WorldWideScience

Sample records for genes ercc2 xrcc3

  1. Polymorphisms in the genes ERCC2, XRCC3 and CD3EAP influence treatment outcome in multiple myeloma patients undergoing autologous bone marrow transplantation

    DEFF Research Database (Denmark)

    Vangsted, Annette; Gimsing, Peter; Klausen, Tobias W

    2007-01-01

    ) of polymorphism in the DNA repair genes ERCC1, ERCC2 and XRCC3, and in the apoptotic genes PPP1R13L and CD3EAP in 348 patients with multiple myeloma undergoing autologous bone marrow transplantation. Carriers of the variant C-allele of ERCC2 K751Q, the variant T-allele of XRCC3 T241M and the variant A...... the outcome for patients treated with autologous stem cell transplantation. Udgivelsesdato: 2007-Mar-1...

  2. ERCC1 and XRCC1 but not XPA single nucleotide polymorphisms correlate with response to chemotherapy in endometrial carcinoma

    Directory of Open Access Journals (Sweden)

    Chen L

    2016-11-01

    Full Text Available Liang Chen,1 Mei-Mei Liu,1 Hui Liu,1 Dan Lu,2 Xiao-Dan Zhao,3 Xue-Jing Yang4 1Department of Gynecology and Obstetrics, 2Department of Oncology, 3Department of Clinical Laboratory, The 2nd Affiliated Hospital, Harbin Medical University, 4Nursing Department, Harbin Chest Hospital, Harbin, People’s Republic of China Abstract: Our study aimed to investigate the correlation between single nucleotide polymorphisms of ERCC1/XRCC1/XPA genes and postoperative chemotherapy efficacy and prognosis of endometrial carcinoma. Our study included 108 patients with endometrial carcinoma and 100 healthy participants. ERCC1 rs11615/XRCC1 rs25487/XPA rs1800975 gene polymorphisms were detected by polymerase chain reaction–restriction fragment length polymorphism. Then the chemotherapy efficacy and toxic effects of the patients were assessed. The genotype and allele frequency of ERCC1 rs11615/XRCC1 rs25487 in the case group were significantly different from that in the control group (all P<0.05. The patients with AA + GA in ERCC1 rs11615 had an increased risk of endometrial carcinoma than those with GG, and the risk of endometrial carcinoma for patients with AA + GA was also higher in comparison with patients with GG genotype in XRCC1 rs25487 (all P<0.05. GG on both ERCC1 rs11615/XRCC1 rs25487 had a higher effective rate of chemotherapy than GA + AA (all P<0.05. ERCC1 rs11615/XRCC1 rs25487 gene polymorphisms were linked with toxic effects in liver, kidney, and nervous system. ERCC1 rs11615/XRCC1 rs25487, muscular invasion, and tumor stage were independent risk factors for the prognosis of endometrial carcinoma (all P<0.05. However, no significant associations were observed between XPA rs1800975 polymorphism and chemotherapy efficacy and prognosis of endometrial carcinoma (all P>0.05. These results indicated that ERCC1 and XRCC1 but not XPA polymorphisms correlate with response to chemotherapy in endometrial carcinoma. Keywords: ERCC1, XRCC1, XPA, single nucleotide

  3. ABCC5, ERCC2, XPA and XRCC1 transcript abundance levels correlate with cisplatin chemoresistance in non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Khuder Sadik A

    2005-05-01

    Full Text Available Abstract Background Although 40–50% of non-small cell lung cancer (NSCLC tumors respond to cisplatin chemotherapy, there currently is no way to prospectively identify potential responders. The purpose of this study was to determine whether transcript abundance (TA levels of twelve selected DNA repair or multi-drug resistance genes (LIG1, ERCC2, ERCC3, DDIT3, ABCC1, ABCC4, ABCC5, ABCC10, GTF2H2, XPA, XPC and XRCC1 were associated with cisplatin chemoresistance and could therefore contribute to the development of a predictive marker. Standardized RT (StaRT-PCR, was employed to assess these genes in a set of NSCLC cell lines with a previously published range of sensitivity to cisplatin. Data were obtained in the form of target gene molecules relative to 106 β-actin (ACTB molecules. To cancel the effect of ACTB variation among the different cell lines individual gene expression values were incorporated into ratios of one gene to another. Each two-gene ratio was compared as a single variable to chemoresistance for each of eight NSCLC cell lines using multiple regression. In an effort to validate these results, six additional lines then were evaluated. Results Following validation, single variable models best correlated with chemoresistance (p ERCC2/XPC, ABCC5/GTF2H2, ERCC2/GTF2H2, XPA/XPC and XRCC1/XPC. All single variable models were examined hierarchically to achieve two variable models. The two variable model with the highest correlation was (ABCC5/GTF2H2, ERCC2/GTF2H2 with an R2 value of 0.96 (p Conclusion These results provide markers suitable for assessment of small fine needle aspirate biopsies in an effort to prospectively identify cisplatin resistant tumors.

  4. ERCC1 Cys8092Ala and XRCC1 Arg399Gln polymorphisms predict progression-free survival after curative radiotherapy for nasopharyngeal carcinoma.

    Directory of Open Access Journals (Sweden)

    Hekun Jin

    Full Text Available BACKGROUND: Single nucleotide polymorphisms (SNPs in DNA repair genes can alter gene expression and activity and affect response to cancer treatment and, correspondingly, survival. The present study was designed to evaluate the utility of the XRCC1 Arg399Gln and ERCC1 Cys8092Ala SNPs, measured in pretreatment biopsy samples, as predictors of response to radiotherapy in patients with non-metastatic nasopharyngeal carcinoma (NPC. MATERIALS AND METHODS: The study included 75 consecutive patients with stage II-IVA-B NPC. XRCC1 Arg399Glu and ERCC1 Cys8092Ala SNPs were identified from paraffin-embedded biopsy specimens via Sanger sequencing. Expression of p53 and pAkt protein was analyzed by immunohistochemical staining. Potential relationships between genetic polymorphisms and progression-free survival (PFS were analyzed by using a Cox proportional hazards model, the Kaplan-Meier method, and the log-rank test. RESULTS: Multivariate analysis showed that carriers of the ERCC1 8092 Ala/Ala genotype [hazard ratio (HR 1.882; 95% confidence interval (CI 1.031-3.438; P = 0.039] and heavy smokers (≥20 pack-years carrying the XRCC1 Arg/Arg genotype (HR 2.019; 95% CI 1.010-4.036; P = 0.047 had significantly lower PFS rates. Moreover, combined positive expression of p53 and pAkt led to significantly increased PFS in subgroups carrying the XRCC1 Gln allele (HR 7.057; 95% CI 2.073-24.021; P = 0.002 or the ERCC1 Cys allele (HR 2.568; 95% CI 1.056-6.248; P = 0.038. CONCLUSIONS: The ERCC1 Cys8092Ala polymorphism is an independent predictor of response to radiotherapy for NPC, and the XRCC1 Arg399Glu mutation combined with smoking status seems to predict PFS as well. Our results further suggest a possible correlation between these genetic polymorphisms and p53 protein status on survival.

  5. Polimorfismos em genes de reparo do DNA (XPC, ERCC1, XRCC7) em mulheres com câncer do colo do útero

    OpenAIRE

    Saffar, Issamir Farias [UNIFESP

    2010-01-01

    Estudos demonstram que polimorfismos em genes relacionados ao reparo do DNA estão envolvidos na patogênese de diversas doenças neoplásicas, como o câncer ginecológico, particularmente o câncer do colo do útero. O presente estudo, caso-controle, compara os polimorfismos dos genes XPC, ERCC1 e XRCC7 em 77 mulheres com câncer cervical (70 casos de carcinoma espinocelular e 7 casos de adenocarcinoma do colo do útero) e 73 mulheres saudáveis atendidas no Hospital do Câncer Alfredo Abrão, entre Jun...

  6. Association studies of OGG1, XRCC1, XRCC2 and XRCC3 polymorphisms with differentiated thyroid cancer

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Quispes, Wilser-Andres; Perez-Machado, Giselle; Akdi, Abdelmounaim [Grup de Mutagenesi, Departament de Genetica i de Microbiologia, Universitat Autonoma de Barcelona, Bellaterra (Spain); Pastor, Susana [Grup de Mutagenesi, Departament de Genetica i de Microbiologia, Universitat Autonoma de Barcelona, Bellaterra (Spain); CIBER Epidemiologia y Salud Publica, Instituto de Salud Carlos III (Spain); Galofre, Pere [Servei de Medicina Nuclear, Hospitals Universitaris Vall d' Hebron, Barcelona (Spain); Biarnes, Fina [Unitat d' Endocrinologia, Hospital Josep Trueta, Girona (Spain); Castell, Joan [Servei de Medicina Nuclear, Hospitals Universitaris Vall d' Hebron, Barcelona (Spain); Velazquez, Antonia [Grup de Mutagenesi, Departament de Genetica i de Microbiologia, Universitat Autonoma de Barcelona, Bellaterra (Spain); CIBER Epidemiologia y Salud Publica, Instituto de Salud Carlos III (Spain); Marcos, Ricard, E-mail: ricard.marcos@uab.es [Grup de Mutagenesi, Departament de Genetica i de Microbiologia, Universitat Autonoma de Barcelona, Bellaterra (Spain); CIBER Epidemiologia y Salud Publica, Instituto de Salud Carlos III (Spain)

    2011-05-10

    The role of the DNA repair genes OGG1, XRCC1, XRCC2 and XRCC3 on differentiated thyroid cancer (DTC) susceptibility was examined in 881 individuals (402 DTC and 479 controls). DNA repair genes were proposed as candidate genes, since the current data indicate that exposure to ionizing radiation is the only established factor in the development of thyroid cancer, especially when it occurs in early stages of life. We have genotyped DNA repair genes involved in base excision repair (BER) (OGG1, Ser326Cys; XRCC1, Arg280His and Arg399Gln), and homologous recombination repair (HRR) (XRCC2, Arg188His and XRCC3, ISV-14G). Genotyping was carried out using the iPLEX (Sequenom) technique. Multivariate logistic regression analyses were performed in a case-control study design. From all the studied polymorphism, only a positive association (OR = 1.58, 95% CI 1.05-2.46, P = 0.027) was obtained for XRCC1 (Arg280His). No associations were observed for the other polymorphisms. No effects of the histopathological type of tumor were found when the DTC patients were stratified according to the type of tumor. It must be emphasized that this study include the greater patients group, among the few studies carried out until now determining the role of DNA repair genes in thyroid cancer susceptibility.

  7. Association studies of OGG1, XRCC1, XRCC2 and XRCC3 polymorphisms with differentiated thyroid cancer

    International Nuclear Information System (INIS)

    Garcia-Quispes, Wilser-Andres; Perez-Machado, Giselle; Akdi, Abdelmounaim; Pastor, Susana; Galofre, Pere; Biarnes, Fina; Castell, Joan; Velazquez, Antonia; Marcos, Ricard

    2011-01-01

    The role of the DNA repair genes OGG1, XRCC1, XRCC2 and XRCC3 on differentiated thyroid cancer (DTC) susceptibility was examined in 881 individuals (402 DTC and 479 controls). DNA repair genes were proposed as candidate genes, since the current data indicate that exposure to ionizing radiation is the only established factor in the development of thyroid cancer, especially when it occurs in early stages of life. We have genotyped DNA repair genes involved in base excision repair (BER) (OGG1, Ser326Cys; XRCC1, Arg280His and Arg399Gln), and homologous recombination repair (HRR) (XRCC2, Arg188His and XRCC3, ISV-14G). Genotyping was carried out using the iPLEX (Sequenom) technique. Multivariate logistic regression analyses were performed in a case-control study design. From all the studied polymorphism, only a positive association (OR = 1.58, 95% CI 1.05-2.46, P = 0.027) was obtained for XRCC1 (Arg280His). No associations were observed for the other polymorphisms. No effects of the histopathological type of tumor were found when the DTC patients were stratified according to the type of tumor. It must be emphasized that this study include the greater patients group, among the few studies carried out until now determining the role of DNA repair genes in thyroid cancer susceptibility.

  8. Polymorphism of XRCC1, XRCC3, and XPD Genes and Risk of Chronic Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Claudia Bănescu

    2014-01-01

    Full Text Available The genetic polymorphisms of X-ray repair cross complementing group 1 (XRCC1, X-ray repair cross complementing group 3 (XRCC3, and xeroderma pigmentosum complementation group D (XPD repair genes may lead to genetic instability and leukemogenesis. The purpose of the study was to evaluate the association between XRCC1 Arg399Gln, Arg280His and Arg194Trp, XRCC3 Thr241Met, and XPD Lys751Gln polymorphisms and the risk of developing CML in Romanian patients. A total of 156 patients diagnosed with CML and 180 healthy controls were included in this study. We found no association between CML and XRCC1 or XRCC3 variant genotypes in any of the investigated cases. A significant difference was observed in the variant genotype frequencies of the XPD Lys751Gln polymorphism between the patients with CML and control group (for variant homozygous genotypes, OR=2.37; 95% CI=1.20–4.67; P value = 0.016 and for combined heterozygous and variant homozygous genotypes, OR=1.72; 95% CI=1.10–2.69; P value = 0.019. This was also observed when analyzing the variant 751Gln allele (OR=1.54; 95% CI=1.13–2.11; P value = 0.008. Our results suggest that the XPD Lys751Gln variant genotype increases the risk of CML.

  9. Association of a XRCC3 polymorphism and rectum mean dose with the risk of acute radio-induced gastrointestinal toxicity in prostate cancer patients

    International Nuclear Information System (INIS)

    Fachal, Laura; Gómez-Caamaño, Antonio; Peleteiro, Paula; Carballo, Ana; Calvo-Crespo, Patricia; Sánchez-García, Manuel; Lobato-Busto, Ramón; Carracedo, Ángel; Vega, Ana

    2012-01-01

    Background and purpose: We have performed a case–control study among prostate cancer patients treated with three-dimensional conformational radiotherapy (3D-CRT) in order to investigate the association between single nucleotide polymorphisms (SNPs), treatment and patient features with gastrointestinal and genitourinary acute toxicity. Material and methods: A total of 698 patients were screened for 14 SNPs located in the ATM, ERCC2, LIG4, MLH1 and XRCC3 genes. Gastrointestinal and genitourinary toxicities were recorded prospectively using the Common Terminology Criteria for Adverse Events v3.0. Results: The XRCC3 SNP rs1799794 (G/G OR = 5.65; 95% CI: 1.95–16.38; G/A OR = 2.75; 95% CI: 1.25–6.05; uncorrected p-value = 2.8 × 10 −03 ; corrected p-value = 0.03; FDR q-value = 0.06) as well as the mean dose received by the rectum (OR = 1.06; 95% CI: 1.02–1.1; uncorrected p-value = 2.49 × 10 −03 ; corrected p-value = 0.03; FDR q-value = 0.06) were significantly associated with gastrointestinal toxicity after correction for multiple testing. Those patients who undergone previous prostatectomy were less prone to develop genitourinary toxicity (OR = 0.38; 95% CI: 0.18–0.71; uncorrected p-value = 4.95 × 10 −03 ; corrected p-value = 0.03; FDR q-value = 0.08). Our study excludes the possibility of a >2-fold risk increase in genitourinary acute toxicity being due to rs1801516 ATM SNP, the rs1805386 and rs1805388 LIG4 markers, as well as all the SNPs evaluated in the ERCC2, MLH1 and XRCC3 genes. Conclusions: The XRCC3 rs1799794 SNP and the mean dose received by the rectum are associated with the development of gastrointestinal toxicity after 3D-CRT.

  10. Localization of the xeroderma pigmentosum group B-correcting gene ERCC-3 to human chromosome 2q21.

    NARCIS (Netherlands)

    G. Weeda (Geert); J. Wiegant; M. van der Ploeg; A.H.M. Geurts van Kessel (Ad); A.J. van der Eb; J.H.J. Hoeijmakers (Jan)

    1991-01-01

    textabstractThe human excision-repair gene ERCC3 was cloned after DNA-mediated gene transfer to the uv-sensitive Chinese hamster ovary mutant cell line 27-1, a member of complementation group 3 of the excision-defective rodent cell lines. The ERCC3 gene specifically corrects the DNA repair defect of

  11. Deficiency in nucleotide excision repair family gene activity, especially ERCC3, is associated with non-pigmented hair fiber growth.

    Directory of Open Access Journals (Sweden)

    Mei Yu

    Full Text Available We conducted a microarray study to discover gene expression patterns associated with a lack of melanogenesis in non-pigmented hair follicles (HF by microarray. Pigmented and non-pigmented HFs were collected and micro-dissected into the hair bulb (HB and the upper hair sheaths (HS including the bulge region. In comparison to pigmented HS and HBs, nucleotide excision repair (NER family genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5, ERCC6, XPA, NTPBP, HCNP, DDB2 and POLH exhibited statistically significantly lower expression in non- pigmented HS and HBs. Quantitative PCR verified microarray data and identified ERCC3 as highly differentially expressed. Immunohistochemistry confirmed ERCC3 expression in HF melanocytes. A reduction in ERCC3 by siRNA interference in human melanocytes in vitro reduced their tyrosinase production ability. Our results suggest that loss of NER gene function is associated with a loss of melanin production capacity. This may be due to reduced gene transcription and/or reduced DNA repair in melanocytes which may eventually lead to cell death. These results provide novel information with regard to melanogenesis and its regulation.

  12. Polymorphisms of the XRCC1, XRCC3, & XPD genes, and colorectal cancer risk: a case-control study in Taiwan

    International Nuclear Information System (INIS)

    Yeh, Chih-Ching; Sung, Fung-Chang; Tang, Reiping; Chang-Chieh, Chung Rong; Hsieh, Ling-Ling

    2005-01-01

    Recent studies relating to the association between DNA repair-gene polymorphisms and colorectal cancer risk would, to the best of our knowledge, appear to be very limited. This study was designed to examine the polymorphisms associated with three DNA repair genes, namely: XRCC1 Arg399Gln, XRCC3 Thr241Met and XPD Lys751Gln, and investigate their role as susceptibility markers for colorectal cancer. We conducted a case-control study including 727 cases of cancer and 736 hospital-based age- and sex-matched healthy controls to examine the role of genetic polymorphisms of three DNA-repair genes (XRCC1, XRCC3 and XPD) in the context of colorectal cancer risk for the Taiwanese population. Genomic DNA isolated from 10 ml whole blood was used to genotype XRCC1 Arg399Gln, XRCC3 Thr241Met and XPD Lys751Gln by means of polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) analysis. The risk for colorectal cancer did not appear to differ significantly amongst individuals featuring the XRCC1 399Arg/Arg genotype (OR = 1.18; 95% CI, 0.96–1.45), the XRCC3 241Thr/Thr genotype (OR = 1.25; 95% CI, 0.88–1.79) or the XPD 751Gln allele (OR = 1.20; 95% CI, 0.90–1.61), although individuals featuring a greater number of risk genotypes (genotype with OR greater than 1) did experience a higher risk for colorectal cancer when compared to those who didn't feature any risk genotypes (Trend test P = 0.03). Compared with those individuals who didn't express any putative risk genotypes, individuals featuring all of the putative risk genotypes did experience a significantly greater cancer risk (OR = 2.43, 95% CI = 1.21–4.90), particularly for individuals suffering tumors located in the rectum (OR = 3.18, 95% CI = 1.29–7.82) and diagnosed prior to the age of 60 years (OR = 4.90, 95% CI = 1.72–14.0). Our results suggest that DNA-repair pathways may simultaneously modulate the risk of colorectal cancer for the Taiwanese population, and, particularly

  13. Molecular cloning and biological characterization of the human excision repair gene ERCC-3

    International Nuclear Information System (INIS)

    Weeda, G.; van Ham, R.C.; Masurel, R.; Westerveld, A.; Odijk, H.; de Wit, J.; Bootsma, D.; van der Eb, A.J.; Hoeijmakers, J.H.

    1990-01-01

    In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion

  14. ERCC2 2251A>C genetic polymorphism was highly correlated with early relapse in high-risk stage II and stage III colorectal cancer patients: A preliminary study

    Directory of Open Access Journals (Sweden)

    Lee Su-Chen

    2008-02-01

    Full Text Available Abstract Background Early relapse in colorectal cancer (CRC patients is attributed mainly to the higher malignant entity (such as an unfavorable genotype, deeper tumor invasion, lymph node metastasis and advance cancer stage and poor response to chemotherapy. Several investigations have demonstrated that genetic polymorphisms in drug-targeted genes, metabolizing enzymes, and DNA-repairing enzymes are all strongly correlated with inter-individual differences in the efficacy and toxicity of many treatment regimens. This preliminary study attempts to identify the correlation between genetic polymorphisms and clinicopathological features of CRC, and evaluates the relationship between genetic polymorphisms and chemotherapeutic susceptibility of Taiwanese CRC patients. To our knowledge, this study discusses, for the first time, early cancer relapse and its indication by multiple genes. Methods Six gene polymorphisms functional in drug-metabolism – GSTP1 Ile105Val, ABCB1 Ile1145Ile, MTHFR Ala222Val, TYMS double (2R or triple (3R tandem repeat – and DNA-repair genesERCC2 Lys751Gln and XRCC1 Arg399Gln – were assessed in 201 CRC patients using a polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP technique and DNA sequencing. Patients were diagnosed as either high-risk stage II (T2 and 3 N0 M0 or III (any T N1 and 2 M0 and were administered adjuvant chemotherapy regimens that included 5-fluorouracil (5FU and leucovorin (LV. The correlations between genetic polymorphisms and patient clinicopathological features and relapses were investigated. Results In this study, the distributions of GSTP1 (P = 0.003, ABCB1 (P = 0.001, TYMS (P ERCC2 (P XRCC1 (P = 0.006 genotypes in the Asian population, with the exception of MTHFR (P = 0.081, differed significantly from their distributions in a Caucasian population. However, the unfavorable genotype ERCC2 2251A>C (P = 0.006, tumor invasion depth (P = 0.025, lymph node metastasis (P = 0

  15. Association between polymorphisms at promoters of XRCC5 and XRCC6 genes and risk of breast cancer.

    Science.gov (United States)

    Rajaei, Mehrdad; Saadat, Iraj; Omidvari, Shahpour; Saadat, Mostafa

    2014-04-01

    Variation in DNA repair genes is one of the mechanisms that may lead to variation in DNA repair capacity. Ku, a heterodimeric DNA-binding complex, is directly involved in repair of DNA double-strand breaks. Ku consists of two subunits, Ku70 and Ku80, which are encoded by the XRCC6 and XRCC5 genes, respectively. In the present study, we investigated whether common genetic variant in variable number of tandem repeats (VNTR) XRCC5 and T-991C XRCC6 was associated with an altered risk of breast cancer. The present study included 407 females with breast cancer and 395 age frequency-matched controls which were randomly selected from the healthy female blood donors. The XRCC5 and XRCC6 polymorphisms were determined using PCR-based methods. For XRCC5 polymorphism, in comparison with the 1R/1R genotype, the 0R/0R genotype increased breast cancer risk (OR 9.55, 95%CI 1.19-76.64, P = 0.034). The 1R/3R genotype compared with 1R/1R genotype decreased the risk of breast cancer (Fisher's exact test P = 0.015). There was no association between T-991C polymorphism of XRCC6 and breast cancer risk. Mean of age at diagnosis of breast cancer for 0, 1, 2, 3, and >4 repeat in XRCC5 were 39.2, 41.9, 44.3, 45.8, and 47.3 years, respectively. The Kaplan-Meier survival analysis revealed that the number of repeat was associated with age at diagnosis of breast cancer (log rank statistic = 13.90, df = 4, P = 0.008). The findings of the present study revealed that either breast cancer risk or age at diagnosis of breast cancer was associated with the VNTR polymorphism at promoter region of XRCC5.

  16. Clinical heterogeneity within xeroderma pigmentosum associated with mutations in the DNA repair and transcription gene ERCC3

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, W.; Kleijer, W.J.; Bootsma, D.; Hoeijmakers, J.H.J.; Weeda, G. (Erasmus Univ., Rotterdam (Netherlands)); Scott, R.J.; Rodgers, S.; Mueller, H.J. (Univ. Hospital, Basel (Switzerland)); Cole, J.; Arlett, C.F. (Univ. of Sussex, Brighton (United Kingdom))

    1994-02-01

    The human DNA excision repair gene ERCC3 specifically corrects the nucleotide excision repair (NER) defect of xeroderma pigmentosum (XP) complementation group B. In addition to its function in NER, the ERCC3 DNA helicase was recently identified as one of the components of the human BTF2/TFIIH transcription factor complex, which is required for initiation of transcription of class II genes. To date, a single patient (XP11BE) has been assigned to this XP group B (XP-B), with the remarkable conjunction of two autosomal recessive DNA repair deficiency disorders: XP and Cockayne syndrome (CS). The intriguing involvement of the ERCC3 protein in the vital process of transcription may provide an explanation for the rarity, severity, and wide spectrum of clinical features in this complementation group. Here the authors report the identification of two new XP-B patients: XPCS1BA and XPCS2BA (siblings), by microneedle injection of the cloned ERCC3 repair gene as well as by cell hybridization. Molecular analysis of the ERCC3 gene in both patients revealed a single base substitution causing a missense mutation in a region that is completely conserved in yeast, Drosophila, mouse, and human ERCC3. As in patient XP11BE, the expression of only one allele (paternal) is detected. The mutation causes a virtually complete inactivation of the NER function of the protein. Despite this severe NER defect, both patients display a late onset of neurologic impairment, mild cutaneous symptoms, and a striking absence of skin tumors even at an age of >40 years. Analysis of the frequency of hprt[sup [minus

  17. A human repair gene ERCC5 is involved in group G xeroderma pigmentosum

    International Nuclear Information System (INIS)

    Shiomi, Tadahiro

    1994-01-01

    In E. coli, ultraviolet-induced DNA damage is removed by the coordinated action of UVR A, B, C, and D proteins (1). In Saccharomyces cerevisiae, more than ten genes have been reported to be involved in excision repair (2). The nucleotide excision repair pathway has been extensively studied in these organisms. To facilitate studying nucleotide excision repair in mammalian cells. Ultraviolet-sensitive rodent cell mutants have been isolated and classified into 11 complementation groups (9,10). The human nucleotide excision repair genes which complement the defects of the mutants have been designated as the ERCC (excision repair cross-complementing) genes; a number is added to refer to the particular rodent complementation group that is corrected by the gene. Recently, several human DNA repair genes have been cloned using rodent cell lines sensitive to ultraviolet. These include ERCC2 (3), ERCC3 (4), and ERCC6 (5), which correspond to the defective genes in the ultraviolet-sensitive human disorders xeroderma pigmentosum (XP) group D (6) and group B (4), and Cockayne's syndrome (CS) group B (7), respectively. The human excision repair gene ERCC5 was cloned after DNA-mediated gene transfer of human HeLa cell genomic DNA into the ultraviolet-sensitive mouse mutant XL216, a member of rodent complementation group 5 (11,12) and the gene was mapped on human chromosome 13q32.3-q33.1 by the replication R-banding fluorescence in situ hybridization method (13). The ERCC5 cDNA encodes a predicted 133 kDa nuclear protein that shares some homology with product of the yeast DNA repair gene RAD 2. Transfection with mouse ERCC5 cDNA restored normal levels of ultraviolet-resistance to XL216 cells. Microinjection of ERCC5 cDNA specifically restored the defect of XP group G cells (XP-G) as measured by unscheduled DNA synthesis (UDS), and XP-G cells stably transformed with ERCC5 cDNA showed nearly normal ultraviolet resistance. (J.P.N.)

  18. Genetic Polymorphisms in XRCC1, CD3EAP, PPP1R13L, XPB, XPC, and XPF and the Risk of Chronic Benzene Poisoning in a Chinese Occupational Population.

    Directory of Open Access Journals (Sweden)

    Ping Xue

    Full Text Available Individual variations in the capacity of DNA repair machinery to relieve benzene-induced DNA damage may be the key to developing chronic benzene poisoning (CBP, an increasingly prevalent occupational disease in China. ERCC1 (Excision repair cross complementation group 1 is located on chromosome 19q13.2-3 and participates in the crucial steps of Nucleotide Excision Repair (NER; moreover, we determined that one of its polymorphisms, ERCC1 rs11615, is a biomarker for CBP susceptibility in our previous report. Our aim is to further explore the deeper association between some genetic variations related to ERCC1 polymorphisms and CBP risk.Nine single nucleotide polymorphisms (SNPs of XRCC1 (X-ray repair cross-complementing 1, CD3EAP (CD3e molecule, epsilon associated protein, PPP1R13L (protein phosphatase 1, regulatory subunit 13 like, XPB (Xeroderma pigmentosum group B, XPC (Xeroderma pigmentosum group C and XPF (Xeroderma pigmentosum group F were genotyped by the Snapshot and TaqMan-MGB® probe techniques, in a study involving 102 CBP patients and 204 controls. The potential interactions between these SNPs and lifestyle factors, such as smoking and drinking, were assessed using a stratified analysis.An XRCC1 allele, rs25487, was related to a higher risk of CBP (P<0.001 even after stratifying for potential confounders. Carriers of the TT genotype of XRCC1 rs1799782 who were alcohol drinkers (OR = 8.000; 95% CI: 1.316-48.645; P = 0.022, male (OR = 9.333; 95% CI: 1.593-54.672; P = 0.019, and had an exposure of ≤12 years (OR = 2.612; 95% CI: 1.048-6.510; P = 0.035 had an increased risk of CBP. However, the T allele in PPP1R13L rs1005165 (P<0.05 and the GA allele in CD3EAP rs967591 (OR = 0.162; 95% CI: 0039~0.666; P = 0.037 decreased the risk of CBP in men. The haplotype analysis of XRCC1 indicated that XRCC1 rs25487A, rs25489G and rs1799782T (OR = 15.469; 95% CI: 5.536-43.225; P<0.001 were associated with a high risk of CBP.The findings showed that

  19. Association Between Genetic Polymorphisms in the XRCC1, XRCC3, XPD, GSTM1, GSTT1, MSH2, MLH1, MSH3, and MGMT Genes and Radiosensitivity in Breast Cancer Patients

    International Nuclear Information System (INIS)

    Mangoni, Monica; Bisanzi, Simonetta; Carozzi, Francesca; Sani, Cristina; Biti, Giampaolo; Livi, Lorenzo; Barletta, Emanuela; Costantini, Adele Seniori; Gorini, Giuseppe

    2011-01-01

    Purpose: Clinical radiosensitivity varies considerably among patients, and radiation-induced side effects developing in normal tissue can be therapy limiting. Some single nucleotide polymorphisms (SNPs) have been shown to correlate with hypersensitivity to radiotherapy. We conducted a prospective study of 87 female patients with breast cancer who received radiotherapy after breast surgery. We evaluated the association between acute skin reaction following radiotherapy and 11 genetic polymorphisms in DNA repair genes: XRCC1 (Arg399Gln and Arg194Trp), XRCC3 (Thr241Met), XPD (Asp312Asn and Lys751Gln), MSH2 (gIVS12-6T>C), MLH1 (Ile219Val), MSH3 (Ala1045Thr), MGMT (Leu84Phe), and in damage-detoxification GSTM1 and GSTT1 genes (allele deletion). Methods and Materials: Individual genetic polymorphisms were determined by polymerase chain reaction and single nucleotide primer extension for single nucleotide polymorphisms or by a multiplex polymerase chain reaction assay for deletion polymorphisms. The development of severe acute skin reaction (moist desquamation or interruption of radiotherapy due to toxicity) associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for cumulative biologically effective radiation dose. Results: Radiosensitivity developed in eight patients and was increased in carriers of variants XRCC3-241Met allele (hazard ratio [HR] unquantifiably high), MSH2 gIVS12-6nt-C allele (HR = 53.36; 95% confidence intervals [95% CI], 3.56-798.98), and MSH3-1045Ala allele (HR unquantifiably high). Carriers of XRCC1-Arg194Trp variant allele in combination with XRCC1-Arg399Gln wild-type allele had a significant risk of radiosensitivity (HR = 38.26; 95% CI, 1.19-1232.52). Conclusions: To our knowledge, this is the first report to find an association between MSH2 and MSH3 genetic variants and the development of radiosensitivity in breast cancer patients. Our findings suggest the hypothesis that mismatch repair mechanisms may be

  20. Newly identified CHO ERCC3/XPB mutations and phenotype characterization

    Science.gov (United States)

    Rybanská, Ivana; Gurský, Ján; Fašková, Miriam; Salazar, Edmund P.; Kimlíčková-Polakovičová, Erika; Kleibl, Karol; Thompson, Larry H.; Piršel, Miroslav

    2010-01-01

    Nucleotide excision repair (NER) is a complex multistage process involving many interacting gene products to repair a wide range of DNA lesions. Genetic defects in NER cause human hereditary diseases including xeroderma pigmentosum (XP), Cockayne syndrome (CS), trichothiodystrophy and a combined XP/CS overlapping symptom. One key gene product associated with all these disorders is the excision repair cross-complementing 3/xeroderma pigmentosum B (ERCC3/XPB) DNA helicase, a subunit of the transcription factor IIH complex. ERCC3 is involved in initiation of basal transcription and global genome repair as well as in transcription-coupled repair (TCR). The hamster ERCC3 gene shows high degree of homology with the human ERCC3/XPB gene. We identified new mutations in the Chinese hamster ovary cell ERCC3 gene and characterized the role of hamster ERCC3 protein in DNA repair of ultraviolet (UV)-induced and oxidative DNA damage. All but one newly described mutations are located in the protein C-terminal region around the last intron–exon boundary. Due to protein truncations or frameshifts, they lack amino acid Ser751, phosphorylation of which prevents the 5′ incision of the UV-induced lesion during NER. Thus, despite the various locations of the mutations, their phenotypes are similar. All ercc3 mutants are extremely sensitive to UV-C light and lack recovery of RNA synthesis (RRS), confirming a defect in TCR of UV-induced damage. Their limited global genome NER capacity averages ∼8%. We detected modest sensitivity of ercc3 mutants to the photosensitizer Ro19-8022, which primarily introduces 8-oxoguanine lesions into DNA. Ro19-8022-induced damage interfered with RRS, and some of the ercc3 mutants had delayed kinetics. All ercc3 mutants showed efficient base excision repair (BER). Thus, the positions of the mutations have no effect on the sensitivity to, and repair of, Ro19-8022-induced DNA damage, suggesting that the ERCC3 protein is not involved in BER. PMID:19942596

  1. Tetratricopeptide-motif-mediated interaction of FANCG with recombination proteins XRCC3 and BRCA2.

    Science.gov (United States)

    Hussain, Shobbir; Wilson, James B; Blom, Eric; Thompson, Larry H; Sung, Patrick; Gordon, Susan M; Kupfer, Gary M; Joenje, Hans; Mathew, Christopher G; Jones, Nigel J

    2006-05-10

    Fanconi anaemia is an inherited chromosomal instability disorder characterised by cellular sensitivity to DNA interstrand crosslinkers, bone-marrow failure and a high risk of cancer. Eleven FA genes have been identified, one of which, FANCD1, is the breast cancer susceptibility gene BRCA2. At least eight FA proteins form a nuclear core complex required for monoubiquitination of FANCD2. The BRCA2/FANCD1 protein is connected to the FA pathway by interactions with the FANCG and FANCD2 proteins, both of which co-localise with the RAD51 recombinase, which is regulated by BRCA2. These connections raise the question of whether any of the FANC proteins of the core complex might also participate in other complexes involved in homologous recombination repair. We therefore tested known FA proteins for direct interaction with RAD51 and its paralogs XRCC2 and XRCC3. FANCG was found to interact with XRCC3, and this interaction was disrupted by the FA-G patient derived mutation L71P. FANCG was co-immunoprecipitated with both XRCC3 and BRCA2 from extracts of human and hamster cells. The FANCG-XRCC3 and FANCG-BRCA2 interactions did not require the presence of other FA proteins from the core complex, suggesting that FANCG also participates in a DNA repair complex that is downstream and independent of FANCD2 monoubiquitination. Additionally, XRCC3 and BRCA2 proteins co-precipitate in both human and hamster cells and this interaction requires FANCG. The FANCG protein contains multiple tetratricopeptide repeat motifs (TPRs), which function as scaffolds to mediate protein-protein interactions. Mutation of one or more of these motifs disrupted all of the known interactions of FANCG. We propose that FANCG, in addition to stabilising the FA core complex, may have a role in building multiprotein complexes that facilitate homologous recombination repair.

  2. Might there be a link between intron 3 VNTR polymorphism in the XRCC4 DNA repair gene and the etiopathogenesis of rheumatoid arthritis?

    Science.gov (United States)

    Pehlivan, Sacide; Balci, Sibel Oguzkan; Aydeniz, Ali; Pehlivan, Mustafa; Sever, Tugce; Gursoy, Savas

    2015-01-01

    DNA repair genes are involved in several diseases such as cancers and autoimmune diseases. Previous studies indicated that a DNA repair system was involved in the development of rheumatoid arthritis (RA). In this study, we aimed to examine whether four polymorphisms in the DNA repair genes (xeroderma pigmentosum complementation group D [XPD], X-ray repair cross-complementing group 1 [XRCC1], and X-ray repair cross-complementing group 4 [XRCC4]) were associated with RA. Sixty-five patients with RA and 70 healthy controls (HCs) were examined for XPD (A-751G), XRCC1 (A399G), and XRCC4 (intron 3 VNTR and G-1394T) polymorphisms. All polymorphisms were genotyped by PCR and/or PCR-RFLP. The association between the polymorphisms and RA was analyzed using the chi-square test and de Finetti program. The intron 3 VNTR polymorphism in the XRCC4 gene showed an association with RA patients. The DI genotype was found lower in RA patients (χ(2)=8.227; p=0.0021), while the II genotype was higher in RA patients (χ(2)=5.285; p=0.010). There were deviations from the Hardy-Weinberg Equilibrium (HWE) in both intron 3 VNTR and G-1394T polymorphisms in the XRCC4 gene and in the polymorphism in the XRCC1 gene, and the observed genotype counts deviated from those expected according to the HWE (p=0.027, 0.004, and 0.002, respectively); however, there was no deviation in the other gene polymorphisms. There is no statistical difference between the RA patients and HCs for XPD (A-751G), XRCC1 (A399G), and XRCC4 (G-1394T) gene polymorphisms (p>0.05). Although XPD (A-751G), XRCC1 (A399G), and XRCC4 (G-1394T) gene polymorphisms have been extensively investigated in different clinical pictures, this is the first study to evaluate the role of these polymorphisms in the genetic etiopathogenesis of RA in Turkish patients. In conclusion, we suggested that the intron 3 VNTR polymorphism in the XRCC4 gene may be associated with the etiopathogenesis of RA as a marker of immune aging.

  3. New mutation in the mouse Xpd/Ercc2 gene leads to recessive cataracts.

    Directory of Open Access Journals (Sweden)

    Sarah Kunze

    Full Text Available Cataracts are the major eye disorder and have been associated mainly with mutations in lens-specific genes, but cataracts are also frequently associated with complex syndromes. In a large-scale high-throughput ENU mutagenesis screen we analyzed the offspring of paternally treated C3HeB/FeJ mice for obvious dysmorphologies. We identified a mutant suffering from rough coat and small eyes only in homozygotes; homozygous females turned out to be sterile. The mutation was mapped to chromosome 7 between the markers 116J6.1 and D7Mit294;4 other markers within this interval did not show any recombination among 160 F2-mutants. The critical interval (8.6 Mb contains 3 candidate genes (Apoe, Six5, Opa3; none of them showed a mutation. Using exome sequencing, we identified a c.2209T>C mutation in the Xpd/Ercc2 gene leading to a Ser737Pro exchange. During embryonic development, the mutant eyes did not show major changes. Postnatal histological analyses demonstrated small cortical vacuoles; later, cortical cataracts developed. Since XPD/ERCC2 is involved in DNA repair, we checked also for the presence of the repair-associated histone γH2AX in the lens. During the time, when primary lens fiber cell nuclei are degraded, γH2AX was strongly expressed in the cell nuclei; later, it demarcates clearly the border of the lens cortex to the organelle-free zone. Moreover, we analyzed also whether seemingly healthy heterozygotes might be less efficient in repair of DNA damage induced by ionizing radiation than wild types. Peripheral lymphocytes irradiated by 1Gy Cs137 showed 6 hrs after irradiation significantly more γH2AX foci in heterozygotes than in wild types. These findings demonstrate the importance of XPD/ERCC2 not only for lens fiber cell differentiation, but also for the sensitivity to ionizing radiation. Based upon these data, we hypothesize that variations in the human XPD/ERCC2 gene might increase the susceptibility for several disorders besides Xeroderma

  4. The relationship between XRCC1 and XRCC3 gene polymorphisms and lung cancer risk in northeastern Chinese.

    Directory of Open Access Journals (Sweden)

    Shujie Guo

    Full Text Available BACKGROUND: The prevalence of lung cancer in China will be the world's highest if allowed to proceed uncurbed. To unravel its genetic underpinnings, we sought to investigate the association of three well-characterized nonsynonymous polymorphisms in XRCC1 (Arg194Trp and Arg399Gln and XRCC3 (Thr241Met genes with lung cancer risk in northeastern Chinese. METHODOLOGY/PRINCIPAL FINDINGS: This study was hospital-based in design, encompassing 684 patients with lung cancer and 604 cancer-free controls. Genotyping was performed using the PCR-LDR (ligase detection reactions method. Data were analyzed by R language and multifactor dimensionality reduction (MDR software. Single-locus analysis identified significance in genotype distributions of polymorphism Arg194Trp (P = 0.002 and Arg399Gln (P = 0.017, and in allele distributions of Thr241Met (P = 0.005. Carriers of 399Gln/Gln genotype conferred a 147% increased risk relative to the non-carriers (odds ratio (OR: 2.47; 95% confidence interval (95% CI: 1.48-4.13; P<0.001. For Thr241Met, significance persisted under allelic (OR = 1.63; 95% CI: 1.14-2.33; P = 0.005, additive (OR = 1.64; 95% CI: 1.16-2.32; P = 0.005 and dominant (OR = 1.67; 95% CI: 1.17-2.38; P = 0.004 models. However, common allele combinations were comparable in frequency between patients and controls. In interaction analysis, the overall best MDR model included Arg399Gln and Thr241Met polymorphisms, with a maximal testing accuracy of 63.18% and a maximal cross-validation consistency of 10 out of 10 (P = 0.0175. CONCLUSIONS: Our study significantly demonstrated an independent and synergistic contribution of XRCC1 Arg399Gln and XRCC3 Thr241Met polymorphisms to lung cancer susceptibility in northeastern Chinese.

  5. Association between polymorphisms in ERCC2 gene and oral cancer risk: evidence from a meta-analysis

    International Nuclear Information System (INIS)

    Zhang, Enjiao; Cui, Zhigang; Xu, Zhongfei; Duan, Weiyi; Huang, Shaohui; Tan, Xuexin; Yin, Zhihua; Sun, Changfu; Lu, Li

    2013-01-01

    Excision repair cross-complementing group 2 (ERCC2) plays important roles in the repair of DNA damage and adducts. Single nucleotide polymorphisms (SNPs) of ERCC2 gene are suspected to influence the risks of oral cancer. We performed a meta-analysis to systematically summarize the possible association of ERCC2 rs1799793 and rs13181 polymorphisms with oral cancer risks. We retrieved the relevant articles from PubMed and Embase databases. Studies were selected using specific criteria. ORs and 95% CIs were calculated to assess the association. All analyses were performed using the Stata software. Six studies were included in this meta-analysis. There were no significant associations between ERCC2 rs1799793 and rs13181 polymorphism with overall oral cancer risk. In the stratified analysis by ethnicity, no significant associations were found. In the stratified analysis by tumor type, the risk of oral leukoplakia was significant associated with rs13181 polymorphism (AC vs. AA: OR = 1.28, 95% CI = 1.01-1.62, P = 0.546 for heterogeneity, I 2 = 0.0%; CC vs. AA: OR = 1.94, 95% CI = 0.99-3.79, P = 0.057 for heterogeneity, I 2 = 60.1%; dominant model AC + CC vs. AA: OR = 1.35, 95% CI = 1.08–1.69, P = 0.303 for heterogeneity, I 2 = 17.6%; allele C vs. A: OR = 1.38, 95% CI = 1.04–1.82. P = 0.043 for heterogeneity, I 2 = 56.4%). Rs13181 in ERCC2 gene might be associated with oral leukoplakia risk

  6. Contribution of DNA double-strand break repair gene XRCC3 genotypes to oral cancer susceptibility in Taiwan.

    Science.gov (United States)

    Tsai, Chia-Wen; Chang, Wen-Shin; Liu, Juhn-Cherng; Tsai, Ming-Hsui; Lin, Cheng-Chieh; Bau, Da-Tian

    2014-06-01

    The DNA repair gene X-ray repair cross complementing protein 3 (XRCC3) is thought to play a major role in double-strand break repair and in maintaining genomic stability. Very possibly, defective double-strand break repair of cells can lead to carcinogenesis. Therefore, a case-control study was performed to reveal the contribution of XRCC3 genotypes to individual oral cancer susceptibility. In this hospital-based research, the association of XRCC3 rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539, rs28903081 genotypes with oral cancer risk in a Taiwanese population was investigated. In total, 788 patients with oral cancer and 956 age- and gender-matched healthy controls were genotyped. The results showed that there was significant differential distribution among oral cancer and controls in the genotypic (p=0.001428) and allelic (p=0.0013) frequencies of XRCC3 rs861539. As for the other polymorphisms, there was no difference between case and control groups. In gene-lifestyle interaction analysis, we have provided the first evidence showing that there is an obvious joint effect of XRCC3 rs861539 genotype with individual areca chewing habits on oral cancer risk. In conclusion, the T allele of XRCC3 rs861539, which has an interaction with areca chewing habit in oral carcinogenesis, may be an early marker for oral cancer in Taiwanese. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  7. The mRNA expression of XRCC repair genes in mice after γ-ray radiation

    International Nuclear Information System (INIS)

    Wang Qin; Yue Jingyin; Li Jin; Mu Chuanjie; Fan Feiyue

    2006-01-01

    Objective: To investigate the role of XRCC repair genes in radioresistance of IRM-2 inbred mice. Methods: Northern hybridization was used to measure mRNA expression of XRCC1 and XRCC5 genes in IRM-2 inbred mice. ICR/JCL and 615 after exposure to different doses of γ-ray radiation at different postirradiation time. Results: The levels of XRCC1 and XRCC5 mRNA expression in control IRM-2 mice were higher significantly than those in their control parental mice (P<0.01 and P<0.05). The mRNA expression of XRCC genes in ICR/JCL and 615 mice all increased to some extent after exposure 1, 2 and 4 Gy radiation. But the levels were significantly higher at 2h postirradiation (P<0.05) . The levels of XRCC mRNA expression in IRM-2 mice did not increase significnatly compared with the control mice after exposure 1 and 2 Gy radiation. But the levels of XRCC1 and XRCC5 mRNA expression increased markedly at 4Gy 1h postirradiation (P<0.05 and P<0.01). Conclusion: The basal levels of XRCC1 and XRCC5 mRNA expression in IRM-2 mice were high. The high level of XRCC5 mRNA expression was involved in the repair of DNA double strand breaks induced by higher dose radiation, which perhaps was one of radioresistance causes of IRM-2 mice. (authors)

  8. Human DNA repair and recombination genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Jones, N.J.

    1988-09-01

    Several genes involved in mammalian DNA repair pathways were identified by complementation analysis and chromosomal mapping based on hybrid cells. Eight complementation groups of rodent mutants defective in the repair of uv radiation damage are now identified. At least seven of these genes are probably essential for repair and at least six of them control the incision step. The many genes required for repair of DNA cross-linking damage show overlap with those involved in the repair of uv damage, but some of these genes appear to be unique for cross-link repair. Two genes residing on human chromosome 19 were cloned from genomic transformants using a cosmid vector, and near full-length cDNA clones of each gene were isolated and sequenced. Gene ERCC2 efficiently corrects the defect in CHO UV5, a nucleotide excision repair mutant. Gene XRCC1 normalizes repair of strand breaks and the excessive sister chromatid exchange in CHO mutant EM9. ERCC2 shows a remarkable /approximately/52% overall homology at both the amino acid and nucleotide levels with the yeast RAD3 gene. Evidence based on mutation induction frequencies suggests that ERCC2, like RAD3, might also be an essential gene for viability. 100 refs., 4 tabs

  9. Molecular cloning and gene expression analysis of Ercc6l in Sika deer (Cervus nippon hortulorum.

    Directory of Open Access Journals (Sweden)

    Yupeng Yin

    Full Text Available BACKGROUND: One important protein family that functions in nucleotide excision repair (NER factors is the SNF2 family. A newly identified mouse ERCC6-like gene, Ercc6l (excision repair cross-complementing rodent repair deficiency, complementation group 6-like, has been shown to be another developmentally related member of the SNF2 family. METHODOLOGY/PRINCIPAL FINDINGS: In this study, Sika deer Ercc6l cDNA was first cloned and then sequenced. The full-length cDNA of the Sika deer Ercc6l gene is 4197 bp and contains a 3732 bp open reading frame that encodes a putative protein of 1243 amino acids. The similarity of Sika deer Ercc6l to Bos taurus Ercc6l is 94.05% at the amino acid sequence level. The similarity, however, is reduced to 68.42-82.21% when compared to Ercc6l orthologs in other mammals and to less than 50% compared to orthologs in Gallus gallus and Xenopus. Additionally, the expression of Ercc6l mRNA was investigated in the organs of fetal and adult Sika deer (FSD and ASD, respectively by quantitative RT-PCR. The common expression level of Ercc6l mRNA in the heart, liver, spleen, lung, kidney, and stomach from six different developmental stages of 18 Sika deer were examined, though the expression levels in each organ varied among individual Sika deer. During development, there was a slight trend toward decreased Ercc61 mRNA expression. The highest Ercc6l expression levels were seen at 3 months old in every organ and showed the highest level of detection in the spleen of FSD. The lowest Ercc6l expression levels were seen at 3 years old. CONCLUSIONS/SIGNIFICANCE: We are the first to successfully clone Sika deer Ercc6l mRNA. Ercc6l transcript is present in almost every organ. During Sika deer development, there is a slight trend toward decreased Ercc61 mRNA expression. It is possible that Ercc6l has other roles in embryonic development and in maintaining the growth of animals.

  10. Polymorphisms in DNA Repair Genes (APEX1, XPD, XRCC1 and XRCC3 and Risk of Preeclampsia in a Mexican Mestizo Population

    Directory of Open Access Journals (Sweden)

    Ada Sandoval-Carrillo

    2014-03-01

    Full Text Available Variations in genes involved in DNA repair systems have been proposed as risk factors for the development of preeclampsia (PE. We conducted a case-control study to investigate the association of Human apurinic/apyrimidinic (AP endonuclease (APEX1 Asp148Glu (rs1130409, Xeroderma Pigmentosum group D (XPD Lys751Gln (rs13181, X-ray repair cross-complementing group 1 (XRCC Arg399Gln (rs25487 and X-ray repair cross-complementing group 3 (XRCC3 Thr241Met (rs861539 polymorphisms with PE in a Mexican population. Samples of 202 cases and 350 controls were genotyped using RTPCR. Association analyses based on a χ2 test and binary logistic regression were performed to determine the odds ratio (OR and a 95% confidence interval (95% CI for each polymorphism. The allelic frequencies of APEX1 Asp148Glu polymorphism showed statistical significant differences between preeclamptic and normal women (p = 0.036. Although neither of the polymorphisms proved to be a risk factor for the disease, the APEX1 Asp148Glu polymorphism showed a tendency of association (OR: 1.74, 95% CI = 0.96–3.14 and a significant trend (p for trend = 0.048. A subgroup analyses revealed differences in the allelic frequencies of APEX1 Asp148Glu polymorphism between women with mild preeclampsia and severe preeclampsia (p = 0.035. In conclusion, our results reveal no association between XPD Lys751Gln, XRCC Arg399Gln and XRCC3 Thr241Met polymorphisms and the risk of PE in a Mexican mestizo population; however, the results in the APEX1 Asp148Glu polymorphism suggest the need for future studies using a larger sample size.

  11. Genetic polymorphisms in DNA double-strand break repair genes XRCC5, XRCC6 and susceptibility to hepatocellular carcinoma.

    Science.gov (United States)

    Li, Rui; Yang, Yuan; An, Yu; Zhou, Yun; Liu, Yanhong; Yu, Qing; Lu, Daru; Wang, Hongyang; Jin, Li; Zhou, Weiping; Qian, Ji; Shugart, Yin Yao

    2011-04-01

    Environmental risk factors cause DNA damages. Imprecise DNA repair leads to chromosome aberrations, genome destabilization and hepatocarcinogenesis. Ku is a key DNA double-strand break repair protein. We hypothesized that the genetic variants in Ku subunits encoding genes, XRCC5/XRCC6, may contribute to hepatocellular carcinoma (HCC) susceptibility. We genotyped 13 common single nucleotide polymorphisms (SNPs) in XRCC5 and XRCC6 and evaluated their associations with HCC risk in 689 pathologically confirmed cases and 690 cancer-free controls from a Chinese population. We found that a significantly reduced risk for HCC was associated with XRCC5 rs16855458 [odds ratio (OR)=0.59; 95% confidence interval (CI)=0.43-0.81; CA+AA versus CC] and a significantly increased risk for HCC was associated with XRCC5 rs9288516 (OR=2.02; 95% CI=1.42-2.86; TA+AA versus TT) even after Bonferroni correction (Pcorrected=0.026 and 0.002, respectively). The effects of rs16855458 (OR=0.57; 95% CI=0.37-0.86, P=0.008) and rs9288516 (OR=1.86; 95% CI=1.19-2.90, P=0.007) were more significant in hepatitis B surface antigen-infected subjects than non-infected subjects. The haplotype-based analysis revealed that in XRCC5, AA in block 1 (OR=0.63; 95% CI=0.48-0.83) and CGGTT in block 2 (OR=0.52; 95% CI=0.39-0.69) were associated with decreased HCC risk (Pcorrected=0.013 and analysis. In conclusion, XRCC5 variants may play a role in determining individual's HCC susceptibility, which warranted validation in larger studies.

  12. Analysis list: ERCC3 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ERCC3 Bone + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ERCC3.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ERCC3.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ERC...C3.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ERCC3.Bone.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Bone.gml ...

  13. Challenges in biotechnology at LLNL: from genes to proteins; TOPICAL

    International Nuclear Information System (INIS)

    Albala, J S

    1999-01-01

    This effort has undertaken the task of developing a link between the genomics, DNA repair and structural biology efforts within the Biology and Biotechnology Research Program at LLNL. Through the advent of the I.M.A.G.E. (Integrated Molecular Analysis of Genomes and their Expression) Consortium, a world-wide effort to catalog the largest public collection of genes, accepted and maintained within BBRP, it is now possible to systematically express the protein complement of these to further elucidate novel gene function and structure. The work has ensued in four phases, outlined as follows: (1) Gene and System selection; (2) Protein expression and purification; (3) Structural analysis; and (4) biological integration. Proteins to be expressed have been those of high programmatic interest. This includes, in particular, proteins involved in the maintenance of genome integrity, particularly those involved in the repair of DNA damage, including ERCC1, ERCC4, XRCC2, XRCC3, XRCC9, HEX1, APN1, p53, RAD51B, RAD51C, and RAD51. Full-length cDNA cognates of selected genes were isolated, and cloned into baculovirus-based expression vectors. The baculoviral expression system for protein over-expression is now well-established in the Albala laboratory. Procedures have been successfully optimized for full-length cDNA clining into expression vectors for protein expression from recombinant constructs. This includes the reagents, cell lines, techniques necessary for expression of recombinant baculoviral constructs in Spodoptera frugiperda (Sf9) cells. The laboratory has also generated a high-throughput baculoviral expression paradigm for large scale expression and purification of human recombinant proteins amenable to automation

  14. Mutation analysis of the ERCC4/FANCQ gene in hereditary breast cancer.

    Directory of Open Access Journals (Sweden)

    Sandra Kohlhase

    Full Text Available The ERCC4 protein forms a structure-specific endonuclease involved in the DNA damage response. Different cancer syndromes such as a subtype of Xeroderma pigmentosum, XPF, and recently a subtype of Fanconi Anemia, FA-Q, have been attributed to biallelic ERCC4 gene mutations. To investigate whether monoallelic ERCC4 gene defects play some role in the inherited component of breast cancer susceptibility, we sequenced the whole ERCC4 coding region and flanking untranslated portions in a series of 101 Byelorussian and German breast cancer patients selected for familial disease (set 1, n = 63 or for the presence of the rs1800067 risk haplotype (set 2, n = 38. This study confirmed six known and one novel exonic variants, including four missense substitutions but no truncating mutation. Missense substitution p.R415Q (rs1800067, a previously postulated breast cancer susceptibility allele, was subsequently screened for in a total of 3,698 breast cancer cases and 2,868 controls from Germany, Belarus or Russia. The Gln415 allele appeared protective against breast cancer in the German series, with the strongest effect for ductal histology (OR 0.67; 95%CI 0.49; 0.92; p = 0.003, but this association was not confirmed in the other two series, with the combined analysis yielding an overall Mantel-Haenszel OR of 0.94 (95% CI 0.81; 1.08. There was no significant effect of p.R415Q on breast cancer survival in the German patient series. The other three detected ERCC4 missense mutations included two known rare variants as well as a novel substitution, p.E17V, that we identified on a p.R415Q haplotype background. The p.E17V mutation is predicted to be probably damaging but was present in just one heterozygous patient. We conclude that the contribution of ERCC4/FANCQ coding mutations to hereditary breast cancer in Central and Eastern Europe is likely to be small.

  15. XRCC3 Thr241Met Polymorphism is not Associated with Lung Cancer Risk in a Romanian Population.

    Science.gov (United States)

    Catana, Andreea; Pop, Monica; Marginean, Dragos Horea; Blaga, Ioana Cristina; Porojan, Mihai Dumitru; Popp, Radu Anghel; Pop, Ioan Victor

    2016-01-01

    Deoxyribonucleic Acid (DNA) repair mechanisms play a critical role in protecting the cellular genome against carcinogens. X-ray cross-complementing gene 3 (XRCC3) is involved in DNA repair and therefore certain genetic polymorphisms that occur in DNA repair genes may affect the ability to repair DNA defects and may represent a risk factor in carcinogenesis. The purpose of our study was to investigate the association between XRCC3 gene substitution of Threonine with Methionine in codon 241 of XRCC3 gene (Thr241Met) polymorphism and the risk of lung cancer, in a Romanian population. We recruited 93 healthy controls and 85 patients with lung cancer, all smokers. Thr241Met, XRCC3 gene genotyping was determined by multiplex Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Statistical analysis (OR, recessive model), did not revealed an increased risk for lung cancer, for the variant 241Met allele and Thr241Met genotypes (p=0.138, OR=0.634, CI=0.348-1.157; p=0.023, OR=0.257, CI=0.085-6.824). Also, there were no positive statistical associations between Thr241Met polymorphism of XRCC3 gene, gender, tobacco and various histopathological tumor type of lung cancer. In conclusion, the results of the study suggest that the XRCC3 gene Thr241Met polymorphism is not associated with an increased risk for the development of lung cancer in this Romanian group.

  16. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome

    Directory of Open Access Journals (Sweden)

    Maryam Taghdiri

    2017-08-01

    Full Text Available Cockayne syndrome (CS is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C in our patient. Another gene (ERCC6, which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  17. A Novel Mutation in ERCC8 Gene Causing Cockayne Syndrome.

    Science.gov (United States)

    Taghdiri, Maryam; Dastsooz, Hassan; Fardaei, Majid; Mohammadi, Sanaz; Farazi Fard, Mohammad Ali; Faghihi, Mohammad Ali

    2017-01-01

    Cockayne syndrome (CS) is a rare autosomal recessive multisystem disorder characterized by impaired neurological and sensory functions, cachectic dwarfism, microcephaly, and photosensitivity. This syndrome shows a variable age of onset and rate of progression, and its phenotypic spectrum include a wide range of severity. Due to the progressive nature of this disorder, diagnosis can be more important when additional signs and symptoms appear gradually and become steadily worse over time. Therefore, mutation analysis of genes involved in CS pathogenesis can be helpful to confirm the suspected clinical diagnosis. Here, we report a novel mutation in ERCC8 gene in a 16-year-old boy who suffers from poor weight gain, short stature, microcephaly, intellectual disability, and photosensitivity. The patient was born to consanguineous family with no previous documented disease in his parents. To identify disease-causing mutation in the patient, whole exome sequencing utilizing next-generation sequencing on an Illumina HiSeq 2000 platform was performed. Results revealed a novel homozygote mutation in ERCC8 gene (NM_000082: exon 11, c.1122G>C) in our patient. Another gene ( ERCC6 ), which is also involved in CS did not have any disease-causing mutations in the proband. The new identified mutation was then confirmed by Sanger sequencing in the proband, his parents, and extended family members, confirming co-segregation with the disease. In addition, different bioinformatics programs which included MutationTaster, I-Mutant v2.0, NNSplice, Combined Annotation Dependent Depletion, The PhastCons, Genomic Evolutationary Rate Profiling conservation score, and T-Coffee Multiple Sequence Alignment predicted the pathogenicity of the mutation. Our study identified a rare novel mutation in ERCC8 gene and help to provide accurate genetic counseling and prenatal diagnosis to minimize new affected individuals in this family.

  18. FANCG promotes formation of a newly identified protein complex containing BRCA2, FANCD2 and XRCC3.

    Science.gov (United States)

    Wilson, J B; Yamamoto, K; Marriott, A S; Hussain, S; Sung, P; Hoatlin, M E; Mathew, C G; Takata, M; Thompson, L H; Kupfer, G M; Jones, N J

    2008-06-12

    Fanconi anemia (FA) is a human disorder characterized by cancer susceptibility and cellular sensitivity to DNA crosslinks and other damages. Thirteen complementation groups and genes are identified, including BRCA2, which is defective in the FA-D1 group. Eight of the FA proteins, including FANCG, participate in a nuclear core complex that is required for the monoubiquitylation of FANCD2 and FANCI. FANCD2, like FANCD1/BRCA2, is not part of the core complex, and we previously showed direct BRCA2-FANCD2 interaction using yeast two-hybrid analysis. We now show in human and hamster cells that expression of FANCG protein, but not the other core complex proteins, is required for co-precipitation of BRCA2 and FANCD2. We also show that phosphorylation of FANCG serine 7 is required for its co-precipitation with BRCA2, XRCC3 and FANCD2, as well as the direct interaction of BRCA2-FANCD2. These results argue that FANCG has a role independent of the FA core complex, and we propose that phosphorylation of serine 7 is the signalling event required for forming a discrete complex comprising FANCD1/BRCA2-FANCD2-FANCG-XRCC3 (D1-D2-G-X3). Cells that fail to express either phospho-Ser7-FANCG, or full length BRCA2 protein, lack the interactions amongst the four component proteins. A role for D1-D2-G-X3 in homologous recombination repair (HRR) is supported by our finding that FANCG and the RAD51-paralog XRCC3 are epistatic for sensitivity to DNA crosslinking compounds in DT40 chicken cells. Our findings further define the intricate interface between FANC and HRR proteins in maintaining chromosome stability.

  19. Analysis list: ERCC2 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ERCC2 Bone + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ERCC2.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ERCC2.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ERC...C2.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ERCC2.Bone.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Bone.gml ...

  20. Risk of radiation-induced subcutaneous fibrosis in relation to single nucleotide polymorphisms in TGFB1, SOD2, XRCC1, XRCC3, APEX and ATM - a study based on DNA from formalin fixed paraffin embedded tissue samples

    DEFF Research Database (Denmark)

    Andreassen, Christian Nicolaj; Alsner, Jan; Overgaard, Marie

    2006-01-01

    Purpose: In two previously published studies, associations with risk of radiation-induced subcutaneous fibrosis were found for single nucleotide polymorphisms (SNP) in TGFB1 (transforming growth factor beta 1 gene), XRCC1 (X-ray repair cross-complementing 1 gene), XRCC3 (X-ray repair cross...... the influence of genetic variation upon normal tissue radiosensitivity...

  1. Radiation-induced damage to normal tissues after radiotherapy in patients treated for gynecologic tumors: Association with single nucleotide polymorphisms in XRCC1, XRCC3, and OGG1 genes and in vitro chromosomal radiosensitivity in lymphocytes

    International Nuclear Information System (INIS)

    Ruyck, Kim de; Eijkeren, Marc van; Claes, Kathleen; Morthier, Rudy; Paepe, Anne de; Vral, Anne; Ridder, Leo de; Thierens, Hubert

    2005-01-01

    Purpose: To examine the association of polymorphisms in XRCC1 (194Arg/Trp, 280Arg/His, 399Arg/Gln, 632Gln/Gln), XRCC3 (5' UTR 4.541A>G, IVS5-14 17.893A>G, 241Thr/Met), and OGG1 (326Ser/Cys) with the development of late radiotherapy (RT) reactions and to assess the correlation between in vitro chromosomal radiosensitivity and clinical radiosensitivity. Methods and Materials: Sixty-two women with cervical or endometrial cancer treated with RT were included in the study. According to the Common Terminology Criteria for Adverse Events, version 3.0, scale, 22 patients showed late adverse RT reactions. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assays were performed to examine polymorphic sites, the G2 assay was used to measure chromosomal radiosensitivity, and patient groups were compared using actuarial methods. Results: The XRCC3 IVS5-14 polymorphic allele was significantly associated with the risk of developing late RT reactions (odds ratio 3.98, p = 0.025), and the XRCC1 codon 194 variant showed a significant protective effect (p = 0.028). Patients with three or more risk alleles in XRCC1 and XRCC3 had a significantly increased risk of developing normal tissue reactions (odds ratio 10.10, p = 0.001). The mean number of chromatid breaks per cell was significantly greater in patients with normal tissue reactions than in patients with no reactions (1.16 and 1.34, respectively; p = 0.002). Patients with high chromosomal radiosensitivity showed a 9.2-fold greater annual risk of complications than patients with intermediate chromosomal radiosensitivity. Combining the G2 analysis with the risk allele model allowed us to identify 23% of the patients with late normal tissue reactions, without false-positive results. Conclusion: The results of the present study showed that clinical radiosensitivity is associated with an enhanced G2 chromosomal radiosensitivity and is significantly associated with a combination of different polymorphisms in

  2. Susceptibility to gastric cancer and polymorphisms of insertion/deletion at the intron 3 of the XRCC4 and VNTR at the promoter region of the XRCC5.

    Science.gov (United States)

    Saadat, Mostafa; Pashaei, Samira; Amerizade, Foroozan

    2015-07-01

    The genes encoding X-ray repair cross-complementing group 4 (XRCC4; OMIM: 194363) and 5 (XRCC5; OMIM: 194364) are involved in repair of DNA double-strand breaks. To investigating the associations between polymorphisms of Insertion/Deletion (I/D, rs28360071) in the intron 3 of the XRCC4 and VNTR in the promoter region of the XRCC5 and risk of gastric cancer, the present study was carried out. We included 159 (56 females, 103 males) with gastric cancer and 242 (75 females, 167 males) healthy blood donors frequency matched for age and gender. Using PCR-based methods, the genotypes of the study polymorphisms were determined. The alleles of VNTR XRCC5 polymorphism divided into two groups: L (0 and 1 repeats) and H (2 and 3 repeats) alleles. For the I/D XRCC4 polymorphism, after stratification of the subjects according to their family history (FH) of cancer, either the ID (OR = 3.19, 95%CI: 1.35-7.50, P = 0.008) or the DD genotypes (OR = 4.62, 95%CI: 1.63-13.0, P = 0.004) among positive FH persons, increased the risk of gastric cancer compared with the reference group (persons who have negative FH and II genotype). For the VNTR XRCC5 polymorphism, the LH + HH genotypes among positive FH persons, increased the risk of gastric cancer compared with the reference group (persons who have negative FH and LL genotype) (OR = 2.88, 95%CI: 1.34-6.18, P = 0.006). Sensitivity analysis showed that the above mentioned associations were not occurred due to the maldistribution of the genotypes among missing data. The present study suggests that both polymorphisms of the XRCC4 and XRCC5 might be risk factors for gastric cancer development especially among persons with positive FH.

  3. Recombination activating activity of XRCC1 analogous genes in X-ray sensitive and resistant CHO cell lines

    International Nuclear Information System (INIS)

    Golubnitchaya-Labudova, O.; Hoefer, M.; Portele, A.; Vacata, V.; Rink, H.; Lubec, G.

    1997-01-01

    The XRCC1 gene (X-ray repair cross complementing) complements the DNA repair deficiency of the radiation sensitive Chinese hamster ovary (CHO) mutant cell line EM9 but the mechanism of the correction is not elucidated yet. XRCC1 shows substantial homology to the RAG2 gene (recombination activating gene) and we therefore tried to answer the question, whether structural similarities (sequence of a putative recombination activating domain, aa 332-362 for XRCC1 and aa 286-316 in RAG2) would reflect similar functions of the homologous, putative recombination activating domain. PCR experiments revealed that no sequence homologous to the structural part of human XRCC1 was present in cDNA of CHO. Differential display demonstrated two putative recombination activating in the parental CHO line AA8 and one in the radiosensitive mutant EM9. Southern blot experiments showed the presence of several genes with partial homology to human XRCC1. Recombination studies consisted of expressing amplified target domains within chimeric proteins in recA - bacteria and subsequent detection of recombination events by sequencing the recombinant plasmids. Recombination experiments demonstrated recombination activating activity of all putative recombination activating domains amplified from AA8 and EM9 genomes as reflected by deletions within the inserts of the recombinant plasmids. The recombination activating activity of XRCC1 analogues could explain a mechanism responsible for the correction of the DNA repair defect in EM9. (author)

  4. Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination

    International Nuclear Information System (INIS)

    Mudgett, J.S.; MacInnes, M.A.

    1990-01-01

    The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal

  5. To Investigate the Association of Thr241Met Polymorphisms of the XRCC3 Gene with the Risk of Breast Cancer in Women in Markazi Province

    Directory of Open Access Journals (Sweden)

    Ahmad Hamta

    2018-03-01

    Full Text Available Abstract Background: Biological and epidemiological data suggest that damage induced by endogenous and exogenous factors affects the integrity and stability of DNA and associated with susceptibility to breast cancer. The XRCC3 protein participates in DNA double-strand breaks and recombination repair. The aim of the present study was to evaluate associations between the risk of breast cancer and Thr241Met polymorphism in the XRCC3 gene. Materials and Methods: In this study, the effects of Thr241Met polymorphism of the XRCC3 gene and the risk of breast cancer in a population-based case-control study inclusive 80 patients and 80 healthy individuals of women in Markazi province were evaluated. Genomic DNA was extracted from blood samples using the kit procedure. The genotypes of samples were determined by PCR-RFLP technique. Statistical analysis was done using SPSS software (estimation of χ2 and p-value and the final results were determined. Results: Statistically significant difference was observed between the two groups of patients and controls for three genotypes of the site rs861539 (p= 0.000. Genotype CT (p= 0.000, OR=2.352, CI= 95%; 2.431 - 39.948 and TT (p = 0.003, OR= 2.352, CI=95%; 0.611 - 9.049 significant associations were showed with risk of breast cancer. Instead, the genotype CC (p= 0.000 showed a protective role against susceptibility to breast cancer. Conclusion: This study identified that there is significant association between Thr241Met polymorphisms of the XRCC3 and the risk of susceptibility to breast cancer, which is in accordance to some of researchers' studies.

  6. The Polymorphism of DNA Repair Gene ERCC2/XPD Arg156Arg and Susceptibility to Breast Cancer in a Chinese Population

    DEFF Research Database (Denmark)

    Yin, J. Y.; Liang, D. H.; Vogel, Ulla Birgitte

    2009-01-01

    Polymorphisms in DNA repair genes are good candidates for modifying cancer risk. ERCC2/XPD, a gene involved in nucleotide excision repair and basal transcription, may influence individual DNA repair capacity, particularly of bulky adducts. This is implicated in cancer susceptibility. To detect...... found between ERCC2/XPD Arg156Arg and risk of breast cancer (AA/AC versus CC: OR = 0.79, 95% CI = 0.49-1.28, P = 0.33; AA versus CC: OR = 0.89, 95% CI = 0.49-1.63, P = 0.72; AC versus CC: OR = 0.74, 95% CI = 0.44-1.24, P = 0.25). Breast cancer cases with the variant AA genotype were marginally younger...

  7. A Review of ERCC1 Gene in Bladder Cancer: Implications for Carcinogenesis and Resistance to Chemoradiotherapy

    Directory of Open Access Journals (Sweden)

    Atsunari Kawashima

    2012-01-01

    Full Text Available The excision repair cross-complementing group 1 (ERCC1 gene performs a critical incision step in DNA repair and is reported to be correlated with carcinogenesis and resistance to drug or ionizing radiation therapy. We reviewed the correlation between ERCC1 and bladder cancer. In carcinogenesis, several reports discussed the relation between ERCC1 single nucleotide polymorphisms and carcinogenesis in bladder cancer only in case-control studies. Regarding the relation between ERCC1 and resistance to chemoradiotherapy, in vitro and clinical studies indicate that ERCC1 might be related to resistance to radiation therapy rather than cisplatin therapy. It is controversial whether ERCC1 predicts prognosis of bladder cancer treated with cisplatin-based chemotherapy. Tyrosine kinase receptors or endothelial-mesenchymal transition are reported to regulate the expression of ERCC1, and further study is needed to clarify the mechanism of ERCC1 expression and resistance to chemoradiotherapy in vitro and to discover novel therapies for advanced and metastatic bladder cancer.

  8. A Review of ERCC1 Gene in Bladder Cancer: Implications for Carcinogenesis and Resistance to Chemoradiotherapy.

    Science.gov (United States)

    Kawashima, Atsunari; Takayama, Hitoshi; Tsujimura, Akira

    2012-01-01

    The excision repair cross-complementing group 1 (ERCC1) gene performs a critical incision step in DNA repair and is reported to be correlated with carcinogenesis and resistance to drug or ionizing radiation therapy. We reviewed the correlation between ERCC1 and bladder cancer. In carcinogenesis, several reports discussed the relation between ERCC1 single nucleotide polymorphisms and carcinogenesis in bladder cancer only in case-control studies. Regarding the relation between ERCC1 and resistance to chemoradiotherapy, in vitro and clinical studies indicate that ERCC1 might be related to resistance to radiation therapy rather than cisplatin therapy. It is controversial whether ERCC1 predicts prognosis of bladder cancer treated with cisplatin-based chemotherapy. Tyrosine kinase receptors or endothelial-mesenchymal transition are reported to regulate the expression of ERCC1, and further study is needed to clarify the mechanism of ERCC1 expression and resistance to chemoradiotherapy in vitro and to discover novel therapies for advanced and metastatic bladder cancer.

  9. Mutation update for the CSB/ERCC6 and CSA/ERCC8 genes involved in Cockayne syndrome.

    Science.gov (United States)

    Laugel, V; Dalloz, C; Durand, M; Sauvanaud, F; Kristensen, U; Vincent, M C; Pasquier, L; Odent, S; Cormier-Daire, V; Gener, B; Tobias, E S; Tolmie, J L; Martin-Coignard, D; Drouin-Garraud, V; Heron, D; Journel, H; Raffo, E; Vigneron, J; Lyonnet, S; Murday, V; Gubser-Mercati, D; Funalot, B; Brueton, L; Sanchez Del Pozo, J; Muñoz, E; Gennery, A R; Salih, M; Noruzinia, M; Prescott, K; Ramos, L; Stark, Z; Fieggen, K; Chabrol, B; Sarda, P; Edery, P; Bloch-Zupan, A; Fawcett, H; Pham, D; Egly, J M; Lehmann, A R; Sarasin, A; Dollfus, H

    2010-02-01

    Cockayne syndrome is an autosomal recessive multisystem disorder characterized principally by neurological and sensory impairment, cachectic dwarfism, and photosensitivity. This rare disease is linked to mutations in the CSB/ERCC6 and CSA/ERCC8 genes encoding proteins involved in the transcription-coupled DNA repair pathway. The clinical spectrum of Cockayne syndrome encompasses a wide range of severity from severe prenatal forms to mild and late-onset presentations. We have reviewed the 45 published mutations in CSA and CSB to date and we report 43 new mutations in these genes together with the corresponding clinical data. Among the 84 reported kindreds, 52 (62%) have mutations in the CSB gene. Many types of mutations are scattered along the whole coding sequence of both genes, but clusters of missense mutations can be recognized and highlight the role of particular motifs in the proteins. Genotype-phenotype correlation hypotheses are considered with regard to these new molecular and clinical data. Additional cases of molecular prenatal diagnosis are reported and the strategy for prenatal testing is discussed. Two web-based locus-specific databases have been created to list all identified variants and to allow the inclusion of future reports (www.umd.be/CSA/ and www.umd.be/CSB/). (c) 2009 Wiley-Liss, Inc.

  10. Expression and relevant research of MGMT and XRCC1 gene in differentgrades of brain glioma and normal brain tissues

    Institute of Scientific and Technical Information of China (English)

    Ya-Fei Zhang

    2015-01-01

    Objective: To explore and analyze expression and relevant research of MGMT and XRCC1 gene in different grades of brain glioma and normal brain tissues. Methods: 52 cases of patients with brain glioma treated in our hospital from December 2013 to December 2014, and 50 cases of normal brain-tissue patients with intracranial hypertension were selected, and proceeding test to the surgical resection of brain tissue of the above patients to determine its MGMT and XRCC1 protein content, sequentially to record the expression of MGMT and XRCC1 of both groups. Grading of tumors to brain glioma after operation was carried out, and the expression of MGMT and XRCC1 gene in brain tissues of different patients was analyzed and compared;finally the contingency tables of X2 test was used to analyze the correlation of XRCC1and MGMT. Results:Positive rate of MGMT expression in normal brain tissue was 2%,while positive rate of MGMT expression in brain glioma was 46.2%,which was obviously higher than that in normal brain tissues (χ2=26.85, P0.05), which had no statistical significance. There were 12 cases of patients whose MGMT protein expression was positive and XRCC1 protein expression was positive; there were 18 cases of patients whose MGMT protein expression was negative and XRCC1 protein expression was negative. Contingency tables of X2 test was used to analyze the correlation of XRCC1 and MGMT, which indicated that the expression of XRCCI and MGMT in brain glioma had no correlation (r=0.9%, P=0.353), relevancy of both was r=0.9%. Conclusions: Positive rate of the expression of MGMT and XRCC1 in brain glioma was obviously higher than that in normal brain tissues, but the distribution of different grades of brain glioma had no obvious difference, and MGMT and XRCC1 expression had no obvious correlation, which needed further research.

  11. Rad51C deficiency destabilizes XRCC3, impairs recombination and radiosensitizes S/G2-phase cells

    Energy Technology Data Exchange (ETDEWEB)

    Lio, Yi-Ching; Schild, David; Brenneman, Mark A.; Redpath, J. Leslie; Chen, David J.

    2004-05-01

    The highly conserved Rad51 protein plays an essential role in repairing DNA damage through homologous recombination. In vertebrates, five Rad51 paralogs (Rad51B, Rad51C, Rad51D, XRCC2, XRCC3) are expressed in mitotically growing cells, and are thought to play mediating roles in homologous recombination, though their precise functions remain unclear. Here we report the use of RNA interference to deplete expression of Rad51C protein in human HT1080 and HeLa cells. In HT1080 cells, depletion of Rad51C by small interfering RNA caused a significant reduction of frequency in homologous recombination. The level of XRCC3 protein was also sharply reduced in Rad51C-depleted HeLa cells, suggesting that XRCC3 is dependent for its stability upon heterodimerization with Rad51C. In addition, Rad51C-depleted HeLa cells showed hypersensitivity to the DNA cross-linking agent mitomycin C, and moderately increased sensitivity to ionizing radiation. Importantly, the radiosensitivity of Rad51C-deficient HeLa cells was evident in S and G{sub 2}/M phases of the cell cycle but not in G{sub 1} phase. Together, these results provide direct cellular evidence for the importance of human Rad51C in homologous recombinational repair.

  12. Cloning and characterization of human DNA repair genes

    International Nuclear Information System (INIS)

    Thompson, L.H.; Brookman, K.W.; Weber, C.A.; Salazar, E.P.; Stewart, S.A.; Carrano, A.V.

    1987-01-01

    The isolation of two addition human genes that give efficient restoration of the repair defects in other CHO mutant lines is reported. The gene designated ERCC2 (Excision Repair Complementing Chinese hamster) corrects mutant UV5 from complementation group 1. They recently cloned this gene by first constructing a secondary transformant in which the human gene was shown to have become physically linked to the bacterial gpt dominant-marker gene by cotransfer in calcium phosphate precipitates in the primary transfection. Transformants expressing both genes were recovered by selecting for resistance to both UV radiation and mycophenolic acid. Using similar methods, the human gene that corrects CHO mutant EM9 was isolated in cosmids and named XRCC1 (X-ray Repair Complementing Chinese hamster). In this case, transformants were recovered by selecting for resistance to CldUrd, which kills EM9 very efficiently. In both genomic and cosmid transformants, the XRCC1 gene restored resistance to the normal range. DNA repair was studied using the kinetics of strand-break rejoining, which was measured after exposure to 137 Cs γ-rays

  13. Impact of DNA repair genes polymorphism (XPD and XRCC1) on the risk of breast cancer in Egyptian female patients.

    Science.gov (United States)

    Hussien, Yousry Mostafa; Gharib, Amal F; Awad, Hanan A; Karam, Rehab A; Elsawy, Wael H

    2012-02-01

    The genes involved in DNA repair system play a crucial role in the protection against mutations. It has been hypothesized that functional deficiencies in highly conserved DNA repair processes resulting from polymorphic variation may increase genetic susceptibility to breast cancer (BC). The aim of the present study was to evaluate the association of genetic polymorphisms in 2 DNA repair genes, XPD (Asp312Asn) and XRCC1 (A399G), with BC susceptibility. We further investigated the potential combined effect of these DNA repair variants on BC risk. Both XPD (xeroderma pigmentosum group D) and XRCC1 (X-ray repair cross-complementing group 1) polymorphisms were characterized in 100 BC Egyptian females and 100 healthy women who had no history of any malignancy by amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) method and PCR with confronting two-pair primers (PCR-CTPP), using DNA from peripheral blood in a case control study. Our results revealed that the frequencies of AA genotype of XPD codon 312 polymorphism were significantly higher in the BC patients than in the normal individuals (P ≤ 0.003), and did not observe any association between the XRCC1 Arg399Gln polymorphism and risk of developing BC. Also, no association between both XPD Asp312Asn and XRCC1 A399G polymorphisms and the clinical characteristics of disease. Finally, the combination of AA(XPD) + AG(XRCC1) were significantly associated with BC risk. Our results suggested that, XPD gene is an important candidate gene for susceptibility to BC. Also, gene-gene interaction between XPD(AA) + XRCC1(AG) polymorphism may be associated with increased risk of BC in Egyptian women.

  14. Xeroderma Pigmentosum-Trichothiodystrophy overlap patient with novel XPD/ERCC2 mutation

    Science.gov (United States)

    Kralund, Henrik H.; Ousager, Lilian; Jaspers, Nicolaas G.; Raams, Anja; Pedersen, Erling B.; Gade, Else; Bygum, Anette

    2013-01-01

    Xeroderma Pigmentosum (XP), Trichothiodystrophy (TTD) and Cockayne Syndrome (CS) are rare, recessive disorders caused by mutational defects in the Nucleotide Excision Repair (NER) pathway and/or disruption of basic cellular DNA transcription. To date, a multitude of mutations in the XPD/ERCC2 gene have been described, many of which give rise to NER- and DNA transcription related diseases, which share certain diagnostic features and few overlap patients have been described. Despite increasing understanding of the roles of XPD/ERCC2 in mammalian cells, there is still weak predictability of somatic outcome from many of these mutations. We demonstrate a patient, believed to represent an overlap between XP and TTD/CS. In addition to other organ dysfunctions, the young man presented with Photosensitivity, Ichthyosis, Brittle hair, Impaired physical and mental development, Decreased fertility and Short stature (PIBIDS) suggestive of TTD, but lacking the almost patognomonic “tiger tail” banding of the hair under polarized light. Additionally, he developed basal cell carcinoma aged 28, as well as adult onset kidney failure, features normally not associated with TTD but rather XP/CS. His freckled appearance also suggested XP, but fibroblast cultures only demonstrated x2 UV-sensitivity with expected NER and TFIIH-activity decrease. Genetic sequencing of the XPD/ERCC2 gene established the patient as heterozygote compound with a novel, N-terminal Y18H mutation and a known C-terminal (TTD) mutation, A725P. The possible interplay between gene products and the patient phenotype is discussed. PMID:25002996

  15. The prognostic value of ERCC1 and RRM1 gene expression in completely resected non-small cell lung cancer: tumor recurrence and overall survival

    International Nuclear Information System (INIS)

    Tantraworasin, Apichat; Saeteng, Somcharoen; Lertprasertsuke, Nirush; Arayawudhikul, Nuttapon; Kasemsarn, Choosak; Patumanond, Jayanton

    2013-01-01

    The roles of excision repair cross-complementing group 1 gene (ERCC1) expression and ribonucleotide reductase subunit M1 gene (RRM1) expression in completely resected non-small cell lung cancer (NSCLC) are still debatable. Previous studies have shown that both genes affected the overall survival and outcomes of patients who received platinum-based chemotherapy; however, some studies did not show this correlation. The aim of this study was to evaluate the prognostic values of ERCC1 and RRM1 gene expression in predicting tumor recurrence and overall survival in patients with completely resected NSCLC who received adjuvant chemotherapy and in those who did not. A retrospective cohort study was conducted in 247 patients with completely resected NSCLC. All patients had been treated with anatomic resection (lobectomy or pneumonectomy) with systematic mediastinal lymphadenectomy between January 2002 and December 2011 at Chiang Mai University Hospital, Chiang Mai, Thailand. They were divided into two groups: recurrence and no recurrence. Protein expression of ERCC1 and RRM1 was determined by immunohistochemistry. Correlations between clinicopathologic variables, including ERCC1 and RRM1 expression and tumor recurrence, were analyzed. Univariate and multivariate Cox proportional hazards regression analysis stratified by nodal involvement, tumor staging, intratumoral blood vessel invasion, intratumoral lymphatic invasion, and tumor necrosis was used to identify the prognostic roles of ERCC1 and RRM1. ERCC1 and RRM1 expression did not demonstrate prognostic value for tumor recurrence and overall survival in patients with completely resected NSCLC. In patients who did not receive adjuvant chemotherapy treatment, those with high ERCC1 and high RRM1 expression seemed to have greater potential for tumor recurrence and shorter overall survival than did those who had low ERCC1 and low RRM1 (hazard ratio [HR] =1.7, 95% confidence interval [CI] =0.6–4.3, P=0.292 and HR =1.6, 95% CI

  16. HapMap-based study of the DNA repair gene ERCC2 and lung cancer susceptibility in a Chinese population

    DEFF Research Database (Denmark)

    Yin, Jiaoyang; Vogel, Ulla Birgitte; Ma, Yegang

    2009-01-01

    -nucleotide polymorphisms (htSNPs) (rs238403, rs50871, rs3916840, rs238415, rs3916874 and rs1799787) from HapMap database were analyzed, which provide an almost complete coverage of the genetic variations in the ERCC2 gene. Although none of the six htSNPs was individually associated with lung cancer risk, we found that two...... ratio, OR (95% confidence interval, CI) = 2.62 (1.53–4.50), P = 0.0003 for hap4; OR (95% CI) = 3.01 (1.36–6.63), P = 0.004 for hap7]. Furthermore, diplotype analyses also strengthened the significant associations of risk haplotype 4 [OR (95% CI) = 3.56 (2.12–5.87), P

  17. Analysis of difference of association between polymorphisms in the XRCC5, RPA3 and RTEL1 genes and glioma, astrocytoma and glioblastoma.

    Science.gov (United States)

    Jin, Tianbo; Wang, Yuan; Li, Gang; Du, Shuli; Yang, Hua; Geng, Tingting; Hou, Peng; Gong, Yongkuan

    2015-01-01

    Gliomas are the most common aggressive brain tumors and have many complex pathological types. Previous reports have discovered that genetic mutations are associated with the risk of glioma. However, it is unclear whether uniform genetic mutations exist difference between glioma and its two pathological types in the Han Chinese population. We evaluated 20 SNPs of 703 glioma cases (338 astrocytoma cases, 122 glioblastoma cases) and 635 controls in a Han Chinese population using χ(2) test and genetic model analysis. In three case-control studies, we found rs9288516 in XRCC5 gene showed a decreased risk of glioma (OR, 0.85; 95% CI, 0.73-0.99; P = 0.042) and glioblastoma (OR, 0.70; 95% CI, 0.52-0.92; P = 0.001) in the allele model. We identified rs414805 in RPA3 gene showed an increased risk of glioblastoma in allele model (OR, 1.38; 95% CI, 1.00-1.89; P = 0.047) and dominant model (OR, 1.57; 95% CI, 1.05-2.35; P = 0.027), analysis respectively. Meanwhile, rs2297440 in RTEL1 gene showed an increased risk of glioma (OR, 1.30; 95% CI, 1.10-1.54; P = 0.002) and astrocytoma (OR, 1.26; 95% CI, 1.02-1.54; P = 0.029) in the allele model. In addition, we also observed a haplotype of "GCT" in the RTEL1 gene with an increased risk of astrocytoma (P = 0.005). Polymorphisms in the XRCC5, RPA3 and RTEL1 genes, combinating with previous reaserches, are associated with glioma developing. However, those genes mutations may play different roles in the glioma, astrocytoma and glioblastoma, respectively.

  18. XRCC1 suppresses somatic hypermutation and promotes alternative nonhomologous end joining in Igh genes.

    Science.gov (United States)

    Saribasak, Huseyin; Maul, Robert W; Cao, Zheng; McClure, Rhonda L; Yang, William; McNeill, Daniel R; Wilson, David M; Gearhart, Patricia J

    2011-10-24

    Activation-induced deaminase (AID) deaminates cytosine to uracil in immunoglobulin genes. Uracils in DNA can be recognized by uracil DNA glycosylase and abasic endonuclease to produce single-strand breaks. The breaks are repaired either faithfully by DNA base excision repair (BER) or mutagenically to produce somatic hypermutation (SHM) and class switch recombination (CSR). To unravel the interplay between repair and mutagenesis, we decreased the level of x-ray cross-complementing 1 (XRCC1), a scaffold protein involved in BER. Mice heterozygous for XRCC1 showed a significant increase in the frequencies of SHM in Igh variable regions in Peyer's patch cells, and of double-strand breaks in the switch regions during CSR. Although the frequency of CSR was normal in Xrcc1(+/-) splenic B cells, the length of microhomology at the switch junctions decreased, suggesting that XRCC1 also participates in alternative nonhomologous end joining. Furthermore, Xrcc1(+/-) B cells had reduced Igh/c-myc translocations during CSR, supporting a role for XRCC1 in microhomology-mediated joining. Our results imply that AID-induced single-strand breaks in Igh variable and switch regions become substrates simultaneously for BER and mutagenesis pathways.

