene family: evolution and differential expression during development and stress.

    Science.gov (United States)

    Xu, Yingchun; Wang, Yanjie; Mattson, Neil; Yang, Liu; Jin, Qijiang

    2017-12-01

    Trehalose-6-phosphate synthase (TPS) serves important functions in plant desiccation tolerance and response to environmental stimuli. At present, a comprehensive analysis, i.e. functional classification, molecular evolution, and expression patterns of this gene family are still lacking in Solanum tuberosum (potato). In this study, a comprehensive analysis of the TPS gene family was conducted in potato. A total of eight putative potato TPS genes (StTPSs) were identified by searching the latest potato genome sequence. The amino acid identity among eight StTPSs varied from 59.91 to 89.54%. Analysis of d N /d S ratios suggested that regions in the TPP (trehalose-6-phosphate phosphatase) domains evolved faster than the TPS domains. Although the sequence of the eight StTPSs showed high similarity (2571-2796 bp), their gene length is highly differentiated (3189-8406 bp). Many of the regulatory elements possibly related to phytohormones, abiotic stress and development were identified in different TPS genes. Based on the phylogenetic tree constructed using TPS genes of potato, and four other Solanaceae plants, TPS genes could be categorized into 6 distinct groups. Analysis revealed that purifying selection most likely played a major role during the evolution of this family. Amino acid changes detected in specific branches of the phylogenetic tree suggests relaxed constraints might have contributed to functional divergence among groups. Moreover, StTPSs were found to exhibit tissue and treatment specific expression patterns upon analysis of transcriptome data, and performing qRT-PCR. This study provides a reference for genome-wide identification of the potato TPS gene family and sets a framework for further functional studies of this important gene family in development and stress response.

  9. Behaviour of and mass transfer at gas-evolving electrodes

    NARCIS (Netherlands)

    Janssen, L.J.J.

    1989-01-01

    A completes set of models for the mass transfer of indicator ions to gas-evolving electrodes with different behaviour of bubbles is described theoretically. Sliding bubbles, rising detached single bubbles, jumping detached coalescence bubbles and ensembles of these types of bubbles are taken into

  10. Analysis of Lamarckian Evolution in Morphologically Evolving Robots

    NARCIS (Netherlands)

    Jelisavcic, Milan; Kiesel, Rafael; Glette, Kyrre; Haasdijk, Evert; Eiben, A.E.

    Evolving robot morphologies implies the need for lifetime learning so that newborn robots can learn to manipulate their bodies. An individual’s morphology will obviously combine traits of all its parents; it must adapt its own controller to suit its morphology, and cannot rely on the controller of

  11. Evolving fuzzy rules for relaxed-criteria negotiation.

    Science.gov (United States)

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  12. Friends Drinking Together: Young Adults' Evolving Support Practices

    Science.gov (United States)

    Dresler, Emma; Anderson, Margaret

    2018-01-01

    Purpose: Young adult's drinking is about pleasure, a communal practice of socialising together in a friendship group. The purpose of this paper is to investigate the evolving support practices of drinking groups for better targeting of health communications messages. Design/methodology/approach: This qualitative descriptive study examined the…

  13. Evolving Concepts of Development through the Experience of ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    This project will explore the experiences of emerging and developing countries in order to identify how the concept of international development has evolved and where it they may be heading. It will do so through a series of workshops convening scholars and practitioners from both the developing and the industrialized ...

  14. Heritage – A Conceptually Evolving and Dissonant Phenomenon ...

    African Journals Online (AJOL)

    I therefore, drawing from literature and experiences gained during field observations and focus group interviews, came up with the idea of working with three viewpoints of heritage. Drawing on real life cases I argue that current heritage management and education practices' failure to recognise and respect the evolving, ...

  15. A Conceptual Framework for Evolving, Recommender Online Learning Systems

    Science.gov (United States)

    Peiris, K. Dharini Amitha; Gallupe, R. Brent

    2012-01-01

    A comprehensive conceptual framework is developed and described for evolving recommender-driven online learning systems (ROLS). This framework describes how such systems can support students, course authors, course instructors, systems administrators, and policy makers in developing and using these ROLS. The design science information systems…

  16. Evolving intelligent vehicle control using multi-objective NEAT

    NARCIS (Netherlands)

    Willigen, W.H. van; Haasdijk, E.; Kester, L.J.H.M.

    2013-01-01

    The research in this paper is inspired by a vision of intelligent vehicles that autonomously move along motorways: they join and leave trains of vehicles (platoons), overtake other vehicles, etc. We propose a multi-objective algorithm based on NEAT and SPEA2 that evolves controllers for such

  17. Hormonal evaluation of the infertile male: has it evolved?

    Science.gov (United States)

    Sussman, Ernest M; Chudnovsky, Aleksander; Niederberger, Craig S

    2008-05-01

    An endocrinologic evaluation of patients who have male-factor infertility has clearly evolved and leads to specific diagnoses and treatment strategies in a large population of infertile men. A well-considered endocrine evaluation is especially essential with the ever-growing popularity of assisted reproductive techniques and continued refinements with intracytoplasmic sperm injection.

  18. Regional and Inter-Regional Effects in Evolving Climate Networks

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Vejmelka, Martin; Donner, R.; Marwan, N.; Kurths, J.; Paluš, Milan

    2014-01-01

    Roč. 21, č. 2 (2014), s. 451-462 ISSN 1023-5809 R&D Projects: GA ČR GCP103/11/J068 Institutional support: RVO:67985807 Keywords : climate networks * evolving networks * principal component analysis * network connectivity * El Nino Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 0.987, year: 2014

  19. Multivariate Epi-splines and Evolving Function Identification Problems

    Science.gov (United States)

    2015-04-15

    such extrinsic information as well as observed function and subgradient values often evolve in applications, we establish conditions under which the...previous study [30] dealt with compact intervals of IR. Splines are intimately tied to optimization problems through their variational theory pioneered...approxima- tion. Motivated by applications in curve fitting, regression, probability density estimation, variogram computation, financial curve construction

  20. Adapting Morphology to Multiple Tasks in Evolved Virtual Creatures

    DEFF Research Database (Denmark)

    Lessin, Dan; Fussell, Don; Miikkulainen, Risto

    2014-01-01

    The ESP method for evolving virtual creatures (Lessin et al., 2013) consisted of an encapsulation mechanism to preserve learned skills, a human-designed syllabus to build higherlevel skills by combining lower-level skills systematically, and a pandemonium mechanism to resolve conflicts between...

  1. Exploring the Evolving Professional Identity of Novice School Counselors

    Science.gov (United States)

    Bamgbose, Olamojiba Omolara

    2017-01-01

    The study employed a grounded theory approach to explore the evolving professional identity of novice school counselors. Participants, who are currently employed as school counselors at the elementary, middle, or high school level with 1-4 years' experience, were career changers from other helping professions and graduates from an intensive school…

  2. Evaluation and testing methodology for evolving entertainment systems

    NARCIS (Netherlands)

    Jurgelionis, A.; Bellotti, F.; IJsselsteijn, W.A.; Kort, de Y.A.W.; Bernhaupt, R.; Tscheligi, M.

    2007-01-01

    This paper presents a testing and evaluation methodology for evolving pervasive gaming and multimedia systems. We introduce the Games@Large system, a complex gaming and multimedia architecture comprised of a multitude of elements: heterogeneous end user devices, wireless and wired network

  3. Degree distribution of a new model for evolving networks

    Indian Academy of Sciences (India)

    on intuitive but realistic consideration that nodes are added to the network with both preferential and random attachments. The degree distribution of the model is between a power-law and an exponential decay. Motivated by the features of network evolution, we introduce a new model of evolving networks, incorporating the ...

  4. Evolving Nature of Sexual Orientation and Gender Identity

    Science.gov (United States)

    Jourian, T. J.

    2015-01-01

    This chapter discusses the historical and evolving terminology, constructs, and ideologies that inform the language used by those who are lesbian, gay, bisexual, and same-gender loving, who may identify as queer, as well as those who are members of trans* communities from multiple and intersectional perspectives.

  5. The Evolving Military Learner Population: A Review of the Literature

    Science.gov (United States)

    Ford, Kate; Vignare, Karen

    2015-01-01

    This literature review examines the evolving online military learner population with emphasis on current generation military learners, who are most frequently Post-9/11 veterans. The review synthesizes recent scholarly and grey literature on military learner demographics and attributes, college experiences, and academic outcomes against a backdrop…

  6. The evolving role of governments in the nuclear energy field

    International Nuclear Information System (INIS)

    Anon.

    2004-01-01

    The NEA Nuclear Development Committee (NDC) recently completed a study that looks into the evolving role of governments in nuclear energy matters. Many decisions on government intervention in recent decades have been based on the earlier experience of what works best. The report suggests some considerations that all governments could take into account when establishing their respective roles. (author)

  7. Evolving information systems: meeting the ever-changing environment

    NARCIS (Netherlands)

    Oei, J.L.H.; Proper, H.A.; Falkenberg, E.D.

    1994-01-01

    To meet the demands of organizations and their ever-changing environment, information systems are required which are able to evolve to the same extent as organizations do. Such a system has to support changes in all time-and application-dependent aspects. In this paper, requirements and a conceptual

  8. You 3.0: The Most Important Evolving Technology

    Science.gov (United States)

    Tamarkin, Molly; Bantz, David A.; Childs, Melody; diFilipo, Stephen; Landry, Stephen G.; LoPresti, Frances; McDonald, Robert H.; McGuthry, John W.; Meier, Tina; Rodrigo, Rochelle; Sparrow, Jennifer; Diggs, D. Teddy; Yang, Catherine W.

    2010-01-01

    That technology evolves is a given. Not as well understood is the impact of technological evolution on each individual--on oneself, one's skill development, one's career, and one's relationship with the work community. The authors believe that everyone in higher education will become an IT worker and that IT workers will be managing a growing…

  9. Sextant: Visualizing time-evolving linked geospatial data

    NARCIS (Netherlands)

    C. Nikolaou (Charalampos); K. Dogani (Kallirroi); K. Bereta (Konstantina); G. Garbis (George); M. Karpathiotakis (Manos); K. Kyzirakos (Konstantinos); M. Koubarakis (Manolis)

    2015-01-01

    textabstractThe linked open data cloud is constantly evolving as datasets get continuously updated with newer versions. As a result, representing, querying, and visualizing the temporal dimension of linked data is crucial. This is especially important for geospatial datasets that form the backbone

  10. Adaptive inferential sensors based on evolving fuzzy models.

    Science.gov (United States)

    Angelov, Plamen; Kordon, Arthur

    2010-04-01

    A new technique to the design and use of inferential sensors in the process industry is proposed in this paper, which is based on the recently introduced concept of evolving fuzzy models (EFMs). They address the challenge that the modern process industry faces today, namely, to develop such adaptive and self-calibrating online inferential sensors that reduce the maintenance costs while keeping the high precision and interpretability/transparency. The proposed new methodology makes possible inferential sensors to recalibrate automatically, which reduces significantly the life-cycle efforts for their maintenance. This is achieved by the adaptive and flexible open-structure EFM used. The novelty of this paper lies in the following: (1) the overall concept of inferential sensors with evolving and self-developing structure from the data streams; (2) the new methodology for online automatic selection of input variables that are most relevant for the prediction; (3) the technique to detect automatically a shift in the data pattern using the age of the clusters (and fuzzy rules); (4) the online standardization technique used by the learning procedure of the evolving model; and (5) the application of this innovative approach to several real-life industrial processes from the chemical industry (evolving inferential sensors, namely, eSensors, were used for predicting the chemical properties of different products in The Dow Chemical Company, Freeport, TX). It should be noted, however, that the methodology and conclusions of this paper are valid for the broader area of chemical and process industries in general. The results demonstrate that well-interpretable and with-simple-structure inferential sensors can automatically be designed from the data stream in real time, which predict various process variables of interest. The proposed approach can be used as a basis for the development of a new generation of adaptive and evolving inferential sensors that can address the

  11. Evolvable mathematical models: A new artificial Intelligence paradigm

    Science.gov (United States)

    Grouchy, Paul

    We develop a novel Artificial Intelligence paradigm to generate autonomously artificial agents as mathematical models of behaviour. Agent/environment inputs are mapped to agent outputs via equation trees which are evolved in a manner similar to Symbolic Regression in Genetic Programming. Equations are comprised of only the four basic mathematical operators, addition, subtraction, multiplication and division, as well as input and output variables and constants. From these operations, equations can be constructed that approximate any analytic function. These Evolvable Mathematical Models (EMMs) are tested and compared to their Artificial Neural Network (ANN) counterparts on two benchmarking tasks: the double-pole balancing without velocity information benchmark and the challenging discrete Double-T Maze experiments with homing. The results from these experiments show that EMMs are capable of solving tasks typically solved by ANNs, and that they have the ability to produce agents that demonstrate learning behaviours. To further explore the capabilities of EMMs, as well as to investigate the evolutionary origins of communication, we develop NoiseWorld, an Artificial Life simulation in which interagent communication emerges and evolves from initially noncommunicating EMM-based agents. Agents develop the capability to transmit their x and y position information over a one-dimensional channel via a complex, dialogue-based communication scheme. These evolved communication schemes are analyzed and their evolutionary trajectories examined, yielding significant insight into the emergence and subsequent evolution of cooperative communication. Evolved agents from NoiseWorld are successfully transferred onto physical robots, demonstrating the transferability of EMM-based AIs from simulation into physical reality.