  19. Isolating human DNA repair genes using rodent-cell mutants

    International Nuclear Information System (INIS)

    Thompson, L.H.; Weber, C.A.; Brookman, K.W.; Salazar, E.P.; Stewart, S.A.; Mitchell, D.L.

    1987-01-01

    The DNA repair systems of rodent and human cells appear to be at least as complex genetically as those in lower eukaryotes and bacteria. The use of mutant lines of rodent cells as a means of identifying human repair genes by functional complementation offers a new approach toward studying the role of repair in mutagenesis and carcinogenesis. In each of six cases examined using hybrid cells, specific human chromosomes have been identified that correct CHO cell mutations affecting repair of damage from uv or ionizing radiations. This finding suggests that both the repair genes and proteins may be virtually interchangeable between rodent and human cells. Using cosmid vectors, human repair genes that map to chromosome 19 have cloned as functional sequences: ERCC2 and XRCC1. ERCC1 was found to have homology with the yeast excision repair gene RAD10. Transformants of repair-deficient cell lines carrying the corresponding human gene show efficient correction of repair capacity by all criteria examined. 39 refs., 1 fig., 1 tab

  20. Genetic variation in DNA repair gene XRCC7 (G6721T) and susceptibility to breast cancer.

    Science.gov (United States)

    Nasiri, Meysam; Saadat, Iraj; Omidvari, Shahpour; Saadat, Mostafa

    2012-08-15

    The human XRCC7 is a DNA double-strand break (DSBs) repair gene, involved in non-homologous end joining (NHEJ). It is speculated that DNA DSBs repair have an important role during development of breast cancer. The human XRCC7 is a NHEJ DSBs repair gene. Genetic variation G6721T of XRCC7 (rs7003908) is located in the intron 8 of the gene. This polymorphism may regulate splicing and cause mRNA instability. In the present study, we specifically investigated whether common G6721T genetic variant of XRCC7 was associated with an altered risk of breast cancer. The present study included 362 females with breast cancer. Age frequency-matched controls (362 persons) were randomly selected from the healthy female blood donors, according to the age distribution of the cases. Using RFLP-PCR based method, the polymorphism of XRCC7 was determined. The TG (OR=1.20, 95% CI: 0.83-1.74, P=0.320) and TT (OR=1.01, 95% CI: 0.67-1.53, P=0.933) genotypes had no significant effect on risk of breast cancer, in comparison with the GG genotype. Our present findings indicate that the TT and TG genotypes were not associated with an altered breast cancer risk. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The association of XRCC3 Thr241Met genetic variant with risk of ...

    African Journals Online (AJOL)

    Background: Previous studies suggest that the X-ray repair cross-complementing group 3 gene (XRCC3) Thr241Met genetic variant could be potentially associated with the risk of prostate cancer. However, results from these published studies were conflicting rather than conclusive. Objectives:This meta-analysis aimed to ...

  2. Malfunction of nuclease ERCC1-XPF results in diverse clinical manifestations and causes Cockayne syndrome, xeroderma pigmentosum, and Fanconi anemia.

    Science.gov (United States)

    Kashiyama, Kazuya; Nakazawa, Yuka; Pilz, Daniela T; Guo, Chaowan; Shimada, Mayuko; Sasaki, Kensaku; Fawcett, Heather; Wing, Jonathan F; Lewin, Susan O; Carr, Lucinda; Li, Tao-Sheng; Yoshiura, Koh-ichiro; Utani, Atsushi; Hirano, Akiyoshi; Yamashita, Shunichi; Greenblatt, Danielle; Nardo, Tiziana; Stefanini, Miria; McGibbon, David; Sarkany, Robert; Fassihi, Hiva; Takahashi, Yoshito; Nagayama, Yuji; Mitsutake, Norisato; Lehmann, Alan R; Ogi, Tomoo

    2013-05-02

    Cockayne syndrome (CS) is a genetic disorder characterized by developmental abnormalities and photodermatosis resulting from the lack of transcription-coupled nucleotide excision repair, which is responsible for the removal of photodamage from actively transcribed genes. To date, all identified causative mutations for CS have been in the two known CS-associated genes, ERCC8 (CSA) and ERCC6 (CSB). For the rare combined xeroderma pigmentosum (XP) and CS phenotype, all identified mutations are in three of the XP-associated genes, ERCC3 (XPB), ERCC2 (XPD), and ERCC5 (XPG). In a previous report, we identified several CS cases who did not have mutations in any of these genes. In this paper, we describe three CS individuals deficient in ERCC1 or ERCC4 (XPF). Remarkably, one of these individuals with XP complementation group F (XP-F) had clinical features of three different DNA-repair disorders--CS, XP, and Fanconi anemia (FA). Our results, together with those from Bogliolo et al., who describe XPF alterations resulting in FA alone, indicate a multifunctional role for XPF. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. shRNA-Mediated XRCC2 Gene Knockdown Efficiently Sensitizes Colon Tumor Cells to X-ray Irradiation in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Qin Wang

    2014-01-01

    Full Text Available Colon cancer is one of the most common tumors of the digestive tract. Resistance to ionizing radiation (IR decreased therapeutic efficiency in these patients’ radiotherapy. XRCC2 is the key protein of DNA homologous recombination repair, and its high expression is associated with enhanced resistance to DNA damage induced by IR. Here, we investigated the effect of XRCC2 silencing on colon tumor cells’ growth and sensitivity to X-radiation in vitro and in vivo. Colon tumor cells (T84 cell line were cultivated in vitro and tumors originated from the cell line were propagated as xenografts in nude mice. The suppression of XRCC2 expression was achieved by using vector-based short hairpin RNA (shRNA in T84 cells. We found that the knockdown of XRCC2 expression effectively decreased T84 cellular proliferation and colony formation, and led to cell apoptosis and cell cycle arrested in G2/M phase induced by X-radiation in vitro. In addition, tumor xenograft studies suggested that XRCC2 silencing inhibited tumorigenicity after radiation treatment in vivo. Our data suggest that the suppression of XRCC2 expression rendered colon tumor cells more sensitive to radiation therapy in vitro and in vivo, implying XRCC2 as a promising therapeutic target for the treatment of radioresistant human colon cancer.

  4. Identification and Functional Testing of ERCC2 Mutations in a Multi-national Cohort of Patients with Familial Breast- and Ovarian Cancer.

    Directory of Open Access Journals (Sweden)

    Andreas Rump

    2016-08-01

    Full Text Available The increasing application of gene panels for familial cancer susceptibility disorders will probably lead to an increased proposal of susceptibility gene candidates. Using ERCC2 DNA repair gene as an example, we show that proof of a possible role in cancer susceptibility requires a detailed dissection and characterization of the underlying mutations for genes with diverse cellular functions (in this case mainly DNA repair and basic cellular transcription. In case of ERCC2, panel sequencing of 1345 index cases from 587 German, 405 Lithuanian and 353 Czech families with breast and ovarian cancer (BC/OC predisposition revealed 25 mutations (3 frameshift, 2 splice-affecting, 20 missense, all absent or very rare in the ExAC database. While 16 mutations were unique, 9 mutations showed up repeatedly with population-specific appearance. Ten out of eleven mutations that were tested exemplarily in cell-based functional assays exert diminished excision repair efficiency and/or decreased transcriptional activation capability. In order to provide evidence for BC/OC predisposition, we performed familial segregation analyses and screened ethnically matching controls. However, unlike the recently published RECQL example, none of our recurrent ERCC2 mutations showed convincing co-segregation with BC/OC or significant overrepresentation in the BC/OC cohort. Interestingly, we detected that some deleterious founder mutations had an unexpectedly high frequency of > 1% in the corresponding populations, suggesting that either homozygous carriers are not clinically recognized or homozygosity for these mutations is embryonically lethal. In conclusion, we provide a useful resource on the mutational landscape of ERCC2 mutations in hereditary BC/OC patients and, as our key finding, we demonstrate the complexity of correct interpretation for the discovery of "bonafide" breast cancer susceptibility genes.

  5. Pharmacogenetic predictors of toxicity to platinum based chemotherapy in non-small cell lung cancer patients.

    Science.gov (United States)

    Pérez-Ramírez, Cristina; Cañadas-Garre, Marisa; Alnatsha, Ahmed; Villar, Eduardo; Delgado, Juan Ramón; Faus-Dáder, María José; Calleja-Hernández, Miguel Ÿngel

    2016-09-01

    Platinum-based chemotherapy is the standard treatment for NSCLC patients with EGFR wild-type, and as alternative to failure to EGFR inhibitors. However, this treatment is aggressive and most patients experience grade 3-4 toxicities. ERCC1, ERCC2, ERCC5, XRCC1, MDM2, ABCB1, MTHFR, MTR, SLC19A1, IL6 and IL16 gene polymorphisms may contribute to individual variation in toxicity to chemotherapy. The aim of this study was to evaluate the effect of these polymorphisms on platinum-based chemotherapy in NSCLC patients. A prospective cohorts study was conducted, including 141 NSCLC patients. Polymorphisms were analyzed by PCR Real-Time with Taqman(®) probes and sequencing. Patients with ERCC1 C118T-T allele (p=0.00345; RR=26.05; CI95%=4.33, 515.77) and ERCC2 rs50872-CC genotype (p=0.00291; RR=4.06; CI95%=1.66, 10.65) had higher risk of general toxicity for platinum-based chemotherapy. ERCC2 Asp312Asn G-alelle, ABCB1 C1236T-TT and the IL1B rs12621220-CT/TT genotypes conferred a higher risk to present multiple adverse events. The subtype toxicity analysis also revealed that ERCC2 rs50872-CC genotype (p=0.01562; OR=3.23; CI95%=1.29, 8.82) and IL16 rs7170924-T allele (p=0.01007; OR=3.19; CI95%=1.35, 7.97) were associated with grade 3-4 hematological toxicity. We did not found the influence of ERCC1 C8092A, ERCC2 Lys751Gln, ERCC2 Asp312Asn, ERCC5 Asp1104His, XRCC1 Arg194Trp, MDM2 rs1690924, ABCB1 C3435T, ABCB1 Ala893Ser/Thr, MTHFR A1298C, MTHFR C677T, IL1B rs1143623, IL1B rs16944, and IL1B rs1143627 on platinum-based chemotherapy toxicity. In conclusion, ERCC1 C118T, ERCC2 rs50872, ERCC2 Asp312Asn, ABCB1 C1236T, IL1B rs12621220 and IL16 rs7170924 polymorphisms may substantially act as prognostic factors in NSCLC patients treated with platinum-based chemotherapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Implications of XRCC1, XPD and APE1 gene polymorphism in North Indian population: a comparative approach in different ethnic groups worldwide.

    Science.gov (United States)

    Gangwar, Ruchika; Manchanda, Parmeet Kaur; Mittal, Rama Devi

    2009-05-01

    Identifying risk factors for human cancers should consider combinations of genetic variations and environmental exposures. Several polymorphisms in DNA repair genes have impact on repair and cancer susceptibility. We focused on X-ray repair cross-complementing group 1 (XRCC1), Xeroderma pigmentosum D (XPD) and apurinic/apyrimidinic endonuclease (APE1) as these are most extensively studied in cancer. Present study was conducted to determine distribution of XRCC1 C26304T, G27466A, G23591A, APE1 T2197G and XPD A35931C gene polymorphisms in North Indian population and compare with different populations globally. PCR-based analysis was conducted in 209 normal healthy individuals of similar ethnicity. Allelic frequencies in wild type of XRCC1 C26304T were 91.1% C(Arg); G27466A 62.9% G(Arg); G23591A 60.3% G(Arg); APE1 T2197G 75.1% T(Asp) and XPD A35931C 71.8% A(Lys). The variant allele frequency were 8.9% T(Trp) in XRCC1 C26304T; 37.1% A(His) in G27466A; 39.7% A(Gln) in G23591A; 24.9% G(Glu) in APE1 and 28.2% C(Gln) in XPD respectively. We further compared frequency distribution for these genes with various published studies in different ethnicity. Our results suggest that frequency in these DNA repair genes exhibit distinctive pattern in India that could be attributed to ethnicity variation. This could assist in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

  7. Preparation of oligonucleotide microarray for radiation-associated gene expression detection and its application in lung cancer cell lines

    International Nuclear Information System (INIS)

    Guo Wanfeng; Lin Ruxian; Huang Jian; Guo Guozhen; Wang Shengqi

    2005-01-01

    Objective: The response of tumor cell to radiation is accompanied by complex change in patterns of gene expression. It is highly probable that a better understanding of molecular and genetic changes can help to sensitize the radioresistant tumor cells. Methods: Oligonucleotide microarray provides a powerful tool for high-throughput identifying a wider range of genes involved in the radioresistance. Therefore, the authors designed one oligonucleotide microarray according to the biological effect of IR. By using different radiosensitive lung cancer cell lines, the authors identified genes showing altered expression in lung cancer cell lines. To provide independent confirmation of microarray data, semi-quantitative RT-PCR was performed on a selection of genes. Results: In radioresistant A549 cell lines, a total of 18 genes were selected as having significant fold-changes compared to NCI-H446, 8 genes were up-regulated and 10 genes were down-regulated. Subsequently, A549 and NCI-H446 cells were delivered by ionizing radiation. In A549 cell line, we found 22 (19 up-regulated and 3 down-regulated) and 26 (8 up-regulated and 18 down-regulated) differentially expressed genes at 6h and 24h after ionizing radiation. In NCI-H446 cell line, we identified 17 (9 up-regulated and 8 down-regulated) and 18 (6 up-regulated and 12 down-regulated) differentially expressed genes at 6 h and 24 h after ionizing radiation. The authors tested seven genes (MDM2, p53, XRCC5, Bcl-2, PIM2, NFKBIA and Cyclin B1) for RT-PCR, and found that the results were in good agreement with those from the microarray data except for NFKBIA gene, even though the value for each mRNA level might be different between the two measurements. In present study, the authors identified some genes with cell proliferation and anti-apoptosis, such as MdM2, BCL-2, PKCz and PIM2 expression levels increased in A549 cells and decreased in NCI-H446 cells after radiation, and other genes with DNA repair, such as XRCC5, ERCC5

  8. Studies on a role of XRCC4 in human cells

    International Nuclear Information System (INIS)

    Mori, M.; Itsukaichi, H.; Kanda, R.; Nakamura, A.; Shiomi, N.; Aizawa, S.; Shiomi, T.

    2003-01-01

    Full text: Ionizing radiation produces a variety of lesions in DNA including single-strand breaks, double-strand breaks and base damage. The repair of DNA double-strand breaks is essential for the maintenance of genomic integrity. Failure to repair DNA double-strand breaks result in loss of genetic information, chromosome translocations, carcinogenesis and cell death. XRCC4 is a member of non-homologous end-joining proteins that functioned in DNA double-strand break repair in eukaryote including human. XRCC4 is a DNA ligase IV accessory factor and required for the rejoining of DNA double-strand breaks. Both XRCC4 and DNA ligase IV deficient mice have been generated. Both deficient mice are not viable because of neuronal degeneration caused by p53-induced apoptosis. Cells obtained from XRCC4 or DNA ligase IV deficient embryo are viable, but show reduced cell proliferation and hypersensitivity to ionizing radiation. To study the role of XRCC4 in human cells, we tried to inactivate XRCC4 gene by using gene targeting technology in human colon cancer cell line, HCT116. We have succeeded to disrupt both alleles of XRCC4 gene. Heterozygous (XRCC4 +/-) cells showed reduced cell proliferation but normal X ray-sensitivity, indicating haploinsufficiency in cell proliferation but not in X ray-sensitivity. Homozygous (XRCC4 -/-) cells show reduced cell proliferation and increased chromosome aberrations, and are highly sensitive to X rays

  9. Lysine 271 but not lysine 210 of XRCC4 is required for the nuclear localization of XRCC4 and DNA ligase IV

    Energy Technology Data Exchange (ETDEWEB)

    Fukuchi, Mikoto; Wanotayan, Rujira; Liu, Sicheng; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa, E-mail: yoshim@nr.titech.ac.jp

    2015-06-12

    XRCC4 and DNA Ligase IV (LIG4) cooperate to join two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). However, it is not fully understood how these proteins are localized to the nucleus. Here we created XRCC4{sup K271R} mutant, as Lys271 lies within the putative nuclear localization signal (NLS), and XRCC4{sup K210R} mutant, as Lys210 was reported to undergo SUMOylation, implicated in the nuclear localization of XRCC4. Wild-type and mutated XRCC4 with EGFP tag were introduced into HeLa cell, in which endogenous XRCC4 had been knocked down using siRNA directed to 3′-untranslated region, and tested for the nuclear localization function by fluorescence microscopy. XRCC4{sup K271R} was defective in the nuclear localization of itself and LIG4, whereas XRCC4{sup K210R} was competent for the nuclear localization with LIG4. To examine DSB repair function, wild-type and mutated XRCC4 were introduced into XRCC4-deficient M10. M10-XRCC4{sup K271R}, but not M10-XRCC4{sup K210R}, showed significantly reduced surviving fraction after 2 Gy γ-ray irradiation as compared to M10-XRCC4{sup WT}. The number of γ-H2AX foci remaining 2 h after 2 Gy γ-ray irradiation was significantly greater in M10-XRCC4{sup K271R} than in M10-XRCC4{sup WT}, whereas it was only marginally increased in M10-XRCC4{sup K210R} as compared to M10-XRCC4{sup WT}. The present results collectively indicated that Lys271, but not Lys210, of XRCC4 is required for the nuclear localization of XRCC4 and LIG4 and that the nuclear localizing ability is essential for DSB repair function of XRCC4. - Highlights: • XRCC4{sup K271R} is defective in the nuclear localization of itself and LIG4. • XRCC4{sup K210R} is competent for the nuclear localization of itself and LIG4. • XRCC4{sup K271R} is deficient in DSB repair function. • XRCC4{sup K210R} is mostly normal in DSB repair function.

  10. Contribution of X-Ray Repair Complementing Defective Repair in Chinese Hamster Cells 3 (XRCC3) Genotype to Leiomyoma Risk.

    Science.gov (United States)

    Chang, Wen-Shin; Tsai, Chia-Wen; Wang, Ju-Yu; Ying, Tsung-Ho; Hsiao, Tsan-Seng; Chuang, Chin-Liang; Yueh, Te-Cheng; Liao, Cheng-Hsi; Hsu, Chin-Mu; Liu, Shih-Ping; Gong, Chi-Li; Tsai, Chang-Hai; Bau, Da-Tian

    2015-09-01

    The present study aimed at investigating whether X-ray repair cross complementing protein 3 (XRCC3) genotype may serve as a useful marker for detecting leiomyoma and predicting risk. A total of 640 women (166 patients with leiomyoma and 474 healthy controls) were examined for their XRCC3 rs1799794, rs45603942, rs861530, rs3212057, rs1799796, rs861539, rs28903081 genotype. The distributions of genotypic and allelic frequencies between the two groups were compared. The results showed that the CT and TT genotypes of XRCC3 rs861539 were associated with increased leiomyoma risk (odds ratio=2.19, 95% confidence interval=1.23-3.90; odds ratio=3.72, 95% confidence interval=1.23-11.26, respectively). On allelic frequency analysis, we found a significant difference in the distribution of the T allelic frequency of the XRCC3 rs861539 (p=5.88 × 10(-5)). None of the other six single nucleotide polymorphisms were associated with altered leiomyoma susceptibility. The T allele (CT and TT genotypes) of XRCC3 rs861539 contributes to increased risk of leiomyoma among Taiwanese women and may serve as a early detection and predictive marker. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  11. Polymorphisms of XRCC1 genes and risk of nasopharyngeal carcinoma in the Cantonese population

    International Nuclear Information System (INIS)

    Cao, Yun; Miao, Xiao-Ping; Huang, Ma-Yan; Deng, Ling; Hu, Li-Fu; Ernberg, Ingemar; Zeng, Yi-Xin; Lin, Dong-Xin; Shao, Jian-Yong

    2006-01-01

    Nasopharyngeal carcinoma (NPC) is one of the most common cancers in southern China. In addition to environmental factors such as Epstein-Barr virus infection and diet, genetic susceptibility has been reported to play a key role in the development of this disease. The x-ray repair cross-complementing group 1 (XRCC1) gene is important in DNA base excision repair. We hypothesized that two common single nucleotide polymorphisms of XRCC1 (codons 194 Arg→Trp and 399 Arg→Gln) are related to the risk of NPC and interact with tobacco smoking. We sought to determine whether these genetic variants of the XRCC1 gene were associated with the risk of NPC among the Cantonese population in a hospital-based case control study using polymerase chain reaction-restriction fragment length polymorphism analysis. We conducted this study in 462 NPC patients and 511 healthy controls. After adjustment for sex and age, we found a reduced risk of developing NPC in individuals with the Trp194Trp genotype (OR = 0.48; 95% CI, 0.27–0.86) and the Arg194Trp genotype (OR = 0.79; 95% CI, 0.60–1.05) compared with those with the Arg194Arg genotype. Compared with those with the Arg399Arg genotype, the risk for NPC was not significantly different in individuals with the Arg399Gln genotype (OR = 0.82; 95% CI, 0.62–1.08) and the Gln399Gln genotype (OR = 1.20; 95% CI, 0.69–2.06). Further analyses stratified by gender and smoking status revealed a significantly reduced risk of NPC among males (OR = 0.32; 95% CI, 0.14–0.70) and smokers (OR = 0.34; 95% CI, 0.14–0.82) carrying the XRCC1 194Trp/Trp genotype compared with those carrying the Arg/Arg genotype. No association was observed between Arg399Gln variant genotypes and the risk of NPC combined with smoking and gender. Our findings suggest that the XRCC1 Trp194Trp variant genotype is associated with a reduced risk of developing NPC in Cantonese population, particularly in males and smokers. Larger studies are needed to confirm our findings

  12. XRCC1 Arg194Trp and Arg399Gln polymorphisms and arsenic methylation capacity are associated with urothelial carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, Chien-I [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Huang, Ya-Li [Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Chen, Wei-Jen [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Shiue, Horng-Sheng [Department of Chinese Medicine, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan, Taiwan (China); Huang, Chao-Yuan; Pu, Yeong-Shiau [Department of Urology, National Taiwan University Hospital, College of Medicine National Taiwan University, Taipei, Taiwan (China); Lin, Ying-Chin [Department of Family Medicine, Shung Ho Hospital, Taipei Medical University, New Taipei, Taiwan (China); Department of Health Examination, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan (China); Division of Family Medicine, School of Medicine, Taipei Medical University, Taipei, Taiwan (China); Hsueh, Yu-Mei, E-mail: ymhsueh@tmu.edu.tw [School of Public Health, College of Public Health and Nutrition, Taipei Medical University, Taipei, Taiwan (China); Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan (China)

    2014-09-15

    The association between DNA repair gene polymorphisms and bladder cancer has been widely studied. However, few studies have examined the correlation between urothelial carcinoma (UC) and arsenic or its metabolites. The aim of this study was to examine the association between polymorphisms of the DNA repair genes, XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln, with urinary arsenic profiles and UC. To this end, we conducted a hospital-based case–control study with 324 UC patients and 647 age- and gender-matched non-cancer controls. Genomic DNA was used to examine the genotype of XRCC1 Arg194Trp, XRCC1 Arg399Gln, XRCC3 Thr241Met, and XPD Lys751Gln by PCR-restriction fragment length polymorphism analysis (PCR-RFLP). Urinary arsenic profiles were measured by high performance liquid chromatography (HPLC) linked with hydride generator and atomic absorption spectrometry. The XRCC1 399 Gln/Gln and 194 Arg/Trp and Trp/Trp genotypes were significantly related to UC, and the odds ratio (OR) and 95% confidence interval (95%CI) were 1.68 (1.03–2.75) and 0.66 (0.48–0.90), respectively. Participants with higher total urinary arsenic levels, a higher percentage of inorganic arsenic (InAs%) and a lower percentage of dimethylarsinic acid (DMA%) had a higher OR of UC. Participants carrying XRCC1 risk diplotypes G-C/G-C, A-C/A-C, and A-T/G-T, and who had higher total arsenic levels, higher InAs%, or lower DMA% compared to those with other XRCC1 diplotypes had a higher OR of UC. Our results suggest that the XRCC1 399 Gln/Gln and 194 Arg/Arg DNA repair genes play an important role in poor arsenic methylation capacity, thereby increasing the risk of UC in non-obvious arsenic exposure areas. - Highlights: • The XRCC1 399Gln/Gln genotype was significantly associated with increased OR of UC. • The XRCC1 194 Arg/Trp and Trp/Trp genotype had a significantly decreased OR of UC. • Combined effect of the XRCC1 genotypes and poor arsenic methylation capacity on

  13. Interaction between lifestyle factors and the XRCC1, XPD, and XRCC3 genetic variations modulates the risk for sporadic colorectal cancer

    Directory of Open Access Journals (Sweden)

    Procopciuc Lucia Maria

    2014-03-01

    Full Text Available Introducere: Variațiile genetice, cum ar fi cele care influențează sistemele de reparare a defectelor de replicare a ADN, pot reprezenta factori de susceptibilitate în cancerul colorectal sporadic (CCR ca urmare a interacțiunii cu factori de mediu. Material și metodă: 80 de femei și 70 de bărbați, pacienți diagnosticați cu CCR sporadic în Clinica Chirurgie III Cluj au fost genotipați pentru Arg399Gln-XRCC1, Lys751Gln-XPD și Met241Thr-XRCC3 utilizând metodele PCR-RFLP. Am determinat de asemenea, genotipurile pentru 100 femei și 62 bărbați , care au format grupul de control. Rezultatele au fost analizate din punct de vedere al relației cu factorii de risc de mediu, fumatul și dieta. Rezultate: Bărbații fumători purtători ai variațiilor genetice Arg399Gln, Lys751Gln, Met241Thr au avut un risc semnificativ crescut de 4.09 (95%IC[0.96-19.98],p=0.05, 5.95(95%IC[1.08-43.22],p=0.03 și respectiv 3.73(95%IC[0.86-18.53],p=0.05 de a dezvolta cancer colorectal sporadic. Un risc semnificativ crescut de a dezvolta cancer colorectal sporadic a fost observat în cazul femeilor și bărbaților cu o dietă bogată în carne roșie prăjită purtători ai variațiilor genetice Arg399Gln (OR 2.77 95%IC [1.34-6.82],p=0.015 și OR 8.64 95%IC[2.67-29.14],p<0.001, Lys751Gln (OR 4.12 95%IC[1.37-12.74],p=0.007 și OR 5.06 95%IC[1.4- 19.02],p=0.006, Met241Thr (OR5.92 95%IC[2.21-16.23],p<0.001 și OR 5.64 95%IC[1.52-21.7],p=0.022. Femeile a căror dietă a inclus cantități mari de carne roșie prăjită au avut un risc semnificativ crescut de a dezvolta timpuriu cancer colorectal sporadic dacă au fost purtătoare a variațiilor genetice Arg399Gln-XRCC1 (OR 5.14 95%IC[0.99-28.3],p=0.047, Thr241Met-XRCC3 (OR 6.67 95%IC[1.05-46.67],p=0.025 și Lys751Gln-XPD (OR 4.7 95%IC[0.99-23.32],p=0.034. Concluzii: În cazul populației de origine română, asocierea genotipurilor mutante cu factori de mediu modulează riscul pentru CCR sporadic. La femei

  14. LDR reverses DDP resistance in ovarian cancer cells by affecting ERCC-1, Bcl-2, Survivin and Caspase-3 expressions.

    Science.gov (United States)

    Ju, Xingyan; Yu, Hongsheng; Liang, Donghai; Jiang, Tao; Liu, Yuanwei; Chen, Ling; Dong, Qing; Liu, Xiaoran

    2018-06-01

    Ovarian cancer is the most frequent cause of death resulting from malignant gynecological tumors. After surgical intervention, cisplatin (DDP) is a major chemotherapy drug for ovarian cancer, but the ovarian cancer cells tend to develop DDP resistance in the clinical setting. Tumor cells are sensitive to low-dose radiation (LDR). However, how the LDR therapy improves the effects of chemotherapy drugs on ovarian cancer is not well understood. This study aimed to explore this issue. The SKOV3/DDP cells were divided into 3 groups, including low-dose group, conventional-dose group, and control group (no radiation). Cell counting kit-8 assay was performed to measure cell proliferation. Flow cytometric analysis was then utilized to quantify the apoptosis with classical Annexin V/propidium iodide co-staining. And Real-time quantitative PCR and western blot were eventually used to analyze the mRNA and protein levels of excision repair cross complementing-group 1 (ERCC1), B-cell lymphoma 2 (Bcl-2), Survivin and Caspase-3, respectively. The IC50 value of DDP in the low-dose group was significantly lower compared with the other two groups. Compared with the conventional-dose group and control group, LDR treatment resulted in significantly more apoptosis. Besides, LDR treatment significantly decreased the mRNA and protein expression of ERCC1, Bcl-2, and Survivin, and enhanced the mRNA and protein expression of Caspase-3 compared with the other two groups. LDR reversed DDP resistance in SKOV3/DDP cells possibly by suppressing ERCC1, Bcl-2, and Survivin expressions, and increasing Caspase-3 expression. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. X-Ray Cross-Complementing Group 1 and Thymidylate Synthase Polymorphisms Might Predict Response to Chemoradiotherapy in Rectal Cancer Patients

    International Nuclear Information System (INIS)

    Lamas, Maria J.; Duran, Goretti; Gomez, Antonio; Balboa, Emilia; Anido, Urbano; Bernardez, Beatriz; Rana-Diez, Pablo; Lopez, Rafael; Carracedo, Angel; Barros, Francisco

    2012-01-01

    Purpose: 5-Fluorouracil–based chemoradiotherapy before total mesorectal excision is currently the standard treatment of Stage II and III rectal cancer patients. We used known predictive pharmacogenetic biomarkers to identify the responders to preoperative chemoradiotherapy in our series. Methods and Materials: A total of 93 Stage II-III rectal cancer patients were genotyped using peripheral blood samples. The genes analyzed were X-ray cross-complementing group 1 (XRCC1), ERCC1, MTHFR, EGFR, DPYD, and TYMS. The patients were treated with 225 mg/m 2 /d continuous infusion of 5-fluorouracil concomitantly with radiotherapy (50.4 Gy) followed by total mesorectal excision. The outcomes were measured by tumor regression grade (TRG) as a major response (TRG 1 and TRG 2) or as a poor response (TRG3, TRG4, and TRG5). Results: The major histopathologic response rate was 47.3%. XRCC1 G/G carriers had a greater probability of response than G/A carriers (odds ratio, 4.18; 95% confidence interval, 1.62–10.74, p = .003) Patients with polymorphisms associated with high expression of thymidylate synthase (2R/3G, 3C/3G, and 3G/3G) showed a greater pathologic response rate compared with carriers of low expression (odds ratio, 2.65; 95% confidence interval, 1.10–6.39, p = .02) No significant differences were seen in the response according to EGFR, ERCC1, MTHFR C 677 and MTHFR A 1298 expression. Conclusions: XRCC1 G/G and thymidylate synthase (2R/3G, 3C/3G, and 3G/3G) are independent factors of a major response. Germline thymidylate synthase and XRCC1 polymorphisms might be useful as predictive markers of rectal tumor response to neoadjuvant chemoradiotherapy with 5-fluorouracil.

  16. X-Ray Cross-Complementing Group 1 and Thymidylate Synthase Polymorphisms Might Predict Response to Chemoradiotherapy in Rectal Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Lamas, Maria J., E-mail: mlamasd@yahoo.es [Oncology Pharmacy Unit, Complejo Hospitalario Universitario of Santiago (CHUS), Choupana S/N, Santiago de Compostela (Spain); Duran, Goretti [Oncology Pharmacy Unit, Complejo Hospitalario Universitario of Santiago (CHUS), Choupana S/N, Santiago de Compostela (Spain); Gomez, Antonio [Department of Oncology Radiotherapy, Complejo Hospitalario Universitario of Santiago (CHUS), Choupana S/N, Santiago de Compostela (Spain); Balboa, Emilia [Molecular Medicine Unit, Fundacion Publica Galega de Medicina Xenomica, Choupana S/N, Santiago de Compostela (Spain); Anido, Urbano [Department of Medical Oncology, Complejo Hospitalario Universitario of Santiago (CHUS), Choupana S/N, Santiago de Compostela (Spain); Bernardez, Beatriz [Oncology Pharmacy Unit, Complejo Hospitalario Universitario of Santiago (CHUS), Choupana S/N, Santiago de Compostela (Spain); Rana-Diez, Pablo [Molecular Medicine Unit, Fundacion Publica Galega de Medicina Xenomica, Choupana S/N, Santiago de Compostela (Spain); Lopez, Rafael [Department of Medical Oncology, Complejo Hospitalario Universitario of Santiago (CHUS), Choupana S/N, Santiago de Compostela (Spain); Carracedo, Angel; Barros, Francisco [Fundacion Publica Galega de Medicina Xenomica and Genomic Medicine Group-CIBERER, University of Santiago de Compostela, Calle San Fransisco S/N, Santiago de Compostela (Spain)

    2012-01-01

    Purpose: 5-Fluorouracil-based chemoradiotherapy before total mesorectal excision is currently the standard treatment of Stage II and III rectal cancer patients. We used known predictive pharmacogenetic biomarkers to identify the responders to preoperative chemoradiotherapy in our series. Methods and Materials: A total of 93 Stage II-III rectal cancer patients were genotyped using peripheral blood samples. The genes analyzed were X-ray cross-complementing group 1 (XRCC1), ERCC1, MTHFR, EGFR, DPYD, and TYMS. The patients were treated with 225 mg/m{sup 2}/d continuous infusion of 5-fluorouracil concomitantly with radiotherapy (50.4 Gy) followed by total mesorectal excision. The outcomes were measured by tumor regression grade (TRG) as a major response (TRG 1 and TRG 2) or as a poor response (TRG3, TRG4, and TRG5). Results: The major histopathologic response rate was 47.3%. XRCC1 G/G carriers had a greater probability of response than G/A carriers (odds ratio, 4.18; 95% confidence interval, 1.62-10.74, p = .003) Patients with polymorphisms associated with high expression of thymidylate synthase (2R/3G, 3C/3G, and 3G/3G) showed a greater pathologic response rate compared with carriers of low expression (odds ratio, 2.65; 95% confidence interval, 1.10-6.39, p = .02) No significant differences were seen in the response according to EGFR, ERCC1, MTHFR{sub C}677 and MTHFR{sub A}1298 expression. Conclusions: XRCC1 G/G and thymidylate synthase (2R/3G, 3C/3G, and 3G/3G) are independent factors of a major response. Germline thymidylate synthase and XRCC1 polymorphisms might be useful as predictive markers of rectal tumor response to neoadjuvant chemoradiotherapy with 5-fluorouracil.

  17. Mutations in XRCC4 cause primordial dwarfism without causing immunodeficiency.

    Science.gov (United States)

    Saito, Shinta; Kurosawa, Aya; Adachi, Noritaka

    2016-08-01

    In successive reports from 2014 to 2015, X-ray repair cross-complementing protein 4 (XRCC4) has been identified as a novel causative gene of primordial dwarfism. XRCC4 is indispensable for non-homologous end joining (NHEJ), the major pathway for repairing DNA double-strand breaks. As NHEJ is essential for V(D)J recombination during lymphocyte development, it is generally believed that abnormalities in XRCC4 cause severe combined immunodeficiency. Contrary to expectations, however, no overt immunodeficiency has been observed in patients with primordial dwarfism harboring XRCC4 mutations. Here, we describe the various XRCC4 mutations that lead to disease and discuss their impact on NHEJ and V(D)J recombination.

  18. Assessment of genetic mutations in the XRCC2 coding region by high resolution melting curve analysis and the risk of differentiated thyroid carcinoma in Iran

    Directory of Open Access Journals (Sweden)

    Shima Fayaz

    2012-01-01

    Full Text Available Homologous recombination (HR is the major pathway for repairing double strand breaks (DSBs in eukaryotes and XRCC2 is an essential component of the HR repair machinery. To evaluate the potential role of mutations in gene repair by HR in individuals susceptible to differentiated thyroid carcinoma (DTC we used high resolution melting (HRM analysis, a recently introduced method for detecting mutations, to examine the entire XRCC2 coding region in an Iranian population. HRM analysis was used to screen for mutations in three XRCC2 coding regions in 50 patients and 50 controls. There was no variation in the HRM curves obtained from the analysis of exons 1 and 2 in the case and control groups. In exon 3, an Arg188His polymorphism (rs3218536 was detected as a new melting curve group (OR: 1.46; 95%CI: 0.432-4.969; p = 0.38 compared with the normal melting curve. We also found a new Ser150Arg polymorphism in exon 3 of the control group. These findings suggest that genetic variations in the XRCC2 coding region have no potential effects on susceptibility to DTC. However, further studies with larger populations are required to confirm this conclusion.

  19. Preliminary Study on the Single Nucleotide Polymorphism (SNP of XRCC1 Gene Identificationto Improve the Outcomes of Radiotherapy for Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Devita Tetriana

    2015-09-01

    Full Text Available Cervical cancer is the most fatal disease among Indonesian women. In recognition of the substantial variation in the intrinsic response of individuals to radiation, an effort had been done to identify the genetic markers, primarily Single Nucleotide polymorphisms (SNPs, which are associated with responsiveness of cancer cells to radiation therapy. One of these SNPs is X-ray repair cross-complementing protein 1 (XRCC1 that is one of the most important genes in deoxyribonucleic acid (DNA repair pathways. Meta-analysis in the determination of the association of XRCC1 polymorphisms with cervical cancer revealed the potential role of XRCC1 polymorphisms in predicting cell response to radiotherapy.Our preliminary study with real-time polymerase chain reaction (RT-PCR showed that radiotherapy affected the XRCC1 gene analyzed in blood of cervical cancer patient. Other published study found three SNPs of XRCC1 (Arg194Trp, Arg280His, and Arg399Gln that cause amino acid substitutions. Arg194Trp is only SNPs that associated with high risk of cervical cancer but not others. Additionally, structure and function of this protein can be altered by functional SNPs, which may lead to the susceptibility of individuals to cancers. Anotherstudy found G399A polymorphisms. We concluded that SNP of this DNA repair genes have been found to be good predictors of efficacy of radiotherapy.Kanker serviks adalah penyakit yang paling fatal pada perempuan di Indonesia. Untuk memahami variasi substansial respon intrinsik individual terhadap radiasi, suatu usaha telah dilakukan untuk mengidentifikasi petanda genetik, terutama Single Nucleotide polymorphism (SNP, yang berkaitan dengan responsel kanker terhadap terapi radiasi. Satu dari SNP tersebut adalah X-ray repair cross-complementing protein 1 (XRCC1 yang merupakan satu dari gen paling penting dalam lajur perbaikan asam deoksiribonukleat (DNA. Meta-analysis dalam penentuan hubungan polimorfisme XRCC1 dengan kanker serviks

  20. XRCC1 codon 399Gln polymorphism is associated with radiotherapy-induced acute dermatitis and mucositis in nasopharyngeal carcinoma patients

    International Nuclear Information System (INIS)

    Li, Haijun; You, Yanjie; Lin, Canfeng; Zheng, Mingzhang; Hong, Chaoqun; Chen, Jiongyu; Li, Derui; Au, William W; Chen, Zhijian

    2013-01-01

    To evaluate the association between single nucleotide polymorphisms (SNPs) at the 194 and 399 codons of XRCC1, and the risk of severe acute skin and oral mucosa reactions in nasopharyngeal carcinoma patients in China. 114 patients with nasopharyngeal carcinoma were sequentially recruited in this study. Heparinized peripheral blood samples were taken for SNPs analysis before the start of radiation treatment. SNPs in XRCC1 (194Arg/Trp and 399Arg/Gln) gene were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Dermatitis at upper neck and oral mucositis were clinically recorded according to the Common Terminology Criteria for Adverse Events v.3.0. The variant allele frequencies were 0.289 for XRCC1 194Trp and 0.263 for XRCC1 399Gln. Of the 114 patients, 24 experienced grade 3 acute dermatitis and 48 had grade 3 acute mucositis. The XRCC1 399Arg/Gln was significantly associated with the development of grade 3 dermatitis (Odds Ratio, 2.65; 95% CI, 1.04–6.73; p = 0.037, χ2 = 4.357). In addition, it was also associated with higher incidence of grade 3 mucositis with a borderline statistical significance (Odds Ratio, 2.11; 95% CI, 0.951–4.66; p = 0.065, χ2 = 3.411). The relationship between XRCC1 194Arg/Trp and acute dermatitis, and mucositis was not found. Our investigation shows, for the first time, that patients with the XRCC1 399Arg/Gln genotype were more likely to experience severe acute dermatitis and oral mucositis. With further validation, the information can be used to determine personalized radiotherapy strategy

  1. Transcriptional profiling reveals progeroid Ercc1-/Δ mice as a model system for glomerular aging

    Science.gov (United States)

    2013-01-01

    Background Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1-/Δ progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. Results In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1-/Δ mice showed cluster formation between young WT and Ercc1-/Δ as well as old WT and Ercc1-/Δ samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1-/Δ mice (p aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1-/Δ mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies. PMID:23947592

  2. Transcriptional profiling reveals progeroid Ercc1(-/Δ) mice as a model system for glomerular aging.

    Science.gov (United States)

    Schermer, Bernhard; Bartels, Valerie; Frommolt, Peter; Habermann, Bianca; Braun, Fabian; Schultze, Joachim L; Roodbergen, Marianne; Hoeijmakers, Jan Hj; Schumacher, Björn; Nürnberg, Peter; Dollé, Martijn Et; Benzing, Thomas; Müller, Roman-Ulrich; Kurschat, Christine E

    2013-08-16

    Aging-related kidney diseases are a major health concern. Currently, models to study renal aging are lacking. Due to a reduced life-span progeroid models hold the promise to facilitate aging studies and allow examination of tissue-specific changes. Defects in genome maintenance in the Ercc1(-/Δ) progeroid mouse model result in premature aging and typical age-related pathologies. Here, we compared the glomerular transcriptome of young and aged Ercc1-deficient mice to young and aged WT mice in order to establish a novel model for research of aging-related kidney disease. In a principal component analysis, age and genotype emerged as first and second principal components. Hierarchical clustering of all 521 genes differentially regulated between young and old WT and young and old Ercc1(-/Δ) mice showed cluster formation between young WT and Ercc1(-/Δ) as well as old WT and Ercc1(-/Δ) samples. An unexpectedly high number of 77 genes were differentially regulated in both WT and Ercc1(-/Δ) mice (p aging glomerulus. At the level of the transcriptome, the pattern of gene activities is similar in the progeroid Ercc1(-/Δ) mouse model constituting a valuable tool for future studies of aging-associated glomerular pathologies.

  3. Xeroderma Pigmentosum-Trichothiodystrophy overlap patient with novel XPD/ERCC2 mutation

    DEFF Research Database (Denmark)

    Kralund, Henrik H; Ousager, Lilian; Jaspers, Nicolaas G

    2013-01-01

    outcome from many of these mutations. We demonstrate a patient, believed to represent an overlap between XP and TTD/CS. In addition to other organ dysfunctions, the young man presented with Photosensitivity, Ichthyosis, Brittle hair, Impaired physical and mental development, Decreased fertility and Short...... appearance also suggested XP, but fibroblast cultures only demonstrated x2 UV-sensitivity with expected NER and TFIIH-activity decrease. Genetic sequencing of the XPD/ERCC2 gene established the patient as heterozygote compound with a novel, N-terminal Y18H mutation and a known C-terminal (TTD) mutation, A725...

  4. ERCC1 and TS Expression as Prognostic and Predictive Biomarkers in Metastatic Colon Cancer.

    Directory of Open Access Journals (Sweden)

    Michel B Choueiri

    Full Text Available In patients with metastatic colon cancer, response to first line chemotherapy is a strong predictor of overall survival (OS. Currently, oncologists lack diagnostic tests to determine which chemotherapy regimen offers the greatest chance for response in an individual patient. Here we present the results of gene expression analysis for two genes, ERCC1 and TS, measured with the commercially available ResponseDX: Colon assay (Response Genetics, Los Angeles, CA in 41 patients with de novo metastatic colon cancer diagnosed between July 2008 and August 2013 at the University of California, San Diego. In addition ERCC1 and TS expression levels as determined by RNAseq and survival data for patients in TCGA were downloaded from the TCGA data portal. We found that patients with low expression of ERCC1 (n = 33 had significantly longer median OS (36.0 vs. 10.1 mo, HR 0.29, 95% CI .095 to .84, log-rank p = 9.0x10-6 and median time to treatment to failure (TTF following first line chemotherapy (14.1 vs. 2.4 mo, HR 0.17, 95% CI 0.048 to 0.58, log-rank p = 5.3x10-4 relative to those with high expression (n = 4. After accounting for the covariates age, sex, tumor grade and ECOG performance status in a Cox proportional hazard model the association of low ERCC1 with longer OS (HR 0.18, 95% CI 0.14 to 0.26, p = 0.0448 and TTF (HR 0.16, 95% CI 0.14 to 0.21, p = 0.0053 remained significant. Patients with low TS expression (n = 29 had significantly longer median OS (36.0 vs. 14.8 mo, HR 0.25, 95% CI 0.074 to 0.82, log-rank p = 0.022 relative to those with high expression (n = 12. The combined low expression of ERCC1/TS was predictive of response in patients treated with FOLFOX (40% vs. 91%, RR 2.3, Fisher's exact test p = 0.03, n = 27, but not with FOLFIRI (71% vs. 71%, RR 1.0, Fisher's exact test p = 1, n = 14. Overall, these findings suggest that measurement of ERCC1 and TS expression has potential clinical utility in managing patients with metastatic colorectal

  5. Systematic immunohistochemical screening for mismatch repair and ERCC1 gene expression from colorectal cancers in China: Clinicopathological characteristics and effects on survival.

    Directory of Open Access Journals (Sweden)

    Pan Li

    Full Text Available We performed a systematic screening of colorectal cancer (CRC tissues to investigate whether mismatch repair (MMR status and ERCC1 protein expression could be predictive of clinical outcomes for these patients following the recommendation of The Evaluation of Genomic Applications in Practice of Prevention (EGAPP.The expression of four MMR genes and ERCC1 were assessed by immunohistochemistry (IHC from cancer tissue samples of 2233 consecutive CRC patients.We observed that most CRC patients with a proficient MMR (pMMR status tended to have simultaneous ERCC1 protein expression (P< 0.001. Stage III CRC patients with deficient MMR (dMMR had higher prognoses than the same stage patients with pMMR (DFS: 74% vs 65%, P = 0.04; OS: 79% vs 69%, P = 0.04. Here, dMMR is also associated with poorer survival for stage II patients after chemotherapy (DFS: 66% vs 78%, P = 0.04. Stage II and III patients that were shown to express ERCC1 protein had higher DFS and OS than those that were deficient in expression (stage II, DFS: 83% vs 70%, P = 0.006; OS 85% vs 73%, P = 0.02. Stage III, DFS: 67% vs56%, P = 0.03; OS: 71% vs 57%, P = 0.04.Our results indicate that dMMR appeared to predictive of a survival benefit for stage III CRC patients. We also found the determination of ERCC1 expression to be useful for predicting DFS or OS for stage II and III CRC patients. In addition, the expression of MMR genes and ERCC1 showed a significant relationship.

  6. Deficient Pms2, ERCC1, Ku86, CcOI in field defects during progression to colon cancer.

    Science.gov (United States)

    Nguyen, Huy; Loustaunau, Cristy; Facista, Alexander; Ramsey, Lois; Hassounah, Nadia; Taylor, Hilary; Krouse, Robert; Payne, Claire M; Tsikitis, V Liana; Goldschmid, Steve; Banerjee, Bhaskar; Perini, Rafael F; Bernstein, Carol

    2010-07-28

    In carcinogenesis, the "field defect" is recognized clinically because of the high propensity of survivors of certain cancers to develop other malignancies of the same tissue type, often in a nearby location. Such field defects have been indicated in colon cancer. The molecular abnormalities that are responsible for a field defect in the colon should be detectable at high frequency in the histologically normal tissue surrounding a colonic adenocarcinoma or surrounding an adenoma with advanced neoplasia (well on the way to a colon cancer), but at low frequency in the colonic mucosa from patients without colonic neoplasia. Using immunohistochemistry, entire crypts within 10 cm on each side of colonic adenocarcinomas or advanced colonic neoplasias were found to be frequently reduced or absent in expression for two DNA repair proteins, Pms2 and/or ERCC1. Pms2 is a dual role protein, active in DNA mismatch repair as well as needed in apoptosis of cells with excess DNA damage. ERCC1 is active in DNA nucleotide excision repair. The reduced or absent expression of both ERCC1 and Pms2 would create cells with both increased ability to survive (apoptosis resistance) and increased level of mutability. The reduced or absent expression of both ERCC1 and Pms2 is likely an early step in progression to colon cancer. DNA repair gene Ku86 (active in DNA non-homologous end joining) and Cytochrome c Oxidase Subunit I (involved in apoptosis) had each been reported to be decreased in expression in mucosal areas close to colon cancers. However, immunohistochemical evaluation of their levels of expression showed only low to modest frequencies of crypts to be deficient in their expression in a field defect surrounding colon cancer or surrounding advanced colonic neoplasia. We show, here, our method of evaluation of crypts for expression of ERCC1, Pms2, Ku86 and CcOI. We show that frequency of entire crypts deficient for Pms2 and ERCC1 is often as great as 70% to 95% in 20 cm long areas

  7. Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and BRCA2

    Science.gov (United States)

    2016-05-01

    25 other candidate genes in the Fanconi anemia-BRCA pathway: ATR, BABAM1, BAP1, BLM, BRCC3, BRE, CHEK1, ERCC1, ERCC4 (FANCQ), FANCA , FANCB, FANCC...AWARD NUMBER: W81XWH-13-1-0484 TITLE: Cancer Risks Associated with Inherited Mutations in Ovarian Cancer Susceptibility Genes Beyond BRCA1 and...DNA repair genes on small core biopsy specimens iv) begun accessioning samples from the phase 2 rucaparib trial (Ariel 2, NCT01891344). 15

  8. Association study between XRCC1 gene polymorphisms and sporadic amyotrophic lateral sclerosis.

    Science.gov (United States)

    Coppedè, Fabio; Migheli, Francesca; Lo Gerfo, Annalisa; Fabbrizi, Maria Rita; Carlesi, Cecilia; Mancuso, Michelangelo; Corti, Stefania; Mezzina, Nicoletta; del Bo, Roberto; Comi, Giacomo P; Siciliano, Gabriele; Migliore, Lucia

    2010-01-01

    The aim of the present study was to investigate the possible contribution of three common functional polymorphisms in the DNA repair protein X-ray repair cross-complementing group 1 (XRCC1), namely Arg194Trp (rs1799782), Arg280His (rs25489) and Arg399Gln (rs25487), to sporadic amyotrophic lateral sclerosis (SALS). We genotyped 206 Italian SALS patients and 203 matched controls for XRCC1 Arg194Trp, Arg280His and Arg399Gln polymorphisms by means of PCR/RFLP technique, searching for association between any of the studied polymorphisms and disease risk, age and site of onset. We observed a statistically significant difference in XRCC1 Gln399 allele frequencies between SALS cases and controls (0.39/0.28; p=0.001). The present study suggests that the XRCC1 Arg399Gln polymorphism might contribute to SALS risk.

  9. Dynamic regulation of cerebral DNA repair genes by psychological stress

    DEFF Research Database (Denmark)

    Forsberg, Kristin; Aalling, Nadia; Wörtwein, Gitta

    2015-01-01

    Neuronal genotoxic insults from oxidative stress constitute a putative molecular link between stress and depression on the one hand, and cognitive dysfunction and dementia risk on the other. Oxidative modifications to DNA are repaired by specific enzymes; a process that plays a critical role...... restraint stress (6h/day) or daily handling (controls), and sacrificed after 1, 7 or 21 stress sessions. The mRNA expression of seven genes (Ogg1, Ape1, Ung1, Neil1, Xrcc1, Ercc1, Nudt1) involved in the repair of oxidatively damaged DNA was determined by quantitative real time polymerase chain reaction...

  10. Functional Polymorphisms of Base Excision Repair Genes XRCC1 and APEX1 Predict Risk of Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy

    International Nuclear Information System (INIS)

    Yin Ming; Liao Zhongxing; Liu Zhensheng; Wang, Li-E; Gomez, Daniel; Komaki, Ritsuko; Wei Qingyi

    2011-01-01

    Purpose: To explore whether functional single nucleotide polymorphisms (SNPs) of base-excision repair genes are predictors of radiation treatment-related pneumonitis (RP), we investigated associations between functional SNPs of ADPRT, APEX1, and XRCC1 and RP development. Methods and Materials: We genotyped SNPs of ADPRT (rs1136410 [V762A]), XRCC1 (rs1799782 [R194W], rs25489 [R280H], and rs25487 [Q399R]), and APEX1 (rs1130409 [D148E]) in 165 patients with non-small cell lung cancer (NSCLC) who received definitive chemoradiation therapy. Results were assessed by both Logistic and Cox regression models for RP risk. Kaplan-Meier curves were generated for the cumulative RP probability by the genotypes. Results: We found that SNPs of XRCC1 Q399R and APEX1 D148E each had a significant effect on the development of Grade ≥2 RP (XRCC1: AA vs. GG, adjusted hazard ratio [HR] = 0.48, 95% confidence interval [CI], 0.24-0.97; APEX1: GG vs. TT, adjusted HR = 3.61, 95% CI, 1.64-7.93) in an allele-dose response manner (Trend tests: p = 0.040 and 0.001, respectively). The number of the combined protective XRCC1 A and APEX1 T alleles (from 0 to 4) also showed a significant trend of predicting RP risk (p = 0.001). Conclusions: SNPs of the base-excision repair genes may be biomarkers for susceptibility to RP. Larger prospective studies are needed to validate our findings.

  11. Association between Single Nucleotide Polymorphisms in XRCC3 and Radiation-Induced Adverse Effects on Normal Tissue: A Meta-Analysis.

    Directory of Open Access Journals (Sweden)

    Yu-Zhe Song

    Full Text Available The X-ray repair cross-complementing group 3 (XRCC3 protein plays an important role in the repair of DNA double-strand breaks. The relationship between XRCC3 polymorphisms and the risk of radiation-induced adverse effects on normal tissue remains inconclusive. Thus, we performed a meta-analysis to elucidate the association between XRCC3 polymorphisms and radiation-induced adverse effects on normal tissue. All eligible studies up to December 2014 were identified through a search of the PubMed, Embase and Web of Science databases. Seventeen studies involving 656 cases and 2193 controls were ultimately included in this meta-analysis. The pooled odds ratios (ORs with corresponding 95% confidence intervals (CIs were calculated to evaluate the association between XRCC3 polymorphisms and the risk of radiation-induced normal tissue adverse effects. We found that the XRCC3 p.Thr241Met (rs861539 polymorphism was significantly associated with early adverse effects induced by radiotherapy (OR = 1.99, 95%CI: 1.31-3.01, P = 0.001. A positive association lacking statistical significance with late adverse effects was also identified (OR = 1.28, 95%CI: 0.97-1.68, P = 0.08. In addition, the rs861539 polymorphism was significantly correlated with a higher risk of adverse effects induced by head and neck area irradiation (OR = 2.41, 95%CI: 1.49-3.89, p = 0.0003 and breast irradiation (OR = 1.41, 95%CI: 1.02-1.95, p = 0.04, whereas the correlation was not significant for lung irradiation or pelvic irradiation. Furthermore, XRCC3 rs1799794 polymorphism may have a protective effect against late adverse effects induced by radiotherapy (OR = 0.47, 95%CI: 0.26-0.86, P = 0.01. Well-designed large-scale clinical studies are required to further validate our results.

  12. [Association of XRCC1 genetic polymorphism with susceptibility to non-Hodgkin's lymphoma].

    Science.gov (United States)

    Li, Su-Xia; Zhu, Hong-Li; Guo, Bo; Yang, Yang; Wang, Hong-Yan; Sun, Jing-Fen; Cao, Yong-Bin

    2014-08-01

    The purpose of this study was to explore the association between X-ray repair cross-complementing group 1 (XRCC1)gene polymorphism and non-Hodgkin's lymphoma risk. A total of 282 non-Hodgkin's lymphoma (NHL) patients and 231 normal controls were used to investigate the effect of three XRCC1 gene polymorphisms (rs25487, rs25489, rs1799782) on susceptibility to non-Hodgkin's lymphoma. Genotyping was performed by using SNaPshot method. All statistical analyses were done with R software. Genotype and allele frequencies of XRCC1 were compared between the patients and controls by using the chi-square test. Crude and adjusted odd ratios and 95% confidence intervals were calculated by using logistic regression on the basis of genetic different models. For four kinds of NHL, subgroup analyses were also conducted. Combined genotype analyses of the three XRCC1 polymorphisms were also done by using logistic regression. The results showed that the variant genotype frequency was not significantly different between the controls and NHL or NHL subtype cases. Combined genotype analyses of XRCC1 399-280-194 results showed that the combined genotype was not associated with risk of NHL overall, but the VT-WT-WT combined genotype was associated with the decreased risk of T-NHL (OR: 0.21; 95%CI (0.06-0.8); P = 0.022), and the WT-VT-WT combined genotype was associated with the increased risk of FL(OR:15.23; 95%CI (1.69-137.39); P = 0.015). It is concluded that any studied polymorphism (rs25487, rs25489, rs1799782) alone was not shown to be rela-ted with the risk of NHL or each histologic subtype of NHL. The combined genotype with mutation of three SNP of XRCC1 was not related to the risk of NHL. However, further large-scale studies would be needed to confirm the association of decreased or increased risk for T-NHL and FL with the risk 3 combined SNP mutants of XRCC1 polymorphism.

  13. Thymidylate synthase, dihydropyrimidine dehydrogenase, ERCC1, and thymidine phosphorylase gene expression in primary and metastatic gastrointestinal adenocarcinoma tissue in patients treated on a phase I trial of oxaliplatin and capecitabine

    International Nuclear Information System (INIS)

    Uchida, Kazumi; Danenberg, Peter V; Danenberg, Kathleen D; Grem, Jean L

    2008-01-01

    Over-expression of thymidylate synthase (TS) and dihydropyrimidine dehydrogenase (DPD) in tumor tissue is associated with insensitivity to 5-fluorouracil (5-FU). Over-expression of ERCC1 correlates with insensitivity to oxaliplatin (OX) therapy, while high thymidine phosphorylase (TP) levels predict for increased sensitivity to capecitabine (Xel). Biopsies of metastatic tumor were taken before OX (130 mg/m 2 day 1) given with Xel (1200–3000 mg/m 2 in two divided doses days 1–5 and 8–12) every 3-weeks. Micro-dissected metastatic and primary tumors were analyzed for relative gene expression by real-time quantitative polymerase chain reaction. The clinical protocol prospectively identified the molecular targets of interest that would be tested. Endpoints for the molecular analyses were correlation of median, first and third quartiles for relative gene expression of each target with response, time to treatment failure (TTF), and survival. Among 91 patients participating in this trial; 97% had colorectal cancer. The median number of prior chemotherapy regimens was 2, and most had prior 5-FU and irinotecan. In paired samples, median mRNA levels were significantly higher in metastatic versus primary tumor (-fold): TS (1.9), DPD (3.8), ERCC1 (2.1) and TP (1.6). A strong positive correlation was noted between DPD and TP mRNA levels in both primary (r = 0.693, p < 0.0005) and metastatic tissue (r = 0.697, p < 0.00001). There was an association between TS gene expression and responsive and stable disease: patients whose intratumoral TS mRNA levels were above the median value had significantly greater risk of early disease progression (43% vs 17%), but this did not translate into a significant difference in TTF. ERCC1 gene expression above the third quartile was associated with a shorter TTF (median 85 vs 162 days, p = 0.046). Patients whose TS mRNA levels in metastatic tumor tissue were below the median had a longer overall survival (median 417 vs 294 days, p = 0

  14. The Differential Expression of Core Genes in Nucleotide Excision Repair Pathway Indicates Colorectal Carcinogenesis and Prognosis

    Directory of Open Access Journals (Sweden)

    Jingwei Liu

    2018-01-01

    Full Text Available Background. Nucleotide excision repair (NER plays a critical role in maintaining genome integrity. This study aimed to investigate the expression of NER genes and their associations with colorectal cancer (CRC development. Method. Expressions of NER genes in CRC and normal tissues were analysed by ONCOMINE. The Cancer Genome Atlas (TCGA data were downloaded to explore relationship of NER expression with clinicopathological parameters and survival of CRC. Results. ERCC1, ERCC2, ERCC5, and DDB2 were upregulated while ERCC4 was downregulated in CRC. For colon cancer, high ERCC3 expression was related to better T stage; ERCC5 expression indicated deeper T stage and distant metastasis; DDB2 expression suggested earlier TNM stage. For rectal cancer, ERCC2 expression correlated with favourable T stage; XPA expression predicted worse TNM stage. ERCC2 expression was associated with worse overall survival (OS in colon cancer (HR=1.53, P=0.043. Colon cancer patients with high ERCC4 expression showed favorable OS in males (HR=0.54, P=0.035. High XPC expression demonstrated decreased death hazards in rectal cancer (HR=0.40, P=0.026. Conclusion. ERCC1, ERCC2, ERCC4, ERCC5, and DDB2 were differently expressed in CRC and normal tissues; ERCC2, ERCC3, ERCC5, XPA, and DDB2 correlated with clinicopathological parameters of CRC, while ERCC2, ERCC4, and XPC might predict CRC prognosis.

  15. Inter-individual variation in nucleotide excision repair pathway is modulated by non-synonymous polymorphisms in ERCC4 and MBD4 genes

    Energy Technology Data Exchange (ETDEWEB)

    Allione, Alessandra, E-mail: alessandra.allione@hugef-torino.org [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Guarrera, Simonetta; Russo, Alessia [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Ricceri, Fulvio [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Department of Medical Sciences, University of Turin, Via Santena 19, 10126 Turin (Italy); Purohit, Rituraj [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Bioinformatics Division, School of Bio Sciences and Technology, Vellore Institute of Technology University, Vellore 632014, Tamil Nadu (India); Pagnani, Andrea; Rosa, Fabio; Polidoro, Silvia; Voglino, Floriana [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Matullo, Giuseppe [Human Genetics Foundation (HuGeF), Via Nizza 52, 10126 Turin (Italy); Department of Medical Sciences, University of Turin, Via Santena 19, 10126 Turin (Italy)

    2013-11-15

    Highlights: • We reported a large inter-individual variability of NER capacity. • ERCC4 rs1800124 and MBD4 rs10342 nsSNP variants were associated with DNA repair capacity. • DNA–protein interaction analyses showed alteration of binding for ERCC4 and MBD4 variants. • A new possible cross-talk between NER and BER pathways has been reported. - Abstract: Inter-individual differences in DNA repair capacity (DRC) may lead to genome instability and, consequently, modulate individual cancer risk. Among the different DNA repair pathways, nucleotide excision repair (NER) is one of the most versatile, as it can eliminate a wide range of helix-distorting DNA lesions caused by ultraviolet light irradiation and chemical mutagens. We performed a genotype–phenotype correlation study in 122 healthy subjects in order to assess if any associations exist between phenotypic profiles of NER and DNA repair gene single nucleotide polymorphisms (SNPs). Individuals were genotyped for 768 SNPs with a custom Illumina Golden Gate Assay, and peripheral blood mononuclear cells (PBMCs) of the same subjects were tested for a NER comet assay to measure DRC after challenging cells by benzo(a)pyrene diolepoxide (BPDE). We observed a large inter-individual variability of NER capacity, with women showing a statistically significant lower DRC (mean ± SD: 6.68 ± 4.76; p = 0.004) than men (mean ± SD: 8.89 ± 5.20). Moreover, DRC was significantly lower in individuals carrying a variant allele for the ERCC4 rs1800124 non-synonymous SNP (nsSNP) (p = 0.006) and significantly higher in subjects with the variant allele of MBD4 rs2005618 SNP (p = 0.008), in linkage disequilibrium (r{sup 2} = 0.908) with rs10342 nsSNP. Traditional in silico docking approaches on protein–DNA and protein–protein interaction showed that Gly875 variant in ERCC4 (rs1800124) decreases the DNA–protein interaction and that Ser273 and Thr273 variants in MBD4 (rs10342) indicate complete loss of protein

  16. Analysis list: ERCC6 [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ERCC6 Others + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ERCC6.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ERCC6.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/ERC...C6.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/ERCC6.Others.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/Others.gml ...

  17. XRCC1 and XPD DNA repair gene polymorphisms: a potential risk factor for glaucoma in the Pakistani population

    NARCIS (Netherlands)

    Yousaf, S.; Khan, M.I.; Micheal, S.; Akhtar, F.; Ali, S.H.; Riaz, M.; Ali, M.; Lall, P.; Waheed, N.K.; Hollander, A.I. den; Ahmed, A.; Qamar, R.

    2011-01-01

    PURPOSE: The present study was designed to determine the association of polymorphisms of the DNA repair genes X-ray cross-complementing group 1 (XRCC1) (c.1316G>A [rs25487]) and xeroderma pigmentosum complementation group D (XPD) (c.2298A>C [rs13181]) with primary open-angle glaucoma (POAG) and

  18. Association between polymorphisms in XRCC1 gene and treatment outcomes of patients with advanced gastric cancer: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Zhuo Cao

    Full Text Available BACKGROUND: Many reports have shown inconsistent results on the relationship between single nucleotide polymorphisms (SNPs of X-ray repair cross complementing protein (XRCC1 gene and platinum-based chemotherapeutic efficacy. This meta-analysis aimed to summarize published data about the association between two SNPs of XRCC1 (Arg194Trp and Arg399Gln and treatment outcomes of patients with advanced gastric cancer. METHODOLOGY/PRINCIPAL FINDINGS: We retrieved the relevant articles from MEDLINE, Web of Knowledge, and the China National Knowledge Infrastructure (CNKI databases. Studies were selected according to specific inclusion and exclusion criteria. Study quality was assessed according to the guidelines outlined by Hayden, et al. and PRISMA guidelines. We estimated the odds ratio (OR for response rate versus no response after platinum-based chemotherapy. Progression-free survival (PFS and overall survival (OS were evaluated by pooled Cox proportional hazard ratios (HRs and 95% confidence intervals (CIs. We found that none of the XRCC1 Arg194Trp and Arg399Gln polymorphisms was significantly associated with tumor response. Stratified analysis by ethnicity or sensitivity analysis also showed that XRCC1 SNPs were not related with chemotherapy response. Patients with minor variant A allele were likely to have poorer 2-year survival rate than those with G/G genotype. However, in the group of 5-year follow up, there was no significant association between the A allele and OS yet. CONCLUSIONS/SIGNIFICANCE: There is no evidence to support the use of XRCC1 Arg194Trp and Arg399Gln polymorphisms as prognostic predictors of TR and PFS in gastric patients treated with platinum-based chemotherapy. The relationship between minor variant A allele and OS requires further verification.

  19. Significant association between ERCC2 and MTHR polymorphisms and breast cancer susceptibility in Moroccan population: genotype and haplotype analysis in a case-control study.

    Science.gov (United States)

    Hardi, Hanaa; Melki, Rahma; Boughaleb, Zouhour; El Harroudi, Tijani; Aissaoui, Souria; Boukhatem, Noureddine

    2018-03-15

    Genetic determinants of breast cancer (BC) remained largely unknown in the majority of Moroccan patients. The purpose of this study was to explore the association of ERCC2 and MTHFR polymorphisms with genetic susceptibility to breast cancer in Moroccan population. We genotyped ERCC2 polymorphisms (rs1799793 (G934A) and rs13181 (A2251C)) and MTHFR polymorphisms (rs1801133 (C677T) and rs1801131 (A1298C)) using TaqMan SNP Genotyping Assays. Genotypes were compared in 151 BC cases and 156 population-matched controls. Allelic, genotypic and haplotype associations with the risk and clinicopathological features of BC were assessed using logistic regression analyses. ERCC2-rs1799793-AA genotype was associated with high risk of BC compared to wild type genotype (recessive model: OR: 2.90, 95% CI: 1.34-6.26, p = 0.0069) even after Bonferroni correction (p < 0,0125). MTHFR rs1801133-TT genotype was associated with increased risk of BC (recessive model, OR: 2.49, 95% CI: 1.17-5.29, p = 0.017) but the association turned insignificant after Bonferroni correction. For the rest of SNPs, no statistical associations to BC risk were detected. Significant association with clinical features was detected for MTHFR-rs1801133-TC genotype with early age at diagnosis and familial BC. Following Bonferroni correction, only association with familial BC remained significant. MTHFR-rs1801131-CC genotype was associated with sporadic BC. ERCC2-rs1799793-AA genotype correlated with ER+ and PR+ breast cancer. ERCC2-rs13181-CA genotype was significantly associated large tumors (T ≥ 3) in BC patients. None of these associations passed Bonferroni correction. Haplotype analysis showed that ERCC2 A-C haplotype was significantly associated with increased BC risk (OR: 3.71, 95% CI: 1.7-8.12, p = 0.0002 and p = 0.0008 before and after Bonferroni correction, respectively) and positive expression of ER and PR in BC patients. ERCC2 G-C haplotype was correlated with PR negative and

  20. Allele and Genotype Distributions of DNA Repair Gene Polymorphisms in South Indian Healthy Population

    Directory of Open Access Journals (Sweden)

    Katiboina Srinivasa Rao

    2014-01-01

    Full Text Available Various DNA repair pathways protect the structural and chemical integrity of the human genome from environmental and endogenous threats. Polymorphisms of genes encoding the proteins involved in DNA repair have been found to be associated with cancer risk and chemotherapeutic response. In this study, we aim to establish the normative frequencies of DNA repair genes in South Indian healthy population and compare with HapMap populations. Genotyping was done on 128 healthy volunteers from South India, and the allele and genotype distributions were established. The minor allele frequency of Xeroderma pigmentosum group A ( XPA G23A, Excision repair cross-complementing 2 ( ERCC2 /Xeroderma pigmentosum group D ( XPD Lys751Gln, Xeroderma pigmentosum group G ( XPG His46His, XPG Asp1104His, and X-ray repair cross-complementing group 1 ( XRCC1 Arg399Gln polymorphisms were 49.2%, 36.3%, 48.0%, 23.0%, and 34.0% respectively. Ethnic variations were observed in the frequency distribution of these polymorphisms between the South Indians and other HapMap populations. The present work forms the groundwork for cancer association studies and biomarker identification for treatment response and prognosis.

  1. XRCC3 polymorphisms are associated with the risk of developing radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with intensity modulation radiated therapy.

    Science.gov (United States)

    Zou, Yan; Song, Tao; Yu, Wei; Zhao, Ruping; Wang, Yong; Xie, Ruifei; Chen, Tian; Wu, Bo; Wu, Shixiu

    2014-03-01

    The incidence of radiation-induced late xerostomia varies greatly in nasopharyngeal carcinoma patients treated with radiotherapy. The single-nucleotide polymorphisms in genes involved in DNA repair and fibroblast proliferation may be correlated with such variability. The purpose of this paper was to evaluate the association between the risk of developing radiation-induced late xerostomia and four genetic polymorphisms: TGFβ1 C-509T, TGFβ1 T869C, XRCC3 722C>T and ATM 5557G>A in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. The severity of late xerostomia was assessed using a patient self-reported validated xerostomia questionnaire. Polymerase chain reaction-ligation detection reaction methods were performed to determine individual genetic polymorphism. The development of radiation-induced xerostomia associated with genetic polymorphisms was modeled using Cox proportional hazards, accounting for equivalent uniform dose. A total of 43 (41.7%) patients experienced radiation-induced late xerostomia. Univariate Cox proportional hazard analyses showed a higher risk of late xerostomia for patients with XRCC3 722 TT/CT alleles. In multivariate analysis adjusted for clinical and dosimetric factors, XRCC3 722C>T polymorphisms remained a significant factor for higher risk of late xerostomia. To our knowledge, this is the first study that demonstrated an association between genetic polymorphisms and the risk of radiation-induced late xerostomia in nasopharyngeal carcinoma patients treated with Intensity Modulation Radiated Therapy. Our findings suggest that the polymorphisms in XRCC3 are significantly associated with the risk of developing radiation-induced late xerostomia.

  2. Susceptibility to Colorectal Cancer and Two Genetic Polymorphisms of XRCC4.

    Science.gov (United States)

    Emami, Naghmeh; Saadat, Iraj; Omidvari, Shahpour

    2015-09-01

    The X-ray complementing group 4 (XRCC4, OMIM: 194363) plays a key role in non-homologous end-joining DNA repair pathway in mammalian cells. This pathway is believed to help maintain genomic stability. In the present study, it is hypothesized that genetic polymorphisms in the NHEJ repair XRCC4 gene may be associated with an increased risk in developing colorectal cancer (CRC). We genotyped two polymorphisms of XRCC4, G-1394T (rs6869366) and intron 3 insertion/deletion (I/D; rs28360071) in 200 colorectal cancer patients as well as 256 healthy individuals, and evaluated their association with CRC. We found that in G-1394T polymorphism, neither the TG nor the GG genotypes (versus the TT genotype) were associated with the risk of developing CRC. The results of our study indicate that in comparison with the II genotype, ID and DD genotypes had no significant association with the risk of developing CRC. Subjects with TT genotype and positive family history in colorectal cancer were found to be at a much lower risk of developing CRC in comparison with the reference group (OR = 0.31, 95%CI: 0.11-0.85, P =  .023). It should be noted that participants having at least one G allele (TG+GG genotypes) were at a significantly higher risk to develop the disease compared with the reference group (OR = 9.10, 95%CI: 2.00-41.3, P = 0.004). In relation to I/D polymorphism, among participants, those with positive family history, either with ID (OR =  .78, 95%CI: 2.26-10.0, P < 0.001) or DD genotypes (OR = 5.73, 95%CI: 1.99-16.4, P = 0.001) had a significantly association with the disease. Among participants with a positive family history in CRC, the haplotype GD dramatically increased the risk of developing CRC (OR = 10.2, 95%CI: 2.28-46, P = 0.002). The results of this study indicate that G-1394T and I/D polymorphisms of XRCC4 among individuals with positive family history for colorectal cancer substantially increase the risk factor for developing colorectal cancers.

  3. Polymorphisms of XRCC4 are involved in reduced colorectal cancer risk in Chinese schizophrenia patients

    Directory of Open Access Journals (Sweden)

    Li Tao

    2010-10-01

    Full Text Available Abstract Background Genetic factors related to the regulation of apoptosis in schizophrenia patients may be involved in a reduced vulnerability to cancer. XRCC4 is one of the potential candidate genes associated with schizophrenia which might induce colorectal cancer resistance. Methods To examine the genetic association between colorectal cancer and schizophrenia, we analyzed five SNPs (rs6452526, rs2662238, rs963248, rs35268, rs2386275 covering ~205.7 kb in the region of XRCC4. Results We observed that two of the five genetic polymorphisms showed statistically significant differences between 312 colorectal cancer subjects without schizophrenia and 270 schizophrenia subjects (rs6452536, p = 0.004, OR 0.61, 95% CI 0.44-0.86; rs35268, p = 0.028, OR 1.54, 95% CI 1.05-2.26. Moreover, the haplotype which combined all five markers was the most significant, giving a global p = 0.0005. Conclusions Our data firstly indicate that XRCC4 may be a potential protective gene towards schizophrenia, conferring reduced susceptibility to colorectal cancer in the Han Chinese population.

  4. Prognostic significance of XRCC4 expression in hepatocellular carcinoma

    Science.gov (United States)

    Huang, Xiao-Ying; Yao, Jin-Guang; Wang, Chao; Wei, Zhong-Hong; Ma, Yun; Wu, Xue-Min; Luo, Chun-Ying; Xia, Qiang; Long, Xi-Dai

    2017-01-01

    Background Our previous investigations have shown that the variants of X-ray repair complementing 4 (XRCC4) may be involved in hepatocellular carcinoma (hepatocarcinoma) tumorigenesis. This study aimed to investigate the possible prognostic significance of XRCC4 expression for hepatocarcinoma patients and possible value for the selection of transarterial chemoembolization (TACE) treatment. Materials and Methods We conducted a hospital-based retrospective analysis (including 421 hepatocarcinoma cases) to analyze the effects of XRCC4 on hepatocarcinoma prognosis and TACE. The levels of XRCC4 expression were tested using immunohistochemistry. The sensitivity of cancer cells to anti-cancer drug doxorubicin was evaluated using the half-maximal inhibitory concentration (IC50). Results XRCC4 expression was significantly correlated with pathological features including tumor stage, liver cirrhosis, and micro-vessel density. XRCC4 expression was an independent prognostic factor of hepatocarcinoma, and TACE treatments had no effects on prognosis of hepatocarcinoma patients with high XRCC4 expression. More intriguingly, TACE improved the prognosis of hepatocarcinoma patients with low XRCC4 expression. Functionally, XRCC4 overexpression increased while XRCC4 knockdown reduced the IC50 of cancer cells to doxorubicin. Conclusions These results suggest that XRCC4 may be an independent prognostic factor for hepatocarcinoma patients, and that decreasing XRCC4 expression may be beneficial for post-operative adjuvant TACE treatment in hepatocarcinoma. PMID:29152133

  5. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Amie L. [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Joyce, Kellie [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Xie, Hong [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Department of Applied Medical Science, University of Southern Maine, 96 Falmouth Street, P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Falank, Carolyne [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, 96 Falmouth St., P.O. Box 9300, Portland, ME 04104-9300, United States of America (United States); and others

    2014-04-15

    Highlights: • The role of homologous recombination repair in DU-induced toxicity was examined. • Loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. • XRCC3 protects cell from DU-induced chromosome breaks and fusions. • XRCC3 plays a role in DU-induced chromosome fragmentation of the X chromosome. - Abstract: Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation.

  6. The impact of homologous recombination repair deficiency on depleted uranium clastogenicity in Chinese hamster ovary cells: XRCC3 protects cells from chromosome aberrations, but increases chromosome fragmentation

    International Nuclear Information System (INIS)

    Holmes, Amie L.; Joyce, Kellie; Xie, Hong; Falank, Carolyne

    2014-01-01

    Highlights: • The role of homologous recombination repair in DU-induced toxicity was examined. • Loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. • XRCC3 protects cell from DU-induced chromosome breaks and fusions. • XRCC3 plays a role in DU-induced chromosome fragmentation of the X chromosome. - Abstract: Depleted uranium (DU) is extensively used in both industry and military applications. The potential for civilian and military personnel exposure to DU is rising, but there are limited data on the potential health hazards of DU exposure. Previous laboratory research indicates DU is a potential carcinogen, but epidemiological studies remain inconclusive. DU is genotoxic, inducing DNA double strand breaks, chromosome damage and mutations, but the mechanisms of genotoxicity or repair pathways involved in protecting cells against DU-induced damage remain unknown. The purpose of this study was to investigate the effects of homologous recombination repair deficiency on DU-induced genotoxicity using RAD51D and XRCC3-deficient Chinese hamster ovary (CHO) cell lines. Cells deficient in XRCC3 (irs1SF) exhibited similar cytotoxicity after DU exposure compared to wild-type (AA8) and XRCC3-complemented (1SFwt8) cells, but DU induced more break-type and fusion-type lesions in XRCC3-deficient cells compared to wild-type and XRCC3-complemented cells. Surprisingly, loss of RAD51D did not affect DU-induced cytotoxicity or genotoxicity. DU induced selective X-chromosome fragmentation irrespective of RAD51D status, but loss of XRCC3 nearly eliminated fragmentation observed after DU exposure in wild-type and XRCC3-complemented cells. Thus, XRCC3, but not RAD51D, protects cells from DU-induced breaks and fusions and also plays a role in DU-induced chromosome fragmentation

  7. Radiation-induced XRCC4 association with chromatin DNA analyzed by biochemical fractionation

    International Nuclear Information System (INIS)

    Kamdar, R.P.; Matsumoto, Yoshihisa

    2010-01-01

    XRCC4, in association with DNA ligase IV, is thought to play a critical role in the ligation of two DNA ends in DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ) pathway. In the present study, we captured radiation-induced chromatin-recruitment of XRCC4 by biochemical fractionation using detergent Nonidet P-40. A subpopulation of XRCC4 changed into a form that is resistant to the extraction with 0.5% Nonidet P-40-containing buffer after irradiation. This form of XRCC4 was liberated by micrococcal nuclease treatment, indicating that it had been tethered to chromatin DNA. This chromatin-recruitment of XRCC4 could be seen immediately (<0.1 hr) after irradiation and remained up to 4 hr after 20 Gy irradiation. It was seen even after irradiation of small doses, id est (i.e.), 2 Gy, but the residence of XRCC4 on chromatin was very transient after 2 Gy irradiation, returning to near normal level in 0.2-0.5 hr after irradiation. The chromatin-bound XRCC4 represented only -1% of total XRCC4 molecules even after 20 Gy irradiation and the quantitative analysis using purified protein as the reference suggested that only a few XRCC4-DNA ligase IV complexes were recruited to each DNA end. We further show that the chromatin-recruitment of XRCC4 was not attenuated by wortmannin, an inhibitor of DNA-PK, or siRNA-mediated knockdown of the DNA-PK catalytic subunit (DNA-PKcs), indicating that this process does not require DNA-PKcs. These results would provide us with useful experimental tools and important insights to understand the DNA repair process through NHEJ pathway. (author)

  8. Assessment of ERCC1 and XPF Protein Expression Using Quantitative Immunohistochemistry in Nasopharyngeal Carcinoma Patients Undergoing Curative Intent Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jagdis, Amanda [Department of Internal Medicine, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (Canada); Phan, Tien [Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Faculty of Medicine, University of Calgary, Calgary, Alberta (Canada); Klimowicz, Alexander C. [Department of Oncology, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Faculty of Medicine, University of Calgary, Calgary, Alberta (Canada); Laskin, Janessa J. [Department of Medical Oncology, British Columbia Cancer Agency–Vancouver, Vancouver, British Columbia (Canada); Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (Canada); Lau, Harold Y. [Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Faculty of Medicine, University of Calgary, Calgary, Alberta (Canada); Petrillo, Stephanie K. [Functional Tissue Imaging Unit, Translational Research Laboratory, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Siever, Jodi E. [Department of Biostatistics, Public Health Innovation and Decision Support Population and Public Health, Alberta Health Services, Calgary, Alberta (Canada); Thomson, Thomas A. [Department of Pathology, British Columbia Cancer Agency–Vancouver, Vancouver, British Columbia (Canada); Faculty of Medicine, University of British Columbia, Vancouver, British Columbia (Canada); Magliocco, Anthony M. [Department of Pathology, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Faculty of Medicine, University of Calgary, Calgary, Alberta (Canada); Hao, Desirée, E-mail: Desiree.Hao@albertahealthservices.ab.ca [Department of Medical Oncology, Tom Baker Cancer Centre, Calgary, Alberta (Canada); Faculty of Medicine, University of Calgary, Calgary, Alberta (Canada)

    2013-04-01

    Purpose: We sought to evaluate the prognostic/predictive value of ERCC1 and XPF in patients with nonmetastatic nasopharyngeal carcinoma (NPC) treated with curative intent. Methods and Materials: ERCC1 and XPF protein expression was evaluated by immunofluorescence combined with automated quantitative analysis (AQUA) using the FL297 and 3F2 antibodies, respectively. ERCC1 and XPF protein expression levels were correlated with clinical outcomes. Results: Patient characteristics were as follows: mean age 52 years (range, 18-85 years), 67% male, 72% Karnofsky performance status (KPS) ≥90%, World Health Organization (WHO) type 1/2/3 = 12%/28%/60%, stage III/IV 65%. With a median follow-up time of 50 months (range, 2.9 to 120 months), the 5-year overall survival (OS) was 70.8%. Median standardized nuclear AQUA scores were used as cutpoints for ERCC1 (n=138) and XPF (n=130) protein expression. Agreement between dichotomized ERCC1 and XPF scores was high at 79.4% (kappa = 0.587, P<.001). Neither biomarker predicted locoregional recurrence, DFS, or OS after adjustment for age and KPS, irrespective of stratification by stage, WHO type, or treatment. Conclusions: Neither ERCC1 nor XPF, analyzed by quantitative immunohistochemistry using the FL297 and 3F2 antibodies, was prognostic or predictive in this cohort of NPC patients.

  9. Assessment of ERCC1 and XPF Protein Expression Using Quantitative Immunohistochemistry in Nasopharyngeal Carcinoma Patients Undergoing Curative Intent Treatment

    International Nuclear Information System (INIS)

    Jagdis, Amanda; Phan, Tien; Klimowicz, Alexander C.; Laskin, Janessa J.; Lau, Harold Y.; Petrillo, Stephanie K.; Siever, Jodi E.; Thomson, Thomas A.; Magliocco, Anthony M.; Hao, Desirée

    2013-01-01

    Purpose: We sought to evaluate the prognostic/predictive value of ERCC1 and XPF in patients with nonmetastatic nasopharyngeal carcinoma (NPC) treated with curative intent. Methods and Materials: ERCC1 and XPF protein expression was evaluated by immunofluorescence combined with automated quantitative analysis (AQUA) using the FL297 and 3F2 antibodies, respectively. ERCC1 and XPF protein expression levels were correlated with clinical outcomes. Results: Patient characteristics were as follows: mean age 52 years (range, 18-85 years), 67% male, 72% Karnofsky performance status (KPS) ≥90%, World Health Organization (WHO) type 1/2/3 = 12%/28%/60%, stage III/IV 65%. With a median follow-up time of 50 months (range, 2.9 to 120 months), the 5-year overall survival (OS) was 70.8%. Median standardized nuclear AQUA scores were used as cutpoints for ERCC1 (n=138) and XPF (n=130) protein expression. Agreement between dichotomized ERCC1 and XPF scores was high at 79.4% (kappa = 0.587, P<.001). Neither biomarker predicted locoregional recurrence, DFS, or OS after adjustment for age and KPS, irrespective of stratification by stage, WHO type, or treatment. Conclusions: Neither ERCC1 nor XPF, analyzed by quantitative immunohistochemistry using the FL297 and 3F2 antibodies, was prognostic or predictive in this cohort of NPC patients

  10. Detection and characterization of polymorphisms in XRCC DNA repair genes in human population

    International Nuclear Information System (INIS)

    Staynova, A.; Hadjidekova, V.; Savov, A.

    2004-01-01

    Human population is continuously exposed to low levels of ionizing radiation. The main contribution gives the exposure due to medical applications. Nevertheless, most of the damage induced is repaired shortly after exposure by cellular repair systems. The review is focused on the development and application of methods to estimate the character of polymorphisms in repair genes (XRCC1, APE1), involved in single strand breaks repair which is corresponding mainly to the repair of X-ray induced DNA damage. Since, DSB are major factor for chromosomal aberrations formation, the assays described in this review might be useful for the assessment of the radiation risk for human population. (authors)

  11. EXSPRESSION OF MDR-GENES AND MONORESISTANCE GENES IN NON-SMALL-CELL LUNG CANCER

    Directory of Open Access Journals (Sweden)

    E. L. Yumov

    2014-01-01

    Full Text Available We studied the expression of multidrug resistance genes (MDR and monoresistance genes in normal bronchial tissue and tumor tissue of the non-small cell lung cancer (NSCLC after neoadjuvant chemotherapy (NACT (vinorelbine-carboplatine. The study included 30 patients with NSCLC (Т2–4N0–3M0. Normal bronchial tissue, normal lung tissue and tumor tissue collected during surgery following neoadjuvant chemotherapy (NACT served as a material of the study. The expression levels of MDR genes (ABCB1, ABCB2, ABCC1, ABCC2, ABCС5, ABCG1, ABCG2, GSTP and MVP, and monoresistance genes (BRCA1, ERCC1, RRM1, TOP1, TOP2A, TUBB3 and TYMS were estimated by quantitative reverse transcriptase PCR (RT-qPCR. The expression levels of some MDR genes and monoresistance genes (АВСВ1, АВСВ2, ABCG1, ERCC1, GSTP1 and MVP were significantly higher in the bronchi than in tumor tissue. The expression of ABCG1, ABCG2 and ERCC1 genes was higher in patients with T1-2 cancer than in patients with T3-4 cancer. Patients with adenocarcinoma had higher expression of BRCA1, MVP and ABCB1 genes than patients with squamous cell lung cancer. A tendency towards reduction in the expression level of MDR-genes and monoresistance genes was observed in patients with partial tumor regression compared to that observed in patients with stable disease. These findings were consistent with the previous data on reduction in the MDR-gene expression after chemotherapy with a good response in breast cancer patients.