  12. The Drosophila melanogaster Muc68E Mucin Gene Influences Adult Size, Starvation Tolerance, and Cold Recovery.

    Science.gov (United States)

    Reis, Micael; Silva, Ana C; Vieira, Cristina P; Vieira, Jorge

    2016-07-07

    Mucins have been implicated in many different biological processes, such as protection from mechanical damage, microorganisms, and toxic molecules, as well as providing a luminal scaffold during development. Nevertheless, it is conceivable that mucins have the potential to modulate food absorption as well, and thus contribute to the definition of several important phenotypic traits. Here we show that the Drosophila melanogaster Muc68E gene is 40- to 60-million-yr old, and is present in Drosophila species of the subgenus Sophophora only. The central repeat region of this gene is fast evolving, and shows evidence for repeated expansions/contractions. This and/or frequent gene conversion events lead to the homogenization of its repeats. The amino acid pattern P[ED][ED][ST][ST][ST] is found in the repeat region of Muc68E proteins from all Drosophila species studied, and can occur multiple times within a single conserved repeat block, and thus may have functional significance. Muc68E is a nonessential gene under laboratory conditions, but Muc68E mutant flies are smaller and lighter than controls at birth. However, at 4 d of age, Muc68E mutants are heavier, recover faster from chill-coma, and are more resistant to starvation than control flies, although they have the same percentage of lipids as controls. Mutant flies have enlarged abdominal size 1 d after chill-coma recovery, which is associated with higher lipid content. These results suggest that Muc68E has a role in metabolism modulation, food absorption, and/or feeding patterns in larvae and adults, and under normal and stress conditions. Such biological function is novel for mucin genes. Copyright © 2016 Reis et al.

  13. Non-functional genes repaired at the RNA level.

    Science.gov (United States)

    Burger, Gertraud

    2016-01-01

    Genomes and genes continuously evolve. Gene sequences undergo substitutions, deletions or nucleotide insertions; mobile genetic elements invade genomes and interleave in genes; chromosomes break, even within genes, and pieces reseal in reshuffled order. To maintain functional gene products and assure an organism's survival, two principal strategies are used - either repair of the gene itself or of its product. I will introduce common types of gene aberrations and how gene function is restored secondarily, and then focus on systematically fragmented genes found in a poorly studied protist group, the diplonemids. Expression of their broken genes involves restitching of pieces at the RNA-level, and substantial RNA editing, to compensate for point mutations. I will conclude with thoughts on how such a grotesquely unorthodox system may have evolved, and why this group of organisms persists and thrives since tens of millions of years. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  14. Functional similarities between pigeon 'milk' and mammalian milk: induction of immune gene expression and modification of the microbiota.

    Directory of Open Access Journals (Sweden)

    Meagan J Gillespie

    Full Text Available Pigeon 'milk' and mammalian milk have functional similarities in terms of nutritional benefit and delivery of immunoglobulins to the young. Mammalian milk has been clearly shown to aid in the development of the immune system and microbiota of the young, but similar effects have not yet been attributed to pigeon 'milk'. Therefore, using a chicken model, we investigated the effect of pigeon 'milk' on immune gene expression in the Gut Associated Lymphoid Tissue (GALT and on the composition of the caecal microbiota. Chickens fed pigeon 'milk' had a faster rate of growth and a better feed conversion ratio than control chickens. There was significantly enhanced expression of immune-related gene pathways and interferon-stimulated genes in the GALT of pigeon 'milk'-fed chickens. These pathways include the innate immune response, regulation of cytokine production and regulation of B cell activation and proliferation. The caecal microbiota of pigeon 'milk'-fed chickens was significantly more diverse than control chickens, and appears to be affected by prebiotics in pigeon 'milk', as well as being directly seeded by bacteria present in pigeon 'milk'. Our results demonstrate that pigeon 'milk' has further modes of action which make it functionally similar to mammalian milk. We hypothesise that pigeon 'lactation' and mammalian lactation evolved independently but resulted in similarly functional products.

  15. It Remains Unknown Whether Filaggrin Gene Mutations Evolved to Increase Cutaneous Synthesis of Vitamin D

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Elias, Peter M

    2017-01-01

    encountered in Northern Europeans. Importantly, FLG mutation carriers have 10% increased serum vitamin D concentrations compared to controls. Based on these observations, we have proposed that this latitude-dependent gradient of FLG mutations across Europe, Asia and Africa could have provided an evolutionary...... would have provided an evolutionary advantage for modern humans, living in the far North of Europe, where little UV-B penetrates the atomosphere. In a recent article, it was concluded not only that the UVB-Vitamin D3 hypothesis is invalid, but also that FLG genetic variations, including loss...

  16. Review disorders of sex development: The evolving role of genomics in diagnosis and gene discovery.

    Science.gov (United States)

    Croft, Brittany; Ayers, Katie; Sinclair, Andrew; Ohnesorg, Thomas

    2016-12-01

    Disorders of Sex Development (DSDs) are a major paediatric concern and are estimated to occur in around 1.7% of all live births (Fausto-Sterling, Sexing the Body: Gender Politics and the Construction of Sexuality, Basic Books, New York, 2000). They are often caused by the breakdown in the complex genetic mechanisms that underlie gonadal development and differentiation. Having a genetic diagnosis can be important for patients with a DSD: it can increase acceptance of a disorder often surrounded by stigma, alter clinical management and it can assist in reproductive planning. While Massively Parallel Sequencing (MPS) is advancing the genetic diagnosis of rare Mendelian disorders, it is not yet clear which MPS assay is best suited for the clinical diagnosis of DSD patients and to what extent other established methods are still relevant. To complicate matters, DSDs represent a wide spectrum of disorders caused by an array of different genetic changes, many of which are yet unknown. Here we discuss the different genetic lesions that are known to contribute to different DSDs, and review the utility of a range of MPS approaches for diagnosing DSD patients. Birth Defects Research (Part C) 108:337-350, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  17. An RNA gene expressed during cortical development evolved rapidly in humans

    DEFF Research Database (Denmark)

    Pollard, Katherine S; Salama, Sofie R; Lambert, Nelle

    2006-01-01

    in the developing human neocortex from 7 to 19 gestational weeks, a crucial period for cortical neuron specification and migration. HAR1F is co-expressed with reelin, a product of Cajal-Retzius neurons that is of fundamental importance in specifying the six-layer structure of the human cortex. HAR1 and the other...

  18. Genes, evolution and intelligence.

    Science.gov (United States)

    Bouchard, Thomas J

    2014-11-01

    I argue that the g factor meets the fundamental criteria of a scientific construct more fully than any other conception of intelligence. I briefly discuss the evidence regarding the relationship of brain size to intelligence. A review of a large body of evidence demonstrates that there is a g factor in a wide range of species and that, in the species studied, it relates to brain size and is heritable. These findings suggest that many species have evolved a general-purpose mechanism (a general biological intelligence) for dealing with the environments in which they evolved. In spite of numerous studies with considerable statistical power, we know of very few genes that influence g and the effects are very small. Nevertheless, g appears to be highly polygenic. Given the complexity of the human brain, it is not surprising that that one of its primary faculties-intelligence-is best explained by the near infinitesimal model of quantitative genetics.

  19. Isolation and identification of differentially expressed genes between ...

    African Journals Online (AJOL)

    Plants have evolved sophisticated molecular defense mechanisms in order to survive disease conditions. So far, a number of pathogen resistance (R) genes have been reported in plants. These R genes are thought to be involved in activating the signals that lead to disease resistance. The structural specificity of R genes ...

  20. Fitness costs associated with field-evolved resistance to Bt maize in Spodoptera frugiperda (Lepidoptera: Noctuidae).

    Science.gov (United States)

    Jakka, S R K; Knight, V R; Jurat-Fuentes, J L

    2014-02-01

    Increasing adoption of transgenic crops expressing cry toxin genes from Bacillus thuringiensis (Bt crops) represents an augmented risk for development of insect resistance. While fitness costs can greatly influence the rate of resistance evolution, most available data related to Bt resistance have been obtained from laboratory-selected insect strains. In this article, we test the existence of fitness costs associated with high levels of field-evolved resistance to Bt maize event TC1507 in a strain of Spodoptera frugiperda (JE Smith) originated from maize fields in Puerto Rico. Fitness costs in resistant S. frugiperda were evaluated by comparing biological performance to susceptible insects when reared on meridic diet, maize or soybean leaf tissue, or cotton reproductive tissues. Parameters monitored included larval survival, larval and pupal weights, developmental time (larval and pupal), adult longevity, reproductive traits (fecundity and fertility), and sex ratio. We found that all monitored parameters were influenced to a similar extent by the host, independently of susceptibility to Bt maize. The only parameter that significantly differed between strains for all hosts was a longer larval developmental period in resistant S. frugiperda, which resulted in emergence asynchrony between susceptible and resistant adults. To test the relevance of fitness costs in resistant S. frugiperda, we performed a selection experiment to monitor the stability of resistance in a heterogeneous strain through 12 generations of rearing on meridic diet. Our data demonstrate lack of fitness costs relevant to stability of field-evolved resistance to Bt maize and help explain reported stability of field-evolved resistance in Puerto Rican populations of S. frugiperda.

  1. Clustering impact regime with shocks in freely evolving granular gas

    Science.gov (United States)

    Isobe, Masaharu

    2017-06-01

    A freely cooling granular gas without any external force evolves from the initial homogeneous state to the inhomogeneous clustering state, at which the energy decay deviates from the Haff's law. The asymptotic behavior of energy in the inelastic hard sphere model have been predicted by several theories, which are based on the mode coupling theory or extension of inelastic hard rods gas. In this study, we revisited the clustering regime of freely evolving granular gas via large-scale molecular dynamics simulation with up to 16.7 million inelastic hard disks. We found novel regime regarding on collisions between "clusters" spontaneously appearing after clustering regime, which can only be identified more than a few million particles system. The volumetric dilatation pattern of semicircular shape originated from density shock propagation are well characterized on the appearing of "cluster impact" during the aggregation process of clusters.

  2. Finding evolved stars in the inner Galactic disk with Gaia

    Science.gov (United States)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Pihlström, Y. M.; Sjouwerman, L. O.; Brown, A. G. A.

    2018-04-01

    The Bulge Asymmetries and Dynamical Evolution (BAaDE) survey will provide positions and line-of-sight velocities of ~20, 000 evolved, maser bearing stars in the Galactic plane. Although this Galactic region is affected by optical extinction, BAaDE targets may have Gaia cross-matches, eventually providing additional stellar information. In an initial attempt to cross-match BAaDE targets with Gaia, we have found more than 5,000 candidates. Of these, we may expect half to show SiO emission, which will allow us to obtain velocity information. The cross-match is being refined to avoid false positives using different criteria based on distance analysis, flux variability, and color assessment in the mid- and near-IR. Once the cross-matches can be confirmed, we will have a unique sample to characterize the stellar population of evolved stars in the Galactic bulge, which can be considered fossils of the Milky Way formation.

  3. Self-regulating and self-evolving particle swarm optimizer

    Science.gov (United States)

    Wang, Hui-Min; Qiao, Zhao-Wei; Xia, Chang-Liang; Li, Liang-Yu

    2015-01-01

    In this article, a novel self-regulating and self-evolving particle swarm optimizer (SSPSO) is proposed. Learning from the idea of direction reversal, self-regulating behaviour is a modified position update rule for particles, according to which the algorithm improves the best position to accelerate convergence in situations where the traditional update rule does not work. Borrowing the idea of mutation from evolutionary computation, self-evolving behaviour acts on the current best particle in the swarm to prevent the algorithm from prematurely converging. The performance of SSPSO and four other improved particle swarm optimizers is numerically evaluated by unimodal, multimodal and rotated multimodal benchmark functions. The effectiveness of SSPSO in solving real-world problems is shown by the magnetic optimization of a Halbach-based permanent magnet machine. The results show that SSPSO has good convergence performance and high reliability, and is well matched to actual problems.

  4. AUTOMOTIVE APPLICATIONS OF EVOLVING TAKAGI-SUGENO-KANG FUZZY MODELS

    Directory of Open Access Journals (Sweden)

    Radu-Emil Precup

    2017-08-01

    Full Text Available This paper presents theoretical and application results concerning the development of evolving Takagi-Sugeno-Kang fuzzy models for two dynamic systems, which will be viewed as controlled processes, in the field of automotive applications. The two dynamic systems models are nonlinear dynamics of the longitudinal slip in the Anti-lock Braking Systems (ABS and the vehicle speed in vehicles with the Continuously Variable Transmission (CVT systems. The evolving Takagi-Sugeno-Kang fuzzy models are obtained as discrete-time fuzzy models by incremental online identification algorithms. The fuzzy models are validated against experimental results in the case of the ABS and the first principles simulation results in the case of the vehicle with the CVT.

  5. Design of the tool for periodic not evolvent profiles

    Directory of Open Access Journals (Sweden)

    Anisimov Roman

    2017-01-01

    Full Text Available The new approach to profiling of the tool for processing of parts with periodic not evolvent profiles are considered in the article The discriminatory analysis of periodic profiles including repetition of profile both in the plane of perpendicular axis of part, and in the plane of passing along part of axis is offered. In the basis of the offered profiling method the idea of space shaping by rated surface of product of tool surface lies. The big advantage of the offered approach in profiling is its combination with the analysis of parameters of process of engineering work. It allows to predict the accuracy and surface quality of product with not evolvent periodic profile. While using the offered approach the pinion cutter for processing of wheels with internal triangular teeths and mill for processing of the screw of the counter of consumption of liquid, complex profile of which consists of several formings, have been received

  6. Evolvability of thermophilic proteins from archaea and bacteria.

    Science.gov (United States)

    Takano, Kazufumi; Aoi, Atsushi; Koga, Yuichi; Kanaya, Shigenori

    2013-07-16

    Proteins from thermophiles possess high thermostability. The stabilization mechanisms differ between archaeal and bacterial proteins, whereby archaeal proteins are mainly stabilized via hydrophobic interactions and bacterial proteins by ion pairs. High stability is an important factor in promoting protein evolution, but the precise means by which different stabilization mechanisms affect the evolution process remain unclear. In this study, we investigated a random mutational drift of esterases from thermophilic archaea and bacteria at high temperatures. Our results indicate that mutations in archaeal proteins lead to improved function with no loss of stability, while mutant bacterial proteins are largely destabilized with decreased activity at high temperatures. On the basis of these findings, we suggest that archaeal proteins possess higher "evolvability" than bacterial proteins under temperature selection and are additionally able to evolve into eukaryotic proteins.

  7. Real-time evolvable pulse shaper for radiation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Lanchares, Juan, E-mail: julandan@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Garnica, Oscar, E-mail: ogarnica@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Risco-Martín, José L., E-mail: jlrisco@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Ignacio Hidalgo, J., E-mail: hidalgo@dacya.ucm.es [Facultad de Informática, Universidad Complutense de Madrid (UCM), C/Prof. José García Santesmases s/n, 28040 Madrid (Spain); Regadío, Alberto, E-mail: alberto.regadio@insa.es [Área de Tecnologías Electrónicas, Instituto Nacional de Técnica Aeroespacial (INTA), 28850 Torrejón de Ardoz, Madrid (Spain)

    2013-11-01

    In the last two decades, recursive algorithms for real-time digital pulse shaping in pulse height measurements have been developed and published in number of articles and textbooks. All these algorithms try to synthesize in real time optimum or near optimum shapes in the presence of noise. Even though some of these shapers can be considered effective designs, some side effects like aging cannot be ignored. We may observe that after sensors degradation, the signal obtained is not valid. In this regard, we present in this paper a novel technique that, based on evolvable hardware concepts, is able to evolve the degenerated shaper into a new design with better performance than the original one under the new sensor features.

  8. Programming adaptive control to evolve increased metabolite production.

    Science.gov (United States)

    Chou, Howard H; Keasling, Jay D

    2013-01-01

    The complexity inherent in biological systems challenges efforts to rationally engineer novel phenotypes, especially those not amenable to high-throughput screens and selections. In nature, increased mutation rates generate diversity in a population that can lead to the evolution of new phenotypes. Here we construct an adaptive control system that increases the mutation rate in order to generate diversity in the population, and decreases the mutation rate as the concentration of a target metabolite increases. This system is called feedback-regulated evolution of phenotype (FREP), and is implemented with a sensor to gauge the concentration of a metabolite and an actuator to alter the mutation rate. To evolve certain novel traits that have no known natural sensors, we develop a framework to assemble synthetic transcription factors using metabolic enzymes and construct four different sensors that recognize isopentenyl diphosphate in bacteria and yeast. We verify FREP by evolving increased tyrosine and isoprenoid production.

  9. Evolving approaches to the ethical management of genomic data.

    Science.gov (United States)

    McEwen, Jean E; Boyer, Joy T; Sun, Kathie Y

    2013-06-01

    The ethical landscape in the field of genomics is rapidly shifting. Plummeting sequencing costs, along with ongoing advances in bioinformatics, now make it possible to generate an enormous volume of genomic data about vast numbers of people. The informational richness, complexity, and frequently uncertain meaning of these data, coupled with evolving norms surrounding the sharing of data and samples and persistent privacy concerns, have generated a range of approaches to the ethical management of genomic information. As calls increase for the expanded use of broad or even open consent, and as controversy grows about how best to handle incidental genomic findings, these approaches, informed by normative analysis and empirical data, will continue to evolve alongside the science. Published by Elsevier Ltd.

  10. Evolving Robot Controllers for Structured Environments Through Environment Decomposition

    DEFF Research Database (Denmark)

    Moreno, Rodrigo; Faiña, Andres; Støy, Kasper

    2015-01-01

    In this paper we aim to develop a controller that allows a robot to traverse an structured environment. The approach we use is to decompose the environment into simple sub-environments that we use as basis for evolving the controller. Specifically, we decompose a narrow corridor environment...... environments and that the order in which the decomposed sub-environments are presented in sequence impacts the performance of the evolutionary algorithm....

  11. The Evolving Importance of Banks and Securities Markets

    OpenAIRE

    Demirguc-Kunt, Asli; Feyen, Erik; Levine, Ross

    2011-01-01

    The roles of banks and securities markets evolve during the process of economic development. As countries develop economically, (1) the size of both banks and securities markets increases relative to the size of the economy, (2) the association between an increase in economic output and an increase in bank development becomes smaller, and (3) the association between an increase in economic output and an increase in securities market development becomes larger. These findings are consistent wi...

  12. A novel evolving scale-free model with tunable attractiveness

    International Nuclear Information System (INIS)

    Xuan, Liu; Tian-Qi, Liu; Xing-Yuan, Li; Hao, Wang

    2010-01-01

    In this paper, a new evolving model with tunable attractiveness is presented. Based on the Barabasi–Albert (BA) model, we introduce the attractiveness of node which can change with node degree. Using the mean-field theory, we obtain the analytical expression of power-law degree distribution with the exponent γ in (3, ∞). The new model is more homogeneous and has a lower clustering coefficient and bigger average path length than the BA model. (general)

  13. india's northward drift and collision with asia: evolving faunal response

    Indian Academy of Sciences (India)

    INDIA'S NORTHWARD DRIFT AND COLLISION WITH ASIA: EVOLVING FAUNAL RESPONSE · Slide 2 · Slide 3 · Slide 4 · Slide 5 · Slide 6 · Slide 7 · Slide 8 · Slide 9 · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Slide 16 · Slide 17 · Slide 18 · Slide 19 · Slide 20 · Slide 21 · Slide 22 · Slide 23 · Slide 24.

  14. Reconstructing the Morphology of an Evolving Coronal Mass Ejection

    Science.gov (United States)

    2009-01-01

    694, 707 Wood, B. E., Howard, R. A ., Thernisien, A ., Plunkett, S. P., & Socker, D. G. 2009b, Sol. Phys., 259, 163 Wood, B. E., Karovska , M., Chen, J...Reconstructing the Morphology of an Evolving Coronal Mass Ejection B. E. Wood, R. A . Howard, D. G. Socker Naval Research Laboratory, Space Science...mission, we empirically reconstruct the time-dependent three-dimensional morphology of a coronal mass ejection (CME) from 2008 June 1, which exhibits

  15. Analysis of motility in multicellular Chlamydomonas reinhardtii evolved under predation.

    Directory of Open Access Journals (Sweden)

    Margrethe Boyd

    Full Text Available The advent of multicellularity was a watershed event in the history of life, yet the transition from unicellularity to multicellularity is not well understood. Multicellularity opens up opportunities for innovations in intercellular communication, cooperation, and specialization, which can provide selective advantages under certain ecological conditions. The unicellular alga Chlamydomonas reinhardtii has never had a multicellular ancestor yet it is closely related to the volvocine algae, a clade containing taxa that range from simple unicells to large, specialized multicellular colonies. Simple multicellular structures have been observed to evolve in C. reinhardtii in response to predation or to settling rate-based selection. Structures formed in response to predation consist of individual cells confined within a shared transparent extracellular matrix. Evolved isolates form such structures obligately under culture conditions in which their wild type ancestors do not, indicating that newly-evolved multicellularity is heritable. C. reinhardtii is capable of photosynthesis, and possesses an eyespot and two flagella with which it moves towards or away from light in order to optimize input of radiant energy. Motility contributes to C. reinhardtii fitness because it allows cells or colonies to achieve this optimum. Utilizing phototaxis to assay motility, we determined that newly evolved multicellular strains do not exhibit significant directional movement, even though the flagellae of their constituent unicells are present and active. In C. reinhardtii the first steps towards multicellularity in response to predation appear to result in a trade-off between motility and differential survivorship, a trade-off that must be overcome by further genetic change to ensure long-term success of the new multicellular organism.