  12. The Predictive and Prognostic Significance of c-erb-B2, EGFR, PTEN, mTOR, PI3K, p27, and ERCC1 Expression in Hepatocellular Carcinoma

    Science.gov (United States)

    Bassullu, Nuray; Turkmen, Ilknur; Dayangac, Murat; Yagiz Korkmaz, Pinar; Yasar, Reyhan; Akyildiz, Murat; Yaprak, Onur; Tokat, Yaman; Yuzer, Yildiray; Bulbul Dogusoy, Gulen

    2012-01-01

    Background Hepatocellular carcinoma (HCC) is the fifth most common fatal cancer and an important healthcare problem worldwide. There are many studies describing the prognostic and predictive effects of epidermal growth factor receptor 2 (c-erb-B2) and epidermal growth factor receptor 1 (EGFR), transmembrane tyrosine kinases that influence cell growth and proliferation in many tumors. Objectives The current study aimed to investigate the expression levels of c-erb-B2, EGFR, PTEN, mTOR, PI3K, p27, and ERCC1 in hepatocellular carcinoma (HCC) and their correlation with other clinicopathologic features. Patients and Methods Fifty HCC cases were stained immunohistochemically with these markers. Correlations between the markers and clinicopathologic characteristics and survival rates were analyzed. Results No membranous c-erb-B2 staining was seen, whereas cytoplasmic positivity was present in 92% of HCC samples, membranous EGFR was observed in 40%, PI3K was found in all samples, and mTOR was seen in 30%, whereas reduced or absent PTEN expression was observed in 56% of samples and loss of p27 was seen in 92% of the cases. c-erb-B2 and mTOR overexpression, as well as reduced expression of p27, all correlated with multiple tumors (P = 0.041, P < 0.001, and P < 0.001, respectively). P27 loss, and mTOR and EGFR positivity were significantly correlated with AFP (P = 0.047, P = 0.004, and P = 0.008, respectively). Angiolymphatic invasion was more commonly seen in EGFR- and ERCC1-positive cases (P = 0.003 and P = 0.005). EGFR was also correlated with histological grade (P = 0.039). No significant correlations were found among PTEN , PI3K, and the clinicopathological parameters. Disease-free or overall survival rates showed significant differences among therapy modalities, AFP levels, angiolymphatic or lymph node invasions, and ERCC1 and p27 expression levels (P < 0.05). Conclusions c-erb-B2, EGFR, mTOR, ERCC1 overexpression levels, and loss of p27 may play roles in

  13. Relationship between XRCC1 polymorphism and acute complication of chemoradiation therapy in the patients with colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Chul; Choi, Sun Keun [Inha University College of Medicine, Incheon (Korea, Republic of); Hong, Yun Chul [Seoul National University College of Medicine, Seoul (Korea, Republic of)] (and others)

    2006-03-15

    It is well known from clinical experience that acute complications of chemoradiation therapy vary from patients to patients. However, there are no known factors to predict these acute complications before treatment starts. The human XRCC1 gene is known as a DNA base excision repair gene. We investigated the possibilities of XRCC1 gene polymorphisms as a predictor for the acute complications of chemoradiation therapy in colorectal cancer patients. From July 1997 to June 2003, 86 colorectal cancer patients (71 rectal cancer, 13 sigmoid colon cancer and 2 colon cancer patients) were treated with chemoradiation therapy at the Department of Radiation Oncology, Inha University Hospital. Twenty-two patients were in stage B, 50 were in stage C, 8 were in stage D and 6 patients were unresectable cases. External radiation therapy was delivered with 10MV X-ray at a 1.8 Gy fraction per day for a total dose of radiation of 30.6 {approx} 59.4 Gy (median: 54 Gy). All the patients received 5-FU based chemotherapy regimen. We analyzed the acute complications of upper and lower gastrointestinal tract based on the RTOG complication scale. The initial and lowest WBC and platelet count were recorded during both the RT period and the whole treatment period. Allelic variants of the XRCC1 gene at codons 194, 280 and 399 were analyzed in the lymphocyte DNA by performing PCR-RFLP. Statistical analyses were carried out with the SAS (version 6.12) statistical package. When all the variables were assessed on the multivariate analysis, recurrent disease revealed the factors that significantly correlated with upper gastrointestinal acute complications. Arg399Gln polymorphisms of the XRCC1 gene, the radiation dose and the frequencies of chemotherapy during radiation therapy were significantly correlated with lower gastrointestinal complications. Arg399Gln polymorphisms also affected the decrease of the WBC and platelet count during radiation therapy. Although the present sample size was too small

  14. Relationship between XRCC1 polymorphism and acute complication of chemoradiation therapy in the patients with colorectal cancer

    International Nuclear Information System (INIS)

    Kim, Woo Chul; Choi, Sun Keun; Hong, Yun Chul

    2006-01-01

    It is well known from clinical experience that acute complications of chemoradiation therapy vary from patients to patients. However, there are no known factors to predict these acute complications before treatment starts. The human XRCC1 gene is known as a DNA base excision repair gene. We investigated the possibilities of XRCC1 gene polymorphisms as a predictor for the acute complications of chemoradiation therapy in colorectal cancer patients. From July 1997 to June 2003, 86 colorectal cancer patients (71 rectal cancer, 13 sigmoid colon cancer and 2 colon cancer patients) were treated with chemoradiation therapy at the Department of Radiation Oncology, Inha University Hospital. Twenty-two patients were in stage B, 50 were in stage C, 8 were in stage D and 6 patients were unresectable cases. External radiation therapy was delivered with 10MV X-ray at a 1.8 Gy fraction per day for a total dose of radiation of 30.6 ∼ 59.4 Gy (median: 54 Gy). All the patients received 5-FU based chemotherapy regimen. We analyzed the acute complications of upper and lower gastrointestinal tract based on the RTOG complication scale. The initial and lowest WBC and platelet count were recorded during both the RT period and the whole treatment period. Allelic variants of the XRCC1 gene at codons 194, 280 and 399 were analyzed in the lymphocyte DNA by performing PCR-RFLP. Statistical analyses were carried out with the SAS (version 6.12) statistical package. When all the variables were assessed on the multivariate analysis, recurrent disease revealed the factors that significantly correlated with upper gastrointestinal acute complications. Arg399Gln polymorphisms of the XRCC1 gene, the radiation dose and the frequencies of chemotherapy during radiation therapy were significantly correlated with lower gastrointestinal complications. Arg399Gln polymorphisms also affected the decrease of the WBC and platelet count during radiation therapy. Although the present sample size was too small for

  15. Identification of DNA repair genes in the human genome

    International Nuclear Information System (INIS)

    Hoeijmakers, J.H.J.; van Duin, M.; Westerveld, A.; Yasui, A.; Bootsma, D.

    1986-01-01

    To identify human DNA repair genes we have transfected human genomic DNA ligated to a dominant marker to excision repair deficient xeroderma pigmentosum (XP) and CHO cells. This resulted in the cloning of a human gene, ERCC-1, that complements the defect of a UV- and mitomycin-C sensitive CHO mutant 43-3B. The ERCC-1 gene has a size of 15 kb, consists of 10 exons and is located in the region 19q13.2-q13.3. Its primary transcript is processed into two mRNAs by alternative splicing of an internal coding exon. One of these transcripts encodes a polypeptide of 297 aminoacids. A putative DNA binding protein domain and nuclear location signal could be identified. Significant AA-homology is found between ERCC-1 and the yeast excision repair gene RAD10. 58 references, 6 figures, 1 table

  16. Association studies of ERCC1 polymorphisms with lung cancer susceptibility: a systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Jinhong Zhu

    Full Text Available BACKGROUND: Excision repair cross-complimentary group 1 (ERCC1 is an essential component of the nucleotide excision repair system that is responsible for repairing damaged DNA. Functional genetic variations in the ERCC1 gene may alter DNA repair capacity and modulate cancer risk. The putative roles of ERCC1 gene polymorphisms in lung cancer susceptibility have been widely investigated. However, the results remain controversial. OBJECTIVES: An updated meta-analysis was conducted to explore whether lung cancer risk could be attributed to the following ERCC1 polymorphisms: rs11615 (T>C, rs3212986 (C>A, rs3212961 (A>C, rs3212948 (G>C, rs2298881 (C>A. METHODS: Several major databases (MEDLINE, EMBASE and Scopus and the Chinese Biomedical database were searched for eligible studies. Crude odds ratios (ORs with 95% confidence intervals (CIs were used to measure the strength of associations. RESULTS: Sixteen studies with 10,106 cases and 13,238 controls were included in this meta-analysis. Pooled ORs from 11 eligible studies (8,215 cases vs. 11,402 controls suggested a significant association of ERCC1 rs11615 with increased risk for lung cancer (homozygous: CC versus TT, OR = 1.24, 95% CI: 1.04-1.48, P = 0.02. However, such an association was disproportionately driven by a single study. Removal of that study led to null association. Moreover, initial analyses suggested that ERCC1 rs11615 exerts a more profound effect on the susceptibility of non-smokers to lung cancer than that of smokers. Moreover, no statistically significant association was found between remaining ERCC1 polymorphisms of interest and lung cancer risk, except for rs3212948 variation (heterozygous: CG vs.GG, OR = 0.78, 95% CI: 0.67-0.90, P = 0.001; dominant: CG/CC vs.GG, OR = 0.79, 95% CI: 0.69-0.91, P = 0.001. CONCLUSION: Overall, this meta-analysis suggests that ERCC1 rs3212948 G>C, but not others, is a lung cancer risk-associated polymorphism. Carefully

  17. Persistence of Repair Proteins at Unrepaired DNA Damage Distinguishes Diseases with ERCC2 (XPD) Mutations: Cancer-Prone Xeroderma Pigmentosum vs. Non-Cancer-Prone Trichothiodystrophy

    Science.gov (United States)

    Boyle, Jennifer; Ueda, Takahiro; Oh, Kyu-Seon; Imoto, Kyoko; Tamura, Deborah; Jagdeo, Jared; Khan, Sikandar G.; Nadem, Carine; DiGiovanna, John J.; Kraemer, Kenneth H.

    2012-01-01

    Patients with xeroderma pigmentosum (XP) have a 1,000-fold increase in ultraviolet (UV)-induced skin cancers while trichothiodystrophy (TTD) patients, despite mutations in the same genes, ERCC2 (XPD) or ERCC3 (XPB), are cancer-free. Unlike XP cells, TTD cells have a nearly normal rate of removal of UV-induced 6-4 photoproducts (6-4PP) in their DNA and low levels of the basal transcription factor, TFIIH. We examined seven XP, TTD, and XP/TTD complex patients and identified mutations in the XPD gene. We discovered large differences in nucleotide excision repair (NER) protein recruitment to sites of localized UV damage in TTD cells compared to XP or normal cells. XPC protein was rapidly localized in all cells. XPC was redistributed in TTD, and normal cells by 3 hr postirradiation, but remained localized in XP cells at 24-hr postirradiation. In XP cells recruitment of other NER proteins (XPB, XPD, XPG, XPA, and XPF) was also delayed and persisted at 24 hr (p < 0.001). In TTD cells with defects in the XPD, XPB, or GTF2H5 (TTDA) genes, in contrast, recruitment of these NER proteins was reduced compared to normals at early time points (p < 0.001) and remained low at 24 hr postirradiation. These data indicate that in XP persistence of NER proteins at sites of unrepaired DNA damage is associated with greatly increased skin cancer risk possibly by blockage of translesion DNA synthesis. In contrast, in TTD, low levels of unstable TFIIH proteins do not accumulate at sites of unrepaired photoproducts and may permit normal translesion DNA synthesis without increased skin cancer. PMID:18470933

  18. Exploring the deleterious SNPs in XRCC4 gene using computational approach and studying their association with breast cancer in the population of West India.

    Science.gov (United States)

    Singh, Preety K; Mistry, Kinnari N; Chiramana, Haritha; Rank, Dharamshi N; Joshi, Chaitanya G

    2018-05-20

    Non-homologous end joining (NHEJ) pathway has pivotal role in repair of double-strand DNA breaks that may lead to carcinogenesis. XRCC4 is one of the essential proteins of this pathway and single-nucleotide polymorphisms (SNPs) of this gene are reported to be associated with cancer risks. In our study, we first used computational approaches to predict the damaging variants of XRCC4 gene. Tools predicted rs79561451 (S110P) nsSNP as the most deleterious SNP. Along with this SNP, we analysed other two SNPs (rs3734091 and rs6869366) to study their association with breast cancer in population of West India. Variant rs3734091 was found to be significantly associated with breast cancer while rs6869366 variant did not show any association. These SNPs may influence the susceptibility of individuals to breast cancer in this population. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Association between XRCC1 polymorphism 399 G->A and glioma among Caucasians: a systematic review and meta-analysis

    Directory of Open Access Journals (Sweden)

    Jacobs Daniel I

    2012-10-01

    Full Text Available Abstract Background The x-ray cross complementing group 1 gene (XRCC1 is crucial to proper repair of DNA damage such as single-strand DNA breaks. A non-synonymous polymorphism in XRCC1, 399 G → A, has been shown to reduce effectiveness of such DNA repair and has been associated with the risk of certain cancers. The known risk for glioma from high dose ionizing radiation makes associations between this polymorphism and glioma of particular interest. Methods A systematic literature review and meta-analysis was conducted to explore the association between XRCC1 399 G → A and glioma. Subgroup analyses by grade, gender, genotyping method, country in which study was conducted, and study size were conducted when data were available and validity of the results were assessed by influence analyses and exploration of potential publication bias. Results Six studies were eligible for meta-analysis including data on 2,362 Caucasian glioma cases and 3,085 Caucasian controls. Pooled analysis yielded a significant association between the variant of interest and risk of glioma (OR = 1.17, 95% CI: 1.05-1.30 which was found to be disproportionately driven by a single study. Exclusion of this study, in an influence analysis, produced no statistically significant evidence of association with glioma (OR = 1.10, 95% CI: 0.98-1.23, and no evidence of publication bias. Conclusions This meta-analysis does not suggest a major role of the XRCC1 399 G → A polymorphism in influencing risk of glioma among Caucasians. Future studies should report data separately for glioma subtypes to permit stratified analyses for Grade III and Grade IV glioma and examine other polymorphisms in this gene.

  20. ERCC2 polymorphisms and radiation-induced adverse effects on normal tissue: systematic review with meta-analysis and trial sequential analysis

    International Nuclear Information System (INIS)

    Song, Yu-Zhe; Duan, Mei-Na; Zhang, Yu-Yu; Shi, Wei-Yan; Xia, Cheng-Cheng; Dong, Li-Hua

    2015-01-01

    The relationship between ERCC2 polymorphisms and the risk of radiotoxicity remains inconclusive. The aim of our study is to systematically evaluate the association between ERCC2 polymorphisms and the risk of radiotoxicity. Publications were identified through a search of the PubMed and Web of Science databases up to August 15, 2015. The pooled odds ratios (ORs) with corresponding 95 % confidence intervals (CIs) were calculated to evaluate the association between ERCC2 polymorphisms and radiotoxicity. Trial sequential analysis (TSA) and power calculation were performed to evaluate the type 1 and type 2 errors. Eleven studies involving 2584 patients were ultimately included in this meta-analysis. Conventional meta-analysis identified a significant association between ERCC2 rs13181 polymorphism and radiotoxicity (OR = 0.71, 95 % CI: 0.55-0.93, P = 0.01), but this association failed to get the confirmation of TSA. The minor allele of rs13181 polymorphism may confer a protect effect against radiotoxicity. To confirm this correlation at the level of OR = 0.71, an overall information size of approximate 2800 patients were needed. The online version of this article (doi:10.1186/s13014-015-0558-6) contains supplementary material, which is available to authorized users

  1. Letter regarding Li JS et al. entitled "ERCC polymorphisms and prognosis of patients with osteosarcoma".

    Science.gov (United States)

    Jian, Yuekui; Tian, Xiaobin; Li, Bo; Zhou, Zhuojia; Wu, Xinglin

    2015-05-01

    With great interest, we read the article "ERCC polymorphisms and prognosis of patients with osteosarcoma" (by Li JS et al.), which has reached important conclusions about the relationship between ERCC polymorphisms and osteosarcoma prognosis. Through quantitative analysis, the meta-analysis showed that ERCC2 Lys751Gln (ORGG vs. AA = 0.40 (95%CI = 0.1-0.86), P heterogeneity = 0.502; I (2) = 0 %) and ERCC5 His46His (ORCC vs. TT = 0.37 (95%CI = 0.15-0.93), P heterogeneity = 0.569; I (2) = 0 %) polymorphisms might influence the prognosis of patients with osteosarcoma [1]. The meta-analysis results are encouraging. Nevertheless, some deficiencies still existed that we would like to raise.

  2. Radiotherapy modulates expression of EGFR, ERCC1 and p53 in cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, V.H. de; Melo, A.C. de; Nogueira-Rodrigues, A.; Pimenta-Inada, H.K.; Alves, F.G.; Moralez, G.; Thiago, L.S.; Ferreira, C.G.; Sternberg, C., E-mail: diretoriaexecutiva@sboc.org.br [Instituto Nacional de Câncer (INCA), Rio de Janeiro, RJ (Brazil); Meira, D.D. [Universidade Federal do Espírito Santo (UFES), Vitória, ES (Brazil); Pires, A.C. [Fonte Medicina Diagnóstica, Niterói, RJ (Brazil)

    2018-02-01

    Cervical cancer is a public health problem and the molecular mechanisms underlying radioresistance are still poorly understood. Here, we evaluated the modulation of key molecules involved in cell proliferation, cell cycle and DNA repair in cervical cancer cell lines (CASKI and C33A) and in malignant tissues biopsied from 10 patients before and after radiotherapy. The expression patterns of epidermal growth factor receptor (EGFR), excision repair cross-complementation group 1 (ERCC1) and p53 were evaluated in cancer cell lines by quantitative PCR and western blotting, and in human malignant tissues by immunohistochemistry. The mutation status of TP53 gene was evaluated by direct sequencing. Among cell lines, absent or weak modulations of EGFR, ERCC1 and p53 were observed after exposure to 1.8 Gy. Conversely, increased expressions of p53 (5/10 patients; P=0.0239), ERCC1 (5/10 patients; P=0.0294) and EGFR (4/10 patients; P=0.1773) were observed in malignant tissues after radiotherapy with the same radiation dose. TP53 mutations were found only in one patient. Here we show that a single dose of radiotherapy induced EGFR, ERCC1 and p53 expression in malignant tissues from cervical cancer patients but not in cancer cell lines, highlighting the gap between in vitro and in vivo experimental models. Studies on larger patient cohorts are needed to allow an interpretation that an up regulation of p53, EGFR and ERCC1 may be part of a radioresistance mechanism. (author)

  3. The interaction effects of pri-let-7a-1 rs10739971 with PGC and ERCC6 gene polymorphisms in gastric cancer and atrophic gastritis.

    Directory of Open Access Journals (Sweden)

    Qian Xu

    Full Text Available BACKGROUND: The aim of this study was to investigate the interaction effects of pri-let-7a-1 rs10739971 with pepsinogen C (PGC and excision repair cross complementing group 6 (ERCC6 gene polymorphisms and its association with the risks of gastric cancer and atrophic gastritis. We hoped to identify miRNA polymorphism or a combination of several polymorphisms that could serve as biomarkers for predicting the risk of gastric cancer and its precancerous diseases. METHODS: Sequenom MassARRAY platform method was used to detect polymorphisms of pri-let-7a-1 rs10739971 G → A, PGC rs4711690 C → G, PGC rs6458238 G → A, PGC rs9471643 G → C, and ERCC6 rs1917799 in 471 gastric cancer patients, 645 atrophic gastritis patients and 717 controls. RESULTS: An interaction effect of pri-let-7a-1 rs10739971 polymorphism with ERCC6 rs1917799 polymorphism was observed for the risk of gastric cancer (P interaction = 0.026; and interaction effects of pri-let-7a-1 rs10739971 polymorphism with PGC rs6458238 polymorphism (P interaction = 0.012 and PGC rs9471643 polymorphism (P interaction = 0.039 were observed for the risk of atrophic gastritis. CONCLUSION: The combination of pri-let-7a-1 rs10739971 polymorphism and ERCC6 and PGC polymorphisms could provide a greater prediction potential than a single polymorphism on its own. Large-scale studies and molecular mechanism research are needed to confirm our findings.

  4. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B

    2017-06-13

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  5. RPA activates the XPF‐ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks

    KAUST Repository

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El‐Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-01-01

    During replication‐coupled DNA interstrand crosslink (ICL) repair, the XPF‐ERCC1 endonuclease is required for the incisions that release, or “unhook”, ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL. Here, we report that while purified XPF‐ERCC1 incises simple ICL‐containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single‐stranded DNA (ssDNA)‐binding replication protein A (RPA) selectively restores XPF‐ERCC1 endonuclease activity on this structure. The 5′–3′ exonuclease SNM1A can load from the XPF‐ERCC1‐RPA‐induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF‐ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.

  6. Modulation of DNA repair capacity and mRNA expression levels of XRCC1, hOGG1 and XPC genes in styrene-exposed workers

    International Nuclear Information System (INIS)

    Hanova, Monika; Stetina, Rudolf; Vodickova, Ludmila; Vaclavikova, Radka; Hlavac, Pavel; Smerhovsky, Zdenek; Naccarati, Alessio; Polakova, Veronika; Soucek, Pavel; Kuricova, Miroslava; Manini, Paola; Kumar, Rajiv; Hemminki, Kari; Vodicka, Pavel

    2010-01-01

    Decreased levels of single-strand breaks in DNA (SSBs), reflecting DNA damage, have previously been observed with increased styrene exposure in contrast to a dose-dependent increase in the base-excision repair capacity. To clarify further the above aspects, we have investigated the associations between SSBs, micronuclei, DNA repair capacity and mRNA expression in XRCC1, hOGG1 and XPC genes on 71 styrene-exposed and 51 control individuals. Styrene concentrations at workplace and in blood characterized occupational exposure. The workers were divided into low (below 50 mg/m 3 ) and high (above 50 mg/m 3 ) styrene exposure groups. DNA damage and DNA repair capacity were analyzed in peripheral blood lymphocytes by Comet assay. The mRNA expression levels were determined by qPCR. A significant negative correlation was observed between SSBs and styrene concentration at workplace (R = - 0.38, p = 0.001); SSBs were also significantly higher in men (p = 0.001). The capacity to repair irradiation-induced DNA damage was the highest in the low exposure group (1.34 ± 1.00 SSB/10 9 Da), followed by high exposure group (0.72 ± 0.81 SSB/10 9 Da) and controls (0.65 ± 0.82 SSB/10 9 Da). The mRNA expression levels of XRCC1, hOGG1 and XPC negatively correlated with styrene concentrations in blood and at workplace (p < 0.001) and positively with SSBs (p < 0.001). Micronuclei were not affected by styrene exposure, but were higher in older persons and in women (p < 0.001). In this study, we did not confirm previous findings on an increased DNA repair response to styrene-induced genotoxicity. However, negative correlations of SSBs and mRNA expression levels of XRCC1, hOGG1 and XPC with styrene exposure warrant further highly-targeted study.

  7. Mislocalization of XPF-ERCC1 nuclease contributes to reduced DNA repair in XP-F patients.

    Directory of Open Access Journals (Sweden)

    Anwaar Ahmad

    2010-03-01

    Full Text Available Xeroderma pigmentosum (XP is caused by defects in the nucleotide excision repair (NER pathway. NER removes helix-distorting DNA lesions, such as UV-induced photodimers, from the genome. Patients suffering from XP exhibit exquisite sun sensitivity, high incidence of skin cancer, and in some cases neurodegeneration. The severity of XP varies tremendously depending upon which NER gene is mutated and how severely the mutation affects DNA repair capacity. XPF-ERCC1 is a structure-specific endonuclease essential for incising the damaged strand of DNA in NER. Missense mutations in XPF can result not only in XP, but also XPF-ERCC1 (XFE progeroid syndrome, a disease of accelerated aging. In an attempt to determine how mutations in XPF can lead to such diverse symptoms, the effects of a progeria-causing mutation (XPF(R153P were compared to an XP-causing mutation (XPF(R799W in vitro and in vivo. Recombinant XPF harboring either mutation was purified in a complex with ERCC1 and tested for its ability to incise a stem-loop structure in vitro. Both mutant complexes nicked the substrate indicating that neither mutation obviates catalytic activity of the nuclease. Surprisingly, differential immunostaining and fractionation of cells from an XFE progeroid patient revealed that XPF-ERCC1 is abundant in the cytoplasm. This was confirmed by fluorescent detection of XPF(R153P-YFP expressed in Xpf mutant cells. In addition, microinjection of XPF(R153P-ERCC1 into the nucleus of XPF-deficient human cells restored nucleotide excision repair of UV-induced DNA damage. Intriguingly, in all XPF mutant cell lines examined, XPF-ERCC1 was detected in the cytoplasm of a fraction of cells. This demonstrates that at least part of the DNA repair defect and symptoms associated with mutations in XPF are due to mislocalization of XPF-ERCC1 into the cytoplasm of cells, likely due to protein misfolding. Analysis of these patient cells therefore reveals a novel mechanism to potentially

  8. ERCC1 as a biomarker for bladder cancer patients likely to benefit from adjuvant chemotherapy

    International Nuclear Information System (INIS)

    Sun, Jong-Mu; Choi, Han Yong; Lim, Ho Yeong; Sung, Ji-Youn; Park, Se Hoon; Kwon, Ghee Young; Jeong, Byong Chang; Seo, Seong Il; Jeon, Seong Soo; Lee, Hyun Moo; Jo, Jisuk

    2012-01-01

    The role of adjuvant chemotherapy and the value of molecular biomarkers in bladder cancer have not been determined. We aimed to assess the predictive and prognostic values of excision repair cross-complementation 1 (ERCC1) in identifying appropriate patients who may potentially benefit from adjuvant chemotherapy for bladder cancer. A retrospective analysis was performed on 93 patients with completely resected transitional cell carcinoma of the bladder. ERCC1 expression was assessed by immunohistochemistry. ERCC1 expression was analyzed in 57 patients treated with adjuvant gemcitabine plus cisplatin chemotherapy and 36 who were not treated. Among 93 patients, ERCC1 expression was positive in 54 (58.1%) and negative in 39 (41.9%). ERCC1 positivity was significantly associated with longer survival (adjusted hazard ratio for death, 0.12, 95% confidence interval [CI] 0.014-0.99; P = 0.049) in the group without adjuvant chemotherapy while ERCC1 positivity was associated with shorter survival among patients who have received adjuvant chemotherapy (adjusted hazard ratio for death, 2.64; 95% CI 1.01-6.85; P = 0.047). Therefore, clinical benefit from adjuvant chemotherapy was associated with ERCC1 negativity as measured by overall survival (test for interaction, P = 0.034) and by disease-free survival (test for interaction, P = 0.20). Among patients with completely resected transitional cell carcinoma of the bladder, those with ERCC1-negative tumors seemed to benefit more from adjuvant gemcitabine plus cisplatin chemotherapy than those with ERCC1-positive tumors. Future prospective, randomized studies are warranted to confirm our findings

  9. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks.

    Science.gov (United States)

    Abdullah, Ummi B; McGouran, Joanna F; Brolih, Sanja; Ptchelkine, Denis; El-Sagheer, Afaf H; Brown, Tom; McHugh, Peter J

    2017-07-14

    During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo . © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  10. Genetic polymorphisms of DNA double-strand break repair pathway genes and glioma susceptibility

    International Nuclear Information System (INIS)

    Zhao, Peng; Zou, Peng; Zhao, Lin; Yan, Wei; Kang, Chunsheng; Jiang, Tao; You, Yongping

    2013-01-01

    Genetic variations in DNA double-strand break repair genes can influence the ability of a cell to repair damaged DNA and alter an individual’s susceptibility to cancer. We studied whether polymorphisms in DNA double-strand break repair genes are associated with an increased risk of glioma development. We genotyped 10 potentially functional single nucleotide polymorphisms (SNPs) in 7 DNA double-strand break repair pathway genes (XRCC3, BRCA2, RAG1, XRCC5, LIG4, XRCC4 and ATM) in a case–control study including 384 glioma patients and 384 cancer-free controls in a Chinese Han population. Genotypes were determined using the OpenArray platform. In the single-locus analysis there was a significant association between gliomas and the LIG4 rs1805388 (Ex2 +54C>T, Thr9Ile) TT genotype (adjusted OR, 3.27; 95% CI, 1.87-5.71), as well as the TC genotype (adjusted OR, 1.62; 95% CI, 1.20-2.18). We also found that the homozygous variant genotype (GG) of XRCC4 rs1805377 (IVS7-1A>G, splice-site) was associated with a significantly increased risk of gliomas (OR, 1.77; 95% CI, 1.12-2.80). Interestingly, we detected a significant additive and multiplicative interaction effect between the LIG4 rs1805388 and XRCC4 rs1805377 polymorphisms with an increasing risk of gliomas. When we stratified our analysis by smoking status, LIG4 rs1805388 was associated with an increased glioma risk among smokers. These results indicate for the first time that LIG4 rs1805388 and XRCC4 rs1805377, alone or in combination, are associated with a risk of gliomas

  11. File list: Oth.Oth.50.ERCC6.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.Oth.50.ERCC6.AllCell hg19 TFs and others ERCC6 Others SRX338979,SRX352046,SRX33...8978,SRX147681 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.Oth.50.ERCC6.AllCell.bed ...

  12. File list: Oth.ALL.10.ERCC6.AllCell [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.ALL.10.ERCC6.AllCell hg19 TFs and others ERCC6 All cell types SRX338979,SRX3520...46,SRX147681,SRX338978 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Oth.ALL.10.ERCC6.AllCell.bed ...

  13. DNA repair gene polymorphisms in relation to chromosome aberration frequencies in retired radiation workers

    International Nuclear Information System (INIS)

    Wilding, Craig S.; Relton, Caroline L.; Rees, Gwen S.; Tarone, Robert E.; Whitehouse, Caroline A.; Tawn, E. Janet

    2005-01-01

    Polymorphic variation in DNA repair genes was examined in a group of retired workers from the British Nuclear Fuels plc facility at Sellafield in relation to previously determined translocation frequencies in peripheral blood lymphocytes. Variation at seven polymorphisms in four genes involved in the base excision repair (XRCC1 R194W, R399Q and a [AC] n microsatellite in the 3' UTR) and double strand break repair (XRCC3 T241M and a [AC] n microsatellite in intron 3 of XRCC3, XRCC4 I134T, and a GACTAn microsatellite located 120kb 5' of XRCC5) pathways was determined for 291 retired radiation workers who had received cumulative occupational external radiation doses of between 0 and 1873mSv. When the interaction between radiation dose and each DNA repair gene polymorphism was examined in relation to translocation frequency there was no evidence for any of the polymorphisms studied influencing the response to occupational exposure. A positive interaction observed between genotype (individuals with at least one allele >=20 repeat units) at a microsatellite locus in the XRCC3 gene and smoking status should be interpreted cautiously because interactions were investigated for seven polymorphisms and two exposures. Nonetheless, further research is warranted to examine whether this DNA repair gene variant might be associated with a sub-optimal repair response to smoking-induced DNA damage and hence an increased frequency of translocations

  14. Resistance of hypoxic cells to ionizing radiation is influenced by homologous recombination status

    International Nuclear Information System (INIS)

    Sprong, Debbie; Janssen, Hilde L.; Vens, Conchita; Begg, Adrian C.

    2006-01-01

    Purpose: To determine the role of DNA repair in hypoxic radioresistance. Methods and Materials: Chinese hamster cell lines with mutations in homologous recombination (XRCC2, XRCC3, BRAC2, RAD51C) or nonhomologous end-joining (DNA-PKcs) genes were irradiated under normoxic (20% oxygen) and hypoxic (<0.1% oxygen) conditions, and the oxygen enhancement ratio (OER) was calculated. In addition, Fanconi anemia fibroblasts (complementation groups C and G) were compared with fibroblasts from nonsyndrome patients. RAD51 foci were studied using immunofluorescence. Results: All hamster cell lines deficient in homologous recombination showed a decrease in OER (1.5-2.0 vs. 2.6-3.0 for wild-types). In contrast, the OER for the DNA-PKcs-deficient line was comparable to wild-type controls. The two Fanconi anemia cell strains also showed a significant reduction in OER. The OER for RAD51 foci formation at late times after irradiation was considerably lower than that for survival in wild-type cells. Conclusion: Homologous recombination plays an important role in determining hypoxic cell radiosensitivity. Lower OERs have also been reported in cells deficient in XPF and ERCC1, which, similar to homologous recombination genes, are known to play a role in cross-link repair. Because Fanconi anemia cells are also sensitive to cross-linking agents, this strengthens the notion that the capacity to repair cross-links determines hypoxic radiosensitivity

  15. The significance of tumoral ERCC1 status in patients with locally advanced cervical cancer treated with chemoradiation therapy: a multicenter clinicopathologic analysis.

    Science.gov (United States)

    Doll, Corinne M; Aquino-Parsons, Christina; Pintilie, Melania; Klimowicz, Alexander C; Petrillo, Stephanie K; Milosevic, Michael; Craighead, Peter S; Clarke, Blaise; Lees-Miller, Susan P; Fyles, Anthony W; Magliocco, Anthony M

    2013-03-01

    ERCC1 (excision repair cross-complementation group 1) expression has been shown to be a molecular marker of cisplatin resistance in many tumor sites, but has not been well studied in cervical cancer patients. The purpose of this study was to measure tumoral ERCC1 in patients with locally advanced cervical cancer treated with chemoradiation therapy (CRT) in a large multicenter cohort, and to correlate expression with clinical outcome parameters. A total of 264 patients with locally advanced cervical cancer, treated with curative-intent radical CRT from 3 major Canadian cancer centers were evaluated. Pretreatment formalin-fixed, paraffin-embedded tumor specimens were retrieved, and tissue microarrays were constructed. Tumoral ERCC1 (FL297 antibody) was measured using AQUA (R) technology. Statistical analysis was performed to determine the significance of clinical factors and ERCC1 status with progression-free survival (PFS) and overall survival (OS) at 5 years. The majority of patients had International Federation of Gynecology and Obstetrics (FIGO) stage II disease (n=119, 45%); median tumor size was 5 cm. OS was associated with tumor size (HR 1.16, P=.018), pretreatment hemoglobin status (HR 2.33, P=.00027), and FIGO stage. In addition, tumoral ERCC1 status (nuclear to cytoplasmic ratio) was associated with PFS (HR 2.33 [1.05-5.18], P=.038) and OS (HR 3.13 [1.27-7.71], P=.013). ERCC1 status was not significant on multivariate analysis when the model was adjusted for the clinical factors: for PFS (HR 1.49 [0.61-3.6], P=.38); for OS (HR 2.42 [0.94-6.24] P=.067). In this large multicenter cohort of locally advanced cervical cancer patients treated with radical CRT, stage, tumor size, and pretreatment hemoglobin status were significantly associated with PFS and OS. ERCC1 status appears to have prognostic impact on univariate analysis in these patients, but was not independently associated with outcome on multivariate analysis. Copyright © 2013. Published by Elsevier

  16. The Significance of Tumoral ERCC1 Status in Patients With Locally Advanced Cervical Cancer Treated With Chemoradiation Therapy: A Multicenter Clinicopathologic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Doll, Corinne M., E-mail: Corinne.Doll@albertahealthservices.ca [Department of Oncology, University of Calgary, Calgary, AB (Canada); Aquino-Parsons, Christina [Department of Radiation Oncology, University of British Columbia, Vancouver, BC (Canada); Pintilie, Melania [Department of Biostatistics, Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, Toronto, ON (Canada); Klimowicz, Alexander C. [Department of Oncology, University of Calgary, Calgary, AB (Canada); Petrillo, Stephanie K. [Department of Pathology, University of Calgary, Calgary, AB (Canada); Milosevic, Michael [Department of Radiation Oncology, University Health Network, University of Toronto, Toronto, ON (Canada); Craighead, Peter S. [Department of Oncology, University of Calgary, Calgary, AB (Canada); Clarke, Blaise [Department of Pathology, University of Toronto, Toronto, ON (Canada); Lees-Miller, Susan P. [Departments of Biochemistry and Molecular Biology, and Oncology, University of Calgary, Calgary, AB (Canada); Fyles, Anthony W. [Department of Radiation Oncology, University Health Network, University of Toronto, Toronto, ON (Canada); Magliocco, Anthony M. [Department of Pathology, Lee Moffitt Cancer Center, Tampa, Florida (United States)

    2013-03-01

    Purpose: ERCC1 (excision repair cross-complementation group 1) expression has been shown to be a molecular marker of cisplatin resistance in many tumor sites, but has not been well studied in cervical cancer patients. The purpose of this study was to measure tumoral ERCC1 in patients with locally advanced cervical cancer treated with chemoradiation therapy (CRT) in a large multicenter cohort, and to correlate expression with clinical outcome parameters. Methods and Materials: A total of 264 patients with locally advanced cervical cancer, treated with curative-intent radical CRT from 3 major Canadian cancer centers were evaluated. Pretreatment formalin-fixed, paraffin-embedded tumor specimens were retrieved, and tissue microarrays were constructed. Tumoral ERCC1 (FL297 antibody) was measured using AQUA (R) technology. Statistical analysis was performed to determine the significance of clinical factors and ERCC1 status with progression-free survival (PFS) and overall survival (OS) at 5 years. Results: The majority of patients had International Federation of Gynecology and Obstetrics (FIGO) stage II disease (n=119, 45%); median tumor size was 5 cm. OS was associated with tumor size (HR 1.16, P=.018), pretreatment hemoglobin status (HR 2.33, P=.00027), and FIGO stage. In addition, tumoral ERCC1 status (nuclear to cytoplasmic ratio) was associated with PFS (HR 2.33 [1.05-5.18], P=.038) and OS (HR 3.13 [1.27-7.71], P=.013). ERCC1 status was not significant on multivariate analysis when the model was adjusted for the clinical factors: for PFS (HR 1.49 [0.61-3.6], P=.38); for OS (HR 2.42 [0.94-6.24] P=.067). Conclusions: In this large multicenter cohort of locally advanced cervical cancer patients treated with radical CRT, stage, tumor size, and pretreatment hemoglobin status were significantly associated with PFS and OS. ERCC1 status appears to have prognostic impact on univariate analysis in these patients, but was not independently associated with outcome on

  17. The Significance of Tumoral ERCC1 Status in Patients With Locally Advanced Cervical Cancer Treated With Chemoradiation Therapy: A Multicenter Clinicopathologic Analysis

    International Nuclear Information System (INIS)

    Doll, Corinne M.; Aquino-Parsons, Christina; Pintilie, Melania; Klimowicz, Alexander C.; Petrillo, Stephanie K.; Milosevic, Michael; Craighead, Peter S.; Clarke, Blaise; Lees-Miller, Susan P.; Fyles, Anthony W.; Magliocco, Anthony M.

    2013-01-01

    Purpose: ERCC1 (excision repair cross-complementation group 1) expression has been shown to be a molecular marker of cisplatin resistance in many tumor sites, but has not been well studied in cervical cancer patients. The purpose of this study was to measure tumoral ERCC1 in patients with locally advanced cervical cancer treated with chemoradiation therapy (CRT) in a large multicenter cohort, and to correlate expression with clinical outcome parameters. Methods and Materials: A total of 264 patients with locally advanced cervical cancer, treated with curative-intent radical CRT from 3 major Canadian cancer centers were evaluated. Pretreatment formalin-fixed, paraffin-embedded tumor specimens were retrieved, and tissue microarrays were constructed. Tumoral ERCC1 (FL297 antibody) was measured using AQUA (R) technology. Statistical analysis was performed to determine the significance of clinical factors and ERCC1 status with progression-free survival (PFS) and overall survival (OS) at 5 years. Results: The majority of patients had International Federation of Gynecology and Obstetrics (FIGO) stage II disease (n=119, 45%); median tumor size was 5 cm. OS was associated with tumor size (HR 1.16, P=.018), pretreatment hemoglobin status (HR 2.33, P=.00027), and FIGO stage. In addition, tumoral ERCC1 status (nuclear to cytoplasmic ratio) was associated with PFS (HR 2.33 [1.05-5.18], P=.038) and OS (HR 3.13 [1.27-7.71], P=.013). ERCC1 status was not significant on multivariate analysis when the model was adjusted for the clinical factors: for PFS (HR 1.49 [0.61-3.6], P=.38); for OS (HR 2.42 [0.94-6.24] P=.067). Conclusions: In this large multicenter cohort of locally advanced cervical cancer patients treated with radical CRT, stage, tumor size, and pretreatment hemoglobin status were significantly associated with PFS and OS. ERCC1 status appears to have prognostic impact on univariate analysis in these patients, but was not independently associated with outcome on

  18. The polymorphism and haplotypes of XRCC1 and survival of non-small-cell lung cancer after radiotherapy

    International Nuclear Information System (INIS)

    Yoon, Sang Min; Hong, Yun-Chul; Park, Heon Joo; Lee, Jong-Eun; Kim, Sang Yoon; Kim, Jong Hoon; Lee, Sang-Wook; Park, So-Yeon; Lee, Jung Shin; Choi, Eun Kyung

    2005-01-01

    Purpose: The X-ray repair cross-complementing Group 1 (XRCC1) protein is involved mainly in the base excision repair of the DNA repair process. This study examined the association of 3 polymorphisms (codon 194, 280, and 399) of XRCC1 and lung cancer in terms of whether or not these polymorphisms have an effect on the survival of lung cancer patients who have received radiotherapy. Methods and Materials: Between January 2000 and April 2004, 229 lung cancer patients with non-small-cell lung cancer in Stages I-III were enrolled. Genotyping was performed by single base primer extension assay using the SNP-IT Kit with genomic DNA samples from all patients. The haplotype of the XRCC1 polymorphisms was estimated by PHASE version 2.1. Results: The patients consisted of 191 (83.4%) males and 38 (16.6%) females with a median age of 62 (range, 26-88 years). Sixty percent of the patients were included in Stage I-IIIa. The median progression-free and overall survival was 13 months and 16 months, respectively. The XRCC1 codon 194, histology, and stage were shown to be significant predictors of the progression-free survival. The 6 haplotypes among the XRCC1 polymorphisms (194, 280, and 399) were estimated by PHASE v.2.1. The patients with haplotype pairs other than the homozygous TGG haplotype pairs survived significantly longer (p = 0.04). Conclusions: Polymorphisms of XRCC1 have an effect on the survival of lung cancer patients treated with radiotherapy, and this effect seems to be more significant after the haplotype pairs are considered

  19. Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)

    DEFF Research Database (Denmark)

    Osorio, A; Milne, R L; Pita, G

    2009-01-01

    Background:In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers.Methods:We have geno...

  20. Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)

    NARCIS (Netherlands)

    Osorio, A.; Milne, R. L.; Pita, G.; Peterlongo, P.; Heikkinen, T.; Simard, J.; Chenevix-Trench, G.; Spurdle, A. B.; Beesley, J.; Chen, X.; Healey, S.; Neuhausen, S. L.; Ding, Y. C.; Couch, F. J.; Wang, X.; Lindor, N.; Manoukian, S.; Barile, M.; Viel, A.; Tizzoni, L.; Szabo, C. I.; Foretova, L.; Zikan, M.; Claes, K.; Greene, M. H.; Mai, P.; Rennert, G.; Lejbkowicz, F.; Barnett-Griness, O.; Andrulis, I. L.; Ozcelik, H.; Weerasooriya, N.; Gerdes, A.-M.; Thomassen, M.; Cruger, D. G.; Caligo, M. A.; Friedman, E.; Kaufman, B.; Laitman, Y.; Cohen, S.; Kontorovich, T.; Gershoni-Baruch, R.; Dagan, E.; Jernström, H.; Askmalm, M. S.; Arver, B.; Malmer, B.; Domchek, S. M.; Nathanson, K. L.; Brunet, J.; Ramón Y Cajal, T.; Yannoukakos, D.; Hamann, U.; Hogervorst, F. B. L.; Verhoef, S.; Gómez García, E. B.; Wijnen, J. T.; van den Ouweland, A.; Easton, D. F.; Peock, S.; Cook, M.; Oliver, C. T.; Frost, D.; Luccarini, C.; Evans, D. G.; Lalloo, F.; Eeles, R.; Pichert, G.; Cook, J.; Hodgson, S.; Morrison, P. J.; Douglas, F.; Godwin, A. K.; Sinilnikova, O. M.; Barjhoux, L.; Stoppa-Lyonnet, D.; Moncoutier, V.; Giraud, S.; Cassini, C.; Olivier-Faivre, L.; Révillion, F.; Peyrat, J.-P.; Muller, D.; Fricker, J.-P.; Lynch, H. T.; John, E. M.; Buys, S.; Daly, M.; Hopper, J. L.; Terry, M. B.; Miron, A.; Yassin, Y.; Goldgar, D.; Singer, C. F.; Gschwantler-Kaulich, D.; Pfeiler, G.; Spiess, A.-C.; Hansen, Thomas V. O.; Johannsson, O. T.; Kirchhoff, T.; Offit, K.; Kosarin, K.; Piedmonte, M.; Rodriguez, G. C.; Wakeley, K.; Boggess, J. F.; Basil, J.; Schwartz, P. E.; Blank, S. V.; Toland, A. E.; Montagna, M.; Casella, C.; Imyanitov, E. N.; Allavena, A.; Schmutzler, R. K.; Versmold, B.; Engel, C.; Meindl, A.; Ditsch, N.; Arnold, N.; Niederacher, D.; Deissler, H.; Fiebig, B.; Varon-Mateeva, R.; Schaefer, D.; Froster, U. G.; Caldes, T.; de la Hoya, M.; McGuffog, L.; Antoniou, A. C.; Nevanlinna, H.; Radice, P.; Benítez, J.; Simard, Jacques; Durocher, Francine; Laframboise, Rachel; Plante, Marie; Bridge, Peter; Parboosingh, Jilian; Chiquette, Jocelyne; Lesperance, Bernard; Karlsson, Per; Nordling, Margareta; Bergman, Annika; Einbeigi, Zakaria; Stenmark-Askmalm, Marie; Liedgren, Sigrun; Borg, Ake; Loman, Niklas; Olsson, Hakan; Kristoffersson, Ulf; Jernstrom, Helena; Harbst, Katja; Henriksson, Karin; Lindblom, Annika; Arver, Brita; von Wachenfeldt, Anna; Liljegren, Annelie; Barbany-Bustinza, Gisela; Rantala, Johanna; Malmer, Beatrice; Stattin, Eva-Lena; Emanuelsson, Monica; Ehrencrona, Hans; Brandell, Richard Rosenquist; Dahl, Niklas; Hogervorst, Frans; Verhoef, Senno; Pijpe, Anouk; van 't Veer, Laura; van Leeuwen, Flora; Rookus, Matti; Collée, Margriet; van den Ouweland, Ans; Kriege, Mieke; Schutte, Mieke; Hooning, Maartje; Seynaeve, Caroline; Tollenaar, Rob; van Asperen, Christi; Wijnen, Juul; Vreeswijk, Maaike; Devilee, Peter; Hoogerbrugge, Nicoline; Ligtenberg, Marjolijn; Ausems, Margreet; van der Luijt, Rob; Aalfs, Cora; van Os, Theo; Meijers-Heijboer, Hanne; Gille, Hans; Gomez-Garcia, Encarna; Blok, Rien; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Miedzybrodzka, Zosia; Gregory, Helen; Morrison, Patrick; Cole, Trevor; McKeown, Carole; Taylor, Amy; Donaldson, Alan; Paterson, Joan; Murray, Alexandra; Rogers, Mark; McCann, Emma; Kennedy, John; Barton, David; Porteous, Mary; Brewer, Carole; Kivuva, Emma; Searle, Anne; Goodman, Selina; Davidson, Rosemarie; Murday, Murday; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Izatt, Louise; Pichert, Gabriella; Langman, Caroline; Dorkins, Huw; Barwell, Julian; Chu, Carol; Bishop, Tim; Miller, Julie; Ellis, Ian; Evans, D. Gareth; Lalloo, Fiona; Holt, Felicity; Male, Alison; Robinson, Anne; Gardiner, Carol; Douglas, Fiona; Claber, Oonagh; Walker, Lisa; Durell, Sarah; Eeles, Ros; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancrof, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Mitra, Anita; Wiggins, Jennifer; Castro, Elena; Cook, Jackie; Quarrell, Oliver; Bardsley, Cathryn; Hodgson, Shirley; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Eccles, Diana; Lucassen, Anneke; Crawford, Gillian; Tyler, Emma; McBride, Donna; Sinilnikova, Olga; Barjhoux, Laure; Giraud, Sophie; Léone, Mélanie; Mazoyer, Sylvie; Stoppa-Lyonnet, Dominique; Gauthier-Villars, Marion; Houdayer, Claude; Moncoutier, Virginie; Belotti, Muriel; de Pauw, Antoine; Bressac-de-Paillerets, Brigitte; Remenieras, Audrey; Byrde, Véronique; Caron, Olivier; Lenoir, Gilbert; Bignon, Yves-Jean; Uhrhammer, Nancy; Lasset, Christine; Bonadona, Valérie; Hardouin, Agnès; Berthet, Pascaline; Bourdon, Violaine; Eisinger, François; Coulet, Florence; Colas, Chrystelle; Soubrier, Florent; Coupier, Isabelle; Peyrat, Jean-Philippe; Fournier, Joëlle; Révillion, Françoise; Vennin, Philippe; Adenis, Claude; Rouleau, Etienne; Lidereau, Rosette; Demange, Liliane; Nogues, Catherine; Muller, Danièle; Fricker, Jean-Pierre; Longy, Michel; Sevenet, Nicolas; Toulas, Christine; Guimbaud, Rosine; Gladieff, Laurence; Feillel, Viviane; Leroux, Dominique; Dreyfus, Hélène; Rebischung, Christine; Cassini, Cécile; Olivier-Faivre, Laurence; Prieur, Fabienne; Ferrer, Sandra Fert; Frénay, Marc; Lynch, Henry T.

    2009-01-01

    In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. We have genotyped rs744154 in

  1. SNPs in genes implicated in radiation response are associated with radiotoxicity and evoke roles as predictive and prognostic biomarkers

    International Nuclear Information System (INIS)

    Alsbeih, Ghazi; El-Sebaie, Medhat; Al-Harbi, Najla; Al-Hadyan, Khaled; Shoukri, Mohamed; Al-Rajhi, Nasser

    2013-01-01

    Biomarkers are needed to individualize cancer radiation treatment. Therefore, we have investigated the association between various risk factors, including single nucleotide polymorphisms (SNPs) in candidate genes and late complications to radiotherapy in our nasopharyngeal cancer patients. A cohort of 155 patients was included. Normal tissue fibrosis was scored using RTOG/EORTC grading system. A total of 45 SNPs in 11 candidate genes (ATM, XRCC1, XRCC3, XRCC4, XRCC5, PRKDC, LIG4, TP53, HDM2, CDKN1A, TGFB1) were genotyped by direct genomic DNA sequencing. Patients with severe fibrosis (cases, G3-4, n = 48) were compared to controls (G0-2, n = 107). Univariate analysis showed significant association (P < 0.05) with radiation complications for 6 SNPs (ATM G/A rs1801516, HDM2 promoter T/G rs2279744 and T/A rs1196333, XRCC1 G/A rs25487, XRCC5 T/C rs1051677 and TGFB1 C/T rs1800469). In addition, Kaplan-Meier analyses have also highlighted significant association between genotypes and length of patients’ follow-up after radiotherapy. Multivariate logistic regression has further sustained these results suggesting predictive and prognostic roles of SNPs. Univariate and multivariate analysis suggest that radiation toxicity in radiotherapy patients are associated with certain SNPs, in genes including HDM2 promoter studied for the 1st time. These results support the use of SNPs as genetic predictive markers for clinical radiosensitivity and evoke a prognostic role for length of patients’ follow-up after radiotherapy

  2. Evaluation of the frequency of polymorphisms in XRCC1 (Arg399Gln) and XPD (Lys751Gln) genes related to the genome stability maintenance in individuals of the resident population from Monte Alegre, PA/Brazil municipality; Avaliacao da frequencia de polimorfismos nos genes XRCC1 (Arg399Gln) e XPD (Lys751Gln) relacionados a manutencao da estabilidade do genoma em individuos da populacao residente no municipio de Monte Alegre, PA

    Energy Technology Data Exchange (ETDEWEB)

    Duarte, Isabelle Magliano

    2010-07-01

    The human exposure to ionizing radiation coming from natural sources is an inherent feature of human life on Earth. Ionizing radiation is a known genotoxic agent, which can affect biological molecules, causing DNA damage and genomic instability. The cellular system of DNA repair plays an important role in maintaining genomic stability by repairing DNA damage caused by genotoxic agents. However, genes related to DNA repair may have their role committed when presenting a certain polymorphism. This study intended to analyze the frequency of single nucleotide polymorphisms (SNPs) in genes of DNA repair XRCC1 (Arg39-9Gln) and XPD (Lys751Gln) in a: population of the city of Monte Alegre, that resides in an area of high exposure to natural radioactivity. Samples of saliva were collected from individuals of the population of Monte Alegre, in which 40 samples were of male and 46 female. Through the use of RFLP (length polymorphism restriction fragment) the frequency of homozygous genotypes and / or heterozygous was determined for polymorphic genes. The XRCC1 gene had 65.4% of the presence of the allele 399Gln and XPD gene had 32.9% of the 751Gln allele. These values are similar to those found in previous studies for the XPD gene, whereas XRCC1 showed a frequency much higher than described in the literature. The. influence of these polymorphisms, which are involved in DNA repair and consequent genotoxicity induced by radiation depends on dose and exposure factors such as smoking, statistically a factor in public health surveillance in the region. This study gathered information and molecular epidemiology for risk assessment of cancer in the population of Monte Alegre. (author)

  3. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair

    Directory of Open Access Journals (Sweden)

    Silvia Sterpone

    2010-01-01

    Full Text Available It is well known that ionizing radiation (IR can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER. In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  4. Influence of XRCC1 Genetic Polymorphisms on Ionizing Radiation-Induced DNA Damage and Repair.

    Science.gov (United States)

    Sterpone, Silvia; Cozzi, Renata

    2010-07-25

    It is well known that ionizing radiation (IR) can damage DNA through a direct action, producing single- and double-strand breaks on DNA double helix, as well as an indirect effect by generating oxygen reactive species in the cells. Mammals have evolved several and distinct DNA repair pathways in order to maintain genomic stability and avoid tumour cell transformation. This review reports important data showing a huge interindividual variability on sensitivity to IR and in susceptibility to developing cancer; this variability is principally represented by genetic polymorphisms, that is, DNA repair gene polymorphisms. In particular we have focussed on single nucleotide polymorphisms (SNPs) of XRCC1, a gene that encodes for a scaffold protein involved basically in Base Excision Repair (BER). In this paper we have reported and presented recent studies that show an influence of XRCC1 variants on DNA repair capacity and susceptibility to breast cancer.

  5. ERCC1 and BRCA1 mRNA expression levels in metastatic malignant effusions is associated with chemosensitivity to cisplatin and/or docetaxel

    Directory of Open Access Journals (Sweden)

    Wang Tingting

    2008-04-01

    Full Text Available Abstract Background One of the major challenges in currently chemotherapeutic theme is lacking effective biomarkers for drug response and sensitivity. Our current study focus on two promising biomarkers, ERCC1 (excision repair cross-complementing group 1 and BRCA1 (breast cancer susceptibility gene 1. To investigate their potential role in serving as biomarkers for drug sensitivity in cancer patients with metastases, we statistically measure the mRNA expression level of ERCC1 and BRCA1 in tumor cells isolated from malignant effusions and correlate them with cisplatin and/or docetaxel chemosensitivity. Methods Real-time quantitative PCR is used to analysis related genes expression in forty-six malignant effusions prospectively collected from non-small cell lung cancer (NSCLC, gastric and gynecology cancer patients. Viable tumor cells obtained from malignant effusions are tested for their sensitivity to cisplatin and docetaxel using ATP-TCA assay. Results ERCC1 expression level is negatively correlated with the sensitivity to cisplatin in NSCLC patients (P = 0.001. In NSCLC and gastric group, BRCA1 expression level is negatively correlated with the sensitivity to cisplatin (NSCLC: P = 0.014; gastric: P = 0.002 while positively correlated with sensitivity to docetaxel (NSCLC: P = 0.008; gastric: P = 0.032. A significant interaction is found between ERCC1 and BRCA1 mRNA expressions on sensitivity to cisplatin (P = 0.010, n = 45. Conclusion Our results demonstrate that ERCC1 and BRCA1 mRNA expression levels are correlated with in vitro chemosensitivity to cisplatin and/or docetaxel in malignant effusions of NSCLC and gastric cancer patients. And combination of ERCC1 and BRCA1 may have a better role on predicting the sensitivity to cisplatin than the single one is considered.

  6. XRCC1 Polymorphism Associated With Late Toxicity After Radiation Therapy in Breast Cancer Patients

    Energy Technology Data Exchange (ETDEWEB)

    Seibold, Petra; Behrens, Sabine [Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg (Germany); Schmezer, Peter [Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg (Germany); Helmbold, Irmgard [Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg (Germany); Barnett, Gillian; Coles, Charlotte [Department of Oncology, Oncology Centre, Cambridge University Hospital NHS Foundation Trust, United Kingdom (UK) (United Kingdom); Yarnold, John [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, London (United Kingdom); Talbot, Christopher J. [Department of Genetics, University of Leicester, Leicester (United Kingdom); Imai, Takashi [Advanced Radiation Biology Research Program, National Institute of Radiological Sciences, Chiba (Japan); Azria, David [Department of Radiation Oncology and Medical Physics, I.C.M. – Institut regional du Cancer Montpellier, Montpellier (France); Koch, C. Anne [Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario (Canada); Dunning, Alison M. [Centre for Cancer Genetic Epidemiology, University of Cambridge, Strangeways Research Laboratory, Cambridge (United Kingdom); Burnet, Neil [Department of Oncology, Oncology Centre, Cambridge University Hospital NHS Foundation Trust, University of Cambridge, Cambridge (United Kingdom); Bliss, Judith M. [The Institute of Cancer Research, Clinical Trials and Statistics Unit, Sutton (United Kingdom); Symonds, R. Paul; Rattay, Tim [Department of Cancer Studies and Molecular Medicine, University of Leicester, Leicester (United Kingdom); Suga, Tomo [Advanced Radiation Biology Research Program, National Institute of Radiological Sciences, Chiba (Japan); Kerns, Sarah L. [Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NH (United States); and others

    2015-08-01

    Purpose: To identify single-nucleotide polymorphisms (SNPs) in oxidative stress–related genes associated with risk of late toxicities in breast cancer patients receiving radiation therapy. Methods and Materials: Using a 2-stage design, 305 SNPs in 59 candidate genes were investigated in the discovery phase in 753 breast cancer patients from 2 prospective cohorts from Germany. The 10 most promising SNPs in 4 genes were evaluated in the replication phase in up to 1883 breast cancer patients from 6 cohorts identified through the Radiogenomics Consortium. Outcomes of interest were late skin toxicity and fibrosis of the breast, as well as an overall toxicity score (Standardized Total Average Toxicity). Multivariable logistic and linear regression models were used to assess associations between SNPs and late toxicity. A meta-analysis approach was used to summarize evidence. Results: The association of a genetic variant in the base excision repair gene XRCC1, rs2682585, with normal tissue late radiation toxicity was replicated in all tested studies. In the combined analysis of discovery and replication cohorts, carrying the rare allele was associated with a significantly lower risk of skin toxicities (multivariate odds ratio 0.77, 95% confidence interval 0.61-0.96, P=.02) and a decrease in Standardized Total Average Toxicity scores (−0.08, 95% confidence interval −0.15 to −0.02, P=.016). Conclusions: Using a stage design with replication, we identified a variant allele in the base excision repair gene XRCC1 that could be used in combination with additional variants for developing a test to predict late toxicities after radiation therapy in breast cancer patients.

  7. XRCC1 Polymorphism Associated With Late Toxicity After Radiation Therapy in Breast Cancer Patients

    International Nuclear Information System (INIS)

    Seibold, Petra; Behrens, Sabine; Schmezer, Peter; Helmbold, Irmgard; Barnett, Gillian; Coles, Charlotte; Yarnold, John; Talbot, Christopher J.; Imai, Takashi; Azria, David; Koch, C. Anne; Dunning, Alison M.; Burnet, Neil; Bliss, Judith M.; Symonds, R. Paul; Rattay, Tim; Suga, Tomo; Kerns, Sarah L.

    2015-01-01

    Purpose: To identify single-nucleotide polymorphisms (SNPs) in oxidative stress–related genes associated with risk of late toxicities in breast cancer patients receiving radiation therapy. Methods and Materials: Using a 2-stage design, 305 SNPs in 59 candidate genes were investigated in the discovery phase in 753 breast cancer patients from 2 prospective cohorts from Germany. The 10 most promising SNPs in 4 genes were evaluated in the replication phase in up to 1883 breast cancer patients from 6 cohorts identified through the Radiogenomics Consortium. Outcomes of interest were late skin toxicity and fibrosis of the breast, as well as an overall toxicity score (Standardized Total Average Toxicity). Multivariable logistic and linear regression models were used to assess associations between SNPs and late toxicity. A meta-analysis approach was used to summarize evidence. Results: The association of a genetic variant in the base excision repair gene XRCC1, rs2682585, with normal tissue late radiation toxicity was replicated in all tested studies. In the combined analysis of discovery and replication cohorts, carrying the rare allele was associated with a significantly lower risk of skin toxicities (multivariate odds ratio 0.77, 95% confidence interval 0.61-0.96, P=.02) and a decrease in Standardized Total Average Toxicity scores (−0.08, 95% confidence interval −0.15 to −0.02, P=.016). Conclusions: Using a stage design with replication, we identified a variant allele in the base excision repair gene XRCC1 that could be used in combination with additional variants for developing a test to predict late toxicities after radiation therapy in breast cancer patients

  8. Low ERCC1 mRNA and protein expression are associated with worse survival in cervical cancer patients treated with radiation alone

    International Nuclear Information System (INIS)

    Doll, Corinne M.; Prystajecky, Michael; Eliasziw, Misha; Klimowicz, Alexander C.; Petrillo, Stephanie K.; Craighead, Peter S.; Hao, Desiree; Diaz, Roman; Lees-Miller, Susan P.; Magliocco, Anthony M.

    2010-01-01

    Purpose: To evaluate the association of excision repair cross-complementation group 1 (ERCC1) expression, using both mRNA and protein expression analysis, with clinical outcome in cervical cancer patients treated with radical radiation therapy (RT). Experimental design: Patients (n = 186) with locally advanced cervical cancer, treated with radical RT alone from a single institution were evaluated. Pre-treatment FFPE biopsy specimens were retrieved from 112 patients. ERCC1 mRNA level was determined by real-time PCR, and ERCC1 protein expression (FL297, 8F1) was measured using quantitative immunohistochemistry (AQUA (registered) ). The association of ERCC1 status with local response, 10-year disease-free (DFS) and overall survival (OS) was analyzed. Results: ERCC1 protein expression levels using both FL297 and 8F1 antibodies were determined for 112 patients; mRNA analysis was additionally performed in 32 patients. Clinical and outcome factors were comparable between the training and validation sets. Low ERCC1 mRNA expression status was associated with worse OS (17.9% vs 50.1%, p = 0.046). ERCC1 protein expression using the FL297 antibody, but not the 8F1 antibody, was significantly associated with both OS (p = 0.002) and DFS (p = 0.010). After adjusting for pre-treatment hemoglobin in a multivariate analysis, ERCC1 FL297 expression status remained statistically significant for OS [HR 1.9 (1.1-3.3), p = 0.031]. Conclusions: Pre-treatment tumoral ERCC1 mRNA and protein expression, using the FL297 antibody, are predictive factors for survival in cervical cancer patients treated with RT, with ERCC1 FL297 expression independently associated with survival. These results identify a subset of patients who may derive the greatest benefit from the addition of cisplatin chemotherapy.

  9. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Eun-Ah [Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr [Department of Biochemistry and Molecular Biology, Cancer Research Center, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma}-ray irradiation. From

  10. A lung cancer risk classifier comprising genome maintenance genes measured in normal bronchial epithelial cells.

    Science.gov (United States)

    Yeo, Jiyoun; Crawford, Erin L; Zhang, Xiaolu; Khuder, Sadik; Chen, Tian; Levin, Albert; Blomquist, Thomas M; Willey, James C

    2017-05-02

    Annual low dose CT (LDCT) screening of individuals at high demographic risk reduces lung cancer mortality by more than 20%. However, subjects selected for screening based on demographic criteria typically have less than a 10% lifetime risk for lung cancer. Thus, there is need for a biomarker that better stratifies subjects for LDCT screening. Toward this goal, we previously reported a lung cancer risk test (LCRT) biomarker comprising 14 genome-maintenance (GM) pathway genes measured in normal bronchial epithelial cells (NBEC) that accurately classified cancer (CA) from non-cancer (NC) subjects. The primary goal of the studies reported here was to optimize the LCRT biomarker for high specificity and ease of clinical implementation. Targeted competitive multiplex PCR amplicon libraries were prepared for next generation sequencing (NGS) analysis of transcript abundance at 68 sites among 33 GM target genes in NBEC specimens collected from a retrospective cohort of 120 subjects, including 61 CA cases and 59 NC controls. Genes were selected for analysis based on contribution to the previously reported LCRT biomarker and/or prior evidence for association with lung cancer risk. Linear discriminant analysis was used to identify the most accurate classifier suitable to stratify subjects for screening. After cross-validation, a model comprising expression values from 12 genes (CDKN1A, E2F1, ERCC1, ERCC4, ERCC5, GPX1, GSTP1, KEAP1, RB1, TP53, TP63, and XRCC1) and demographic factors age, gender, and pack-years smoking, had Receiver Operator Characteristic area under the curve (ROC AUC) of 0.975 (95% CI: 0.96-0.99). The overall classification accuracy was 93% (95% CI 88%-98%) with sensitivity 93.1%, specificity 92.9%, positive predictive value 93.1% and negative predictive value 93%. The ROC AUC for this classifier was significantly better (p < 0.0001) than the best model comprising demographic features alone. The LCRT biomarker reported here displayed high accuracy and ease

  11. Influence of SNP Polymorphisms in DNA Repair Genes on the Level of Persistent Damage in Human Lymphocytes After Exposure to 2 Gy of Ionising Radiation

    International Nuclear Information System (INIS)

    Milic, M.; Rozgaj, R.; Kasuba, V.; Kubelka, D.; Angelini, S.; Hrelia, P.

    2011-01-01

    Variation in cell response to ionising radiation could be result of changes in gene expression and/or polymorphisms of DNA repair genes. The aim of the study was to estimate the DNA damage level in human lymphocytes after exposure to 2 Gy of ionising radiation. Medical workers occupationally exposed to low doses of ionising radiation (N = 20) and matched controls (N 20) were genotyped for polymorphic hOGG1, XRCC1, APE1, XPD10, XPD23, XRCC3, PARP1 and MGMT genes. Micronucleus (MN) test was used for the estimation of DNA damage before and after radiation. Incidence of MN in irradiated samples positively correlated with age and negatively with polymorphic variants of XPD23. Significant difference was observed between irradiated homozygotes (HO) and heterozygotes (HE). HO and HE APE1 differed in MN before exposure. HO and polymorphic variants of XPD10 differed in MN after exposure. Gender showed different MN in the exposed group after exposure. Age correlated positively with MN after exposure, working probation and received dose. Multiple regression analysis revealed connection between polymorphic variants of APE1 and XRCC3 with MN before exposure. These results confirm the value of micronucleus assay in DNA damage estimation and suggest possible use of polymorphic genes in monitoring of individuals professionaly exposed to ionising radiation. (author)

  12. Effect of APE1 T2197G (Asp148Glu Polymorphism on APE1, XRCC1, PARP1 and OGG1 Expression in Patients with Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Juliana C. Santos

    2014-09-01

    Full Text Available It has been hypothesized that genetic variation in base excision repair (BER might modify colorectal adenoma risk. Thus, we evaluated the influence of APE1 T2197G (Asp148Glu polymorphism on APE1, XRCC1, PARP1 and OGG1 expression in normal and tumor samples from patients with colorectal cancer. The results indicate a downregulation of OGG1 and an upregulation of XRCC1 expression in tumor tissue. Regarding the anatomical location of APE1, OGG1 and PARP-1, a decrease in gene expression was observed among patients with cancer in the rectum. In patients with or without some degree of tumor invasion, a significant downregulation in OGG1 was observed in tumor tissue. Interestingly, when taking into account the tumor stage, patients with more advanced grades (III and IV showed a significant repression for APE1, OGG1 and PARP-1. XRCC1 expression levels were significantly enhanced in tumor samples and were correlated with all clinical and histopathological data. Concerning the polymorphism T2197G, GG genotype carriers exhibited a significantly reduced expression of genes of the BER repair system (APE1, XRCC1 and PARP1. In summary, our data show that patients with colorectal cancer present expression changes in several BER genes, suggesting a role for APE1, XRCC1, PARP1 and OGG1 and APE1 polymorphism in colorectal carcinogenesis.

  13. Supplementation with Lactobacillus plantarum WCFS1 prevents Decline of Mucus Barrier in Colon of Accelerated Aging Ercc1-/Δ7 Mice

    Directory of Open Access Journals (Sweden)

    Adriaan A Van Beek

    2016-10-01

    Full Text Available Although it is clear that probiotics improve intestinal barrier function, little is known about the effects of probiotics on the aging intestine. We investigated effects of 10-wk bacterial supplementation of Lactobacillus plantarum WCFS1, Lactobacillus casei BL23, or Bifidobacterium breve DSM20213 on gut barrier and immunity in 16-week-old accelerated aging Ercc1-/Δ7 mice, which have a median lifespan of ~20wk, and their wild-type littermates. The colonic barrier in Ercc1-/Δ7 mice was characterized by a thin (<10µm mucus layer. L. plantarum prevented this decline in mucus integrity in Ercc1-/Δ7 mice, whereas B. breve exacerbated it. Bacterial supplementations affected the expression of immune-related genes, including Toll-like receptor 4. Regulatory T cell frequencies were increased in the mesenteric lymph nodes of L. plantarum- and L. casei-treated Ercc1-/Δ7 mice. L. plantarum- and L. casei-treated Ercc1-/Δ7 mice showed increased specific antibody production in a T cell-dependent immune response in vivo. By contrast, the effects of bacterial supplementation on wild-type control mice were negligible. Thus, supplementation with L. plantarum – but not with L. casei and B. breve – prevented the decline in the mucus barrier in Ercc1-/Δ7 mice. Our data indicate that age is an important factor influencing beneficial or detrimental effects of candidate probiotics. These findings also highlight the need for caution in translating beneficial effects of probiotics observed in young animals or humans to the elderly.

  14. Correlation analysis and prognostic impact of 18F-FDG PET and excision repair cross-complementation group 1 (ERCC-1) expression in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Jeong, Yong Hyu; Lee, Choong Kun; Jo, Kwan Hyeong; Hwang, Sang Hyun; Cha, Jong Tae; Lee, Jeong Won; Yun, Mi Jin; Cho, Arthur

    2015-01-01

    The aim of this study was to determine the relationship between [ 18 ]-2-fluoro-2-deoxy-D-glucose (FDG) uptake and excision repair cross-complementation group 1 (ERCC-1) expression and to evaluate the prognostic effect of these two factors in resectable non-small cell lung cancer (NSCLC) patients. We retrospectively reviewed 212 patients with resectable NSCLC who underwent FDG positron emission tomography/computed tomography (PET/CT) scan for cancer staging and ERCC-1 expression analysis between January 2008 to December 2011. All patients were then followed-up for survival analysis. Semiquantitative evaluation of ERCC-1 was performed with the H-scoring system and was correlated with maximum standardized uptake value (SUV max ) of NSCLC. Univariate and multivariate analyses were performed to evaluate for FDG uptake and ERCC-1 expression predicting overall survival. In 212 patients (139 male, median age 68 ± 9.11), 112 patients had ERCC-positive tumors and 100 patients had ERCC-negative tumors. There was no significant difference in SUV max between ERCC-1-positive tumors (8.02 ±5.40) and ERCC-1-negative tumors (7.57 ± 6.56, p = 0.584). All patients were followed-up for a median of 40.5 months (95 % confidence interval [CI], 38.5–42.2 months). Univariate analysis and multivariate analysis for all patients showed that both ERCC-1 expression (hazard ratio [HR], 2.78; 95 % CI, 1.20–6.47) and FDG uptake (HR, 4.50; 95 % CI, 2.07–9.77) independently predicted overall survival. We have found no statistical correlation between FDG uptake and ERCC-1 expression in NSCLC. However, both higher FDG uptake and positive ERCC-1 expression are independent predictive markers of prognosis, suggesting that both should be obtained during patient workup

  15. Assessment of single nucleotide polymorphisms in screening 52 DNA repair and cell cycle control genes in Fanconi anemia patients

    Directory of Open Access Journals (Sweden)

    Petrović Sandra

    2015-01-01

    Full Text Available Fanconi anemia (FA is a rare genetically heterogeneous disorder associated with bone marrow failure, birth defects and cancer susceptibility. Apart from the disease- causing mutations in FANC genes, the identification of specific DNA variations, such as single nucleotide polymorphisms (SNPs, in other candidate genes may lead to a better clinical description of this condition enabling individualized treatment with improvement of the prognosis. In this study, we have assessed 95 SNPs located in 52 key genes involved in base excision repair (BER, nucleotide excision repair (NER, mismatch repair (MMR, double strand break (DSB repair and cell cycle control using a DNA repair chip (Asper Biotech, Estonia which includes most of the common variants for the candidate genes. The SNP genotyping was performed in five FA-D2 patients and in one FA-A patient. The polymorphisms studied were synonymous (n=10, nonsynonymous (missense (n=52 and in non-coding regions of the genome (introns and 5 ‘and 3’ untranslated regions (UTR (n=33. Polymorphisms found at the homozygous state are selected for further analysis. Our results have shown a significant inter-individual variability among patients in the type and the frequency of SNPs and also elucidate the need for further studies of polymorphisms located in ATM, APEX APE 1, XRCC1, ERCC2, MSH3, PARP4, NBS1, BARD1, CDKN1B, TP53 and TP53BP1 which may be of great importance for better clinical description of FA. In addition, the present report recommends the use of SNPs as predictive and prognostic genetic markers to individualize therapy of FA patients. [Projekat Ministarstva nauke Republike Srbije, br. 173046

  16. Evaluation of the frequency of polymorphisms in XRCC1 (Arg399Gln) and XPD (Lys751Gln) genes related to the genome stability maintenance in individuals of the resident population from Monte Alegre, PA/Brazil municipality

    International Nuclear Information System (INIS)

    Duarte, Isabelle Magliano

    2010-01-01

    The human exposure to ionizing radiation coming from natural sources is an inherent feature of human life on Earth. Ionizing radiation is a known genotoxic agent, which can affect biological molecules, causing DNA damage and genomic instability. The cellular system of DNA repair plays an important role in maintaining genomic stability by repairing DNA damage caused by genotoxic agents. However, genes related to DNA repair may have their role committed when presenting a certain polymorphism. This study intended to analyze the frequency of single nucleotide polymorphisms (SNPs) in genes of DNA repair XRCC1 (Arg39-9Gln) and XPD (Lys751Gln) in a: population of the city of Monte Alegre, that resides in an area of high exposure to natural radioactivity. Samples of saliva were collected from individuals of the population of Monte Alegre, in which 40 samples were of male and 46 female. Through the use of RFLP (length polymorphism restriction fragment) the frequency of homozygous genotypes and / or heterozygous was determined for polymorphic genes. The XRCC1 gene had 65.4% of the presence of the allele 399Gln and XPD gene had 32.9% of the 751Gln allele. These values are similar to those found in previous studies for the XPD gene, whereas XRCC1 showed a frequency much higher than described in the literature. The. influence of these polymorphisms, which are involved in DNA repair and consequent genotoxicity induced by radiation depends on dose and exposure factors such as smoking, statistically a factor in public health surveillance in the region. This study gathered information and molecular epidemiology for risk assessment of cancer in the population of Monte Alegre. (author)

  17. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells

    NARCIS (Netherlands)

    L.J. Niedernhofer (Laura); J. Essers (Jeroen); G. Weeda (Geert); H.B. Beverloo (Berna); J. de Wit (Jan); M. Muijtjens (Manja); H. Odijk (Hanny); J.H.J. Hoeijmakers (Jan); R. Kanaar (Roland)

    2001-01-01

    textabstractThe Ercc1-Xpf heterodimer, a highly conserved structure-specific endonuclease, functions in multiple DNA repair pathways that are pivotal for maintaining genome stability, including nucleotide excision repair, interstrand crosslink repair and homologous recombination. Erccl-Xpf incises

  18. DNA Repair Gene (XRCC1 Polymorphism (Arg399Gln Associated with Schizophrenia in South Indian Population: A Genotypic and Molecular Dynamics Study.

    Directory of Open Access Journals (Sweden)

    S P Sujitha

    Full Text Available This paper depicts the first report from an Indian population on the association between the variant Arg399Gln of XRCC1 locus in the DNA repair system and schizophrenia, the debilitating disease that affects 1% of the world population. Genotypic analysis of a total of 523 subjects (260 patients and 263 controls revealed an overwhelming presence of Gln399Gln in the case subjects against the controls (P < 0.0068, indicating significant level of association of this nsSNP with schizophrenia; the Gln399 allele frequency was also perceptibly more in cases than in controls (p < 0.003; OR = 1.448. The results of the genotypic studies were further validated using pathogenicity and stability prediction analysis employing computational tools [I-Mutant Suite, iStable, PolyPhen2, SNAP, and PROVEAN], with a view toassess the magnitude of deleteriousness of the mutation. The pathogenicity analysis reveals that the nsSNP could be deleterious inasmuch as it could affect the functionality of the gene, and interfere with protein function. Molecular dynamics simulation of 60ns was performed using GROMACS to analyse structural change due to a mutation (Arg399Gln that was never examined before. RMSD, RMSF, hydrogen bonds, radius of gyration and SASA analysis showedthe existence of asignificant difference between the native and the mutant protein. The present study gives astrong indication that the XRCC1 locus deserves serious attention, as it could be a potential candidatecontributing to the etio-pathogenesis of the disease.

  19. Identification of polymorphisms of XRCC1 gene in patients with cancer in a city of northern Brazil

    Directory of Open Access Journals (Sweden)

    Artemis Socorro N. Rodrigues

    2015-06-01

    Full Text Available ABSTRACT Introduction: Cancer is considered a genetic disease. For this reason, identification and characterization of the genes involved in its origin and progression are of fundamental importance in understanding its molecular basis. Objective: Our objective was to determine whether people from Macapá with a diagnosis of cancer have genetic polymorphisms related to the XRCC1 gene. Materials and methods: We analyzed 30 samples of deoxyribonucleic acid (DNA of cases with cancer and 30 control samples. All samples were amplified and analyzed by the polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP method, with the use of restriction enzyme MspI. Results: Regarding the 194T polymorphism, we found that all samples of the cases presented the polymorphic allele Trp (Arg/Trp. In control samples, 96.6% also identify the polymorphic allele Trp and, among these, one was homozygous for the same allele (Trp/Trp. Regarding the 399A polymorphism, 83.3% of the cases and 23.3% of the controls had the Arg/ Gln genotype, respectively. We found that 73.3% of controls and 16.6% of cases had the Arg/Arg genotype. Among the controls, we found only a sample that was homozygous for the polymorphic allele Trp/Trp. Conclusion: Our results demonstrated the allele frequency of 194Trp polymorphism in both sample groups analyzed. We also found a significant number of polymorphic allele 399A in people with cancer. Thus, we can highlight 399Gln polymorphism as a genetic marker of cancer risk in this population.

  20. Correlation analysis and prognostic impact of {sup 18}F-FDG PET and excision repair cross-complementation group 1 (ERCC-1) expression in non-small cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yong Hyu; Lee, Choong Kun; Jo, Kwan Hyeong; Hwang, Sang Hyun; Cha, Jong Tae; Lee, Jeong Won; Yun, Mi Jin; Cho, Arthur [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2015-06-15

    The aim of this study was to determine the relationship between [{sup 18}]-2-fluoro-2-deoxy-D-glucose (FDG) uptake and excision repair cross-complementation group 1 (ERCC-1) expression and to evaluate the prognostic effect of these two factors in resectable non-small cell lung cancer (NSCLC) patients. We retrospectively reviewed 212 patients with resectable NSCLC who underwent FDG positron emission tomography/computed tomography (PET/CT) scan for cancer staging and ERCC-1 expression analysis between January 2008 to December 2011. All patients were then followed-up for survival analysis. Semiquantitative evaluation of ERCC-1 was performed with the H-scoring system and was correlated with maximum standardized uptake value (SUV{sub max}) of NSCLC. Univariate and multivariate analyses were performed to evaluate for FDG uptake and ERCC-1 expression predicting overall survival. In 212 patients (139 male, median age 68 ± 9.11), 112 patients had ERCC-positive tumors and 100 patients had ERCC-negative tumors. There was no significant difference in SUV{sub max} between ERCC-1-positive tumors (8.02 ±5.40) and ERCC-1-negative tumors (7.57 ± 6.56, p = 0.584). All patients were followed-up for a median of 40.5 months (95 % confidence interval [CI], 38.5–42.2 months). Univariate analysis and multivariate analysis for all patients showed that both ERCC-1 expression (hazard ratio [HR], 2.78; 95 % CI, 1.20–6.47) and FDG uptake (HR, 4.50; 95 % CI, 2.07–9.77) independently predicted overall survival. We have found no statistical correlation between FDG uptake and ERCC-1 expression in NSCLC. However, both higher FDG uptake and positive ERCC-1 expression are independent predictive markers of prognosis, suggesting that both should be obtained during patient workup.

  1. Association of DNA repair gene XRCC1 and lung cancer susceptibility among nonsmoking Chinese women

    DEFF Research Database (Denmark)

    Yin, J.; Vogel, Ulla Birgitte; Ma, Y.

    2009-01-01

    predisposition to cancer risk. To address this question in more detail, we conducted a hospital-based case-control study consisting of 55 lung cancer cases and 74 cancer-free controls matched on age and ethnicity among nonsmoking Chinese women. We analyzed five coding single-nucleotide polymorphisms in the XRCC1...

  2. Haplotype frequencies in a sub-region of chromosome 19q13.3, related to risk and prognosis of cancer, differ dramatically between ethnic groups

    DEFF Research Database (Denmark)

    Schierup, M.H.; Mailund, T.; Li, H.

    2009-01-01

    Background: A small region of about 70 kb on human chromosome 19q13.3 encompasses 4 genes of which 3, ERCC1, ERCC2, and PPP1R13L (aka RAI) are related to DNA repair and cell survival, and one, CD3EAP, aka ASE1, may be related to cell proliferation. The whole region seems related to the cellular...

  3. C-terminal region of DNA ligase IV drives XRCC4/DNA ligase IV complex to chromatin

    International Nuclear Information System (INIS)

    Liu, Sicheng; Liu, Xunyue; Kamdar, Radhika Pankaj; Wanotayan, Rujira; Sharma, Mukesh Kumar; Adachi, Noritaka; Matsumoto, Yoshihisa

    2013-01-01

    Highlights: •Chromatin binding of XRCC4 is dependent on the presence of DNA ligase IV. •C-terminal region of DNA ligase IV alone can recruit itself and XRCC4 to chromatin. •Two BRCT domains of DNA ligase IV are essential for the chromatin binding of XRCC4. -- Abstract: DNA ligase IV (LIG4) and XRCC4 form a complex to ligate two DNA ends at the final step of DNA double-strand break (DSB) repair through non-homologous end-joining (NHEJ). It is not fully understood how these proteins are recruited to DSBs. We recently demonstrated radiation-induced chromatin binding of XRCC4 by biochemical fractionation using detergent Nonidet P-40. In the present study, we examined the role of LIG4 in the recruitment of XRCC4/LIG4 complex to chromatin. The chromatin binding of XRCC4 was dependent on the presence of LIG4. The mutations in two BRCT domains (W725R and W893R, respectively) of LIG4 reduced the chromatin binding of LIG4 and XRCC4. The C-terminal fragment of LIG4 (LIG4-CT) without N-terminal catalytic domains could bind to chromatin with XRCC4. LIG4-CT with W725R or W893R mutation could bind to chromatin but could not support the chromatin binding of XRCC4. The ability of C-terminal region of LIG4 to interact with chromatin might provide us with an insight into the mechanisms of DSB repair through NHEJ

  4. In cellulo phosphorylation of XRCC4 Ser320 by DNA-PK induced by DNA damage

    International Nuclear Information System (INIS)

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Samarth, Ravindra Mahadeo; Tomita, Masanori; Matsumoto, Yoshihisa

    2016-01-01

    XRCC4 is a protein associated with DNA Ligase IV, which is thought to join two DNA ends at the final step of DNA double-strand break repair through non-homologous end joining. In response to treatment with ionizing radiation or DNA damaging agents, XRCC4 undergoes DNA-PK-dependent phosphorylation. Furthermore, Ser260 and Ser320 (or Ser318 in alternatively spliced form) of XRCC4 were identified as the major phosphorylation sites by purified DNA-PK in vitro through mass spectrometry. However, it has not been clear whether these sites are phosphorylated in vivo in response to DNA damage. In the present study, we generated an antibody that reacts with XRCC4 phosphorylated at Ser320 and examined in cellulo phosphorylation status of XRCC4 Ser320. The phosphorylation of XRCC4 Ser320 was induced by γ-ray irradiation and treatment with Zeocin. The phosphorylation of XRCC4 Ser320 was detected even after 1 Gy irradiation and increased in a manner dependent on radiation dose. The phosphorylation was observed immediately after irradiation and remained mostly unchanged for up to 4 h. The phosphorylation was inhibited by DNA-PK inhibitor NU7441 and was undetectable in DNA-PKcs-deficient cells, indicating that the phosphorylation was mainly mediated by DNA-PK. These results suggested potential usefulness of the phosphorylation status of XRCC4 Ser320 as an indicator of DNA-PK functionality in living cells

  5. Haplotype frequencies in a sub-region of chromosome 19q13.3, related to risk and prognosis of cancer, differ dramatically between ethnic groups

    DEFF Research Database (Denmark)

    Schierup, M.H.; Mailund, T.; Li, H.

    2009-01-01

    Background: A small region of about 70 kb on human chromosome 19q13.3 encompasses 4 genes of which 3, ERCC1, ERCC2, and PPP1R13L (aka RAI) are related to DNA repair and cell survival, and one, CD3EAP, aka ASE1, may be related to cell proliferation. The whole region seems related to the cellular r...

  6. Measuring ERCC1 protein expression in cancer specimens

    DEFF Research Database (Denmark)

    Smith, David Hersi; Fiehn, Anne-Marie Kanstrup; Fogh, Louise

    2014-01-01

    Platinum chemotherapy remains part of standard therapies in the management of a variety of cancers. Severe side effects and a high degree of resistance to platinum drugs have led numerous researchers to search for predictive biomarkers, which could aid in identifying patients that are the most......, the specificity of antibody 4F9 was tested by immunoblotting, immunohistochemistry and immunofluorescence. Scoring guidelines to aid in the evaluation of ERCC1 tumor expression were developed and evaluated in archival formalin-fixed paraffin embedded colorectal cancer specimens. Antibody 4F9 was found...... to be specific by all methods applied and it was possible to evaluate the ERCC1 expression in the majority (85%) of colorectal cancer tumor specimens....

  7. Polymorphic Variation in Double Strand Break Repair Gene in Indian Population: A Comparative Approach with Worldwide Ethnic Group Variations.

    Science.gov (United States)

    Mandal, Raju Kumar; Mittal, Rama Devi

    2018-04-01

    DNA repair capacity is essential in maintaining cellular functions and homeostasis. Identification of genetic polymorphisms responsible for reduced DNA repair capacity may allow better cancer prevention. Double strand break repair pathway plays critical roles in maintaining genome stability. Present study was conducted to determine distribution of XRCC3 Exon 7 (C18067T, rs861539) and XRCC7 Intron 8 (G6721T, rs7003908) gene polymorphisms in North Indian population and compare with different populations globally. The genotype assays were performed in 224 normal healthy individuals of similar ethnicity using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Allelic frequencies of wild type were 79% (C) in XRCC3 Exon 7 C > T and 57% (G) in XRCC7 Intron 8 (G > T) 57% (G) observed. On the other hand, the variant allele frequency were 21% (T) in XRCC3 Exon 7 C > T and 43% (T) in XRCC7 Intron 8 G > T respectively. Major differences from other ethnic populations were observed. Our results suggest that frequency in these DNA repair genes exhibit distinctive pattern in India that could be attributed to ethnicity variation. This could assist in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

  8. Agrobacterium May Delay Plant Nonhomologous End-Joining DNA Repair via XRCC4 to Favor T-DNA Integration[W

    Science.gov (United States)

    Vaghchhipawala, Zarir E.; Vasudevan, Balaji; Lee, Seonghee; Morsy, Mustafa R.; Mysore, Kirankumar S.

    2012-01-01

    Agrobacterium tumefaciens is a soilborne pathogen that causes crown gall disease in many dicotyledonous plants by transfer of a portion of its tumor-inducing plasmid (T-DNA) into the plant genome. Several plant factors that play a role in Agrobacterium attachment to plant cells and transport of T-DNA to the nucleus have been identified, but the T-DNA integration step during transformation is poorly understood and has been proposed to occur via nonhomologous end-joining (NHEJ)–mediated double-strand DNA break (DSB) repair. Here, we report a negative role of X-RAY CROSS COMPLEMENTATION GROUP4 (XRCC4), one of the key proteins required for NHEJ, in Agrobacterium T-DNA integration. Downregulation of XRCC4 in Arabidopsis and Nicotiana benthamiana increased stable transformation due to increased T-DNA integration. Overexpression of XRCC4 in Arabidopsis decreased stable transformation due to decreased T-DNA integration. Interestingly, XRCC4 directly interacted with Agrobacterium protein VirE2 in a yeast two-hybrid system and in planta. VirE2-expressing Arabidopsis plants were more susceptible to the DNA damaging chemical bleomycin and showed increased stable transformation. We hypothesize that VirE2 titrates or excludes active XRCC4 protein available for DSB repair, thus delaying the closure of DSBs in the chromosome, providing greater opportunity for T-DNA to integrate. PMID:23064322

  9. High ERCC1 expression predicts cisplatin-based chemotherapy resistance and poor outcome in unresectable squamous cell carcinoma of head and neck in a betel-chewing area

    Directory of Open Access Journals (Sweden)

    Chien Chih-Yen

    2011-03-01

    Full Text Available Abstract Background This study was to evaluate the effect of excision repair cross-complementation group 1(ERCC1 expression on response to cisplatin-based induction chemotherapy (IC followed by concurrent chemoradiation (CCRT in locally advanced unresectable head and neck squamous cell carcinoma (HNSCC patients. Methods Fifty-seven patients with locally advanced unresectable HNSCC who received cisplatin-based IC followed by CCRT from January 1, 2006 through January 1, 2008. Eligibility criteria included presence of biopsy-proven HNSCC without a prior history of chemotherapy or radiotherapy. Immunohistochemistry was used to assess ERCC1 expression in pretreatment biopsy specimens from paraffin blocks. Clinical parameters, including smoking, alcohol consumption and betel nuts chewing, were obtained from the medical records. Results The 12-month progression-free survival (PFS and 2-year overall survival (OS rates of fifty-seven patients were 61.1% and 61.0%, respectively. Among these patients, thirty-one patients had low ERCC1 expression and forty-one patients responded to IC followed by CCRT. Univariate analyses showed that patients with low expression of ERCC1 had a significantly higher 12-month PFS rates (73.3% vs. 42.3%, p Conclusions Our study suggest that a high expression of ERCC1 predict a poor response and survival to cisplatin-based IC followed by CCRT in patients with locally advanced unresectable HNSCC in betel nut chewing area.