  16. The evolving role of information technology in internal auditing

    OpenAIRE

    2015-01-01

    M.Com. (Computer Auditing) Modern organizations are increasingly dependent on information technology (IT) for various reasons: to enhance their operational efficiency, reduce costs or even attain a competitive advantage. The role of information technology in the organization continues to evolve and this has an impact for the internal audit functions that serve these organizations. The study investigated whether the King III report, ISACA standards and IIA standards assist the internal audi...

  17. The evolving role of paramedics - a NICE problem to have?

    Science.gov (United States)

    Eaton, Georgette; Mahtani, Kamal; Catterall, Matt

    2018-07-01

    This short essay supports the growing role of paramedics in the clinical and academic workforce. We present a commentary of recent draft consultations by the National Institute for Health and Care Excellence in England that set out how the role of paramedics may be evolving to assist with the changing demands on the clinical workforce. Using these consultations as a basis, we extend their recommendations and suggest that the profession should also lead the academically driven evaluation of these new roles.

  18. A synergism between adaptive effects and evolvability drives whole genome duplication to fixation.

    Science.gov (United States)

    Cuypers, Thomas D; Hogeweg, Paulien

    2014-04-01

    Whole genome duplication has shaped eukaryotic evolutionary history and has been associated with drastic environmental change and species radiation. While the most common fate of WGD duplicates is a return to single copy, retained duplicates have been found enriched for highly interacting genes. This pattern has been explained by a neutral process of subfunctionalization and more recently, dosage balance selection. However, much about the relationship between environmental change, WGD and adaptation remains unknown. Here, we study the duplicate retention pattern postWGD, by letting virtual cells adapt to environmental changes. The virtual cells have structured genomes that encode a regulatory network and simple metabolism. Populations are under selection for homeostasis and evolve by point mutations, small indels and WGD. After populations had initially adapted fully to fluctuating resource conditions re-adaptation to a broad range of novel environments was studied by tracking mutations in the line of descent. WGD was established in a minority (≈30%) of lineages, yet, these were significantly more successful at re-adaptation. Unexpectedly, WGD lineages conserved more seemingly redundant genes, yet had higher per gene mutation rates. While WGD duplicates of all functional classes were significantly over-retained compared to a model of neutral losses, duplicate retention was clearly biased towards highly connected TFs. Importantly, no subfunctionalization occurred in conserved pairs, strongly suggesting that dosage balance shaped retention. Meanwhile, singles diverged significantly. WGD, therefore, is a powerful mechanism to cope with environmental change, allowing conservation of a core machinery, while adapting the peripheral network to accommodate change.

  19. Phytoalexin detoxification genes and gene products: Implication for the evolution of host specific traits for pathogenicity. Final report

    International Nuclear Information System (INIS)

    VanEtten, H.

    1997-01-01

    The overall objectives of this research were to determine which differences among PDA genes were associated with different levels of virulence on pea and to clone and characterize a MAK gene. The authors also proposed to characterize the pisatin detoxifying system in pea pathogens in addition to N. haematococca to assess whether pathogens of a common host had evolved similar pathogenicity genes

  20. Phytoalexin detoxification genes and gene products: Implication for the evolution of host specific traits for pathogenicity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    VanEtten, H.

    1997-06-01

    The overall objectives of this research were to determine which differences among PDA genes were associated with different levels of virulence on pea and to clone and characterize a MAK gene. The authors also proposed to characterize the pisatin detoxifying system in pea pathogens in addition to N. haematococca to assess whether pathogens of a common host had evolved similar pathogenicity genes.

  1. A search for radio emission from exoplanets around evolved stars

    Science.gov (United States)

    O'Gorman, E.; Coughlan, C. P.; Vlemmings, W.; Varenius, E.; Sirothia, S.; Ray, T. P.; Olofsson, H.

    2018-04-01

    The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically ≥150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the LOw Frequency ARray (LOFAR) at 150 MHz (λ = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars β Gem, ι Dra, and β UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3σ upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for β Gem, ι Dra, and β UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.

  2. Biomimetic molecular design tools that learn, evolve, and adapt

    Directory of Open Access Journals (Sweden)

    David A Winkler

    2017-06-01

    Full Text Available A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  3. FY1995 evolvable hardware chip; 1995 nendo shinkasuru hardware chip

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This project aims at the development of 'Evolvable Hardware' (EHW) which can adapt its hardware structure to the environment to attain better hardware performance, under the control of genetic algorithms. EHW is a key technology to explore the new application area requiring real-time performance and on-line adaptation. 1. Development of EHW-LSI for function level hardware evolution, which includes 15 DSPs in one chip. 2. Application of the EHW to the practical industrial applications such as data compression, ATM control, digital mobile communication. 3. Two patents : (1) the architecture and the processing method for programmable EHW-LSI. (2) The method of data compression for loss-less data, using EHW. 4. The first international conference for evolvable hardware was held by authors: Intl. Conf. on Evolvable Systems (ICES96). It was determined at ICES96 that ICES will be held every two years between Japan and Europe. So the new society has been established by us. (NEDO)

  4. Biomimetic molecular design tools that learn, evolve, and adapt

    Science.gov (United States)

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  5. Social networks: Evolving graphs with memory dependent edges

    Science.gov (United States)

    Grindrod, Peter; Parsons, Mark

    2011-10-01

    The plethora of digital communication technologies, and their mass take up, has resulted in a wealth of interest in social network data collection and analysis in recent years. Within many such networks the interactions are transient: thus those networks evolve over time. In this paper we introduce a class of models for such networks using evolving graphs with memory dependent edges, which may appear and disappear according to their recent history. We consider time discrete and time continuous variants of the model. We consider the long term asymptotic behaviour as a function of parameters controlling the memory dependence. In particular we show that such networks may continue evolving forever, or else may quench and become static (containing immortal and/or extinct edges). This depends on the existence or otherwise of certain infinite products and series involving age dependent model parameters. We show how to differentiate between the alternatives based on a finite set of observations. To test these ideas we show how model parameters may be calibrated based on limited samples of time dependent data, and we apply these concepts to three real networks: summary data on mobile phone use from a developing region; online social-business network data from China; and disaggregated mobile phone communications data from a reality mining experiment in the US. In each case we show that there is evidence for memory dependent dynamics, such as that embodied within the class of models proposed here.

  6. Risk factors which cause senile cataract evolvement: outline

    Directory of Open Access Journals (Sweden)

    E.V. Bragin

    2018-03-01

    Full Text Available Examination of natural ageing processes including those caused by multiple external factors has been attracting re-searchers' attention over the last years. Senile cataract is a multi-factor disease. Expenditure on cataract surgery remain one of the greatest expenses items in public health care. Age is a basic factor which causes senile cataract. Morbidity with cataract doubles each 10 years of life. This outline considers some literature sources which describe research results on influence exerted on cataract evolvement by such risk factors as age, sex, race, smoking, alcohol intake, pancreatic diabetes, intake of certain medications, a number of environmental factors including ultraviolet and ionizing radiation. mane of these factors are shown to increase or reduce senile cataract risk; there are conflicting data on certain factors. The outline also contains quantitative characteristics of cataract risks which are given via odds relation and evolve due to age parameters impacts, alcohol intake, ionizing radiation, etc. The authors also state that still there is no answer to the question whether dose-effect relationship for cataract evolvement is a threshold or non-threshold.

  7. Higher rates of sex evolve in spatially heterogeneous environments.

    Science.gov (United States)

    Becks, Lutz; Agrawal, Aneil F

    2010-11-04

    The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.

  8. On the relationships between generative encodings, regularity, and learning abilities when evolving plastic artificial neural networks.

    Directory of Open Access Journals (Sweden)

    Paul Tonelli

    Full Text Available A major goal of bio-inspired artificial intelligence is to design artificial neural networks with abilities that resemble those of animal nervous systems. It is commonly believed that two keys for evolving nature-like artificial neural networks are (1 the developmental process that links genes to nervous systems, which enables the evolution of large, regular neural networks, and (2 synaptic plasticity, which allows neural networks to change during their lifetime. So far, these two topics have been mainly studied separately. The present paper shows that they are actually deeply connected. Using a simple operant conditioning task and a classic evolutionary algorithm, we compare three ways to encode plastic neural networks: a direct encoding, a developmental encoding inspired by computational neuroscience models, and a developmental encoding inspired by morphogen gradients (similar to HyperNEAT. Our results suggest that using a developmental encoding could improve the learning abilities of evolved, plastic neural networks. Complementary experiments reveal that this result is likely the consequence of the bias of developmental encodings towards regular structures: (1 in our experimental setup, encodings that tend to produce more regular networks yield networks with better general learning abilities; (2 whatever the encoding is, networks that are the more regular are statistically those that have the best learning abilities.

  9. Effective but costly, evolved mechanisms of defense against a virulent opportunistic pathogen in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    2009-04-01

    Full Text Available Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost.

  10. Measuring the Accuracy of Simple Evolving Connectionist System with Varying Distance Formulas

    Science.gov (United States)

    Al-Khowarizmi; Sitompul, O. S.; Suherman; Nababan, E. B.

    2017-12-01

    Simple Evolving Connectionist System (SECoS) is a minimal implementation of Evolving Connectionist Systems (ECoS) in artificial neural networks. The three-layer network architecture of the SECoS could be built based on the given input. In this study, the activation value for the SECoS learning process, which is commonly calculated using normalized Hamming distance, is also calculated using normalized Manhattan distance and normalized Euclidean distance in order to compare the smallest error value and best learning rate obtained. The accuracy of measurement resulted by the three distance formulas are calculated using mean absolute percentage error. In the training phase with several parameters, such as sensitivity threshold, error threshold, first learning rate, and second learning rate, it was found that normalized Euclidean distance is more accurate than both normalized Hamming distance and normalized Manhattan distance. In the case of beta fibrinogen gene -455 G/A polymorphism patients used as training data, the highest mean absolute percentage error value is obtained with normalized Manhattan distance compared to normalized Euclidean distance and normalized Hamming distance. However, the differences are very small that it can be concluded that the three distance formulas used in SECoS do not have a significant effect on the accuracy of the training results.

  11. Evolving spiking neural networks: a novel growth algorithm exhibits unintelligent design

    Science.gov (United States)

    Schaffer, J. David

    2015-06-01

    Spiking neural networks (SNNs) have drawn considerable excitement because of their computational properties, believed to be superior to conventional von Neumann machines, and sharing properties with living brains. Yet progress building these systems has been limited because we lack a design methodology. We present a gene-driven network growth algorithm that enables a genetic algorithm (evolutionary computation) to generate and test SNNs. The genome for this algorithm grows O(n) where n is the number of neurons; n is also evolved. The genome not only specifies the network topology, but all its parameters as well. Experiments show the algorithm producing SNNs that effectively produce a robust spike bursting behavior given tonic inputs, an application suitable for central pattern generators. Even though evolution did not include perturbations of the input spike trains, the evolved networks showed remarkable robustness to such perturbations. In addition, the output spike patterns retain evidence of the specific perturbation of the inputs, a feature that could be exploited by network additions that could use this information for refined decision making if required. On a second task, a sequence detector, a discriminating design was found that might be considered an example of "unintelligent design"; extra non-functional neurons were included that, while inefficient, did not hamper its proper functioning.