  10. Role of XPC, XPD, XRCC1, GSTP genetic polymorphisms and Barrett’s esophagus in a cohort of Italian subjects. A neural network analysis

    Directory of Open Access Journals (Sweden)

    Tarlarini C

    2012-08-01

    Full Text Available Claudia Tarlarini,1 Silvana Penco,1 Massimo Conio,2 Enzo Grossi3 On behalf of the Barrett Italian Study Group 1Department of Laboratory Medicine, Medical Genetics, Niguarda Ca’ Granda Hospital, Milan, Italy; 2Department of Gastroenterology, General Hospital, San Remo, Italy; 3Medical Department, Bracco Imaging SpA, Milan, ItalyBackground: Barrett’s esophagus (BE, a metaplastic premalignant disorder, represents the primary risk factor for the development of esophageal adenocarcinoma. Chronic gastroesophageal reflux disease and central obesity have been associated with BE and esophageal adenocarcinoma, but relatively little is known about the specific genes that confer susceptibility to BE carcinogenesis.Methods: A total of 74 patients with BE and 67 controls coming from six gastrointestinal Italian units were evaluated for six polymorphisms in four genes: XPC, XPD nucleotide excision repair (NER genes, XRCC1 (BER gene, and glutathione S-transferase P1. Smoking status was analyzed together with the genetic data. Statistical analysis was performed through Artificial Neural Networks.Results: Distributions of sex, smoking history, and polymorphisms among BE cases and controls did not show statistically significant differences. The r-value from linear correlation allowed us to identify possible protective factors as well as possible risk factors. The application of advanced intelligent systems allowed for the selection of a subgroup of nine variables. Artificial Neural Networks applied on the final data set reached mean global accuracy of 60%, reaching as high as 65.88%.Conclusion: We report here results from an exploratory study. Results from this study failed to find an association among the tested single nucleotide polymorphisms and BE phenotype through classical statistical methods. On the contrary, advanced intelligent systems are really able to handle the disease complexity, not treating the data with reductionist approaches unable to detect

  11. Analysis of DNA repair gene polymorphisms and survival in low-grade and anaplastic gliomas

    DEFF Research Database (Denmark)

    Berntsson, Shala Ghaderi; Wibom, Carl; Sjöström, Sara

    2011-01-01

    different DNA repair genes (ATM, NEIL1, NEIL2, ERCC6 and RPA4) which were associated with survival. Finally, these eight genetic variants were adjusted for treatment, malignancy grade, patient age and gender, leaving one variant, rs4253079, mapped to ERCC6, with a significant association to survival (OR 0...

  12. Retraction RETRACTION of "Association between polymorphisms in the XRCC1 gene and the risk of non-small cell lung cancer", by Han JC, Zhang YJ and Li XD - Genet. Mol. Res. 14 (4): 12888-12893 (2015).

    Science.gov (United States)

    Han, J C; Zhang, Y J; Li, X D

    2016-10-07

    The retracted article is: Han JC, Zhang YJ and Li XD (2015). Association between polymorphisms in the XRCC1 gene and the risk of non-small cell lung cancer. Genet. Mol. Res. 14: 12888-12893. The GMR editorial staff was alerted about this article (received on May 3, 2015; accepted on August 18, 2015) published on October 21, 2015 (DOI: 10.4238/2015.October.21.9) that was found to be substantially similar to the publication of "Association of XRCC1 gene polymorphisms with risk of non-small cell lung cancer" (received on January 25, 2015; accepted on March 23, 2015; e-published on April 1, 2015) by Kang et al., published in the International Journal of Clinical Experimental Pathology 8 (4): 4171-4176. The authors were aware of the Kang et al.'s paper, since they cite it several times in the manuscript published in GMR. Some of the language is similar between the two manuscripts, but what is the most concerning is that several of the tables in the papers are nearly identical. Tables 2 and 3 are exactly identical between the two articles, suggesting that the publication in GMR was plagiarized from the publication in the International Journal of Clinical Experimental Pathology. The Publisher and Editor decided to retract these articles in accordance with the recommendations of the Committee on Publication Ethics (COPE). After a thorough investigation, we have strong reason to believe that the peer review process was failure and, after review and contacting the authors, the editors of Genetics and Molecular Research decided to retract the article. The authors and their institutions were advised of this serious breach of ethics.

  13. ERCC1, toxicity and quality of life in advanced NSCLC patients randomized in a large multicentre phase III trial

    DEFF Research Database (Denmark)

    Vilmar, Adam Christian; Santoni-Rugiu, Eric; Sørensen, Jens Benn

    2010-01-01

    Excision repair cross complementation group 1 (ERCC1) is a promising biomarker in advanced non-small cell lung cancer (NSCLC). However, current evidence regarding the impact of ERCC1 on toxicity and quality of life (QOL) is limited.......Excision repair cross complementation group 1 (ERCC1) is a promising biomarker in advanced non-small cell lung cancer (NSCLC). However, current evidence regarding the impact of ERCC1 on toxicity and quality of life (QOL) is limited....

  14. Inter-individual variation, seasonal variation and close correlation of OGG1 and ERCC1 mRNA levels in full blood from healthy volunteers

    DEFF Research Database (Denmark)

    Vogel, Ulla Birgitte; Møller, Peter; Dragsted, Lars

    2002-01-01

    The mRNA levels of the nucleotide excision DNA repair gene ERCC1 and the base excision DNA repair gene OGG1 were quantified in 43 healthy volunteers in a dietary intervention trial as markers for the DNA repair capacity. Nine samples were collected from each subject over a period of 52 days. Samp...

  15. Genetic polymorphisms in homologous recombination repair genes in healthy Slovenian population and their influence on DNA damage

    International Nuclear Information System (INIS)

    Goricar, Katja; Erculj, Nina; Zadel, Maja; Dolzan, Vita

    2012-01-01

    Homologous recombination (HR) repair is an important mechanism involved in repairing double-strand breaks in DNA and for maintaining genomic stability. Polymorphisms in genes coding for enzymes involved in this pathway may influence the capacity for DNA repair. The aim of this study was to select tag single nucleotide polymorphisms (SNPs) in specific genes involved in HR repair, to determine their allele frequencies in a healthy Slovenian population and their influence on DNA damage detected with comet assay. In total 373 individuals were genotyped for nine tag SNPs in three genes: XRCC3 722C>T, XRCC3 -316A>G, RAD51 -98G>C, RAD51 -61G>T, RAD51 1522T>G, NBS1 553G>C, NBS1 1197A>G, NBS1 37117C>T and NBS1 3474A>C using competitive allele-specific amplification (KASPar assay). Comet assay was performed in a subgroup of 26 individuals to determine the influence of selected SNPs on DNA damage. We observed that age significantly affected genotype frequencies distribution of XRCC3 -316A>G (P = 0.039) in healthy male blood donors. XRCC3 722C>T (P = 0.005), RAD51 -61G>T (P = 0.023) and NBS1 553G>C (P = 0.008) had a statistically significant influence on DNA damage. XRCC3 722C>T, RAD51 -61G>T and NBS1 553G>C polymorphisms significantly affect the repair of damaged DNA and may be of clinical importance as they are common in Slovenian population

  16. Asparagine 326 in the extremely C-terminal region of XRCC4 is essential for the cell survival after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Wanotayan, Rujira; Fukuchi, Mikoto; Imamichi, Shoji; Sharma, Mukesh Kumar; Matsumoto, Yoshihisa, E-mail: yoshim@nr.titech.ac.jp

    2015-02-20

    XRCC4 is one of the crucial proteins in the repair of DNA double-strand break (DSB) through non-homologous end-joining (NHEJ). As XRCC4 consists of 336 amino acids, N-terminal 200 amino acids include domains for dimerization and for association with DNA ligase IV and XLF and shown to be essential for XRCC4 function in DSB repair and V(D)J recombination. On the other hand, the role of the remaining C-terminal region of XRCC4 is not well understood. In the present study, we noticed that a stretch of ∼20 amino acids located at the extreme C-terminus of XRCC4 is highly conserved among vertebrate species. To explore its possible importance, series of mutants in this region were constructed and assessed for the functionality in terms of ability to rescue radiosensitivity of M10 cells lacking XRCC4. Among 13 mutants, M10 transfectant with N326L mutant (M10-XRCC4{sup N326L}) showed elevated radiosensitivity. N326L protein showed defective nuclear localization. N326L sequence matched the consensus sequence of nuclear export signal. Leptomycin B treatment accumulated XRCC4{sup N326L} in the nucleus but only partially rescued radiosensitivity of M10-XRCC4{sup N326L}. These results collectively indicated that the functional defects of XRCC4{sup N326L} might be partially, but not solely, due to its exclusion from nucleus by synthetic nuclear export signal. Further mutation of XRCC4 Asn326 to other amino acids, i.e., alanine, aspartic acid or glutamine did not affect the nuclear localization but still exhibited radiosensitivity. The present results indicated the importance of the extremely C-terminal region of XRCC4 and, especially, Asn326 therein. - Highlights: • Extremely C-terminal region of XRCC4 is highly conserved among vertebrate species. • XRCC4 C-terminal point mutants, R325F and N326L, are functionally deficient in terms of survival after irradiation. • N326L localizes to the cytoplasm because of synthetic nuclear export signal. • Leptomycin B restores the

  17. Genetic Variability in DNA Repair Proteins in Age-Related Macular Degeneration

    Directory of Open Access Journals (Sweden)

    Janusz Blasiak

    2012-10-01

    Full Text Available The pathogenesis of age-related macular degeneration (AMD is complex and involves interactions between environmental and genetic factors, with oxidative stress playing an important role inducing damage in biomolecules, including DNA. Therefore, genetic variability in the components of DNA repair systems may influence the ability of the cell to cope with oxidative stress and in this way contribute to the pathogenesis of AMD. However, few reports have been published on this subject so far. We demonstrated that the c.977C>G polymorphism (rs1052133 in the hOGG1 gene and the c.972G>C polymorphism (rs3219489 in the MUTYH gene, the products of which play important roles in the repair of oxidatively damaged DNA, might be associated with the risk of AMD. Oxidative stress may promote misincorporation of uracil into DNA, where it is targeted by several DNA glycosylases. We observed that the g.4235T>C (rs2337395 and c.−32A>G (rs3087404 polymorphisms in two genes encoding such glycosylases, UNG and SMUG1, respectively, could be associated with the occurrence of AMD. Polymorphisms in some other DNA repair genes, including XPD (ERCC2, XRCC1 and ERCC6 (CSB have also been reported to be associated with AMD. These data confirm the importance of the cellular reaction to DNA damage, and this may be influenced by variability in DNA repair genes, in AMD pathogenesis.

  18. Expression of DNA repair genes in ovarian cancer samples: biological and clinical considerations.

    Science.gov (United States)

    Ganzinelli, M; Mariani, P; Cattaneo, D; Fossati, R; Fruscio, R; Corso, S; Ricci, F; Broggini, M; Damia, G

    2011-05-01

    The purpose of this study was to investigate retrospectively the mRNA expression of genes involved in different DNA repair pathways implicated in processing platinum-induced damage in 171 chemotherapy-naïve ovarian tumours and correlate the expression of the different genes with clinical parameters. The expression of genes involved in DNA repair pathways (PARP1, ERCC1, XPA, XPF, XPG, BRCA1, FANCA, FANCC, FANCD2, FANCF and PolEta), and in DNA damage transduction (Chk1 and Claspin) was measured by RT-PCR in 13 stage I borderline and 77 stage I and 88 III ovarian carcinomas. ERCC1, XPA, XPF and XPG genes were significantly less expressed in stage III than in stage I carcinoma; BRCA1, FANCA, FANCC, FANCD2 gene expressions were low in borderline tumours, higher in stage I carcinomas and lower in stage III samples. High levels of ERCC1, XPA, FANCC, XPG and PolEta correlated with an increase in Overall Survival (OS) and Progression Free Survival (PFS), whilst high BRCA1 levels were associated with PFS on univariate analysis. With multivariate analyses no genes retained an association when adjusted by stage, grade and residual tumour. A tendency towards a better PFS was observed in patients with the highest level of ERCC1 and BRCA1 after platinum-based therapy than those given both platinum and taxol. The expression of DNA repair genes differed in borderline stage I, stage I and stage III ovarian carcinomas. The role of DNA repair genes in predicting the response in ovarian cancer patients seems far from being established. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Distinct spatio temporal patterns and PARP dependence of XRCC1 recruitment to single-strand break and base excision repair

    International Nuclear Information System (INIS)

    Campalans, Anna; Kortulewski, Thierry; Amouroux, Rachel; Radicella, J. Pablo; Menoni, Herve; Vermeulen, Wim

    2013-01-01

    Single-strand break repair (SSBR) and base excision repair (BER) of modified bases and abasic sites share several players. Among them is XRCC1, an essential scaffold protein with no enzymatic activity, required for the coordination of both pathways. XRCC1 is recruited to SSBR by PARP-1, responsible for the initial recognition of the break. The recruitment of XRCC1 to BER is still poorly understood. Here we show by using both local and global induction of oxidative DNA base damage that XRCC1 participation in BER complexes can be distinguished from that in SSBR by several criteria. We show first that XRCC1 recruitment to BER is independent of PARP. Second, unlike SSBR complexes that are assembled within minutes after global damage induction, XRCC1 is detected later in BER patches, with kinetics consistent with the repair of oxidized bases. Third, while XRCC1-containing foci associated with SSBR are formed both in eu- and heterochromatin domains, BER complexes are assembled in patches that are essentially excluded from heterochromatin and where the oxidized bases are detected. (authors)

  20. ERCC1 protein as a guide for individualized therapy of late-stage advanced non-small cell lung cancer.

    Science.gov (United States)

    Gao, Zhiqiang; Han, Baohui; Shen, Jie; Gu, Aiqin; Qi, Dajiang; Huang, Jinsu; Shi, Chunlei; Xiong, Liwen; Zhao, Yizhuo; Jiang, Liyan; Wang, Huimin; Chen, Yurong

    2011-09-01

    Excision repair cross-complementation group 1 (ERCC1) protein has been associated with cisplatin resistance. The objective of this study was to investigate the correlation between ERCC1 protein levels and the therapeutic effect of individualized therapy in advanced non-small cell lung cancer (NSCLC). A total of 190 advanced NSCLC patients were included in this study. Patients were randomized into either the individualized therapy group or the standard therapy group at a ratio of 2:1. Patients in the standard therapy group were treated with either gemcitabine plus cisplatin or vinorelbine plus cisplatin. The expression of ERCC1 protein in lung cancer tissues of patients from the individualized therapy group was detected with immunohistochemistry. Patients with low ERCC1 levels received either gemcitabine plus cisplatin or vinorelbine plus cisplatin, and patients with high levels received gemcitabine plus vinorelbine. The main outcome assessments were response rate (RR), overall survival (OS) and time to progression (TTP). Follow-up data were recorded until September 30, 2010. RR, 1-year survival rate and TTP were not statistically significant. The median survival time was 10.10 months in the standard therapy group (95% CI 8.48-11.92) and 13.59 months in the individualized therapy group (95% CI 11.86-14.74). The difference in median survival time was significantly different between these groups (P=0.036). The median survival time was longer in the individualized group compared to the standard therapy group. ERCC1 protein expression in advanced NSCLC patients, however, was not significantly correlated with RR, OS and TTP in the individualized therapy group. Therefore, this study suggests that ERCC1 protein levels should be assessed in combination with additional biomarkers to determine an optimal index for individualized therapy in advanced NSCLC patients.

  1. Genetic polymorphisms and expression of minisatellite mutations in a 3-generation population around the Semipalatinsk nuclear explosion test-site, Kazakhstan.

    Science.gov (United States)

    Bolegenova, N K; Bekmanov, B O; Djansugurova, L B; Bersimbaev, R I; Salama, S A; Au, W W

    2009-11-01

    We have reported previously that a population near the Semipalatinsk nuclear explosion test site had significantly increased minisatellite mutations (MM), suggesting increased germ-line mutation rates from the exposure in 3 generations. We hypothesize that the MM can be used as a surrogate biomarker for functional genetic alterations, e.g. gene mutations and chromosome aberrations. Therefore, we have investigated the influence of polymorphisms in genes on the expression of MM in the same two populations (247 and 172 individuals, for exposed and control, respectively, in 3 generations), and their relationships with radiation exposure. We have chosen the analyses of three polymorphic DNA - repair genes (XRCC1, XRCC1 and XRCC3) and two xenobiotic detoxification genes (GSTT1 and GSTM1). Among the exposed and in comparison with the wild-type gene, the functionally active XRCC1 Arg194Trp was significantly associated with low MM and over-represented in the exposed compared with the control populations. In a similar analysis, the functionally deficient XRCC1 Arg399Glu and XRCC3 Trp241Met were associated with increased and significantly reduced MM, respectively, but these variant genes were under-represented in the exposed population. Both GSTT1 and GSTM1 nulls were significantly associated with increased MM. The former was under-represented but the latter was significantly over-represented in the exposed compared with the control populations. In summary, the data indicate that the expected enzymatic functions of the polymorphic genes are consistent with the MM expression, except the XRCC1 Arg399Glu variant gene. In addition, the variant genes were retained in the three generations in association with their useful function, except for the GSTM1 null. However, the MM frequencies in the exposed were not consistently and significantly higher than those in the control populations, radiation exposure may therefore not have been the only cause for the high MM frequency among the

  2. The studies of DNA double-strand break (DSB) rejoining and mRNA expression of repair gene XRCCs in malignant transformed cell lines of human bronchial epithelial cells generated by α-particles

    International Nuclear Information System (INIS)

    Sun Jingfen; Sui Jianli; Geng Yu; Zhou Pingkun; Wu Dechang

    2002-01-01

    Objective: To investigate the efficiency of γ-ray-induced DNA DSB rejoining and the mRNA expression of DNA repair genes in malignantly transformed cell lines of human bronchial epithelial cells generated by exposure to a-particles. Methods: Pulsed field gel electrophoresis (PFGE) was used to detect DNA. DSBs mRNA expression was analyzed by RT-PCR. Results: The residual DNA DSB damage level after 4hrs repair following 0-150 Gy of γ-irradiation in the malignantly transformed cell lines BERP35T-1 and BERP35T-4 was significantly higher than that in their parental BEP2D cells. The analysis of mRNA level revealed a 2.5-to 6.5-fold down-regulated expression of the DNA repair genes XRCC-2, XRCC-3 and Ku80 (XRCC-5) in BERP35T-1 and BERP35T-4 cells as compared with the parental BEP2D cells. In contrast, the expression of DNA-PKcs(XRCC7) was 2.4-fold up-regulated in the transformed cell line BERP35T-4, in which there was a significantly higher proportion of polyploid cells. Conclusion: This study results show that the deficiency of DNA DSB rejoining and depressed mRNA expression of DNA repair genes could be involved in the malignant transformation process of BEP2D cells induced by exposure to α-particles

  3. Mutations in the NHEJ component XRCC4 cause primordial dwarfism.

    Science.gov (United States)

    Murray, Jennie E; van der Burg, Mirjam; IJspeert, Hanna; Carroll, Paula; Wu, Qian; Ochi, Takashi; Leitch, Andrea; Miller, Edward S; Kysela, Boris; Jawad, Alireza; Bottani, Armand; Brancati, Francesco; Cappa, Marco; Cormier-Daire, Valerie; Deshpande, Charu; Faqeih, Eissa A; Graham, Gail E; Ranza, Emmanuelle; Blundell, Tom L; Jackson, Andrew P; Stewart, Grant S; Bicknell, Louise S

    2015-03-05

    Non-homologous end joining (NHEJ) is a key cellular process ensuring genome integrity. Mutations in several components of the NHEJ pathway have been identified, often associated with severe combined immunodeficiency (SCID), consistent with the requirement for NHEJ during V(D)J recombination to ensure diversity of the adaptive immune system. In contrast, we have recently found that biallelic mutations in LIG4 are a common cause of microcephalic primordial dwarfism (MPD), a phenotype characterized by prenatal-onset extreme global growth failure. Here we provide definitive molecular genetic evidence supported by biochemical, cellular, and immunological data for mutations in XRCC4, encoding the obligate binding partner of LIG4, causing MPD. We report the identification of biallelic mutations in XRCC4 in five families. Biochemical and cellular studies demonstrate that these alterations substantially decrease XRCC4 protein levels leading to reduced cellular ligase IV activity. Consequently, NHEJ-dependent repair of ionizing-radiation-induced DNA double-strand breaks is compromised in XRCC4 cells. Similarly, immunoglobulin junctional diversification is impaired in cells. However, immunoglobulin levels are normal, and individuals lack overt signs of immunodeficiency. Additionally, in contrast to individuals with LIG4 mutations, pancytopenia leading to bone marrow failure has not been observed. Hence, alterations that alter different NHEJ proteins give rise to a phenotypic spectrum, from SCID to extreme growth failure, with deficiencies in certain key components of this repair pathway predominantly exhibiting growth deficits, reflecting differential developmental requirements for NHEJ proteins to support growth and immune maturation. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. ERCC1 and histopathology in advanced NSCLC patients randomized in a large multicenter phase III trial

    DEFF Research Database (Denmark)

    Vilmar, Adam Christian; Santoni-Rugiu, E; Sørensen, J B

    2010-01-01

    Customized chemotherapy is likely to improve outcome in patients with advanced non-small-cell lung cancer (NSCLC). Excision repair cross-complementation group 1 (ERCC1) is a promising biomarker; however, current evidence is inadequate. Impact of ERCC1 status was evaluated among patients participa...

  5. XRCC1 coordinates disparate responses and multiprotein repair complexes depending on the nature and context of the DNA damage

    DEFF Research Database (Denmark)

    Hanssen-Bauer, Audun; Solvang-Garten, Karin; Sundheim, Ottar

    2011-01-01

    . We demonstrate that the laser dose used for introducing DNA damage determines the repertoire of DNA repair proteins recruited. Furthermore, we demonstrate that recruitment of POLß and PNK to regions irradiated with low laser dose requires XRCC1 and that inhibition of PARylation by PARP......-inhibitors only slightly reduces the recruitment of XRCC1, PNK, or POLß to sites of DNA damage. Recruitment of PCNA and FEN-1 requires higher doses of irradiation and is enhanced by XRCC1, as well as by accumulation of PARP-1 at the site of DNA damage. These data improve our understanding of recruitment of BER......XRCC1 is a scaffold protein capable of interacting with several DNA repair proteins. Here we provide evidence for the presence of XRCC1 in different complexes of sizes from 200 to 1500 kDa, and we show that immunoprecipitates using XRCC1 as bait are capable of complete repair of AP sites via both...

  6. A haplotype of polymorphisms in ASE-1, RAI and ERCC1 and the effects of tobacco smoking and alcohol consumption on risk of colorectal cancer: a danish prospective case-cohort study

    International Nuclear Information System (INIS)

    Hansen, Rikke D; Sørensen, Mette; Tjønneland, Anne; Overvad, Kim; Wallin, Håkan; Raaschou-Nielsen, Ole; Vogel, Ulla

    2008-01-01

    Single nucleotide polymorphisms (SNPs) are the most frequent type of genetic variation in the human genome, and are of interest for the study of susceptibility to and protection from diseases. The haplotype at chromosome 19q13.2-3 encompassing the three SNPs ASE-1 G-21A, RAI IVS1 A4364G and ERCC1 Asn118Asn have been associated with risk of breast cancer and lung cancer. Haplotype carriers are defined as the homozygous carriers of RAI IVS1 A4364G A , ERCC1 Asn118Asn T and ASE-1 G-21A G . We aimed to evaluate whether the three polymorphisms and the haplotype are associated to risk of colorectal cancer, and investigated gene-environment associations between the polymorphisms and the haplotype and smoking status at enrolment, smoking duration, average smoking intensity and alcohol consumption, respectively, in relation to risk of colorectal cancer. Associations between the three individual polymorphisms, the haplotype and risk of colorectal cancer were examined, as well as gene-environment interaction, in a Danish case-cohort study including 405 cases and a comparison group of 810 persons. Incidence rate ratio (IRR) were estimated by the Cox proportional hazards model stratified according to gender, and two-sided 95% confidence intervals (CI) and p-values were calculated based on robust estimates of the variance-covariance matrix and Wald's test of the Cox regression parameter. No consistent associations between the three individual polymorphisms, the haplotype and risk of colorectal cancer were found. No statistically significant interactions between the genotypes and the lifestyle exposures smoking or alcohol consumption were observed. Our results suggest that the ASE-1 G-21A, RAI IVS1 A4364G and ERCC1 Asn118Asn polymorphisms and the previously identified haplotype are not associated with risk of colorectal cancer. We found no evidence of gene-environment interaction between the three polymorphisms and the haplotype and smoking intensity and alcohol consumption

  7. Cloning human DNA repair genes

    International Nuclear Information System (INIS)

    Jeggo, P.A.; Carr, A.M.; Lehmann, A.R.

    1994-01-01

    Many human genes involved in the repair of UV damage have been cloned using different procedures and they have been of great value in assisting the understanding of the mechanism of nucleotide excision-repair. Genes involved in repair of ionizing radiation damage have proved more difficult to isolate. Positional cloning has localized the XRCC5 gene to a small region of chromosome 2q33-35, and a series of yeast artificial chromosomes covering this region have been isolated. Very recent work has shown that the XRCC5 gene encodes the 80 kDa subunit of the Ku DNA-binding protein. The Ku80 gene also maps to this region. Studies with fission yeast have shown that radiation sensitivity can result not only from defective DNA repair but also from abnormal cell cycle control following DNA damage. Several genes involved in this 'check-point' control in fission yeast have been isolated and characterized in detail. It is likely that a similar checkpoint control mechanism exists in human cells. (author)

  8. Structure-Based Virtual Ligand Screening on the XRCC4/DNA Ligase IV Interface

    Science.gov (United States)

    Menchon, Grégory; Bombarde, Oriane; Trivedi, Mansi; Négrel, Aurélie; Inard, Cyril; Giudetti, Brigitte; Baltas, Michel; Milon, Alain; Modesti, Mauro; Czaplicki, Georges; Calsou, Patrick

    2016-03-01

    The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments. However the high affinity of the XRCC4/Lig4 interaction and the extended protein-protein interface make drug screening on this target particularly challenging. Here, we conducted a pioneering study aimed at interfering with XRCC4/Lig4 assembly. By Molecular Dynamics simulation using the crystal structure of the complex, we first delineated the Lig4 clamp domain as a limited suitable target. Then, we performed in silico screening of ~95,000 filtered molecules on this Lig4 subdomain. Hits were evaluated by Differential Scanning Fluorimetry, Saturation Transfer Difference - NMR spectroscopy and interaction assays with purified recombinant proteins. In this way we identified the first molecule able to prevent Lig4 binding to XRCC4 in vitro. This compound has a unique tripartite interaction with the Lig4 clamp domain that suggests a starting chemotype for rational design of analogous molecules with improved affinity.

  9. XRCC1 and PCNA are loading platforms with distinct kinetic properties and different capacities to respond to multiple DNA lesions

    Directory of Open Access Journals (Sweden)

    Leonhardt Heinrich

    2007-09-01

    Full Text Available Abstract Background Genome integrity is constantly challenged and requires the coordinated recruitment of multiple enzyme activities to ensure efficient repair of DNA lesions. We investigated the dynamics of XRCC1 and PCNA that act as molecular loading platforms and play a central role in this coordination. Results Local DNA damage was introduced by laser microirradation and the recruitment of fluorescent XRCC1 and PCNA fusion proteins was monitored by live cell microscopy. We found an immediate and fast recruitment of XRCC1 preceding the slow and continuous recruitment of PCNA. Fluorescence bleaching experiments (FRAP and FLIP revealed a stable association of PCNA with DNA repair sites, contrasting the high turnover of XRCC1. When cells were repeatedly challenged with multiple DNA lesions we observed a gradual depletion of the nuclear pool of PCNA, while XRCC1 dynamically redistributed even to lesions inflicted last. Conclusion These results show that PCNA and XRCC1 have distinct kinetic properties with functional consequences for their capacity to respond to successive DNA damage events.

  10. XRCC1 and PCNA are loading platforms with distinct kinetic properties and different capacities to respond to multiple DNA lesions

    Science.gov (United States)

    Mortusewicz, Oliver; Leonhardt, Heinrich

    2007-01-01

    Background Genome integrity is constantly challenged and requires the coordinated recruitment of multiple enzyme activities to ensure efficient repair of DNA lesions. We investigated the dynamics of XRCC1 and PCNA that act as molecular loading platforms and play a central role in this coordination. Results Local DNA damage was introduced by laser microirradation and the recruitment of fluorescent XRCC1 and PCNA fusion proteins was monitored by live cell microscopy. We found an immediate and fast recruitment of XRCC1 preceding the slow and continuous recruitment of PCNA. Fluorescence bleaching experiments (FRAP and FLIP) revealed a stable association of PCNA with DNA repair sites, contrasting the high turnover of XRCC1. When cells were repeatedly challenged with multiple DNA lesions we observed a gradual depletion of the nuclear pool of PCNA, while XRCC1 dynamically redistributed even to lesions inflicted last. Conclusion These results show that PCNA and XRCC1 have distinct kinetic properties with functional consequences for their capacity to respond to successive DNA damage events. PMID:17880707

  11. Genetic variation in a DNA double strand break repair gene in saudi population: a comparative study with worldwide ethnic groups.

    Science.gov (United States)

    Areeshi, Mohammed Yahya

    2013-01-01

    DNA repair capacity is crucial in maintaining cellular functions and homeostasis. However, it can be altered based on DNA sequence variations in DNA repair genes and this may lead to the development of many diseases including malignancies. Identification of genetic polymorphisms responsible for reduced DNA repair capacity is necessary for better prevention. Homologous recombination (HR), a major double strand break repair pathway, plays a critical role in maintaining the genome stability. The present study was performed to determine the frequency of the HR gene XRCC3 Exon 7 (C18067T, rs861539) polymorphisms in Saudi Arabian population in comparison with epidemiological studies by "MEDLINE" search to equate with global populations. The variant allelic (T) frequency of XRCC3 (C>T) was found to be 39%. Our results suggest that frequency of XRCC3 (C>T) DNA repair gene exhibits distinctive patterns compared with the Saudi Arabian population and this might be attributed to ethnic variation. The present findings may help in high-risk screening of humans exposed to environmental carcinogens and cancer predisposition in different ethnic groups.

  12. Cisplatin sensitivity of testis tumour cells is due to deficiency in interstrand-crosslink repair and low ERCC1-XPF expression

    Directory of Open Access Journals (Sweden)

    Kaina Bernd

    2010-09-01

    Full Text Available Abstract Background Cisplatin based chemotherapy cures over 80% of metastatic testicular germ cell tumours (TGCT. In contrast, almost all other solid cancers in adults are incurable once they have spread beyond the primary site. Cell lines derived from TGCTs are hypersensitive to cisplatin reflecting the clinical response. Earlier findings suggested that a reduced repair capacity might contribute to the cisplatin hypersensitivity of testis tumour cells (TTC, but the critical DNA damage has not been defined. This study was aimed at investigating the formation and repair of intrastrand and interstrand crosslinks (ICLs induced by cisplatin in TTC and their contribution to TTC hypersensitivity. Results We observed that repair of intrastrand crosslinks is similar in cisplatin sensitive TTC and resistant bladder cancer cells, whereas repair of ICLs was significantly reduced in TTC. γH2AX formation, which serves as a marker of DNA breaks formed in response to ICLs, persisted in cisplatin-treated TTC and correlated with sustained phosphorylation of Chk2 and enhanced PARP-1 cleavage. Expression of the nucleotide excision repair factor ERCC1-XPF, which is implicated in the processing of ICLs, is reduced in TTC. To analyse the causal role of ERCC1-XPF for ICL repair and cisplatin sensitivity, we over-expressed ERCC1-XPF in TTC by transient transfection. Over-expression increased ICL repair and rendered TTC more resistant to cisplatin, which suggests that ERCC1-XPF is rate-limiting for repair of ICLs resulting in the observed cisplatin hypersensitivity of TTC. Conclusion Our data indicate for the first time that the exceptional sensitivity of TTC and, therefore, very likely the curability of TGCT rests on their limited ICL repair due to low level of expression of ERCC1-XPF.

  13. Split dose recovery studies using homologous recombination deficient gene knockout chicken B lymphocyte cells

    International Nuclear Information System (INIS)

    Rao, B.S.S.; Tano, Kaori; Utsumi, Hiroshi; Takeda, Shunichi

    2007-01-01

    To understand the role of proteins involved in double strand breaks (DSB) repair modulating sublethal damage (SLD) recovery, chicken B lymphoma (DT 40) cell lines either proficient or deficient in RAD52, XRCC2, XRCC3, RAD51C and RAD51D were subjected to fractionated irradiation and their survival curves charted. Survival curves of both WT DT40 and RAD52 -/- cells had a big shoulder while all the other cells exhibited small shoulders. However, at the higher doses of radiation, RAD51C -/- cells displayed hypersensitivity comparable to the data obtained for the homologous recombination deficient RAD54 -/- cells. Repair of SLD was measured as an increase in survival after a split dose irradiation with an interval of incubation between the radiation doses. All the cell lines (parental DT40 and genetic knockout cell lines viz., RAD52 -/- , XRCC2 -/- XRCC3 -/- RAD51C -/- and RAD51D -/- ) used in this study demonstrated a typical split-dose recovery capacity with a specific peak, which varied depending on the cell type. The maximum survival of WT DT40 and RAD52 -/- was reached at about 1-2 hours after the first dose of radiation and then decreased to a minimum thereafter (5 h). The increase in the survival peaked once again by about 8 hours. The survival trends observed in XRCC2 -/- , XRCC3 -/- , RAD51C -/- and RAD51D -/- knockout cells were also similar, except for the difference in the initial delay of a peak survival for RAD51D -/- and lower survival ratios. The second phase of increase in the survival in these cell lines was much slower in XRCC2 -/- , XRCC3 -/- , RAD51C -/- nd RAD51D -/- and further delayed when compared with that of RAD52 -/- and parental DT40 cells suggesting a dependence on their cell cycle kinetics. This study demonstrates that the participation of RAD52, XRCC2, XRCC3, RAD51C and RAD51D in the DSB repair via homologous recombination is of less importance in comparison to RAD54, as RAD54 deficient cells demonstrated complete absence of SLD recovery

  14. Evaluation of the Emergency Response Command Center. Development of a method for evaluating the performance of the ERCC during exercises

    International Nuclear Information System (INIS)

    Groth, M.

    1997-02-01

    The report describes the development of a structured method for evaluation and analysis of staff performance in the Emergency Response Command Centre (ERCC) during exercises. A comprehensive literature search including current research and theoretical bases in the area of group dynamics has been carried out. To supplement this, ERCC activities during an emergency exercise were observed and responsible staff individuals and others involved were interviewed. From this material, two evaluation instruments were constructed: An Evaluation form for the function of ERCC, which addresses: Activation, information handling, teamwork and overall critique of the exercise; and an Evaluation form for responsible personnel in ERCC, which addresses: Activation, procedures-checklists etc, information handling, teamwork, personnel qualifications, and overall critique of the exercise. The method has been tested in two actual exercises at Ringhals NPP and has been found to effectively fulfill its purpose. 7 refs

  15. Determination of the frequency of polymorphisms in genes related to the genome stability maintenance of the population residing at Monte Alegre, PA (Brazil) municipality; Determinacao da frequencia de polimorfismos em genes relacionados a manutencao da estabilidade do genoma na populacao residente no municipio de Monte Alegre, PA

    Energy Technology Data Exchange (ETDEWEB)

    Hozumi, Cristiny Gomes

    2010-07-01

    The human exposure to ionizing radiation coming from natural sources is an inherent feature of human life on earth, for man and all living things have always been exposed to these sources. Ionizing radiation is a known genotoxic agent which can affect the genomic stability and genes related to DNA repair may play a role when they have committed certain polymorphism. This study aimed to analyze the frequency of polymorphisms (SNPs) in genes of DNA repair and cell cycle control: hOGG1 (Ser326Cys), XRCC3 (Thr241 Met) and p53 (Arg72Pro) in saliva samples from a population located Monte Alegre, state of Para were collected in August 2008 and 40 samples of men and 46 samples of women, adding a total of 86 samples. By RFLP was determined the frequency of homozygous genotypes and / or heterozygous for polymorphic genes. The I)OGG1 gene was 5% of the allele 326Cys, XRCC3 gene found about 21 % of the allele 241 Met and p53 gene showed 40.8% of the 72Pro allele. And the genotype frequencies of individuals for the three genes were 91.04%, 88.06% and 59.7% for homozygous wild genotype, 5.97%, 11.94% and 22.39% for heterozygote genotype and 2,99%, zero and 17:91% for homozygous polymorphic hOGG1 genes respectively, XRCC3, p53. These values are similar to those found in previous studies. The influence of these polymorphisms, which are involved in DNA repair and consequent genotoxicity induced by radiation depends on dose and exposure factors such as smoking, which is statistically a factor in public health surveillance in the region. This study gathered information and molecular epidemiology in Monte Alegre, that help to characterization of local population. (author)

  16. Dietary restriction but not angiotensin II type 1 receptor blockade improves DNA damage-related vasodilator dysfunction in rapidly aging Ercc1Δ/- mice.

    Science.gov (United States)

    Wu, Haiyan; van Thiel, Bibi S; Bautista-Niño, Paula K; Reiling, Erwin; Durik, Matej; Leijten, Frank P J; Ridwan, Yanto; Brandt, Renata M C; van Steeg, Harry; Dollé, Martijn E T; Vermeij, Wilbert P; Hoeijmakers, Jan H J; Essers, Jeroen; van der Pluijm, Ingrid; Danser, A H Jan; Roks, Anton J M

    2017-08-01

    DNA damage is an important contributor to endothelial dysfunction and age-related vascular disease. Recently, we demonstrated in a DNA repair-deficient, prematurely aging mouse model ( Ercc1 Δ/- mice) that dietary restriction (DR) strongly increases life- and health span, including ameliorating endothelial dysfunction, by preserving genomic integrity. In this mouse mutant displaying prominent accelerated, age-dependent endothelial dysfunction we investigated the signaling pathways involved in improved endothelium-mediated vasodilation by DR, and explore the potential role of the renin-angiotensin system (RAS). Ercc1 Δ/- mice showed increased blood pressure and decreased aortic relaxations to acetylcholine (ACh) in organ bath experiments. Nitric oxide (NO) signaling and phospho-Ser 1177 -eNOS were compromised in Ercc1 Δ / - DR improved relaxations by increasing prostaglandin-mediated responses. Increase of cyclo-oxygenase 2 and decrease of phosphodiesterase 4B were identified as potential mechanisms. DR also prevented loss of NO signaling in vascular smooth muscle cells and normalized angiotensin II (Ang II) vasoconstrictions, which were increased in Ercc1 Δ/- mice. Ercc1 Δ/ - mutants showed a loss of Ang II type 2 receptor-mediated counter-regulation of Ang II type 1 receptor-induced vasoconstrictions. Chronic losartan treatment effectively decreased blood pressure, but did not improve endothelium-dependent relaxations. This result might relate to the aging-associated loss of treatment efficacy of RAS blockade with respect to endothelial function improvement. In summary, DR effectively prevents endothelium-dependent vasodilator dysfunction by augmenting prostaglandin-mediated responses, whereas chronic Ang II type 1 receptor blockade is ineffective. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  17. De novo CNV formation in mouse embryonic stem cells occurs in the absence of Xrcc4-dependent nonhomologous end joining.

    Directory of Open Access Journals (Sweden)

    Martin F Arlt

    2012-09-01

    Full Text Available Spontaneous copy number variant (CNV mutations are an important factor in genomic structural variation, genomic disorders, and cancer. A major class of CNVs, termed nonrecurrent CNVs, is thought to arise by nonhomologous DNA repair mechanisms due to the presence of short microhomologies, blunt ends, or short insertions at junctions of normal and de novo pathogenic CNVs, features recapitulated in experimental systems in which CNVs are induced by exogenous replication stress. To test whether the canonical nonhomologous end joining (NHEJ pathway of double-strand break (DSB repair is involved in the formation of this class of CNVs, chromosome integrity was monitored in NHEJ-deficient Xrcc4(-/- mouse embryonic stem (ES cells following treatment with low doses of aphidicolin, a DNA replicative polymerase inhibitor. Mouse ES cells exhibited replication stress-induced CNV formation in the same manner as human fibroblasts, including the existence of syntenic hotspot regions, such as in the Auts2 and Wwox loci. The frequency and location of spontaneous and aphidicolin-induced CNV formation were not altered by loss of Xrcc4, as would be expected if canonical NHEJ were the predominant pathway of CNV formation. Moreover, de novo CNV junctions displayed a typical pattern of microhomology and blunt end use that did not change in the absence of Xrcc4. A number of complex CNVs were detected in both wild-type and Xrcc4(-/- cells, including an example of a catastrophic, chromothripsis event. These results establish that nonrecurrent CNVs can be, and frequently are, formed by mechanisms other than Xrcc4-dependent NHEJ.

  18. Polymorphisms in RAI and in genes of nucleotide and base excision repair are not associated with risk of testicular cancer.

    Science.gov (United States)

    Laska, Magdalena J; Nexø, Bjørn A; Vistisen, Kirsten; Poulsen, Henrik Enghusen; Loft, Steffen; Vogel, Ulla

    2005-07-28

    Testicular cancer has been suggested to be primed in utero and there is familiar occurrence, particularly brothers and sons of men with testicular cancer have increased risk. Although no specific causative genotoxic agents have been identified, variations in DNA repair capacity could be associated with the risk of testicular cancer. A case-control study of 184 testicular cancer cases and 194 population-based controls living in the Copenhagen Greater Area in Denmark was performed. We found that neither polymorphisms in several DNA repair genes nor alleles of several polymorphisms in the chromosomal of region 19q13.2-3, encompassing the genes ASE, ERCC1, RAI and XPD, were associated with risk of testicular cancer in Danish patients. This is in contrast to other cancers, where we reported strong associations between polymorphisms in ERCC1, ASE and RAI and occurrence of basal cell carcinoma, breast cancer and lung. To our knowledge this is the first study of DNA repair gene polymorphisms and risk of testicular cancer.

  19. Xrcc1-dependent and Ku-dependent DNA double-strand break repair kinetics in Arabidopsis plants.

    Science.gov (United States)

    Charbonnel, Cyril; Gallego, Maria E; White, Charles I

    2010-10-01

    Double-strand breakage (DSB) of DNA involves loss of information on the two strands of the DNA fibre and thus cannot be repaired by simple copying of the complementary strand which is possible with single-strand DNA damage. Homologous recombination (HR) can precisely repair DSB using another copy of the genome as template and non-homologous recombination (NHR) permits repair of DSB with little or no dependence on DNA sequence homology. In addition to the well-characterised Ku-dependent non-homologous end-joining (NHEJ) pathway, much recent attention has been focused on Ku-independent NHR. The complex interrelationships and regulation of NHR pathways remain poorly understood, even more so in the case of plants, and we present here an analysis of Ku-dependent and Ku-independent repair of DSB in Arabidopsis thaliana. We have characterised an Arabidopsis xrcc1 mutant and developed quantitative analysis of the kinetics of appearance and loss of γ-H2AX foci as a tool to measure DSB repair in dividing root tip cells of γ-irradiated plants in vivo. This approach has permitted determination of DSB repair kinetics in planta following a short pulse of γ-irradiation, establishing the existence of a Ku-independent, Xrcc1-dependent DSB repair pathway. Furthermore, our data show a role for Ku80 during the first minutes post-irradiation and that Xrcc1 also plays such a role, but only in the absence of Ku. The importance of Xrcc1 is, however, clearly visible at later times in the presence of Ku, showing that alternative end-joining plays an important role in DSB repair even in the presence of active NHEJ. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.

  20. Recruitment and positioning determine the specific role of the XPF-ERCC1 endonuclease in interstrand crosslink repair.

    Science.gov (United States)

    Klein Douwel, Daisy; Hoogenboom, Wouter S; Boonen, Rick Acm; Knipscheer, Puck

    2017-07-14

    XPF-ERCC1 is a structure-specific endonuclease pivotal for several DNA repair pathways and, when mutated, can cause multiple diseases. Although the disease-specific mutations are thought to affect different DNA repair pathways, the molecular basis for this is unknown. Here we examine the function of XPF-ERCC1 in DNA interstrand crosslink (ICL) repair. We used Xenopus egg extracts to measure both ICL and nucleotide excision repair, and we identified mutations that are specifically defective in ICL repair. One of these separation-of-function mutations resides in the helicase-like domain of XPF and disrupts binding to SLX4 and recruitment to the ICL A small deletion in the same domain supports recruitment of XPF to the ICL, but inhibited the unhooking incisions most likely by disrupting a second, transient interaction with SLX4. Finally, mutation of residues in the nuclease domain did not affect localization of XPF-ERCC1 to the ICL but did prevent incisions on the ICL substrate. Our data support a model in which the ICL repair-specific function of XPF-ERCC1 is dependent on recruitment, positioning and substrate recognition. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  1. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Directory of Open Access Journals (Sweden)

    Cielito C Reyes-Gibby

    Full Text Available Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA, a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive and thymine degradation pathways (p = 1.06-08 were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis. The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67. In conclusion, gene network analysis identified novel molecules and

  2. Identifying novel genes and biological processes relevant to the development of cancer therapy-induced mucositis: An informative gene network analysis.

    Science.gov (United States)

    Reyes-Gibby, Cielito C; Melkonian, Stephanie C; Wang, Jian; Yu, Robert K; Shelburne, Samuel A; Lu, Charles; Gunn, Gary Brandon; Chambers, Mark S; Hanna, Ehab Y; Yeung, Sai-Ching J; Shete, Sanjay

    2017-01-01

    Mucositis is a complex, dose-limiting toxicity of chemotherapy or radiotherapy that leads to painful mouth ulcers, difficulty eating or swallowing, gastrointestinal distress, and reduced quality of life for patients with cancer. Mucositis is most common for those undergoing high-dose chemotherapy and hematopoietic stem cell transplantation and for those being treated for malignancies of the head and neck. Treatment and management of mucositis remain challenging. It is expected that multiple genes are involved in the formation, severity, and persistence of mucositis. We used Ingenuity Pathway Analysis (IPA), a novel network-based approach that integrates complex intracellular and intercellular interactions involved in diseases, to systematically explore the molecular complexity of mucositis. As a first step, we searched the literature to identify genes that harbor or are close to the genetic variants significantly associated with mucositis. Our literature review identified 27 candidate genes, of which ERCC1, XRCC1, and MTHFR were the most frequently studied for mucositis. On the basis of this 27-gene list, we used IPA to generate gene networks for mucositis. The most biologically significant novel molecules identified through IPA analyses included TP53, CTNNB1, MYC, RB1, P38 MAPK, and EP300. Additionally, uracil degradation II (reductive) and thymine degradation pathways (p = 1.06-08) were most significant. Finally, utilizing 66 SNPs within the 8 most connected IPA-derived candidate molecules, we conducted a genetic association study for oral mucositis in the head and neck cancer patients who were treated using chemotherapy and/or radiation therapy (186 head and neck cancer patients with oral mucositis vs. 699 head and neck cancer patients without oral mucositis). The top ranked gene identified through this association analysis was RB1 (rs2227311, p-value = 0.034, odds ratio = 0.67). In conclusion, gene network analysis identified novel molecules and biological

  3. Genetic polymorphisms in 19q13.3 genes associated with alteration of repair capacity to BPDE-DNA adducts in primary cultured lymphocytes.

    Science.gov (United States)

    Xiao, Mingyang; Xiao, Sha; Straaten, Tahar van der; Xue, Ping; Zhang, Guopei; Zheng, Xiao; Zhang, Qianye; Cai, Yuan; Jin, Cuihong; Yang, Jinghua; Wu, Shengwen; Zhu, Guolian; Lu, Xiaobo

    2016-12-01

    Benzo[a]pyrene(B[a]P), and its ultimate metabolite Benzo[a]pyrene 7,8-diol 9,10-epoxide (BPDE), are classic DNA damaging carcinogens. DNA damage in cells caused by BPDE is normally repaired by Nucleotide Excision Repair (NER) and Base Excision Repair (BER). Genetic variations in NER and BER can change individual DNA repair capacity to DNA damage induced by BPDE. In the present study we determined the number of in vitro induced BPDE-DNA adducts in lymphocytes, to reflect individual susceptibility to Polycyclic aromatic hydrocarbons (PAHs)-induced carcinogenesis. The BPDE-DNA adduct level in lymphocytes were assessed by high performance liquid chromatography (HPLC) in 281 randomly selected participants. We genotyped for 9 single nucleotide polymorphisms (SNPs) in genes involved in NER (XPB rs4150441, XPC rs2228001, rs2279017 and XPF rs4781560), BER (XRCC1 rs25487, rs25489 and rs1799782) and genes located on chromosome 19q13.2-3 (PPP1R13L rs1005165 and CAST rs967591). We found that 3 polymorphisms in chromosome 19q13.2-3 were associated with lower levels of BPDE-DNA adducts (MinorT allele in XRCC1 rs1799782, minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571). In addition, a modified comet assay was performed to further confirm the above conclusions. We found both minor T allele in PPP1R13L rs1005165 and minor A allele in CAST rs967571 were associated with the lower levels of BPDE-adducts. Our data suggested that the variant genotypes of genes in chromosome 19q13.2-3 are associated with the alteration of repair efficiency to DNA damage caused by Benzo[a]pyrene, and may contribute to enhance predictive value for individual's DNA repair capacity in response to environmental carcinogens. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A haplotype of polymorphisms in ASE-1, RAI and ERCC1 and the effects of tobacco smoking and alcohol consumption on risk of colorectal cancer: a Danish prospective case-cohort study

    DEFF Research Database (Denmark)

    Hansen, Rikke D; Sørensen, Mette; Tjønneland, Anne

    2008-01-01

    BACKGROUND: Single nucleotide polymorphisms (SNPs) are the most frequent type of genetic variation in the human genome, and are of interest for the study of susceptibility to and protection from diseases. The haplotype at chromosome 19q13.2-3 encompassing the three SNPs ASE-1 G-21A, RAI IVS1 A4364G...... and ERCC1 Asn118Asn have been associated with risk of breast cancer and lung cancer. Haplotype carriers are defined as the homozygous carriers of RAI IVS1 A4364GA, ERCC1 Asn118AsnT and ASE-1 G-21AG. We aimed to evaluate whether the three polymorphisms and the haplotype are associated to risk of colorectal...... of colorectal cancer were found. No statistically significant interactions between the genotypes and the lifestyle exposures smoking or alcohol consumption were observed. CONCLUSION: Our results suggest that the ASE-1 G-21A, RAI IVS1 A4364G and ERCC1 Asn118Asn polymorphisms and the previously identified...

  5. Determination of the frequency of polymorphisms in genes related to the genome stability maintenance of the population residing at Monte Alegre, PA (Brazil) municipality

    International Nuclear Information System (INIS)

    Hozumi, Cristiny Gomes

    2010-01-01

    The human exposure to ionizing radiation coming from natural sources is an inherent feature of human life on earth, for man and all living things have always been exposed to these sources. Ionizing radiation is a known genotoxic agent which can affect the genomic stability and genes related to DNA repair may play a role when they have committed certain polymorphism. This study aimed to analyze the frequency of polymorphisms (SNPs) in genes of DNA repair and cell cycle control: hOGG1 (Ser326Cys), XRCC3 (Thr241 Met) and p53 (Arg72Pro) in saliva samples from a population located Monte Alegre, state of Para were collected in August 2008 and 40 samples of men and 46 samples of women, adding a total of 86 samples. By RFLP was determined the frequency of homozygous genotypes and / or heterozygous for polymorphic genes. The I)OGG1 gene was 5% of the allele 326Cys, XRCC3 gene found about 21 % of the allele 241 Met and p53 gene showed 40.8% of the 72Pro allele. And the genotype frequencies of individuals for the three genes were 91.04%, 88.06% and 59.7% for homozygous wild genotype, 5.97%, 11.94% and 22.39% for heterozygote genotype and 2,99%, zero and 17:91% for homozygous polymorphic hOGG1 genes respectively, XRCC3, p53. These values are similar to those found in previous studies. The influence of these polymorphisms, which are involved in DNA repair and consequent genotoxicity induced by radiation depends on dose and exposure factors such as smoking, which is statistically a factor in public health surveillance in the region. This study gathered information and molecular epidemiology in Monte Alegre, that help to characterization of local population. (author)

  6. Role of the XRCC1 - APE1 interaction in the maintenance of genetic stability

    International Nuclear Information System (INIS)

    Sossou-Becker, M.

    2005-09-01

    This thesis is divided in four chapters: the first one concerns the genetic instability, the second one is devoted to the DNA repair, the third one is related to the XRCC1 and the chapter four concerns APE1. Then, are defined the objectives and the results. This work fits into the studies of repair mechanisms. The physical and functional characterisation of the interaction between XRCC1 and APE1 allowed to understand its involvement in the prevention of the genetic instability at the origin of cancer. (N.C.)

  7. Role of XRCC4 phosphorylation by DNA-PK in the regulation of NHEJ repair pathway of DNA double strand break

    International Nuclear Information System (INIS)

    Sharma, Mukesh Kumar; Imamichi, Shoji; Fukuchi, Mikoto; Kamdar, Radhika P.; Sicheng, Liu; Wanotayan, Rujira; Matsumoto, Yoshihisa

    2014-01-01

    Non-homologous end-joining (NHEJ) is the predominant pathway of DNA double strand breaks in higher eukaryotes and is active throughout the cell cycle. NHEJ repair includes many factors as Ku70/86, DNA-PKcs, XRCC4-Ligase IV complex and XLF (also known as Cernunnos). In these factors, DNA-PKcs acts as central regulator in NHEJ repair. It recruited at the DNA damages site after DNA damage and after association with Ku its kinase activity is activated. It phosphorylates many of important NHEJ proteins in vitro including XRCC4, Ku 70/86, Artemis, and even DNA-PKcs but till now, very less studies have been done to know the role and significance of phosphorylation in the NHEJ repair. Studies by other researchers identified various phosphorylation sites in XRCC4 by DNA-PK using mass spectrometry but these phosphorylation sites were shown to be dispensable for DSB repair. In the present investigation, we identified 3 serine and one new threonine phosphorylation sites in XRCC4 protein by DNA-PK. In vivo phosphorylation at these sites was verified by generating phosphorylation specific antibodies and the requirement for DNA-PK therein was verified by using DNA-PK inhibitor and DNA-PK proficient and deficient cell lines in response to radiation and zeocin treatment. We have also found that phosphorylation at these sites showed dose dependency in response to radiation treatment. The two serine and one threonine phosphorylation site is also biological important as their mutation into alanine significantly elevated radiosensitivity as measured by colony formation assay. Neutral comet assay showed delayed kinetics in DSB repair of these mutants. Furthermore, we have found a protein, with putative DSB repair function, which interacts with domain including the phosphorylation sites.These results indicate that these phosphorylation sites would mediate functional link between XRCC4 and DNA-PK. (author)

  8. An explorative analysis of ERCC1-19q13 copy number aberrations in a chemonaive stage III colorectal cancer cohort

    DEFF Research Database (Denmark)

    Smith, David Hersi; Christensen, Ib Jarle; Jensen, Niels Frank

    2013-01-01

    Background: Platinum-based chemotherapy has long been used in the treatment of a variety of cancers and functions by inducing DNA damage. ERCC1 and ERCC4 are involved in the removal of this damage and have previously been implicated in resistance to platinum compounds. The aim of the current inve...

  9. Significant interactions between maternal PAH exposure and haplotypes in candidate genes on B[a]P-DNA adducts in a NYC cohort of non-smoking African-American and Dominican mothers and newborns

    Science.gov (United States)

    Tang, Deliang

    2014-01-01

    Polycyclic aromatic hydrocarbons (PAH) are a class of chemicals common in the environment. Certain PAH are carcinogenic, although the degree to which genetic variation influences susceptibility to carcinogenic PAH remains unclear. Also unknown is the influence of genetic variation on the procarcinogenic effect of in utero exposures to PAH. Benzo[a]pyrene (B[a]P) is a well-studied PAH that is classified as a probable human carcinogen. Within our New York City-based cohort, we explored interactions between maternal exposure to airborne PAH during pregnancy and maternal and newborn haplotypes (and in one case, a single-nucleotide polymorphism) in key B[a]P metabolism genes on B[a]P-DNA adducts in paired cord blood samples. The study subjects included non-smoking African-American (n = 132) and Dominican (n = 235) women with available data on maternal PAH exposure, paired cord adducts and genetic data who resided in the Washington Heights, Central Harlem and South Bronx neighborhoods of New York City. We selected seven maternal and newborn genes related to B[a]P metabolism, detoxification and repair for our analyses: CYP1A1, CYP1A2, CYP1B1, GSTM3, GSTT2, NQO1 and XRCC1. We found significant interactions between maternal PAH exposure and haplotype on cord B[a]P-DNA adducts in the following genes: maternal CYP1B1, XRCC1 and GSTM3, and newborn CYP1A2 and XRCC1 in African-Americans; and maternal XRCC1 and newborn NQO1 in Dominicans. These novel findings highlight differences in maternal and newborn genetic contributions to B[a]P-DNA adduct formation, as well as ethnic differences in gene–environment interactions, and have the potential to identify at-risk subpopulations who are susceptible to the carcinogenic potential of B[a]P. PMID:24177223

  10. Basic concepts of medical genetics formal genetics, Part 3

    African Journals Online (AJOL)

    Mohammad Saad Zaghloul Salem

    2014-05-14

    May 14, 2014 ... pattern(s) of inheritance, the nature of occurrence (sporadic versus familial) .... due to a de novo microdeletion of maternal origin spanning the ERCC6 ... Mutation of mitochondrial genes (mitDNA): mitochondrial disorders. 3.

  11. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study

    Directory of Open Access Journals (Sweden)

    Kristof Y Neven, MSc

    2018-04-01

    Full Text Available Summary: Background: Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes. Methods: This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE birth cohort, which enrols pairs of mothers and neonates (singleton births only at the East-Limburg Hospital (Genk, Belgium. Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1. We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM2·5, black carbon, and NO2 over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort. Findings: 500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m3 for PM2·5, 0·36 μg/m3 for black carbon, and 5·34 μg/m3 for NO2. Among these samples, increased Alu mutation rate was associated with greater exposure to PM2·5 (r=0·26, p<0·0001 and black carbon (r=0·33, p<0·0001, but not NO2

  12. Association of single nucleotide polymorphisms with radiation-induced esophagitis

    International Nuclear Information System (INIS)

    Zhang Li; Wang Lvhua; Yang Ming; Ji Wei; Zhao Lujun; Yang Weizhi; Zhou Zongmei; Ou Guangfei; Lin Dongxin

    2008-01-01

    Objective: To evaluate the relationship between single nucleotide polymorphism(SNP) of candidate genes and radiation-induced esophagitis (RIE) in patients with lung cancer. Methods: Between Jan. 2004 and Aug. 2006, 170 patients with pathologically diagnosed lung cancer were enrolled in this study. The total target dose was 45-70 Gy (median 60 Gy). One hundred and thirty-two patients were treated with three-dimensional conformal radiotherapy(3DCRT) and 38 with two-dimensional radiotherapy(2DRT). Forty-one patients received radiotherapy alone, 78 received sequential chemoradiotherapy and 51 received concurrent chemoradiotherapy. Thirty-seven SNPs in 20 DNA repair genes were analyzed by using PCR- based restricted fragment length polymorphism (RFLP). These genes were apoptosis and inflammatory cytokine genes including ATM, ERCC1, XRCC3, XRCCI, XPD, XPC, XPG, NBS1, STK15, ZNF350, ADPRT, TP53, FAS, FASL, CYP2D6*4, CASPASE8, COX2,TGF-β, CD14 and ACE. The endpoint was grade ≥2 R I E. Results: Forty of the 170 patients developed grade ≥2 R I E, including 36 in grade 2 and 4 in grade 3. Univariate analysis revealed that radiation technique and concurrent chemoradiotherapy were statistically significant relatives to the incidence of R I E (P=0.032, 0.049), and both of them had the trend associating with the esophagitis (P=0.072, 0.094). An increased incidence of esophagitis was observed associating with the TGF-β 1 -509T and XPD 751Lys/Lys genotypes (χ 2 =5.65, P=0.017; χ 2 =3.84, P=0.048) in multivariate analysis. Conclusions: Genetic polymorphisms in TGF-β 1 gene and XPD gene have a significant association with radiation-induced esophagitis. (authors)

  13. Chromosomal damage and polymorphisms of DNA repair genes XRCC1 and XRCC3 in workers exposed to chromium

    Czech Academy of Sciences Publication Activity Database

    Halasová, E.; Mataková, T.; Mušák, L.; Poláková, Veronika; Vodička, Pavel

    2008-01-01

    Roč. 29, č. 5 (2008), s. 658-662 ISSN 0172-780X Institutional research plan: CEZ:AV0Z50390703 Keywords : Chromosomal aberrations * Polymorphisms * Repair genes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.359, year: 2008

  14. Transcriptional and post-transcriptional regulation of nucleotide excision repair genes in human cells

    Energy Technology Data Exchange (ETDEWEB)

    Lefkofsky, Hailey B. [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Veloso, Artur [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Bioinformatics Program, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI (United States); Ljungman, Mats, E-mail: ljungman@umich.edu [Translational Oncology Program, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Radiation Oncology, University of Michigan Medical School, Ann Arbor, MI (United States); Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Nucleotide excision repair (NER) removes DNA helix-distorting lesions induced by UV light and various chemotherapeutic agents such as cisplatin. These lesions efficiently block the elongation of transcription and need to be rapidly removed by transcription-coupled NER (TC-NER) to avoid the induction of apoptosis. Twenty-nine genes have been classified to code for proteins participating in nucleotide excision repair (NER) in human cells. Here we explored the transcriptional and post-transcriptional regulation of these NER genes across 13 human cell lines using Bru-seq and BruChase-seq, respectively. Many NER genes are relatively large in size and therefore will be easily inactivated by UV-induced transcription-blocking lesions. Furthermore, many of these genes produce transcripts that are rather unstable. Thus, these genes are expected to rapidly lose expression leading to a diminished function of NER. One such gene is ERCC6 that codes for the CSB protein critical for TC-NER. Due to its large gene size and high RNA turnover rate, the ERCC6 gene may act as dosimeter of DNA damage so that at high levels of damage, ERCC6 RNA levels would be diminished leading to the loss of CSB expression, inhibition of TC-NER and the promotion of cell death.

  15. Radiosensitivity and genes

    Energy Technology Data Exchange (ETDEWEB)

    Qiyue, Hu; Mingyue, Lun [Suzhou Medical Coll., JS (China)

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G{sub 1} phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM{sub 9} cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation.

  16. Radiosensitivity and genes

    International Nuclear Information System (INIS)

    Hu Qiyue; Lun Mingyue

    1995-07-01

    Reported effects of some oncogenes, tumour suppressor genes and DNA repair genes on sensitivity of cells to ionizing radiation are reviewed. The role of oncogenes in cellular response to irradiation is discussed, especially the extensively studied oncogenes such as the ras gene family. For tumour suppressor genes, mainly the p53, which is increasingly implicated as a gene affecting radiosensitivity, is reviewed. It is considered that there is a cell cycle checkpoint determinant which is postulated to be able to arrest the irradiated cells in G 1 phase to allow them to repair damage before they undergo DNA synthesis. So far there are six DNA repair genes which have been cloned in mammalian cells, but only one, XRCC1, appears to be involved in repair of human X-ray damage. XRCC1 can correct high sisterchromatid exchange levels when transferred into EM 9 cells, but its expression seems to have no correlation with radiosensitivity of human neck and head tumour cells. Radiosensitivity is an intricate issue which may involve many factors. A scheme of cellular reactions after exposure to irradiation is proposed to indicate a possible sequence of events initiated by ionizing radiation

  17. Functional capacity of XRCC1 protein variants identified in DNA repair-deficient Chinese hamster ovary cell lines and the human population

    DEFF Research Database (Denmark)

    Berquist, Brian R; Singh, Dharmendra Kumar; Fan, Jinshui

    2010-01-01

    XRCC1 operates as a scaffold protein in base excision repair, a pathway that copes with base and sugar damage in DNA. Studies using recombinant XRCC1 proteins revealed that: a C389Y substitution, responsible for the repair defects of the EM-C11 CHO cell line, caused protein instability; a V86R...... mutation abolished the interaction with POLbeta, but did not disrupt the interactions with PARP-1, LIG3alpha and PCNA; and an E98K substitution, identified in EM-C12, reduced protein integrity, marginally destabilized the POLbeta interaction, and slightly enhanced DNA binding. Two rare (P161L and Y576S...

  18. Effect of ERCC8 tagSNPs and their association with H. pylori infection, smoking, and alcohol consumption on gastric cancer and atrophic gastritis risk.

    Science.gov (United States)

    Jing, Jing-Jing; Sun, Li-Ping; Xu, Qian; Yuan, Yuan

    2015-12-01

    Excision repair cross-complementing group 8 (ERCC8) plays a critical role in DNA repair. Genetic polymorphisms in ERCC8 may contribute to the risk of cancer development. We selected tag single nucleotide polymorphisms (tagSNPs) in Chinese patients from the HapMap database to investigate associations with gastric cancer and its precursors. Genomic DNA was extracted from 394 controls, 394 atrophic gastritis, and 394 gastric cancer cases in northern Chinese patients, and genotypes were identified using the Sequenom MassARRAY system. We found that the ERCC8 rs158572 GG+GA genotype showed a 1.651-fold (95 % confidence interval (CI) = 1.109-2.457, P = 0.013) increased risk of gastric cancer compared with the AA genotype, especially in diffuse type. Stratified analysis comparing the common genotype revealed significantly increased gastric cancer risk in males and individuals older than 50 years with rs158572 GA/GG/GG+GA genotypes, while individuals older than 50 years with rs158916 CT/CC+CT genotypes were less susceptible to atrophic gastritis. Haplotype analysis showed that the G-T haplotype was associated with increased risk of gastric cancer. Statistically significant interactions between the two ERCC8 tagSNPs and Helicobacter pylori infection were observed for gastric cancer and atrophic gastritis risk (P cancer compared with non-smokers and non-drinkers homozygous for AA. Our findings suggested that ERCC8 rs158572 and rs158916, alone or together with environmental factors, might be associated with gastric cancer and atrophic gastritis susceptibility. Further validation of our results in larger populations along with additional studies evaluating the underlying molecular function is required.

  19. Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Reinardy, Helena C.; Syrett, James R. [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Jeffree, Ross A. [Faculty of Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007 (Australia); Henry, Theodore B., E-mail: ted.henry@plymouth.ac.uk [School of Biomedical and Biological Sciences, University of Plymouth (United Kingdom); Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN 37996 (United States); Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN 37996. USA (United States); Jha, Awadhesh N. [School of Biomedical and Biological Sciences, The University of Plymouth (United Kingdom)

    2013-01-15

    Although cobalt (Co) is an environmental contaminant of surface waters in both radioactive (e.g. {sup 60}Co) and non-radioactive forms, there is relatively little information about Co toxicity in fishes. The objective of this study was to investigate acute and chronic toxicity of Co in zebrafish, with emphasis on male genotoxicity and implications for reproductive success. The lethal concentration for 50% mortality (LC{sub 50}) in larval zebrafish exposed (96 h) to 0-50 mg l{sup -1} Co was 35.3 {+-} 1.1 (95% C.I.) mg l{sup -1} Co. Adult zebrafish were exposed (13 d) to sub-lethal (0-25 mg l{sup -1}) Co and allowed to spawn every 4 d and embryos were collected. After 12-d exposure, fertilisation rate was reduced (6% total eggs fertilised, 25 mg l{sup -1}) and embryo survival to hatching decreased (60% fertilised eggs survived, 25 mg l{sup -1}). A concentration-dependent increase in DNA strand breaks was detected in sperm from males exposed (13 d) to Co, and DNA damage in sperm returned to control levels after males recovered for 6 d in clean water. Induction of DNA repair genes (rad51, xrcc5, and xrcc6) in testes was complex and not directly related to Co concentration, although there was significant induction in fish exposed to 15 and 25 mg l{sup -1} Co relative to controls. Induction of 4.0 {+-} 0.9, 2.5 {+-} 0.7, and 3.1 {+-} 0.7-fold change (mean {+-} S.E.M. for rad51, xrcc5, and xrcc6, respectively) was observed in testes at the highest Co concentration (25 mg l{sup -1}). Expression of these genes was not altered in offspring (larvae) spawned after 12-d exposure. Chronic exposure to Co resulted in DNA damage in sperm, induction of DNA repair genes in testes, and indications of reduced reproductive success.

  20. Genetic polymorphisms of XRCC1 (codon 399) and susceptibility to breast cancer in Iranian women, a case-control study.

    Science.gov (United States)

    Saadat, Mostafa; Kohan, Leila; Omidvari, Shahpour

    2008-10-01

    The X-ray repair cross-complementation group 1 (XRCC1) protein plays an important role in base excision repair. In the present study, we specifically investigated whether common genetic variant in XRCC1 (exon 10, codon Arg399Gln) was associated with an altered risk of breast cancer. The eligible cases were patients at chemotherapy unit of Nemazi hospital, Shiraz Iran, from October 1999 to August 2000 and from July 2004 to July 2005. The present study included 186 females with breast cancer. Age frequency-matched controls were randomly selected from the healthy females blood donor, according to the age distribution of the cases. A total of 187 healthy females included in the study. Using PCR-based method, the XRCC1 Arg399Gln polymorphism was determined. In control group the 399Gln allele frequency was 32.6%. The genotypic frequencies of the control subjects did not show significant deviation from Hardy-Weinberg equilibrium (chi(2) = 1.683, df = 1, P > 0.05). A statistically significant association was observed in comparison between Gln/Gln and Arg/Arg genotype (OR = 2.01, 95% CI:1.02-3.94, P = 0.041). There was no linear trend for presence of 0, 1, and 2 of the 399Gln allele and risk of breast cancer (chi(2) = 1.212, P = 0.271). In the recessive effect of the Gln allele (comparison between Gln/Gln vs. Arg/Arg+Arg/Gln), Gln/Gln genotype significantly increased the risk of breast cancer (OR = 2.31, 95% CI:1.21-4.35, P = 0.010). In the dominant effect of the Gln allele (comparison between Gln/Gln+Arg/Gln vs. Arg/Arg), Gln/Gln+Arg/Gln genotypes was not associated with the risk of breast cancer (OR = 0.95, 95% CI:0.63-1.42, P = 0.799). It is concluded that 399Gln allele may act as a recessive allele and increase the breast cancer risk.

  1. Functional Analysis of Breast Cancer Susceptibility Gene BRCA2

    National Research Council Canada - National Science Library

    Wang, Yingcai

    1999-01-01

    ...- specific RecA homologue, but not with XRCC2, Rad51D or the replication Protein (RPA). The specific interaction of BRCA2 and hsDMCl suggests that BRCA2 may be involved in DNA recombination and repair both in germ and somatic cells...

  2. Association of ERCC1 protein expression to platinum resistance in epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Dahl Steffensen, Karina; Waldstrøm, Marianne; Jakobsen, Anders

    was to investigate if immunohistochemical expression of ERCC1 protein was associated with resistance to standard combination carboplatin and paclitaxel chemotherapy in newly diagnosed ovarian cancer patients. Methods: Formalin-fixed, paraffin-embedded tissue sections from 101 patients with newly diagnosed ovarian...

  3. The Rev1 interacting region (RIR) motif in the scaffold protein XRCC1 mediates a low-affinity interaction with polynucleotide kinase/phosphatase (PNKP) during DNA single-strand break repair.

    Science.gov (United States)

    Breslin, Claire; Mani, Rajam S; Fanta, Mesfin; Hoch, Nicolas; Weinfeld, Michael; Caldecott, Keith W

    2017-09-29

    The scaffold protein X-ray repair cross-complementing 1 (XRCC1) interacts with multiple enzymes involved in DNA base excision repair and single-strand break repair (SSBR) and is important for genetic integrity and normal neurological function. One of the most important interactions of XRCC1 is that with polynucleotide kinase/phosphatase (PNKP), a dual-function DNA kinase/phosphatase that processes damaged DNA termini and that, if mutated, results in ataxia with oculomotor apraxia 4 (AOA4) and microcephaly with early-onset seizures and developmental delay (MCSZ). XRCC1 and PNKP interact via a high-affinity phosphorylation-dependent interaction site in XRCC1 and a forkhead-associated domain in PNKP. Here, we identified using biochemical and biophysical approaches a second PNKP interaction site in XRCC1 that binds PNKP with lower affinity and independently of XRCC1 phosphorylation. However, this interaction nevertheless stimulated PNKP activity and promoted SSBR and cell survival. The low-affinity interaction site required the highly conserved Rev1-interacting region (RIR) motif in XRCC1 and included three critical and evolutionarily invariant phenylalanine residues. We propose a bipartite interaction model in which the previously identified high-affinity interaction acts as a molecular tether, holding XRCC1 and PNKP together and thereby promoting the low-affinity interaction identified here, which then stimulates PNKP directly. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Search for novel remedies to augment radiation resistance of inhabitants of Fukushima and Chernobyl disasters: identifying DNA repair protein XRCC4 inhibitors.

    Science.gov (United States)

    Sun, Mao-Feng; Chen, Hsin-Yi; Tsai, Fuu-Jen; Lui, Shu-Hui; Chen, Chih-Yi; Chen, Calvin Yu-Chian

    2011-10-01

    Two nuclear plant disasters occurring within a span of 25 years threaten health and genome integrity both in Fukushima and Chernobyl. Search for remedies capable of enhancing DNA repair efficiency and radiation resistance in humans appears to be a urgent problem for now. XRCC4 is an important enhancer in promoting repair pathway triggered by DNA double-strand break (DSB). In the context of radiation therapy, active XRCC4 could reduce DSB-mediated apoptotic effect on cancer cells. Hence, developing XRCC4 inhibitors could possibly enhance radiotherapy outcomes. In this study, we screened traditional Chinese medicine (TCM) database, TCM Database@Taiwan, and have identified three potent inhibitor agents against XRCC4. Through molecular dynamics simulation, we have determined that the protein-ligand interactions were focused at Lys188 on chain A and Lys187 on chain B. Intriguingly, the hydrogen bonds for all three ligands fluctuated frequently but were held at close approximation. The pi-cation interactions and ionic interactions mediated by o-hydroxyphenyl and carboxyl functional groups respectively have been demonstrated to play critical roles in stabilizing binding conformations. Based on these results, we reported the identification of potential radiotherapy enhancers from TCM. We further characterized the key binding elements for inhibiting the XRCC4 activities.

  5. Expression and clinical implication of Beclin1, HMGB1, p62, survivin, BRCA1 and ERCC1 in epithelial ovarian tumor tissues.

    Science.gov (United States)

    Ju, L-L; Zhao, C Y; Ye, K-F; Yang, H; Zhang, J

    2016-05-01

    The aim of the present study is to investigate the differential expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 protein in epithelial ovarian cancer (EOC) and to evaluate the relationship between autophagy and platinum resistance of EOC patients during platinum-based chemotherapy with the protein expression. Expression of Beclin1, HMGB1, p62, survivin, ERCC1 and BRCA1 were detected with immunohistochemistry in 60 patients, including 39 with epithelial ovarian cancer (EOC), 13 benign epithelial ovarian tumor tissue (BET) and 8 borderline ovarian tumor tissue. Beclin, p62 and ERCC1 expression was significantly higher in the EOC than the BET (p0.05). BRCA1 expression was lower in EOC than BET (pepithelial ovarian cancer.

  6. CEBPG transcription factor correlates with antioxidant and DNA repair genes in normal bronchial epithelial cells but not in individuals with bronchogenic carcinoma

    International Nuclear Information System (INIS)

    Mullins, D'Anna N; Crawford, Erin L; Khuder, Sadik A; Hernandez, Dawn-Alita; Yoon, Youngsook; Willey, James C

    2005-01-01

    Cigarette smoking is the primary cause of bronchogenic carcinoma (BC), yet only 10–15% of heavy smokers develop BC and it is likely that this variation in risk is, in part, genetically determined. We previously reported a set of antioxidant genes for which transcript abundance was lower in normal bronchial epithelial cells (NBEC) of BC individuals compared to non-BC individuals. In unpublished studies of the same NBEC samples, transcript abundance values for several DNA repair genes were correlated with these antioxidant genes. From these data, we hypothesized that antioxidant and DNA repair genes are co-regulated by one or more transcription factors and that inter-individual variation in expression and/or function of one or more of these transcription factors is responsible for inter-individual variation in risk for BC. The putative transcription factor recognition sites common to six of the antioxidant genes were identified through in silico DNA sequence analysis. The transcript abundance values of these transcription factors (n = 6) and an expanded group of antioxidant and DNA repair genes (n = 16) were measured simultaneously by quantitative PCR in NBEC of 24 non-BC and 25 BC individuals. CEBPG transcription factor was significantly (p < 0.01) correlated with eight of the antioxidant or DNA repair genes in non-BC individuals but not in BC individuals. In BC individuals the correlation with CEBPG was significantly (p < 0.01) lower than that of non-BC individuals for four of the genes (XRCC1, ERCC5, GSTP1, and SOD1) and the difference was nearly significant for GPX1. The only other transcription factor correlated with any of these five target genes in non-BC individuals was E2F1. E2F1 was correlated with GSTP1 among non-BC individuals, but in contrast to CEBPG, there was no significant difference in this correlation in non-BC individuals compared to BC individuals. We conclude that CEBPG is the transcription factor primarily responsible for regulating

  7. The relationship of platinum resistance and ERCC1 protein expression in epithelial ovarian cancer

    DEFF Research Database (Denmark)

    Steffensen, Karina Dahl; Waldstrøm, Marianne; Jakobsen, Anders

    2009-01-01

    : Formalin-fixed, paraffin-embedded tissue sections from 101 patients with newly diagnosed ovarian cancer were used for immunohistochemical staining for the ERCC1 protein. All patients received carboplatin-paclitaxel combination chemotherapy. RESULTS: Excision repair cross-complementation group 1 enzyme...

  8. Synthesis of PLGA nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage

    Directory of Open Access Journals (Sweden)

    Srivastava AK

    2013-04-01

    Full Text Available Amit Kumar Srivastava,1 Priyanka Bhatnagar,2 Madhulika Singh,1 Sanjay Mishra,1 Pradeep Kumar,2 Yogeshwer Shukla,1 Kailash Chand Gupta1,2 1Proteomics Laboratory, Indian Institute of Toxicology Research (CSIR, Lucknow, India; 2Nucleic Acid Research Laboratory, Institute of Genomics and Integrative Biology (CSIR, Delhi University Campus, India Abstract: In spite of proficient results of several phytochemicals in preclinical settings, the conversion rate from bench to bedside is not very encouraging. Many reasons are attributed to this limited success, including inefficient systemic delivery and bioavailability under in vivo conditions. To achieve improved efficacy, polyphenolic constituents of black (theaflavin [TF] and green (epigallocatechin-3-gallate [EGCG] tea in poly(lactide-co-glycolide nanoparticles (PLGA-NPs were entrapped with entrapment efficacy of ~18% and 26%, respectively. Further, their preventive potential against 7,12-dimethylbenzanthracene (DMBA-induced DNA damage in mouse skin using DNA alkaline unwinding assay was evaluated. Pretreatment (topically of mouse skin with either TF or EGCG (100 µg/mouse doses exhibits protection of 45.34% and 28.32%, respectively, against DMBA-induced DNA damage. However, pretreatment with TF-loaded PLGA-NPs protects against DNA damage 64.41% by 1/20th dose of bulk, 71.79% by 1/10th dose of bulk, and 72.46% by 1/5th dose of bulk. Similarly, 51.28% (1/20th of bulk, 57.63% (1/10th of bulk, and 63.14% (1/5th of bulk prevention was noted using EGCG-loaded PLGA-NP doses. These results showed that tea polyphenol-loaded PLGA-NPs have ~30-fold dose-advantage than bulk TF or EGCG doses. Additionally, TF- or EGCG-loaded PLGA-NPs showed significant potential for induction of DNA repair genes (XRCC1, XRCC3, and ERCC3 and suppression of DNA damage responsive genes (p53, p21, MDM2, GADD45α, and COX-2 as compared with respective bulk TF or EGCG doses. Taken together, TF- or EGCG-loaded PLGA-NPs showed a superior

  9. Evaluation of a candidate breast cancer associated SNP in ERCC4 as a risk modifier in BRCA1 and BRCA2 mutation carriers. Results from the Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA)

    DEFF Research Database (Denmark)

    Osorio, A.; Milne, R.L.; Pita, G.

    2009-01-01

    BACKGROUND: In this study we aimed to evaluate the role of a SNP in intron 1 of the ERCC4 gene (rs744154), previously reported to be associated with a reduced risk of breast cancer in the general population, as a breast cancer risk modifier in BRCA1 and BRCA2 mutation carriers. METHODS: We have...... genotyped rs744154 in 9408 BRCA1 and 5632 BRCA2 mutation carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and assessed its association with breast cancer risk using a retrospective weighted cohort approach. RESULTS: We found no evidence of association with breast cancer risk...... for BRCA1 (per-allele HR: 0.98, 95% CI: 0.93-1.04, P = 0.5) or BRCA2 (per-allele HR: 0.97, 95% CI: 0.89-1.06, P = 0.5) mutation carriers. CONCLUSION: This SNP is not a significant modifier of breast cancer risk for mutation carriers, though weak associations cannot be ruled out Udgivelsesdato: 2009/12/15...

  10. Characterization of the linkage disequilibrium structure and identification of tagging-SNPs in five DNA repair genes

    International Nuclear Information System (INIS)

    Allen-Brady, Kristina; Camp, Nicola J

    2005-01-01

    Characterization of the linkage disequilibrium (LD) structure of candidate genes is the basis for an effective association study of complex diseases such as cancer. In this study, we report the LD and haplotype architecture and tagging-single nucleotide polymorphisms (tSNPs) for five DNA repair genes: ATM, MRE11A, XRCC4, NBS1 and RAD50. The genes ATM, MRE11A, and XRCC4 were characterized using a panel of 94 unrelated female subjects (47 breast cancer cases, 47 controls) obtained from high-risk breast cancer families. A similar LD structure and tSNP analysis was performed for NBS1 and RAD50, using publicly available genotyping data. We studied a total of 61 SNPs at an average marker density of 10 kb. Using a matrix decomposition algorithm, based on principal component analysis, we captured >90% of the intragenetic variation for each gene. Our results revealed that three of the five genes did not conform to a haplotype block structure (MRE11A, RAD50 and XRCC4). Instead, the data fit a more flexible LD group paradigm, where SNPs in high LD are not required to be contiguous. Traditional haplotype blocks assume recombination is the only dynamic at work. For ATM, MRE11A and XRCC4 we repeated the analysis in cases and controls separately to determine whether LD structure was consistent across breast cancer cases and controls. No substantial difference in LD structures was found. This study suggests that appropriate SNP selection for an association study involving candidate genes should allow for both mutation and recombination, which shape the population-level genomic structure. Furthermore, LD structure characterization in either breast cancer cases or controls appears to be sufficient for future cancer studies utilizing these genes

  11. Cadmium delays non-homologous end joining (NHEJ) repair via inhibition of DNA-PKcs phosphorylation and downregulation of XRCC4 and Ligase IV

    Energy Technology Data Exchange (ETDEWEB)

    Li, Weiwei; Gu, Xueyan; Zhang, Xiaoning; Kong, Jinxin [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China); Ding, Nan [Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Qi, Yongmei; Zhang, Yingmei [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China); Wang, Jufang [Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Huang, Dejun, E-mail: huangdj@lzu.edu.cn [Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000 (China)

    2015-09-15

    Highlights: • Cadmium (Cd) exposure delayed the repair of DNA damage induced by X-ray. • Cd exposure altered the phosphorylation of DNA-PKcs on Thr-2609 and Ser-2056 sites. • Cd impaired the formation of XRCC4 and Ligase IV foci, and down-regulated their protein expression. • Zinc mitigated the effects of Cd on DDR by regulating pDNA-PKcs (Thr-2609), XRCC4 and Ligase IV. - Abstract: Although studies have shown that cadmium (Cd) interfered with DNA damage repair (DDR), whether Cd could affect non-homologous end joining (NHEJ) repair remains elusive. To further understand the effect of Cd on DDR, we used X-ray irradiation of Hela cells as an in vitro model system, along with γH2AX and 53BP1 as markers for DNA damage. Results showed that X-ray significantly increased γH2AX and 53BP1 foci in Hela cells (p < 0.01), all of which are characteristic of accrued DNA damage. The number of foci declined rapidly over time (1–8 h postirradiation), indicating an initiation of NHEJ process. However, the disappearance of γH2AX and 53BP1 foci was remarkably slowed by Cd pretreatment (p < 0.01), suggesting that Cd reduced the efficiency of NHEJ. To further elucidate the mechanisms of Cd toxicity, several markers of NHEJ pathway including Ku70, DNA-PKcs, XRCC4 and Ligase IV were examined. Our data showed that Cd altered the phosphorylation of DNA-PKcs, and reduced the expression of both XRCC4 and Ligase IV in irradiated cells. These observations are indicative of the impairment of NHEJ-dependent DNA repair pathways. In addition, zinc (Zn) mitigated the effects of Cd on NHEJ, suggesting that the Cd-induced NHEJ alteration may partly result from the displacement of Zn or from an interference with the normal function of Zn-containing proteins by Cd. Our findings provide a new insight into the toxicity of Cd on NHEJ repair and its underlying mechanisms in human cells.

  12. Computational Characterization of Small Molecules Binding to the Human XPF Active Site and Virtual Screening to Identify Potential New DNA Repair Inhibitors Targeting the ERCC1-XPF Endonuclease

    Directory of Open Access Journals (Sweden)

    Francesco Gentile

    2018-04-01

    Full Text Available The DNA excision repair protein ERCC-1-DNA repair endonuclease XPF (ERCC1-XPF is a heterodimeric endonuclease essential for the nucleotide excision repair (NER DNA repair pathway. Although its activity is required to maintain genome integrity in healthy cells, ERCC1-XPF can counteract the effect of DNA-damaging therapies such as platinum-based chemotherapy in cancer cells. Therefore, a promising approach to enhance the effect of these therapies is to combine their use with small molecules, which can inhibit the repair mechanisms in cancer cells. Currently, there are no structures available for the catalytic site of the human ERCC1-XPF, which performs the metal-mediated cleavage of a DNA damaged strand at 5′. We adopted a homology modeling strategy to build a structural model of the human XPF nuclease domain which contained the active site and to extract dominant conformations of the domain using molecular dynamics simulations followed by clustering of the trajectory. We investigated the binding modes of known small molecule inhibitors targeting the active site to build a pharmacophore model. We then performed a virtual screening of the ZINC Is Not Commercial 15 (ZINC15 database to identify new ERCC1-XPF endonuclease inhibitors. Our work provides structural insights regarding the binding mode of small molecules targeting the ERCC1-XPF active site that can be used to rationally optimize such compounds. We also propose a set of new potential DNA repair inhibitors to be considered for combination cancer therapy strategies.

  13. Several tetratricopeptide repeat (TPR) motifs of FANCG are required for assembly of the BRCA2/D1-D2-G-X3 complex, FANCD2 monoubiquitylation and phleomycin resistance

    International Nuclear Information System (INIS)

    Wilson, James B.; Blom, Eric; Cunningham, Ryan; Xiao, Yuxuan; Kupfer, Gary M.; Jones, Nigel J.

    2010-01-01

    The Fanconi anaemia (FA) FANCG protein is an integral component of the FA nuclear core complex that is required for monoubiquitylation of FANCD2. FANCG is also part of another protein complex termed D1-D2-G-X3 that contains FANCD2 and the homologous recombination repair proteins BRCA2 (FANCD1) and XRCC3. Formation of the D1-D2-G-X3 complex is mediated by serine-7 phosphorylation of FANCG and occurs independently of the FA core complex and FANCD2 monoubiquitylation. FANCG contains seven tetratricopeptide repeat (TPR) motifs that mediate protein-protein interactions and here we show that mutation of several of the TPR motifs at a conserved consensus residue ablates the in vivo binding activity of FANCG. Expression of mutated TPR1, TPR2, TPR5 and TPR6 in Chinese hamster fancg mutant NM3 fails to functionally complement its hypersensitivities to mitomycin C (MMC) and phleomycin and fails to restore FANCD2 monoubiquitylation. Using co-immunoprecipitation analysis, we demonstrate that these TPR-mutated FANCG proteins fail to interact with BRCA2, XRCC3, FANCA or FANCF. The interactions of other proteins in the D1-D2-G-X3 complex are also absent, including the interaction of BRCA2 with both the monoubiquitylated (FANCD2-L) and non-ubiquitylated (FANCD2-S) isoforms of FANCD2. Interestingly, a mutation of TPR7 (R563E), that complements the MMC and phleomycin hypersensitivity of human FA-G EUFA316 cells, fails to complement NM3, despite the mutated FANCG protein co-precipitating with FANCA, BRCA2 and XRCC3. Whilst interaction of TPR7-mutated FANCG with FANCF does appear to be reduced in NM3, FANCD2 is monoubiquitylated suggesting that sub-optimal interactions of FANCG in the core complex and the D1-D2-G-X3 complex are responsible for the observed MMC- and phleomycin-hypersensitivity, rather than a defect in FANCD2 monoubiquitylation. Our data demonstrate that FANCG functions as a mediator of protein-protein interactions and is vital for the assembly of multi-protein complexes

  14. Several tetratricopeptide repeat (TPR) motifs of FANCG are required for assembly of the BRCA2/D1-D2-G-X3 complex, FANCD2 monoubiquitylation and phleomycin resistance

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, James B. [Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB (United Kingdom); Blom, Eric [Department of Clinical Genetics and Human Genetics, VU University Medical Center, Van der Boechorststraat 7, NL-1081 BT Amsterdam (Netherlands); Cunningham, Ryan; Xiao, Yuxuan [Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB (United Kingdom); Kupfer, Gary M. [Departments of Pediatrics and Pathology, Yale University School of Medicine, Section of Hematology/Oncology, 333 Cedar Street, New Haven, CT 0652 (United States); Jones, Nigel J., E-mail: njjones@liv.ac.uk [Molecular Oncology and Stem Cell Research Group, School of Biological Sciences, University of Liverpool, Biosciences Building, Crown Street, Liverpool L69 7ZB (United Kingdom)

    2010-07-07

    The Fanconi anaemia (FA) FANCG protein is an integral component of the FA nuclear core complex that is required for monoubiquitylation of FANCD2. FANCG is also part of another protein complex termed D1-D2-G-X3 that contains FANCD2 and the homologous recombination repair proteins BRCA2 (FANCD1) and XRCC3. Formation of the D1-D2-G-X3 complex is mediated by serine-7 phosphorylation of FANCG and occurs independently of the FA core complex and FANCD2 monoubiquitylation. FANCG contains seven tetratricopeptide repeat (TPR) motifs that mediate protein-protein interactions and here we show that mutation of several of the TPR motifs at a conserved consensus residue ablates the in vivo binding activity of FANCG. Expression of mutated TPR1, TPR2, TPR5 and TPR6 in Chinese hamster fancg mutant NM3 fails to functionally complement its hypersensitivities to mitomycin C (MMC) and phleomycin and fails to restore FANCD2 monoubiquitylation. Using co-immunoprecipitation analysis, we demonstrate that these TPR-mutated FANCG proteins fail to interact with BRCA2, XRCC3, FANCA or FANCF. The interactions of other proteins in the D1-D2-G-X3 complex are also absent, including the interaction of BRCA2 with both the monoubiquitylated (FANCD2-L) and non-ubiquitylated (FANCD2-S) isoforms of FANCD2. Interestingly, a mutation of TPR7 (R563E), that complements the MMC and phleomycin hypersensitivity of human FA-G EUFA316 cells, fails to complement NM3, despite the mutated FANCG protein co-precipitating with FANCA, BRCA2 and XRCC3. Whilst interaction of TPR7-mutated FANCG with FANCF does appear to be reduced in NM3, FANCD2 is monoubiquitylated suggesting that sub-optimal interactions of FANCG in the core complex and the D1-D2-G-X3 complex are responsible for the observed MMC- and phleomycin-hypersensitivity, rather than a defect in FANCD2 monoubiquitylation. Our data demonstrate that FANCG functions as a mediator of protein-protein interactions and is vital for the assembly of multi-protein complexes

  15. Single-nucleotide polymorphisms in base excision repair, nucleotide excision repair, and double strand break genes as markers for response to radiotherapy in patients with Stage I to II head-and-neck cancer

    International Nuclear Information System (INIS)

    Carles, Joan; Monzo, Mariano; Amat, Marta; Jansa, Sonia; Artells, Rosa; Navarro, Alfons; Foro, Palmira; Alameda, Francesc; Gayete, Angel; Gel, Bernat; Miguel, Maribel; Albanell, Joan; Fabregat, Xavier

    2006-01-01

    Purpose: Polymorphisms in DNA repair genes can influence response to radiotherapy. We analyzed single-nucleotide polymorphisms (SNP) in nine DNA repair genes in 108 patients with head-and-neck cancer (HNSCC) who had received radiotherapy only. Methods and Materials: From May 1993 to December 2004, patients with Stage I and II histopathologically confirmed HNSCC underwent radiotherapy. DNA was obtained from paraffin-embedded tissue, and SNP analysis was performed using a real-time polymerase chain reaction allelic discrimination TaqMan assay with minor modifications. Results: Patients were 101 men (93.5%) and 7 (6.5%) women, with a median age of 64 years (range, 40 to 89 years). Of the patients, 76 (70.4%) patients were Stage I and 32 (29.6%) were Stage II. The XPF/ERCC1 SNP at codon 259 and XPG/ERCC5 at codon 46 emerged as significant predictors of progression (p 0.00005 and 0.049, respectively) and survival (p = 0.0089 and 0.0066, respectively). Similarly, when variant alleles of XPF/ERCC1, XPG/ERCC5 and XPA were examined in combination, a greater number of variant alleles was associated with shorter time to progression (p = 0.0003) and survival (p 0.0002). Conclusions: Genetic polymorphisms in XPF/ERCC1, XPG/ERCC5, and XPA may significantly influence response to radiotherapy; large studies are warranted to confirm their role in HNSCC

  16. Mutations in BRCA1, BRCA2 and other breast and ovarian cancer susceptibility genes in Central and South American populations.