  12. Whole-genome sequencing of a laboratory-evolved yeast strain

    Directory of Open Access Journals (Sweden)

    Dunham Maitreya J

    2010-02-01

    Full Text Available Abstract Background Experimental evolution of microbial populations provides a unique opportunity to study evolutionary adaptation in response to controlled selective pressures. However, until recently it has been difficult to identify the precise genetic changes underlying adaptation at a genome-wide scale. New DNA sequencing technologies now allow the genome of parental and evolved strains of microorganisms to be rapidly determined. Results We sequenced >93.5% of the genome of a laboratory-evolved strain of the yeast Saccharomyces cerevisiae and its ancestor at >28× depth. Both single nucleotide polymorphisms and copy number amplifications were found, with specific gains over array-based methodologies previously used to analyze these genomes. Applying a segmentation algorithm to quantify structural changes, we determined the approximate genomic boundaries of a 5× gene amplification. These boundaries guided the recovery of breakpoint sequences, which provide insights into the nature of a complex genomic rearrangement. Conclusions This study suggests that whole-genome sequencing can provide a rapid approach to uncover the genetic basis of evolutionary adaptations, with further applications in the study of laboratory selections and mutagenesis screens. In addition, we show how single-end, short read sequencing data can provide detailed information about structural rearrangements, and generate predictions about the genomic features and processes that underlie genome plasticity.

  13. Gene Therapy

    Science.gov (United States)

    Gene therapy Overview Gene therapy involves altering the genes inside your body's cells in an effort to treat or stop disease. Genes contain your ... that don't work properly can cause disease. Gene therapy replaces a faulty gene or adds a new ...

  14. Will small energy consumers be faster in transition? Evidence from the early shift from coal to oil in Latin America

    International Nuclear Information System (INIS)

    Rubio, M.d.Mar; Folchi, Mauricio

    2012-01-01

    This paper provide evidence of the early transition from coal to oil for 20 Latin American countries over the first half of the 20th century, which does not fit the transition experiences of large energy consumers. These small energy consumers had earlier and faster transitions than leading nations. We also provide evidence for alternative sequences (inverse, revertible) in the transition from coal to oil. Furthermore, we demonstrate that ‘leapfrogging’ allowed a set of follower economies to reach the next rung of the energy ladder (oil domination) 30 years in advance of the most developed economies. We examine these follower economies, where transition took place earlier and faster than the cases historically known, in order to understand variation within the energy transitions and to expand the array of feasible pathways of future energy transitions. We find that being a small energy consumer makes a difference for the way the energy transition takes place; but also path dependence (including trade and technological partnerships), domestic energy endowment (which dictates relative prices) and policy decisions seem to be the variables that shaped past energy transitions. - Highlights: ► We provide evidence of the early transition from coal to oil for 20 Latin American. ► We find that being a small energy consumer makes a difference for the way the energy transition takes place. ► Followers had earlier and faster transitions than leading nations. ► ‘Leapfrogging’ allowed extremely fast energy transitions. ► Alternative forms (revertible, inverse) of energy transition also exist.

  15. The hard-won benefits of familiarity in visual search: naturally familiar brand logos are found faster.

    Science.gov (United States)

    Qin, Xiaoyan Angela; Koutstaal, Wilma; Engel, Stephen A

    2014-05-01

    Familiar items are found faster than unfamiliar ones in visual search tasks. This effect has important implications for cognitive theory, because it may reveal how mental representations of commonly encountered items are changed by experience to optimize performance. It remains unknown, however, whether everyday items with moderate levels of exposure would show benefits in visual search, and if so, what kind of experience would be required to produce them. Here, we tested whether familiar product logos were searched for faster than unfamiliar ones, and also familiarized subjects with previously unfamiliar logos. Subjects searched for preexperimentally familiar and unfamiliar logos, half of which were familiarized in the laboratory, amongst other, unfamiliar distractor logos. In three experiments, we used an N-back-like familiarization task, and in four others we used a task that asked detailed questions about the perceptual aspects of the logos. The number of familiarization exposures ranged from 30 to 84 per logo across experiments, with two experiments involving across-day familiarization. Preexperimentally familiar target logos were searched for faster than were unfamiliar, nonfamiliarized logos, by 8 % on average. This difference was reliable in all seven experiments. However, familiarization had little or no effect on search speeds; its average effect was to improve search times by 0.7 %, and its effect was significant in only one of the seven experiments. If priming, mere exposure, episodic memory, or relatively modest familiarity were responsible for familiarity's effects on search, then performance should have improved following familiarization. Our results suggest that the search-related advantage of familiar logos does not develop easily or rapidly.

  16. Better, faster and cheaper energy facades for transformation of multi-storey blocks built between 1960 and 1976

    DEFF Research Database (Denmark)

    Vestergaard, Inge

    2013-01-01

    an innovative process. The aim is to inspire clients and consultants to think smart through optimizing the planning and design process as well as the building process. Through this way of thinking we can secure a better, cheaper and faster energy renovation of the existing building stock. The project is under...... scale projects have been driven by the housing association AL2bolig, Tilst, Denmark. Author was part of the architectural discussion through planning process and the evaluation of the first frame competition. The methods used are: - participation through the development process - comparable research...

  17. An adaptive Phase-Locked Loop algorithm for faster fault ride through performance of interconnected renewable energy sources

    DEFF Research Database (Denmark)

    Hadjidemetriou, Lenos; Kyriakides, Elias; Blaabjerg, Frede

    2013-01-01

    Interconnected renewable energy sources require fast and accurate fault ride through operation in order to support the power grid when faults occur. This paper proposes an adaptive Phase-Locked Loop (adaptive dαβPLL) algorithm, which can be used for a faster and more accurate response of the grid...... side converter control of a renewable energy source, especially under fault ride through operation. The adaptive dαβPLL is based on modifying the control parameters of the dαβPLL according to the type and voltage characteristic of the grid fault with the purpose of accelerating the performance...

  18. Darwinian Evolution of Mutualistic RNA Replicators with Different Genes

    Science.gov (United States)

    Mizuuchi, R.; Ichihashi, N.

    2017-07-01

    We report a sustainable long-term replication and evolution of two distinct cooperative RNA replicators encoding different genes. One of the RNAs evolved to maintain or increase the cooperativity, despite selective advantage of selfish mutations.

  19. Faster proton transfer dynamics of water on SnO2 compared to TiO2.

    Science.gov (United States)

    Kumar, Nitin; Kent, Paul R C; Bandura, Andrei V; Kubicki, James D; Wesolowski, David J; Cole, David R; Sofo, Jorge O

    2011-01-28

    Proton jump processes in the hydration layer on the iso-structural TiO(2) rutile (110) and SnO(2) cassiterite (110) surfaces were studied with density functional theory molecular dynamics. We find that the proton jump rate is more than three times faster on cassiterite compared with rutile. A local analysis based on the correlation between the stretching band of the O-H vibrations and the strength of H-bonds indicates that the faster proton jump activity on cassiterite is produced by a stronger H-bond formation between the surface and the hydration layer above the surface. The origin of the increased H-bond strength on cassiterite is a combined effect of stronger covalent bonding and stronger electrostatic interactions due to differences of its electronic structure. The bridging oxygens form the strongest H-bonds between the surface and the hydration layer. This higher proton jump rate is likely to affect reactivity and catalytic activity on the surface. A better understanding of its origins will enable methods to control these rates.

  20. A faster and more reliable data acquisition system for the full performance of the SciCRT

    International Nuclear Information System (INIS)

    Sasai, Y.; Matsubara, Y.; Itow, Y.; Sako, T.; Kawabata, T.; Lopez, D.; Hikimochi, R.; Tsuchiya, A.; Ikeno, M.; Uchida, T.; Tanaka, M.; Munakata, K.; Kato, C.; Nakamura, Y.; Oshima, T.; Koike, T.; Kozai, M.; Shibata, S.; Oshima, A.; Takamaru, H.

    2017-01-01

    The SciBar Cosmic Ray Telescope (SciCRT) is a massive scintillator tracker to observe cosmic rays at a very high-altitude environment in Mexico. The fully active tracker is based on the Scintillator Bar (SciBar) detector developed as a near detector for the KEK-to-Kamioka long-baseline neutrino oscillation experiment (K2K) in Japan. Since the data acquisition (DAQ) system was developed for the accelerator experiment, we determined to develop a new robust DAQ system to optimize it to our cosmic-ray experiment needs at the top of Mt. Sierra Negra (4600 m). One of our special requirements is to achieve a 10 times faster readout rate. We started to develop a new fast readout back-end board (BEB) based on 100 Mbps SiTCP, a hardware network processor developed for DAQ systems for high energy physics experiments. Then we developed the new BEB which has a potential of 20 times faster than the current one in the case of observing neutrons. Finally we installed the new DAQ system including the new BEBs to a part of the SciCRT in July 2015. The system has been operating since then. In this paper, we describe the development, the basic performance of the new BEB, the status after the installation in the SciCRT, and the future performance.

  1. A faster and more reliable data acquisition system for the full performance of the SciCRT

    Energy Technology Data Exchange (ETDEWEB)

    Sasai, Y., E-mail: sasaiyoshinori@isee.nagoya-u.ac.jp [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Matsubara, Y.; Itow, Y.; Sako, T.; Kawabata, T.; Lopez, D.; Hikimochi, R.; Tsuchiya, A. [Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Ikeno, M.; Uchida, T.; Tanaka, M. [High Energy Accelerator Research Organization, KEK, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Munakata, K.; Kato, C.; Nakamura, Y.; Oshima, T.; Koike, T. [Department of Physics, Shinshu University, Asahi, Matsumoto 390-8621 (Japan); Kozai, M. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency (ISAS/JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Shibata, S.; Oshima, A.; Takamaru, H. [College of Engineering, Chubu University, Kasugai 487-8501 (Japan); and others

    2017-06-11

    The SciBar Cosmic Ray Telescope (SciCRT) is a massive scintillator tracker to observe cosmic rays at a very high-altitude environment in Mexico. The fully active tracker is based on the Scintillator Bar (SciBar) detector developed as a near detector for the KEK-to-Kamioka long-baseline neutrino oscillation experiment (K2K) in Japan. Since the data acquisition (DAQ) system was developed for the accelerator experiment, we determined to develop a new robust DAQ system to optimize it to our cosmic-ray experiment needs at the top of Mt. Sierra Negra (4600 m). One of our special requirements is to achieve a 10 times faster readout rate. We started to develop a new fast readout back-end board (BEB) based on 100 Mbps SiTCP, a hardware network processor developed for DAQ systems for high energy physics experiments. Then we developed the new BEB which has a potential of 20 times faster than the current one in the case of observing neutrons. Finally we installed the new DAQ system including the new BEBs to a part of the SciCRT in July 2015. The system has been operating since then. In this paper, we describe the development, the basic performance of the new BEB, the status after the installation in the SciCRT, and the future performance.

  2. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation.

    Science.gov (United States)

    Engel, Krysta L; Mackiewicz, Mark; Hardigan, Andrew A; Myers, Richard M; Savic, Daniel

    2016-09-01

    Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Nonsynonymous substitution in abalone sperm fertilization genes exceeds substitution in introns and mitochondrial DNA

    Science.gov (United States)

    Metz, Edward C.; Robles-Sikisaka, Refugio; Vacquier, Victor D.