    Science.gov (United States)

    Jara, Lilian; Morales, Sebastian; de Mayo, Tomas; Gonzalez-Hormazabal, Patricio; Carrasco, Valentina; Godoy, Raul

    2017-10-06

    Breast cancer (BC) is the most common malignancy among women worldwide. A major advance in the understanding of the genetic etiology of BC was the discovery of BRCA1 and BRCA2 (BRCA1/2) genes, which are considered high-penetrance BC genes. In non-carriers of BRCA1/2 mutations, disease susceptibility may be explained of a small number of mutations in BRCA1/2 and a much higher proportion of mutations in ethnicity-specific moderate- and/or low-penetrance genes. In Central and South American populations, studied have focused on analyzing the distribution and prevalence of BRCA1/2 mutations and other susceptibility genes that are scarce in Latin America as compared to North America, Europe, Australia, and Israel. Thus, the aim of this review is to present the current state of knowledge regarding pathogenic BRCA variants and other BC susceptibility genes. We conducted a comprehensive review of 47 studies from 12 countries in Central and South America published between 2002 and 2017 reporting the prevalence and/or spectrum of mutations and pathogenic variants in BRCA1/2 and other BC susceptibility genes. The studies on BRCA1/2 mutations screened a total of 5956 individuals, and studies on susceptibility genes analyzed a combined sample size of 11,578 individuals. To date, a total of 190 different BRCA1/2 pathogenic mutations in Central and South American populations have been reported in the literature. Pathogenic mutations or variants that increase BC risk have been reported in the following genes or genomic regions: ATM, BARD1, CHECK2, FGFR2, GSTM1, MAP3K1, MTHFR, PALB2, RAD51, TOX3, TP53, XRCC1, and 2q35.

  17. ERCC1 and Ki67 in Small Cell Lung Carcinoma and Other Neuroendocrine Tumors of the Lung Distribution and Impact on Survival

    DEFF Research Database (Denmark)

    Skov, Birgit Guldhammer; Holm, B.; Erreboe, A.

    2010-01-01

    .001). The difference between TC and AC was significant (p = 0.02), as was the difference between low grade (TC + AC) and high grade NE (LCNEC + SCLC) (p ... with platinum-based chemotherapy has no impact on survival. High expression of ERCC1 in TC might represent a clue to the failure of platinum-based therapy in these patients. ERCC1 expression has prognostic impact in lung carcinoids. Ki 67 might be considered as a supplementary test to the histopatologic...... classification of NE tumors...

  18. MTHFR Glu429Ala and ERCC5 His46His polymorphisms are associated with prognosis in colorectal cancer patients: analysis of two independent cohorts from Newfoundland.

    Directory of Open Access Journals (Sweden)

    Amit A Negandhi

    Full Text Available In this study, 27 genetic polymorphisms that were previously reported to be associated with clinical outcomes in colorectal cancer patients were investigated in relation to overall survival (OS and disease free survival (DFS in colorectal cancer patients from Newfoundland.The discovery and validation cohorts comprised of 532 and 252 patients, respectively. Genotypes of 27 polymorphisms were first obtained in the discovery cohort and survival analyses were performed assuming the co-dominant genetic model. Polymorphisms associated with disease outcomes in the discovery cohort were then investigated in the validation cohort.When adjusted for sex, age, tumor stage and microsatellite instability (MSI status, four polymorphisms were independent predictors of OS in the discovery cohort MTHFR Glu429Ala (HR: 1.72, 95%CI: 1.04-2.84, p = 0.036, ERCC5 His46His (HR: 1.78, 95%CI: 1.15-2.76, p = 0.01, SERPINE1 -675indelG (HR: 0.52, 95%CI: 0.32-0.84, p = 0.008, and the homozygous deletion of GSTM1 gene (HR: 1.4, 95%CI: 1.03-1.92, p = 0.033. In the validation cohort, the MTHFR Glu429Ala polymorphism was associated with shorter OS (HR: 1.71, 95%CI: 1.18-2.49, p = 0.005, although with a different genotype than the discovery cohort (CC genotype in the discovery cohort and AC genotype in the validation cohort. When stratified based on treatment with 5-Fluorouracil (5-FU-based regimens, this polymorphism was associated with reduced OS only in patients not treated with 5-FU. In the DFS analysis, when adjusted for other variables, the TT genotype of the ERCC5 His46His polymorphism was associated with shorter DFS in both cohorts (discovery cohort: HR: 1.54, 95%CI: 1.04-2.29, p = 0.032 and replication cohort: HR: 1.81, 95%CI: 1.11-2.94, p = 0.018.In this study, associations of the MTHFR Glu429Ala polymorphism with OS and the ERCC5 His46His polymorphism with DFS were identified in two colorectal cancer patient cohorts. Our results also suggest

  19. Polymorphism of CYP3A4 and ABCB1 genes increase the risk of neuropathy in breast cancer patients treated with paclitaxel and docetaxel

    Directory of Open Access Journals (Sweden)

    Kus T

    2016-08-01

    Full Text Available Tulay Kus,1 Gokmen Aktas,1 Mehmet Emin Kalender,1 Abdullah Tuncay Demiryurek,2 Mustafa Ulasli,1 Serdar Oztuzcu,3 Alper Sevinc,1 Seval Kul,4 Celaletdin Camci1 1Department of Internal Medicine, Division of Medical Oncology, University of Gaziantep, Gaziantep Oncology Hospital, Gaziantep, Turkey; 2Department of Medical Pharmacology, 3Department of Medical Biology, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey; 4Department of Biostatistics, Faculty of Medicine, University of Gaziantep, Gaziantep, Turkey Background: Interindividual variability of pharmacogenetics may account for unpredictable neurotoxicities of taxanes. Methods: From March 2011 to June 2015, female patients with operable breast cancer who had received docetaxel- or paclitaxel-containing adjuvant chemotherapy were included in this study. All patients were treated with single-agent paclitaxel intravenously (IV 175 mg/m2 every 3 weeks for four cycles, or IV 80 mg/m2 weekly for 12 cycles, and IV 100 mg/m2 docetaxel for four cycles as adjuvant treatment. We evaluated the relationship between neurotoxicity of taxanes and single-nucleotide polymorphisms of ABCB1, CYP3A4, ERCC1, ERCC2, FGFR4, TP53, ERBB2, and CYP2C8 genes. Taxane-induced neurotoxicity during the treatment was evaluated according to the National Cancer Institute Common Toxicity Criteria version 4.03 prior to each cycle. Chi-squared tests were used to compare the two groups, and multivariate binary logistic regression models were used for determining possible risk factors of neuropathy. Results: Pharmacogenetic analysis was performed in 219 females. ABCB1 3435 TT genotype had significantly higher risk for grade ≥2 neurotoxicity (odds ratio [OR]: 2.759, 95% confidence interval [CI]: 1.172–6.493, P: 0.017 compared to TC and CC genotype, and also CYP3A4 392 AA and AG genotype had significantly higher risk for grade ≥2 neurotoxicity (OR: 2.259, 95% CI: 1.033–4.941, P: 0.038 compared to GG genotype. For

  20. Prediction of radiotherapy induced normal tissue adverse reactions: the role of double-strand break repair

    International Nuclear Information System (INIS)

    Rao, B.S. Satish; Mumbrekar, K.D.; Goutham, H.V.; Donald, J.F.; Vadhiraja, M.B.; Satyamoorthy, K.

    2016-01-01

    We aimed at evaluating the predictive potential of DSB repair kinetics (using γH2AX foci assay) in lymphocytes and analysed the genetic variants in the selected radioresponsive candidate genes like XRCC3, LIG4, NBN, CD44, RAD9A, LIG3, SH3GL1, BAXS, XRCC1, MAD2L2 on the individual susceptibility to radiotherapy (RT) induced acute skin reactions among the head and neck cancer (HNC), and breast cancer (BC) patients. All the 183 HNC and 132 BC patients were treated by a 3-dimensional conformal RT technique

  1. The involvement of DNA repair genes in the hypoxia-dependent NLCQ-1 (NSC 709257) toxicity and its synergistic interaction with cisplatin or melphalan

    International Nuclear Information System (INIS)

    Papadopoulou, M.V.; Xue, C.-J.; Bloomer, W.D.

    2003-01-01

    4-[3-(2-Nitro-1-imidazolyl)-propylamino]-7-chloro-quinoline hydrochloride (NLCQ-1) is a weakly DNA-intercalating hypoxia selective cytotoxin, which synergistically enhances the antitumor effect of several chemotherapeutic agents or radiation against mouse tumors or human xenografts. Synergy with melphalan (L-PAM) or cisplatin (cisPt) requires hypoxic pre-exposure of cells to NLCQ-1 or, in mice, administration of NLCQ-1 about 1 h before L-PAM or cisPt. This suggests that NLCQ-1 may cause DNA lesions upon reductive metabolism. To indirectly identify such lesions, rodent cell lines defective in specific DNA repair genes (EM9 and UV41) and their repair-proficient parental AA8, were exposed to NLCQ-1 alone and in combination with L-PAM or cisPt under hypoxic/aerobic conditions and appropriate routes, and assessed for clonogenicity. Selected comparisons with tirapazamine (TPZ) were also performed. DNA ssbs were identified by using the alkaline comet assay. Synergism was assessed by isobologramic analysis. EM9, which lack the functional XRCC1 gene and are unable to efficiently repair DNA ssbs, were 3.7x and 4.5x more sensitive to NLCQ-1 and TPZ, respectively, than the parental AA8 cells. Similarly, UV41, which are defective in the ERCC4/XPF gene and thus, hypersensitive to DNA cross-linking agents, were 4.1x more sensitive than AA8 cells to NLCQ-1. Equitoxic concentrations of NLCQ-1 and TPZ gave similar numbers of ssbs in AA8 and EM9 cells exposed to each compound for 1 h under hypoxic conditions. In combination with L-PAM or cisPt, synergy was observed in AA8 but not in EM9 or UV41 cells, with either NLCQ-1 or TPZ. These results suggest that NLCQ-1 is involved in the formation of DNA ssbs and interstrand crosslinks, with the latter being most likely responsible for NLCQ-1 hypoxic toxicity. The synergistic interaction of NLCQ-1 with L-PAM or cisPt is probably due to an enhancement in the L-PAM/cisPt-induced DNA interstrand crosslinks, possibly as a result of an inhibited

  2. Modulation of radiation-induced base excision repair pathway gene expression by melatonin

    Directory of Open Access Journals (Sweden)

    Saeed Rezapoor

    2017-01-01

    Full Text Available Objective: Approximately 70% of all cancer patients receive radiotherapy. Although radiotherapy is effective in killing cancer cells, it has adverse effects on normal cells as well. Melatonin (MLT as a potent antioxidant and anti-inflammatory agent has been proposed to stimulate DNA repair capacity. We investigated the capability of MLT in the modification of radiation-induced DNA damage in rat peripheral blood cells. Materials and Methods: In this experimental study, male rats (n = 162 were divided into 27 groups (n = 6 in each group including: irradiation only, vehicle only, vehicle with irradiation, 100 mg/kg MLT alone, 100 mg/kg MLT plus irradiation in 3 different time points, and control. Subsequently, they were irradiated with a single whole-body X-ray radiation dose of 2 and 8 Gy at a dose rate of 200 MU/min. Rats were given an intraperitoneal injection of MLT or the same volume of vehicle alone 1 h prior to irradiation. Blood samples were also taken 8, 24, and 48 h postirradiation, in order to measure the 8-oxoguanine glycosylase1 (Ogg1, Apex1, and Xrcc1 expression using quantitative real-time-polymerase chain reaction. Results: Exposing to the ionizing radiation resulted in downregulation of Ogg1, Apex1, and Xrcc1 gene expression. The most obvious suppression was observed in 8 h after exposure. Pretreatments with MLT were able to upregulate these genes when compared to the irradiation-only and vehicle plus irradiation groups (P < 0.05 in all time points. Conclusion: Our results suggested that MLT in mentioned dose may result in modulation of Ogg1, Apex1, and Xrcc1 gene expression in peripheral blood cells to reduce X-ray irradiation-induced DNA damage. Therefore, administration of MLT may increase the normal tissue tolerance to radiation through enhancing the cell DNA repair capacity. We believed that MLT could play a radiation toxicity reduction role in patients who have undergone radiation treatment as a part of cancer radiotherapy.

  3. Genetic variants in DNA double-strand break repair genes and risk of salivary gland carcinoma: a case-control study.

    Directory of Open Access Journals (Sweden)

    Li Xu

    Full Text Available DNA double strand break (DSB repair is the primary defense mechanism against ionizing radiation-induced DNA damage. Ionizing radiation is the only established risk factor for salivary gland carcinoma (SGC. We hypothesized that genetic variants in DSB repair genes contribute to individual variation in susceptibility to SGC. To test this hypothesis, we conducted a case-control study in which we analyzed 415 single nucleotide polymorphisms (SNPs in 45 DSB repair genes in 352 SGC cases and 598 controls. Multivariate logistic regression analysis was performed to calculate odds ratios (ORs and 95% confidence intervals (CIs. Rs3748522 in RAD52 and rs13180356 in XRCC4 were significantly associated with SGC after Bonferroni adjustment; ORs (95% CIs for the variant alleles of these SNPs were 1.71 (1.40-2.09, P = 1.70 × 10(-7 and 0.58 (0.45-0.74, P = 2.00 × 10(-5 respectively. The genetic effects were modulated by histological subtype. The association of RAD52-rs3748522 with SGC was strongest for mucoepidermoid carcinoma (OR = 2.21, 95% CI: 1.55-3.15, P = 1.25 × 10(-5, n = 74, and the association of XRCC4-rs13180356 with SGC was strongest for adenoid cystic carcinoma (OR = 0.60, 95% CI: 0.42-0.87, P = 6.91 × 10(-3, n = 123. Gene-level association analysis revealed one gene, PRKDC, with a marginally significant association with SGC risk in non-Hispanic whites. To our knowledge, this study is the first to comprehensively evaluate the genetic effect of DSB repair genes on SGC risk. Our results indicate that genetic variants in the DSB repair pathways contribute to inter-individual differences in susceptibility to SGC and show that the impact of genetic variants differs by histological subtype. Independent studies are warranted to confirm these findings.

  4. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology

    Science.gov (United States)

    Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong

    2015-10-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.

  5. Effects of polymorphisms in ERCC1, ASE-1 and RAI on the risk of colorectal carcinomas and adenomas: a case control study

    International Nuclear Information System (INIS)

    Skjelbred, Camilla F; Sæbø, Mona; Nexø, Bjørn A; Wallin, Håkan; Hansteen, Inger-Lise; Vogel, Ulla; Kure, Elin H

    2006-01-01

    The risk of sporadic colorectal cancer is mainly associated with lifestyle factors and may be modulated by several genetic factors of low penetrance. Genetic variants represented by single nucleotide polymorphisms in genes encoding key players in the adenoma carcinoma sequence may contribute to variation in susceptibility to colorectal cancer. In this study, we aimed to evaluate whether the recently identified haplotype encompassing genes of DNA repair and apoptosis, is associated with increased risk of colorectal adenomas and carcinomas. We used a case-control study design (156 carcinomas, 981 adenomas and 399 controls) to test the association between polymorphisms in the chromosomal region 19q13.2-3, encompassing the genes ERCC1, ASE-1 and RAI, and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR) and 95% confidence interval (CI) were estimated by binary logistic regression model adjusting for age and gender. The ASE-1 polymorphism was associated with an increased risk of adenomas, OR of 1.39 (95% CI 1.06–1.81), which upon stratification was apparent among women only, OR of 1.66 (95% CI 1.15–2.39). The RAI polymorphism showed a trend towards risk reduction for both adenomas (OR of 0.70, 95% CI 0.49–1.01) and carcinomas (OR of 0.49, 95% CI 0.21–1.13) among women, although not significant. Women who were homozygous carriers of the high risk haplotype had an increased risk of colorectal cancer, OR of 2.19 (95% CI 0.95–5.04) compared to all non-carriers although the estimate was not statistically significant. We found no evidence that the studied polymorphisms were associated with risk of adenomas or colorectal cancer among men, but we found weak indications that the chromosomal region may influence risk of colorectal cancer and adenoma development in women

  6. Phosphodiesterase 1 regulation is a key mechanism in vascular aging

    DEFF Research Database (Denmark)

    Niño, Paula K Bautista; Durik, Matej; Danser, A H Jan

    2015-01-01

    Reduced nitric oxide (NO)/cGMP signalling is observed in age-related vascular disease. We hypothesize that this disturbed signalling involves effects of genomic instability, a primary causal factor in aging, on vascular smooth muscle cells (VSMCs) and that the underlying mechanism plays a role...... in human age-related vascular disease. To test our hypothesis, we combined experiments in mice with genomic instability resulting from the defective nucleotide excision repair gene ERCC1 (Ercc1(d/-) mice), human VSMC cultures and population genome-wide association studies (GWAS). Aortic rings of Ercc1(d...... in lungs was higher in Ercc1(d/-) mice. No differences in activity or levels of cGMP-dependent protein kinase 1 or sGC were observed in Ercc1(d/-) mice compared with WT. Senescent human VSMC showed elevated PDE1A and PDE1C and PDE5 mRNA levels (11.6-, 9- and 2.3-fold respectively), which associated...

  7. DNA repair gene polymorphisms and risk of cutaneous melanoma: a systematic review and meta-analysis.

    Science.gov (United States)

    Mocellin, Simone; Verdi, Daunia; Nitti, Donato

    2009-10-01

    Polymorphisms of DNA repair-related genes might modulate cancer predisposition. We performed a systematic review and meta-analysis of the available evidence regarding the relationship between these polymorphisms and the risk of developing cutaneous melanoma. Relevant studies were searched using PubMed, Medline, Embase, Cancerlit, Cochrane and ISI Web of Knowledge databases. Data were gathered according to the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines. The model-free approach was adopted to perform the meta-analysis of the retrieved data. We identified 20 original reports that describe the relationship between melanoma risk and the single-nucleotide polymorphisms (SNPs) of 16 genes (cases = 4195). For seven SNPs considered in at least two studies, the findings were heterogeneous. Data were suitable for meta-analysis only in the case of the XPD/ERCC2 SNP rs13181 (cases = 2308, controls = 3698) and demonstrated that the variant C allele is associated with increased melanoma risk (odds ratio = 1.12, 95% confidence interval = 1.03-1.21, P = 0.01; population attributable risk = 9.6%). This is the first meta-analysis suggesting that XPD/ERCC2 might represent a low-penetrance melanoma susceptibility gene. Much work is still to be done before definitive conclusions can be drawn on the role of DNA repair alterations in melanomagenesis since for the other genes involved in this highly complex process, the available information is scarce or null.

  8. Low ERCC1 expression in malignant pleural mesotheliomas treated with cisplatin and vinorelbine predicts prolonged progression-free survival

    DEFF Research Database (Denmark)

    Zimling, Zarah Glad; Sørensen, Jens Benn; Gerds, Thomas Alexander

    2012-01-01

    The relationship between excision repair cross-complementation group 1 (ERCC1) expression and outcome, in patients with malignant pleural mesothelioma (MPM), treated with cisplatin/vinorelbine combination-therapy, was retrospectively evaluated in a patient population from a previously published...

  9. DNA repair and cyclin D1 polymorphisms and styrene-induced genotoxicity and immunotoxicity

    International Nuclear Information System (INIS)

    Kuricova, M.; Naccarati, A.; Kumar, R.; Koskinen, M.; Sanyal, S.; Dusinska, M.; Tulinska, J.; Vodickova, L.; Liskova, A.; Jahnova, E.; Fuortes, L.; Haufroid, V.; Hemminki, K.; Vodicka, P.

    2005-01-01

    1-SO-adenine DNA adducts, DNA single-strand breaks (SBs), chromosomal aberrations (CAs), mutant frequency (MF) at the HPRT gene, and immune parameters (hematological and of humoral immunity) were studied in styrene-exposed human subjects and controls. Results were correlated with genetic polymorphisms in DNA repair genes (XPD, exon 23, XPG, exon 15, XPC, exon 15, XRCC1, exon 10, XRCC3, exon 7) and cell cycle gene cyclin D1. Results for biomarkers of genotoxicity after stratification for the different DNA repair genetic polymorphisms showed that the polymorphism in exon 23 of the XPD gene modulates levels of chromosomal and DNA damage, HPRT MF, and moderately affects DNA adduct levels. The highest levels of biomarkers were associated with the wild-type homozygous AA genotype. The exposed individuals with the wild-type GG genotype for XRCC1 gene exhibited the lowest CA frequencies, compared to those with an A allele (P < 0.05). Cyclin D1 polymorphism seems to modulate the number of leukocytes and lymphocytes in the analyzed subjects. The number of eosinophiles was positively associated with XPD variant C allele and negatively with XRCC1 variant A allele (P < 0.05) and XPC variant C allele (P < 0.05). Immunoglobulin IgA was positively associated with an XRCC3 variant T allele (P < 0.01) and negatively with XPC variant C allele (P < 0.05). Both C3- and C4-complement components were lower in individuals with XRCC3 CT (P < 0.05) and TT genotypes (P < 0.01). Adhesion molecules sL-selectin and sICAM-1 were associated with XPC genotype (P < 0.05). Individual susceptibility may be reflected in genotoxic and immunotoxic responses to environmental and occupational exposures to xenobiotics

  10. Lycopene intake and prostate cancer risk : Effect modification by plasma antioxidants and the XRCC1 genotype

    NARCIS (Netherlands)

    Goodman, Michael; Bostick, Roberd M.; Ward, Kevin C.; Terry, Paul D.; van Gils, Carla H.; Taylor, Jack A.; Mandel, Jack S.

    2006-01-01

    Lycopene has been associated with reduced prostate cancer risk, although the results ofepidemiological studies have varied We hypothesize that an effect of lycopene may be modified by XRCC1 genotype and other antioxidants. We used a food-frequency questionnaire to assess lycopene intake in a

  11. Acute Normal Tissue Reactions in Head-and-Neck Cancer Patients Treated With IMRT: Influence of Dose and Association With Genetic Polymorphisms in DNA DSB Repair Genes

    International Nuclear Information System (INIS)

    Werbrouck, Joke; Ruyck, Kim de; Duprez, Frederic; Veldeman, Liv; Claes, Kathleen; Eijkeren, Marc van; Boterberg, Tom; Willems, Petra; Vral, Anne; Neve, Wilfried de; Thierens, Hubert

    2009-01-01

    Purpose: To investigate the association between dose-related parameters and polymorphisms in DNA DSB repair genes XRCC3 (c.-1843A>G, c.562-14A>G, c.722C>T), Rad51 (c.-3429G>C, c.-3392G>T), Lig4 (c.26C>T, c.1704T>C), Ku70 (c.-1310C>G), and Ku80 (c.2110-2408G>A) and the occurrence of acute reactions after radiotherapy. Materials and Methods: The study population consisted of 88 intensity-modulated radiation therapy (IMRT)-treated head-and-neck cancer patients. Mucositis, dermatitis, and dysphagia were scored using the Common Terminology Criteria (CTC) for Adverse Events v.3.0 scale. The population was divided into a CTC0-2 and CTC3+ group for the analysis of each acute effect. The influence of the dose on critical structures was analyzed using dose-volume histograms. Genotypes were determined by polymerase chain reaction (PCR) combined with restriction fragment length polymorphism or PCR-single base extension assays. Results: The mean dose (D mean ) to the oral cavity and constrictor pharyngeus (PC) muscles was significantly associated with the development of mucositis and dysphagia, respectively. These parameters were considered confounding factors in the radiogenomics analyses. The XRCC3c.722CT/TT and Ku70c.-1310CG/GG genotypes were significantly associated with the development of severe dysphagia (CTC3+). No association was found between the investigated polymorphisms and the development of mucositis or dermatitis. A risk analysis model for severe dysphagia, which was developed based on the XRCC3c.722CT/TT and Ku70c.-1310CG/GG genotypes and the PC dose, showed a sensitivity of 78.6% and a specificity of 77.6%. Conclusions: The XRCC3c.722C>T and Ku70c.-1310C>G polymorphisms as well as the D mean to the PC muscles were highly associated with the development of severe dysphagia after IMRT. The prediction model developed using these parameters showed a high sensitivity and specificity

  12. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Genetic polymorphisms in some DNA repair proteins are associated with a number of malignant transformations like head and neck squamous cell carcinoma (HNSCC). Xeroderma pigmentosum group D (XPD) and X-ray repair cross-complementing proteins 1 (XRCC1) and 3 (XRCC3) genes are involved in DNA repair ...

  13. Excision repair cross-complementation group 1 (ERCC1) in platinum-based treatment of non-small cell lung cancer with special emphasis on carboplatin: a review of current literature

    DEFF Research Database (Denmark)

    Vilmar, A.; Sorensen, J.B.

    2009-01-01

    on carboplatin based on the current literature. Research on the development of a reliable methodology is warranted followed by validation in large, prospective, randomized trials as ERCC1 may possibly play an important role as tumour marker in tailored chemotherapy for NSCLC Udgivelsesdato: 2009/5......-complementation group 1 (ERCC1) has shown potential as a predictive marker in patients with NSCLC treated with cisplatin-based chemotherapy. Carboplatin has gained widespread use in the treatment of advanced NSCLC and its mechanisms of action are likely similar to that of cisplatin. MATERIALS AND METHODS: A literature...... review on ERCC1 was conducted as predictor in NSCLC patients receiving platinum-based treatment with emphasis on carboplatin. English language publications from January 1996 to February 2008 were eligible and data on methodology and outcome were recorded. RESULTS: Eight preclinical articles, 25 clinical...

  14. Detection of individual radiosensitivity by radiation–induced micronuclei in human peripheral blood lymphocytes and polymorphisms in DNA repair genes

    Energy Technology Data Exchange (ETDEWEB)

    Staynova, A.; Hadjidekova, V.; Popova, L.; Hristova, R. [Radiation Genetics Laboratory, National Centre of Radiobology and Radiation Protection, Sofia (Bulgaria); Savov, A. [National Genetic Laboratory, University Hospital of Obstetrics and Gynecology, Sofia (Bulgaria)

    2013-07-01

    Aim: To investigate the association of two polymorphisms – in XRCC1 gene (Arg399Gln) and in APE1 gene (Asp148Glu) and the radiation induced frequency of micronuclei in human peripheral blood lymphocytes. Material and methods: Genomic DNA from 34 cancer patients and 52 controls were genotyped using PCR–RFLP technique. Micronucleus test (MNT) was performed on 15 cancer patients and 15 controls, before and after in vitro irradiation with 2Gy gamma rays. Results: The data showed that cancer patients had a significantly higher spontaneous frequency of cells with micronuclei than controls (P=0.009). No statistical difference was registered when comparing the mean frequency of cells with micronuclei after in vitro irradiation between these groups. Four subjects were selected as radiosensitive after applying cut–off of the mean frequency of radiation induced micronuclei. Three of them are carriers of the XRCC1 399Gln allele and two of them are carriers of the APE1 148Glu allele. (author)

  15. Polymorphisms of Selected DNA Repair Genes and Lung Cancer in Chromium Exposure.

    Science.gov (United States)

    Halasova, E; Matakova, T; Skerenova, M; Krutakova, M; Slovakova, P; Dzian, A; Javorkova, S; Pec, M; Kypusova, K; Hamzik, J

    2016-01-01

    Chromium is a well-known mutagen and carcinogen involved in lung cancer development. DNA repair genes play an important role in the elimination of genetic changes caused by chromium exposure. In the present study, we investigated the polymorphisms of the following DNA repair genes: XRCC3, participating in the homologous recombination repair, and hMLH1 and hMSH2, functioning in the mismatch repair. We focused on the risk the polymorphisms present in the development of lung cancer regarding the exposure to chromium. We analyzed 106 individuals; 45 patients exposed to chromium with diagnosed lung cancer and 61 healthy controls. Genotypes were determined by a PCR-RFLP method. We unravelled a potential for increased risk of lung cancer development in the hMLH1 (rs1800734) AA genotype in the recessive model. In conclusion, gene polymorphisms in the DNA repair genes underscores the risk of lung cancer development in chromium exposed individuals.

  16. Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy.

    Directory of Open Access Journals (Sweden)

    Ming Yin

    Full Text Available The repair of DNA double-strand breaks (DSBs is the major mechanism to maintain genomic stability in response to irradiation. We hypothesized that genetic polymorphisms in DSB repair genes may affect clinical outcomes among non-small cell lung cancer (NSCLC patients treated with definitive radio(chemotherapy. We genotyped six potentially functional single nucleotide polymorphisms (SNPs (i.e., RAD51 -135G>C/rs1801320 and -172G>T/rs1801321, XRCC2 4234G>C/rs3218384 and R188H/rs3218536 G>A, XRCC3 T241M/rs861539 and NBN E185Q/rs1805794 and estimated their associations with overall survival (OS and radiation pneumonitis (RP in 228 NSCLC patients. We found a predictive role of RAD51 -135G>C SNP in RP development (adjusted hazard ratio [HR] = 0.52, 95% confidence interval [CI], 0.31-0.86, P = 0.010 for CG/CC vs. GG. We also found that RAD51 -135G>C and XRCC2 R188H SNPs were independent prognostic factors for overall survival (adjusted HR = 1.70, 95% CI, 1.14-2.62, P = 0.009 for CG/CC vs. GG; and adjusted HR = 1.70; 95% CI, 1.02-2.85, P = 0.043 for AG vs. GG, respectively and that the SNP-survival association was most pronounced in the presence of RP. Our study suggests that HR genetic polymorphisms, particularly RAD51 -135G>C, may influence overall survival and radiation pneumonitis in NSCLC patients treated with definitive radio(chemotherapy. Large studies are needed to confirm our findings.

  17. Polymorphisms associated with the risk of lung cancer in a healthy Mexican Mestizo population: application of the additive model for cancer

    Directory of Open Access Journals (Sweden)

    Rebeca Pérez-Morales

    2011-01-01

    Full Text Available Lung cancer is the leading cause of cancer mortality in Mexico and worldwide. In the past decade, there has been an increase in the number of lung cancer cases in young people, which suggests an important role for genetic background in the etiology of this disease. In this study, we genetically characterized 16 polymorphisms in 12 low penetrance genes (AhR, CYP1A1, CYP2E1, EPHX1, GSTM1, GSTT1, GSTPI, XRCC1, ERCC2, MGMT, CCND1 and TP53 in 382 healthy Mexican Mestizos as the first step in elucidating the genetic structure of this population and identifying high risk individuals. All of the genotypes analyzed were in Hardy-Weinberg equilibrium, but different degrees of linkage were observed for polymorphisms in the CYP1A1 and EPHX1 genes. The genetic variability of this population was distributed in six clusters that were defined based on their genetic characteristics. The use of a polygenic model to assess the additive effect of low penetrance risk alleles identified combinations of risk genotypes that could be useful in predicting a predisposition to lung cancer. Estimation of the level of genetic susceptibility showed that the individual calculated risk value (iCRV ranged from 1 to 16, with a higher iCRV indicating a greater genetic susceptibility to lung cancer.

  18. Uncommon nucleotide excision repair phenotypes revealed by targeted high-throughput sequencing.

    Science.gov (United States)

    Calmels, Nadège; Greff, Géraldine; Obringer, Cathy; Kempf, Nadine; Gasnier, Claire; Tarabeux, Julien; Miguet, Marguerite; Baujat, Geneviève; Bessis, Didier; Bretones, Patricia; Cavau, Anne; Digeon, Béatrice; Doco-Fenzy, Martine; Doray, Bérénice; Feillet, François; Gardeazabal, Jesus; Gener, Blanca; Julia, Sophie; Llano-Rivas, Isabel; Mazur, Artur; Michot, Caroline; Renaldo-Robin, Florence; Rossi, Massimiliano; Sabouraud, Pascal; Keren, Boris; Depienne, Christel; Muller, Jean; Mandel, Jean-Louis; Laugel, Vincent

    2016-03-22

    Deficient nucleotide excision repair (NER) activity causes a variety of autosomal recessive diseases including xeroderma pigmentosum (XP) a disorder which pre-disposes to skin cancer, and the severe multisystem condition known as Cockayne syndrome (CS). In view of the clinical overlap between NER-related disorders, as well as the existence of multiple phenotypes and the numerous genes involved, we developed a new diagnostic approach based on the enrichment of 16 NER-related genes by multiplex amplification coupled with next-generation sequencing (NGS). Our test cohort consisted of 11 DNA samples, all with known mutations and/or non pathogenic SNPs in two of the tested genes. We then used the same technique to analyse samples from a prospective cohort of 40 patients. Multiplex amplification and sequencing were performed using AmpliSeq protocol on the Ion Torrent PGM (Life Technologies). We identified causative mutations in 17 out of the 40 patients (43%). Four patients showed biallelic mutations in the ERCC6(CSB) gene, five in the ERCC8(CSA) gene: most of them had classical CS features but some had very mild and incomplete phenotypes. A small cohort of 4 unrelated classic XP patients from the Basque country (Northern Spain) revealed a common splicing mutation in POLH (XP-variant), demonstrating a new founder effect in this population. Interestingly, our results also found ERCC2(XPD), ERCC3(XPB) or ERCC5(XPG) mutations in two cases of UV-sensitive syndrome and in two cases with mixed XP/CS phenotypes. Our study confirms that NGS is an efficient technique for the analysis of NER-related disorders on a molecular level. It is particularly useful for phenotypes with combined features or unusually mild symptoms. Targeted NGS used in conjunction with DNA repair functional tests and precise clinical evaluation permits rapid and cost-effective diagnosis in patients with NER-defects.

  19. Effects of polymorphisms in ERCC1, ASE-1 and RAI on the risk of colorectal carcinomas and adenomas: a case control study

    Directory of Open Access Journals (Sweden)

    Wallin Håkan

    2006-07-01

    Full Text Available Abstract Background The risk of sporadic colorectal cancer is mainly associated with lifestyle factors and may be modulated by several genetic factors of low penetrance. Genetic variants represented by single nucleotide polymorphisms in genes encoding key players in the adenoma carcinoma sequence may contribute to variation in susceptibility to colorectal cancer. In this study, we aimed to evaluate whether the recently identified haplotype encompassing genes of DNA repair and apoptosis, is associated with increased risk of colorectal adenomas and carcinomas. Methods We used a case-control study design (156 carcinomas, 981 adenomas and 399 controls to test the association between polymorphisms in the chromosomal region 19q13.2-3, encompassing the genes ERCC1, ASE-1 and RAI, and risk of colorectal adenomas and carcinomas in a Norwegian cohort. Odds ratio (OR and 95% confidence interval (CI were estimated by binary logistic regression model adjusting for age and gender. Results The ASE-1 polymorphism was associated with an increased risk of adenomas, OR of 1.39 (95% CI 1.06–1.81, which upon stratification was apparent among women only, OR of 1.66 (95% CI 1.15–2.39. The RAI polymorphism showed a trend towards risk reduction for both adenomas (OR of 0.70, 95% CI 0.49–1.01 and carcinomas (OR of 0.49, 95% CI 0.21–1.13 among women, although not significant. Women who were homozygous carriers of the high risk haplotype had an increased risk of colorectal cancer, OR of 2.19 (95% CI 0.95–5.04 compared to all non-carriers although the estimate was not statistically significant. Conclusion We found no evidence that the studied polymorphisms were associated with risk of adenomas or colorectal cancer among men, but we found weak indications that the chromosomal region may influence risk of colorectal cancer and adenoma development in women.

  20. TET-mediated oxidation of methylcytosine causes TDG or NEIL glycosylase dependent gene reactivation.

    Science.gov (United States)

    Müller, Udo; Bauer, Christina; Siegl, Michael; Rottach, Andrea; Leonhardt, Heinrich

    2014-07-01

    The discovery of hydroxymethyl-, formyl- and carboxylcytosine, generated through oxidation of methylcytosine by TET dioxygenases, raised the question how these modifications contribute to epigenetic regulation. As they are subjected to complex regulation in vivo, we dissected links to gene expression with in vitro modified reporter constructs. We used an Oct4 promoter-driven reporter gene and demonstrated that in vitro methylation causes gene silencing while subsequent oxidation with purified catalytic domain of TET1 leads to gene reactivation. To identify proteins involved in this pathway we screened for TET interacting factors and identified TDG, PARP1, XRCC1 and LIG3 that are involved in base-excision repair. Knockout and rescue experiments demonstrated that gene reactivation depended on the glycosylase TDG, but not MBD4, while NEIL1, 2 and 3 could partially rescue the loss of TDG. These results clearly show that oxidation of methylcytosine by TET dioxygenases and subsequent removal by TDG or NEIL glycosylases and the BER pathway results in reactivation of epigenetically silenced genes. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Association of single nucleotide polymorphisms in the genes ATM, GSTP1, SOD2, TGFB1, XPD and XRCC1 with risk of severe erythema after breast conserving radiotherapy

    International Nuclear Information System (INIS)

    Raabe, Annette; Derda, Katharina; Reuther, Sebastian; Szymczak, Silke; Borgmann, Kerstin; Hoeller, Ulrike; Ziegler, Andreas; Petersen, Cordula; Dikomey, Ekkehard

    2012-01-01

    To examine the association of polymorphisms in ATM (codon 158), GSTP1 (codon 105), SOD2 (codon 16), TGFB1 (position −509), XPD (codon 751), and XRCC1 (codon 399) with the risk of severe erythema after breast conserving radiotherapy. Retrospective analysis of 83 breast cancer patients treated with breast conserving radiotherapy. A total dose of 50.4 Gy was administered, applying 1.8 Gy/fraction within 42 days. Erythema was evaluated according to the Radiation Therapy Oncology Group (RTOG) score. DNA was extracted from blood samples and polymorphisms were determined using either the Polymerase Chain Reaction based Restriction-Fragment-Length-Polymorphism (PCR-RFL) technique or Matrix-Assisted-Laser-Desorption/Ionization –Time-Of-Flight-Mass-Spectrometry (MALDI-TOF). Relative excess heterozygosity (REH) was investigated to check compatibility of genotype frequencies with Hardy-Weinberg equilibrium (HWE). In addition, p-values from the standard exact HWE lack of fit test were calculated using 100,000 permutations. HWE analyses were performed using R. Fifty-six percent (46/83) of all patients developed erythema of grade 2 or 3, with this risk being higher for patients with large breast volume (odds ratio, OR = 2.55, 95% confidence interval, CI: 1.03–6.31, p = 0.041). No significant association between SNPs and risk of erythema was found when all patients were considered. However, in patients with small breast volume the TGFB1 SNP was associated with erythema (p = 0.028), whereas the SNP in XPD showed an association in patients with large breast volume (p = 0.046). A risk score based on all risk alleles was neither significant in all patients nor in patients with small or large breast volume. Risk alleles of most SNPs were different compared to a previously identified risk profile for fibrosis. The genetic risk profile for erythema appears to be different for patients with small and larger breast volume. This risk profile seems to be specific for erythema as

  2. Small molecule inhibitors of ERCC1-XPF protein-protein interaction synergize alkylating agents in cancer cells.

    Science.gov (United States)

    Jordheim, Lars Petter; Barakat, Khaled H; Heinrich-Balard, Laurence; Matera, Eva-Laure; Cros-Perrial, Emeline; Bouledrak, Karima; El Sabeh, Rana; Perez-Pineiro, Rolando; Wishart, David S; Cohen, Richard; Tuszynski, Jack; Dumontet, Charles

    2013-07-01

    The benefit of cancer chemotherapy based on alkylating agents is limited because of the action of DNA repair enzymes, which mitigate the damage induced by these agents. The interaction between the proteins ERCC1 and XPF involves two major components of the nucleotide excision repair pathway. Here, novel inhibitors of this interaction were identified by virtual screening based on available structures with use of the National Cancer Institute diversity set and a panel of DrugBank small molecules. Subsequently, experimental validation of the in silico screening was undertaken. Top hits were evaluated on A549 and HCT116 cancer cells. In particular, the compound labeled NSC 130813 [4-[(6-chloro-2-methoxy-9-acridinyl)amino]-2-[(4-methyl-1-piperazinyl)methyl

  3. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    International Nuclear Information System (INIS)

    Páez, David; Salazar, Juliana; Paré, Laia; Pertriz, Lourdes; Targarona, Eduardo; Rio, Elisabeth del; Barnadas, Agusti; Marcuello, Eugenio; Baiget, Montserrat

    2011-01-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5′UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The ∗3/∗3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in ∗3/∗3 vs. 35% in ∗2/∗2 and ∗2/∗3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the ∗3/∗3 patients and 84 months for the ∗2/∗2 and ∗2/∗3 patients (p = .039). For XRCC1 Arg399Gln SNP, the median progression-free survival was 101 months for the G/G, 78 months for the G/A, and 31 months for the A/A patients (p = .048). Conclusions: The thymidylate

  4. Pharmacogenetic Study in Rectal Cancer Patients Treated With Preoperative Chemoradiotherapy: Polymorphisms in Thymidylate Synthase, Epidermal Growth Factor Receptor, GSTP1, and DNA Repair Genes

    Energy Technology Data Exchange (ETDEWEB)

    Paez, David, E-mail: dpaez@santpau.cat [Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Salazar, Juliana; Pare, Laia [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Pertriz, Lourdes [Department of Radiotherapy, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Targarona, Eduardo [Department of Surgery, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Rio, Elisabeth del [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Barnadas, Agusti; Marcuello, Eugenio [Department of Medical Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain); Baiget, Montserrat [Centre for Biomedical Network Research on Rare Diseases, Barcelona (Spain); Department of Genetics, Hospital de la Santa Creu i Sant Pau, Universitat Autonoma de Barcelona, Barcelona (Spain)

    2011-12-01

    Purpose: Several studies have been performed to evaluate the usefulness of neoadjuvant treatment using oxaliplatin and fluoropyrimidines for locally advanced rectal cancer. However, preoperative biomarkers of outcome are lacking. We studied the polymorphisms in thymidylate synthase, epidermal growth factor receptor, glutathione S-transferase pi 1 (GSTP1), and several DNA repair genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 128 rectal cancer patients treated with preoperative chemoradiotherapy. Methods and Materials: Blood samples were obtained from 128 patients with Stage II-III rectal cancer. DNA was extracted from the peripheral blood nucleated cells, and the genotypes were analyzed by polymerase chain reaction amplification and automated sequencing techniques or using a 48.48 dynamic array on the BioMark system. The germline polymorphisms studied were thymidylate synthase, (VNTR/5 Prime UTR, 2R G>C single nucleotide polymorphism [SNP], 3R G>C SNP), epidermal growth factor receptor (Arg497Lys), GSTP1 (Ile105val), excision repair cross-complementing 1 (Asn118Asn, 8092C>A, 19716G>C), X-ray repair cross-complementing group 1 (XRCC1) (Arg194Trp, Arg280His, Arg399Gln), and xeroderma pigmentosum group D (Lys751Gln). The pathologic response, pathologic regression, progression-free survival, and overall survival were evaluated according to each genotype. Results: The Asterisk-Operator 3/ Asterisk-Operator 3 thymidylate synthase genotype was associated with a greater response rate (pathologic complete remission and microfoci residual tumor, 59% in Asterisk-Operator 3/ Asterisk-Operator 3 vs. 35% in Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk-Operator 3; p = .013). For the thymidylate synthase genotype, the median progression-free survival was 103 months for the Asterisk-Operator 3/ Asterisk-Operator 3 patients and 84 months for the Asterisk-Operator 2/ Asterisk-Operator 2 and Asterisk-Operator 2/ Asterisk

  5. 2C.07: INVOLVEMENT OF THE RENIN-ANGIOTENSIN SYSTEM IN A PREMATURE AGING MOUSE MODEL.

    Science.gov (United States)

    Van Thiel, B S; Ridwan, Y; Garrelds, I M; Vermeij, M; Groningen, M C Clahsen-Van; Danser, A H J; Essers, J; Van Der Pluijm, I

    2015-06-01

    Changes in the renin-angiotensin system (RAS), known for its critical role in the regulation of blood pressure and sodium homeostasis, may contribute to aging and age-related diseases. Here we characterized the RAS and kidney pathology in mice with genomic instability due to a defective nucleotide excision repair gene (Ercc1d/- mice). These mice display premature features of aging, including vascular dysfunction. Studies were performed in male and female Ercc1d/- mice and their wild type controls (Ercc1+/+) at the age of 12 or 18 weeks before and after treatment with losartan. The renin-activatable near-infrared fluorescent probe ReninSense 680™ was applied in vivo to allow non-invasive imaging of renin activity. Plasma renin concentrations (PRC) were additionally measured ex vivo by quantifying Ang I generation in the presence of excess angiotensinogen. Kidneys were harvested and examined for markers of aging, and albumin was determined in urine. Kidneys of 12-week old Ercc1d/- mice showed signs of aging, including tubular anisokaryosis, cell-senescence and increased apoptosis. This was even more pronounced at the age of 18 weeks. Yet, urinary albumin was normal at 12 weeks. The ReninSense 680™ probe showed increased intrarenal renin activity in Ercc1d/- mice versus Ercc1+/+ mice, both at 12 and 18 weeks of age, while PRC in these mice tended to be lower compared to Ercc1+/+ mice. Renin was higher in male than female mice, both in the kidney and in plasma, and losartan increased kidney and plasma renin in both Ercc1d/- and Ercc1+/+ mice. Rapidly aging Ercc1d/- mice display an activated intrarenal RAS, as evidenced by the increased fluorescence detected with the ReninSense 680™ probe. This increased RAS activity may contribute to the disturbed kidney pathology in these mice. The increased intrarenal activity detected with the ReninSense 680™ probe in male vs. female mice, as well as after losartan treatment, are in full agreement with the literature, and

  6. A phase II single institution single arm prospective study with paclitaxel, ifosfamide and cisplatin (TIP) as first-line chemotherapy in high-risk germ cell tumor patients with more than ten years follow-up and retrospective correlation with ERCC1, Topoisomerase 1, 2A, p53 and HER-2 expression.

    Science.gov (United States)

    Ligia Cebotaru, Cristina; Zenovia Antone, Nicoleta; Diana Olteanu, Elena; Bejinariu, Nona; Buiga, Rares; Todor, Nicolae; Ioana Iancu, Dana; Eliade Ciuleanu, Tudor; Nagy, Viorica

    2016-01-01

    One half of high-risk germ cell tumor (HRGCT) patients relapse after standard chemotherapy. This phase II study evaluated prospectively the toxicity and efficacy in first-line of the paclitaxel-ifosfamide-cisplatin combination (TIP) in HRGCT patients and tried to identify biomarkers that may allow patient-tailored treatments. Between October 1997- September 2000, 28 chemo-naive HRGCT patients were enrolled. Patients received 4 cycles of TIP (paclitaxel 175 mg/m(2) day 1/; ifosfamide 1.2 g/m(2)/day, days 1-5; Mesna 1.2 g/m(2)/day, days 1-5; and cisplatin 20 mg/m(2)/day, days 1-5 every 3 weeks). A non-randomized comparison was made between HRGCT patients treated in the same period with first-line TIP and bleomycin-etoposide-cisplatin (BEP) (28 patients vs 20). In 17 HRGCT patients treated between 1998-2006, ERCC1, Topoisomerase 1 and 2A, p53 and HER-2 expression was retrospectively analysed by immunohistochemistry (IHC) (7 patients with TIP, 10 with BEP), and correlations were made with response to chemotherapy and survival. With a median follow-up of 72 months [range 48+...89+], 5-year disease free survival (DFS) was 55%, with 95% CI 36-72, and the overall survival (OS) was 63%, with 95% CI 44-78. In June 2015, with a median follow-up of 196.47 months (range 177.30-209.27) (>15 years), 12 [%?] patients were alive and disease-free, and 16 [%?] had died (12 specific causes). There was no significant correlation between the expression of ERCC1, Topoisomerase 1 and 2A, HER-2 and p53 and response to treatment. Long-term follow-up showed no difference in OS between TIP vs BEP as first-line therapy. Both regimens had mild toxicity.

  7. Incorporating Single-nucleotide Polymorphisms Into the Lyman Model to Improve Prediction of Radiation Pneumonitis

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, Susan L., E-mail: sltucker@mdanderson.org [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Li Minghuan [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Xu Ting; Gomez, Daniel [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yuan Xianglin [Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Yu Jinming [Department of Radiation Oncology, Shandong Cancer Hospital, Jinan, Shandong (China); Liu Zhensheng; Yin Ming; Guan Xiaoxiang; Wang Lie; Wei Qingyi [Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Mohan, Radhe [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Vinogradskiy, Yevgeniy [University of Colorado School of Medicine, Aurora, Colorado (United States); Martel, Mary [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liao Zhongxing [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States)

    2013-01-01

    Purpose: To determine whether single-nucleotide polymorphisms (SNPs) in genes associated with DNA repair, cell cycle, transforming growth factor-{beta}, tumor necrosis factor and receptor, folic acid metabolism, and angiogenesis can significantly improve the fit of the Lyman-Kutcher-Burman (LKB) normal-tissue complication probability (NTCP) model of radiation pneumonitis (RP) risk among patients with non-small cell lung cancer (NSCLC). Methods and Materials: Sixteen SNPs from 10 different genes (XRCC1, XRCC3, APEX1, MDM2, TGF{beta}, TNF{alpha}, TNFR, MTHFR, MTRR, and VEGF) were genotyped in 141 NSCLC patients treated with definitive radiation therapy, with or without chemotherapy. The LKB model was used to estimate the risk of severe (grade {>=}3) RP as a function of mean lung dose (MLD), with SNPs and patient smoking status incorporated into the model as dose-modifying factors. Multivariate analyses were performed by adding significant factors to the MLD model in a forward stepwise procedure, with significance assessed using the likelihood-ratio test. Bootstrap analyses were used to assess the reproducibility of results under variations in the data. Results: Five SNPs were selected for inclusion in the multivariate NTCP model based on MLD alone. SNPs associated with an increased risk of severe RP were in genes for TGF{beta}, VEGF, TNF{alpha}, XRCC1 and APEX1. With smoking status included in the multivariate model, the SNPs significantly associated with increased risk of RP were in genes for TGF{beta}, VEGF, and XRCC3. Bootstrap analyses selected a median of 4 SNPs per model fit, with the 6 genes listed above selected most often. Conclusions: This study provides evidence that SNPs can significantly improve the predictive ability of the Lyman MLD model. With a small number of SNPs, it was possible to distinguish cohorts with >50% risk vs <10% risk of RP when they were exposed to high MLDs.

  8. Carboxy terminal region of the Fanconi anemia protein, FANCG/XRCC9, is required for functional activity.

    Science.gov (United States)

    Kuang, Y; Garcia-Higuera, I; Moran, A; Mondoux, M; Digweed, M; D'Andrea, A D

    2000-09-01

    Fanconi anemia (FA) is an autosomal recessive cancer susceptibility syndrome with eight complementation groups. Four of the FA genes have been cloned, and at least three of the encoded proteins, FANCA, FANCC, and FANCG/XRCC9, interact in a nuclear complex, required for the maintenance of normal chromosome stability. In the current study, mutant forms of the FANCA and FANCG proteins have been generated and analyzed with respect to protein complex formation, nuclear translocation, and functional activity. The results demonstrate that the amino terminal two-thirds of FANCG (FANCG amino acids 1-428) binds to the amino terminal nuclear localization signal (NLS) of the FANCA protein. On the basis of 2-hybrid analysis, the FANCA/FANCG binding is a direct protein-protein interaction. Interestingly, a truncated mutant form of the FANCG protein, lacking the carboxy terminus, binds in a complex with FANCA and translocates to the nucleus; however, this mutant protein fails to bind to FANCC and fails to correct the mitomycin C sensitivity of an FA-G cell line. Taken together, these results demonstrate that binding of FANCG to the amino terminal FANCA NLS sequence is necessary but not sufficient for the functional activity of FANCG. Additional amino acid sequences at the carboxy terminus of FANCG are required for the binding of FANCC in the complex. (Blood. 2000;96:1625-1632)

  9. Multistudy fine mapping of chromosome 2q identifies XRCC5 as a chronic obstructive pulmonary disease susceptibility gene

    DEFF Research Database (Denmark)

    Hersh, Craig P; Pillai, Sreekumar G; Zhu, Guohua

    2010-01-01

    to the identification of chronic obstructive pulmonary disease (COPD) susceptibility genes on chromosome 2q. METHODS: Within the chromosome 2q linkage region, 2,843 SNPs were genotyped in 806 COPD cases and 779 control subjects from Norway, and 2,484 SNPs were genotyped in 309 patients with severe COPD from...... the National Emphysema Treatment Trial and 330 community control subjects. Significant associations from the combined results across the two case-control studies were followed up in 1,839 individuals from 603 families from the International COPD Genetics Network (ICGN) and in 949 individuals from 127 families...

  10. Cloning and characterization of the rec2 gene of Ustilago maydis

    International Nuclear Information System (INIS)

    Bauchwitz, R.P.; Holloman, W.K.

    1989-01-01

    The authors are exploring the molecular basis for genetic recombination using the corn smut fungus Ustilago maydis, from which the first two eucaryotic DNA repair and recombination mutants, rec1 and rec2, were described. Cells mutant at the rec2 locus are unable to repair lethal damage to their DNA from UV and X irradiation or from chemical alkylating agents such as N-methyl-nitrosoguanidine. Rec2 mutants retain only a residual level of DNA-damage inducible mitotic recombination, and are unable to complete meiosis. Using an autonomously replicating plasmid vector for Ustilago, they established the first nonintegrating plasmid library of the Ustilago genome. The rec2 locus was cloned by complementation of the rec2 mutation in vivo. One clone was found to restore all of the deficient activities. Although this rec2 complementing clone is present on a multicopy plasmid, the authors observed that it fully restored but did not further increase the fifty-fold inducibility of heteroallelic recombination at the nitrate reductase and inositol loci of rec2 or wild type cells. Northern blot analysis using the rec2 complementing clone revealed three UV inducible transcripts, one of which is absent in a rec2 mutant strain. This transcript organization resembles that of the yeast rad10 and the human ERCC-1 genes (MCB 9:1794), but sequence obtained to date from rec2 does not show homology with these genes. They have also observed that the rec2 mutation may alter the level of homologous integration of transformed DNA markers. Integration of a Leu1 complementing plasmid by Scott Fotheringham of the lab has shown that while much of plasmid integration in wild type Ustilago is nonhomologous, integration in at least some rec2 strains is entirely homologous. They are using the cloned rec2 gene to confirm that rec2 is indeed involved in altering the level of homologous integration in Ustilago, and if so, they plan to clone a mammalian analogue of rec2

  11. Modified FOLFOX-6 chemotherapy in advanced gastric cancer: Results of phase II study and comprehensive analysis of polymorphisms as a predictive and prognostic marker

    Directory of Open Access Journals (Sweden)

    Lee Se-Hoon

    2008-05-01

    Full Text Available Abstract Background The objective of this study was to evaluate the efficacy and toxicity of infusional 5-fluorouracil (5-FU, folinic acid and oxaliplatin (modified FOLFOX-6 in patients with advanced gastric cancer (AGC, as first-line palliative combination chemotherapy. We also analyzed the predictive or prognostic value of germline polymorphisms of candidate genes associated with 5-FU and oxaliplatin. Methods Seventy-three patients were administered a 2 hour infusion of oxaliplatin (100 mg/m2 and folinic acid (100 mg/m2 followed by a 46 hour continuous infusion of 5-FU (2,400 mg/m2. Genomic DNA from the patients' peripheral blood mononuclear cells was extracted. Ten polymorphisms within five genes were investigated including TS, GSTP, ERCC, XPD and XRCC. Results The overall response rate (RR was 43.8%. Median time to progression (TTP and overall survival (OS were 6.0 months and 12.6 months, respectively. Toxicities were generally tolerable and manageable. The RR was significantly higher in patients with a 6-bp deletion homozygote (-6 bp/-6 bp in TS-3'UTR (55.0% vs. 30.3% in +6 bp/+6 bp or +6 bp/-6 bp, p = 0.034, and C/A or A/A in XPD156 (52.0% vs. 26.1% in C/C, p = 0.038. The -6 bp/-6 bp in TS-3'UTR was significantly associated with a prolonged TTP and OS. In a multivariate analysis, the 6-bp deletion in TS-3'UTR was identified as an independent prognostic marker of TTP (hazard ratio = 0.561, p = 0.032. Conclusion Modified FOLFOX-6 chemotherapy appears to be active and well tolerated as first line chemotherapy in AGC patients. The 6-bp deletion in TS-3'UTR might be a candidate to select patients who are likely to benefit from 5-FU based modified FOLFOX-6 in future large scale trial.

  12. Evaluation of candidate genes associated with hepatitis A and E virus infection in Chinese Han population.

    Science.gov (United States)

    Gu, Maolin; Qiu, Jing; Guo, Daoxia; Xu, Yunfang; Liu, Xingxiang; Shen, Chong; Dong, Chen

    2018-03-20

    Recent GWAS-associated studies reported that single nucleotide polymorphisms (SNPs) in ABCB1, TGFβ1, XRCC1 genes were associated with hepatitis A virus (HAV) infection, and variants of APOA4 and APOE genes were associated with and hepatitis E virus (HEV) infection in US population. However, the associations of these loci with HAV or HEV infection in Chinese Han population remain unclear. A total of 3082 Chinese Han persons were included in this study. Anti-HAV IgG and anti-HEV IgG were detected by enzyme-linked immunosorbent assay (ELISA). Genotypes in ABCB1, TGFβ1, XRCC1, APOA4 and APOE SNPs were determined by TaqMan MGB technology. In Chinese Han population, rs1045642 C to T variation in ABCB1 was significantly associated with the decreased risk of HAV infection (P infection in our samples (P C to T variation in APOE was significantly associated with lower risk of HEV infection in males (adjusted OR infection. Additionally, Chinese Han males with rs7412 C to T variation in APOE gene are less prone to be infected by HEV.

  13. Investigation of PAX3/7-FKHR fusion genes and IGF2 gene expression in rhabdomyosarcoma tumors.

    Science.gov (United States)

    de Souza, Robson Ramos; Oliveira, Indhira Dias; Caran, Eliana Maria Monteiro; Alves, Maria Teresa de Seixas; Abib, Simone; Toledo, Silvia Regina Caminada

    2012-12-01

    The purpose of our study was to investigate the prevalence of the PAX3/7-FKHR fusion genes and quantify the IGF2 gene expression in rhabdomyosarcoma (RMS) samples. Soft tissue sarcomas account 5% of childhood cancers and 50% of them are RMS. Morphological evaluation of pediatric RMS has defined two histological subtypes, embryonal (ERMS) and alveolar (ARMS). Chromosomal analyses have demonstrated two translocations associated with ARMS, resulting in the PAX3/7-FKHR rearrangements. Reverse transcriptase-polymerase chain reaction (RT-PCR) is extremely useful in the diagnosis of ARMS positive for these rearrangements. Additionally, several studies have shown a significant involvement of IGF pathway in the pathogenesis of RMS. The presence of PAX3/7-FKHR gene fusions was studied in 25 RMS samples from patients attending the IOP-GRAACC/UNIFESP and three RMS cell lines by RT-PCR. IGF2 gene expression was quantified by qPCR and related with clinic pathological parameters. Of the 25 samples, nine (36%) were ARMS and 16 (64%) were ERMS. PAX3/7-FKHR gene fusions expression was detected in 56% of ARMS tumor samples. IGF2 overexpression was observed in 80% of samples and could indicate an important role of this pathway in RMS biology. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. The study of mutations of low penetrates candidate genes, participating in appearance of breast cancer in patients from different regions of Belarus

    International Nuclear Information System (INIS)

    Myasnikov, S.O.; Bogdanova, N.V.; Bokut', S.B.; Feshchenko, S.P.

    2003-01-01

    Breast cancer is the most widespread malignancy in the world. It is supposed, that all factors influencing on breast cancer onset can be divided into 4 groups: environmental factors, state of woman's health, heredity and concomitant disease. The inherited disposition towards breast cancer is complex, and many genetic variants and polymorphisms have been postulated to play a role in this condition. Despite genes with a high penetrance, known some genes with a low penetrance, such as ATM, CHEK2 and XRCC4. Ionizing radiation is for long being recognized as a potent carcinogen. The link between exposition to high doses of radiation and a subsequent development of breast cancer has been shown in numerous epidemiological studies. Because mutations in the known genes explain less than half of all multiple-case families, other genes involved in these repair pathways are now under current investigation in many different labs worldwide to define their role in breast cancer predisposition. The purpose of this paper is to study mutations of low penetrate candidate genes, participating in appearance of breast cancer in Byelorussian patients. This study is for the first time reveals the mutations of breast cancer genes in the Byelorussian population. Were used such methods as extraction of DNA, PCR, ARMAS-PCR and restriction analysis for this study. As a result of the work frequent mutations of CHEK2 and XRCC4 were found in family cases. It is shown that following methods are useful for cancer risk prediction for patients and their blood relatives. (authors)

  15. Prevalence of pfhrp2 and pfhrp3 gene deletions in Puerto Lempira, Honduras.

    Science.gov (United States)

    Abdallah, Joseph F; Okoth, Sheila Akinyi; Fontecha, Gustavo A; Torres, Rosa Elena Mejia; Banegas, Engels I; Matute, María Luisa; Bucheli, Sandra Tamara Mancero; Goldman, Ira F; de Oliveira, Alexandre Macedo; Barnwell, John W; Udhayakumar, Venkatachalam

    2015-01-21

    Recent studies have demonstrated the deletion of the histidine-rich protein 2 (PfHRP2) gene (pfhrp2) in field isolates of Plasmodium falciparum, which could result in false negative test results when PfHRP2-based rapid diagnostic tests (RDTs) are used for malaria diagnosis. Although primary diagnosis of malaria in Honduras is determined based on microscopy, RDTs may be useful in remote areas. In this study, it was investigated whether there are deletions of the pfhrp2, pfhrp3 and their respective flanking genes in 68 P. falciparum parasite isolates collected from the city of Puerto Lempira, Honduras. In addition, further investigation considered the possible correlation between parasite population structure and the distribution of these gene deletions by genotyping seven neutral microsatellites. Sixty-eight samples used in this study, which were obtained from a previous chloroquine efficacy study, were utilized in the analysis. All samples were genotyped for pfhrp2, pfhrp3 and flanking genes by PCR. The samples were then genotyped for seven neutral microsatellites in order to determine the parasite population structure in Puerto Lempira at the time of sample collection. It was found that all samples were positive for pfhrp2 and its flanking genes on chromosome 8. However, only 50% of the samples were positive for pfhrp3 and its neighboring genes while the rest were either pfhrp3-negative only or had deleted a combination of pfhrp3 and its neighbouring genes on chromosome 13. Population structure analysis predicted that there are at least two distinct parasite population clusters in this sample population. It was also determined that a greater proportion of parasites with pfhrp3-(and flanking gene) deletions belonged to one cluster compared to the other. The findings indicate that the P. falciparum parasite population in the municipality of Puerto Lempira maintains the pfhrp2 gene and that PfHRP2-based RDTs could be considered for use in this region; however

  16. Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis

    Science.gov (United States)

    2014-01-01

    Background D-2,3-butanediol has many industrial applications such as chiral reagents, solvents, anti-freeze agents, and low freezing point fuels. Traditional D-2,3-butanediol producing microorganisms, such as Klebsiella pneumonia and K. xoytoca, are pathogenic and not capable of producing D-2,3-butanediol at high optical purity. Bacillus licheniformis is a potential 2,3-butanediol producer but the wild type strain (WX-02) produces a mix of D- and meso-type isomers. BudC in B. licheniformis is annotated as 2,3-butanediol dehydrogenase or acetoin reductase, but no pervious experiment was performed to verify this hypothesis. Results We developed a genetically modified strain of B. licheniformis (WX-02 ΔbudC) as a D-2,3-butanediol producer with high optimal purity. A marker-less gene deletion protocol based on a temperature sensitive knock-out plasmid T2-Ori was used to knock out the budC gene in B. licheniformis WX-02. The budC knock-out strain successfully abolished meso-2,3-butanediol production with enhanced D-2,3-butanediol production. No meso-BDH activity was detectable in cells of this strain. On the other hand, the complementary strain restored the characteristics of wild strain, and produced meso-2,3-butanediol and possessed meso-BDH activity. All of these data suggested that budC encoded the major meso-BDH catalyzing the reversible reaction from acetoin to meso-2,3-butanediol in B. licheniformis. The budC knock-out strain produced D-2,3-butanediol isomer only with a high yield of 30.76 g/L and a productivity of 1.28 g/L-h. Conclusions We confirmed the hypothesis that budC gene is responsible to reversibly transfer acetoin to meso-2,3-butanediol in B. licheniformis. A mutant strain of B. licheniformis with depleted budC gene was successfully developed and produced high level of the D-2,3-butanediol with high optimal purity. PMID:24475980

  17. DNA Repair Mechanism Gene, XRCC1A (Arg194Trp) but not XRCC3 (Thr241Met) Polymorphism Increased the Risk of Breast Cancer in Premenopausal Females: A Case–Control Study in Northeastern Region of India

    Science.gov (United States)

    Ahmed, Jishan; Narain, Kanwar; Mukherjee, Kaustab; Majumdar, Gautam; Chenkual, Saia; Zonunmawia, Jason C.

    2017-01-01

    X-ray repair cross complementary group gene is one of the most studied candidate gene involved in different types of cancers. Studies have shown that X-ray repair cross complementary genes are significantly associated with increased risk of breast cancer in females. Moreover, studies have revealed that X-ray repair cross complementary gene polymorphism significantly varies between and within different ethnic groups globally. The present case–control study was aimed to investigate the association of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) polymorphism with the risk of breast cancer in females from northeastern region of India. The present case–control study includes histopathologically confirmed and newly diagnosed 464 cases with breast cancer and 534 apparently healthy neighborhood community controls. Information on sociodemographic factors and putative risk factors were collected from each study participant by conducting face-to-face interviews. Genotyping of X-ray repair cross complementary 1A (Arg194Trp) and X-ray repair cross complementary 3 (Thr241Met) was carried out by polymerase chain reaction-restriction fragment length polymorphism. For statistical analysis, both univariate and multivariate logistic regression analyses were performed. We also performed stratified analysis to find out the association of X-ray repair cross complementary genes with the risk of breast cancer stratified based on menstrual status. This study revealed that tryptophan allele (R/W-W/W genotype) in X-ray repair cross complementary 1A (Arg194Trp) gene significantly increased the risk of breast cancer (adjusted odds ratio = 1.44, 95% confidence interval = 1.06-1.97, P India which may be beneficial for prognostic purposes. PMID:29332455

  18. Aberrant activity of NKL homeobox gene NKX3-2 in a T-ALL subset

    Science.gov (United States)

    Meyer, Corinna; Kaufmann, Maren; Zaborski, Margarete; MacLeod, Roderick A. F.; Drexler, Hans G.

    2018-01-01

    T-cell acute lymphoblastic leukemia (T-ALL) is a hematopoietic malignancy originating from T-cell progenitors in which differentiation is blocked at early stages. Physiological expression of specific NKL homeobox genes obeys a hematopoietic NKL-code implicated in the process of lymphopoiesis while in differentiated T-cells these genes are silenced. We propose that this developmental expression pattern underlies the observation that NKL homeobox genes are the most ubiquitous group of transcription factors deregulated in T-ALL, including TLX1, TLX3, NKX2-5 and NKX3-1. Here, we describe a novel member of the NKL homeobox gene subclass, NKX3-2 (BAPX1), which is aberrantly activated in 18% of pediatric T-ALL patients analyzed while being normally expressed in developing spleen. Identification of NKX3-2 expression in T-ALL cell line CCRF-CEM qualified these cells to model its deregulation and function in a leukemic context. Genomic and chromosomal analyses demonstrated normal configuration of the NKX3-2 locus at chromosome 4p15, thus excluding cytogenetic dysregulation. Comparative expression profiling analysis of NKX3-2 patient data revealed deregulated activity of BMP- and MAPK-signalling. These candidate pathways were experimentally confirmed to mediate aberrant NKX3-2 expression. We also show that homeobox gene SIX6, plus MIR17HG and GATA3 are downstream targets of NKX3-2 and plausibly contribute to the pathogenesis of this malignancy by suppressing T-cell differentiation. Finally, NKL homeobox gene NKX2-5 was activated by NKX3-2 in CCRF-CEM and by FOXG1 in PEER, representing mutually inhibitory activators of this translocated oncogene. Together, our findings reveal a novel oncogenic NKL homeobox gene subclass member which is aberrantly expressed in a large subset of T-ALL patients and participates in a deregulated gene network likely to arise in developing spleen. PMID:29746601

  19. Mutational analysis of the HLA-DQ3.2 insulin-dependent diabetes mellitus susceptibility gene

    International Nuclear Information System (INIS)

    Kwok, W.W.; Lotshaw, C.; Milner, E.C.B.; Knitter-Jack, N.; Nepom, G.T.

    1989-01-01

    The human major histocompatibility complex includes approximately 14 class II HLA genes within the HLA-D region, most of which exist in multiple allelic forms. One of these genes, the DQ3.2β gene, accounts for the well-documented association of HLA-DR4 with insulin-dependent diabetes mellitus and is the single allele most highly correlated with this disease. The authors analyzed the amino acid substitutions that lead to the structural differences distinguishing DQ3.2β from its nondiabetogenic, but closely related allele, DQ3.1β. Site-directed mutagenesis of the DQ3.2β gene was used to convert key nucleotides into DQ3.2β codons. Subsequent expression studies of these mutated DQ3.2β clones using retroviral vectors defined amino acid 45 as critical for generating serologic epitopes characterizing the DQw3.1β and DQw3.2β molecules

  20. Repair of radiation-induced heat-labile sites is independent of DNA-PKcs, XRCC1 or PARP

    Energy Technology Data Exchange (ETDEWEB)

    Stenerl& #246; w, Bo; Karlsson, Karin H.; Radulescu, Irina; Rydberg, Bjorn; Stenerlow, Bo

    2008-04-29

    Ionizing radiation induces a variety of different DNA lesions: in addition to the most critical DNA damage, the DSB, numerous base alterations, SSBs and other modifications of the DNA double-helix are formed. When several non-DSB lesions are clustered within a short distance along DNA, or close to a DSB, they may interfere with the repair of DSBs and affect the measurement of DSB induction and repair. We have previously shown that a substantial fraction of DSBs measured by pulsed-field gel electrophoresis (PFGE) are in fact due to heat-labile sites (HLS) within clustered lesions, thus reflecting an artifact of preparation of genomic DNA at elevated temperature. To further characterize the influence of HLS on DSB induction and repair, four human cell lines (GM5758, GM7166, M059K, U-1810) with apparently normal DSB rejoining were tested for bi-phasic rejoining after gamma irradiation. When heat-released DSBs were excluded from the measurements the fraction of fast rejoining decreased to less than 50% of the total. However, neither the half-times of the fast (t{sub 1/2} = 7-8 min) or slow (t{sub 1/2} = 2.5 h) DSB rejoining were changed significantly. At t=0 the heat-released DSBs accounted for almost 40% of the DSBs, corresponding to 10 extra DSB/cell/Gy in the initial DSB yield. These heat-released DSBs were repaired within 60-90 min in all tested cells, including M059K cells treated with wortmannin or DNA-PKcs defect M059J cells. Furthermore, cells lacking XRCC1 or Poly(ADP-ribose) polymerase-1 (PARP-1) rejoined both total DSBs and heat-released DSBs similar to normal cells. In summary, the presence of heat-labile sites have a substantial impact on DSB induction yields and DSB rejoining rates measured by pulsed-field gel electrophoresis, and HLS repair is independent of DNA-PKcs, XRCC1 and PARP.

  1. Effects of expression level of DNA repair-related genes involved in the NHEJ pathway on radiation-induced cognitive impairment

    International Nuclear Information System (INIS)

    Zhang Liyuan; Chen Liesong; Sun Rui; Ji Shengjun; Ding Yanyan; Wu Jia; Tian Ye

    2013-01-01

    Cranial radiation therapy can induce cognitive decline. Impairments of hippocampal neurogenesis are thought to be a paramountly important mechanism underlying radiation-induced cognitive dysfunction. In the mature nervous system, DNA double-strand breaks (DSBs) are mainly repaired by non-homologous end-joining (NHEJ) pathways. It has been demonstrated that NHEJ deficiencies are associated with impaired neurogenesis. In our study, rats were randomly divided into five groups to be irradiated by single doses of 0 (control), 0 (anesthesia control), 2, 10, and 20 Gy, respectively. The cognitive function of the irradiated rats was measured by open field, Morris water maze and passive avoidance tests. Real-time PCR was also used to detect the expression level of DNA DSB repair-related genes involved in the NHEJ pathway, such as XRCC4, XRCC5 and XRCC6, in the hippocampus. The influence of different radiation doses on cognitive function in rats was investigated. From the results of the behavior tests, we found that rats receiving 20 Gy irradiation revealed poorer learning and memory, while no significant loss of learning and memory existed in rats receiving irradiation from 0-10 Gy. The real-time PCR and Western blot results showed no significant difference in the expression level of DNA repair-related genes between the 10 and 20 Gy groups, which may help to explain the behavioral results, id est (i.e.) DNA damage caused by 0-10 Gy exposure was appropriately repaired, however, damage induced by 20 Gy exceeded the body's maximum DSB repair ability. Ionizing radiation-induced cognitive impairments depend on the radiation dose, and more directly on the body's own ability to repair DNA DSBs via the NHEJ pathway. (author)

  2. The role of base excision repair in the development of primary open angle glaucoma in the Polish population

    Energy Technology Data Exchange (ETDEWEB)

    Cuchra, Magda; Markiewicz, Lukasz; Mucha, Bartosz [Department of Clinical Chemistry and Biochemistry, Medical University of Lodz (Poland); Pytel, Dariusz [The Abramson Family Cancer Research Institute, Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 (United States); Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425 (United States); Szymanek, Katarzyna [Department of Ophthalmology, Medical University of Warsaw, SPKSO Hospital, Warsaw (Poland); Szemraj, Janusz [Department of Medical Biochemistry, Medical University of Lodz, Lodz (Poland); Szaflik, Jerzy; Szaflik, Jacek P. [Department of Ophthalmology, Medical University of Warsaw, SPKSO Hospital, Warsaw (Poland); Majsterek, Ireneusz, E-mail: ireneusz.majsterek@umed.lodz.pl [Department of Clinical Chemistry and Biochemistry, Medical University of Lodz (Poland)

    2015-08-15

    Highlights: • We suggested the association of XRCC1 gene with the increase risk of POAG development. • We indicated the association of clinical factor and XRCC1, MUTYH, ADPRT and APE1 genes with POAG progression. • We postulated the increase level of oxidative DNA damage in group of patients with POAG in relation to healthy controls. • We suggested the slightly decrease ability to repair of oxidative DNA damage. • This is the first data that showed the role of BER mechanism in POAG pathogenesis. - Abstract: Glaucoma is a leading cause of irreversible blindness in developing countries. Previous data have shown that progressive loss of human TM cells may be connected with chronic exposure to oxidative stress. This hypothesis may suggest a role of the base excision repair (BER) pathway of oxidative DNA damage in primary open angle glaucoma (POAG) patients. The aim of our study was to evaluate an association of BER gene polymorphism with a risk of POAG. Moreover, an association of clinical parameters was examined including cup disk ratio (c/d), rim area (RA) and retinal nerve fiber layer (RNFL) with glaucoma progression according to BER gene polymorphisms. Our research included 412 patients with POAG and 454 healthy controls. Gene polymorphisms were analyzed by PCR-RFLP. Heidelberg Retinal Tomography (HRT) clinical parameters were also analyzed. The 399Arg/Gln genotype of the XRCC1 gene (OR 1.38; 95% CI 1.02–1.89 p = 0.03) was associated with an increased risk of POAG occurrence. It was indicated that the 399Gln/Gln XRCC1 genotype might increase the risk of POAG progression according to the c/d ratio (OR 1.67; 95% CI 1.07–2.61 P = 0.02) clinical parameter. Moreover, the association of VF factor with 148Asp/Glu of APE1 genotype distribution and POAG progression (OR 2.25; 95% CI 1.30–3.89) was also found. Additionally, the analysis of the 324Gln/His MUTYH polymorphism gene distribution in the patient group according to RNFL factor showed that it might

  3. Association and expression analyses of the Ucp2 and Ucp3 gene ...

    Indian Academy of Sciences (India)

    YANING WANG

    gest a broader hypothesis for further research into the role of Ucp2 and Ucp3 genes, ... Materials and methods ... CT method. Qualitative trait loci (QTL) pyramiding analysis ... type of the Ucp3 gene exhibited better performance in the aspect of ...

  4. Radio-sensitization of esophageal cancer EC9706 cells to X ray by histone deacetylase inhibiter Trichostatin A

    International Nuclear Information System (INIS)

    Lin Xiaoli; Qin Guangyong; Fang Huasheng; Zhang Fengqiu; Ya Huiyuan

    2009-01-01

    Cell apoptosis and the expression of DNA damage repair-related genes XRCC2, ATM and Lig4 were detected separately by flow cytometry analysis and real-time fluorescence quantitative (RT-PCR), in order to investigate the effect of Trichostatin A (TSA) pre-treatment on the radiosensitivity of esophageal cancer EC9706 cells to X ray in vitro. The results indicate that pre-irradiation exposure to TSA enhances cell apoptotic rate by X ray markedly (P<0.05) and the mRNA levels of XRCC2, ATM and Lig4 (except 8Gy) are up-regulated by X ray individually (P<0.05). TSA alone and TSA in combination with X ray all reduce mRNA levels of XRCC2, ATM and Lig4. In conclusions, TSA may radio-sensitize EC9706 cells to X ray by reducing mRNA levels of XRCC2, ATM and Lig4. (authors)

  5. Expression of Drug-Resistant Factor Genes in Hepatocellular Carcinoma Patients Undergoing Chemotherapy with Platinum Complex by Arterial Infusion

    Directory of Open Access Journals (Sweden)

    Shiro Ueda

    2010-09-01

    Full Text Available This study investigated gene expression of drug resistance factors in biopsy tissue samples from hepatocellular carcinoma (HCC patients undergoing chemotherapy by platinum complex. Liver biopsy was performed to collect tissue from the tumor site (T and the non-tumor site (NT prior to the start of treatment. For drug-resistant factors, drug excretion transporters cMOAT and MDR-1, intracellular metal binding protein MT2, DNA repair enzyme ERCC-l and inter-nucleic cell transport protein MVP, were investigated. The comparison of the expression between T and NT indicated a significant decrease of MT2 and MDR-1 in T while a significant increase in ERCC-1 was noted in T. Further, expression was compared between the response cases and non-response cases using the ratios of expression in T to those in NT. The response rate was significantly low in the high expression group when the cutoff value of cMOAT and MT2 was set at 1.5 and 1.0, respectively. Furthermore, when the patients were classified into A group (cMOAT ≧ 1.5 or MT2 ≧ 1.0 and B group (cMOAT < 1.5 and MT2 < 1.0, the response rate of A group was significantly lower than B group when we combined the cutoff values of cMOAT and MT2. It is considered possible to estimate the therapeutic effect of platinum complex at a high probability by combining the expression condition of these two genes.

  6. Alteration of the SETBP1 gene and splicing pathway genes SF3B1, U2AF1, and SRSF2 in childhood acute myeloid leukemia.

    Science.gov (United States)

    Choi, Hyun-Woo; Kim, Hye-Ran; Baek, Hee-Jo; Kook, Hoon; Cho, Duck; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook; Shin, Myung-Geun

    2015-01-01

    Recurrent somatic SET-binding protein 1 (SETBP1) and splicing pathway gene mutations have recently been found in atypical chronic myeloid leukemia and other hematologic malignancies. These mutations have been comprehensively analyzed in adult AML, but not in childhood AML. We investigated possible alteration of the SETBP1, splicing factor 3B subunit 1 (SF3B1), U2 small nuclear RNA auxiliary factor 1 (U2AF1), and serine/arginine-rich splicing factor 2 (SRSF2) genes in childhood AML. Cytogenetic and molecular analyses were performed to reveal chromosomal and genetic alterations. Sequence alterations in the SETBP1, SF3B1, U2AF1, and SRSF2 genes were examined by using direct sequencing in a cohort of 53 childhood AML patients. Childhood AML patients did not harbor any recurrent SETBP1 gene mutations, although our study did identify a synonymous mutation in one patient. None of the previously reported aberrations in the mutational hotspot of SF3B1, U2AF1, and SRSF2 were identified in any of the 53 patients. Alterations of the SETBP1 gene or SF3B1, U2AF1, and SRSF2 genes are not common genetic events in childhood AML, implying that the mutations are unlikely to exert a driver effect in myeloid leukemogenesis during childhood.

  7. MDS. A disease with high radiation-risk

    International Nuclear Information System (INIS)

    Ban, Sadayuki; Sudo, Hitomi; Saegusa, Kumiko; Sagara, Masashi; Imai, Takashi

    2003-01-01

    A preliminary epidemiological study demonstrated that myelodysplastic syndrome (MDS) has an excess relative risk per sievert of 13 in atomic bomb survivors. MDS is the only other radiogenic blood disease apart from leukemia. Clinically, MDS involves dysplastic hematopoiesis and an increased risk of leukemic transformation. Because it is uncertain whether MDS pathogenesis affects lymphoid progenitor cells as well as myeloid progenitor cells, we investigated the micronucleus (MN) frequency in peripheral T lymphocytes of twenty-three atomic bomb survivors with MDS and five normal individuals. The spontaneous- and X-ray-induced-MN frequencies were significantly higher in MDS patients than in normal individuals. Interestingly, radiation sensitivity increased along with the severity of MDS clinical subtypes. Because many of the patients in this study had not been exposed to chemo- or radiation-therapy, their unusual radiosensitivities may be related to their chromosomal or genomic instability. To explain the cause of unusual radiosensitivity, we measured the expression levels of four nucleotide excision repair (NER) genes (ERCC1, ERCC3, ERCC5 and XPC) in peripheral blood mononuclear cells using a reverse transcripts-polymerase chain reaction (RT-PCR) method. The ERCC5 gene was expressed at reduced levels in only one of 10 patients with mild symptom. Reduction of NER genes was expressed in four of 11 patients with severe symptom. Immortalized lymphoid cell lines were established from B-lymphocytes infected with Epstein-Barr virus in vitro. The abrogation of radiation-induced-G2/M arrnst was observed in some of MDS-B lymphoid cell lines, but not in the normal B lymphoid cell lines. Our data suggest that the control of chromosomal stability is impaired in pluripotent stem cells of MDS patients, and that DNA repair defects and loss of G2/M arrest may be involved in the pathophysiology of disease progression. (authors)

  8. Normalization of RNA-seq data using factor analysis of control genes or samples

    Science.gov (United States)

    Risso, Davide; Ngai, John; Speed, Terence P.; Dudoit, Sandrine

    2015-01-01

    Normalization of RNA-seq data has proven essential to ensure accurate inference of expression levels. Here we show that usual normalization approaches mostly account for sequencing depth and fail to correct for library preparation and other more-complex unwanted effects. We evaluate the performance of the External RNA Control Consortium (ERCC) spike-in controls and investigate the possibility of using them directly for normalization. We show that the spike-ins are not reliable enough to be used in standard global-scaling or regression-based normalization procedures. We propose a normalization strategy, remove unwanted variation (RUV), that adjusts for nuisance technical effects by performing factor analysis on suitable sets of control genes (e.g., ERCC spike-ins) or samples (e.g., replicate libraries). Our approach leads to more-accurate estimates of expression fold-changes and tests of differential expression compared to state-of-the-art normalization methods. In particular, RUV promises to be valuable for large collaborative projects involving multiple labs, technicians, and/or platforms. PMID:25150836

  9. Genomic analysis of primordial dwarfism reveals novel disease genes.

    Science.gov (United States)

    Shaheen, Ranad; Faqeih, Eissa; Ansari, Shinu; Abdel-Salam, Ghada; Al-Hassnan, Zuhair N; Al-Shidi, Tarfa; Alomar, Rana; Sogaty, Sameera; Alkuraya, Fowzan S

    2014-02-01

    Primordial dwarfism (PD) is a disease in which severely impaired fetal growth persists throughout postnatal development and results in stunted adult size. The condition is highly heterogeneous clinically, but the use of certain phenotypic aspects such as head circumference and facial appearance has proven helpful in defining clinical subgroups. In this study, we present the results of clinical and genomic characterization of 16 new patients in whom a broad definition of PD was used (e.g., 3M syndrome was included). We report a novel PD syndrome with distinct facies in two unrelated patients, each with a different homozygous truncating mutation in CRIPT. Our analysis also reveals, in addition to mutations in known PD disease genes, the first instance of biallelic truncating BRCA2 mutation causing PD with normal bone marrow analysis. In addition, we have identified a novel locus for Seckel syndrome based on a consanguineous multiplex family and identified a homozygous truncating mutation in DNA2 as the likely cause. An additional novel PD disease candidate gene XRCC4 was identified by autozygome/exome analysis, and the knockout mouse phenotype is highly compatible with PD. Thus, we add a number of novel genes to the growing list of PD-linked genes, including one which we show to be linked to a novel PD syndrome with a distinct facial appearance. PD is extremely heterogeneous genetically and clinically, and genomic tools are often required to reach a molecular diagnosis.

  10. High Production of 2,3-Butanediol (2,3-BD by Raoultella ornithinolytica B6 via Optimizing Fermentation Conditions and Overexpressing 2,3-BD Synthesis Genes.

    Directory of Open Access Journals (Sweden)

    Taeyeon Kim

    Full Text Available Biological production of 2,3-butandiol (2,3-BD has received great attention as an alternative to the petroleum-based 2,3-BD production. In this study, a high production of 2,3-BD in fed-batch fermentation was investigated with a newly isolated bacterium designated as Raoultella ornithinolytica B6. The isolate produced 2,3-BD as the main product using hexoses (glucose, galactose, and fructose, pentose (xylose and disaccharide (sucrose. The effects of temperature, pH-control schemes, and agitation speeds on 2,3-BD production were explored to optimize the fermentation conditions. Notably, cell growth and 2,3-BD production by R. ornithinolytica B6 were higher at 25°C than at 30°C. When three pH control schemes (no pH control, pH control at 7, and pH control at 5.5 after the pH was decreased to 5.5 during fermentation were tested, the best 2,3-BD titer and productivity along with reduced by-product formation were achieved with pH control at 5.5. Among different agitation speeds (300, 400, and 500 rpm, the optimum agitation speed was 400 rpm with 2,3-BD titer of 68.27 g/L, but acetic acid was accumulated up to 23.32 g/L. Further enhancement of the 2,3-BD titer (112.19 g/L, yield (0.38 g/g, and productivity (1.35 g/L/h as well as a significant reduction of acetic acid accumulation (9.71 g/L was achieved by the overexpression of homologous budABC genes, the 2,3-BD-synthesis genes involved in the conversion of pyruvate to 2,3-BD. This is the first report presenting a high 2,3-BD production by R.ornithinolytica which has attracted little attention with respect to 2,3-BD production, extending the microbial spectrum of 2,3-BD producers.

  11. Deletion of Plasmodium falciparum Histidine-Rich Protein 2 (pfhrp2) and Histidine-Rich Protein 3 (pfhrp3) Genes in Colombian Parasites.