    1998-01-01

    Strong positive Darwinian selection acts on two sperm fertilization proteins, lysin and 18-kDa protein, from abalone (Haliotis). To understand the phylogenetic context for this dramatic molecular evolution, we obtained sequences of mitochondrial cytochrome c oxidase subunit I (mtCOI), and genomic sequences of lysin, 18-kDa, and a G protein subunit. Based on mtDNA differentiation, four north Pacific abalone species diverged within the past 2 million years (Myr), and remaining north Pacific species diverged over a period of 4–20 Myr. Between-species nonsynonymous differences in lysin and 18-kDa exons exceed nucleotide differences in introns by 3.5- to 24-fold. Remarkably, in some comparisons nonsynonymous substitutions in lysin and 18-kDa genes exceed synonymous substitutions in mtCOI. Lysin and 18-kDa intron/exon segments were sequenced from multiple red abalone individuals collected over a 1,200-km range. Only two nucleotide changes and two sites of slippage variation were detected in a total of >29,000 nucleotides surveyed. However, polymorphism in mtCOI and a G protein intron was found in this species. This finding suggests that positive selection swept one lysin allele and one 18-kDa allele to fixation. Similarities between mtCOI and lysin gene trees indicate that rapid adaptive evolution of lysin has occurred consistently through the history of the group. Comparisons with mtCOI molecular clock calibrations suggest that nonsynonymous substitutions accumulate 2–50 times faster in lysin and 18-kDa genes than in rapidly evolving mammalian genes. PMID:9724763

  4. Evolutions in clinical reasoning assessment: The Evolving Script Concordance Test.

    Science.gov (United States)

    Cooke, Suzette; Lemay, Jean-François; Beran, Tanya

    2017-08-01

    Script concordance testing (SCT) is a method of assessment of clinical reasoning. We developed a new type of SCT case design, the evolving SCT (E-SCT), whereby the patient's clinical story is "evolving" and with thoughtful integration of new information at each stage, decisions related to clinical decision-making become increasingly clear. We aimed to: (1) determine whether an E-SCT could differentiate clinical reasoning ability among junior residents (JR), senior residents (SR), and pediatricians, (2) evaluate the reliability of an E-SCT, and (3) obtain qualitative feedback from participants to help inform the potential acceptability of the E-SCT. A 12-case E-SCT, embedded within a 24-case pediatric SCT (PaedSCT), was administered to 91 pediatric residents (JR: n = 50; SR: n = 41). A total of 21 pediatricians served on the panel of experts (POE). A one-way analysis of variance (ANOVA) was conducted across the levels of experience. Participants' feedback on the E-SCT was obtained with a post-test survey and analyzed using two methods: percentage preference and thematic analysis. Statistical differences existed across levels of training: F = 19.31 (df = 2); p decision-making process. The E-SCT demonstrated very good reliability and was effective in distinguishing clinical reasoning ability across three levels of experience. Participants found the E-SCT engaging and representative of real-life clinical reasoning and decision-making processes. We suggest that further refinement and utilization of the evolving style case will enhance SCT as a robust, engaging, and relevant method for the assessment of clinical reasoning.

  5. Network Analysis of Earth's Co-Evolving Geosphere and Biosphere

    Science.gov (United States)

    Hazen, R. M.; Eleish, A.; Liu, C.; Morrison, S. M.; Meyer, M.; Consortium, K. D.

    2017-12-01

    A fundamental goal of Earth science is the deep understanding of Earth's dynamic, co-evolving geosphere and biosphere through deep time. Network analysis of geo- and bio- `big data' provides an interactive, quantitative, and predictive visualization framework to explore complex and otherwise hidden high-dimension features of diversity, distribution, and change in the evolution of Earth's geochemistry, mineralogy, paleobiology, and biochemistry [1]. Networks also facilitate quantitative comparison of different geological time periods, tectonic settings, and geographical regions, as well as different planets and moons, through network metrics, including density, centralization, diameter, and transitivity.We render networks by employing data related to geographical, paragenetic, environmental, or structural relationships among minerals, fossils, proteins, and microbial taxa. An important recent finding is that the topography of many networks reflects parameters not explicitly incorporated in constructing the network. For example, networks for minerals, fossils, and protein structures reveal embedded qualitative time axes, with additional network geometries possibly related to extinction and/or other punctuation events (see Figure). Other axes related to chemical activities and volatile fugacities, as well as pressure and/or depth of formation, may also emerge from network analysis. These patterns provide new insights into the way planets evolve, especially Earth's co-evolving geosphere and biosphere. 1. Morrison, S.M. et al. (2017) Network analysis of mineralogical systems. American Mineralogist 102, in press. Figure Caption: A network of Phanerozoic Era fossil animals from the past 540 million years includes blue, red, and black circles (nodes) representing family-level taxa and grey lines (links) between coexisting families. Age information was not used in the construction of this network; nevertheless an intrinsic timeline is embedded in the network topology. In

  6. A Change Impact Analysis to Characterize Evolving Program Behaviors

    Science.gov (United States)

    Rungta, Neha Shyam; Person, Suzette; Branchaud, Joshua

    2012-01-01

    Change impact analysis techniques estimate the potential effects of changes made to software. Directed Incremental Symbolic Execution (DiSE) is an intraprocedural technique for characterizing the impact of software changes on program behaviors. DiSE first estimates the impact of the changes on the source code using program slicing techniques, and then uses the impact sets to guide symbolic execution to generate path conditions that characterize impacted program behaviors. DiSE, however, cannot reason about the flow of impact between methods and will fail to generate path conditions for certain impacted program behaviors. In this work, we present iDiSE, an extension to DiSE that performs an interprocedural analysis. iDiSE combines static and dynamic calling context information to efficiently generate impacted program behaviors across calling contexts. Information about impacted program behaviors is useful for testing, verification, and debugging of evolving programs. We present a case-study of our implementation of the iDiSE algorithm to demonstrate its efficiency at computing impacted program behaviors. Traditional notions of coverage are insufficient for characterizing the testing efforts used to validate evolving program behaviors because they do not take into account the impact of changes to the code. In this work we present novel definitions of impacted coverage metrics that are useful for evaluating the testing effort required to test evolving programs. We then describe how the notions of impacted coverage can be used to configure techniques such as DiSE and iDiSE in order to support regression testing related tasks. We also discuss how DiSE and iDiSE can be configured for debugging finding the root cause of errors introduced by changes made to the code. In our empirical evaluation we demonstrate that the configurations of DiSE and iDiSE can be used to support various software maintenance tasks

  7. Why, when and where did honey bee dance communication evolve?

    Directory of Open Access Journals (Sweden)

    Robbie eI'Anson Price

    2015-11-01

    Full Text Available Honey bees (Apis sp. are the only known bee genus that uses nest-based communication to provide nest-mates with information about the location of resources, the so-called dance language. Successful foragers perform waggle dances for high quality food sources and suitable nest-sites during swarming. However, since many species of social insects do not communicate the location of resources to their nest-mates, the question of why the dance language evolved is of ongoing interest. We review recent theoretical and empirical research into the ecological circumstances that make dance communication beneficial in present day environments. This research suggests that the dance language is most beneficial when food sources differ greatly in quality and are hard to find. The dances of extant honey bee species differ in important ways, and phylogenetic studies suggest an increase in dance complexity over time: species with the least complex dance were the first to appear and species with the most complex dance are the most derived. We review the fossil record of honey bees and speculate about the time and context (foraging vs. swarming in which spatially referential dance communication might have evolved. We conclude that there are few certainties about when the dance language first appeared; dance communication could be older than 40 million years and, thus, predate the genus Apis, or it could be as recent as 20 million years when extant honey bee species diverged during the early Miocene. The most parsimonious scenario assumes it evolved in a sub-tropical to temperate climate, with patchy vegetation somewhere in Eurasia.

  8. Japanese experience of evolving nurses' roles in changing social contexts.

    Science.gov (United States)

    Kanbara, S; Yamamoto, Y; Sugishita, T; Nakasa, T; Moriguchi, I

    2017-06-01

    To discuss the evolving roles of Japanese nurses in meeting the goals and concerns of ongoing global sustainable development. Japanese nurses' roles have evolved as the needs of the country and the communities they served, changed over time. The comprehensive public healthcare services in Japan were provided by the cooperation of hospitals and public health nurses. The nursing profession is exploring ways to identify and systemize nursing skills and competencies that address global health initiatives for sustainable development goals. This paper is based on the summary of a symposium, (part of the 2015 annual meeting of the Japan Association for International Health) with panel members including experts from Japan's Official Development Assistance. The evolving role of nurses in response to national and international needs is illustrated by nursing practices from Japan. Japanese public health nurses have also assisted overseas healthcare plans. In recent catastrophes, Japanese nurses assumed the roles of community health coordinators for restoration and maintenance of public health. The Japanese experience shows that nursing professionals are best placed to work with community health issues, high-risk situations and vulnerable communities. Their cooperation can address current social needs and help global communities to transform our world. Nurses have tremendous potential to make transformative changes in health and bring about the necessary paradigm shift. They must be involved in global sustainable development goals, health policies and disaster risk management. A mutual understanding of global citizen and nurses will help to renew and strengthen their capacities. Nursing professionals can contribute effectively to achieve national and global health goals and make transformative changes. © 2017 International Council of Nurses.

  9. Gravity Effects on Information Filtering and Network Evolving

    Science.gov (United States)

    Liu, Jin-Hu; Zhang, Zi-Ke; Chen, Lingjiao; Liu, Chuang; Yang, Chengcheng; Wang, Xueqi

    2014-01-01

    In this paper, based on the gravity principle of classical physics, we propose a tunable gravity-based model, which considers tag usage pattern to weigh both the mass and distance of network nodes. We then apply this model in solving the problems of information filtering and network evolving. Experimental results on two real-world data sets, Del.icio.us and MovieLens, show that it can not only enhance the algorithmic performance, but can also better characterize the properties of real networks. This work may shed some light on the in-depth understanding of the effect of gravity model. PMID:24622162

  10. Analytical Design of Evolvable Software for High-Assurance Computing

    Science.gov (United States)

    2001-02-14

    system size Sext wij j 1= Ai ∑ wik k 1= Mi ∑+               i 1= N ∑= = 59 5 Analytical Partition of Components As discussed in Chapter 1...76]. Does the research approach yield evolvable components in less mathematically-oriented applications such as multi- media and e- commerce? There is... Social Security Number Date 216 217 Appendix H Benchmark Design for the Microwave Oven Software The benchmark design consists of the

  11. MK classification of evolved blue stars in the halo

    International Nuclear Information System (INIS)

    Garrison, R.F.

    1987-01-01

    The problem of the masses and origin of the evolved blue stars is very complex. No single approach can give all the answers unambiguously; it would be naive to suppose otherwise. The MK process and the MK system give a perspective which complements photometric, kinematic, high dispersion and other quantitative data. It is useful to know which stars are similar (or not) in spectral morphology, so that interesting candidates can be selected for further study. In many cases, the gross physical characteristics can be fairly well determined by use of the MK System. 8 references

  12. Open-Ended Behavioral Complexity for Evolved Virtual Creatures

    DEFF Research Database (Denmark)

    Lessin, Dan; Fussell, Don; Miikkulainen, Risto

    2013-01-01

    notable exception to this progress. Despite the potential benefits, there has been no clear increase in the behavioral complexity of evolved virtual creatures (EVCs) beyond the light following demonstrated in Sims' original work. This paper presents an open-ended method to move beyond this limit, making...... creature with behavioral complexity that clearly exceeds previously achieved levels. ESP thus demonstrates that EVCs may indeed have the potential to one day rival the behavioral complexity--and therefore the entertainment value--of their non-virtual counterparts....

  13. Evolving Neural Turing Machines for Reward-based Learning

    DEFF Research Database (Denmark)

    Greve, Rasmus Boll; Jacobsen, Emil Juul; Risi, Sebastian

    2016-01-01

    An unsolved problem in neuroevolution (NE) is to evolve artificial neural networks (ANN) that can store and use information to change their behavior online. While plastic neural networks have shown promise in this context, they have difficulties retaining information over longer periods of time...... version of the double T-Maze, a complex reinforcement-like learning problem. In the T-Maze learning task the agent uses the memory bank to display adaptive behavior that normally requires a plastic ANN, thereby suggesting a complementary and effective mechanism for adaptive behavior in NE....

  14. Simulations of embodied evolving semiosis: Emergent semantics in artificial environments

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, L.M.; Joslyn, C.

    1998-02-01

    As we enter this amazing new world of artificial and virtual systems and environments in the context of human communities, we are interested in the development of systems and environments which have the capacity to grow and evolve their own meanings in the context of this community of interaction. In this paper the authors analyze the necessary conditions to achieve systems and environments with these properties: (1) a coupled interaction between a system and its environment; (2) an environment with sufficient initial richness and structure to allow for; (3) embodied emergent classification of that environment system coupling; and (4) which is subject to pragmatic selection.