    Science.gov (United States)

    Murillo Solano, Claribel; Akinyi Okoth, Sheila; Abdallah, Joseph F; Pava, Zuleima; Dorado, Erika; Incardona, Sandra; Huber, Curtis S; Macedo de Oliveira, Alexandre; Bell, David; Udhayakumar, Venkatachalam; Barnwell, John W

    2015-01-01

    A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs) in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18) were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the 100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion of pfhrp2

  12. Tbx2/3 is an essential mediator within the Brachyury gene network during Ciona notochord development.

    Science.gov (United States)

    José-Edwards, Diana S; Oda-Ishii, Izumi; Nibu, Yutaka; Di Gregorio, Anna

    2013-06-01

    T-box genes are potent regulators of mesoderm development in many metazoans. In chordate embryos, the T-box transcription factor Brachyury (Bra) is required for specification and differentiation of the notochord. In some chordates, including the ascidian Ciona, members of the Tbx2 subfamily of T-box genes are also expressed in this tissue; however, their regulatory relationships with Bra and their contributions to the development of the notochord remain uncharacterized. We determined that the notochord expression of Ciona Tbx2/3 (Ci-Tbx2/3) requires Ci-Bra, and identified a Ci-Tbx2/3 notochord CRM that necessitates multiple Ci-Bra binding sites for its activity. Expression of mutant forms of Ci-Tbx2/3 in the developing notochord revealed a role for this transcription factor primarily in convergent extension. Through microarray screens, we uncovered numerous Ci-Tbx2/3 targets, some of which overlap with known Ci-Bra-downstream notochord genes. Among the Ci-Tbx2/3 notochord targets are evolutionarily conserved genes, including caspases, lineage-specific genes, such as Noto4, and newly identified genes, such as MLKL. This work sheds light on a large section of the notochord regulatory circuitry controlled by T-box factors, and reveals new components of the complement of genes required for the proper formation of this structure.

  13. A Single Dose of LSD Does Not Alter Gene Expression of the Serotonin 2A Receptor Gene (HTR2A) or Early Growth Response Genes (EGR1-3) in Healthy Subjects

    Science.gov (United States)

    Dolder, Patrick C.; Grünblatt, Edna; Müller, Felix; Borgwardt, Stefan J.; Liechti, Matthias E.

    2017-01-01

    Rationale: Renewed interest has been seen in the use of lysergic acid diethylamide (LSD) in psychiatric research and practice. The repeated use of LSD leads to tolerance that is believed to result from serotonin (5-HT) 5-HT2A receptor downregulation. In rats, daily LSD administration for 4 days decreased frontal cortex 5-HT2A receptor binding. Additionally, a single dose of LSD acutely increased expression of the early growth response genes EGR1 and EGR2 in rat and mouse brains through 5-HT2A receptor stimulation. No human data on the effects of LSD on gene expression has been reported. Therefore, we investigated the effects of single-dose LSD administration on the expression of the 5-HT2A receptor gene (HTR2A) and EGR1-3 genes. Methods: mRNA expression levels were analyzed in whole blood as a peripheral biomarker in 15 healthy subjects before and 1.5 and 24 h after the administration of LSD (100 μg) and placebo in a randomized, double-blind, placebo-controlled, cross-over study. Results: LSD did not alter the expression of the HTR2A or EGR1-3 genes 1.5 and 24 h after administration compared with placebo. Conclusion: No changes were observed in the gene expression of LSD’s primary target receptor gene or genes that are implicated in its downstream effects. Remaining unclear is whether chronic LSD administration alters gene expression in humans. PMID:28701958

  14. High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.; Liu, Y.Y.; Zhu, B.; Li, Y.; Hua, H.; Wang, Y.H.; Zhang, J.; Jiang, Z.; Wang, Z.R. [Sichuan University, Chengdu (China). West China Medical Center. Health Ministry Key Lab. of Chronobiology], e-mail: wangzhengrong@126.com

    2009-10-15

    Period2 is a core circadian gene, which not only maintains the circadian rhythm of cells but also regulates some organic functions. We investigated the effects of mPeriod2 (mPer2) expression on radiosensitivity in normal mouse cells exposed to {sup 60}Co-{gamma}-rays. NIH 3T3 cells were treated with 12-O-tetradecanoyl phorbol-13-acetate (TPA) to induce endogenous mPer2 expression or transfected with pcDNA3.1(+)-mPer2 and irradiated with {sup 6}0Co-{gamma}-rays, and then analyzed by several methods such as flow cytometry, colony formation assay, RT-PCR, and immunohistochemistry. Flow cytometry and colony formation assay revealed that irradiated NIH 3T3 cells expressing high levels of mPer2 showed a lower death rate (TPA: 24 h 4.3% vs 12 h 6.8% and control 9.4%; transfection: pcDNA3.1-mPer2 3.7% vs pcDNA3.1 11.3% and control 8.2%), more proliferation and clonogenic survival (TPA: 121.7 {+-} 6.51 vs 66.0 {+-} 3.51 and 67.7 {+-} 7.37; transfection: 121.7 {+-} 6.50 vs 65.3 {+-} 3.51 and 69.0 {+-} 4.58) both when treated with TPA and transfected with mPer2. RT-PCR analysis showed an increased expression of bax, bcl-2, p53, cmyc, mre11, and nbs1, and an increased proportionality of bcl-2/bax in the irradiated cells at peak mPer2 expression compared with cells at trough mPer2 expression and control cells. However, no significant difference in rad50 expression was observed among the three groups of cells. Immunohistochemistry also showed increased protein levels of P53, BAX and proliferating cell nuclear antigen in irradiated cells with peak mPer2 levels. Thus, high expression of the circadian gene mPer2 may reduce the radiosensitivity of NIH 3T3 cells. For this effect, mPer2 may directly or indirectly regulate the expressions of cell proliferation- and apoptosis-related genes and DNA repair-related genes. (author)

  15. High expression of the circadian gene mPer2 diminishes the radiosensitivity of NIH 3T3 cells

    International Nuclear Information System (INIS)

    Chang, L.; Liu, Y.Y.; Zhu, B.; Li, Y.; Hua, H.; Wang, Y.H.; Zhang, J.; Jiang, Z.; Wang, Z.R.

    2009-01-01

    Period2 is a core circadian gene, which not only maintains the circadian rhythm of cells but also regulates some organic functions. We investigated the effects of mPeriod2 (mPer2) expression on radiosensitivity in normal mouse cells exposed to 60 Co-γ-rays. NIH 3T3 cells were treated with 12-O-tetradecanoyl phorbol-13-acetate (TPA) to induce endogenous mPer2 expression or transfected with pcDNA3.1(+)-mPer2 and irradiated with 6 0Co-γ-rays, and then analyzed by several methods such as flow cytometry, colony formation assay, RT-PCR, and immunohistochemistry. Flow cytometry and colony formation assay revealed that irradiated NIH 3T3 cells expressing high levels of mPer2 showed a lower death rate (TPA: 24 h 4.3% vs 12 h 6.8% and control 9.4%; transfection: pcDNA3.1-mPer2 3.7% vs pcDNA3.1 11.3% and control 8.2%), more proliferation and clonogenic survival (TPA: 121.7 ± 6.51 vs 66.0 ± 3.51 and 67.7 ± 7.37; transfection: 121.7 ± 6.50 vs 65.3 ± 3.51 and 69.0 ± 4.58) both when treated with TPA and transfected with mPer2. RT-PCR analysis showed an increased expression of bax, bcl-2, p53, cmyc, mre11, and nbs1, and an increased proportionality of bcl-2/bax in the irradiated cells at peak mPer2 expression compared with cells at trough mPer2 expression and control cells. However, no significant difference in rad50 expression was observed among the three groups of cells. Immunohistochemistry also showed increased protein levels of P53, BAX and proliferating cell nuclear antigen in irradiated cells with peak mPer2 levels. Thus, high expression of the circadian gene mPer2 may reduce the radiosensitivity of NIH 3T3 cells. For this effect, mPer2 may directly or indirectly regulate the expressions of cell proliferation- and apoptosis-related genes and DNA repair-related genes. (author)

  16. A small interfering RNA screen of genes involved in DNA repair identifies tumor-specific radiosensitization by POLQ knockdown

    DEFF Research Database (Denmark)

    Higgins, Geoff S; Prevo, Remko; Lee, Yin-Fai

    2010-01-01

    The effectiveness of radiotherapy treatment could be significantly improved if tumor cells could be rendered more sensitive to ionizing radiation (IR) without altering the sensitivity of normal tissues. However, many of the key therapeutically exploitable mechanisms that determine intrinsic tumor...... radiosensitivity are largely unknown. We have conducted a small interfering RNA (siRNA) screen of 200 genes involved in DNA damage repair aimed at identifying genes whose knockdown increased tumor radiosensitivity. Parallel siRNA screens were conducted in irradiated and unirradiated tumor cells (SQ20B......) and irradiated normal tissue cells (MRC5). Using gammaH2AX foci at 24 hours after IR, we identified several genes, such as BRCA2, Lig IV, and XRCC5, whose knockdown is known to cause increased cell radiosensitivity, thereby validating the primary screening end point. In addition, we identified POLQ (DNA...

  17. Thyroid nodules, polymorphic variants in DNA repair and RET-related genes, and interaction with ionizing radiation exposure from nuclear tests in Kazakhstan

    Science.gov (United States)

    Sigurdson, Alice J.; Land, Charles E.; Bhatti, Parveen; Pineda, Marbin; Brenner, Alina; Carr, Zhanat; Gusev, Boris I.; Zhumadilov, Zhaxibay; Simon, Steven L.; Bouville, Andre; Rutter, Joni L.; Ron, Elaine; Struewing, Jeffery P.

    2010-01-01

    Risk factors for thyroid cancer remain largely unknown except for ionizing radiation exposure during childhood and a history of benign thyroid nodules. Because thyroid nodules are more common than thyroid cancers and are associated with thyroid cancer risk, we evaluated several polymorphisms potentially relevant to thyroid tumors and assessed interaction with ionizing radiation exposure to the thyroid gland. Thyroid nodules were detected in 1998 by ultrasound screening of 2997 persons who lived near the Semipalatinsk nuclear test site in Kazakhstan when they were children (1949-62). Cases with thyroid nodules (n=907) were frequency matched (1:1) to those without nodules by ethnicity (Kazakh or Russian), gender, and age at screening. Thyroid gland radiation doses were estimated from fallout deposition patterns, residence history, and diet. We analyzed 23 polymorphisms in 13 genes and assessed interaction with ionizing radiation exposure using likelihood ratio tests (LRT). Elevated thyroid nodule risks were associated with the minor alleles of RET S836S (rs1800862, p = 0.03) and GFRA1 -193C>G (rs not assigned, p = 0.05) and decreased risk with XRCC1 R194W (rs1799782, p-trend = 0.03) and TGFB1 T263I (rs1800472, p = 0.009). Similar patterns of association were observed for a small number of papillary thyroid cancers (n=25). Ionizing radiation exposure to the thyroid gland was associated with significantly increased risk of thyroid nodules (age and gender adjusted excess odds ratio/Gy = 0.30, 95% confidence interval 0.05-0.56), with evidence for interaction by genotype found for XRCC1 R194W (LRT p value = 0.02). Polymorphisms in RET signaling, DNA repair, and proliferation genes may be related to risk of thyroid nodules, consistent with some previous reports on thyroid cancer. Borderline support for gene-radiation interaction was found for a variant in XRCC1, a key base excision repair protein. Other pathways, such as genes in double strand break repair, apoptosis, and

  18. An Investigation of the Relationship between PPP1R3 Gene Polymorphism and Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Soyar Sari

    2017-07-01

    Full Text Available Background and Objectives: PPP1R3 is one of the genes confirmed to be associated with type 2 diabetes. This gene is located on the long arm of chromosome 7 and encodes protein phosphatase 1 (PP1, which has serine/threonine phosphatase activity. There is a polymorphic region in the 3'UTR region of this gene, which creates ARE1 and ARE2 alleles. The aim of this study was to determine the relationship between PPP1R3 gene polymorphism and type 2 diabetes. Methods: In this case-control study, 100 patients with type 2 diabetes and 100 healthy individuals, were randomly selected from the study population. PPP1R3 gene polymorphism was analyzed using PCR-RFLP method. Comparison of variables between healthy and patient groups, was performed by t-test, allele frequency by counting, and calculation of their ratio by chi-square test, and the population was confirmed to be in Hardy-Weinberg equilibrium. Distribution of genotypes and alleles was compared between healthy and patient groups. Results: In this study, there was no significant difference between the frequency of genotypes and frequency of alleles in subjects with type 2 diabetes and healthy control subjects. Conclusion: The findings of this study indicated that polymorphisms in the 3'UTR region of PPP1R3 gene is not associated with type 2 diabetes.

  19. Disease: H00076 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ne encoding the group 8 excision-repair cross-complementing protein (ERCC8) is early childhood onset in the ...second year of life, CSB caused by mutation in the ERCC6 gene is late childhood onset with mild symptoms. ER

  20. TFIIH subunit alterations causing xeroderma pigmentosum and trichothiodystrophy specifically disturb several steps during transcription.

    Science.gov (United States)

    Singh, Amita; Compe, Emanuel; Le May, Nicolas; Egly, Jean-Marc

    2015-02-05

    Mutations in genes encoding the ERCC3 (XPB), ERCC2 (XPD), and GTF2H5 (p8 or TTD-A) subunits of the transcription and DNA-repair factor TFIIH lead to three autosomal-recessive disorders: xeroderma pigmentosum (XP), XP associated with Cockayne syndrome (XP/CS), and trichothiodystrophy (TTD). Although these diseases were originally associated with defects in DNA repair, transcription deficiencies might be also implicated. By using retinoic acid receptor beta isoform 2 (RARB2) as a model in several cells bearing mutations in genes encoding TFIIH subunits, we observed that (1) the recruitment of the TFIIH complex was altered at the activated RARB2 promoter, (2) TFIIH participated in the recruitment of nucleotide excision repair (NER) factors during transcription in a manner different from that observed during NER, and (3) the different TFIIH variants disturbed transcription by having distinct consequences on post-translational modifications of histones, DNA-break induction, DNA demethylation, and gene-loop formation. The transition from heterochromatin to euchromatin was disrupted depending on the variant, illustrating the fact that TFIIH, by contributing to NER factor recruitment, orchestrates chromatin remodeling. The subtle transcriptional differences found between various TFIIH variants thus participate in the phenotypic variability observed among XP, XP/CS, and TTD individuals. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  1. Histidine-rich protein 2 (pfhrp2) and pfhrp3 gene deletions in Plasmodium falciparum isolates from select sites in Brazil and Bolivia.

    Science.gov (United States)

    Rachid Viana, Giselle Maria; Akinyi Okoth, Sheila; Silva-Flannery, Luciana; Lima Barbosa, Danielle Regina; Macedo de Oliveira, Alexandre; Goldman, Ira F; Morton, Lindsay C; Huber, Curtis; Anez, Arletta; Dantas Machado, Ricardo Luiz; Aranha Camargo, Luís Marcelo; Costa Negreiros do Valle, Suiane; Marins Póvoa, Marinete; Udhayakumar, Venkatachalam; Barnwell, John W

    2017-01-01

    More than 80% of available malaria rapid diagnostic tests (RDTs) are based on the detection of histidine-rich protein-2 (PfHRP2) for diagnosis of Plasmodium falciparum malaria. Recent studies have shown the genes that code for this protein and its paralog, histidine-rich protein-3 (PfHRP3), are absent in parasites from the Peruvian Amazon Basin. Lack of PfHRP2 protein through deletion of the pfhrp2 gene leads to false-negative RDT results for P. falciparum. We have evaluated the extent of pfhrp2 and pfhrp3 gene deletions in a convenience sample of 198 isolates from six sites in three states across the Brazilian Amazon Basin (Acre, Rondonia and Para) and 25 isolates from two sites in Bolivia collected at different times between 2010 and 2012. Pfhrp2 and pfhrp3 gene and their flanking genes on chromosomes 7 and 13, respectively, were amplified from 198 blood specimens collected in Brazil. In Brazil, the isolates collected in Acre state, located in the western part of the Brazilian Amazon, had the highest percentage of deletions for pfhrp2 25 (31.2%) of 79, while among those collected in Rondonia, the prevalence of pfhrp2 gene deletion was only 3.3% (2 out of 60 patients). In isolates from Para state, all parasites were pfhrp2-positive. In contrast, we detected high proportions of isolates from all 3 states that were pfhrp3-negative ranging from 18.3% (11 out of 60 samples) to 50.9% (30 out of 59 samples). In Bolivia, only one of 25 samples (4%) tested had deleted pfhrp2 gene, while 68% (17 out of 25 samples) were pfhrp3-negative. Among the isolates tested, P. falciparum pfhrp2 gene deletions were present mainly in those from Acre State in the Brazilian Amazon. These results indicate it is important to reconsider the use of PfHRP2-based RDTs in the western region of the Brazilian Amazon and to implement appropriate surveillance systems to monitor pfhrp2 gene deletions in this and other parts of the Amazon region.

  2. A novel mutation in the SH3BP2 gene causes cherubism: case report

    Directory of Open Access Journals (Sweden)

    Yu Shi-Feng

    2006-12-01

    Full Text Available Abstract Background Cherubism is a rare hereditary multi-cystic disease of the jaws, characterized by its typical appearance in early childhood, and stabilization and remission after puberty. It is genetically transmitted in an autosomal dominant fashion and the gene coding for SH3-binding protein 2 (SH3BP2 may be involved. Case presentation We investigated a family consisting of 21 members with 3 female affected individuals with cherubism from Northern China. Of these 21 family members, 17 were recruited for the genetic analysis. We conducted the direct sequence analysis of the SH3BP2 gene among these 17 family members. A disease-causing mutation was identified in exon 9 of the gene. It was an A1517G base change, which leads to a D419G amino acid substitution. Conclusion To our knowledge, the A1517G mutation has not been reported previously in cherubism. This finding is novel.

  3. Evaluation of external RNA controls for the standardisation of gene expression biomarker measurements

    Directory of Open Access Journals (Sweden)

    Elaswarapu Ramnath

    2010-11-01

    Full Text Available Abstract Background Gene expression profiling is an important approach for detecting diagnostic and prognostic biomarkers, and predicting drug safety. The development of a wide range of technologies and platforms for measuring mRNA expression makes the evaluation and standardization of transcriptomic data problematic due to differences in protocols, data processing and analysis methods. Thus, universal RNA standards, such as those developed by the External RNA Controls Consortium (ERCC, are proposed to aid validation of research findings from diverse platforms such as microarrays and RT-qPCR, and play a role in quality control (QC processes as transcriptomic profiling becomes more commonplace in the clinical setting. Results Panels of ERCC RNA standards were constructed in order to test the utility of these reference materials (RMs for performance characterization of two selected gene expression platforms, and for discrimination of biomarker profiles between groups. The linear range, limits of detection and reproducibility of microarray and RT-qPCR measurements were evaluated using panels of RNA standards. Transcripts of low abundance (≤ 10 copies/ng total RNA showed more than double the technical variability compared to higher copy number transcripts on both platforms. Microarray profiling of two simulated 'normal' and 'disease' panels, each consisting of eight different RNA standards, yielded robust discrimination between the panels and between standards with varying fold change ratios, showing no systematic effects due to different labelling and hybridization runs. Also, comparison of microarray and RT-qPCR data for fold changes showed agreement for the two platforms. Conclusions ERCC RNA standards provide a generic means of evaluating different aspects of platform performance, and can provide information on the technical variation associated with quantification of biomarkers expressed at different levels of physiological abundance

  4. Evaluation of the XRCC1 gene as a phenotypic modifier in BRCA1/2 mutation carriers. Results from the consortium of investigators of modifiers of BRCA1/BRCA2

    NARCIS (Netherlands)

    Osorio, A.; Milne, R. L.; Alonso, R.; Pita, G.; Peterlongo, P.; Teulé, A.; Nathanson, K. L.; Domchek, S. M.; Rebbeck, T.; Lasa, A.; Konstantopoulou, I.; Hogervorst, F. B.; Verhoef, S.; van Dooren, M. F.; Jager, A.; Ausems, M. G. E. M.; Aalfs, C. M.; van Asperen, C. J.; Vreeswijk, M.; Waisfisz, Q.; van Roozendaal, C. E.; Ligtenberg, M. J.; Easton, D. F.; Peock, S.; Cook, M.; Oliver, C. T.; Frost, D.; Curzon, B.; Evans, D. G.; Lalloo, F.; Eeles, R.; Izatt, L.; Davidson, R.; Adlard, J.; Eccles, D.; Ong, K.-r; Douglas, F.; Downing, S.; Brewer, C.; Walker, L.; Nevanlinna, H.; Aittomäki, K.; Couch, F. J.; Fredericksen, Z.; Lindor, N. M.; Godwin, A.; Isaacs, C.; Caligo, M. A.; Loman, N.; Jernström, H.; Barbany-Bustinza, G.; Liljegren, A.; Ehrencrona, H.; Stenmark-Askmalm, M.; Feliubadaló, L.; Manoukian, S.; Peissel, B.; Zaffaroni, D.; Bonanni, B.; Fortuzzi, S.; Johannsson, O. T.; Chenevix-Trench, G.; Chen, X.-C.; Beesley, J.; Spurdle, A. B.; Sinilnikova, O. M.; Healey, S.; McGuffog, L.; Antoniou, A. C.; Brunet, J.; Radice, P.; Benítez, J.; Hogervorst, F. B. L.; Verheus, M.; van 't Veer, L. J.; van Leeuwen, F. E.; Rookus, M. A.; Collée, M.; van den Ouweland, A. M. W.; Hooning, M. J.; Tilanus-Linthorst, M. M. A.; Seynaeve, C.; Wijnen, J. T.; Vreeswijk, M. P.; Tollenaar, R. A.; Devilee, P.; Hoogerbrugge, N.; Ausems, M. G.; van der Luijt, R. B.; van Os, T. A.; Gille, J. J. P.; Meijers-Heijboer, H. E. J.; Gomez-Garcia, E. B.; Blok, Marinus J.; Caanen, B.; Oosterwijk, J. C.; van der Hout, A. H.; Mourits, M. J.; Vasen, H. F.; Peock, Susan; Cook, Margaret; Oliver, Clare; Frost, Debra; Miedzybrodzka, Zosia; Gregory, Helen; Morrison, Patrick; Jeffers, Lisa; Cole, Trevor; McKeown, Carole; Ong, Kai-Ren; Hoffman, Jonathan; Donaldson, Alan; Paterson, Joan; Downing, Sarah; Taylor, Amy; Murray, Alexandra; Rogers, Mark T.; McCann, Emma; Kennedy, M. John; Barton, David; East, South; Porteous, Mary; Drummond, Sarah; Brewer, Carole; Kivuva, Emma; Searle, Anne; Goodman, Selina; Hill, Kathryn; Davidson, Rosemarie; Bradshaw, Nicola; Snadden, Lesley; Longmuir, Mark; Watt, Catherine; Gibson, Sarah; Izatt, Louise; Jacobs, Chris; Langman, Caroline; Whaite, Anna; Dorkins, Huw; Barwell, Julian; Adlard, Julian; Chu, Carol; Miller, Julie; Ellis, Ian; Evans, D. Gareth; Lalloo, Fiona; Taylor, Jane; Side, Lucy; Male, Alison; Berlin, Cheryl; Eason, Jacqueline; Collier, Rebecca; Douglas, Fiona; Claber, Oonagh; Walker, Lisa; McLeod, Diane; Halliday, Dorothy; Durell, Sarah; Stayner, Barbara; Eeles, Ros; Shanley, Susan; Rahman, Nazneen; Houlston, Richard; Bancroft, Elizabeth; D'Mello, Lucia; Page, Elizabeth; Ardern-Jones, Audrey; Kohut, Kelly; Wiggins, Jennifer; Castro, Elena; Mitra, Anitra; Robertson, Lisa; Cook, Jackie; Quarrell, Oliver; Bardsley, Cathryn; Hodgson, Shirley; Goff, Sheila; Brice, Glen; Winchester, Lizzie; Eddy, Charlotte; Tripathi, Vishakha; Attard, Virginia; Eccles, Diana; Lucassen, Anneke; Crawford, Gillian; McBride, Donna; Smalley, Sarah; Godwin, A. K.; Karlsson, Per; Nordling, Margareta; Bergman, Annika; Einbeigi, Zakaria; Stenmark- Askmalm, Marie; Liedgren, Sigrun; Borg, Ake; Loman, Niklas; Olsson, Håkan; Kristoffersson, Ulf; Jernström, Helena; Harbst, Katja; Henriksson, Karin; Lindblom, Annika; Arver, Brita; Wachenfeldt, Anna von; Liljegren, Annelie; Barbany-Bustinza, Gisela; Rantala, Johanna; Melin, Beatrice; Grönberg, Henrik; Stattin, Eva-Lena; Emanuelsson, Monica; Ehrencrona, Hans; Rosenquist Brandell, Richard; Dahl, Niklas

    2011-01-01

    Single-nucleotide polymorphisms (SNPs) in genes involved in DNA repair are good candidates to be tested as phenotypic modifiers for carriers of mutations in the high-risk susceptibility genes BRCA1 and BRCA2. The base excision repair (BER) pathway could be particularly interesting given the relation

  5. Human-specific SNP in obesity genes, adrenergic receptor beta2 (ADRB2, Beta3 (ADRB3, and PPAR γ2 (PPARG, during primate evolution.

    Directory of Open Access Journals (Sweden)

    Akiko Takenaka

    Full Text Available UNLABELLED: Adrenergic-receptor beta2 (ADRB2 and beta3 (ADRB3 are obesity genes that play a key role in the regulation of energy balance by increasing lipolysis and thermogenesis. The Glu27 allele in ADRB2 and the Arg64 allele in ADRB3 are associated with abdominal obesity and early onset of non-insulin-dependent diabetes mellitus (NIDDM in many ethnic groups. Peroxisome proliferator-activated receptor γ (PPARG is required for adipocyte differentiation. Pro12Ala mutation decreases PPARG activity and resistance to NIDDM. In humans, energy-expense alleles, Gln27 in ADRB2 and Trp64 in ADRB3, are at higher frequencies than Glu27 and Arg64, respectively, but Ala12 in PPARG is at lower frequency than Pro12. Adaptation of humans for lipolysis, thermogenesis, and reduction of fat accumulation could be considered by examining which alleles in these genes are dominant in non-human primates (NHP. All NHP (P. troglodytes, G. gorilla, P. pygmaeus, H. agilis and macaques had energy-thrifty alleles, Gly16 and Glu27 in ADRB2, and Arg64 in ADRB3, but did not have energy-expense alleles, Arg16, Gln27 and Trp64 alleles. In PPARG gene, all NHP had large adipocyte accumulating type, the Pro12 allele. CONCLUSIONS: These results indicate that a tendency to produce much more heat through the energy-expense alleles developed only in humans, who left tropical rainforests for savanna and developed new features in their heat-regulation systems, such as reduction of body hair and increased evaporation of water, and might have helped the protection of entrails from cold at night, especially in glacial periods.

  6. Loss of the NKX3.1 tumorsuppressor promotes the TMPRSS2-ERG fusion gene expression in prostate cancer

    International Nuclear Information System (INIS)

    Thangapazham, Rajesh; Saenz, Francisco; Katta, Shilpa; Mohamed, Ahmed A; Tan, Shyh-Han; Petrovics, Gyorgy; Srivastava, Shiv; Dobi, Albert

    2014-01-01

    In normal prostate epithelium the TMPRSS2 gene encoding a type II serine protease is directly regulated by male hormones through the androgen receptor. In prostate cancer ERG protooncogene frequently gains hormonal control by seizing gene regulatory elements of TMPRSS2 through genomic fusion events. Although, the androgenic activation of TMPRSS2 gene has been established, little is known about other elements that may interact with TMPRSS2 promoter sequences to modulate ERG expression in TMPRSS2-ERG gene fusion context. Comparative genomic analyses of the TMPRSS2 promoter upstream sequences and pathway analyses were performed by the Genomatix Software. NKX3.1 and ERG genes expressions were evaluated by immunoblot or by quantitative Real-Time PCR (qRT-PCR) assays in response to siRNA knockdown or heterologous expression. QRT-PCR assay was used for monitoring the gene expression levels of NKX3.1-regulated genes. Transcriptional regulatory function of NKX3.1 was assessed by luciferase assay. Recruitment of NKX3.1 to its cognate elements was monitored by Chromatin Immunoprecipitation assay. Comparative analysis of the TMPRSS2 promoter upstream sequences among different species revealed the conservation of binding sites for the androgen inducible NKX3.1 tumor suppressor. Defects of NKX3.1, such as, allelic loss, haploinsufficiency, attenuated expression or decreased protein stability represent established pathways in prostate tumorigenesis. We found that NKX3.1 directly binds to TMPRSS2 upstream sequences and negatively regulates the expression of the ERG protooncogene through the TMPRSS2-ERG gene fusion. These observations imply that the frequently noted loss-of-function of NKX3.1 cooperates with the activation of TMPRSS2-ERG fusions in prostate tumorigenesis

  7. Rapid assessment of repair of ultraviolet DNA damage with a modified host-cell reactivation assay using a luciferase reporter gene and correlation with polymorphisms of DNA repair genes in normal human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Qiao Yawei; Spitz, Margaret R.; Guo Zhaozheng; Hadeyati, Mohammad; Grossman, Lawrence; Kraemer, Kenneth H.; Wei Qingyi

    2002-11-30

    As DNA repair plays an important role in genetic susceptibility to cancer, assessment of the DNA repair phenotype is critical for molecular epidemiological studies of cancer. In this report, we compared use of the luciferase (luc) reporter gene in a host-cell reactivation (HCR) (LUC) assay of repair of ultraviolet (UV) damage to DNA to use of the chloramphenicol (cat) gene-based HCR (CAT) assay we used previously for case-control studies. We performed both the assays on cryopreserved lymphocytes from 102 healthy non-Hispanic white subjects. There was a close correlation between DNA repair capacity (DRC) as measured by the LUC and CAT assays. Although these two assays had similar variation, the LUC assay was faster and more sensitive. We also analyzed the relationship between DRC and the subjects' previously determined genotypes for four polymorphisms of two nucleotide-excision repair (NER) genes (in intron 9 of xeroderma pigmentosum (XP) C and exons 6, 10 and 23 of XPD) and one polymorphism of a base-excision repair gene in exon 10 of X-ray complementing group 1 (XRCC1). The DRC was significantly lower in subjects homozygous for one or more polymorphisms of the two NER genes than in subjects with other genotypes (P=0.010). In contrast, the polymorphic XRCC1 allele had no significant effect on DRC. These results suggest that the post-UV LUC assay measures NER phenotype and that polymorphisms of XPC and XPD genes modulate DRC. For population studies of the DNA repair phenotype, many samples need to be evaluated, and so the LUC assay has several advantages over the CAT assay: the LUC assay was more sensitive, had less variation, was not radioactive, was easier to perform, and required fewer cryopreserved cells. These features make the LUC-based HCR assay suitable for molecular epidemiological studies.

  8. CYP39A1 polymorphism is associated with toxicity during intensive induction chemotherapy in patients with advanced head and neck cancer

    International Nuclear Information System (INIS)

    Melchardt, Thomas; Hufnagl, Clemens; Magnes, Teresa; Weiss, Lukas; Hutarew, Georg; Neureiter, Daniel; Schlattau, Alexander; Moser, Gerhard; Gaggl, Alexander; Tränkenschuh, Wolfgang; Greil, Richard; Egle, Alexander

    2015-01-01

    Induction chemotherapy incorporating docetaxel, cisplatin and 5- fluorouracil before radiotherapy may improve the outcome of patients with advanced head and neck cancer. Nevertheless, the addition of docetaxel increases hematological toxicity and infectious complications. Therefore, genetic markers predicting toxicity and efficacy of this treatment regimen may help to identify patients, who would have the most benefit from this intensive treatment. A cohort of 78 patients with advanced head and neck cancer treated with induction chemotherapy was assessed for clinical outcome and toxicity during treatment with curative intention. Genetic polymorphisms primary associated with treatment efficacy (ERCC2-rs13181, rs1799793, ERCC1-rs3212986, rs11615, XRCC1-rs25487) or with docetaxel caused toxicity (CYP39A1-rs7761731, SLCO1B3-rs11045585) were evaluated in all patients. The results of these analyses were correlated with the clinical outcome of the patients (loco regional control, progression free survival, overall survival) and treatment related toxicity during induction chemotherapy. Median progression free survival and overall survival was 20 and 31 months in an intention to treat analysis, respectively. Overall response rate to induction chemotherapy was high with 78.1 % of all patients. None of the polymorphisms tested was associated with the clinical outcome of the patients. Genotype A of the CYP39A1 rs7761731 polymorphism was associated with a higher incidence of leucopenia and infections or death during induction chemotherapy. Intensive induction chemotherapy results in a high response rate in the majority of patients. None of the polymorphisms tested was associated with the clinical outcome of the patients. The CYP39A1 polymorphism rs7761731 may help to identify patients at high risk for treatment related toxicity

  9. Genetic characterization of the non-structural protein-3 gene of bluetongue virus serotype-2 isolate from India

    Directory of Open Access Journals (Sweden)

    Raghavendra Sumanth Pudupakam

    2017-03-01

    Full Text Available Aim: Sequence analysis and phylogenetic studies based on non-structural protein-3 (NS3 gene are important in understanding the evolution and epidemiology of bluetongue virus (BTV. This study was aimed at characterizing the NS3 gene sequence of Indian BTV serotype-2 (BTV2 to elucidate its genetic relationship to global BTV isolates. Materials and Methods: The NS3 gene of BTV2 was amplified from infected BHK-21 cell cultures, cloned and subjected to sequence analysis. The generated NS3 gene sequence was compared with the corresponding sequences of different BTV serotypes across the world, and a phylogenetic relationship was established. Results: The NS3 gene of BTV2 showed moderate levels of variability in comparison to different BTV serotypes, with nucleotide sequence identities ranging from 81% to 98%. The region showed high sequence homology of 93-99% at amino acid level with various BTV serotypes. The PPXY/PTAP late domain motifs, glycosylation sites, hydrophobic domains, and the amino acid residues critical for virus-host interactions were conserved in NS3 protein. Phylogenetic analysis revealed that BTV isolates segregate into four topotypes and that the Indian BTV2 in subclade IA is closely related to Asian and Australian origin strains. Conclusion: Analysis of the NS3 gene indicated that Indian BTV2 isolate is closely related to strains from Asia and Australia, suggesting a common origin of infection. Although the pattern of evolution of BTV2 isolate is different from other global isolates, the deduced amino acid sequence of NS3 protein demonstrated high molecular stability.

  10. Genetic characterization of the non-structural protein-3 gene of bluetongue virus serotype-2 isolate from India.

    Science.gov (United States)

    Pudupakam, Raghavendra Sumanth; Raghunath, Shobana; Pudupakam, Meghanath; Daggupati, Sreenivasulu

    2017-03-01

    Sequence analysis and phylogenetic studies based on non-structural protein-3 (NS3) gene are important in understanding the evolution and epidemiology of bluetongue virus (BTV). This study was aimed at characterizing the NS3 gene sequence of Indian BTV serotype-2 (BTV2) to elucidate its genetic relationship to global BTV isolates. The NS3 gene of BTV2 was amplified from infected BHK-21 cell cultures, cloned and subjected to sequence analysis. The generated NS3 gene sequence was compared with the corresponding sequences of different BTV serotypes across the world, and a phylogenetic relationship was established. The NS3 gene of BTV2 showed moderate levels of variability in comparison to different BTV serotypes, with nucleotide sequence identities ranging from 81% to 98%. The region showed high sequence homology of 93-99% at amino acid level with various BTV serotypes. The PPXY/PTAP late domain motifs, glycosylation sites, hydrophobic domains, and the amino acid residues critical for virus-host interactions were conserved in NS3 protein. Phylogenetic analysis revealed that BTV isolates segregate into four topotypes and that the Indian BTV2 in subclade IA is closely related to Asian and Australian origin strains. Analysis of the NS3 gene indicated that Indian BTV2 isolate is closely related to strains from Asia and Australia, suggesting a common origin of infection. Although the pattern of evolution of BTV2 isolate is different from other global isolates, the deduced amino acid sequence of NS3 protein demonstrated high molecular stability.

  11. SCS3 and YFT2 link transcription of phospholipid biosynthetic genes to ER stress and the UPR.

    Directory of Open Access Journals (Sweden)

    Robyn D Moir

    2012-08-01

    Full Text Available The ability to store nutrients in lipid droplets (LDs is an ancient function that provides the primary source of metabolic energy during periods of nutrient insufficiency and between meals. The Fat storage-Inducing Transmembrane (FIT proteins are conserved ER-resident proteins that facilitate fat storage by partitioning energy-rich triglycerides into LDs. FIT2, the ancient ortholog of the FIT gene family first identified in mammals has two homologs in Saccharomyces cerevisiae (SCS3 and YFT2 and other fungi of the Saccharomycotina lineage. Despite the coevolution of these genes for more than 170 million years and their divergence from higher eukaryotes, SCS3, YFT2, and the human FIT2 gene retain some common functions: expression of the yeast genes in a human embryonic kidney cell line promotes LD formation, and expression of human FIT2 in yeast rescues the inositol auxotrophy and chemical and genetic phenotypes of strains lacking SCS3. To better understand the function of SCS3 and YFT2, we investigated the chemical sensitivities of strains deleted for either or both genes and identified synthetic genetic interactions against the viable yeast gene-deletion collection. We show that SCS3 and YFT2 have shared and unique functions that connect major biosynthetic processes critical for cell growth. These include lipid metabolism, vesicular trafficking, transcription of phospholipid biosynthetic genes, and protein synthesis. The genetic data indicate that optimal strain fitness requires a balance between phospholipid synthesis and protein synthesis and that deletion of SCS3 and YFT2 impacts a regulatory mechanism that coordinates these processes. Part of this mechanism involves a role for SCS3 in communicating changes in the ER (e.g. due to low inositol to Opi1-regulated transcription of phospholipid biosynthetic genes. We conclude that SCS3 and YFT2 are required for normal ER membrane biosynthesis in response to perturbations in lipid metabolism and ER

  12. Differential gene expression by 1,25(OH)2D3 in an endometriosis stromal cell line.

    Science.gov (United States)

    Ingles, Sue Ann; Wu, Liang; Liu, Benjamin T; Chen, Yibu; Wang, Chun-Yeh; Templeman, Claire; Brueggmann, Doerthe

    2017-10-01

    Endometriosis is a common female reproductive disease characterized by invasion of endometrial cells into other organs, frequently causing pelvic pain and infertility. Alterations of the vitamin D system have been linked to endometriosis incidence and severity. To shed light on the potential mechanism for these associations, we examined the effects of 1,25(OH) 2 D 3 on gene expression in endometriosis cells. Stromal cell lines derived from endometriosis tissue were treated with 1,25(OH) 2 D 3 , and RNA-seq was used to identify genes differentially expressed between treated and untreated cells. Gene ontology and pathway analyses were carried out using Partek Flow and Ingenuity software suites, respectively. We identified 1627 genes that were differentially expressed (886 down-regulated and 741 up-regulated) by 1,25(OH) 2 D 3 . Only one gene, CYP24A1, was strongly up-regulated (369-fold). Many genes were strongly down-regulated. 1,25(OH) 2 D 3 treatment down-regulated several genetic pathways related to neuroangiogenesis, cellular motility, and invasion, including pathways for axonal guidance, Rho GDP signaling, and matrix metalloprotease inhibition. These findings support a role for vitamin D in the pathophysiology of endometriosis, and provide new targets for investigation into possible causes and treatments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Diversity and distribution of catechol 2, 3-dioxygenase genes in surface sediments of the Bohai Sea.

    Science.gov (United States)

    He, Peiqing; Li, Li; Liu, Jihua; Bai, Yazhi; Fang, Xisheng

    2016-05-01

    Catechol 2, 3-dioxygenase (C23O) is the key enzyme for aerobic aromatic degradation. Based on clone libraries and quantitative real-time polymerase chain reaction, we characterized diversity and distribution patterns of C23O genes in surface sediments of the Bohai Sea. The results showed that sediments of the Bohai Sea were dominated by genes related to C23O subfamily I.2.A. The samples from wastewater discharge area (DG) and aquaculture farm (KL) showed distinct composition of C23O genes when compared to the samples from Bohai Bay (BH), and total organic carbon was a crucial determinant accounted for the composition variation. C6BH12-38 and C2BH2-35 displayed the highest gene copies and highest ratios to the 16S rRNA genes in KL, and they might prefer biologically labile aromatic hydrocarbons via aquaculture inputs. Meanwhile, C7BH3-48 showed the highest gene copies and highest ratios to the 16S rRNA genes in DG, and this could be selective effect of organic loadings from wastewater discharge. An evident increase in C6BH12-38 and C7BH3-48 gene copies and reduction in diversity of C23O genes in DG and KL indicated composition perturbations of C23O genes and potential loss in functional redundancy. We suggest that ecological habitat and trophic specificity could shape the distribution of C23O genes in the Bohai Sea sediments. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Identification, developmental expression and regulation of the Xenopus ortholog of human FANCG/XRCC9.

    Science.gov (United States)

    Stone, Stacie; Sobeck, Alexandra; van Kogelenberg, Margriet; de Graaf, Bendert; Joenje, Hans; Christian, Jan; Hoatlin, Maureen E

    2007-07-01

    Fanconi anemia (FA) is associated with variable developmental abnormalities, bone marrow failure and cancer susceptibility. FANCG/XRCC9 is member of the FA core complex, a group of proteins that control the monoubiquitylation of FANCD2, an event that plays a critical role in maintaining genomic stability. Here we report the identification of the Xenopus laevis ortholog of human FANCG (xFANCG), its expression during development, and its molecular interactions with a partner protein, xFANCA. The xFANCG protein sequence is 47% similar to its human ortholog, with highest conservation in the two putative N-terminal leucine zippers and the tetratricopeptide repeat (TPR) motifs. xFANCG is maternally and zygotically transcribed. Prior to the midblastula stage, a single xFANCG transcript is observed but two additional alternatively spliced mRNAs are detected after the midblastula transition. One of the variants is predicted to encode a novel isoform of xFANCG lacking exon 2. The mutual association between FANCG and FANCA required for their nuclear import is conserved in Xenopus egg extracts. Our data demonstrate that interactions between FANCA and FANCG occur at the earliest stage of vertebrate development and raise the possibility that functionally different isoforms of xFANCG may play a role in early development.

  15. Synergistic interactions between RAD5, RAD16, and RAD54, three partially homologous yeast DNA repair genes each in a different repair pathway

    International Nuclear Information System (INIS)

    Glassner, B.J.; Mortimer, R.K.

    1994-01-01

    Considerable homology has recently been noted between the proteins encoded by the RAD5, RAD16 and RAD54 genes of Saccharomyces cerevisiae. These genes are members of the RAD6, RAD3 and RAD50 epistasis groups, respectively, which correspond to the three major DNA repair pathways in yeast. These proteins also share homology with other eucaryotic proteins, including those encoded by SNF2 and MO1 of yeast, brahma and lodestar of Drosophila and the human ERCC6 gene. The homology shares features with known helicases, suggesting a newly identified helicase subfamily. We have constructed a series of congenic single-, double- and triple-deletion mutants involving RAD5, RAD16 and RAD54 to examine the interactions between these genes. Each deletion mutation alone has only a moderate effect on survival after exposure to UV radiation. Each pairwise-double mutant exhibits marked synergism. The triple-deletion mutant displays further synergism. These results confirm the assignment of the RAD54 gene to the RAD50 epistasis group and suggest that the RAD16 gene plays a larger role in DNA repair after exposure to UV radiation than has been suggested previously. Additionally, the proteins encoded by RAD5, RAD16, and RAD54 may compete for the same substrate after damage induced by UV radiation, possibly at an early step in their respective pathways. 49 refs., 6 figs., 2 tabs

  16. The short term effects of Low-dose-rate Radiation on EL4 Lymphoma Cell

    International Nuclear Information System (INIS)

    Bong, Jin Jong; Kang, Yu Mi; Shin, Suk Chull; Choi, Moo Hyun; Choi, Seung Jin; Kim, Hee Sun; Lee, Kyung Mi

    2012-01-01

    To determine the biological effects of low-dose-rate radiation ( 137 Cs, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

  17. The short term effects of Low-dose-rate Radiation on EL4 Lymphoma Cell

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Jin Jong; Kang, Yu Mi; Shin, Suk Chull; Choi, Moo Hyun; Choi, Seung Jin; Kim, Hee Sun [Radiation Health Research Institute, Korea Hydro and Nuclear Power Co., Ltd, Seoul (Korea, Republic of); Lee, Kyung Mi [Global Research Lab, BAERI Institute, Dept. of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul (Korea, Republic of)

    2012-06-15

    To determine the biological effects of low-dose-rate radiation ({sup 137}Cs, 2.95 mGy/h) on EL4 lymphoma cells during 24 h, we investigated the expression of genes related to apoptosis, cell cycle arrest, DNA repair, iron transport, and ribonucleotide reductase. EL4 cells were continuously exposed to low-dose-rate radiation (total dose: 70.8 mGy) for 24 h. We analyzed cell proliferation and apoptosis by trypan blue exclusion and flow cytometry, gene expression by real-time PCR, and protein levels with the apoptosis ELISA kit. Apoptosis increased in the Low-dose-rate irradiated cells, but cell number did not differ between non- (Non-IR) and Low-dose-rate irradiated (LDR-IR) cells. In concordance with apoptotic rate, the transcriptional activity of ATM, p53, p21, and Parp was upregulated in the LDR-IR cells. Similarly, Phospho-p53 (Ser15), cleaved caspase 3 (Asp175), and cleaved Parp (Asp214) expression was upregulated in the LDR-IR cells. No difference was observed in the mRNA expression of DNA repair-related genes (Msh2, Msh3, Wrn, Lig4, Neil3, ERCC8, and ERCC6) between Non-IR and LDR-IR cells. Interestingly, the mRNA of Trfc was upregulated in the LDR-IR cells. Therefore, we suggest that short-term Low-dose-rate radiation activates apoptosis in EL4 lymphoma cells.

  18. Molecular characterization and expression of maternally expressed gene 3 (Meg3/Gtl2) RNA in the mouse inner ear

    DEFF Research Database (Denmark)

    Manji, S.S.; Sørensen, Brita Singers; Klockars, T.

    2006-01-01

    The pathways responsible for sound perception in the cochlea involve the coordinated and regulated expression of hundreds of genes. By using microarray analysis, we identified several transcripts enriched in the inner ear, including the maternally expressed gene 3 (Meg3/Gtl2), an imprinted...... noncoding RNA. Real-time PCR analysis demonstrated that Meg3/Gtl2 was highly expressed in the cochlea, brain, and eye. Molecular studies revealed the presence of several Meg3/Gtl2 RNA splice variants in the mouse cochlea, brain, and eye. In situ hybridizations showed intense Meg3/Gtl2 RNA staining...... otocyst and localized to the spiral ganglion, stria vascularis, Reissner's membrane, and greater epithelial ridge (GER) in the cochlear duct. RT-PCR analysis performed on cell lines derived from the organ of Corti, representing neural, supporting, and hair cells, showed significantly elevated levels...

  19. PointCloudExplore 2: Visual exploration of 3D gene expression

    Energy Technology Data Exchange (ETDEWEB)

    International Research Training Group Visualization of Large and Unstructured Data Sets, University of Kaiserslautern, Germany; Institute for Data Analysis and Visualization, University of California, Davis, CA; Computational Research Division, Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA; Genomics Division, LBNL; Computer Science Department, University of California, Irvine, CA; Computer Science Division,University of California, Berkeley, CA; Life Sciences Division, LBNL; Department of Molecular and Cellular Biology and the Center for Integrative Genomics, University of California, Berkeley, CA; Ruebel, Oliver; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Keranen, Soile V.E.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; DePace, Angela H.; Simirenko, L.; Eisen, Michael B.; Biggin, Mark D.; Hagen, Hand; Malik, Jitendra; Knowles, David W.; Hamann, Bernd

    2008-03-31

    To better understand how developmental regulatory networks are defined inthe genome sequence, the Berkeley Drosophila Transcription Network Project (BDNTP)has developed a suite of methods to describe 3D gene expression data, i.e.,the output of the network at cellular resolution for multiple time points. To allow researchersto explore these novel data sets we have developed PointCloudXplore (PCX).In PCX we have linked physical and information visualization views via the concept ofbrushing (cell selection). For each view dedicated operations for performing selectionof cells are available. In PCX, all cell selections are stored in a central managementsystem. Cells selected in one view can in this way be highlighted in any view allowingfurther cell subset properties to be determined. Complex cell queries can be definedby combining different cell selections using logical operations such as AND, OR, andNOT. Here we are going to provide an overview of PointCloudXplore 2 (PCX2), thelatest publicly available version of PCX. PCX2 has shown to be an effective tool forvisual exploration of 3D gene expression data. We discuss (i) all views available inPCX2, (ii) different strategies to perform cell selection, (iii) the basic architecture ofPCX2., and (iv) illustrate the usefulness of PCX2 using selected examples.

  20. [CCR5, CCR2, apoe, p53, ITGB3 and HFE gene polymorphism in Western Siberia long-livers].

    Science.gov (United States)

    Ivanoshchuk, D E; Mikhaĭlova, S V; Kulikov, I V; Maksimov, V N; Voevoda, M I; Romashchenko, A G

    2012-01-01

    In order to estimate the distribution of some polymorphisms for the CCR5, CCR2, apoE, p53, ITGB3, and HFE genes in Russian long-livers from Western Siberia, a sample of 271 individuals (range 90-105 years) was examined. It was demonstrated that carriage of the delta32 polymorphism for the CCR5 gene, V64/polymorphism for the CCR2 gene, e2/e3/e4 for the apoE gene, L33P for the ITGB3 gene, as well as H63D and S65C polymorphisms for the HFE gene does not influence on predisposition to the longevity; carriage of the 282 Y allele for the HFE gene negatively influences on the longevity; carriage of the heterozygous genotype for the R72P polymorphism for the p53 gene correlates with the longevity of elderly people.

  1. DNA repair pathways involved in determining the level of cytotoxicity of environmentally relevant UV radiation

    International Nuclear Information System (INIS)

    Carpenter, L.

    2000-01-01

    The sensitivity of cell lines with defects in various DNA repair processes to different wavelengths of UV has been assessed in order to determine the importance of these repair pathways to the cytotoxicity of UV light. The cell lines used in this work were xrs-6 (a Chinese Hamster Ovary (CHO) cell line) mutant for XRCC5/Ku80, EM9 a CHO cell line mutant for XRCC1, UV61 a CHO cell line mutant for ERCC6/CSB, and E3p53-/-, a mouse embryonic fibroblast cell line null for p53. Xrs-6 (defective in Non Homologous End-Joining) was found to be sensitive to the cytotoxic effects of broadband UVA, but not narrowband UVA or narrowband UVB. EM9 (defective in Base Excision Repair/Single-Strand Break Repair) was not sensitive to the cytotoxic effects of both broadband and narrowband UVA, narrowband UVB or narrowband UVC. UV61 (defective in the Transcription Coupled Repair branch of Nucleotide Excision Repair) was sensitive to the cytotoxic effects of narrowband UVA, UVB and UVC. E3p53-/- was sensitive to the cytotoxic effects of narrowband UVA and UVB. Broadband UVA was found to induce high levels of chromosomal damage in xrs-6, as quantified by the micronucleus assay, most likely as a result of this cell lines inability to repair DNA double strand breaks. EM9 was found to be defective in the repair of broadband UVA-induced single strand breaks, as measured by the alkaline gel electrophoresis ('comet') assay. UV61 was unable to repair broadband UVB-induced DNA damage as measured by the alkaline gel electrophoresis ('comet') assay. These results provide evidence that: 1. DNA double-strand breaks contribute to the cytotoxicity of UVA to a greater extent than single-strand breaks. 2. Repair mechanisms that operate in response to UVA may be coupled to transcription. 3. UVB may directly induce SSBs. 4. P53 is involved in the response of the cell to both UVA and UVB radiation. (author)

  2. Nucleotide Excision DNA Repair is Associated with Age-Related Vascular Dysfunction

    Science.gov (United States)

    Durik, Matej; Kavousi, Maryam; van der Pluijm, Ingrid; Isaacs, Aaron; Cheng, Caroline; Verdonk, Koen; Loot, Annemarieke E.; Oeseburg, Hisko; Musterd-Bhaggoe, Usha; Leijten, Frank; van Veghel, Richard; de Vries, Rene; Rudez, Goran; Brandt, Renata; Ridwan, Yanto R.; van Deel, Elza D.; de Boer, Martine; Tempel, Dennie; Fleming, Ingrid; Mitchell, Gary F.; Verwoert, Germaine C.; Tarasov, Kirill V.; Uitterlinden, Andre G.; Hofman, Albert; Duckers, Henricus J.; van Duijn, Cornelia M.; Oostra, Ben A.; Witteman, Jacqueline C.M.; Duncker, Dirk J.; Danser, A.H. Jan; Hoeijmakers, Jan H.; Roks, Anton J.M.

    2012-01-01

    Background Vascular dysfunction in atherosclerosis and diabetes, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results In mice with genomic instability due to the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1d/− and XpdTTD mice), we explored age-dependent vascular function as compared to wild-type mice. Ercc1d/− mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness and elevated blood pressure at very young age. The vasodilator dysfunction was due to decreased endothelial eNOS levels as well as impaired smooth muscle cell function, which involved phosphodiesterase (PDE) activity. Similar to Ercc1d/− mice, age-related endothelium-dependent vasodilator dysfunction in XpdTTD animals was increased. To investigate the implications for human vascular disease, we explored associations between single nucleotide polymorphisms (SNPs) of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium, and found a significant association of a SNP (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. Conclusions Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans, but with an accelerated progression, as compared to wild type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease. PMID:22705887

  3. Evolutionary and polymorphism analyses reveal the central role of BTN3A2 in the concerted evolution of the BTN3 gene family.

    Science.gov (United States)

    Afrache, Hassnae; Pontarotti, Pierre; Abi-Rached, Laurent; Olive, Daniel

    2017-06-01

    The butyrophilin 3 (BTN3) receptors are implicated in the T lymphocytes regulation and present a wide plasticity in mammals. In order to understand how these genes have been diversified, we studied their evolution and show that the three human BTN3 are the result of two successive duplications in Primates and that the three genes are present in Hominoids and the Old World Monkey groups. A thorough phylogenetic analysis reveals a concerted evolution of BTN3 characterized by a strong and recurrent homogenization of the region encoding the signal peptide and the immunoglobulin variable (IgV) domain in Hominoids, where the sequences of BTN3A1 or BTN3A3 are replaced by BTN3A2 sequence. In human, the analysis of the diversity of these genes in 1683 individuals representing 26 worldwide populations shows that the three genes are polymorphic, with more than 46 alleles for each gene, and marked by extreme homogenization of the IgV sequences. The same analysis performed for the BTN2 genes shows also a concerted evolution; however, it is not as strong and recurrent as for BTN3. This study shows that BTN3 receptors are marked by extreme concerted evolution at the IgV domain and that BTN3A2 plays a central role in this evolution.

  4. Single nucleotide polymorphism barcoding to evaluate oral cancer risk using odds ratio-based genetic algorithms

    Directory of Open Access Journals (Sweden)

    Cheng-Hong Yang

    2012-07-01

    Full Text Available Cancers often involve the synergistic effects of gene–gene interactions, but identifying these interactions remains challenging. Here, we present an odds ratio-based genetic algorithm (OR-GA that is able to solve the problems associated with the simultaneous analysis of multiple independent single nucleotide polymorphisms (SNPs that are associated with oral cancer. The SNP interactions between four SNPs—namely rs1799782, rs2040639, rs861539, rs2075685, and belonging to four genes (XRCC1, XRCC2, XRCC3, and XRCC4—were tested in this study, respectively. The GA decomposes the SNPs sets into different SNP combinations with their corresponding genotypes (called SNP barcodes. The GA can effectively identify a specific SNP barcode that has an optimized fitness value and uses this to calculate the difference between the case and control groups. The SNP barcodes with a low fitness value are naturally removed from the population. Using two to four SNPs, the best SNP barcodes with maximum differences in occurrence between the case and control groups were generated by GA algorithm. Subsequently, the OR provides a quantitative measure of the multiple SNP synergies between the oral cancer and control groups by calculating the risk related to the best SNP barcodes and others. When these were compared to their corresponding non-SNP barcodes, the estimated ORs for oral cancer were found to be great than 1 [approx. 1.72–2.23; confidence intervals (CIs: 0.94–5.30, p < 0.03–0.07] for various specific SNP barcodes with two to four SNPs. In conclusion, the proposed OR-GA method successfully generates SNP barcodes, which allow oral cancer risk to be evaluated and in the process the OR-GA method identifies possible SNP–SNP interactions.

  5. Single nucleotide polymorphisms and unacceptable late toxicity in breast cancer adjuvant radiotherapy: a case report

    Directory of Open Access Journals (Sweden)

    Lazzari G

    2017-05-01

    Full Text Available Grazia Lazzari,1 Maria Iole Natalicchio,2 Angela Terlizzi,3 Francesco Perri,4 Giovanni Silvano1 1Radiation Oncology Unit, San Giuseppe Moscati Hospital, Taranto, 2Molecular Biology Laboratory, Pathological Anatomy Department, Ospedali Riuniti, Foggia, 3Medical Physic Unit, San Giuseppe Moscati Hospital, 4Medical Oncology Unit, Presidio Ospedaliero Centrale - Santissima Annunziata, Taranto, Italy Background: There has recently been a strong interest in the inter-individual variation in normal tissue and tumor response to radiotherapy (RT, because tissue radiosensitivity seems to be under genetic control. Evidence is accumulating on the role of polymorphic genetic variants, such as single nucleotide polymorphisms (SNPs that could influence normal tissue response after radiation. The most studied SNPs include those in genes involved in DNA repair (single- and double-strand breaks, and base excision and those active in the response to oxidative stress.Case report: We present the case report of a 60-year-old woman with early breast cancer who underwent adjuvant hormone therapy and conventional radiotherapy, and subsequently developed unacceptable cosmetic toxicities of the irradiated breast requiring a genetic test of genes involved in DNA repair mechanisms. The patient was found to be heterozygous for G28152A (T/C and C18067T (A/G mutations in X-ray repair cross-complementing group 1 (XRCC1 and 3 (XRCC3, respectively, homozygous for A313G (G/G mutation in glutathione S transferase Pi 1 (GSTP1, and wild-type for A4541G (A/A in XRCC3 and G135C (G/G in RAD51 recombinase.Conclusion: The role of SNPs should be taken into account when a severe phenomenon appears in normal tissues after radiation treatment, because understanding the molecular basis of individual radiosensitivity may be useful for identifying moderately or extremely radiosensitive patients who may need tailored therapeutic strategies. Keywords: radiosensitivity, SNPs, fibrosis, DNA repair

  6. An international comparability study on quantification of mRNA gene expression ratios: CCQM-P103.1

    Directory of Open Access Journals (Sweden)

    Alison S. Devonshire

    2016-06-01

    Full Text Available Measurement of RNA can be used to study and monitor a range of infectious and non-communicable diseases, with profiling of multiple gene expression mRNA transcripts being increasingly applied to cancer stratification and prognosis. An international comparison study (Consultative Committee for Amount of Substance (CCQM-P103.1 was performed in order to evaluate the comparability of measurements of RNA copy number ratio for multiple gene targets between two samples. Six exogenous synthetic targets comprising of External RNA Control Consortium (ERCC standards were measured alongside transcripts for three endogenous gene targets present in the background of human cell line RNA. The study was carried out under the auspices of the Nucleic Acids (formerly Bioanalysis Working Group of the CCQM. It was coordinated by LGC (United Kingdom with the support of National Institute of Standards and Technology (USA and results were submitted from thirteen National Metrology Institutes and Designated Institutes. The majority of laboratories performed RNA measurements using RT-qPCR, with datasets also being submitted by two laboratories based on reverse transcription digital polymerase chain reaction and one laboratory using a next-generation sequencing method. In RT-qPCR analysis, the RNA copy number ratios between the two samples were quantified using either a standard curve or a relative quantification approach. In general, good agreement was observed between the reported results of ERCC RNA copy number ratio measurements. Measurements of the RNA copy number ratios for endogenous genes between the two samples were also consistent between the majority of laboratories. Some differences in the reported values and confidence intervals (‘measurement uncertainties’ were noted which may be attributable to choice of measurement method or quantification approach. This highlights the need for standardised practices for the calculation of fold change ratios and

  7. Gene expression responses of paper birch (Betula papyrifera) to elevated CO2 and O3 during leaf maturation and senescence

    International Nuclear Information System (INIS)

    Kontunen-Soppela, Sari; Parviainen, Juha; Ruhanen, Hanna; Brosche, Mikael; Keinaenen, Markku; Thakur, Ramesh C.; Kolehmainen, Mikko; Kangasjaervi, Jaakko; Oksanen, Elina; Karnosky, David F.; Vapaavuori, Elina

    2010-01-01

    Gene expression responses of paper birch (Betula papyrifera) leaves to elevated concentrations of CO 2 and O 3 were studied with microarray analyses from three time points during the summer of 2004 at Aspen FACE. Microarray data were analyzed with clustering techniques, self-organizing maps, K-means clustering and Sammon's mappings, to detect similar gene expression patterns within sampling times and treatments. Most of the alterations in gene expression were caused by O 3 , alone or in combination with CO 2 . O 3 induced defensive reactions to oxidative stress and earlier leaf senescence, seen as decreased expression of photosynthesis- and carbon fixation-related genes, and increased expression of senescence-associated genes. The effects of elevated CO 2 reflected surplus of carbon that was directed to synthesis of secondary compounds. The combined CO 2 + O 3 treatment resulted in differential gene expression than with individual gas treatments or in changes similar to O 3 treatment, indicating that CO 2 cannot totally alleviate the harmful effects of O 3 . - Clustering analysis of birch leaf gene expression data reveals differential responses to O 3 and CO 2 .

  8. TCR Gene Transfer: MAGE-C2/HLA-A2 and MAGE-A3/HLA-DP4 Epitopes as Melanoma-Specific Immune Targets

    Directory of Open Access Journals (Sweden)

    Trudy Straetemans

    2012-01-01

    Full Text Available Adoptive therapy with TCR gene-engineered T cells provides an attractive and feasible treatment option for cancer patients. Further development of TCR gene therapy requires the implementation of T-cell target epitopes that prevent “on-target” reactivity towards healthy tissues and at the same time direct a clinically effective response towards tumor tissues. Candidate epitopes that meet these criteria are MAGE-C2336-344/HLA-A2 (MC2/A2 and MAGE-A3243-258/HLA-DP4 (MA3/DP4. We molecularly characterized TCRαβ genes of an MC2/A2-specific CD8 and MA3/DP4-specific CD4 T-cell clone derived from melanoma patients who responded clinically to MAGE vaccination. We identified MC2/A2 and MA3/DP4-specific TCR-Vα3/Vβ28 and TCR-Vα38/Vβ2 chains and validated these TCRs in vitro upon gene transfer into primary human T cells. The MC2 and MA3 TCR were surface-expressed and mediated CD8 T-cell functions towards melanoma cell lines and CD4 T-cell functions towards dendritic cells, respectively. We intend to start testing these MAGE-specific TCRs in phase I clinical trial.

  9. Contiguous gene deletion of ELOVL7, ERCC8 and NDUFAF2 in a patient with a fatal multisystem disorder

    DEFF Research Database (Denmark)

    Janssen, Rolf J R J; Distelmaier, Felix; Smeets, Roel

    2009-01-01

    Contiguous gene syndromes affecting the mitochondrial oxidative phosphorylation system have been rarely reported. Here, we describe a patient with apparent mitochondrial encephalomyopathy accompanied by several unusual features, including dysmorphism and hepatopathy, caused by a homozygous triple...

  10. Effect of CYP2C9*3 gene polymorphism on lipid-lowering efficacy of ...

    African Journals Online (AJOL)

    Purpose: To investigate the frequency of gene CYP2C9*3 in Chinese populations, and to analyze the impact of CYP2C9*3 genetic polymorphism on the cholesterol-lowering effect of fluvastatin in a Chinese hyperlipidemic population. Methods: CYP2C9 genotype was determined by polymerase chain reaction - restriction ...

  11. Association between Genes BoLA-DRB3.2*8 and BoLA-DRB3.2*12 with Resistance and BoLA-DRB3.2*16 with Susceptibility to Infection by Bovine Leukemia Virus

    Directory of Open Access Journals (Sweden)

    C Úsuga-Monroy*, JJ Echeverri Zuluaga and A López-Herrera

    2016-11-01

    Full Text Available The Bovine Leukemia Virus (BLV is a retrovirus that affects the immune system of cattle as their target cells are B lymphocytes. Some polymorphisms at the BoLA-DRB 3.2 gene have been associated with resistance/susceptibility to diseases. The objective of this research was to determine the polymorphisms at the BoLA-DRB 3.2 gene and associate them with resistance (R, neutrality (N or susceptibility (S to BLV in a Holstein cow population.500 blood samples were taken. Nested PCR was performed for detecting BLV virus and PCR-RFLP was performed to identify alleles of gene BoLA-DRB 3.2. Susceptibility was determined using odds ratio (OR and P value. According to their genotype, cows were classified in homozygous (R/R, N/N, or S/S and heterozygous (R/N, R/S, N/S. BLV molecular prevalence was 44%. The most frequent allele was BoLA-DRB3.2*22 (16.8%, alleles associated with resistance to BLV were BoLA-DRB3.2*8 (OR=1.489; P<0.10 and BoLA-DRB3.2*12 (OR=3.897; P<0.10 and allele BoLA-DRB3.2*16 (OR=0.710; P<0.10 was associated with susceptibility. Allele BoLA-DRB3.2*8 had the highest allelic frequency for negative cows (0.19. 63.7% of cows with genotype RN and 70% of cows with genotype RR were resistant to infection by BLV. Alleles R and S have a dominant effect on allele N (P<0.05. The use of reliable diagnostic techniques in conjunction with identification of resistant or susceptible animals can monitor the progress of the disease in dairy herds. Alleles BoLA-DRB3.2*8 and *12 were positively related to the disease and therefore cows have low risk of infection, unlike allele BoLA-DRB3.2*16 which was negatively related and animals have high risk for the disease.

  12. Live cell imaging combined with high-energy single-ion microbeam

    Science.gov (United States)

    Guo, Na; Du, Guanghua; Liu, Wenjing; Guo, Jinlong; Wu, Ruqun; Chen, Hao; Wei, Junzhe

    2016-03-01

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10-3 s-1 and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10-2 s-1.

  13. Effect of fenofibrate on oxidative DNA damage and on gene expression related to cell proliferation and apoptosis in rats.

    Science.gov (United States)

    Nishimura, Jihei; Dewa, Yasuaki; Muguruma, Masako; Kuroiwa, Yuichi; Yasuno, Hiroaki; Shima, Tomomi; Jin, Mailan; Takahashi, Miwa; Umemura, Takashi; Mitsumori, Kunitoshi

    2007-05-01

    To investigate the relationship between fenofibrate (FF) and oxidative stress, enzymatic, histopathological, and molecular biological analyses were performed in the liver of male F344 rats fed 2 doses of FF (Experiment 1; 0 and 6000 ppm) for 3 weeks and 3 doses (Experiment 2; 0, 3000, and 6000 ppm) for 9 weeks. FF treatment increased the activity of enzymes such as carnitine acetyltransferase, carnitine palmitoyltransferase, fatty acyl-CoA oxidizing system, and catalase in the liver. However, it decreased those of superoxide dismutase in the liver in both experiments. Increased 8-hydroxy-2'-deoxyguanosine levels in liver DNA and lipofuscin accumulation were observed in the treated rats of Experiment 2. In vitro measurement of reactive oxygen species (ROS) in rat liver microsomes revealed a dose-dependent increase due to FF treatment. Microarray (only Experiment 1) or real-time reverse transcription-polymerase chain reaction analyses revealed that the expression levels of metabolism and DNA repair-related genes such as Aco, Cyp4a1, Cat, Yc2, Gpx2, Apex1, Xrcc5, Mgmt, Mlh1, Gadd45a, and Nbn were increased in FF-treated rats. These results provide evidence of a direct or indirect relationship between oxidative stress and FF treatment. In addition, increases in the expression levels of cell cycle-related genes such as Chek1, Cdc25a, and Ccdn1; increases in the expression levels of cell proliferation-related genes such as Hdgfrp3 and Vegfb; and fluctuations in the expression levels of apoptosis-related genes such as Casp11 and Trp53inp1 were observed in these rats. This suggests that cell proliferation induction, apoptosis suppression, and DNA damage due to oxidative stresses are probably involved in the mechanism of hepatocarcinogenesis due to FF in rats.

  14. GATA-2 and GATA-3 regulate trophoblast-specific gene expression in vivo.

    NARCIS (Netherlands)

    G.T. Ma (Grace); M.E. Roth (Matthew); J.C. Groskopf (John); F.G. Grosveld (Frank); J.D. Engel (Douglas); D.I.H. Linzer (Daniel); F.Y. Tsai (Fong-Ying); S.H. Orkin (Stuart)

    1997-01-01

    textabstractWe previously demonstrated that the zinc finger transcription factors GATA-2 and GATA-3 are expressed in trophoblast giant cells and that they regulate transcription from the mouse placental lactogen I gene promoter in a transfected trophoblast cell line. We present evidence here that

  15. Effect of deletion of 2,3-butanediol dehydrogenase gene (bdhA) on acetoin production of Bacillus subtilis.

    Science.gov (United States)

    Zhang, Junjiao; Zhao, Xiangying; Zhang, Jiaxiang; Zhao, Chen; Liu, Jianjun; Tian, Yanjun; Yang, Liping

    2017-09-14

    The present work aims to block 2,3-butanediol synthesis in acetoin fermentation of Bacillus subtilis. First, we constructed a recombinant strain BS168D by deleting the 2,3-butanediol dehydrogenase gene bdhA of the B. subtilis168, and there was almost no 2,3-butanediol production in 20 g/L of glucose media. The acetoin yield of BS168D reached 6.61 g/L, which was about 1.5 times higher than that of the control B. subtilis168 (4.47 g/L). Then, when the glucose concentration was increased to 100 g/L, the acetoin yield reached 24.6 g/L, but 2.4 g/L of 2,3-butanediol was detected at the end of fermentation. The analysis of 2,3-butanediol chiral structure indicated that the main 2,3-butanediol production of BS168D was meso-2,3-butanediol, and the bdhA gene was only responsible for (2R,3R)-2,3-butanediol synthesis. Therefore, we speculated that there may exit another pathway relating to the meso-2,3-butanediol synthesis in the B. subtilis. In addition, the results of low oxygen condition fermentation showed that deletion of bdhA gene successfully blocked the reversible transformation between acetoin and 2,3-butanediol and eliminated the effect of dissolved oxygen on the transformation.

  16. Stat3 is involved in control of MASP2 gene expression

    International Nuclear Information System (INIS)

    Unterberger, Claudia; Hanson, Steven; Klingenhoff, Andreas; Oesterle, Daniela; Frankenberger, Marion; Endo, Yuichi; Matsushita, Misao; Fujita, Teizo; Schwaeble, Wilhelm; Weiss, Elisabeth H.; Ziegler-Heitbrock, Loems; Stover, Cordula

    2007-01-01

    Little is known about determinants regulating expression of Mannan-binding lectin associated serine protease-2 (MASP-2), the effector component of the lectin pathway of complement activation. Comparative bioinformatic analysis of the MASP2 promoter regions in human, mouse, and rat, revealed conservation of two putative Stat binding sites, termed StatA and StatB. Site directed mutagenesis specific for these sites was performed. Transcription activity was decreased 5-fold when StatB site was mutated in the wildtype reporter gene construct. Gel retardation and competition assays demonstrated that proteins contained in the nuclear extract prepared from HepG2 specifically bound double-stranded StatB oligonucleotides. Supershift analysis revealed Stat3 to be the major specific binding protein. We conclude that Stat3 binding is important for MASP2 promoter activity

  17. DNA rearrangement in human follicular lymphoma can involve the 5' or the 3' region of the bcl-2 gene

    International Nuclear Information System (INIS)

    Tsujimoto, Y.; Bashir, M.M.; Givol, I.; Cossman, J.; Jaffe, E.; Croce, C.M.

    1987-01-01

    In most human lymphomas, the chromosome translocation t(14;18) occurs within two breakpoint clustering regions on chromosome 18, the major one at the 3' untranslated region of the bcl-2 gene and the minor one at 3' of the gene. Analysis of a panel of follicular lymphoma DNAs using probes for the first exon of the bcl-2 gene indicates that DNA rearrangements may also occur 5' to the involved bcl-2 gene. In this case the IgH locus and the bcl-2 gene are found in an order suggesting that an inversion also occurred during the translocation process. The coding region of the bcl-2 gene, however, are left intact in all cases of follicular lymphoma studied to date

  18. Function of Rad51 paralogs in eukaryotic homologous recombinational repair

    International Nuclear Information System (INIS)

    Liu, N.; Skowronek, K.

    2003-01-01

    Full text: Homologous recombinational repair (HRR) is an important mechanism for maintaining genetic integrity and cancer prevention by accurately repair of DNA double strand breaks induced by environmental insults or occurred in DNA replication. A critical step in HRR is the polymerization of Rad51 on single stranded DNA to form nuclear protein filaments, the later conduct DNA strand paring and exchange between homologous strands. A number of proteins, including replication protein A (RPA), Rad52 and Rad51 paralogs, are suggested to modulate or facilitate the process of Rad51 filament formation. Five Rad51 paralogs, namely XRCC2, XRCC3, Rad51B, Rad51C and Rad51D have been identified in eucaryotic cells. These proteins show distant protein sequence identity to Rad51, to yeast Rad51 paralogs (Rad55 and Rad57) and to each other. Hamster or chicken mutants of Rad51 paralogs exhibit hypersensitivity to a variety of DNA damaging agents, especially cross-linking agents, and are defective in assembly of Rad51 onto HRR site after DNA damage. Recent data from our and other labs showed that Rad51 paralogs constitute two distinct complexes in cell extracts, one contains XRCC2, Rad51B, Rad51C and Rad51D, and the other contains Rad51C and XRCC3. Rad51C is involved in both complexes. Our results also showed that XRCC3-Rad51C complex interacts with Rad51 in vivo. Furthermore, overexpression of Rad52 can partially suppress the hypersensitivity of XRCC2 mutant irs1 to ionizing radiation and corrected the defects in Rad51 focus formation. These results suggest that XRCC2 and other Rad51 paralogs play a mediator function to Rad51 in the early stage of HRR

  19. Identification of two combined genes responsible for dechlorination of 3,5,6-trichloro-2-pyridinol (TCP) in Cupriavidus pauculus P2.

    Science.gov (United States)

    Cao, Li; Xu, Jianhong; Wu, Guang; Li, Mingxing; Jiang, Jiandong; He, Jian; Li, Shunpeng; Hong, Qing

    2013-09-15

    Dehalogenation is an important mechanism for degrading and detoxifying halogenated aromatics in microbes. However, the biochemical and molecular mechanisms of dehalogenation of 3,5,6-trichloro-2-pyridinol (TCP) are still unknown. In this study, a novel 6012 bp gene cluster was cloned from TCP-degrading strain P2, which was responsible for the dehalogenation of TCP. The cluster included a monooxygenase gene (tcpA1), a flavin reductase gene (tcpB1), tcpR1, orf1 and orf2. TcpA1 and TcpB1 were indispensable for the dehalogenation of TCP. They worked together to catalyze the dehalogenation of three chlorine of TCP, and generated a more readily biodegradable product of 3,6-dihydroxypyridine-2,5-dione. TcpA1 displayed the highest activity against TCP at 40°C and at pH 8.0. Cu(2+), Zn(2+), and Hg(2+) significantly inhibited enzyme activity. To the best of our knowledge, this is the first report on a gene cluster responsible for TCP degradation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The frequency of previously undetectable deletions involving 3' Exons of the PMS2 gene.

    Science.gov (United States)

    Vaughn, Cecily P; Baker, Christine L; Samowitz, Wade S; Swensen, Jeffrey J

    2013-01-01

    Lynch syndrome is characterized by mutations in one of four mismatch repair genes, MLH1, MSH2, MSH6, or PMS2. Clinical mutation analysis of these genes includes sequencing of exonic regions and deletion/duplication analysis. However, detection of deletions and duplications in PMS2 has previously been confined to Exons 1-11 due to gene conversion between PMS2 and the pseudogene PMS2CL in the remaining 3' exons (Exons 12-15). We have recently described an MLPA-based method that permits detection of deletions of PMS2 Exons 12-15; however, the frequency of such deletions has not yet been determined. To address this question, we tested for 3' deletions in 58 samples that were reported to be negative for PMS2 mutations using previously available methods. All samples were from individuals whose tumors exhibited loss of PMS2 immunohistochemical staining without concomitant loss of MLH1 immunostaining. We identified seven samples in this cohort with deletions in the 3' region of PMS2, including three previously reported samples with deletions of Exons 13-15 (two samples) and Exons 14-15. Also detected were deletions of Exons 12-15, Exon 13, and Exon 14 (two samples). Breakpoint analysis of the intragenic deletions suggests they occurred through Alu-mediated recombination. Our results indicate that ∼12% of samples suspected of harboring a PMS2 mutation based on immunohistochemical staining, for which mutations have not yet been identified, would benefit from testing using the new methodology. Copyright © 2012 Wiley Periodicals, Inc.

  1. Contiguous gene deletion of chromosome 2p16.3-p21 as a cause of Lynch syndrome.

    Science.gov (United States)

    Salo-Mullen, Erin E; Lynn, Patricio B; Wang, Lu; Walsh, Michael; Gopalan, Anuradha; Shia, Jinru; Tran, Christina; Man, Fung Ying; McBride, Sean; Schattner, Mark; Zhang, Liying; Weiser, Martin R; Stadler, Zsofia K

    2018-01-01

    Lynch syndrome is an autosomal dominant condition caused by pathogenic mutations in the DNA mismatch repair (MMR) genes. Although commonly associated with clinical features such as intellectual disability and congenital anomalies, contiguous gene deletions may also result in cancer predisposition syndromes. We report on a 52-year-old male with Lynch syndrome caused by deletion of chromosome 2p16.3-p21. The patient had intellectual disability and presented with a prostatic adenocarcinoma with an incidentally identified synchronous sigmoid adenocarcinoma that exhibited deficient MMR with an absence of MSH2 and MSH6 protein expression. Family history was unrevealing. Physical exam revealed short stature, brachycephaly with a narrow forehead and short philtrum, brachydactyly of the hands, palmar transverse crease, broad and small feet with hyperpigmentation of the soles. The patient underwent total colectomy with ileorectal anastomosis for a pT3N1 sigmoid adenocarcinoma. Germline genetic testing of the MSH2, MSH6, and EPCAM genes revealed full gene deletions. SNP-array based DNA copy number analysis identified a deletion of 4.8 Mb at 2p16.3-p21. In addition to the three Lynch syndrome associated genes, the deleted chromosomal section encompassed genes including NRXN1, CRIPT, CALM2, FBXO11, LHCGR, MCFD2, TTC7A, EPAS1, PRKCE, and 15 others. Contiguous gene deletions have been described in other inherited cancer predisposition syndromes, such as Familial Adenomatous Polyposis. Our report and review of the literature suggests that contiguous gene deletion within the 2p16-p21 chromosomal region is a rare cause of Lynch syndrome, but presents with distinct phenotypic features, highlighting the need for recognition and awareness of this syndromic entity.

  2. Nucleotide excision repair is a potential therapeutic target in multiple myeloma

    Science.gov (United States)

    Szalat, R; Samur, M K; Fulciniti, M; Lopez, M; Nanjappa, P; Cleynen, A; Wen, K; Kumar, S; Perini, T; Calkins, A S; Reznichenko, E; Chauhan, D; Tai, Y-T; Shammas, M A; Anderson, K C; Fermand, J-P; Arnulf, B; Avet-Loiseau, H; Lazaro, J-B; Munshi, N C

    2018-01-01

    Despite the development of novel drugs, alkylating agents remain an important component of therapy in multiple myeloma (MM). DNA repair processes contribute towards sensitivity to alkylating agents and therefore we here evaluate the role of nucleotide excision repair (NER), which is involved in the removal of bulky adducts and DNA crosslinks in MM. We first evaluated NER activity using a novel functional assay and observed a heterogeneous NER efficiency in MM cell lines and patient samples. Using next-generation sequencing data, we identified that expression of the canonical NER gene, excision repair cross-complementation group 3 (ERCC3), significantly impacted the outcome in newly diagnosed MM patients treated with alkylating agents. Next, using small RNA interference, stable knockdown and overexpression, and small-molecule inhibitors targeting xeroderma pigmentosum complementation group B (XPB), the DNA helicase encoded by ERCC3, we demonstrate that NER inhibition significantly increases sensitivity and overcomes resistance to alkylating agents in MM. Moreover, inhibiting XPB leads to the dual inhibition of NER and transcription and is particularly efficient in myeloma cells. Altogether, we show that NER impacts alkylating agents sensitivity in myeloma cells and identify ERCC3 as a potential therapeutic target in MM. PMID:28588253

  3. Biological evaluation of transdichloridoplatinum(II) complexes with 3- and 4-acetylpyridine in comparison to cisplatin

    International Nuclear Information System (INIS)

    Filipovic, Lana; Arandelovic, Sandra; Gligorijevic, Nevenka; Krivokuca, Ana; Jankovic, Radmila; Srdic-Rajic, Tatjana; Rakic, Gordana; Tesic, Zivoslav; Radulovic, Sinisa

    2013-01-01

    In our previous study we reported the synthesis and cytotoxicity of two trans-platinum(II) complexes: trans-[PtCl 2 (3-acetylpyridine) 2 ] (1) and trans-[PtCl 2 (4-acetylpyridine) 2 ] (2), revealing significant cytotoxic potential of 2. In order to evaluate the mechanism underlying biological activity of both trans-Pt(II) isomers, comparative studies versus cisplatin were performed in HeLa, MRC-5 and MS1 cells. The cytotoxic activity of the investigated complexes was determined using SRB assay. The colagenolytic activity was determined using gelatin zymography, while the effect of platinum complexes on matrix metalloproteinases 2 and 9 mRNA expression was evaluated by quantitative real-time PCR. Apoptotic potential and cell cycle alterations were determined by FACS analyses. Western blot analysis was used to evaluate the effect on expression of DNA-repair enzyme ERCC1, and quantitative real-time PCR was used for the ERCC1 mRNA expression analysis. In vitro antiangiogenic potential was determined by tube formation assay. Platinum content in intracellular DNA and proteins was determined by inductively coupled plasma-optical emission spectrometry. Compound 2 displayed an apparent cytoselective profile, and flow cytometry analysis in HeLa cells indicated that 2 exerted antiproliferative effect through apoptosis induction, while 1 induced both apoptosis and necrosis. Action of 1 and 2, as analyzed by quantitative real-time PCR and Western blot, was associated with down-regulation of ERCC1. Both trans-complexes inhibited MMP-9 mRNA expression in HeLa, while 2 significantly abrogated in vitro tubulogenesis in MS1 cells. The ability of 2 to induce multiple and selective in vitro cytotoxic effects encourages further investigations of trans-platinum(II) complexes with substituted pyridines

  4. Heat Increases the Editing Efficiency of Human Papillomavirus E2 Gene by Inducing Upregulation of APOBEC3A and 3G.

    Science.gov (United States)

    Yang, Yang; Wang, Hexiao; Zhang, Xinrui; Huo, Wei; Qi, Ruiqun; Gao, Yali; Zhang, Gaofeng; Song, Bing; Chen, Hongduo; Gao, Xinghua

    2017-04-01

    Apolipoprotein B mRNA-editing catalytic polypeptide (APOBEC) 3 proteins have been identified as potent viral DNA mutators and have broad antiviral activity. In this study, we demonstrated that apolipoprotein B mRNA-editing catalytic polypeptide 3A (A3A) and A3G expression levels were significantly upregulated in human papillomavirus (HPV)-infected cell lines and tissues. Heat treatment resulted in elevated expression of A3A and A3G in a temperature-dependent manner in HPV-infected cells. Correspondingly, HPV-infected cells heat-treated at 44 °C showed accumulated G-to-A or C-to-T mutation in HPV E2 gene. Knockdown of A3A or A3G could promote cell viability, along with the lower frequency of A/T in HPV E2 gene. In addition, regressing genital viral warts also harbored high G-to-A or C-to-T mutation in HPV E2 gene. Taken together, we demonstrate that apolipoprotein B mRNA-editing catalytic polypeptide 3 expression and editing function was heat sensitive to a certain degree, partly explaining the mechanism of action of local hyperthermia to treat viral warts. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Live cell imaging combined with high-energy single-ion microbeam

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Na; Du, Guanghua, E-mail: gh-du@impcas.ac.cn; Liu, Wenjing; Wu, Ruqun; Wei, Junzhe [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Guo, Jinlong [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Northwest Normal University, Lanzhou (China); Chen, Hao [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou (China); Institute of Nuclear Science and Technology, University of Lanzhou, Lanzhou (China)

    2016-03-15

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10{sup −3} s{sup −1} and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10{sup −2} s{sup −1}.

  6. Live cell imaging combined with high-energy single-ion microbeam

    International Nuclear Information System (INIS)

    Guo, Na; Du, Guanghua; Liu, Wenjing; Wu, Ruqun; Wei, Junzhe; Guo, Jinlong; Chen, Hao

    2016-01-01

    DNA strand breaks can lead to cell carcinogenesis or cell death if not repaired rapidly and efficiently. An online live cell imaging system was established at the high energy microbeam facility at the Institute of Modern Physics to study early and fast cellular response to DNA damage after high linear energy transfer ion radiation. The HT1080 cells expressing XRCC1-RFP were irradiated with single high energy nickel ions, and time-lapse images of the irradiated cells were obtained online. The live cell imaging analysis shows that strand-break repair protein XRCC1 was recruited to the ion hit position within 20 s in the cells and formed bright foci in the cell nucleus. The fast recruitment of XRCC1 at the ion hits reached a maximum at about 200 s post-irradiation and then was followed by a slower release into the nucleoplasm. The measured dual-exponential kinetics of XRCC1 protein are consistent with the proposed consecutive reaction model, and the measurements obtained that the reaction rate constant of the XRCC1 recruitment to DNA strand break is 1.2 × 10"−"3 s"−"1 and the reaction rate constant of the XRCC1 release from the break-XRCC1 complex is 1.2 × 10"−"2 s"−"1.

  7. Variations in CCL3L gene cluster sequence and non-specific gene copy numbers

    Directory of Open Access Journals (Sweden)

    Edberg Jeffrey C

    2010-03-01

    Full Text Available Abstract Background Copy number variations (CNVs of the gene CC chemokine ligand 3-like1 (CCL3L1 have been implicated in HIV-1 susceptibility, but the association has been inconsistent. CCL3L1 shares homology with a cluster of genes localized to chromosome 17q12, namely CCL3, CCL3L2, and, CCL3L3. These genes are involved in host defense and inflammatory processes. Several CNV assays have been developed for the CCL3L1 gene. Findings Through pairwise and multiple alignments of these genes, we have shown that the homology between these genes ranges from 50% to 99% in complete gene sequences and from 70-100% in the exonic regions, with CCL3L1 and CCL3L3 being identical. By use of MEGA 4 and BioEdit, we aligned sense primers, anti-sense primers, and probes used in several previously described assays against pre-multiple alignments of all four chemokine genes. Each set of probes and primers aligned and matched with overlapping sequences in at least two of the four genes, indicating that previously utilized RT-PCR based CNV assays are not specific for only CCL3L1. The four available assays measured median copies of 2 and 3-4 in European and African American, respectively. The concordance between the assays ranged from 0.44-0.83 suggesting individual discordant calls and inconsistencies with the assays from the expected gene coverage from the known sequence. Conclusions This indicates that some of the inconsistencies in the association studies could be due to assays that provide heterogenous results. Sequence information to determine CNV of the three genes separately would allow to test whether their association with the pathogenesis of a human disease or phenotype is affected by an individual gene or by a combination of these genes.

  8. Opposite roles of the Arabidopsis cytokinin receptors AHK2 and AHK3 in the expression of plastid genes and genes for the plastid transcriptional machinery during senescence.

    Science.gov (United States)

    Danilova, Maria N; Kudryakova, Natalia V; Doroshenko, Anastasia S; Zabrodin, Dmitry A; Rakhmankulova, Zulfira F; Oelmüller, Ralf; Kusnetsov, Victor V

    2017-03-01

    Cytokinin membrane receptors of the Arabidopsis thaliana AHK2 and AHK3 play opposite roles in the expression of plastid genes and genes for the plastid transcriptional machinery during leaf senescence Loss-of-function mutants of Arabidopsis thaliana were used to study the role of cytokinin receptors in the expression of chloroplast genes during leaf senescence. Accumulation of transcripts of several plastid-encoded genes is dependent on the АНК2/АНК3 receptor combination. АНК2 is particularly important at the final stage of plant development and, unlike АНК3, a positive regulator of leaf senescence. Cytokinin-dependent up-regulation of the nuclear encoded genes for chloroplast RNA polymerases RPOTp and RPOTmp suggests that the hormone controls plastid gene expression, at least in part, via the expression of nuclear genes for the plastid transcription machinery. This is further supported by cytokinin dependent regulation of genes for the nuclear encoded plastid σ-factors, SIG1-6, which code for components of the transcriptional apparatus in chloroplasts.

  9. SOD1 Gene +35A/C (exon3/intron3 Polymorphism in Type 2 Diabetes Mellitus among South Indian Population

    Directory of Open Access Journals (Sweden)

    K. Nithya

    2016-01-01

    Full Text Available Superoxide dismutase is an antioxidant enzyme that is involved in defence mechanisms against oxidative stress. Cu/Zn SOD is a variant that is located in exon3/intron3 boundary. The aim of the present study was to investigate whether the Cu/Zn SOD (+35A/C gene polymorphism is associated with the susceptibility to type 2 diabetes mellitus among south Indian population. The study included patients with type 2 diabetes mellitus (n=100 and healthy controls (n=75. DNA was isolated from the blood and genotyping of Cu/Zn SOD gene polymorphism was done by polymerase chain reaction based restriction fragment length polymorphism method. Occurrence of different genotypes and normal (A and mutant (C allele frequencies were determined. The frequency of the three genotypes of the total subjects was as follows: homozygous wild-type A/A (95%, heterozygous genotype A/C (3%, and homozygous mutant C/C (2%. The mutant (C allele and the mutant genotypes (AC/CC were found to be completely absent among the patients with type 2 diabetes mellitus. Absence of mutant genotype (CC shows that the Cu/Zn SOD gene polymorphism may not be associated with the susceptibility to type 2 diabetes mellitus among south Indian population.

  10. JMJD1B Demethylates H4R3me2s and H3K9me2 to Facilitate Gene Expression for Development of Hematopoietic Stem and Progenitor Cells

    Directory of Open Access Journals (Sweden)

    Sihui Li

    2018-04-01

    Full Text Available Summary: The arginine methylation status of histones dynamically changes during many cellular processes, including hematopoietic stem/progenitor cell (HSPC development. The arginine methyltransferases and the readers that transduce the histone codes have been defined. However, whether arginine demethylation actively occurs in cells and what enzyme demethylates the methylarginine residues during various cellular processes are unknown. We report that JMJD1B, previously identified as a lysine demethylase for H3K9me2, mediates arginine demethylation of H4R3me2s and its intermediate, H4R3me1. We show that demethylation of H4R3me2s and H3K9me2s in promoter regions is correlated with active gene expression. Furthermore, knockout of JMJD1B blocks demethylation of H4R3me2s and/or H3K9me2 at distinct clusters of genes and impairs the activation of genes important for HSPC differentiation and development. Consequently, JMJD1B−/− mice show defects in hematopoiesis. Altogether, our study demonstrates that demethylase-mediated active arginine demethylation process exists in eukaryotes and that JMJD1B demethylates both H4R3me2s and H3K9me2 for epigenetic programming during hematopoiesis. : Li et al. identify the arginine demethylase (RDM activity of JMJD1B, a known lysine demethylase (KDM. They reveal that JMJD1B actively mediates demethylation of histone markers H4R3me2s and H3K9me2 in hematopoietic stem/progenitor cells (HSPCs. Keywords: JMJD1B, KDM3B, PRMT5, arginine demethylase, histone, epigenetic programming, gene expression, hematopoiesis

  11. Genome-Wide Identification of R2R3-MYB Genes and Expression Analyses During Abiotic Stress in Gossypium raimondii

    Science.gov (United States)

    He, Qiuling; Jones, Don C.; Li, Wei; Xie, Fuliang; Ma, Jun; Sun, Runrun; Wang, Qinglian; Zhu, Shuijin; Zhang, Baohong

    2016-01-01

    The R2R3-MYB is one of the largest families of transcription factors, which have been implicated in multiple biological processes. There is great diversity in the number of R2R3-MYB genes in different plants. However, there is no report on genome-wide characterization of this gene family in cotton. In the present study, a total of 205 putative R2R3-MYB genes were identified in cotton D genome (Gossypium raimondii), that are much larger than that found in other cash crops with fully sequenced genomes. These GrMYBs were classified into 13 groups with the R2R3-MYB genes from Arabidopsis and rice. The amino acid motifs and phylogenetic tree were predicted and analyzed. The sequences of GrMYBs were distributed across 13 chromosomes at various densities. The results showed that the expansion of the G. Raimondii R2R3-MYB family was mainly attributable to whole genome duplication and segmental duplication. Moreover, the expression pattern of 52 selected GrMYBs and 46 GaMYBs were tested in roots and leaves under different abiotic stress conditions. The results revealed that the MYB genes in cotton were differentially expressed under salt and drought stress treatment. Our results will be useful for determining the precise role of the MYB genes during stress responses with crop improvement. PMID:27009386

  12. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON2 and FUSCA3 in Arabidopsis

    NARCIS (Netherlands)

    Curaba, J.; Moritz, T.; Blervaque, R.; Parcy, F.; Raz, V.; Herzog, M.; Vachon, G.

    2004-01-01

    Embryonic regulators LEC2 (LEAFY COTYLEDON2) and FUS3 (FUSCA3) are involved in multiple aspects of Arabidopsis (Arabidopsis thaliana) seed development, including repression of leaf traits and premature germination and activation of seed storage protein genes. In this study, we show that gibberellin

  13. DNA demethylation by 5-aza-2-deoxycytidine treatment abrogates 17 beta-estradiol-induced cell growth and restores expression of DNA repair genes in human breast cancer cells.

    Science.gov (United States)

    Singh, Kamaleshwar P; Treas, Justin; Tyagi, Tulika; Gao, Weimin

    2012-03-01

    Prolonged exposure to elevated levels of estrogen is a risk factor for breast cancer. Though increased cell growth and loss of DNA repair capacity is one of the proposed mechanisms for estrogen-induced cancers, the mechanism through which estrogen induces cell growth and decreases DNA repair capacity is not clear. DNA hypermethylation is known to inactivate DNA repair genes and apoptotic response in cancer cells. Therefore, the objective of this study was to determine the role of DNA hypermethylation in estrogen-induced cell growth and regulation of DNA repair genes expression in breast cancer cells. To achieve this objective, the estrogen-responsive MCF-7 cells either pretreated with 5-aza-2-deoxycytidine (5-aza-dC) or untreated (as control) were exposed to 17 beta-estradiol (E2), and its effect on cell growth and expression of DNA repair genes were measured. The result revealed that 5-aza-dC abrogates the E2-induced growth in MCF-7 cells. An increased expression of OGG1, MSH4, and MLH1 by 5-aza-dC treatment alone, suggest the DNA hypermethylation as a potential cause for decreased expression of these genes in MCF-7 cells. The decreased expression of ERCC1, XPC, OGG1, and MLH1 by E2 alone and its restoration by co-treatment with 5-aza-dC further suggest that E2 reduces the expression of these DNA repair genes potentially through promoter hypermethylation. Reactivation of mismatch repair (MMR) gene MLH1 and abrogation of E2-induced cell growth by 5-aza-dC treatment suggest that estrogen causes increased growth in breast cancer cells potentially through the inhibition of MMR-mediated apoptotic response. In summary, this study suggests that estrogen increases cell growth and decreases the DNA repair capacity in breast cancer cells, at least in part, through epigenetic mechanism. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Cloning, Sequencing, and Expression of the Gene Encoding Cyclic 2,3-Diphosphoglycerate Synthetase, the Key Enzyme of Cyclic 2,3-Diphosphoglycerate Metabolism in Methanothermus fervidus

    OpenAIRE

    Matussek, Karl; Moritz, Patrick; Brunner, Nina; Eckerskorn, Christoph; Hensel, Reinhard

    1998-01-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and...

  15. Polymorphisms in metabolism and repair genes affects DNA damage caused by open-cast coal mining exposure.

    Science.gov (United States)

    Espitia-Pérez, Lyda; Sosa, Milton Quintana; Salcedo-Arteaga, Shirley; León-Mejía, Grethel; Hoyos-Giraldo, Luz Stella; Brango, Hugo; Kvitko, Katia; da Silva, Juliana; Henriques, João A P

    2016-09-15

    Increasing evidence suggest that occupational exposure to open-cast coal mining residues like dust particles, heavy metals and Polycyclic Aromatic Hydrocarbons (PAHs) may cause a wide range of DNA damage and genomic instability that could be associated to initial steps in cancer development and other work-related diseases. The aim of our study was to evaluate if key polymorphisms in metabolism genes CYP1A1Msp1, GSTM1Null, GSTT1Null and DNA repair genes XRCC1Arg194Trp and hOGG1Ser326Cys could modify individual susceptibility to adverse coal exposure effects, considering the DNA damage (Comet assay) and micronucleus formation in lymphocytes (CBMN) and buccal mucosa cells (BMNCyt) as endpoints for genotoxicity. The study population is comprised of 200 healthy male subjects, 100 open-cast coal-mining workers from "El Cerrejón" (world's largest open-cast coal mine located in Guajira - Colombia) and 100 non-exposed referents from general population. The data revealed a significant increase of CBMN frequency in peripheral lymphocytes of occupationally exposed workers carrying the wild-type variant of GSTT1 (+) gene. Exposed subjects carrying GSTT1null polymorphism showed a lower micronucleus frequency compared with their positive counterparts (FR: 0.83; P=0.04), while BMNCyt, frequency and Comet assay parameters in lymphocytes: Damage Index (DI) and percentage of DNA in the tail (Tail % DNA) were significantly higher in exposed workers with the GSTM1Null polymorphism. Other exfoliated buccal mucosa abnormalities related to cell death (Karyorrhexis and Karyolysis) were increased in GSTT/M1Null carriers. Nuclear buds were significantly higher in workers carrying the CYP1A1Msp1 (m1/m2, m2/m2) allele. Moreover, BMNCyt frequency and Comet assay parameters were significantly lower in exposed carriers of XRCC1Arg194Trp (Arg/Trp, Trp/Trp) and hOGG1Ser326Cys (Ser/Cys, Cys/Cys), thereby providing new data to the increasing evidence about the protective role of these polymorphisms

  16. Possible association of β2- and β3-adrenergic receptor gene polymorphisms with susceptibility to breast cancer

    International Nuclear Information System (INIS)

    Huang, Xin-En; Tokudome, Shinkan; Tajima, Kazuo; Hamajima, Nobuyuki; Saito, Toshiko; Matsuo, Keitaro; Mizutani, Mitsuhiro; Iwata, Hiroji; Iwase, Takuji; Miura, Shigeto; Mizuno, Tsutomu

    2001-01-01

    The involvement of β 2 -adrenergic receptor (ADRB2) and β 3 -adrenergic receptor (ADRB3) in both adipocyte lipolysis and thermogenic activity suggests that polymorphisms in the encoding genes might be linked with interindividual variation in obesity, an important risk factor for postmenopausal breast cancer. In order to examine the hypothesis that genetic variations in ADRB2 and ADRB3 represent interindividual susceptibility factors for obesity and breast cancer, we conducted a hospital-based, case-control study in the Aichi Cancer Center, Japan. A self-administered questionnaire was given to 200 breast cancer patients and 182 control individuals, and pertinent information on lifestyle, family history and reproduction was collected. ADRB2 and ADRB3 genotypes were determined by polymerase chain reaction (PCR) restriction fragment length polymorphism assessment. Twenty-five (12.4%) breast cancer patients and 32 (17.6%) control individuals were found to bear a glutamic acid (Glu) allele for the ADRB2 gene (odds ratio [OR] 0.67, 95% confidence interval [CI] 0.38-1.18), and 60 (30.0%) breast cancer patients and 61 (33.5%) control individuals were found to bear an Arg allele for the ADRB3 gene (OR 0.85, 95% CI 0.55-1.31). A significantly lower risk was observed in those who carried the Glu ADRB2 allele and who reported first childbirth when they were younger than 25 years (OR 0.35; 95% CI 0.13-0.99). A potential association may exist between risk of breast cancer and polymorphisms in the ADRB2 and ADRB3 genes; further studies in larger samples and/or in different ethnic groups are warranted to investigate this potential association

  17. Clinical differences between patients with MODY-3, MODY-2 and type 2 diabetes mellitus with I27L polymorphism in the HNF1alpha gene.

    Science.gov (United States)

    Pinés Corrales, Pedro José; López Garrido, María P; Aznar Rodríguez, Silvia; Louhibi Rubio, Lynda; López Jiménez, Luz M; Lamas Oliveira, Cristina; Alfaro Martínez, Jose J; Lozano García, Jose J; Hernández López, Antonio; Requejo Castillo, Ramón; Escribano Martínez, Julio; Botella Romero, Francisco

    2010-01-01

    The aim of our study was to describe and evaluate the clinical and metabolic characteristics of patients with MODY-3, MODY-2 or type 2 diabetes who presented I27L polymorphism in the HNF1alpha gene. The study included 31 previously diagnosed subjects under follow-up for MODY-3 (10 subjects from 5 families), MODY-2 (15 subjects from 9 families), or type 2 diabetes (6 subjects) with I27L polymorphism in the HNF1alpha gene. The demographic, clinical, metabolic, and genetic characteristics of all patients were analyzed. No differences were observed in distribution according to sex, age of onset, or form of diagnosis. All patients with MODY-2 or MODY-3 had a family history of diabetes. In contrast, 33.3% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene had no family history of diabetes (p MODY-3 patients, but not required by 100% of MODY-2 patients or 16.7% of patients with type 2 diabetes mellitus and I27L polymorphism in the HNF1alpha gene (p MODY-2, MODY-3 or type 2 diabetes of atypical characteristics, in this case patients who present I27L polymorphism in the HNF1alpha gene. Copyright 2010 Sociedad Española de Endocrinología y Nutrición. Published by Elsevier Espana. All rights reserved.

  18. Comprehensive profiling of DNA repair defects in breast cancer identifies a novel class of endocrine therapy resistance drivers.

    Science.gov (United States)

    Anurag, Meenakshi; Punturi, Nindo; Hoog, Jeremy; Bainbridge, Matthew N; Ellis, Matthew J; Haricharan, Svasti

    2018-05-23

    This study was undertaken to conduct a comprehensive investigation of the role of DNA damage repair (DDR) defects in poor outcome ER+ disease. Expression and mutational status of DDR genes in ER+ breast tumors were correlated with proliferative response in neoadjuvant aromatase inhibitor therapy trials (discovery data set), with outcomes in METABRIC, TCGA and Loi data sets (validation data sets), and in patient derived xenografts. A causal relationship between candidate DDR genes and endocrine treatment response, and the underlying mechanism, was then tested in ER+ breast cancer cell lines. Correlations between loss of expression of three genes: CETN2 (p<0.001) and ERCC1 (p=0.01) from the nucleotide excision repair (NER) and NEIL2 (p=0.04) from the base excision repair (BER) pathways were associated with endocrine treatment resistance in discovery data sets, and subsequently validated in independent patient cohorts. Complementary mutation analysis supported associations between mutations in NER and BER pathways and reduced endocrine treatment response. A causal role for CETN2, NEIL2 and ERCC1 loss in intrinsic endocrine resistance was experimentally validated in ER+ breast cancer cell lines, and in ER+ patient-derived xenograft models. Loss of CETN2, NEIL2 or ERCC1 induced endocrine treatment response by dysregulating G1/S transition, and therefore, increased sensitivity to CDK4/6 inhibitors. A combined DDR signature score was developed that predicted poor outcome in multiple patient cohorts. This report identifies DDR defects as a new class of endocrine treatment resistance drivers and indicates new avenues for predicting efficacy of CDK4/6 inhibition in the adjuvant treatment setting. Copyright ©2018, American Association for Cancer Research.

  19. Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T₃in the mouse cerebral cortex.

    Science.gov (United States)

    Hernandez, Arturo; Morte, Beatriz; Belinchón, Mónica M; Ceballos, Ainhoa; Bernal, Juan

    2012-06-01

    Thyroid hormones regulate brain development and function through the control of gene expression, mediated by binding of T(3) to nuclear receptors. Brain T(3) concentration is tightly controlled by homeostatic mechanisms regulating transport and metabolism of T(4) and T(3). We have examined the role of the inactivating enzyme type 3 deiodinase (D3) in the regulation of 43 thyroid hormone-dependent genes in the cerebral cortex of 30-d-old mice. D3 inactivation increased slightly the expression of two of 22 positively regulated genes and significantly decreased the expression of seven of 21 negatively regulated genes. Administration of high doses of T(3) led to significant changes in the expression of 12 positive genes and three negative genes in wild-type mice. The response to T(3) treatment was enhanced in D3-deficient mice, both in the number of genes and in the amplitude of the response, demonstrating the role of D3 in modulating T(3) action. Comparison of the effects on gene expression observed in D3 deficiency with those in hypothyroidism, hyperthyroidism, and type 2 deiodinase (D2) deficiency revealed that the negative genes are more sensitive to D2 and D3 deficiencies than the positive genes. This observation indicates that, in normal physiological conditions, D2 and D3 play critical roles in maintaining local T(3) concentrations within a very narrow range. It also suggests that negatively and positively regulated genes do not have the same physiological significance or that their regulation by thyroid hormone obeys different paradigms at the molecular or cellular levels.

  20. Identification of the 14-3-3 gene family in Rafflesia cantleyi

    Science.gov (United States)

    Rosli, Khadijah; Wan, Kiew-Lian

    2018-04-01

    Rafflesia is known to be the largest flower in the world. Due to its size and appearance, it is considered to be very unique. Little is known about the molecular biology of this rare parasitic flowering plant as it is very difficult to locate and has a short life-span as a flower. Physiological activities in plants are regulated by signalling regulators such as the members of the 14-3-3 gene family. The number of members of this gene family varies in plants and there are thirteen known members in Arabidopsis thaliana. Their role is to bind to phosphorylated targets to complete signal transduction processes. Sequence comparison using BLAST of transcriptome data from three different Rafflesia cantleyi floral bud stages against the Swissprot database revealed 27 transcripts annotated as members of this gene family. All of the transcripts were expressed during floral bud stage 1 (S1) while 14 and four transcripts were expressed during floral bud stages 2 (S2) and 3 (S3), respectively. Significant downregulation was recorded for six and nine transcripts at S1 vs. S2 and S2 vs. S3 respectively. This gene family may play a critical role as signalling regulators during the development of Rafflesia floral bud.

  1. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil.

    Science.gov (United States)

    Pham, Anh-Tung; Shannon, J Grover; Bilyeu, Kristin D

    2012-08-01

    High oleic acid soybeans were produced by combining mutant FAD2-1A and FAD2-1B genes. Despite having a high oleic acid content, the linolenic acid content of these soybeans was in the range of 4-6 %, which may be high enough to cause oxidative instability of the oil. Therefore, a study was conducted to incorporate one or two mutant FAD3 genes into the high oleic acid background to further reduce the linolenic acid content. As a result, soybean lines with high oleic acid and low linolenic acid (HOLL) content were produced using different sources of mutant FAD2-1A genes. While oleic acid content of these HOLL lines was stable across two testing environments, the reduction of linolenic acid content varied depending on the number of mutant FAD3 genes combined with mutant FAD2-1 genes, on the severity of mutation in the FAD2-1A gene, and on the testing environment. Combination of two mutant FAD2-1 genes and one mutant FAD3 gene resulted in less than 2 % linolenic acid content in Portageville, Missouri (MO) while four mutant genes were needed to achieve the same linolenic acid in Columbia, MO. This study generated non-transgenic soybeans with the highest oleic acid content and lowest linolenic acid content reported to date, offering a unique alternative to produce a fatty acid profile similar to olive oil.

  2. Mutations in TET2 and DNMT3A genes are associated with changes in global and gene-specific methylation in acute myeloid leukemia.

    Science.gov (United States)

    Ponciano-Gómez, Alberto; Martínez-Tovar, Adolfo; Vela-Ojeda, Jorge; Olarte-Carrillo, Irma; Centeno-Cruz, Federico; Garrido, Efraín

    2017-10-01

    Acute myeloid leukemia is characterized by its high biological and clinical heterogeneity, which represents an important barrier for a precise disease classification and accurate therapy. While epigenetic aberrations play a pivotal role in acute myeloid leukemia pathophysiology, molecular signatures such as change in the DNA methylation patterns and genetic mutations in enzymes needed to the methylation process can also be helpful for classifying acute myeloid leukemia. Our study aims to unveil the relevance of DNMT3A and TET2 genes in global and specific methylation patterns in acute myeloid leukemia. Peripheral blood samples from 110 untreated patients with acute myeloid leukemia and 15 healthy control individuals were collected. Global 5-methylcytosine and 5-hydroxymethylcytosine in genomic DNA from peripheral blood leukocytes were measured by using the MethylFlashTM Quantification kits. DNMT3A and TET2 expression levels were evaluated by real-time quantitative polymerase chain reaction. The R882A hotspot of DNMT3A and exons 6-10 of TET2 were amplified by polymerase chain reaction and sequenced using the Sanger method. Methylation patterns of 16 gene promoters were evaluated by pyrosequencing after treating DNA with sodium bisulfite, and their transcriptional products were measured by real-time quantitative polymerase chain reaction.Here, we demonstrate altered levels of 5-methylcytosine and 5-hydroxymethylcytosine and highly variable transcript levels of DNMT3A and TET2 in peripheral blood leukocytes from acute myeloid leukemia patients. We found a mutation prevalence of 2.7% for DNMT3A and 11.8% for TET2 in the Mexican population with this disease. The average overall survival of acute myeloid leukemia patients with DNMT3A mutations was only 4 months. In addition, we showed that mutations in DNMT3A and TET2 may cause irregular DNA methylation patterns and transcriptional expression levels in 16 genes known to be involved in acute myeloid leukemia pathogenesis

  3. [High gene conversion frequency between genes encoding 2-deoxyglucose-6-phosphate phosphatase in 3 Saccharomyces species].

    Science.gov (United States)

    Piscopo, Sara-Pier; Drouin, Guy

    2014-05-01

    Gene conversions are nonreciprocal sequence exchanges between genes. They are relatively common in Saccharomyces cerevisiae, but few studies have investigated the evolutionary fate of gene conversions or their functional impacts. Here, we analyze the evolution and impact of gene conversions between the two genes encoding 2-deoxyglucose-6-phosphate phosphatase in S. cerevisiae, Saccharomyces paradoxus and Saccharomyces mikatae. Our results demonstrate that the last half of these genes are subject to gene conversions among these three species. The greater similarity and the greater percentage of GC nucleotides in the converted regions, as well as the absence of long regions of adjacent common converted sites, suggest that these gene conversions are frequent and occur independently in all three species. The high frequency of these conversions probably result from the fact that they have little impact on the protein sequences encoded by these genes.

  4. Ectopic Expression of the Coleus R2R3 MYB-Type Proanthocyanidin Regulator Gene SsMYB3 Alters the Flower Color in Transgenic Tobacco.

    Directory of Open Access Journals (Sweden)

    Qinlong Zhu

    Full Text Available Proanthocyanidins (PAs play an important role in plant disease defense and have beneficial effects on human health. We isolated and characterized a novel R2R3 MYB-type PA-regulator SsMYB3 from a well-known ornamental plant, coleus (Solenostemon scutellarioides, to study the molecular regulation of PAs and to engineer PAs biosynthesis. The expression level of SsMYB3 was correlated with condensed tannins contents in various coleus tissues and was induced by wounding and light. A complementation test in the Arabidopsis tt2 mutant showed that SsMYB3 could restore the PA-deficient seed coat phenotype and activated expression of the PA-specific gene ANR and two related genes, DFR and ANS. In yeast two-hybrid assays, SsMYB3 interacted with the Arabidopsis AtTT8 and AtTTG1 to reform the ternary transcriptional complex, and also interacted with two tobacco bHLH proteins (NtAn1a and NtJAF13-1 and a WD40 protein, NtAn11-1. Ectopic overexpression of SsMYB3 in transgenic tobacco led to almost-white flowers by greatly reducing anthocyanin levels and enhancing accumulation of condensed tannins. This overexpression of SsMYB3 upregulated the key PA genes (NtLAR and NtANR and late anthocyanin structural genes (NtDFR and NtANS, but downregulated the expression of the final anthocyanin gene NtUFGT. The formative SsMYB3-complex represses anthocyanin accumulation by directly suppressing the expression of the final anthocyanin structural gene NtUFGT, through competitive inhibition or destabilization of the endogenous NtAn2-complex formation. These results suggested that SsMYB3 may form a transcription activation complex to regulate PA biosynthesis in the Arabidopsis tt2 mutant and transgenic tobacco. Our findings suggest that SsMYB3 is involved in the regulation of PA biosynthesis in coleus and has the potential as a molecular tool for manipulating biosynthesis of PAs in fruits and other crops using metabolic engineering.

  5. The NtAMI1 gene functions in cell division of tobacco BY-2 cells in the presence of indole-3-acetamide.

    Science.gov (United States)

    Nemoto, Keiichirou; Hara, Masamitsu; Suzuki, Masashi; Seki, Hikaru; Muranaka, Toshiya; Mano, Yoshihiro

    2009-01-22

    Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells can be grown in medium containing indole-3-acetamide (IAM). Based on this finding, the NtAMI1 gene, whose product is functionally equivalent to the AtAMI1 gene of Arabidopsis thaliana and the aux2 gene of Agrobacterium rhizogenes, was isolated from BY-2 cells. Overexpression of the NtAMI1 gene allowed BY-2 cells to proliferate at lower concentrations of IAM, whereas suppression of the NtAMI1 gene by RNA interference (RNAi) caused severe growth inhibition in the medium containing IAM. These results suggest that IAM is incorporated into plant cells and converted to the auxin, indole-3-acetic acid, by NtAMI1.

  6. Association of gene variants of transcription factors PPARγ, RUNX2, Osterix genes and COL2A1, IGFBP3 genes with the development of osteonecrosis of the femoral head in Chinese population.

    Science.gov (United States)

    Song, Yang; Du, Zhenwu; Ren, Ming; Yang, Qiwei; Wang, Qingyu; Chen, Gaoyang; Zhao, Haiyue; Li, Zhaoyan; Wang, Jincheng; Zhang, Guizhen

    2017-08-01

    The molecular pathogenesis of osteonecrosis of the femoral head (ONFH) has been remained obscure so that its prevalence has been increasing in recent decades. Different transcription factors play critical roles in maintaining the balance between osteogenesis and adipogenesis. However, it has been unclear that the genes variants of the transcription factors exert the effects on the imbalance between steogenesis and adipogenesis during the development of ONFH. Here, we selected the 11SNPs from steogenesis, adipogenesis-specific transcription factors RUNX2, Osterix, and PPARγ genes, chondrogenesis or adipogenesis key factors COL2A1, IGFBP3 genes and analysed the genotypes, alleles, haplotypes and their association with the risk and clinical phenotypes of ONFH through Mass ARRAY® platformin in 200 ONFH patients and 177controls. The patients with ONFH (132 males, 68 females; age: 53.46±11.48yr) were consecutively enrolled at the Department of Orthopedics, the Second Clinical College of Jilin University, from March 2014 to June 2015 and were diagnosed and classified into 10 cases of stage II (5.6%), 54 cases of stage III (30.2%) and 115 cases (64.2%) of stage IV and alcohol-induced (71 cases (39.7%)), idiopathic (64 cases (34.0%)), and steroid-induced osteonecrosis (47 cases (26.3%)) subgroup, respectively. Our results showed that all models of logistical regression analysis, the co-dominants, dominants, and recessives of PPARγrs2920502, significantly associated with the increased risk of ONFH (p=0.004, p=0.013, p=0.016), respectively. Both the minor homozygous CC genotype and the allele C of rs2920502 were evidently correlated with the enhanced risk of ONFH (p=0.005, p=0.0005),respectively. The recessives models of IGFBP3rs2132572 (G/A) as well as RUNX2 rs3763190(G/A) were statistically associated with the higher ONFH risk, p=0.030, p=0.029, respectively; the minor homozygous(AA) of IGFBP3rs2132572 (G/A) was also related to the increased risk of bilateral hips

  7. p44 and p34 subunits of the BTF2/TFIIH transcription factor have homologies with SSL1, a yeast protein involved in DNA repair.

    NARCIS (Netherlands)

    S. Humbert; H. van Vuuren; Y. Lutz; J.H.J. Hoeijmakers (Jan); J-M. Egly (Jean-Marc); V. Moncollin

    1994-01-01

    textabstractThe human BTF2 (TFIIH) transcription factor is a multisubunit protein involved in transcription initiation by RNA polymerase II (B) as well as in DNA repair. In addition to the previously characterized p62 and p89/ERCC3 subunits, we have cloned two other subunits of BTF2, p44 and p34.

  8. Lack of association between NLGN3, NLGN4, SHANK2 and SHANK3 gene variants and autism spectrum disorder in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Yanyan Liu

    Full Text Available Autism spectrum disorder (ASD is a neurodevelopmental disorder characterized by deficits in social communication, absence or delay in language development, and stereotyped or repetitive behaviors. Genetic studies show that neurexin-neuroligin (NRXN-NLGN pathway genes contribute susceptibility to ASD, which include cell adhesion molecules NLGN3, NLGN4 and scaffolding proteins SHANK2 and SHANK3. Neuroligin proteins play an important role in synaptic function and trans-synaptic signaling by interacting with presynaptic neurexins. Shank proteins are scaffolding molecules of excitatory synapses, which function as central organizers of the postsynaptic density. Sequence level mutations and structural variations in these genes have been identified in ASD cases, while few studies were performed in Chinese population. In this study, we examined the copy numbers of four genes NLGN4, NLGN3, SHANK2, and SHANK3 in 285 ASD cases using multiplex fluorescence competitive polymerase chain reaction (PCR. We also screened the regulatory region including the promoter region and 5'/3' untranslated regions (UTR and the entire coding region of NLGN4 in a cohort of 285 ASD patients and 384 controls by direct sequencing of genomic DNA using the Sanger method. DNA copy number calculation in four genes showed no deletion or duplication in our cases. No missense mutations in NLGN4 were identified in our cohort. Association analysis of 6 common SNPs in NLGN4 did not find significant difference between ASD cases and controls. These findings showed that these genes may not be major disease genes in Chinese ASD cases.

  9. Technical reproducibility of single-nucleotide and size-based DNA biomarker assessment using DNA extracted from formalin-fixed, paraffin-embedded tissues.

    Science.gov (United States)

    Zhang, Shenli; Tan, Iain B; Sapari, Nur S; Grabsch, Heike I; Okines, Alicia; Smyth, Elizabeth C; Aoyama, Toru; Hewitt, Lindsay C; Inam, Imran; Bottomley, Dan; Nankivell, Matthew; Stenning, Sally P; Cunningham, David; Wotherspoon, Andrew; Tsuburaya, Akira; Yoshikawa, Takaki; Soong, Richie; Tan, Patrick

    2015-05-01

    DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tissues has been used in the past to analyze genetic polymorphisms. We evaluated the technical reproducibility of different types of assays for gene polymorphisms using DNA extracted from FFPE material. By using the MassARRAY iPLEX system, we investigated polymorphisms in DPYD (rs1801159 and rs3918290), UMPS (rs1801019), ERCC1 (rs11615), ERCC1 (rs3212986), and ERCC2 (rs13181) in 56 FFPE DNA samples. By using PCR, followed by size-based gel electrophoresis, we also examined TYMS 5' untranslated region 2R/3R repeats and GSTT1 deletions in 50 FFPE DNA samples and 34 DNAs extracted from fresh-frozen tissues and cell lines. Each polymorphism was analyzed by two independent runs. We found that iPLEX biomarker assays measuring single-nucleotide polymorphisms provided consistent concordant results. However, by using FFPE DNA, size-based PCR biomarkers (GSTT1 and TYMS 5' untranslated region) were discrepant in 32.7% (16/49, with exact 95% CI, 19.9%-47.5%; exact binomial confidence limit test) and 4.2% (2/48, with exact 95% CI, 0.5%-14.3%) of cases, respectively, whereas no discrepancies were observed using intact genomic DNA. Our findings suggest that DNA from FFPE material can be used to reliably test single-nucleotide polymorphisms. However, results based on size-based PCR biomarkers, and particularly GSTT1 deletions, using FFPE DNA need to be interpreted with caution. Independent repeated assays should be performed on all cases to assess potential discrepancies. Copyright © 2015 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  10. Deletion of a regulatory gene within the cpk gene cluster reveals novel antibacterial activity in Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    Gottelt, Marco; Kol, Stefan; Gomez-Escribano, Juan Pablo; Bibb, Mervyn; Takano, Eriko

    Genome sequencing of Streptomyces coelicolor A3(2) revealed an uncharacterized type I polyketide synthase gene cluster (cpk) Here we describe the discovery of a novel antibacterial activity (abCPK) and a yellow-pigmented secondary metabolite (yCPK) after deleting a presumed pathway-specific

  11. Exploring the potential of the glycerol-3-phosphate dehydrogenase 2 (GPD2) promoter for recombinant gene expression in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Knudsen, Jan Dines; Johanson, Ted; Eliasson Lantz, Anna

    2015-01-01

    A control point for keeping redox homeostasis in Saccharomyces cerevisiae during fermentative growth is the dynamic regulation of transcription for the glycerol-3-phosphate dehydrogenase 2 (GPD2) gene. In this study, the possibility to steer the activity of the GPD2 promoter was investigated by p...

  12. Highly Efficient Stable Expression of Indoleamine 2,3 Dioxygenase Gene in Primary Fibroblasts

    Directory of Open Access Journals (Sweden)

    Rezakhanlou Alireza

    2010-03-01

    Full Text Available Abstract Indoleamine 2,3 dioxygenase (IDO is a potent immunomodulatory enzyme that has recently attracted significant attention for its potential application as an inducer of immunotolerance in transplantation. We have previously demonstrated that a collagen matrix populated with IDO-expressing fibroblasts can be applied successfully in suppressing islet allogeneic immune response. Meanwhile, a critical aspect of such immunological intervention relies largely on effective long-term expression of the IDO gene. Moreover, gene manipulation of primary cells is known to be challenging due to unsatisfactory expression of the exogenous gene. In this study, a lentiviral gene delivery system has been employed to transduce primary fibroblasts. We used polybrene to efficiently deliver the IDO gene into primary fibroblasts and showed a significant increase (about tenfold in the rate of gene transfection. In addition, by the use of fluorescence-activated cell sorting, a 95% pure population of IDO-expressing fibroblasts was successfully obtained. The efficiency of the IDO expression and the activity of the enzyme have been confirmed by Western blotting, fluorescence-activated cell sorting analysis, and Kynurenine assay, respectively. The findings of this study revealed simple and effective strategies through which an efficient and stable expression of IDO can be achieved for primary cells which, in turn, significantly improves its potential as a tool for achieving immunotolerance in different types of transplantation.

  13. Genome-wide analysis of histone H3 acetylation patterns in AML identifies PRDX2 as an epigenetically silenced tumor suppressor gene

    DEFF Research Database (Denmark)

    Agrawal-Singh, Shuchi; Isken, Fabienne; Agelopoulos, Konstantin

    2012-01-01

    to have lower H3Ac levels in AML compared with progenitor cells, which suggested that a large number of genes are epigenetically silenced in AML. Intriguingly, we identified peroxiredoxin 2 (PRDX2) as a novel potential tumor suppressor gene in AML. H3Ac was decreased at the PRDX2 gene promoter in AML......With the use of ChIP on microarray assays in primary leukemia samples, we report that acute myeloid leukemia (AML) blasts exhibit significant alterations in histone H3 acetylation (H3Ac) levels at > 1000 genomic loci compared with CD34+ progenitor cells. Importantly, core promoter regions tended......, which correlated with low mRNA and protein expression. We also observed DNA hypermethylation at the PRDX2 promoter in AML. Low protein expression of the antioxidant PRDX2 gene was clinically associated with poor prognosis in patients with AML. Functionally, PRDX2 acted as inhibitor of myeloid cell...

  14. Complex epigenetic regulation of engrailed-2 (EN-2) homeobox gene in the autism cerebellum.

    Science.gov (United States)

    James, S J; Shpyleva, Svitlana; Melnyk, Stepan; Pavliv, Oleksandra; Pogribny, I P

    2013-02-19

    The elucidation of epigenetic alterations in the autism brain has potential to provide new insights into the molecular mechanisms underlying abnormal gene expression in this disorder. Given strong evidence that engrailed-2 (EN-2) is a developmentally expressed gene relevant to cerebellar abnormalities and autism, the epigenetic evaluation of this candidate gene was undertaken in 26 case and control post-mortem cerebellar samples. Assessments included global DNA methylation, EN-2 promoter methylation, EN-2 gene expression and EN-2 protein levels. Chromatin immunoprecipitation was used to evaluate trimethylation status of histone H3 lysine 27 (H3K27) associated with gene downregulation and histone H3 lysine 4 (H3K4) associated with gene activation. The results revealed an unusual pattern of global and EN-2 promoter region DNA hypermethylation accompanied by significant increases in EN-2 gene expression and protein levels. Consistent with EN-2 overexpression, histone H3K27 trimethylation mark in the EN-2 promoter was significantly decreased in the autism samples relative to matched controls. Supporting a link between reduced histone H3K27 trimethylation and increased EN-2 gene expression, the mean level of histone H3K4 trimethylation was elevated in the autism cerebellar samples. Together, these results suggest that the normal EN-2 downregulation that signals Purkinje cell maturation during late prenatal and early-postnatal development may not have occurred in some individuals with autism and that the postnatal persistence of EN-2 overexpression may contribute to autism cerebellar abnormalities.

  15. Association of Environmental Arsenic Exposure, Genetic Polymorphisms of Susceptible Genes, and Skin Cancers in Taiwan

    Directory of Open Access Journals (Sweden)

    Ling-I Hsu

    2015-01-01

    Full Text Available Deficiency in the capability of xenobiotic detoxification and arsenic methylation may be correlated with individual susceptibility to arsenic-related skin cancers. We hypothesized that glutathione S-transferase (GST M1, T1, and P1, reactive oxygen species (ROS related metabolic genes (NQO1, EPHX1, and HO-1, and DNA repair genes (XRCC1, XPD, hOGG1, and ATM together may play a role in arsenic-induced skin carcinogenesis. We conducted a case-control study consisting of 70 pathologically confirmed skin cancer patients and 210 age and gender matched participants with genotyping of 12 selected polymorphisms. The skin cancer risks were estimated by odds ratio (OR and 95% confidence interval (CI using logistic regression. EPHX1 Tyr113His, XPD C156A, and GSTT1 null genotypes were associated with skin cancer risk (OR = 2.99, 95% CI = 1.01–8.83; OR = 2.04, 95% CI = 0.99–4.27; OR = 1.74, 95% CI = 1.00–3.02, resp.. However, none of these polymorphisms showed significant association after considering arsenic exposure status. Individuals carrying three risk polymorphisms of EPHX1 Tyr113His, XPD C156A, and GSTs presented a 400% increased skin cancer risk when compared to those with less than or equal to one polymorphism. In conclusion, GSTs, EPHX1, and XPD are potential genetic factors for arsenic-induced skin cancers. The roles of these genes for arsenic-induced skin carcinogenesis need to be further evaluated.

  16. Cloning, Sequencing, and Expression of the Gene Encoding Cyclic 2,3-Diphosphoglycerate Synthetase, the Key Enzyme of Cyclic 2,3-Diphosphoglycerate Metabolism in Methanothermus fervidus

    Science.gov (United States)

    Matussek, Karl; Moritz, Patrick; Brunner, Nina; Eckerskorn, Christoph; Hensel, Reinhard

    1998-01-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction. PMID:9811660

  17. Cloning, sequencing, and expression of the gene encoding cyclic 2, 3-diphosphoglycerate synthetase, the key enzyme of cyclic 2, 3-diphosphoglycerate metabolism in Methanothermus fervidus.

    Science.gov (United States)

    Matussek, K; Moritz, P; Brunner, N; Eckerskorn, C; Hensel, R

    1998-11-01

    Cyclic 2,3-diphosphoglycerate synthetase (cDPGS) catalyzes the synthesis of cyclic 2,3-diphosphoglycerate (cDPG) by formation of an intramolecular phosphoanhydride bond in 2,3-diphosphoglycerate. cDPG is known to be accumulated to high intracellular concentrations (>300 mM) as a putative thermoadapter in some hyperthermophilic methanogens. For the first time, we have purified active cDPGS from a methanogen, the hyperthermophilic archaeon Methanothermus fervidus, sequenced the coding gene, and expressed it in Escherichia coli. cDPGS purification resulted in enzyme preparations containing two isoforms differing in their electrophoretic mobility under denaturing conditions. Since both polypeptides showed the same N-terminal amino acid sequence and Southern analyses indicate the presence of only one gene coding for cDPGS in M. fervidus, the two polypeptides originate from the same gene but differ by a not yet identified modification. The native cDPGS represents a dimer with an apparent molecular mass of 112 kDa and catalyzes the reversible formation of the intramolecular phosphoanhydride bond at the expense of ATP. The enzyme shows a clear preference for the synthetic reaction: the substrate affinity and the Vmax of the synthetic reaction are a factor of 8 to 10 higher than the corresponding values for the reverse reaction. Comparison with the kinetic properties of the electrophoretically homogeneous, apparently unmodified recombinant enzyme from E. coli revealed a twofold-higher Vmax of the enzyme from M. fervidus in the synthesizing direction.

  18. Heritable susceptibility factors for the development of cancer

    International Nuclear Information System (INIS)

    Au, William W.

    2006-01-01

    High frequencies of inherited DNA sequence variations (polymorphisms) are found in the human population. The involvement of polymorphic genes (especially for chemical metabolism and DNA repair) in the development of cancer is under intensive investigation. In our studies, we have irradiated blood lymphocytes from normal non-smokers with γ-rays or UV-light to investigate genotypes and DNA repair functions. We found that XRCC1 399Gln and XRCC3 241Met were deficient in the repair of γ-ray- but not UV-light-induced DNA damage that led to the expression of chromosome aberrations; therefore the variant genotypes are defective in base excision repair. The reverse was found with XPD 312Asn and XPD 751Gln; therefore they are defective in nucleotide excision repair. XRCC1 194Trp, OGG1 326Cys and APE1 148Glu had no DNA repair deficiency based on our experimental conditions. In another study, we investigated the role of some of these genes on the development of lung cancer. We found a significant increase of chromosome aberrations in patients and controls that had the XPD 751Gln and GSTM1 null genotypes, indicating a mechanistic causation of the disease. Therefore, inheritance of susceptibility genes can have significant impact on disease burden in the population. On the other hand, there are many questions that need to be addressed in order to evaluate the impact of susceptibility on cancer. These questions include the understanding of combinations of different polymorphic genes for susceptibility and of specific disease susceptibility for different ethnic populations. (author)

  19. A novel NR2E3 gene mutation in autosomal recessive retinitis pigmentosa with cystic maculopathy

    OpenAIRE

    Mahajan, D.; Votruba, Marcela

    2017-01-01

    NR2E3 is a gene that encodes for photoreceptor cell specific nuclear receptor, which is involved in cone proliferation. The splice site mutation 119-2A>C in NR2E3 (15q23) has been previously reported to underlie recessive enhanced cone S sensitivity syndrome, clumped pigmentary retinal degeneration, Goldman-Favre syndrome and also autosomal dominant and autosomal recessive retinitis pigmentosa (RP). However, the mutation c 571 + 2 T > C in NR2E3 has not been previously reported with retinal d...

  20. Prevalence of pfhrp2 and/or pfhrp3 Gene Deletion in Plasmodium falciparum Population in Eight Highly Endemic States in India.

    Directory of Open Access Journals (Sweden)

    Praveen Kumar Bharti

    Full Text Available Plasmodium falciparum encoded histidine rich protein (HRP2 based malaria rapid diagnostic tests (RDTs are used in India. Deletion of pfhrp2 and pfhrp3 genes contributes to false negative test results, and large numbers of such deletions have been reported from South America, highlighting the importance of surveillance to detect such deletions.This is the first prospective field study carried out at 16 sites located in eight endemic states of India to assess the performance of PfHRP2 based RDT kits used in the national malaria control programme. In this study, microscopically confirmed P. falciparum but RDT negative samples were assessed for presence of pfhrp2, pfhrp3, and their flanking genes using PCR.Among 1521 microscopically positive P. falciparum samples screened, 50 were negative by HRP2 based RDT test. Molecular testing was carried out using these 50 RDT negative samples by assuming that 1471 RDT positive samples carried pfhrp2 gene. It was found that 2.4% (36/1521 and 1.8% (27/1521 of samples were negative for pfhrp2 and pfhrp3 genes, respectively. However, the frequency of pfhrp2 deletions varied between the sites ranging from 0-25% (2.4, 95% CI; 1.6-3.3. The frequency of both pfhrp2 and pfhrp3 gene deletion varied from 0-8% (1.6, 95% CI; 1.0-2.4.This study provides evidence for low level presence of pfhrp2 and pfhrp3 deleted P. falciparum parasites in different endemic regions of India, and periodic surveillance is warranted for reliable use of PfHRP2 based RDTs.

  1. Transcriptional profiling of Foxo3a and Fancd2 regulated genes in mouse hematopoietic stem cells

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    2015-06-01

    Full Text Available Functional maintenance of hematopoietic stem cells (HSCs is constantly challenged by stresses like DNA damage and oxidative stress. Foxo factors particularly Foxo3a function to regulate the self-renewal of HSCs and contribute to the maintenance of the HSC pool during aging by providing resistance to oxidative stress. Fancd2-deficient mice had multiple hematopoietic defects including HSC loss in early development and in response to cellular stresses including oxidative stress. The cellular mechanisms underlying HSC loss in Fancd2-deficient mice include abnormal cell cycle status loss of quiescence and compromised hematopoietic repopulating capacity of HSCs. To address on a genome wide level the genes and pathways that are impacted by deletion of the Fancd2 and Foxo3a we performed microarray analysis on phenotypic HSCs (Lin−ckit+Sca-1+CD150+CD48− from Fancd2 single knockout Foxo3a single knockout and Fancd2−/−Foxo3a−/− double-knockout (dKO mice. Here we provide detailed methods and analysis on these microarray data which has been deposited in Gene Expression Omnibus (GEO: GSE64215.

  2. MMP9 but Not EGFR, MET, ERCC1, P16, and P-53 Is Associated with Response to Concomitant Radiotherapy, Cetuximab, and Weekly Cisplatin in Patients with Locally Advanced Head and Neck Cancer

    Directory of Open Access Journals (Sweden)

    George Fountzilas

    2009-01-01

    Full Text Available Concomitant administration of radiotherapy with cisplatin or radiotherapy with cetuximab appear to be the treatment of choice for patients with locally advanced head and neck cancer. In the present retrospective analysis, we investigated the predictive role of several biomarkers in an unselected cohort of patients treated with concomitant radiotherapy, weekly cisplatin, and cetuximab (CCRT. We identified 37 patients treated with this approach, of which 13 (35% achieved a complete response and 10 (27% achieved a partial response. Severe side effects were mainly leucopenia, dysphagia, rash, and anemia. Tumor EGFR, MET, ERCC1, and p-53 protein and/or gene expression were not associated with treatment response. In contrast, high MMP9 mRNA expression was found to be significantly associated with objective response. In conclusion, CCRT is feasible and active. MMP9 was the only biomarker tested that appears to be of predictive value in cetuximab treated patients. However, this is a hypothesis generating study and the results should not be viewed as definitive evidence until they are validated in a larger cohort.

  3. Role of microRNA in Aggressive Prostate Cancer

    Science.gov (United States)

    2015-09-01

    Interleukin enhancer-binding factor 2 OS=Homo sapiens GN=ILF2 PE=1 SV=2 ACACA_HUMAN Acetyl-CoA carboxylase 1 OS=Homo sapiens GN=ACACA PE=1 SV=2...I3L1L3_HUMAN Myb-binding protein 1A (Fragment) OS=Homo sapiens GN=MYBBP1A PE=4 SV=1 XRCC5_HUMAN X-ray repair cross-complementing protein 5 OS=Homo sapiens GN...XRCC5 PE=1 SV=3 SFPQ_HUMAN Splicing factor, proline- and glutamine-rich OS=Homo sapiens GN=SFPQ PE=1 SV=2 ATPA_HUMAN ATP synthase subunit alpha

  4. Abscisic acid affects transcription of chloroplast genes via protein phosphatase 2C-dependent activation of nuclear genes: repression by guanosine-3'-5'-bisdiphosphate and activation by sigma factor 5.

    Science.gov (United States)

    Yamburenko, Maria V; Zubo, Yan O; Börner, Thomas

    2015-06-01

    Abscisic acid (ABA) represses the transcriptional activity of chloroplast genes (determined by run-on assays), with the exception of psbD and a few other genes in wild-type Arabidopsis seedlings and mature rosette leaves. Abscisic acid does not influence chloroplast transcription in the mutant lines abi1-1 and abi2-1 with constitutive protein phosphatase 2C (PP2C) activity, suggesting that ABA affects chloroplast gene activity by binding to the pyrabactin resistance (PYR)/PYR1-like or regulatory component of ABA receptor protein family (PYR/PYL/RCAR) and signaling via PP2Cs and sucrose non-fermenting protein-related kinases 2 (SnRK2s). Further we show by quantitative PCR that ABA enhances the transcript levels of RSH2, RSH3, PTF1 and SIG5. RelA/SpoT homolog 2 (RSH2) and RSH3 are known to synthesize guanosine-3'-5'-bisdiphosphate (ppGpp), an inhibitor of the plastid-gene-encoded chloroplast RNA polymerase. We propose, therefore, that ABA leads to an inhibition of chloroplast gene expression via stimulation of ppGpp synthesis. On the other hand, sigma factor 5 (SIG5) and plastid transcription factor 1 (PTF1) are known to be necessary for the transcription of psbD from a specific light- and stress-induced promoter (the blue light responsive promoter, BLRP). We demonstrate that ABA activates the psbD gene by stimulation of transcription initiation at BLRP. Taken together, our data suggest that ABA affects the transcription of chloroplast genes by a PP2C-dependent activation of nuclear genes encoding proteins involved in chloroplast transcription. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.

  5. Gene Expression Profiles of Main Olfactory Epithelium in Adenylyl Cyclase 3 Knockout Mice

    Directory of Open Access Journals (Sweden)

    Zhenshan Wang

    2015-11-01

    Full Text Available Adenylyl Cyclase 3 (AC3 plays an important role in the olfactory sensation-signaling pathway in mice. AC3 deficiency leads to defects in olfaction. However, it is still unknown whether AC3 deficiency affects gene expression or olfactory signal transduction pathways within the main olfactory epithelium (MOE. In this study, gene microarrays were used to screen differentially expressed genes in MOE from AC3 knockout (AC3−/− and wild-type (AC3+/+ mice. The differentially expressed genes identified were subjected to bioinformatic analysis and verified by qRT-PCR. Gene expression in the MOE from AC3−/− mice was significantly altered, compared to AC3+/+ mice. Of the 41266 gene probes, 3379 had greater than 2-fold fold change in expression levels between AC3−/− and AC3+/+ mice, accounting for 8% of the total gene probes. Of these genes, 1391 were up regulated, and 1988 were down regulated, including 425 olfactory receptor genes, 99 genes that are specifically expressed in the immature olfactory neurons, 305 genes that are specifically expressed in the mature olfactory neurons, and 155 genes that are involved in epigenetic regulation. Quantitative RT-PCR verification of the differentially expressed epigenetic regulation related genes, olfactory receptors, ion transporter related genes, neuron development and differentiation related genes, lipid metabolism and membrane protein transport etc. related genes showed that P75NTR, Hinfp, Gadd45b, and Tet3 were significantly up-regulated, while Olfr370, Olfr1414, Olfr1208, Golf, Faim2, Tsg101, Mapk10, Actl6b, H2BE, ATF5, Kirrrel2, OMP, Drd2 etc. were significantly down-regulated. In summary, AC3 may play a role in proximal olfactory signaling and play a role in the regulation of differentially expressed genes in mouse MOE.

  6. Identification of novel candidate target genes, including EPHB3, MASP1 and SST at 3q26.2–q29 in squamous cell carcinoma of the lung

    International Nuclear Information System (INIS)

    Kang, Ji Un; Koo, Sun Hoe; Kwon, Kye Chul; Park, Jong Woo; Kim, Jin Man

    2009-01-01

    The underlying genetic alterations for squamous cell carcinoma (SCC) and adenocarcinoma (AC) carcinogenesis are largely unknown. High-resolution array- CGH was performed to identify the differences in the patterns of genomic imbalances between SCC and AC of non-small cell lung cancer (NSCLC). On a genome-wide profile, SCCs showed higher frequency of gains than ACs (p = 0.067). More specifically, statistically significant differences were observed across the histologic subtypes for gains at 2q14.2, 3q26.2–q29, 12p13.2–p13.33, and 19p13.3, as well as losses at 3p26.2–p26.3, 16p13.11, and 17p11.2 in SCC, and gains at 7q22.1 and losses at 15q22.2–q25.2 occurred in AC (P < 0.05). The most striking difference between SCC and AC was gains at the 3q26.2–q29, occurring in 86% (19/22) of SCCs, but in only 21% (3/14) of ACs. Many significant genes at the 3q26.2–q29 regions previously linked to a specific histology, such as EVI1,MDS1, PIK3CA and TP73L, were observed in SCC (P < 0.05). In addition, we identified the following possible target genes (> 30% of patients) at 3q26.2–q29: LOC389174 (3q26.2),KCNMB3 (3q26.32),EPHB3 (3q27.1), MASP1 and SST (3q27.3), LPP and FGF12 (3q28), and OPA1,KIAA022,LOC220729, LOC440996,LOC440997, and LOC440998 (3q29), all of which were significantly targeted in SCC (P < 0.05). Among these same genes, high-level amplifications were detected for the gene, EPHB3, at 3q27.1, and MASP1 and SST, at 3q27.3 (18, 18, and 14%, respectively). Quantitative real time PCR demonstrated array CGH detected potential candidate genes that were over expressed in SCCs. Using whole-genome array CGH, we have successfully identified significant differences and unique information of chromosomal signatures prevalent between the SCC and AC subtypes of NSCLC. The newly identified candidate target genes may prove to be highly attractive candidate molecular markers for the classification of NSCLC histologic subtypes, and could potentially contribute to the

  7. Exposure in utero to 2,2',3,3',4,6'-hexachlorobiphenyl (PCB 132) impairs sperm function and alters testicular apoptosis-related gene expression in rat offspring

    International Nuclear Information System (INIS)

    Hsu, P.-C.; Pan, M.-H.; Li, L.-A.; Chen, C.-J.; Tsai, S.-S.; Guo, Y.L.

    2007-01-01

    Toxicity of the polychlorinated biphenyls (PCBs) depends on their molecular structure. Mechanisms by prenatal exposure to a non-dioxin-like PCB, 2,2',3,4',5',6-hexachlorobiphenyl (PCB 132) that may act on reproductive pathways in male offspring are relatively unknown. The purpose was to determine whether epididymal sperm function and expression of apoptosis-related genes were induced or inhibited by prenatal exposure to PCB 132. Pregnant rats were treated with a single dose of PCB 132 at 1 or 10 mg/kg on gestational day 15. Male offspring were killed and the epididymal sperm counts, motility, velocity, reactive oxygen species (ROS) generation, sperm-oocyte penetration rate (SOPR), testicular histopathology, apoptosis-related gene expression and caspase activation were assessed on postnatal day 84. Prenatal exposure to PCB 132 with a single dose of 1 or 10 mg/kg decreased cauda epididymal weight, epididymal sperm count and motile epididymal sperm count in adult offspring. The spermatozoa of PCB 132-exposed offspring produced significantly higher levels of ROS than the controls; ROS induction and SOPR reduction were dose-related. In the low-dose PCB 132 group, p53 was significantly induced and caspase-3 was inhibited. In the high-dose group, activation of caspase-3 and -9 was significantly increased, while the expressions of Fas, Bax, bcl-2, and p53 genes were significantly decreased. Gene expression and caspase activation data may provide insight into the mechanisms by which exposure to low-dose or high-dose PCB 132 affects reproduction in male offspring in rats. Because the doses of PCB 132 administered to the dams were approximately 625-fold in low-dose group and 6250-fold higher in high-dose group than the concentration in human tissue levels, the concentrations are not biologically or environmentally relevant. Further studies using environmentally relevant doses are needed for hazard identification

  8. Modulation of renal Ca2+ transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1alpha-hydroxylase knockout mice.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Dardenne, O.; Abel, M. van; Kemp, J.W.C.M. van der; Os, C.H. van; Arnaud, R. St.; Bindels, R.J.M.

    2002-01-01

    Pseudovitamin D-deficiency rickets (PDDR) is an autosomal disease characterized by hyperparathyroidism, rickets, and undetectable levels of 1,25-dihydroxyvitaminD3 (1,25(OH)2D3). Mice in which the 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-OHase) gene was inactivated presented the same clinical

  9. Hippocampal Gene Expression of Deiodinases 2 and 3 and Effects of 3,5-Diiodo-L-Thyronine T2 in Mouse Depression Paradigms

    Science.gov (United States)

    Markova, Natalyia; Chernopiatko, Anton; Schroeter, Careen A.; Malin, Dmitry; Kubatiev, Aslan; Bachurin, Sergey; Costa-Nunes, João; Steinbusch, Harry M. W.; Strekalova, Tatyana

    2013-01-01

    Central thyroid hormone signaling is important in brain function/dysfunction, including affective disorders and depression. In contrast to 3,3′,5-triiodo-L-thyronine (T3), the role of 3,5-diiodo-L-thyronine (T2), which until recently was considered an inactive metabolite of T3, has not been studied in these pathologies. However, both T3 and T2 stimulate mitochondrial respiration, a factor counteracting the pathogenesis of depressive disorder, but the cellular origins in the CNS, mechanisms, and kinetics of the cellular action for these two hormones are distinct and independent of each other. Here, Illumina and RT PCR assays showed that hippocampal gene expression of deiodinases 2 and 3, enzymes involved in thyroid hormone regulation, is increased in resilience to stress-induced depressive syndrome and after antidepressant treatment in mice that might suggest elevated T2 and T3 turnover in these phenotypes. In a separate experiment, bolus administration of T2 at the doses 750 and 1500 mcg/kg but not 250 mcg/kg in naive mice reduced immobility in a two-day tail suspension test in various settings without changing locomotion or anxiety. This demonstrates an antidepressant-like effect of T2 that could be exploited clinically. In a wider context, the current study suggests important central functions of T2, whose biological role only lately is becoming to be elucidated. PMID:24386638

  10. Hippocampal Gene Expression of Deiodinases 2 and 3 and Effects of 3,5-Diiodo-L-Thyronine T2 in Mouse Depression Paradigms

    Directory of Open Access Journals (Sweden)

    Natalyia Markova

    2013-01-01

    Full Text Available Central thyroid hormone signaling is important in brain function/dysfunction, including affective disorders and depression. In contrast to 3,3′,5-triiodo-L-thyronine (T3, the role of 3,5-diiodo-L-thyronine (T2, which until recently was considered an inactive metabolite of T3, has not been studied in these pathologies. However, both T3 and T2 stimulate mitochondrial respiration, a factor counteracting the pathogenesis of depressive disorder, but the cellular origins in the CNS, mechanisms, and kinetics of the cellular action for these two hormones are distinct and independent of each other. Here, Illumina and RT PCR assays showed that hippocampal gene expression of deiodinases 2 and 3, enzymes involved in thyroid hormone regulation, is increased in resilience to stress-induced depressive syndrome and after antidepressant treatment in mice that might suggest elevated T2 and T3 turnover in these phenotypes. In a separate experiment, bolus administration of T2 at the doses 750 and 1500 mcg/kg but not 250 mcg/kg in naive mice reduced immobility in a two-day tail suspension test in various settings without changing locomotion or anxiety. This demonstrates an antidepressant-like effect of T2 that could be exploited clinically. In a wider context, the current study suggests important central functions of T2, whose biological role only lately is becoming to be elucidated.

  11. Lineage determination of CD7+ CD5- CD2- and CD7+ CD5+ CD2- lymphoblasts: studies on phenotype, genotype, and gene expression of myeloperoxidase, CD3 epsilon, and CD3 delta.

    Science.gov (United States)

    Yoneda, N; Tatsumi, E; Teshigawara, K; Nagata, S; Nagano, T; Kishimoto, Y; Kimura, T; Yasunaga, K; Yamaguchi, N

    1994-04-01

    The gene expression of myeloperoxidase (MPO), CD3 epsilon, and CD3 delta molecules, the gene rearrangement of T-cell receptor (TCR) delta, gamma, and beta and immunoglobulin heavy (IgH) chain, and the expression of cell-surface antigens were investigated in seven cases of CD7+ CD5- CD2- and four cases of CD7+ CD5+ CD2- acute lymphoblastic leukemia or lymphoblastic lymphoma (ALL/LBL) blasts, which were negative for cytochemical myeloperoxidase (cyMPO). More mature T-lineage blasts were also investigated in a comparative manner. In conclusion, the CD7+ CD5- CD2- blasts included four categories: undifferentiated blasts without lineage commitment, T-lineage blasts, T-/myeloid lineage blasts, and cyMPO-negative myeloblasts. The CD7+ CD5+ CD2- blasts included two categories; T-lineage and T-/myeloid lineage blasts. The 11 cases were of the germ-line gene (G) for TCR beta and IgH. Four cases were G for TCR delta and TCR gamma. The others were of the monoclonally rearranged gene (R) for TCR delta and G for TCR gamma or R for both TCR delta and TCR gamma. The expression or in vitro induction of CD13 and/or CD33 antigens correlated with the immaturity of these neoplastic T cells, since it was observed in all 11 CD7+ CD5- CD2- and CD7+ CD5+ CD2-, and some CD7+ CD5+ CD2+ (CD3- CD4- CD8-) cases, but not in CD3 +/- CD4+ CD8+ or CD3+ CD4+ CD8- cases. CD3 epsilon mRNA, but not CD3 delta mRNA, was detected in two CD7+ CD5- CD2- cases, while mRNA of neither of the two CD3 molecules was detected in the other tested CD7+ CD5- CD2- cases. In contrast, mRNA of both CD3 epsilon and CD3 delta were detected in all CD7+ CD5+ CD2- cases, indicating that CD7+ CD5- CD2- blasts at least belong to T-lineage. The blasts of two CD7+ CD5- CD2- cases with entire germ-line genes and without mRNA of the three molecules (MPO, CD3 epsilon, and CD3 delta) were regarded as being at an undifferentiated stage prior to their commitment to either T- or myeloid-lineage. The co-expression of the genes of MPO

  12. Variable transcriptional responsiveness of the P2X3 receptor gene during CFA-induced inflammatory hyperalgesia.

    Science.gov (United States)

    Nuñez-Badinez, Paulina; Sepúlveda, Hugo; Diaz, Emilio; Greffrath, Wolfgang; Treede, Rolf-Detlef; Stehberg, Jimmy; Montecino, Martin; van Zundert, Brigitte

    2018-05-01

    The purinergic receptor P2X3 (P2X3-R) plays important roles in molecular pathways of pain, and reduction of its activity or expression effectively reduces chronic inflammatory and neuropathic pain sensation. Inflammation, nerve injury, and cancer-induced pain can increase P2X3-R mRNA and/or protein levels in dorsal root ganglia (DRG). However, P2X3-R expression is unaltered or even reduced in other pain studies. The reasons for these discrepancies are unknown and might depend on the applied traumatic intervention or on intrinsic factors such as age, gender, genetic background, and/or epigenetics. In this study, we sought to get insights into the molecular mechanisms responsible for inflammatory hyperalgesia by determining P2X3-R expression in DRG neurons of juvenile male rats that received a Complete Freund's Adjuvant (CFA) bilateral paw injection. We demonstrate that all CFA-treated rats showed inflammatory hyperalgesia, however, only a fraction (14-20%) displayed increased P2X3-R mRNA levels, reproducible across both sides. Immunostaining assays did not reveal significant increases in the percentage of P2X3-positive neurons, indicating that increased P2X3-R at DRG somas is not critical for inducing inflammatory hyperalgesia in CFA-treated rats. Chromatin immunoprecipitation (ChIP) assays showed a correlated (R 2  = 0.671) enrichment of the transcription factor Runx1 and the epigenetic active mark histone H3 acetylation (H3Ac) at the P2X3-R gene promoter in a fraction of the CFA-treated rats. These results suggest that animal-specific increases in P2X3-R mRNA levels are likely associated with the genetic/epigenetic context of the P2X3-R locus that controls P2X3-R gene transcription by recruiting Runx1 and epigenetic co-regulators that mediate histone acetylation. © 2017 Wiley Periodicals, Inc.

  13. Characterization of the human laminin beta2 chain locus (LAMB2): linkage to a gene containing a nonprocessed, transcribed LAMB2-like pseudogene (LAMB2L) and to the gene encoding glutaminyl tRNA synthetase (QARS)

    DEFF Research Database (Denmark)

    Durkin, M E; Jäger, A C; Khurana, T S

    1999-01-01

    The laminin beta2 chain is an important constituent of certain kidney and muscle basement membranes. We have generated a detailed physical map of a 110-kb genomic DNA segment surrounding the human laminin beta2 chain gene (LAMB2) on chromosome 3p21.3-->p21.2, a region paralogous with the chromosome...... 7q22-->q31 region that contains the laminin beta1 chain gene locus (LAMB1). Several CpG islands and a novel polymorphic microsatellite marker (D3S4594) were identified. The 3' end of LAMB2 lies 16 kb from the 5' end of the glutaminyl tRNA synthetase gene (QARS). About 20 kb upstream of LAMB2 we...... found a gene encoding a transcribed, non-processed LAMB2-like pseudogene (LAMB2L). The sequence of 1.75 kb of genomic DNA at the 3' end of LAMB2L was similar to exons 8-12 of the laminin beta2 chain gene. The LAMB2L-LAMB2-QARS cluster lies telomeric to the gene encoding the laminin-binding protein...

  14. Association of 5-HT2C (rs3813929) and UCP3 (rs1800849) gene polymorphisms with type 2 diabetes in obese women candidates for bariatric surgery.

    Science.gov (United States)

    Schnor, Noa Pereira Prada; Verlengia, Rozangela; Novais, Patrícia Fátima Sousa; Crisp, Alex Harley; Leite, Celso Vieira de Souza; Rasera-Junior, Irineu; Oliveira, Maria Rita Marques de

    2017-01-01

    Obesity can cause systemic arterial hypertension (SAH) and type 2 diabetes mellitus (DM2) factor that is also influenced by genetic variability. The present study aims to investigate the association between gene polymorphisms related with obesity on the prevalence of SAH and DM2 in the preoperative period and 1 year after Roux-en-Y gastric bypass surgery. In total, 351 obese women in a Brazilian cohort completed the study. The clinical diagnosis of SAH and DM2 was monitored from medical records. Twelve gene polymorphisms (rs26802; rs572169; rs7799039; rs1137101; rs3813929; rs659366; rs660339; rs1800849; rs7498665; rs35874116; rs9701796; and rs9939609) were determined using real-time polymerase chain reaction and TaqMan assay. In the preoperative period, prevalence of SAH and DM2 was 57% and 22%, respectively. One year postoperatively, 86.8% subjects had remission of DM2 and 99.5% had control of SAH. Subjects with T allele from the serotonin receptor gene (5-HT2C, rs3813929) had five times greater chance of DM2, and the CC genotype from uncoupling protein 3 gene (UCP3, rs1800849) had three times greater chance in the preoperative period. These findings indicate that polymorphisms rs3813929 and rs1800849 from 5-HT2C and UCP3 genes were related to DM2 prevalence among the Brazilian obese women candidates for bariatric surgery.

  15. Conifer R2R3-MYB transcription factors: sequence analyses and gene expression in wood-forming tissues of white spruce (Picea glauca

    Directory of Open Access Journals (Sweden)

    Grima-Pettenati Jacqueline

    2007-03-01

    Full Text Available Abstract Background Several members of the R2R3-MYB family of transcription factors act as regulators of lignin and phenylpropanoid metabolism during wood formation in angiosperm and gymnosperm plants. The angiosperm Arabidopsis has over one hundred R2R3-MYBs genes; however, only a few members of this family have been discovered in gymnosperms. Results We isolated and characterised full-length cDNAs encoding R2R3-MYB genes from the gymnosperms white spruce, Picea glauca (13 sequences, and loblolly pine, Pinus taeda L. (five sequences. Sequence similarities and phylogenetic analyses placed the spruce and pine sequences in diverse subgroups of the large R2R3-MYB family, although several of the sequences clustered closely together. We searched the highly variable C-terminal region of diverse plant MYBs for conserved amino acid sequences and identified 20 motifs in the spruce MYBs, nine of which have not previously been reported and three of which are specific to conifers. The number and length of the introns in spruce MYB genes varied significantly, but their positions were well conserved relative to angiosperm MYB genes. Quantitative RTPCR of MYB genes transcript abundance in root and stem tissues revealed diverse expression patterns; three MYB genes were preferentially expressed in secondary xylem, whereas others were preferentially expressed in phloem or were ubiquitous. The MYB genes expressed in xylem, and three others, were up-regulated in the compression wood of leaning trees within 76 hours of induction. Conclusion Our survey of 18 conifer R2R3-MYB genes clearly showed a gene family structure similar to that of Arabidopsis. Three of the sequences are likely to play a role in lignin metabolism and/or wood formation in gymnosperm trees, including a close homolog of the loblolly pine PtMYB4, shown to regulate lignin biosynthesis in transgenic tobacco.

  16. Whole-exome sequencing of muscle-invasive bladder cancer identifies recurrent mutations of UNC5C and prognostic importance of DNA repair gene mutations on survival.

    Science.gov (United States)

    Yap, Kai Lee; Kiyotani, Kazuma; Tamura, Kenji; Antic, Tatjana; Jang, Miran; Montoya, Magdeline; Campanile, Alexa; Yew, Poh Yin; Ganshert, Cory; Fujioka, Tomoaki; Steinberg, Gary D; O'Donnell, Peter H; Nakamura, Yusuke

    2014-12-15

    Because of suboptimal outcomes in muscle-invasive bladder cancer even with multimodality therapy, determination of potential genetic drivers offers the possibility of improving therapeutic approaches and discovering novel prognostic indicators. Using pTN staging, we case-matched 81 patients with resected ≥pT2 bladder cancers for whom perioperative chemotherapy use and disease recurrence status were known. Whole-exome sequencing was conducted in 43 cases to identify recurrent somatic mutations and targeted sequencing of 10 genes selected from the initial screening in an additional 38 cases was completed. Mutational profiles along with clinicopathologic information were correlated with recurrence-free survival (RFS) in the patients. We identified recurrent novel somatic mutations in the gene UNC5C (9.9%), in addition to TP53 (40.7%), KDM6A (21.0%), and TSC1 (12.3%). Patients who were carriers of somatic mutations in DNA repair genes (one or more of ATM, ERCC2, FANCD2, PALB2, BRCA1, or BRCA2) had a higher overall number of somatic mutations (P = 0.011). Importantly, after a median follow-up of 40.4 months, carriers of somatic mutations (n = 25) in any of these six DNA repair genes had significantly enhanced RFS compared with noncarriers [median, 32.4 vs. 14.8 months; hazard ratio of 0.46, 95% confidence interval (CI), 0.22-0.98; P = 0.0435], after adjustment for pathologic pTN staging and independent of adjuvant chemotherapy usage. Better prognostic outcomes of individuals carrying somatic mutations in DNA repair genes suggest these mutations as favorable prognostic events in muscle-invasive bladder cancer. Additional mechanistic investigation into the previously undiscovered role of UNC5C in bladder cancer is warranted. ©2014 American Association for Cancer Research.

  17. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development.

    Science.gov (United States)

    Dean, Derek M; Maroja, Luana S; Cottrill, Sarah; Bomkamp, Brent E; Westervelt, Kathleen A; Deitcher, David L

    2015-11-27

    Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling. Copyright © 2016 Dean et al.

  18. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2 Gene of Drosophila and Interacts with IP3R to Affect Wing Development

    Directory of Open Access Journals (Sweden)

    Derek M. Dean

    2016-02-01

    Full Text Available Inositol 1,4,5-trisphosphate (IP3 regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy, a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2, a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80ts indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.

  19. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    Directory of Open Access Journals (Sweden)

    Maria P. Lambros

    2015-01-01

    Full Text Available Qingre Liyan decoction (QYD, a Traditional Chinese medicine, and N-acetyl cysteine (NAC have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1, protective genes (EGFR and PPARD, and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs. NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors.

  20. The Frequency of c.550delA Mutation of the CANP3 Gene in the Polish LGMD2A Population.

    Science.gov (United States)

    Dorobek, Małgorzata; Ryniewicz, Barbara; Kabzińska, Dagmara; Fidziańska, Anna; Styczyńska, Maria; Hausmanowa-Petrusewicz, Irena

    2015-11-01

    Limb girdle muscular dystrophy 2A (LGMD2A) is the most frequent LGMD variant in the European population, representing about 40% of LGMD. The c.550delA mutation in the CANP3 (calcium activated neutral protease 3) gene is the most commonly reported mutation in LGMD2A. Prevalence of this mutation in the Polish population has not been previously investigated. The aim of this study was to identify and estimate the frequency of the c.550delA mutation in Polish LGMD2A patients. Polymerase chain reaction-sequencing analysis, restriction fragment length polymorphism polymerase chain reaction method. We analyzed 76 families affected with LGMD and identified 62 probands with mutations in the CANP3 gene. C.550delA was the most common mutation identified, being found in 78% of the LGMD2A families. The remaining mutations observed multiple times were as follows: c.598-612del15ntd; c.2242C>T; c.418dupC; c.1356insT, listed in terms of decreasing frequency. Two novel variants in the CANP3 gene, that is, c.700G>A Gly234Arg and c.661G>A Gly221Ser were also characterized. Overall, mutations in the LGMD2A gene were estimated to be present in 81% of patients with the LGMD phenotype who were without sarcoglycans and dysferlin deficiency on immunocytochemical analysis. The frequency of the heterozygous c.550delA mutation in the healthy Polish population was estimated at 1/124. The c.550delA is the most frequent CANP3 mutation in the Polish population, thus sequencing of exon 4 of this gene could identify the majority of LGMD2A patients in Poland.

  1. Inhibition of potential lethal damage repair and related gene expression after carbon-ion beam irradiation to human lung cancer grown in nude mice

    International Nuclear Information System (INIS)

    Yashiro, Tomoyasu; Fujisawa, Takehiko; Koyama-Saegusa, Kumiko; Imai, Takashi; Miyamoto, Tadaaki

    2007-01-01

    Using cultured and nude mouse tumor cells (IA) derived from a human lung cancer, we previously demonstrated their radiosensitivity by focusing attention on the dynamics of tumor clonogens and the early and rapid survival recovery (potential lethal damage repair: PLD repair) occurring after X-ray irradiation. To the authors' knowledge, this is the first study demonstrating gene expression in association with PLD repair after carbon-ion beam or X-ray irradiation to cancer cells. In this study we tried to detect the mechanism of DNA damage and repair of the clonogens after X-ray or carbon-ion beam irradiation. At first, colony assay method was performed after irradiation of 12 Gy of X-ray or 5 Gy of carbon-ion beam to compare the time dependent cell survival of the IA cells after each irradiation pass. Second, to search the genes causing PLD repair after irradiation of X-ray or carbon-ion beam, we evaluated gene expressions by using semi-quantitative RT-PCR with the selected 34 genes reportedly related to DNA repair. The intervals from the irradiation were 0, 6, 12 and 24 hr for colony assay method, and 0, 3, 18 hr for RT-PCR method. From the result of survival assays, significant PLD repair was not observed in carbon-ion beam as compared to X-ray irradiation. The results of RT-PCR were as follows. The gene showing significantly higher expressions after X-ray irradiation than after carbon-ion beam irradiation was PCNA. The genes showing significantly lower expressions after X-ray irradiation rather than after carbon-ion beam irradiation were RAD50, BRCA1, MRE11A, XRCC3, CHEK1, MLH1, CCNB1, CCNB2 and LIG4. We conclude that PCNA could be a likely candidate gene for PLD repair. (author)

  2. Mapping of novel powdery mildew resistance gene(s) from Agropyron cristatum chromosome 2P.

    Science.gov (United States)

    Li, Huanhuan; Jiang, Bo; Wang, Jingchang; Lu, Yuqing; Zhang, Jinpeng; Pan, Cuili; Yang, Xinming; Li, Xiuquan; Liu, Weihua; Li, Lihui

    2017-01-01

    A physical map of Agropyron cristatum 2P chromosome was constructed for the first time and the novel powdery mildew resistance gene(s) from chromosome 2P was(were) also mapped. Agropyron cristatum (L.) Gaertn. (2n = 28, PPPP), a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies showed that wheat-A. cristatum 2P disomic addition line II-9-3 displayed high resistance to powdery mildew, and the resistance was attributable to A. cristatum chromosome 2P. To utilize and physically map the powdery mildew resistance gene(s), 15 wheat-A. cristatum 2P translocation lines and three A. cristatum 2P deletion lines with different chromosomal segment sizes, obtained from II-9-3 using 60 Co-γ ray irradiation, were characterized using cytogenetic and molecular marker analysis. A. cristatum 2P chromosomal segments in the translocations were translocated to different wheat chromosomes, including 1A, 4A, 5A, 6A, 7A, 1B, 2B, 3B, 7B, 3D, 4D, and 6D. A physical map of the 2P chromosome was constructed with 82 STS markers, consisting of nine bins with 34 markers on 2PS and eight bins with 48 markers on 2PL. The BC 1 F 2 populations of seven wheat-A. cristatum 2P translocation lines (2PT-3, 2PT-4, 2PT-5, 2PT-6, 2PT-8, 2PT-9, and 2PT-10) were developed by self-pollination, tested with powdery mildew and genotyped with 2P-specific STS markers. From these results, the gene(s) conferring powdery mildew resistance was(were) located on 2PL bin FL 0.66-0.86 and 19 2P-specific markers were identified in this bin. Moreover, two new powdery mildew-resistant translocation lines (2PT-4 and 2PT-5) with small 2PL chromosome segments were obtained. The newly developed wheat lines with powdery mildew resistance and the closely linked molecular markers will be valuable for wheat disease breeding in the future.

  3. The Metallothionein Gene, TaMT3, from Tamarix androssowii Confers Cd2+ Tolerance in Tobacco

    Directory of Open Access Journals (Sweden)

    Boru Zhou

    2014-06-01

    Full Text Available Cadmium (Cd is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD activity and chlorophyll concentration, but decreases of peroxidase (POD activity and malondialdehyde (MDA accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  4. The metallothionein gene, TaMT3, from Tamarix androssowii confers Cd2+ tolerance in tobacco.

    Science.gov (United States)

    Zhou, Boru; Yao, Wenjing; Wang, Shengji; Wang, Xinwang; Jiang, Tingbo

    2014-06-10

    Cadmium (Cd) is a nonessential microelement and low concentration Cd2+ has strong toxicity to plant growth. Plant metallothioneins, a class of low molecular, cystein(Cys)-rich and heavy-metal binding proteins, play an important role in both metal chaperoning and scavenging of reactive oxygen species (ROS) with their large number of cysteine residues and therefore, protect plants from oxidative damage. In this study, a metallothionein gene, TaMT3, isolated from Tamarix androssowii was transformed into tobacco (Nicotiana tobacum) through Agrobacterium-mediated leaf disc method, and correctly expressed under the control of 35S promoter. Under Cd2+ stress, the transgenic tobacco showed significant increases of superoxide dismutase (SOD) activity and chlorophyll concentration, but decreases of peroxidase (POD) activity and malondialdehyde (MDA) accumulation when compared to the non-transgenic tobacco. Vigorous growth of transgenic tobacco was observed at the early development stages, resulting in plant height and fresh weight were significantly larger than those of the non-transgenic tobacco under Cd2+ stress. These results demonstrated that the expression of the exogenous TaMT3 gene increased the ability of ROS cleaning-up, indicating a stronger tolerance to Cd2+ stress.

  5. Molecular characterization of barley 3H semi-dwarf genes.

    Directory of Open Access Journals (Sweden)

    Haobing Li

    Full Text Available The barley chromosome 3H accommodates many semi-dwarfing genes. To characterize these genes, the two-rowed semi-dwarf Chinese barley landrace 'TX9425' was crossed with the Australian barley variety 'Franklin' to generate a doubled haploid (DH population, and major QTLs controlling plant height have been identified in our previous study. The major QTL derived from 'TX9425' was targeted to investigate the allelism of the semi-dwarf gene uzu in barley. Twelve sets of near-isogenic lines and a large NILF2 fine mapping population segregating only for the dwarfing gene from 'TX9425' were developed. The semi-dwarfing gene in 'TX9425' was located within a 2.8 cM region close to the centromere on chromosome 3H by fine mapping. Molecular cloning and sequence analyses showed that the 'TX9425'-derived allele contained a single nucleotide substitution from A to G at position 2612 of the HvBRI1 gene. This was apparently the same mutation as that reported in six-rowed uzu barley. Markers co-segregating with the QTL were developed from the sequence of the HvBRI1 gene and were validated in the 'TX9425'/'Franklin' DH population. The other major dwarfing QTL derived from the Franklin variety was distally located on chromosome 3HL and co-segregated with the sdw1 diagnostic marker hv20ox2. A third dwarfing gene, expressed only in winter-sown trials, was identified and located on chromosome 3HS. The effects and interactions of these dwarfing genes under different growing conditions are discussed. These results improve our understanding of the genetic mechanisms controlling semi-dwarf stature in barley and provide diagnostic markers for the selection of semi-dwarfness in barley breeding programs.

  6. Gene expression of runx2, Osterix, c-fos, DLX-3, DLX-5, and MSX-2 in dental follicle cells during osteogenic differentiation in vitro.

    Science.gov (United States)

    Morsczeck, C

    2006-02-01

    Recently, osteogenic precursor cells were isolated from human dental follicles, which differentiate into cementoblast- or osteoblast- like cells under in vitro conditions. However, mechanisms for osteogenic differentiation are not known in detail. Dental follicle cell long-term cultures supplemented with dexamethasone or with insulin resulted in mineralized nodules, whereas no mineralization or alkaline phosphatase activity was detected in the control culture without an osteogenic stimulus. A real-time reverse-transcriptase polymerase chain reaction (PCR) analysis was developed to investigate gene expression during osteogenic differentiation in vitro. Expression of the alkaline phosphatase (ALP) gene was detected during differentiation in the control culture and was similar to that in cultures with dexamethasone and insulin. DLX-3, DLX-5, runx2, and MSX-2 are differentially expressed during osteogenic differentiation in bone marrow mesenchymal stem cells. In dental follicle cells, gene expression of runx2, DLX-5, and MSX-2 was unaffected during osteogenic differentiation in vitro. Osteogenic differentiation appeared to be independent of MSX-2 expression; the same was true of runx2 and DLX-5, which were protagonists of osteogenic differentiation and osteocalcin promoter activity in bone marrow mesenchymal stem cells. Like in bone marrow-derived stem cells, DLX-3 gene expression was increased in dental follicle cells during osteogenic differentiation but similar to control cultures. However, gene expression of osterix was not detected in dental follicle cells during osteogenic differentiation; this gene is expressed during osteogenic differentiation in bone marrow stem cells. These real-time PCR results display molecular mechanisms in dental follicle precursor cells during osteogenic differentiation that are different from those in bone marrow-derived mesenchymal stem cells.

  7. Gene-expression signature regulated by the KEAP1-NRF2-CUL3 axis is associated with a poor prognosis in head and neck squamous cell cancer.

    Science.gov (United States)

    Namani, Akhileshwar; Matiur Rahaman, Md; Chen, Ming; Tang, Xiuwen

    2018-01-06

    NRF2 is the key regulator of oxidative stress in normal cells and aberrant expression of the NRF2 pathway due to genetic alterations in the KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid 2 like 2)-CUL3 (cullin 3) axis leads to tumorigenesis and drug resistance in many cancers including head and neck squamous cell cancer (HNSCC). The main goal of this study was to identify specific genes regulated by the KEAP1-NRF2-CUL3 axis in HNSCC patients, to assess the prognostic value of this gene signature in different cohorts, and to reveal potential biomarkers. RNA-Seq V2 level 3 data from 279 tumor samples along with 37 adjacent normal samples from patients enrolled in the The Cancer Genome Atlas (TCGA)-HNSCC study were used to identify upregulated genes using two methods (altered KEAP1-NRF2-CUL3 versus normal, and altered KEAP1-NRF2-CUL3 versus wild-type). We then used a new approach to identify the combined gene signature by integrating both datasets and subsequently tested this signature in 4 independent HNSCC datasets to assess its prognostic value. In addition, functional annotation using the DAVID v6.8 database and protein-protein interaction (PPI) analysis using the STRING v10 database were performed on the signature. A signature composed of a subset of 17 genes regulated by the KEAP1-NRF2-CUL3 axis was identified by overlapping both the upregulated genes of altered versus normal (251 genes) and altered versus wild-type (25 genes) datasets. We showed that increased expression was significantly associated with poor survival in 4 independent HNSCC datasets, including the TCGA-HNSCC dataset. Furthermore, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, and PPI analysis revealed that most of the genes in this signature are associated with drug metabolism and glutathione metabolic pathways. Altogether, our study emphasizes the discovery of a gene signature regulated by the KEAP1-NRF2-CUL3 axis which is strongly associated with

  8. Novel Approach for Coexpression Analysis of E2F1–3 and MYC Target Genes in Chronic Myelogenous Leukemia

    Directory of Open Access Journals (Sweden)

    Fengfeng Wang

    2014-01-01

    Full Text Available Background. Chronic myelogenous leukemia (CML is characterized by tremendous amount of immature myeloid cells in the blood circulation. E2F1–3 and MYC are important transcription factors that form positive feedback loops by reciprocal regulation in their own transcription processes. Since genes regulated by E2F1–3 or MYC are related to cell proliferation and apoptosis, we wonder if there exists difference in the coexpression patterns of genes regulated concurrently by E2F1–3 and MYC between the normal and the CML states. Results. We proposed a method to explore the difference in the coexpression patterns of those candidate target genes between the normal and the CML groups. A disease-specific cutoff point for coexpression levels that classified the coexpressed gene pairs into strong and weak coexpression classes was identified. Our developed method effectively identified the coexpression pattern differences from the overall structure. Moreover, we found that genes related to the cell adhesion and angiogenesis properties were more likely to be coexpressed in the normal group when compared to the CML group. Conclusion. Our findings may be helpful in exploring the underlying mechanisms of CML and provide useful information in cancer treatment.

  9. Association and expression analyses of the Ucp2 and Ucp3 gene ...

    Indian Academy of Sciences (India)

    YANING WANG

    5 UTR region (SNP1: g.C-754G) of the Ucp2 gene was identified by direct sequencing of 441 Qinchuan cattle. .... using SPSS 18.0 software, and Tukey's posthoc test was used ..... Polymorphism identification in goat GNRH1 and GDF9 genes.

  10. Preclinical safety, toxicology, and biodistribution study of adenoviral gene therapy with sVEGFR-2 and sVEGFR-3 combined with chemotherapy for ovarian cancer.

    Science.gov (United States)

    Tuppurainen, Laura; Sallinen, Hanna; Kokki, Emmi; Koponen, Jonna; Anttila, Maarit; Pulkkinen, Kati; Heikura, Tommi; Toivanen, Pyry; Hämäläinen, Kirsi; Kosma, Veli-Matti; Heinonen, Seppo; Alitalo, Kari; Ylä-Herttuala, Seppo

    2013-03-01

    Abstract Antiangiogenic and antilymphangiogenic gene therapy with soluble vascular endothelial growth factor receptor-2 (VEGFR-2) and soluble VEGFR-3 in combination with chemotherapy is a potential new treatment for ovarian carcinoma. We evaluated the safety, toxicology, and biodistribution of intravenous AdsVEGFR-2 and AdsVEGFR-3 combined with chemotherapy in healthy rats (n=90) before entering a clinical setting. The study groups were: AdLacZ and AdLacZ with chemotherapy as control groups, low dose AdsVEGFR-2 and AdsVEGFR-3, high dose AdsVEGFR-2 and AdsVEGFR-3, combination of low dose AdsVEGFR-2 and AdsVEGFR-3 with chemotherapy, combination of high dose AdsVEGFR-2 and AdVEGFR-3 with chemotherapy, and chemotherapy only. The follow-up time was 4 weeks. Safety and toxicology were assessed by monitoring the clinical status of the animals and by histological, hematological, and clinical chemistry parameters. For the biodistribution studies, quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used. Low dose (2×10(10) vp) AdsVEGFR-2 and AdsVEGFR-3 gene therapy was well tolerated, even when gene therapy was combined with chemotherapy. Notably, only transient elevation of liver enzymes and mild regenerative changes were seen in liver after the gene transfer in the groups that received high doses (2×10(11) vp) of AdsVEGFR-2 and AdsVEGFR-3 with or without chemotherapy. No life-threatening adverse effects were noticed in any of the treatment groups. The highest protein concentration of soluble VEGFR-2 (sVEGFR-2) in circulation was seen 1 week after the gene transfer. The combination of chemotherapy to gene therapy seemed to prolong the time of detectable transgene protein at least 1 week in the circulation. The expression of AdsVEGFR-2 and AdsVEGFR-3 transgenes was mainly seen in the liver and spleen as detected by qRT-PCR. According to these results, AdsVEGFR-2 and AdsVEGFR-3 gene therapy combined with

  11. Non-homologous end-joining genes are not inactivated in human radiation-induced sarcomas with genomic instability

    International Nuclear Information System (INIS)

    Lefevre, S.H.; Coquelle, A.; Gonin-Laurent, N.

    2005-01-01

    DNA double-strand break (DSB) repair pathways are implicated in the maintenance of genomic stability. However the alterations of these pathways, as may occur in human tumor cells with strong genomic instability, remain poorly characterized. We analyzed the loss of heterozygosity (LOH) and the presence of mutations for a series of genes implicated in DSB repair by non-homologous end-joining in five radiation-induced sarcomas devoid of both active Tp53 and Rb1. LOH was recurrently observed for 8 of the 9 studied genes (KU70, KU80, XRCC4, LIG4, Artemis, MRE11, RAD50, NBS1) but not for DNA-PKcs. No mutation was found in the remaining allele of the genes with LOH and the mRNA expression did not correlate with the allelic status. Our findings suggest that non-homologous end-joining repair pathway alteration is unlikely to be involved in the high genomic instability observed in these tumors. (author)

  12. Comparative study of polymorphism frequencies of the CYP2D6, CYP3A5, CYP2C8 and IL-10 genes in Mexican and Spanish women with breast cancer.

    Science.gov (United States)

    Alcazar-González, Gregorio Antonio; Calderón-Garcidueñas, Ana Laura; Garza-Rodríguez, María Lourdes; Rubio-Hernández, Gabriela; Escorza-Treviño, Sergio; Olano-Martin, Estibaliz; Cerda-Flores, Ricardo Martín; Castruita-Avila, Ana Lilia; González-Guerrero, Juan Francisco; le Brun, Stéphane; Simon-Buela, Laureano; Barrera-Saldaña, Hugo Alberto

    2013-10-01

    Pharmacogenetic studies in breast cancer (BC) may predict the efficacy of tamoxifen and the toxicity of paclitaxel and capecitabine. We determined the frequency of polymorphisms in the CYP2D6 gene associated with activation of tamoxifen, and those of the genes CYP2C8, CYP3A5 and DPYD associated with toxicity of paclitaxel and capecitabine. We also included a IL-10 gene polymorphism associated with advanced tumor stage at diagnosis. Genomic DNAs from 241 BC patients from northeast Mexico were genotyped using DNA microarray technology. For tamoxifen processing, CYP2D6 genotyping predicted that 90.8% of patients were normal metabolizers, 4.2% ultrarapid, 2.1% intermediate and 2.9% poor metabolizers. For paclitaxel and the CYP2C8 gene, 75.3% were normal, 23.4% intermediate and 1.3% poor metabolizers. Regarding the DPYD gene, only one patient was a poor metabolizer. For the IL-10 gene, 47.1% were poor metabolizers. These results contribute valuable information towards personalizing BC chemotherapy in Mexican women.

  13. Rice MEL2, the RNA recognition motif (RRM) protein, binds in vitro to meiosis-expressed genes containing U-rich RNA consensus sequences in the 3'-UTR.