  15. A Weighted Evolving Network with Community Size Preferential Attachment

    International Nuclear Information System (INIS)

    Zhuo Zhiwei; Shan Erfang

    2010-01-01

    Community structure is an important characteristic in real complex network. It is a network consists of groups of nodes within which links are dense but among which links are sparse. In this paper, the evolving network include node, link and community growth and we apply the community size preferential attachment and strength preferential attachment to a growing weighted network model and utilize weight assigning mechanism from BBV model. The resulting network reflects the intrinsic community structure with generalized power-law distributions of nodes' degrees and strengths.

  16. [Cardiac computed tomography: new applications of an evolving technique].

    Science.gov (United States)

    Martín, María; Corros, Cecilia; Calvo, Juan; Mesa, Alicia; García-Campos, Ana; Rodríguez, María Luisa; Barreiro, Manuel; Rozado, José; Colunga, Santiago; de la Hera, Jesús M; Morís, César; Luyando, Luis H

    2015-01-01

    During the last years we have witnessed an increasing development of imaging techniques applied in Cardiology. Among them, cardiac computed tomography is an emerging and evolving technique. With the current possibility of very low radiation studies, the applications have expanded and go further coronariography In the present article we review the technical developments of cardiac computed tomography and its new applications. Copyright © 2014 Instituto Nacional de Cardiología Ignacio Chávez. Published by Masson Doyma México S.A. All rights reserved.

  17. f(R) gravity solutions for evolving wormholes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Subhra [Presidency University, Department of Mathematics, Kolkata (India); Chakraborty, Subenoy [Jadavpur University, Department of Mathematics, Kolkata (India)

    2017-08-15

    The scalar-tensor f(R) theory of gravity is considered in the framework of a simple inhomogeneous space-time model. In this research we use the reconstruction technique to look for possible evolving wormhole solutions within viable f(R) gravity formalism. These f(R) models are then constrained so that they are consistent with existing experimental data. Energy conditions related to the matter threading the wormhole are analyzed graphically and are in general found to obey the null energy conditions (NEC) in regions around the throat, while in the limit f(R) = R, NEC can be violated at large in regions around the throat. (orig.)

  18. HPV-FASTER

    DEFF Research Database (Denmark)

    Bosch, F Xavier; Robles, Claudia; Díaz, Mireia

    2016-01-01

    protocol would represent an attractive approach for many health-care systems, in particular, countries in Central and Eastern Europe, Latin America, Asia, and some more-developed parts of Africa. The role of vaccination in women aged >30 years and the optimal number of HPV-screening tests required......Human papillomavirus (HPV)-related screening technologies and HPV vaccination offer enormous potential for cancer prevention, notably prevention of cervical cancer. The effectiveness of these approaches is, however, suboptimal owing to limited implementation of screening programmes and restricted...... indications for HPV vaccination. Trials of HPV vaccination in women aged up to 55 years have shown almost 90% protection from cervical precancer caused by HPV16/18 among HPV16/18-DNA-negative women. We propose extending routine vaccination programmes to women of up to 30 years of age (and to the 45-50-year...

  19. Controlling chaos faster

    International Nuclear Information System (INIS)

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-01-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period

  20. Faster scannerless GLR parsing

    NARCIS (Netherlands)

    Economopoulos, G.R.; Klint, P.; Vinju, J.J.; Moor, de O.; Schwartzbach, M.I.

    2009-01-01

    Analysis and renovation of large software portfolios requires syntax analysis of multiple, usually embedded, languages and this is beyond the capabilities of many standard parsing techniques. The traditional separation between lexer and parser falls short due to the limitations of tokenization based

  1. Faster Scannerless GLR parsing

    NARCIS (Netherlands)

    J.J. Vinju (Jurgen); G.R. Economopoulos (Giorgos Robert); P. Klint (Paul)

    2008-01-01

    textabstractAnalysis and renovation of large software portfolios requires syntax analysis of multiple, usually embedded, languages and this is beyond the capabilities of many standard parsing techniques. The traditional separation between lexer and parser falls short due to the limitations of

  2. Faster, Practical GLL Parsing

    NARCIS (Netherlands)

    A. Afroozeh (Ali); A. Izmaylova (Anastasia)

    2015-01-01

    htmlabstractGeneralized LL (GLL) parsing is an extension of recursive-descent (RD) parsing that supports all context-free grammars in cubic time and space. GLL parsers have the direct relationship with the grammar that RD parsers have, and therefore, compared to GLR, are easier to understand, debug,

  3. Faster scannerless GLR parsing

    NARCIS (Netherlands)

    G.R. Economopoulos (Giorgos Robert); P. Klint (Paul); J.J. Vinju (Jurgen); O. de Moor; M.I. Schwartzbach

    2009-01-01

    textabstractAnalysis and renovation of large software portfolios requires syntax analysis of multiple, usually embedded, languages and this is beyond the capabilities of many standard parsing techniques. The traditional separation between lexer and parser falls short due to the limitations of

  4. Controlling chaos faster.

    Science.gov (United States)

    Bick, Christian; Kolodziejski, Christoph; Timme, Marc

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  5. Controlling chaos faster

    Energy Technology Data Exchange (ETDEWEB)

    Bick, Christian [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Bernstein Center for Computational Neuroscience (BCCN), 37077 Göttingen (Germany); Institute for Mathematics, Georg–August–Universität Göttingen, 37073 Göttingen (Germany); Kolodziejski, Christoph [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); III. Physical Institute—Biophysics, Georg–August–Universität Göttingen, 37077 Göttingen (Germany); Timme, Marc [Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen (Germany); Institute for Nonlinear Dynamics, Georg–August–Universität Göttingen, 37077 Göttingen (Germany)

    2014-09-01

    Predictive feedback control is an easy-to-implement method to stabilize unknown unstable periodic orbits in chaotic dynamical systems. Predictive feedback control is severely limited because asymptotic convergence speed decreases with stronger instabilities which in turn are typical for larger target periods, rendering it harder to effectively stabilize periodic orbits of large period. Here, we study stalled chaos control, where the application of control is stalled to make use of the chaotic, uncontrolled dynamics, and introduce an adaptation paradigm to overcome this limitation and speed up convergence. This modified control scheme is not only capable of stabilizing more periodic orbits than the original predictive feedback control but also speeds up convergence for typical chaotic maps, as illustrated in both theory and application. The proposed adaptation scheme provides a way to tune parameters online, yielding a broadly applicable, fast chaos control that converges reliably, even for periodic orbits of large period.

  6. High Fidelity, “Faster than Real-Time” Simulator for Predicting Power System Dynamic Behavior - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Flueck, Alex [Illinois Inst. of Technology, Chicago, IL (United States)

    2017-07-14

    The “High Fidelity, Faster than Real­Time Simulator for Predicting Power System Dynamic Behavior” was designed and developed by Illinois Institute of Technology with critical contributions from Electrocon International, Argonne National Laboratory, Alstom Grid and McCoy Energy. Also essential to the project were our two utility partners: Commonwealth Edison and AltaLink. The project was a success due to several major breakthroughs in the area of large­scale power system dynamics simulation, including (1) a validated faster than real­ time simulation of both stable and unstable transient dynamics in a large­scale positive sequence transmission grid model, (2) a three­phase unbalanced simulation platform for modeling new grid devices, such as independently controlled single­phase static var compensators (SVCs), (3) the world’s first high fidelity three­phase unbalanced dynamics and protection simulator based on Electrocon’s CAPE program, and (4) a first­of­its­ kind implementation of a single­phase induction motor model with stall capability. The simulator results will aid power grid operators in their true time of need, when there is a significant risk of cascading outages. The simulator will accelerate performance and enhance accuracy of dynamics simulations, enabling operators to maintain reliability and steer clear of blackouts. In the long­term, the simulator will form the backbone of the newly conceived hybrid real­time protection and control architecture that will coordinate local controls, wide­area measurements, wide­area controls and advanced real­time prediction capabilities. The nation’s citizens will benefit in several ways, including (1) less down time from power outages due to the faster­than­real­time simulator’s predictive capability, (2) higher levels of reliability due to the detailed dynamics plus protection simulation capability, and (3) more resiliency due to the three­ phase unbalanced simulator’s ability to

  7. Evolving Microbial Communities in Cellulose-Fed Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Renata Toczyłowska-Mamińska

    2018-01-01

    Full Text Available The abundance of cellulosic wastes make them attractive source of energy for producing electricity in microbial fuel cells (MFCs. However, electricity production from cellulose requires obligate anaerobes that can degrade cellulose and transfer electrons to the electrode (exoelectrogens, and thus most previous MFC studies have been conducted using two-chamber systems to avoid oxygen contamination of the anode. Single-chamber, air-cathode MFCs typically produce higher power densities than aqueous catholyte MFCs and avoid energy input for the cathodic reaction. To better understand the bacterial communities that evolve in single-chamber air-cathode MFCs fed cellulose, we examined the changes in the bacterial consortium in an MFC fed cellulose over time. The most predominant bacteria shown to be capable electron generation was Firmicutes, with the fermenters decomposing cellulose Bacteroidetes. The main genera developed after extended operation of the cellulose-fed MFC were cellulolytic strains, fermenters and electrogens that included: Parabacteroides, Proteiniphilum, Catonella and Clostridium. These results demonstrate that different communities evolve in air-cathode MFCs fed cellulose than the previous two-chamber reactors.

  8. Incremental Frequent Subgraph Mining on Large Evolving Graphs

    KAUST Repository

    Abdelhamid, Ehab

    2017-08-22

    Frequent subgraph mining is a core graph operation used in many domains, such as graph data management and knowledge exploration, bioinformatics and security. Most existing techniques target static graphs. However, modern applications, such as social networks, utilize large evolving graphs. Mining these graphs using existing techniques is infeasible, due to the high computational cost. In this paper, we propose IncGM+, a fast incremental approach for continuous frequent subgraph mining problem on a single large evolving graph. We adapt the notion of “fringe” to the graph context, that is the set of subgraphs on the border between frequent and infrequent subgraphs. IncGM+ maintains fringe subgraphs and exploits them to prune the search space. To boost the efficiency, we propose an efficient index structure to maintain selected embeddings with minimal memory overhead. These embeddings are utilized to avoid redundant expensive subgraph isomorphism operations. Moreover, the proposed system supports batch updates. Using large real-world graphs, we experimentally verify that IncGM+ outperforms existing methods by up to three orders of magnitude, scales to much larger graphs and consumes less memory.

  9. Stationary and nonstationary properties of evolving networks with preferential linkage

    International Nuclear Information System (INIS)

    Jezewski, W.

    2002-01-01

    Networks evolving by preferential attachment of both external and internal links are investigated. The rate of adding an external link is assumed to depend linearly on the degree of a preexisting node to which a new node is connected. The process of creating an internal link, between a pair of existing vertices, is assumed to be controlled entirely by the vertex that has more links than the other vertex in the pair, and the rate of creation of such a link is assumed to be, in general, nonlinear in the degree of the more strongly connected vertex. It is shown that degree distributions of networks evolving only by creating internal links display for large degrees a nonstationary power-law decay with a time-dependent scaling exponent. Nonstationary power-law behaviors are numerically shown to persist even when the number of nodes is not fixed and both external and internal connections are introduced, provided that the rate of preferential attachment of internal connections is nonlinear. It is argued that nonstationary effects are not unlikely in real networks, although these effects may not be apparent, especially in networks with a slowly varying mean degree

  10. Evolving technologies drive the new roles of Biomedical Engineering.

    Science.gov (United States)

    Frisch, P H; St Germain, J; Lui, W

    2008-01-01

    Rapidly changing technology coupled with the financial impact of organized health care, has required hospital Biomedical Engineering organizations to augment their traditional operational and business models to increase their role in developing enhanced clinical applications utilizing new and evolving technologies. The deployment of these technology based applications has required Biomedical Engineering organizations to re-organize to optimize the manner in which they provide and manage services. Memorial Sloan-Kettering Cancer Center has implemented a strategy to explore evolving technologies integrating them into enhanced clinical applications while optimally utilizing the expertise of the traditional Biomedical Engineering component (Clinical Engineering) to provide expanded support in technology / equipment management, device repair, preventive maintenance and integration with legacy clinical systems. Specifically, Biomedical Engineering is an integral component of the Medical Physics Department which provides comprehensive and integrated support to the Center in advanced physical, technical and engineering technology. This organizational structure emphasizes the integration and collaboration between a spectrum of technical expertise for clinical support and equipment management roles. The high cost of clinical equipment purchases coupled with the increasing cost of service has driven equipment management responsibilities to include significant business and financial aspects to provide a cost effective service model. This case study details the dynamics of these expanded roles, future initiatives and benefits for Biomedical Engineering and Memorial Sloan Kettering Cancer Center.

  11. International Conference “Ultraviolet Properties of Evolved Stellar Populations

    CERN Document Server

    Chavez Dagostino, Miguel

    2009-01-01

    This book presents an up-to-date collection of reviews and contributed articles in the field of ultraviolet astronomy. Its content has been mainly motivated by the recent access to the rest frame UV light of distant red galaxies, gained through large optical facilities. This driveway has derived in a renewed interest on the stars that presumably dominate or have important effects on the integrated UV properties of evolved systems of the nearby and faraway Universe. The topics included in this volume extend from the fresh spectroscopic analyses of high redshift early-type galaxies observed with the 8-10m class telescopes to the fundamental outcomes from various satellites, from the long-lived International Ultraviolet Explorer to current facilities, such as the Galaxy Evolution Explorer. This is one of the few volumes published in recent years devoted to UV astronomical research and the only one dedicated to the properties of evolved stellar populations at these wavelengths. This contemporary panorama will be ...

  12. How Life and Rocks Have Co-Evolved

    Science.gov (United States)

    Hazen, R.

    2014-04-01

    The near-surface environment of terrestrial planets and moons evolves as a consequence of selective physical, chemical, and biological processes - an evolution that is preserved in the mineralogical record. Mineral evolution begins with approximately 12 different refractory minerals that form in the cooling envelopes of exploding stars. Subsequent aqueous and thermal alteration of planetessimals results in the approximately 250 minerals now found in unweathered lunar and meteorite samples. Following Earth's accretion and differentiation, mineral evolution resulted from a sequence of geochemical and petrologic processes, which led to perhaps 1500 mineral species. According to some origin-of-life scenarios, a planet must progress through at least some of these stages of chemical processing as a prerequisite for life. Once life emerged, mineralogy and biology co-evolved and dramatically increased Earth's mineral diversity to >4000 species. Sequential stages of a planet's near-surface evolution arise from three primary mechanisms: (1) the progressive separation and concentration of the elements from their original relatively uniform distribution in the presolar nebula; (2) the increase in range of intensive variables such as pressure, temperature, and volatile activities; and (3) the generation of far-from-equilibrium conditions by living systems. Remote observations of the mineralogy of other terrestrial bodies may thus provide evidence for biological influences beyond Earth. Recent studies of mineral diversification through time reveal striking correlations with major geochemical, tectonic, and biological events, including large-changes in ocean chemistry, the supercontinent cycle, the increase of atmospheric oxygen, and the rise of the terrestrial biosphere.

  13. How People Interact in Evolving Online Affiliation Networks

    Science.gov (United States)

    Gallos, Lazaros K.; Rybski, Diego; Liljeros, Fredrik; Havlin, Shlomo; Makse, Hernán A.

    2012-07-01

    The study of human interactions is of central importance for understanding the behavior of individuals, groups, and societies. Here, we observe the formation and evolution of networks by monitoring the addition of all new links, and we analyze quantitatively the tendencies used to create ties in these evolving online affiliation networks. We show that an accurate estimation of these probabilistic tendencies can be achieved only by following the time evolution of the network. Inferences about the reason for the existence of links using statistical analysis of network snapshots must therefore be made with great caution. Here, we start by characterizing every single link when the tie was established in the network. This information allows us to describe the probabilistic tendencies of tie formation and extract meaningful sociological conclusions. We also find significant differences in behavioral traits in the social tendencies among individuals according to their degree of activity, gender, age, popularity, and other attributes. For instance, in the particular data sets analyzed here, we find that women reciprocate connections 3 times as much as men and that this difference increases with age. Men tend to connect with the most popular people more often than women do, across all ages. On the other hand, triangular tie tendencies are similar, independent of gender, and show an increase with age. These results require further validation in other social settings. Our findings can be useful to build models of realistic social network structures and to discover the underlying laws that govern establishment of ties in evolving social networks.

  14. A general evolving model for growing bipartite networks

    International Nuclear Information System (INIS)

    Tian, Lixin; He, Yinghuan; Liu, Haijun; Du, Ruijin

    2012-01-01

    In this Letter, we propose and study an inner evolving bipartite network model. Significantly, we prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. Furthermore, the joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks. Numerical simulations and empirical results are given to verify the theoretical results. -- Highlights: ► We proposed a general evolving bipartite network model which was based on priority connection, reconnection and breaking edges. ► We prove that the degree distribution of two different kinds of nodes both obey power-law form with adjustable exponents. ► The joint degree distribution of any two nodes for bipartite networks model is calculated analytically by the mean-field method. ► The result displays that such bipartite networks are nearly uncorrelated networks, which is different from one-mode networks.

  15. DESTRUCTION OF INTERSTELLAR DUST IN EVOLVING SUPERNOVA REMNANT SHOCK WAVES

    International Nuclear Information System (INIS)

    Slavin, Jonathan D.; Dwek, Eli; Jones, Anthony P.

    2015-01-01

    Supernova generated shock waves are responsible for most of the destruction of dust grains in the interstellar medium (ISM). Calculations of the dust destruction timescale have so far been carried out using plane parallel steady shocks, however, that approximation breaks down when the destruction timescale becomes longer than that for the evolution of the supernova remnant (SNR) shock. In this paper we present new calculations of grain destruction in evolving, radiative SNRs. To facilitate comparison with the previous study by Jones et al., we adopt the same dust properties as in that paper. We find that the efficiencies of grain destruction are most divergent from those for a steady shock when the thermal history of a shocked gas parcel in the SNR differs significantly from that behind a steady shock. This occurs in shocks with velocities ≳200 km s −1 for which the remnant is just beginning to go radiative. Assuming SNRs evolve in a warm phase dominated ISM, we find dust destruction timescales are increased by a factor of ∼2 compared to those of Jones et al., who assumed a hot gas dominated ISM. Recent estimates of supernova rates and ISM mass lead to another factor of ∼3 increase in the destruction timescales, resulting in a silicate grain destruction timescale of ∼2–3 Gyr. These increases, while not able to resolve the problem of the discrepant timescales for silicate grain destruction and creation, are an important step toward understanding the origin and evolution of dust in the ISM

  16. Link Prediction in Evolving Networks Based on Popularity of Nodes.

    Science.gov (United States)

    Wang, Tong; He, Xing-Sheng; Zhou, Ming-Yang; Fu, Zhong-Qian

    2017-08-02

    Link prediction aims to uncover the underlying relationship behind networks, which could be utilized to predict missing edges or identify the spurious edges. The key issue of link prediction is to estimate the likelihood of potential links in networks. Most classical static-structure based methods ignore the temporal aspects of networks, limited by the time-varying features, such approaches perform poorly in evolving networks. In this paper, we propose a hypothesis that the ability of each node to attract links depends not only on its structural importance, but also on its current popularity (activeness), since active nodes have much more probability to attract future links. Then a novel approach named popularity based structural perturbation method (PBSPM) and its fast algorithm are proposed to characterize the likelihood of an edge from both existing connectivity structure and current popularity of its two endpoints. Experiments on six evolving networks show that the proposed methods outperform state-of-the-art methods in accuracy and robustness. Besides, visual results and statistical analysis reveal that the proposed methods are inclined to predict future edges between active nodes, rather than edges between inactive nodes.

  17. Evolving RBF neural networks for adaptive soft-sensor design.

    Science.gov (United States)

    Alexandridis, Alex

    2013-12-01

    This work presents an adaptive framework for building soft-sensors based on radial basis function (RBF) neural network models. The adaptive fuzzy means algorithm is utilized in order to evolve an RBF network, which approximates the unknown system based on input-output data from it. The methodology gradually builds the RBF network model, based on two separate levels of adaptation: On the first level, the structure of the hidden layer is modified by adding or deleting RBF centers, while on the second level, the synaptic weights are adjusted with the recursive least squares with exponential forgetting algorithm. The proposed approach is tested on two different systems, namely a simulated nonlinear DC Motor and a real industrial reactor. The results show that the produced soft-sensors can be successfully applied to model the two nonlinear systems. A comparison with two different adaptive modeling techniques, namely a dynamic evolving neural-fuzzy inference system (DENFIS) and neural networks trained with online backpropagation, highlights the advantages of the proposed methodology.

  18. The evolving Planck mass in classically scale-invariant theories

    Energy Technology Data Exchange (ETDEWEB)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H. [National Institute of Chemical Physics and Biophysics,Rävala 10, 10143 Tallinn (Estonia)

    2017-04-05

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  19. The evolving Planck mass in classically scale-invariant theories

    Science.gov (United States)

    Kannike, K.; Raidal, M.; Spethmann, C.; Veermäe, H.

    2017-04-01

    We consider classically scale-invariant theories with non-minimally coupled scalar fields, where the Planck mass and the hierarchy of physical scales are dynamically generated. The classical theories possess a fixed point, where scale invariance is spontaneously broken. In these theories, however, the Planck mass becomes unstable in the presence of explicit sources of scale invariance breaking, such as non-relativistic matter and cosmological constant terms. We quantify the constraints on such classical models from Big Bang Nucleosynthesis that lead to an upper bound on the non-minimal coupling and require trans-Planckian field values. We show that quantum corrections to the scalar potential can stabilise the fixed point close to the minimum of the Coleman-Weinberg potential. The time-averaged motion of the evolving fixed point is strongly suppressed, thus the limits on the evolving gravitational constant from Big Bang Nucleosynthesis and other measurements do not presently constrain this class of theories. Field oscillations around the fixed point, if not damped, contribute to the dark matter density of the Universe.

  20. Predator confusion is sufficient to evolve swarming behaviour.

    Science.gov (United States)

    Olson, Randal S; Hintze, Arend; Dyer, Fred C; Knoester, David B; Adami, Christoph

    2013-08-06

    Swarming behaviours in animals have been extensively studied owing to their implications for the evolution of cooperation, social cognition and predator-prey dynamics. An important goal of these studies is discerning which evolutionary pressures favour the formation of swarms. One hypothesis is that swarms arise because the presence of multiple moving prey in swarms causes confusion for attacking predators, but it remains unclear how important this selective force is. Using an evolutionary model of a predator-prey system, we show that predator confusion provides a sufficient selection pressure to evolve swarming behaviour in prey. Furthermore, we demonstrate that the evolutionary effect of predator confusion on prey could in turn exert pressure on the structure of the predator's visual field, favouring the frontally oriented, high-resolution visual systems commonly observed in predators that feed on swarming animals. Finally, we provide evidence that when prey evolve swarming in response to predator confusion, there is a change in the shape of the functional response curve describing the predator's consumption rate as prey density increases. Thus, we show that a relatively simple perceptual constraint--predator confusion--could have pervasive evolutionary effects on prey behaviour, predator sensory mechanisms and the ecological interactions between predators and prey.