    Science.gov (United States)

    Miyazaki, Saori; Sato, Yutaka; Asano, Tomoya; Nagamura, Yoshiaki; Nonomura, Ken-Ichi

    2015-10-01

    Post-transcriptional gene regulation by RNA recognition motif (RRM) proteins through binding to cis-elements in the 3'-untranslated region (3'-UTR) is widely used in eukaryotes to complete various biological processes. Rice MEIOSIS ARRESTED AT LEPTOTENE2 (MEL2) is the RRM protein that functions in the transition to meiosis in proper timing. The MEL2 RRM preferentially associated with the U-rich RNA consensus, UUAGUU[U/A][U/G][A/U/G]U, dependently on sequences and proportionally to MEL2 protein amounts in vitro. The consensus sequences were located in the putative looped structures of the RNA ligand. A genome-wide survey revealed a tendency of MEL2-binding consensus appearing in 3'-UTR of rice genes. Of 249 genes that conserved the consensus in their 3'-UTR, 13 genes spatiotemporally co-expressed with MEL2 in meiotic flowers, and included several genes whose function was supposed in meiosis; such as Replication protein A and OsMADS3. The proteome analysis revealed that the amounts of small ubiquitin-related modifier-like protein and eukaryotic translation initiation factor3-like protein were dramatically altered in mel2 mutant anthers. Taken together with transcriptome and gene ontology results, we propose that the rice MEL2 is involved in the translational regulation of key meiotic genes on 3'-UTRs to achieve the faithful transition of germ cells to meiosis.

  14. Distinct kinetics of human DNA ligases I, IIIalpha, IIIbeta, and IV reveal direct DNA sensing ability and differential physiological functions in DNA repair

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Ballin, Jeff D.; Della-Maria, Julie; Tsai, Miaw-Sheue; White, Elizabeth J.; Tomkinson, Alan E.; Wilson, Gerald M.

    2009-05-11

    The three human LIG genes encode polypeptides that catalyze phosphodiester bond formation during DNA replication, recombination and repair. While numerous studies have identified protein partners of the human DNA ligases (hLigs), there has been little characterization of the catalytic properties of these enzymes. In this study, we developed and optimized a fluorescence-based DNA ligation assay to characterize the activities of purified hLigs. Although hLigI joins DNA nicks, it has no detectable activity on linear duplex DNA substrates with short, cohesive single-strand ends. By contrast, hLigIII{beta} and the hLigIII{alpha}/XRCC1 and hLigIV/XRCC4 complexes are active on both nicked and linear duplex DNA substrates. Surprisingly, hLigIV/XRCC4, which is a key component of the major non-homologous end joining (NHEJ) pathway, is significantly less active than hLigIII on a linear duplex DNA substrate. Notably, hLigIV/XRCC4 molecules only catalyze a single ligation event in the absence or presence of ATP. The failure to catalyze subsequent ligation events reflects a defect in the enzyme-adenylation step of the next ligation reaction and suggests that, unless there is an in vivo mechanism to reactivate DNA ligase IV/XRCC4 following phosphodiester bond formation, the cellular NHEJ capacity will be determined by the number of adenylated DNA ligaseIV/XRCC4 molecules.

  15. Novel mutation detection of fibroblast growth factor receptor 1 (FGFR1) gene, FGFR2IIIa, FGFR2IIIb, FGFR2IIIc, FGFR3, FGFR4 gene for craniosynostosis: A prospective study in Asian Indian patient.

    Science.gov (United States)

    Barik, Mayadhar; Bajpai, Minu; Malhotra, Arun; Samantaray, Jyotish Chandra; Dwivedi, Sadananda; Das, Sambhunath

    2015-01-01

    Craniosynostosis (CS) syndrome is an autosomal dominant condition classically combining craniosynostosis and non-syndromic craniosynostosis with digital anomalies of the hands and feet. The majority of cases are caused by heterozygous mutations in the third immunoglobulin-like domain (IgIII) of FGFR2, whilst a larger number of cases can be attributed to mutations outside this region of the protein. To find out the FGFR1, FGFR2, FGFR3 and FGFR4 gene in craniosynostosis syndrome. A hospital based prospective study. Prospective analysis of clinical records of patients registered in CS clinic from December 2007 to January 2015 was done in patients between 4 months to 13 years of age. We have performed genetic findings in a three generation Indian family with Craniosynostosis syndrome. We report for the first time the clinical and genetic findings in a three generation Indian family with Craniosynostosis syndrome caused by a heterozygous missense mutation, Thr 392 Thr and ser 311 try, located in the IgII domain of FGFR2. FGFR 3 and 4 gene basis syndrome was eponymously named. Genetic analysis demonstrated that 51/56 families to be unrelated. In FGFR3 gene 10/TM location of 1172 the nucleotide changes C>A, Ala 391 Glu 19/56 and Exon-19, 5q35.2 at conserved linker region the changes occurred pro 246 Arg in 25/56 families. Independent genetic origins, but phenotypic similarities in the 51 families add to the evidence supporting the theory of selfish spermatogonial selective advantage for this rare gain-of-function FGFR2 mutation.

  16. KIR And HLA Haplotype Analysis in a Family Lacking The KIR 2DL1-2DP1 Genes

    Directory of Open Access Journals (Sweden)

    Vojvodić Svetlana

    2015-06-01

    Full Text Available The killer cell immunoglobulin-like receptor (KIR gene cluster exhibits extensive allelic and haplotypic diversity that is observed as presence/absence of genes, resulting in expansion and contraction of KIR haplotypes and by allelic variation of individual KIR genes. We report a case of KIR pseudogene 2DP1 and 2DL1 gene absence in members of one family with the children suffering from acute myelogenous leukemia (AML. Killer cell immunoglo-bulin-like receptor low resolution genotyping was performed by the polymerase chain reaction (PCR-sequencespecific primers (SSP/sequence-specific oligonucleotide (SSO method and haplotype assignment was done by gene content analysis. Both parents and the maternal grandfather, shared the same Cen-B2 KIR haplotype, containing KIR 3DL3, -2DS2, -2DL2 and -3DP1 genes. The second haplotype in the KIR genotype of the mother and grandfather was Tel-A1 with KIR 2DL4 (normal and deleted variant, -3DL1, -22 bp deletion variant of the 2DS4 gene and -3DL2, while the second haplotype in the KIR genotype of the father was Tel-B1 with 2DL4 (normal variant, -3DS1, -2DL5, -2DS5, -2DS1 and 3DL2 genes. Haplotype analysis in all three offsprings revealed that the children inherited the Cen-B2 haplotype with the same gene content but two of the children inherited a deleted variant of the 2DL4 gene, while the third child inherited a normal one. The second haplotype of all three offspring contained KIR 2DL4, -2DL5, -2DS1, -2DS4 (del 22bp variant, -2DS5, -3DL1 and -3DL2 genes, which was the basis of the assumption that there is a hybrid haplotype and that the present 3DL1 gene is a variant of the 3DS1 gene. Due to consanguinity among the ancestors, the results of KIR segregation analysis showed the existence of a very rare KIR genotype in the offspring. The family who is the subject of this case is even more interesting because the father was 10/10 human leukocyte antigen (HLA-matched to his daughter, all members of the family have

  17. The presence of c-erbB-2 gene product-related protein in culture medium conditioned by breast cancer cell line SK-BR-3

    International Nuclear Information System (INIS)

    Alper, O.; Yamaguchi, K.; Hitomi, J.; Honda, S.; Matsushima, T.; Abe, K.

    1990-01-01

    The Mr 185,000 glycoprotein encoded by human c-erbB-2/neu/HER2 gene, termed c-erbB-2 gene product, shows a close structural similarity with epidermal growth factor receptor and is now regarded to be a growth factor receptor for an as yet unidentified ligand. Abundant c-erbB-2 mRNA was demonstrated by Northern blot studies in the human breast cancer cell line SK-BR-3. Cellular radiolabeling experiments followed by immunoprecipitation with three different anti-c-erbB-2 gene product antibodies, recognizing extracellular domain, kinase domain, and carboxyl-terminal portion, respectively, demonstrated the production of a large amount of c-erbB-2 gene product which had the capacity to be phosphorylated. Immunization of mice with concentrated culture medium conditioned by SK-BR-3 cells always generated antibodies against c-erbB-2 gene product, demonstrating that this culture medium contained substance(s) immunologically indistinguishable from c-erbB-2 gene product. This observation was supported by the successful development of a monoclonal antibody against c-erbB-2 gene product, GFD-OA-p185-1, by immunizing mice with this culture medium. The biochemical nature of the substance(s) present in the culture medium was further characterized. When the culture medium conditioned by [35S]cysteine-labeled SK-BR-3 cells was immunoprecipitated by three different anti-c-erbB-2 gene product antibodies, only the antibody recognizing extracellular domain precipitated the [35S]-labeled protein with a molecular weight of 110,000, namely p110. The newly developed monoclonal antibody also immunoprecipitated this protein

  18. Data on characterizing the gene expression patterns of neuronal ceroid lipofuscinosis genes: CLN1, CLN2, CLN3, CLN5 and their association to interneuron and neurotransmission markers: Parvalbumin and Somatostatin

    Directory of Open Access Journals (Sweden)

    Helena M. Minye

    2016-09-01

    Full Text Available The article contains raw and analyzed data related to the research article “Neuronal ceroid lipofuscinosis genes, CLN2, CLN3, CLN5 are spatially and temporally co-expressed in a developing mouse brain” (Fabritius et al., 2014 [1]. The processed data gives an understanding of the development of the cell types that are mostly affected by defective function of CLN proteins, timing of expression of CLN1, CLN2, CLN3 and CLN5 genes in a murine model. The data shows relationship between the expression pattern of these genes during neural development. Immunohistochemistry was used to identify known interneuronal markers for neurotransmission and cell proliferation: parvalbumin, somatostatin subpopulations of interneurons. Non-radioactive in-situ hybridization detected CLN5 mRNA in the hippocampus. Throughout the development strong expression of CLN genes were identified in the germinal epithelium and in ventricle regions, cortex, hippocampus, and cerebellum. This provides supportive evidence that CLN1, CLN2, CLN3 and CLN5 genes may be involved in synaptic pruning.

  19. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  20. Gene Expression Profiling Identifies Important Genes Affected by R2 Compound Disrupting FAK and P53 Complex

    International Nuclear Information System (INIS)

    Golubovskaya, Vita M.; Ho, Baotran; Conroy, Jeffrey; Liu, Song; Wang, Dan; Cance, William G.

    2014-01-01

    Focal Adhesion Kinase (FAK) is a non-receptor kinase that plays an important role in many cellular processes: adhesion, proliferation, invasion, angiogenesis, metastasis and survival. Recently, we have shown that Roslin 2 or R2 (1-benzyl-15,3,5,7-tetraazatricyclo[3.3.1.1~3,7~]decane) compound disrupts FAK and p53 proteins, activates p53 transcriptional activity, and blocks tumor growth. In this report we performed a microarray gene expression analysis of R2-treated HCT116 p53 +/+ and p53 −/− cells and detected 1484 genes that were significantly up- or down-regulated (p < 0.05) in HCT116 p53 +/+ cells but not in p53 −/− cells. Among up-regulated genes in HCT p53 +/+ cells we detected critical p53 targets: Mdm-2, Noxa-1, and RIP1. Among down-regulated genes, Met, PLK2, KIF14, BIRC2 and other genes were identified. In addition, a combination of R2 compound with M13 compound that disrupts FAK and Mmd-2 complex or R2 and Nutlin-1 that disrupts Mdm-2 and p53 decreased clonogenicity of HCT116 p53 +/+ colon cancer cells more significantly than each agent alone in a p53-dependent manner. Thus, the report detects gene expression profile in response to R2 treatment and demonstrates that the combination of drugs targeting FAK, Mdm-2, and p53 can be a novel therapy approach

  1. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    International Nuclear Information System (INIS)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-01-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca 2+ concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes

  2. Detection of large scale 3' deletions in the PMS2 gene amongst Colon-CFR participants: have we been missing anything?

    Science.gov (United States)

    Clendenning, Mark; Walsh, Michael D; Gelpi, Judith Balmana; Thibodeau, Stephen N; Lindor, Noralane; Potter, John D; Newcomb, Polly; LeMarchand, Loic; Haile, Robert; Gallinger, Steve; Hopper, John L; Jenkins, Mark A; Rosty, Christophe; Young, Joanne P; Buchanan, Daniel D

    2013-09-01

    Current screening practices have been able to identify PMS2 mutations in 78 % of cases of colorectal cancer from the Colorectal Cancer Family Registry (Colon CFR) which showed solitary loss of the PMS2 protein. However the detection of large-scale deletions in the 3' end of the PMS2 gene has not been possible due to technical difficulties associated with pseudogene sequences. Here, we utilised a recently described MLPA/long-range PCR-based approach to screen the remaining 22 % (n = 16) of CRC-affected probands for mutations in the 3' end of the PMS2 gene. No deletions encompassing any or all of exons 12 through 15 were identified; therefore, our results suggest that 3' deletions in PMS2 are not a frequent occurrence in such families.

  3. Disparate requirements for the Walker A and B ATPase motifs of human RAD51D in homologous recombination.

    Science.gov (United States)

    Wiese, Claudia; Hinz, John M; Tebbs, Robert S; Nham, Peter B; Urbin, Salustra S; Collins, David W; Thompson, Larry H; Schild, David

    2006-01-01

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks (ICLs). Ectopic expression of wild-type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  4. Disparate requirements for the Walker A and B ATPase motifs ofhuman RAD51D in homologous recombination

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, Claudia; Hinz, John M.; Tebbs, Robert S.; Nham, Peter B.; Urbin, Salustra S.; Collins, David W.; Thompson, Larry H.; Schild, David

    2006-04-21

    In vertebrates, homologous recombinational repair (HRR) requires RAD51 and five RAD51 paralogs (XRCC2, XRCC3, RAD51B, RAD51C, and RAD51D) that all contain conserved Walker A and B ATPase motifs. In human RAD51D we examined the requirement for these motifs in interactions with XRCC2 and RAD51C, and for survival of cells in response to DNA interstrand crosslinks. Ectopic expression of wild type human RAD51D or mutants having a non-functional A or B motif was used to test for complementation of a rad51d knockout hamster CHO cell line. Although A-motif mutants complement very efficiently, B-motif mutants do not. Consistent with these results, experiments using the yeast two- and three-hybrid systems show that the interactions between RAD51D and its XRCC2 and RAD51C partners also require a functional RAD51D B motif, but not motif A. Similarly, hamster Xrcc2 is unable to bind to the non-complementing human RAD51D B-motif mutants in co-immunoprecipitation assays. We conclude that a functional Walker B motif, but not A motif, is necessary for RAD51D's interactions with other paralogs and for efficient HRR. We present a model in which ATPase sites are formed in a bipartite manner between RAD51D and other RAD51 paralogs.

  5. DNA methylation and gene expression of HIF3A

    DEFF Research Database (Denmark)

    Main, Ailsa Maria; Gillberg, Linn; Jacobsen, Anna Louisa

    2016-01-01

    from 48 families, from whom we had SAT and muscle biopsies. DNA methylation of four CpG sites in the HIF3A promoter was analyzed in the blood and SAT by pyrosequencing, and HIF3A gene expression was analyzed in SAT and muscle by qPCR. An index of whole-body insulin sensitivity was estimated from oral...... individuals, and whether HIF3A gene expression in SAT and skeletal muscle biopsies showed associations with BMI and insulin resistance. Furthermore, we aimed to investigate gender specificity and heritability of these traits. METHODS: We studied 137 first-degree relatives of type 2 diabetes (T2D) patients...... glucose tolerance tests. RESULTS: BMI was associated with HIF3A methylation at one CpG site in the blood, and there was a positive association between the blood and SAT methylation levels at a different CpG site within the individuals. The SAT methylation level did not correlate with HIF3A gene expression...

  6. Aromatic Polyketide GTRI-02 is a Previously Unidentified Product of the act Gene Cluster in Streptomyces coelicolor A3(2).

    Science.gov (United States)

    Wu, Changsheng; Ichinose, Koji; Choi, Young Hae; van Wezel, Gilles P

    2017-07-18

    The biosynthesis of aromatic polyketides derived from type II polyketide synthases (PKSs) is complex, and it is not uncommon that highly similar gene clusters give rise to diverse structural architectures. The act biosynthetic gene cluster (BGC) of the model actinomycete Streptomyces coelicolor A3(2) is an archetypal type II PKS. Here we show that the act BGC also specifies the aromatic polyketide GTRI-02 (1) and propose a mechanism for the biogenesis of its 3,4-dihydronaphthalen-1(2H)-one backbone. Polyketide 1 was also produced by Streptomyces sp. MBT76 after activation of the act-like qin gene cluster by overexpression of the pathway-specific activator. Mining of this strain also identified dehydroxy-GTRI-02 (2), which most likely originated from dehydration of 1 during the isolation process. This work shows that even extensively studied model gene clusters such as act of S. coelicolor can still produce new chemistry, offering new perspectives for drug discovery. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Silencing the SpMPK1, SpMPK2, and SpMPK3 Genes in Tomato Reduces Abscisic Acid—Mediated Drought Tolerance

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2013-11-01

    Full Text Available Drought is a major threat to agriculture production worldwide. Mitogen-activated protein kinases (MAPKs play a pivotal role in sensing and converting stress signals into appropriate responses so that plants can adapt and survive. To examine the function of MAPKs in the drought tolerance of tomato plants, we silenced the SpMPK1, SpMPK2, and SpMPK3 genes in wild-type plants using the virus-induced gene silencing (VIGS method. The results indicate that silencing the individual genes or co-silencing SpMPK1, SpMPK2, and SpMPK3 reduced the drought tolerance of tomato plants by varying degrees. Co-silencing SpMPK1 and SpMPK2 impaired abscisic acid (ABA-induced and hydrogen peroxide (H2O2-induced stomatal closure and enhanced ABA-induced H2O2 production. Similar results were observed when silencing SpMPK3 alone, but not when SpMPK1 and SpMPK2 were individually silenced. These data suggest that the functions of SpMPK1 and SpMPK2 are redundant, and they overlap with that of SpMPK3 in drought stress signaling pathways. In addition, we found that SpMPK3 may regulate H2O2 levels by mediating the expression of CAT1. Hence, SpMPK1, SpMPK2, and SpMPK3 may play crucial roles in enhancing tomato plants’ drought tolerance by influencing stomatal activity and H2O2 production via the ABA-H2O2 pathway.

  8. Suppression of cadmium-induced JNK/p38 activation and HSP70 family gene expression by LL-Z1640-2 in NIH3T3 cells

    International Nuclear Information System (INIS)

    Sugisawa, Nobusuke; Matsuoka, Masato; Okuno, Takeo; Igisu, Hideki

    2004-01-01

    When NIH3T3 cells were exposed to CdCl 2 , the three major mitogen-activated protein kinases (MAPKs), extracellular signal-regulated protein kinase (ERK), c-Jun NH 2 -terminal kinase (JNK), and p38, were phosphorylated in a time (1-9 h)- and dose (1-20 μM)-dependent manner. Treatment with a macrocyclic nonaketide compound, LL-Z1640-2 (10-100 ng/ml), suppressed the phosphorylation of MAPKs without affecting the total protein level in cells exposed to 10 μM CdCl 2 for 6 h. CdCl 2 -induced phosphorylation of c-Jun on Ser63 and that on Ser73, and resultant accumulation of total c-Jun protein were also suppressed by LL-Z1640-2 treatment. The in vitro kinase assays also showed significant inhibitory effects of LL-Z1640-2 (at 10 or 25 ng/ml) on JNK and p38 but less markedly. In contrast to JNK and p38, ERK activity was inhibited moderately only at 50 or 100 ng/ml LL-Z1640-2. On the other hand, other JNK inhibitors, SP600125 and L-JNKI1, failed to suppress CdCl 2 -induced activation of the JNK pathway. Among the mouse stress response genes upregulated in response to CdCl 2 exposure, the expressions of hsp68 (encoding for heat shock 70 kDa protein 1; Hsp70-1) and grp78 (encoding for 78 kDa glucose-regulated protein; Grp78) genes were suppressed by treatment with 25 ng/ml LL-Z1640-2. Thus, LL-Z1640-2 could suppress CdCl 2 -induced activation of JNK/p38 pathways and expression of HSP70 family genes in NIH3T3 cells. LL-Z1640-2 seems to be useful to analyze functions of toxic metal-induced JNK/p38 activation

  9. Ectopic Expression of the Grape Hyacinth (Muscari armeniacum R2R3-MYB Transcription Factor Gene, MaAN2, Induces Anthocyanin Accumulation in Tobacco

    Directory of Open Access Journals (Sweden)

    Kaili Chen

    2017-06-01

    Full Text Available Anthocyanins are responsible for the different colors of ornamental plants. Grape hyacinth (Muscari armeniacum, a monocot plant with bulbous flowers, is popular for its fascinating blue color. In the present study, we functionally characterized an R2R3-MYB transcription factor gene MaAN2 from M. armeniacum. Our results indicated that MaAN2 participates in controlling anthocyanin biosynthesis. Sequence alignment and phylogenetic analysis suggested that MaAN2 belonged to the R2R3-MYB family AN2 subgroup. The anthocyanin accumulation of grape hyacinth flowers was positively correlated with the expression of MaAN2. And the transcriptional expression of MaAN2 was also consistent with that of M. armeniacum dihydroflavonol 4-reductase (MaDFR and M. armeniacum anthocyanidin synthase (MaANS in flowers. A dual luciferase transient expression assay indicated that when MaAN2 was co-inflitrated with Arabidopsis thaliana TRANSPARENT TESTA8 (AtTT8, it strongly activated the promoters of MaDFR and MaANS, but not the promoters of M. armeniacum chalcone synthase (MaCHS, M. armeniacum chalcone isomerase (MaCHI, and M. armeniacum flavanone 3-hydroxylase (MaF3H. Bimolecular fluorescence complementation assay confirmed that MaAN2 interacted with AtTT8 in vivo. The ectopic expression of MaAN2 in Nicotiana tabacum resulted in obvious red coloration of the leaves and much redder flowers. Almost all anthocyanin biosynthetic genes were remarkably upregulated in the leaves and flowers of the transgenic tobacco, and NtAn1a and NtAn1b (two basic helix–loop–helix anthocyanin regulatory genes were highly expressed in the transformed leaves, compared to the empty vector transformants. Collectively, our results suggest that MaAN2 plays a role in anthocyanin biosynthesis.

  10. Polysaccharides of Aloe vera induce MMP-3 and TIMP-2 gene expression during the skin wound repair of rat.

    Science.gov (United States)

    Tabandeh, Mohammad Reza; Oryan, Ahmad; Mohammadalipour, Adel

    2014-04-01

    Polysaccharides are the main macromolecules of Aloe vera gel but no data about their effect on extracellular matrix (ECM) elements are available. Here, mannose rich Aloe vera polysaccharides (AVP) with molecular weight between 50 and 250 kDa were isolated and characterized. Open cutaneous wounds on the back of 45 rats (control and treated) were daily treated with 25mg (n=15) and 50 mg (n=15) AVP for 30 days. The levels of MMP-3 and TIMP-2 gene expression were analyzed using real time PCR. The levels of n-acetyl glucosamine (NAGA), n-acetyl galactosamine (NAGLA) and collagen contents were also measured using standard biochemical methods. Faster wound closure was observed at day 15 post wounding in AVP treated animals in comparison with untreated group. At day 10 post wounding, AVP inhibited MMP-3 gene expression, while afterwards MMP-3 gene expression was upregulated. AVP enhanced TIMP-2 gene expression, collagen, NAGLA and NAGA synthesis in relation to untreated wounds. Our results suggest that AVP has positive effects on the regulation of ECM factor synthesis, which open up new perspectives for the wound repair activity of Aloe vera polysaccharide at molecular level. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Basic research on cancer related to radiation associated medical researches

    International Nuclear Information System (INIS)

    Lee, Jong In; Hwang, Dae Yong; Bang, Ho Yoon

    2000-12-01

    Basic Research on Cancer related to Radiation Associated Medical Researches including 1. Establishment of animal model of colorectal cancer liver metastasis and measurement of angiogenesis, 2. Tissue expression of Tie-1 and Tie-2 in human colorectal cancer, 3. Enhancement of G2/Mphase Cell Fraction by Adenovirus-mediated p53 Gene Transfer in Ovarian Cancer Cell Lines, 4. Clinical Characteristics of the patients with Non-B Non-C Hepatocellular Carcinoma and Frequency of HBV, HCV and TTV Viremia in these Patients, 5. Significance of serum iron and ferritin in patients with stomach cancer, 6. Telomerase assay for early detection of lung cancer, 7. Study on the Usefulness of Aldehyde dehydrogenase-2 Genotyping for Risk Group of Alcohol-related Cancer Screening, 8. Gene therapy using hepatoma specific promoter, 9. Study on the Influence of DNA repair gene, XRCC1 Genotypes on the Risk of Head and Neck Cancer were performed

  12. Basic research on cancer related to radiation associated medical researches

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong In; Hwang, Dae Yong; Bang, Ho Yoon [and others

    2000-12-01

    Basic Research on Cancer related to Radiation Associated Medical Researches including 1. Establishment of animal model of colorectal cancer liver metastasis and measurement of angiogenesis, 2. Tissue expression of Tie-1 and Tie-2 in human colorectal cancer, 3. Enhancement of G2/Mphase Cell Fraction by Adenovirus-mediated p53 Gene Transfer in Ovarian Cancer Cell Lines, 4. Clinical Characteristics of the patients with Non-B Non-C Hepatocellular Carcinoma and Frequency of HBV, HCV and TTV Viremia in these Patients, 5. Significance of serum iron and ferritin in patients with stomach cancer, 6. Telomerase assay for early detection of lung cancer, 7. Study on the Usefulness of Aldehyde dehydrogenase-2 Genotyping for Risk Group of Alcohol-related Cancer Screening, 8. Gene therapy using hepatoma specific promoter, 9. Study on the Influence of DNA repair gene, XRCC1 Genotypes on the Risk of Head and Neck Cancer were performed.

  13. Spaceflight modulates gene expression in the whole blood of astronauts.

    Science.gov (United States)

    Barrila, Jennifer; Ott, C Mark; LeBlanc, Carly; Mehta, Satish K; Crabbé, Aurélie; Stafford, Phillip; Pierson, Duane L; Nickerson, Cheryl A

    2016-01-01

    Astronauts are exposed to a unique combination of stressors during spaceflight, which leads to alterations in their physiology and potentially increases their susceptibility to disease, including infectious diseases. To evaluate the potential impact of the spaceflight environment on the regulation of molecular pathways mediating cellular stress responses, we performed a first-of-its-kind pilot study to assess spaceflight-related gene-expression changes in the whole blood of astronauts. Using an array comprised of 234 well-characterized stress-response genes, we profiled transcriptomic changes in six astronauts (four men and two women) from blood preserved before and immediately following the spaceflight. Differentially regulated transcripts included those important for DNA repair, oxidative stress, and protein folding/degradation, including HSP90AB1 , HSP27 , GPX1 , XRCC1 , BAG-1 , HHR23A , FAP48 , and C-FOS . No gender-specific differences or relationship to number of missions flown was observed. This study provides a first assessment of transcriptomic changes occurring in the whole blood of astronauts in response to spaceflight.

  14. Dehalogenimonas lykanthroporepellens BL-DC-9T simultaneously transcribes many rdhA genes during organohalide respiration with 1,2-DCA, 1,2-DCP, and 1,2,3-TCP as electron acceptors.

    Science.gov (United States)

    Mukherjee, Kalpataru; Bowman, Kimberly S; Rainey, Fred A; Siddaramappa, Shivakumara; Challacombe, Jean F; Moe, William M

    2014-05-01

    The genome sequence of the organohalide-respiring bacterium Dehalogenimonas lykanthroporepellensBL-DC-9(T) contains numerous loci annotated as reductive dehalogenase homologous (rdh) genes based on inferred protein sequence identity with functional dehalogenases of other bacterial species. Many of these genes are truncated, lack adjacent regulatory elements, or lack cognate genes coding for membrane-anchoring proteins typical of the functionally characterized active reductive dehalogenases of organohalide-respiring bacteria. To investigate the expression patterns of the rdh genes in D. lykanthroporepellensBL-DC-9(T), oligonucleotide primers were designed to uniquely target 25 rdh genes present in the genome as well as four putative regulatory genes. RNA extracts from cultures of strain BL-DC-9(T) actively dechlorinating three different electron acceptors, 1,2-dichloroethane, 1,2-dichloropropane, and 1,2,3-trichloropropane were reverse-transcribed and subjected to PCR amplification using rdh-specific primers. Nineteen rdh gene transcripts, including 13 full-length rdhA genes, six truncated rdhA genes, and five rdhA genes having cognate rdhB genes were consistently detected during the dechlorination of all three of the polychlorinated alkanes tested. Transcripts from all four of the putative regulatory genes were also consistently detected. Results reported here expand the diversity of bacteria known to simultaneously transcribe multiple rdh genes and provide insights into the transcription factors associated with rdh gene expression. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Genes2FANs: connecting genes through functional association networks

    Science.gov (United States)

    2012-01-01

    Background Protein-protein, cell signaling, metabolic, and transcriptional interaction networks are useful for identifying connections between lists of experimentally identified genes/proteins. However, besides physical or co-expression interactions there are many ways in which pairs of genes, or their protein products, can be associated. By systematically incorporating knowledge on shared properties of genes from diverse sources to build functional association networks (FANs), researchers may be able to identify additional functional interactions between groups of genes that are not readily apparent. Results Genes2FANs is a web based tool and a database that utilizes 14 carefully constructed FANs and a large-scale protein-protein interaction (PPI) network to build subnetworks that connect lists of human and mouse genes. The FANs are created from mammalian gene set libraries where mouse genes are converted to their human orthologs. The tool takes as input a list of human or mouse Entrez gene symbols to produce a subnetwork and a ranked list of intermediate genes that are used to connect the query input list. In addition, users can enter any PubMed search term and then the system automatically converts the returned results to gene lists using GeneRIF. This gene list is then used as input to generate a subnetwork from the user’s PubMed query. As a case study, we applied Genes2FANs to connect disease genes from 90 well-studied disorders. We find an inverse correlation between the counts of links connecting disease genes through PPI and links connecting diseases genes through FANs, separating diseases into two categories. Conclusions Genes2FANs is a useful tool for interpreting the relationships between gene/protein lists in the context of their various functions and networks. Combining functional association interactions with physical PPIs can be useful for revealing new biology and help form hypotheses for further experimentation. Our finding that disease genes in

  16. Pregnane X receptor-dependent induction of the CYP3A4 gene by o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane.

    Science.gov (United States)

    Medina-Díaz, Irma M; Arteaga-Illán, Georgina; de León, Mario Bermudez; Cisneros, Bulmaro; Sierra-Santoyo, Adolfo; Vega, Libia; Gonzalez, Frank J; Elizondo, Guillermo

    2007-01-01

    CYP3A4, the predominant cytochrome P450 (P450) expressed in human liver and intestine, contributes to the metabolism of approximately half the drugs in clinical use today. CYP3A4 catalyzes the 6beta-hydroxylation of a number of steroid hormones and is involved in the bioactivation of environmental procarcinogens. The expression of CYP3A4 is affected by several stimuli, including environmental factors such as insecticides and pesticides. The o,p'-1,1,1,-trichloro-2,2-bis (p-chlorophenyl)ethane (DDT) isomer of DDT comprises approximately 20% of technical grade DDT, which is an organochloride pesticide. We have recently shown that o,p'-DDT exposure increases CYP3A4 mRNA levels in HepG2 cells. To determine the mechanism by which o,p'-DDT induces CYP3A4 expression, transactivation and electrophoretic mobility shift assays were carried out, revealing that o,p'-DDT activates the CYP3A4 gene promoter through the pregnane X receptor (PXR). CYP3A4 gene promoter activation resulted in both an increase in CYP3A4 mRNA levels and an increase in the total CYP3A4 activity in HepG2 cells. We also observed induction of CYP3A4 and mouse Cyp3a11 mRNA in the intestine of CYP3A4-transgenic mice after exposure to 1 mg/kg o,p'-DDT. At higher doses, a decrease of CYP3A4 inducibility was observed together with an increase in levels of interleukin 6 mRNA, a proinflammatory cytokine that strongly represses CYP3A4 transcription. The present study indicates that regulation of other genes under PXR control may be altered by o,p'-DDT exposure.

  17. Clinicopathologic Significance of Excision Repair Cross-Complementation 1 Expression in Patients Treated With Breast-Conserving Surgery and Radiation Therapy

    International Nuclear Information System (INIS)

    Goyal, Sharad; Parikh, Rahul R.; Green, Camille; Schiff, Devora B.S.; Moran, Meena S.; Yang Qifeng; Haffty, Bruce G.

    2010-01-01

    Purpose: The excision repair cross-complementation 1 (ERCC1) enzyme plays a rate-limiting role in the nucleotide excision repair pathway and is associated with resistance to platinum-based chemotherapy in cancers of the head and neck and the lung. The purpose of this study was to evaluate the clinicopathologic and prognostic significance of ERCC1 expression in a cohort of early-stage breast cancer patients treated with breast conservation therapy. Methods and Materials: Paraffin specimens from 504 women with early-stage breast cancer treated with breast conservation therapy were constructed into tissue microarrays. The array was stained for estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) and ERCC1. This was then correlated with clinicopathologic factors and outcomes data. Results: ERCC-1 expression was evaluable in 366 cases (72%). In this group, 32% and 38% of patients received adjuvant chemotherapy and hormonal therapy, respectively. Increased ERCC-1 expression was found to be correlated with ER positivity (p 50 (p 50. To our knowledge, this is the first study investigating ERCC1 expression in patients receiving adjuvant radiation therapy for breast cancer.

  18. Simulated Microgravity Regulates Gene Transcript Profiles of 2T3 Preosteoblasts: Comparison of the Random Positioning Machine and the Rotating Wall Vessel Bioreactor

    Science.gov (United States)

    Patel, Mamta J.; Liu, Wenbin; Sykes, Michelle C.; Ward, Nancy E.; Risin, Semyon A.; Risin, Diana; Hanjoong, Jo

    2007-01-01

    Microgravity of spaceflight induces bone loss due in part to decreased bone formation by osteoblasts. We have previously examined the microgravity-induced changes in gene expression profiles in 2T3 preosteoblasts using the Random Positioning Machine (RPM) to simulate microgravity conditions. Here, we hypothesized that exposure of preosteoblasts to an independent microgravity simulator, the Rotating Wall Vessel (RWV), induces similar changes in differentiation and gene transcript profiles, resulting in a more confined list of gravi-sensitive genes that may play a role in bone formation. In comparison to static 1g controls, exposure of 2T3 cells to RWV for 3 days inhibited alkaline phosphatase activity, a marker of differentiation, and downregulated 61 genes and upregulated 45 genes by more than two-fold as shown by microarray analysis. The microarray results were confirmed with real time PCR for downregulated genes osteomodulin, bone morphogenic protein 4 (BMP4), runx2, and parathyroid hormone receptor 1. Western blot analysis validated the expression of three downregulated genes, BMP4, peroxiredoxin IV, and osteoglycin, and one upregulated gene peroxiredoxin I. Comparison of the microarrays from the RPM and the RWV studies identified 14 gravi-sensitive genes that changed in the same direction in both systems. Further comparison of our results to a published database showing gene transcript profiles of mechanically loaded mouse tibiae revealed 16 genes upregulated by the loading that were shown to be downregulated by RWV and RPM. These mechanosensitive genes identified by the comparative studies may provide novel insights into understanding the mechanisms regulating bone formation and potential targets of countermeasure against decreased bone formation both in astronauts and in general patients with musculoskeletal disorders.

  19. The human MCP-2 gene (SCYA8): Cloning, sequence analysis, tissue expression, and assignment to the CC chemokine gene contig on chromosome 17q11.2

    Energy Technology Data Exchange (ETDEWEB)

    Van Coillie, E.; Fiten, P.; Van Damme, J.; Opdenakker, G. [Univ. of Leuven (Belgium)] [and others

    1997-03-01

    Monocyte chemotactic proteins (MCPs) form a subfamily of chemokines that recruit leukocytes to sites of inflammation and that may contribute to tumor-associated leukocyte infiltration and to the antiviral state against HIV infection. With the use of degenerate primers that were based on CC chemokine consensus sequences, the known MIP-1{alpha}/LD78{alpha}, MCP-1, and MCP-3 genes and the previously unidentified eotaxin and MCP-2 genes were isolated from a YAC contig from human chromosome 17q11.2. The amplified genomic MCP-2 fragment was used to isolate an MCP-2 cosmid from which the gene sequence was determined. The MCP-2 gene shares with the MCP-1 and MCP-3 genes a conserved intron-exon structure and a coding nucleotide sequence homology of 77%. By Northern blot analysis the 1.0-kb MCP-2 mRNA was predominantly detectable in the small intestine, peripheral blood, heart, placenta, lung, skeletal muscle, ovary, colon, spinal cord, pancreas, and thymus. Transcripts of 1.5 and 2.4 kb were found in the testis, the small intestine, and the colon. The isolation of the MCP-2 gene from the chemokine contig localized it on YAC clones of chromosome 17q11.2, which also contain the eotaxin, MCP-1, MCP-3, and NCC-1/MCP-4 genes. The combination of using degenerate primer PCR and YACs illustrates that novel genes can efficiently be isolated from gene cluster contigs with less redundancy and effort than the isolation of novel ESTs. 42 refs., 5 figs., 2 tabs.

  20. Phosphatidylinositol 3-kinase is essential for kit ligand-mediated survival, whereas interleukin-3 and flt3 ligand induce expression of antiapoptotic Bcl-2 family genes

    DEFF Research Database (Denmark)

    Karlsson, Richard; Engström, Maria; Jönsson, Maria

    2003-01-01

    Cytokines such as interleukin 3 (IL-3), kit ligand (KL), and flt3 ligand (FL) promote survival of hematopoietic stem cells and myeloid progenitor cells. In many cell types, members of the Bcl-2 gene family are major regulators of survival, but the mediating mechanisms are not fully understood....... Using two myeloid progenitor cell lines, FDCP-mix and FDC-P1, as well as primary mouse bone marrow progenitors, we demonstrate that KL-mediated survival is dependent on the activation of phosphatidylinositol-3 (PI-3) kinase. The inhibitor LY294002 was able to completely abolish survival mediated by KL...

  1. Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.

    Science.gov (United States)

    Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C

    2010-05-01

    Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.

  2. Polycomb Group Protein Displacement and Gene Activation through MSK-Dependent H3K27me3S28 Phosphorylation

    DEFF Research Database (Denmark)

    Gehani, Simmi Suman; Agrawal-Singh, Shuchi; Dietrich, Nikolaj

    2010-01-01

    Epigenetic regulation of chromatin structure is essential for the expression of genes determining cellular specification and function. The Polycomb repressive complex 2 (PRC2) di- and trimethylates histone H3 on lysine 27 (H3K27me2/me3) to establish repression of specific genes in embryonic stem ...

  3. TNF-α Upregulates Expression of BMP-2 and BMP-3 Genes in the Rat Dental Follicle – Implications for Tooth Eruption

    Science.gov (United States)

    Yao, Shaomian; Prpic, Veronica; Pan, Fenghui; Wise, Gary E.

    2011-01-01

    The dental follicle appears to regulate both the alveolar bone resorption and bone formation needed for tooth eruption. Tumor necrosis factor-alpha ( TNF-α) gene expression is maximally upregulated at postnatal day 9 in the rat dental follicle of the 1st mandibular molar, a time that correlates with rapid bone growth at the base of the tooth crypt, as well as a minor burst of osteoclastogenesis. TNF-α expression is correlated with the expression of bone morphogenetic protein-2 (BMP-2), a molecule expressed in the dental follicle that can promote bone formation. Because BMP-2 signaling may be augmented by bone morphogenetic protein-3 (BMP-3), it was the objective of this study to determine 1) if the dental follicle expresses BMP-3 and 2) if TNF-α stimulates the dental follicle cells to express BMP-2 and BMP-3. Dental follicles were collected from different postnatal ages of rat pups. Dental follicle cells were incubated with TNF-α to study its dosage and time-course effects on gene expression of BMP-2 and BMP-3, as determined by real-time RT-PCR. Next, immunostaining was conducted to confirm if the protein was synthesized and ELISA of the conditioned medium was conducted to determine if BMP-2 was secreted. We found that BMP-3 expression is correlated with the expression of TNF-α in the dental follicle and TNF-α significantly increased BMP-2 and BMP-3 expression in vitro. Immunostaining and ELISA showed that BMP-2 and BMP-3 were synthesized and secreted. This study suggests that TNF-α can upregulate the expression of bone formation genes that may be needed for tooth eruption. PMID:20067418

  4. Ménière's Disease: Molecular Analysis of Aquaporins 2, 3 and Potassium Channel KCNE1 Genes in Brazilian Patients.

    Science.gov (United States)

    Lopes, Karen de Carvalho; Sartorato, Edi Lúcia; da Silva-Costa, Sueli M; de Macedo Adamov, Nadya Soares; Ganança, Fernando Freitas

    2016-09-01

    Ménière's disease (MD) is a complex disease of unknown etiology characterized by a symptomatic tetrad of vertigo, hearing loss, tinnitus, and aural fullness. In addition to factors related to homeostasis of the inner ear, genetic factors have been implicated in its pathophysiology, including genes related to the transport of water and ionic composition maintenance of the endolymph, such as the aquaporin genes AQP2 and AQP3, and the potassium channel gene KCNE1. The aim of this study was to identify polymorphisms of these genes and determine their association with clinical characteristics of patients with MD. A case-control genetic association study was carried out, including 30 patients with definite Ménière's disease and 30 healthy controls. The coding regions of the target genes were amplified from blood samples by polymerase chain reaction (PCR), followed by direct sequencing. The associations of polymorphisms with clinical characteristics were analyzed with logistic regression. Five polymorphisms were identified: rs426496 in AQP2; rs591810 in AQP3; and rs1805127, rs1805128, and rs17173510 in KCNE1. After adjustment, rs426496 was significantly associated with tinnitus during the initial crisis and with altered electronystagmography, and rs1805127 was significantly associated with nephropathy. The genetic variant rs426496 in AQP2; rs591810 in AQP3 and rs1805127, rs1805128, and rs17173510, in KCNE1 were found in patients with Ménière's disease. The polymorphism rs426496, in AQP2, is associated with tinnitus at the onset of Ménière's disease and altered electronystagmography. In addition, rs1805127, in KCNE1, is associated with the presence of nephropathy.

  5. Exploring Genetic Variability at PI, GSK3, HPA, and Glutamatergic Pathways in Lithium Response: Association With IMPA2, INPP1, and GSK3B Genes.

    Science.gov (United States)

    Mitjans, Marina; Arias, Bárbara; Jiménez, Esther; Goikolea, Jose M; Sáiz, Pilar A; García-Portilla, M Paz; Burón, Patricia; Bobes, Julio; Vieta, Eduard; Benabarre, Antoni

    2015-10-01

    Lithium is considered the first-line treatment in bipolar disorder, although response could range from an excellent response to a complete lack of response. Response to lithium is a complex phenotype in which different factors, part of them genetics, are involved. In this sense, the aim of this study was to investigate the potential association of genetic variability at genes related to phosphoinositide, glycogen synthetase kinase-3 (GSK3), hypothalamic-pituitary-adrenal, and glutamatergic pathways with lithium response. A sample of 131 bipolar patients (99 type I, 32 type II) were grouped and compared according to their level of response: excellent responders (ER), partial responders (PR), and nonresponders (NR). Genotype and allele distributions of the rs669838 (IMPA2), rs909270 (INNP1), rs11921360 (GSK3B), and rs28522620 (GRIK2) polymorphisms significantly differed between ER, PR, and NR. When we compared the ER versus PR+NR, the logistic regression showed significant association for rs669838-C (IMPA2; P = 0.021), rs909270-G (INPP1; P = 0.009), and rs11921360-A (GSK3B; P = 0.004) with lithium nonresponse. Haplotype analysis showed significant association for the haplotypes rs3791809-rs4853694-rs909270 (INPP1) and rs1732170-rs11921360-rs334558 (GSK3B) and lithium response. Our study is in line with previous studies reporting association between genetic variability at these genes and lithium response, pointing to an effect of IMPA2, INPP1, and GSK3B genes to lithium response in bipolar disorder patients. Further studies with larger samples are warranted to assess the strength of the reported associations.

  6. Generation of induced pluripotent stem cells with high efficiency from human embryonic renal cortical cells.

    Science.gov (United States)

    Yao, Ling; Chen, Ruifang; Wang, Pu; Zhang, Qi; Tang, Hailiang; Sun, Huaping

    2016-01-01

    Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) emerges as a prospective therapeutic angle in regenerative medicine and a tool for drug screening. Although increasing numbers of iPSCs from different sources have been generated, there has been limited progress in yield of iPSC. Here, we show that four Yamanaka factors Oct4, Sox2, Klf4 and c-Myc can convert human embryonic renal cortical cells (hERCCs) to pluripotent stem cells with a roughly 40-fold higher reprogramming efficiency compared with that of adult human dermal fibroblasts. These iPSCs show pluripotency in vitro and in vivo, as evidenced by expression of pluripotency associated genes, differentiation into three embryonic germ layers by teratoma tests, as well as neuronal fate specification by embryoid body formation. Moreover, the four exogenous genes are effectively silenced in these iPSCs. This study highlights the use of hERCCs to generate highly functional human iPSCs which may aid the study of genetic kidney diseases and accelerate the development of cell-based regenerative therapy.

  7. Linkage mapping of the gene for Type III collagen (COL3A1) to human chromosome 2q using a VNTR polymorphism

    Energy Technology Data Exchange (ETDEWEB)

    Tiller, G.E.; Polumbo, P.A.; Summar, M.L. (Vanderbilt Univ. Medical Center, Nashville, TN (United States))

    1994-03-15

    The gene for the [alpha]1(III) chain of type III collagen, COL3A1, has been previously mapped to human chromosome 2q24.3-q31 by in situ hybridization. Physical mapping by pulsed-field gel electrophoresis has demonstrated that COL3A1 lies within 35 kb of COL5A2. The authors genotyped the CEPH families at the COL3A2 locus using a pentanucleotide repeat polymorphism within intron 25. They demonstrated significant linkage to 18 anonymous markers as well as the gene for carbamyl phosphate synthetase (CPSI), which had been previously mapped to this region. No recombination was seen between COL3A1 and COL5A2 (Z = 9.93 at [theta] = 0) or D2S24 (Z = 10.55 at [theta] = 0). The locus order is (D2S32-D2S138-D2S148)-(D2S24-COL5A2-COL3A1)-(D2S118-D2S161), with odds of 1:2300 for the next most likely order. These relationships are consistent with the physical mapping of COL3A1 to the distal portion of 2q and place it proximal to CPSI by means of multipoint analysis. These linkage relationships should prove useful in further studies of Ehlers-Danlos syndrome type IV and carbamyl phosphate synthetase I deficiency and provide an additional framework for localizing other genes in this region. 13 refs., 2 figs., 1 tab.

  8. Molecular Characterization of the Llamas (Lama glama) Casein Cluster Genes Transcripts (CSN1S1, CSN2, CSN1S2, CSN3) and Regulatory Regions

    Science.gov (United States)

    Pauciullo, Alfredo; Erhardt, Georg

    2015-01-01

    In the present paper, we report for the first time the characterization of llama (Lama glama) caseins at transcriptomic and genetic level. A total of 288 casein clones transcripts were analysed from two lactating llamas. The most represented mRNA populations were those correctly assembled (85.07%) and they encoded for mature proteins of 215, 217, 187 and 162 amino acids respectively for the CSN1S1, CSN2, CSN1S2 and CSN3 genes. The exonic subdivision evidenced a structure made of 21, 9, 17 and 6 exons for the αs1-, β-, αs2- and κ-casein genes respectively. Exon skipping and duplication events were evidenced. Two variants A and B were identified in the αs1-casein gene as result of the alternative out-splicing of the exon 18. An additional exon coding for a novel esapeptide was found to be cryptic in the κ-casein gene, whereas one extra exon was found in the αs2-casein gene by the comparison with the Camelus dromedaries sequence. A total of 28 putative phosphorylated motifs highlighted a complex heterogeneity and a potential variable degree of post-translational modifications. Ninety-six polymorphic sites were found through the comparison of the lama casein cDNAs with the homologous camel sequences, whereas the first description and characterization of the 5’- and 3’-regulatory regions allowed to identify the main putative consensus sequences involved in the casein genes expression, thus opening the way to new investigations -so far- never achieved in this species. PMID:25923814

  9. Molecular Characterization of the Llamas (Lama glama) Casein Cluster Genes Transcripts (CSN1S1, CSN2, CSN1S2, CSN3) and Regulatory Regions.

    Science.gov (United States)

    Pauciullo, Alfredo; Erhardt, Georg

    2015-01-01

    In the present paper, we report for the first time the characterization of llama (Lama glama) caseins at transcriptomic and genetic level. A total of 288 casein clones transcripts were analysed from two lactating llamas. The most represented mRNA populations were those correctly assembled (85.07%) and they encoded for mature proteins of 215, 217, 187 and 162 amino acids respectively for the CSN1S1, CSN2, CSN1S2 and CSN3 genes. The exonic subdivision evidenced a structure made of 21, 9, 17 and 6 exons for the αs1-, β-, αs2- and κ-casein genes respectively. Exon skipping and duplication events were evidenced. Two variants A and B were identified in the αs1-casein gene as result of the alternative out-splicing of the exon 18. An additional exon coding for a novel esapeptide was found to be cryptic in the κ-casein gene, whereas one extra exon was found in the αs2-casein gene by the comparison with the Camelus dromedaries sequence. A total of 28 putative phosphorylated motifs highlighted a complex heterogeneity and a potential variable degree of post-translational modifications. Ninety-six polymorphic sites were found through the comparison of the lama casein cDNAs with the homologous camel sequences, whereas the first description and characterization of the 5'- and 3'-regulatory regions allowed to identify the main putative consensus sequences involved in the casein genes expression, thus opening the way to new investigations -so far- never achieved in this species.

  10. Caffeine inhibits homology-directed repair of I-SceI-induced DNA double-strand breaks.

    Science.gov (United States)

    Wang, Huichen; Boecker, Wilfried; Wang, Hongyan; Wang, Xiang; Guan, Jun; Thompson, Larry H; Nickoloff, Jac A; Iliakis, George

    2004-01-22

    We recently reported that two Chinese hamster mutants deficient in the RAD51 paralogs XRCC2 and XRCC3 show reduced radiosensitization after treatment with caffeine, thus implicating homology-directed repair (HDR) of DNA double-strand breaks (DSBs) in the mechanism of caffeine radiosensitization. Here, we investigate directly the effect of caffeine on HDR initiated by DSBs induced by a rare cutting endonuclease (I-SceI) into one of two direct DNA repeats. The results demonstrate a strong inhibition by caffeine of HDR in wild-type cells, and a substantial reduction of this effect in HDR-deficient XRCC3 mutant cells. Inhibition of HDR and cell radiosensitization to killing shows similar dependence on caffeine concentration suggesting a cause-effect relationship between these effects. UCN-01, a kinase inhibitor that effectively abrogates checkpoint activation in irradiated cells, has only a small effect on HDR, indicating that similar to radiosensitization, inhibition of checkpoint signaling is not sufficient for HDR inhibition. Recombination events occurring during treatment with caffeine are characterized by rearrangements reminiscent to those previously reported for the XRCC3 mutant, and immunofluorescence microscopy demonstrates significantly reduced formation of IR-specific RAD51 foci after caffeine treatment. In summary, our results identify inhibition of HDR as a significant contributor to caffeine radiosensitization.

  11. Chromosomal location of the fosA3 and blaCTX-M genes in Proteus mirabilis and clonal spread of Escherichia coli ST117 carrying fosA3-positive IncHI2/ST3 or F2:A-:B- plasmids in a chicken farm.

    Science.gov (United States)

    He, Dandan; Liu, Lanping; Guo, Baowei; Wu, Shengjun; Chen, Xiaojie; Wang, Jing; Zeng, Zhenling; Liu, Jian-Hua

    2017-04-01

    The aim of this study was to investigate the spread and location of the fosA3 gene among Enterobacteriaceae from diseased broiler chickens. Twenty-nine Escherichia coli and seven Proteus mirabilis isolates recovered from one chicken farm were screened for the presence of plasmid-mediated fosfomycin resistance genes by PCR. The clonal relatedness of fosA3-positive isolates, the transferability and location of fosA3, and the genetic context of the fosA3 gene were determined. Seven P. mirabilis isolates with three different pulsed-field gel electrophoresis (PFGE) patterns and five E. coli isolates belonging to sequence type 117 (ST117) and phylogenetic group D were positive for fosA3 and all carried the bla CTX-M gene. In E. coli, the genetic structures IS26-ISEcp1-bla CTX-M-65 -IS26-fosA3-1758 bp-IS26 and IS26-ISEcp1-bla CTX-M-3 -bla TEM-1 -IS26-fosA3-1758 bp-IS26 were present on transferable IncHI2/ST3 and F2:A-:B- plasmids, respectively. However, fosA3 was located on the chromosome of the seven P. mirabilis isolates. IS26-ISEcp1-bla CTX-M-65 -IS26-fosA3-1758 bp-IS26 and IS26-bla CTX-M-14 -611 bp-fosA3-1222 bp-IS26 were detected in three and four P. mirabilis isolates, respectively. Minicircles that contained both fosA3 and bla CTX-M-65 were shared between E. coli and P. mirabilis. This is the first report of the fosA3 gene integrated into the chromosome of P. mirabilis isolates with the bla CTX-M gene. The emergence and clonal spread of avian pathogenic E. coli ST117 with the feature of multidrug resistance and high virulence are a serious problem. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  12. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children

    Energy Technology Data Exchange (ETDEWEB)

    Phookphan, Preeyaphan; Navasumrit, Panida [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Post-graduate Program in Environmental Toxicology, Chulabhorn Graduate Institute, Laksi, Bangkok (Thailand); Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education (Thailand); Waraprasit, Somchamai; Promvijit, Jeerawan; Chaisatra, Krittinee; Ngaotepprutaram, Thitirat [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Ruchirawat, Mathuros, E-mail: mathuros@cri.or.th [Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok (Thailand); Center of Excellence on Environmental Health, Toxicology (EHT), Office of the Higher Education Commission, Ministry of Education (Thailand)

    2017-02-01

    Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylation of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p < 0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p < 0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10–100 μM) and long-term low doses (0.5–1 μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p < 0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life. - Highlight: • Early-life arsenic exposure caused promoter hypomethylation of COX2, EGR1 and SOCS3. • Hypomethylation of these genes is

  13. Hypomethylation of inflammatory genes (COX2, EGR1, and SOCS3) and increased urinary 8-nitroguanine in arsenic-exposed newborns and children

    International Nuclear Information System (INIS)

    Phookphan, Preeyaphan; Navasumrit, Panida; Waraprasit, Somchamai; Promvijit, Jeerawan; Chaisatra, Krittinee; Ngaotepprutaram, Thitirat; Ruchirawat, Mathuros

    2017-01-01

    Early-life exposure to arsenic increases risk of developing a variety of non-malignant and malignant diseases. Arsenic-induced carcinogenesis may be mediated through epigenetic mechanisms and pathways leading to inflammation. Our previous study reported that prenatal arsenic exposure leads to increased mRNA expression of several genes related to inflammation, including COX2, EGR1, and SOCS3. This study aimed to investigate the effects of arsenic exposure on promoter DNA methylation and mRNA expression of these inflammatory genes (COX2, EGR1, and SOCS3), as well as the generation of 8-nitroguanine, which is a mutagenic DNA lesion involved in inflammation-related carcinogenesis. Prenatally arsenic-exposed newborns had promoter hypomethylation of COX2, EGR1, and SOCS3 in cord blood lymphocytes (p < 0.01). A follow-up study in these prenatally arsenic-exposed children showed a significant hypomethylation of these genes in salivary DNA (p < 0.01). In vitro experiments confirmed that arsenite treatment at short-term high doses (10–100 μM) and long-term low doses (0.5–1 μM) in human lymphoblasts (RPMI 1788) caused promoter hypomethylation of these genes, which was in concordance with an increase in their mRNA expression. Additionally, the level of urinary 8-nitroguanine was significantly higher (p < 0.01) in exposed newborns and children, by 1.4- and 1.8-fold, respectively. Arsenic accumulation in toenails was negatively correlated with hypomethylation of these genes and positively correlated with levels of 8-nitroguanine. These results indicated that early-life exposure to arsenic causes hypomethylation of COX2, EGR1, and SOCS3, increases mRNA expression of these genes, and increases 8-nitroguanine formation. These effects may be linked to mechanisms of arsenic-induced inflammation and cancer development later in life. - Highlight: • Early-life arsenic exposure caused promoter hypomethylation of COX2, EGR1 and SOCS3. • Hypomethylation of these genes is

  14. The assessment of micronucleus frequency in lymphocytes in the cohort of coal-miners characterized by different polymorphisms of double strand break reparation genes

    Directory of Open Access Journals (Sweden)

    Maxim Yur'yevich Sinitsky

    2015-12-01

    Full Text Available Background: Coal-miners are exposed to a lot of number of harmful factors (chemical agents, ionizing radiation, heavy metals, coal dust etc.. Material and methods: Venous blood samples extracted from 129 coal-miners. Assessment of cytogenetic damage was performed using the cytokinesis-block micronucleus assay (CBMN on peripheral blood lymphocytes. PCR and gel electrophoresis were used to determine polymorphisms in the genes Lig4 (rs1805388 and XRCC4 (rs6869366. Results: We found a significant increase in the frequency of binucleated lymphocytes with micronuclei (MN and protrusions in carriers of the Ile/ Ile genotype of the Lig4 gene Thr9Ile polymorphism in comparison to Thr/Thr and Thr/Ile genotypes. Conclusions: Thr9Ile polymorphism within Lig4 gene can be used as potential molecular genetic markers of increased individual susceptibility to the complex of harmful factors in coal-mining conditions.

  15. Potential gene regulatory role for cyclin D3 in muscle cells

    Indian Academy of Sciences (India)

    2015-06-27

    Jun 27, 2015 ... D3-expressing cells on induction of differentiation. 2. Materials and .... 2 –ΔΔCt method was used for quantification and each gene ..... of pluripotency genes known to be silenced by deposition of ..... embryonic stem cells.

  16. Expression of PAM50 Genes in Lung Cancer: Evidence that Interactions between Hormone Receptors and HER2/HER3 Contribute to Poor Outcome

    Directory of Open Access Journals (Sweden)

    Jill M. Siegfried

    2015-11-01

    Full Text Available Non–small cell lung cancers (NSCLCs frequently express estrogen receptor (ER β, and estrogen signaling is active in many lung tumors. We investigated the ability of genes contained in the prediction analysis of microarray 50 (PAM50 breast cancer risk predictor gene signature to provide prognostic information in NSCLC. Supervised principal component analysis of mRNA expression data was used to evaluate the ability of the PAM50 panel to provide prognostic information in a stage I NSCLC cohort, in an all-stage NSCLC cohort, and in The Cancer Genome Atlas data. Immunohistochemistry was used to determine status of ERβ and other proteins in lung tumor tissue. Associations with prognosis were observed in the stage I cohort. Cross-validation identified seven genes that, when analyzed together, consistently showed survival associations. In pathway analysis, the seven-gene panel described one network containing the ER and progesterone receptor, as well as human epidermal growth factor receptor (HER2/HER3 and neuregulin-1. NSCLC cases also showed a significant association between ERβ and HER2 protein expression. Cases positive for HER2 expression were more likely to express HER3, and ERβ-positive cases were less likely to be both HER2 and HER3 negative. Prognostic ability of genes in the PAM50 panel was verified in an ERβ-positive cohort representing all NSCLC stages. In The Cancer Genome Atlas data sets, the PAM50 gene set was prognostic in both adenocarcinoma and squamous cell carcinoma, whereas the seven-gene panel was prognostic only in squamous cell carcinoma. Genes in the PAM50 panel, including those linking ER and HER2, identify lung cancer patients at risk for poor outcome, especially among ERβ-positive cases and squamous cell carcinoma.

  17. Methylation of the RASSF1A, RARβ2, and SEMA3B genes in epithelial breast and ovarian tumors, and in patients with polyneoplasia

    Directory of Open Access Journals (Sweden)

    T. P. Kazubskaya

    2012-01-01

    Full Text Available The methylation status of the tumor suppressor genes RASSF1A, RARβ2, and SEMA3B was studied in the samples of cancer and its histologically normal tissue of the breast and ovaries. The high rate of abnormal methylation of the CpG islet in the RASSF1A, RARβ2, and SEMA3B genes was found in the tumors of the breast (78% (32/41, 46% (26/56, and 35% (22/65, respectively and ovaries 73% (33/45, 30% (15/50, and 50% (25/51. Hypermethylation in the CpG islets belonging to the RASSF1A and RARβ2 genes was first ascertained in 90% of the patients with polyneoplasms involving the breast and ovaries. Abnormal methylation of the promotor region of the RASSF1A gene was shown to be detectable in preclinical-stage and anaplasia-degree breast and ovarian cancer. There was a correlation of the rate of methylation in the promoter regions of the RARβ2 and SEMA3B genes with clinical-stage and anaplasia-degree breast and ovarian cancer. Analysis of gene methylation in biological fluids provides considerable opportunity to use methylation of DNA as a marker in clinical practice.

  18. A comparative study of mutation screening of sarcomeric genes (MYBPC3, MYH7, TNNT2 using single gene approach versus targeted gene panel next generation sequencing in a cohort of HCM patients in Egypt

    Directory of Open Access Journals (Sweden)

    Heba Sh. Kassem

    2017-10-01

    Full Text Available Background: NGS enables simultaneous sequencing of large numbers of associated genes in genetic heterogeneous disorders, in a more rapid and cost-effective manner than traditional technologies. However there have been limited direct comparisons between NGS and more established technologies to assess the sensitivity and false negative rates of this new approach. The scope of the present manuscript is to compare variants detected in MYBPC3, MYH7 and TNNT2 genes using the stepwise dHPLC/Sanger versus targeted NGS. Methods: In this study, we have analysed a group of 150 samples of patients from the Bibliotheca Alexandrina-Aswan Heart Centre National HCM program. The genetic testing was simultaneously undertaken by high throughput denaturing high-performance liquid chromatography (dHPLC followed by Sanger based sequencing and targeted next generation deep sequencing using panel of inherited cardiac genes (ICC. The panel included over 100 genes including the 3 sarcomeric genes. Analysis of the sequencing data of the 3 genes was undertaken in a double blinded strategy. Results: NGS analysis detected all pathogenic and likely pathogenic variants identified by dHPLC (50 in total, some samples had double hits. There was a 0% false negative rate for NGS based analysis. Nineteen variants were missed by dHPLC and detected by NGS, thus increasing the diagnostic yield in this co- analysed cohort from 22.0% (33/150 to 31.3% (47/150.Of interest to note that the mutation spectrum in this Egyptian HCM population revealed a high rate of homozygosity in MYBPC3 and MYH7 genes in comparison to other population studies (6/150, 4%. None of the homozygous samples were detected by dHPLC analysis. Conclusion: NGS provides a useful and rapid tool to allow panoramic screening of several genes simultaneously with a high sensitivity rate amongst genes of known etiologic role allowing high throughput analysis of HCM patients and relevant control series in a less characterised

  19. Dietary Berries and Ellagic Acid Prevent Oxidative DNA Damage and Modulate Expression of DNA Repair Genes

    Directory of Open Access Journals (Sweden)

    Ramesh C. Gupta

    2008-03-01

    Full Text Available DNA damage is a pre-requisite for the initiation of cancer and agents that reduce this damage are useful in cancer prevention. In this study, we evaluated the ability of whole berries and berry phytochemical, ellagic acid to reduce endogenous oxidative DNA damage. Ellagic acid was selected based on > 95% inhibition of 8-oxodeoxyguosine (8-oxodG and other unidentified oxidative DNA adducts induced by 4-hydroxy-17B;-estradiol and CuCl2 in vitro. Inhibition of the latter occurred at lower concentrations (10 u(microM than that for 8-oxodG (100 u(microM. In the in vivo study, female CD-1 mice (n=6 were fed either a control diet or diet supplemented with ellagic acid (400 ppm and dehydrated berries (5% w/w with varying ellagic acid contents -- blueberry (low, strawberry (medium and red raspberry (high, for 3 weeks. Blueberry and strawberry diets showed moderate reductions in endogenous DNA adducts (25%. However, both red raspberry and ellagic acid diets showed a significant reduction of 59% (p < 0.001 and 48% (p < 0.01, respectively. Both diets also resulted in a 3-8 fold over-expression of genes involved in DNA repair such as xeroderma pigmentosum group A complementing protein (XPA, DNA excision repair protein (ERCC5 and DNA ligase III (DNL3. These results suggest that red raspberry and ellagic acid reduce endogenous oxidative DNA damage by mechanisms which may involve increase in DNA repair.

  20. Association of HS6ST3 gene polymorphisms with obesity and ...

    Indian Academy of Sciences (India)

    The heparan sulfate 6-O-sulfotransferase 3 (HS6ST3) gene is involved in heparan sulphate and heparin metabolism, and has been reported to be associated with diabetic retinopathy in type 2 diabetes. We hypothesized that HS6ST3 gene polymorphisms might play an important role in obesity and related phenotypes (such ...

  1. Somatic VHL gene alterations in MEN2-associated medullary thyroid carcinoma

    International Nuclear Information System (INIS)

    Koch, Christian A; Brouwers, Frederieke M; Vortmeyer, Alexander O; Tannapfel, Andrea; Libutti, Steven K; Zhuang, Zhengping; Pacak, Karel; Neumann, Hartmut PH; Paschke, Ralf

    2006-01-01

    Germline mutations in RET are responsible for multiple endocrine neoplasia type 2 (MEN2), an autosomal dominantly inherited cancer syndrome that is characterized by medullary thyroid carcinoma (MTC), pheochromocytoma, and parathyroid hyperplasia/adenoma. Recent studies suggest a 'second hit' mechanism resulting in amplification of mutant RET. Somatic VHL gene alterations are implicated in the pathogenesis of MEN2 pheochromocytomas. We hypothesized that somatic VHL gene alterations are also important in the pathogenesis of MEN2-associated MTC. We analyzed 6 MTCs and 1 C-cell hyperplasia (CCH) specimen from 7 patients with MEN2A and RET germline mutations in codons 609, 618, 620, or 634, using microdissection, microsatellite analysis, phosphorimage densitometry, and VHL mutation analysis. First, we searched for allelic imbalance between mutant and wild-type RET by using the polymorphic markers D10S677, D10S1239, and RET on thyroid tissue from these patients. Evidence for RET amplification by this technique could be demonstrated in 3 of 6 MTCs. We then performed LOH analysis using D3S1038 and D3S1110 which map to the VHL gene locus at 3p25/26. VHL gene deletion was present in 3 MTCs. These 3 MTCs also had an allelic imbalance between mutant and wild-type RET. Mutation analysis of the VHL gene showed a somatic frameshift mutation in 1 MTC that also demonstrated LOH at 3p25/26. In the 2 other MTCs with allelic imbalance of RET and somatic VHL gene deletion, no somatic VHL mutation could be detected. The CCH specimen did neither reveal RET imbalance nor somatic VHL gene alterations. These data suggest that a RET germline mutation is necessary for development of CCH, that allelic imbalance between mutant and wild-type RET may set off tumorigenesis, and that somatic VHL gene alterations may not play a major role in tumorigenesis of MEN2A-associated MTC

  2. ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Paolo Kunderfranco

    2010-05-01

    Full Text Available ETS transcription factors regulate important signaling pathways involved in cell differentiation and development in many tissues and have emerged as important players in prostate cancer. However, the biological impact of ETS factors in prostate tumorigenesis is still debated.We performed an analysis of the ETS gene family using microarray data and real-time PCR in normal and tumor tissues along with functional studies in normal and cancer cell lines to understand the impact in prostate tumorigenesis and identify key targets of these transcription factors. We found frequent dysregulation of ETS genes with oncogenic (i.e., ERG and ESE1 and tumor suppressor (i.e., ESE3 properties in prostate tumors compared to normal prostate. Tumor subgroups (i.e., ERG(high, ESE1(high, ESE3(low and NoETS tumors were identified on the basis of their ETS expression status and showed distinct transcriptional and biological features. ERG(high and ESE3(low tumors had the most robust gene signatures with both distinct and overlapping features. Integrating genomic data with functional studies in multiple cell lines, we demonstrated that ERG and ESE3 controlled in opposite direction transcription of the Polycomb Group protein EZH2, a key gene in development, differentiation, stem cell biology and tumorigenesis. We further demonstrated that the prostate-specific tumor suppressor gene Nkx3.1 was controlled by ERG and ESE3 both directly and through induction of EZH2.These findings provide new insights into the role of the ETS transcriptional network in prostate tumorigenesis and uncover previously unrecognized links between aberrant expression of ETS factors, deregulation of epigenetic effectors and silencing of tumor suppressor genes. The link between aberrant ETS activity and epigenetic gene silencing may be relevant for the clinical management of prostate cancer and design of new therapeutic strategies.

  3. The joint effect of the endothelin receptor B gene (EDNRB polymorphism rs10507875 and nitric oxide synthase 3 gene (NOS3 polymorphism rs869109213 in Slovenian patients with type 2 diabetes mellitus and diabetic retinopathy

    Directory of Open Access Journals (Sweden)

    Dejan Bregar

    2018-02-01

    Full Text Available Increasing evidence suggests that endothelin and nitric oxide synthase genes and their products exert biological effects on the vasculature via the nitric oxide or endothelin pathway. The aim of the study was to evaluate the association of rs10507875 and rs869109213 (alone or in interaction with diabetic retinopathy (DR in subjects with type 2 diabetes mellitus (T2DM. We genotyped the single nucleotide polymorphism rs10507875 of the endothelin receptor B gene (EDNRB and variable number tandem repeats rs869109213 of the nitric oxide synthase 3 gene (NOS3 in 270 Slovenian patients with DR and T2DM and 256 controls with T2DM without clinical signs of DR. The genotyping was performed using either real-time polymerase chain reaction (PCR or standard PCR. We found a significant association between the genotypes of NOS3 rs869109213 polymorphism and the risk of DR in the co-dominant model (4a4b genotype; 1.99-fold increased risk [1.09-3.65]; 95% confidence interval [CI]; p = 0.02, co-dominant model (4a4a genotype; 4.16-fold increased risk [1.03-16.74]; 95% CI; p = 0.04, and dominant model (4a4a and 4a4b genotypes; 2.22-fold increased risk [1.26-3.92]; 95% CI; p = 0.01 compared to the 4b4b genotype. Moreover, the joint effect of the two polymorphisms on DR risk was greater than the individual effect of each polymorphism in the analyzed genetic models. Additionally, adjusted odds ratio showed an increased risk in dominant × dominant (4.15-fold [1.40-12.26]; 95% CI; p = 0.01 and recessive × dominant (2.24-fold [1.25-4.01]; 95% CI; p = 0.02 genotype combinations of the two polymorphisms. In conclusion, our results indicate that NOS3 rs869109213 polymorphism alone or in a combination with EDNRB rs10507875 polymorphism may be associated with DR in Slovenian patients with T2DM.

  4. Effects of dipotassium-trioxohydroxytetrafluorotriborate, K2[B3O3F4OH], on cell viability and gene expression of common human cancer drug targets in a melanoma cell line.

    Science.gov (United States)

    Pojskic, Lejla; Haveric, Sanin; Lojo-Kadric, Naida; Hadzic, Maida; Haveric, Anja; Galic, Zoran; Galic, Borivoj; Vullo, Daniela; Supuran, Claudiu T; Milos, Mladen

    2016-12-01

    Recently it was found that dipotassium-trioxohydroxytetrafluorotriborate, K2(B3O3F4OH), is a potent and highly specific inhibitor of precancerous cell processes. We conducted gene expression profiling of human melanoma cells before and after treatment with two concentrations (0.1 and 1 mM) of this boron inorganic derivative in order to assess its effects on deregulation of genes associated with tumor pathways. Parallel trypan blue exclusion assay was performed to assess the cytotoxicity effects of this chemical. Treatment with K2(B3O3F4OH) induced a significant decrease of cell viability in melanoma cellline at both tested concentrations. Furthermore, these treatments caused deregulation of more than 30 genes known as common anti-tumor drug targets. IGF-1 and hTERT were found to be significantly downregulated and this result may imply potential use of K2(B3O3F4OH) as an inhibitor or human telomerase and insulin-like growth factor 1, both of which are associated with various tumor pathways.

  5. Gene expression profiling in limb-girdle muscular dystrophy 2A.

    Directory of Open Access Journals (Sweden)

    Amets Sáenz

    Full Text Available Limb-girdle muscular dystrophy type 2A (LGMD2A is a recessive genetic disorder caused by mutations in calpain 3 (CAPN3. Calpain 3 plays different roles in muscular cells, but little is known about its functions or in vivo substrates. The aim of this study was to identify the genes showing an altered expression in LGMD2A patients and the possible pathways they are implicated in. Ten muscle samples from LGMD2A patients with in which molecular diagnosis was ascertained were investigated using array technology to analyze gene expression profiling as compared to ten normal muscle samples. Upregulated genes were mostly those related to extracellular matrix (different collagens, cell adhesion (fibronectin, muscle development (myosins and melusin and signal transduction. It is therefore suggested that different proteins located or participating in the costameric region are implicated in processes regulated by calpain 3 during skeletal muscle development. Genes participating in the ubiquitin proteasome degradation pathway were found to be deregulated in LGMD2A patients, suggesting that regulation of this pathway may be under the control of calpain 3 activity. As frizzled-related protein (FRZB is upregulated in LGMD2A muscle samples, it could be hypothesized that beta-catenin regulation is also altered at the Wnt signaling pathway, leading to an incorrect myogenesis. Conversely, expression of most transcription factor genes was downregulated (MYC, FOS and EGR1. Finally, the upregulation of IL-32 and immunoglobulin genes may induce the eosinophil chemoattraction explaining the inflammatory findings observed in presymptomatic stages. The obtained results try to shed some light on identification of novel therapeutic targets for limb-girdle muscular dystrophies.

  6. The organization and expression of the mdm2 gene

    Energy Technology Data Exchange (ETDEWEB)

    Montes De Oca Luna, R.; Tabor, A.D.; Eberspaecher, H. [Univ. of Texas, Houston, TX (United States)] [and others

    1996-05-01

    The mdm2 gene encodes a zinc finger protein that negatively regulates p53 function by binding and masking the p53 transcriptional activation domain. Two different promoters control expression of mdm2, one of which is also transactivated by p53. We cloned and characterized the mdm2 gene from a murine 129 library. It contained at least 12 exons and spanned approximately 25 kb of DNA. Sequencing of the mdm2 gene revealed three nucleotide differences that resulted in amino acid substitutions in the previously published mdm2 sequence. Sequences of normal BalbC/J DNA and the original cosmid clone is isolated from the 3T3DM cell line revealed that they are identical, suggesting that the published sequence is in error at these three positions. In addition, we analyzed the expression pattern of mdm2 and found ubiquitous low-level expression throughout embryo development and in adult tissues. Analysis of mRNA from numerous tissues for several mdm2 spliced variants that had been identified in the transformed 3T3DM cell line revealed that these variants could not be detected in the developing embryo or in adult tissues. 25 refs., 3 figs., 2 tabs.

  7. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    Science.gov (United States)

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  8. [Abundances of ammonia-oxidizing archaeal accA and amoA genes in response to NO2 - and NO3 - of hot springs in Yunnan province].

    Science.gov (United States)

    Song, Zhaoqi; Wang, Li; Zhou, Enmin; Wang, Fengping; Xiao, Xiang; Zhang, Chuanlun; Li, Wenjun

    2014-12-04

    Yunnan hot springs have highly diverseammonia-oxidizing archaea (AOA), which are autotrophic and can fix CO2 using the 3-hydroxypropionate/ 4-hydroxybutyrate (HP/HD) pathway. In this study, we investigated the abundances of prokaryotic 16S rRNA gene and archaeal accA and amoA genes in the sediments of hot springs of Yunnan Province, and analysed the correlations between the above gene abundances and environmental factors. We selected the sediments of twenty representative hot springs, and detected the gene abundances by quantitative polymerase chain reaction (qPCR). The principal component analysis (PCA) and the Mantel test in the R software package were performed for the correlations of gene abundance and environmental variables. The bacterial and archaeal 16S rRNA gene abundances were from 6.6 x 10(7) to 4.19 x 10(11) and from 1.27 x 10(6) to 1.51 x 10(11) copies/g sediment, respectively; Archaeal accA and amoA genes were from 8.89 x 10(3) to 6.49 x 10(5) and from 7.64 x 10(3) to 4.36 x 10(5) copies/g sediment, respectively. The results of mantel test showed that accA gene was significantly (R = 0.98, P < 0.001) correlated with amoA gene; Both of them also were correlated significantly with NO2- and NO3 -, but not with pH. The abundances of bacterial and archaeal 16S rRNA genes and the ratio between them varied significantly among Yunnan hot springs. The archaealaccA and amoA genes showed significant correlation with each other, validating our previous finding that AOA in terrestrial hot springs might acquire energy from ammonia oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybutyrate pathway.

  9. HSI2/VAL1 PHD-like domain promotes H3K27 trimethylation to repress the expression of seed maturation genes and complex transgenes in Arabidopsis seedlings.

    Science.gov (United States)

    Veerappan, Vijaykumar; Chen, Naichong; Reichert, Angelika I; Allen, Randy D

    2014-11-01

    The novel mutant allele hsi2-4 was isolated in a genetic screen to identify Arabidopsis mutants with constitutively elevated expression of a glutathione S-transferase F8::luciferase (GSTF8::LUC) reporter gene in Arabidopsis. The hsi2-4 mutant harbors a point mutation that affects the plant homeodomain (PHD)-like domain in HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE2 (HSI2)/VIVIPAROUS1/ABI3-LIKE1 (VAL1). In hsi2-4 seedlings, expression of this LUC transgene and certain endogenous seed-maturation genes is constitutively enhanced. The parental reporter line (WT LUC ) that was used for mutagenesis harbors two independent transgene loci, Kan R and Kan S . Both loci express luciferase whereas only the Kan R locus confers resistance to kanamycin. Here we show that both transgene loci harbor multiple tandem insertions at single sites. Luciferase expression from these sites is regulated by the HSI2 PHD-like domain, which is required for the deposition of repressive histone methylation marks (H3K27me3) at both Kan R and Kan S loci. Expression of LUC and Neomycin Phosphotransferase II transgenes is associated with dynamic changes in H3K27me3 levels, and the activation marks H3K4me3 and H3K36me3 but does not appear to involve repressive H3K9me2 marks, DNA methylation or histone deacetylation. However, hsi2-2 and hsi2-4 mutants are partially resistant to growth inhibition associated with exposure to the DNA methylation inhibitor 5-aza-2'-deoxycytidine. HSI2 is also required for the repression of a subset of regulatory and structural seed maturation genes in vegetative tissues and H3K27me3 marks associated with most of these genes are also HSI2-dependent. These data implicate HSI2 PHD-like domain in the regulation of gene expression involving histone modifications and DNA methylation-mediated epigenetic mechanisms.

  10. Regulation of gene expression by dietary Ca2+ in kidneys of 25-hydroxyvitamin D3-1 alpha-hydroxylase knockout mice.

    NARCIS (Netherlands)

    Hoenderop, J.G.J.; Chon, H.; Gkika, D.; Bluyssen, H.A.; Holstege, F.C.; St. Arnaud, R.; Braam, B.; Bindels, R.J.M.

    2004-01-01

    BACKGROUND: Pseudovitamin D deficiency rickets (PDDR) is an autosomal disease, characterized by undetectable levels of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), rickets and secondary hyperparathyroidism. Mice in which the 25-hydroxyvitamin D3-1 alpha-hydroxylase (1 alpha-OHase) gene was inactivated,

  11. The insulin-like growth factor 2 (IGF2) gene intron3-g.3072G>A polymorphism is not the only Sus scrofa chromosome 2p mutation affecting meat production and carcass traits in pigs: evidence from the effects of a cathepsin D (CTSD) gene polymorphism.

    Science.gov (United States)

    Fontanesi, L; Speroni, C; Buttazzoni, L; Scotti, E; Dall'Olio, S; Nanni Costa, L; Davoli, R; Russo, V

    2010-07-01

    The objective of this study was to evaluate the effects of mutations in 2 genes [IGF2 and cathepsin D (CTSD)] that map on the telomeric end of the p arm of SSC2. In this region, an imprinted QTL affecting muscle mass and fat deposition was reported, and the IGF2 intron3-g.3072G>A substitution was identified as the causative mutation. In the same chromosome region, we assigned, by linkage mapping, the CTSD gene, a lysosomal proteinase, for which we previously identified an SNP in the 3'-untranslated region (AM933484, g.70G>A). We have already shown strong effects of this CTSD mutation on several production traits in Italian Large White pigs, suggesting a possible independent role of this marker in fatness and meat deposition in pigs. To evaluate this hypothesis, after having refined the map position of the CTSD gene by radiation hybrid mapping, we analyzed the IGF2 and the CTSD polymorphisms in 270 Italian Large White and 311 Italian Duroc pigs, for which EBV and random residuals from fixed models were calculated for several traits. Different association analyses were carried out to distinguish the effects of the 2 close markers. In the Italian Large White pigs, the results for IGF2 were highly significant for all traits when using either EBV or random residuals (e.g., using EBV: lean cuts, P = 2.2 x 10(-18); ADG, P = 2.6 x 10(-16); backfat thickness, P = 2.2 x 10(-9); feed:gain ratio, P = 2.3 x 10(-9); ham weight, P = 1.5 x 10(-6)). No effect was observed for meat quality traits. The IGF2 intron3-g.3072G>A mutation did not show any association in the Italian Duroc pigs, probably because of the small variability at this polymorphic site for this breed. However, a significant association was evident for the CTSD marker (P production traits in Italian Duroc pigs (lean content, ADG, backfat thickness, feed:gain ratio) after excluding possible confounding effects of the IGF2 mutation. The effects of the CTSD g.70G>A mutation were also confirmed in a subset of Italian

  12. New truncation mutation of the NR2E3 gene in a Japanese patient with enhanced S-cone syndrome.

    Science.gov (United States)

    Kuniyoshi, Kazuki; Hayashi, Takaaki; Sakuramoto, Hiroyuki; Mishima, Hiroshi; Tsuneoka, Hiroshi; Tsunoda, Kazushige; Iwata, Takeshi; Shimomura, Yoshikazu

    2016-11-01

    The enhanced S-cone syndrome (ESCS) is a rare hereditary retinal degeneration that has enhanced short wavelength-sensitive cone (S-cone) functions. The longitudinal clinical course of this disease has been rarely reported, and the genetic aspects of ESCS have not been well investigated in the Japanese population. In this report, we present our clinical and genetic findings for 2 patients with ESCS. The patients were 2 unrelated Japanese men. Standard ophthalmic examinations and mutation screening for the NR2E3 gene were performed. Patient 1 was a 36-year-old man, and his clinical findings were typical of ESCS. His decimal best-corrected visual acuity (BCVA) was 1.0 OD and 0.5 OS after removal of cataracts. Genetic investigations revealed a homozygous truncation frameshift, the p.I307LfsX33 mutation. Patient 2 was an 11-year-old boy when he was first examined by us. His clinical findings were typical of ESCS except for uveitis in the left eye. His decimal BCVA at the age of 39 years was maintained at 1.5 in each eye, although the retinal degeneration and visual field impairments had progressed during the follow-up period. The genetic investigations revealed homozygous mutations of p.R104Q in the NR2E3 gene. The frameshift mutation, p.I307LfsX33, in the NR2E3 gene is a new causative mutation for ESCS. The clinical observations for patient 2 are the longest ever reported. The retinal degeneration caused by this mutation is slowly progressive, and these patients maintained good vision with maintenance of the foveal structure until their late thirties.

  13. Overexpression of the Squalene Epoxidase Gene Alone and in Combination with the 3-Hydroxy-3-methylglutaryl Coenzyme A Gene Increases Ganoderic Acid Production in Ganoderma lingzhi.

    Science.gov (United States)

    Zhang, De-Huai; Jiang, Lu-Xi; Li, Na; Yu, Xuya; Zhao, Peng; Li, Tao; Xu, Jun-Wei

    2017-06-14

    The squalene epoxidase (SE) gene from the biosynthetic pathway of ganoderic acid (GA) was cloned and overexpressed in Ganoderma lingzhi. The strain that overexpressed the SE produced approximately 2 times more GA molecules than the wild-type (WT) strain. Moreover, SE overexpression upregulated lanosterol synthase gene expression in the biosynthetic pathway. These results indicated that SE stimulates GA accumulation. Then, the SE and 3-hydroxy-3-methylglutaryl coenzyme A (HMGR) genes were simultaneously overexpressed in G. lingzhi. Compared with the individual overexpression of SE or HMGR, the combined overexpression of the two genes further enhanced individual GA production. The overexpressing strain produced maximum GA-T, GA-S, GA-Mk, and GA-Me contents of 90.4 ± 7.5, 35.9 ± 5.4, 6.2 ± 0.5, and 61.8 ± 5.8 μg/100 mg dry weight, respectively. These values were 5.9, 4.5, 2.4, and 5.8 times higher than those produced by the WT strain. This is the first example of the successful manipulation of multiple biosynthetic genes to improve GA content in G. lingzhi.

  14. Differences in the epigenetic regulation of MT-3 gene expression between parental and Cd+2 or As+3 transformed human urothelial cells

    Directory of Open Access Journals (Sweden)

    Ajjimaporn Amornpan

    2011-02-01

    Full Text Available Abstract Background Studies have shown that metallothionein 3 (MT-3 is not expressed in normal urothelium or in the UROtsa cell line, but is expressed in urothelial cancer and in tumors generated from the UROtsa cells that have been transformed by cadmium (Cd+2 or arsenite (As+3.The present study had two major goals. One, to determine if epigenetic modifications control urothelial MT-3 gene expression and if regulation is altered by malignant transformation by Cd+2 or As+3. Two, to determine if MT-3 expression might translate clinically as a biomarker for malignant urothelial cells released into the urine. Results The histone deacetylase inhibitor MS-275 induced MT-3 mRNA expression in both parental UROtsa cells and their transformed counterparts. The demethylating agent, 5-Aza-2'-deoxycytidine (5-AZC had no effect on MT-3 mRNA expression. ChIP analysis showed that metal-responsive transformation factor-1 (MTF-1 binding to metal response elements (MRE elements of the MT-3 promoter was restricted in parental UROtsa cells, but MTF-1 binding to the MREs was unrestricted in the transformed cell lines. Histone modifications at acetyl H4, trimethyl H3K4, trimethyl H3K27, and trimethyl H3K9 were compared between the parental and transformed cell lines in the presence and absence of MS-275. The pattern of histone modifications suggested that the MT-3 promoter in the Cd+2 and As+3 transformed cells has gained bivalent chromatin structure, having elements of being "transcriptionally repressed" and "transcription ready", when compared to parental cells. An analysis of MT-3 staining in urinary cytologies showed that a subset of both active and non-active patients with urothelial cancer shed positive cells in their urine, but that control patients only rarely shed MT-3 positive cells. Conclusion The MT-3 gene is silenced in non-transformed urothelial cells by a mechanism involving histone modification of the MT-3 promoter. In contrast, transformation of the

  15. Detection of large scale 3′ deletions in the PMS2 gene amongst Colon-CFR participants – have we been missing anything?

    Science.gov (United States)

    Clendenning, Mark; Walsh, Michael D; Gelpi, Judith Balmana; Thibodeau, Stephen N.; Lindor, Noralane; Potter, John D.; Newcomb, Polly; LeMarchand, Loic; Haile, Robert; Gallinger, Steve; Hopper, John L.; Jenkins, Mark A.; Rosty, Christophe; Young, Joanne P.; Buchanan, Daniel D.

    2013-01-01

    Current screening practices have been able to identify PMS2 mutations in 78% of cases of colorectal cancer from the Colorectal Cancer Family Registry (Colon CFR) which showed solitary loss of the PMS2 protein. However the detection of large-scale deletions in the 3′ end of the PMS2 gene has not been possible due to technical difficulties associated with pseudogene sequences. Here, we utilised a recently described MLPA/long-range PCR-based approach to screen the remaining 22% (n = 16) of CRC-affected probands for mutations in the 3′ end of the PMS2 gene. No deletions encompassing any or all of exons 12 through 15 were identified; therefore, our results suggest that 3′ deletions in PMS2 are not a frequent occurrence in such families. PMID:23288611

  16. Two potential hookworm DAF-16 target genes, SNR-3 and LPP-1: gene structure, expression profile, and implications of a cis-regulatory element in the regulation of gene expression.

    Science.gov (United States)

    Gao, Xin; Goggin, Kevin; Dowling, Camille; Qian, Jason; Hawdon, John M

    2015-01-08

    Hookworms infect nearly 700 million people, causing anemia and developmental stunting in heavy infections. Little is known about the genomic structure or gene regulation in hookworms, although recent publication of draft genome assemblies has allowed the first investigations of these topics to be undertaken. The transcription factor DAF-16 mediates multiple developmental pathways in the free living nematode Caenorhabditis elegans, and is involved in the recovery from the developmentally arrested L3 in hookworms. Identification of downstream targets of DAF-16 will provide a better understanding of the molecular mechanism of hookworm infection. Genomic Fragment 2.23 containing a DAF-16 binding element (DBE) was used to identify overlapping complementary expressed sequence tags (ESTs). These sequences were used to search a draft assembly of the Ancylostoma caninum genome, and identified two neighboring genes, snr-3 and lpp-1, in a tail-to-tail orientation. Expression patterns of both genes during parasitic development were determined by qRT-PCR. DAF-16 dependent cis-regulatory activity of fragment 2.23 was investigated using an in vitro reporter system. The snr-3 gene spans approximately 5.6 kb in the genome and contains 3 exons and 2 introns, and contains the DBE in its 3' untranslated region. Downstream from snr-3 in a tail-to-tail arrangement is the gene lpp-1. The lpp-1 gene spans more than 6 kb and contains 10 exons and 9 introns. The A. caninum genome contains 2 apparent splice variants, but there are 7 splice variants in the A. ceylanicum genome. While the gene order is similar, the gene structures of the hookworm genes differ from their C. elegans orthologs. Both genes show peak expression in the late L4 stage. Using a cell culture based expression system, fragment 2.23 was found to have both DAF-16-dependent promoter and enhancer activity that required an intact DBE. Two putative DAF-16 targets were identified by genome wide screening for DAF-16 binding

  17. Characterization of polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 and relationship to the alcoholism in a Colombian population.

    Science.gov (United States)

    Méndez, Claudia; Rey, Mauricio

    2015-12-30

    Identify and characterize polymorphisms of genes ADH2, ADH3, ALDH2 and CYP2E1 in a Colombian population residing in the city of Bogotá and determine its possible relationship to the alcoholism. ADH2, ADH3, ALDH2, and CYP2E1 genotypes a population of 148 individuals with non-problematic alcohol and 65 individuals with alcoholism were determined with TaqMan probes and PCR-RFLP. DNA was obtained from peripheral blood white cells. Significant difference was found in family history of alcoholism and use of other psychoactive substances to compare alcoholics with controls. When allelic frequencies for each category (gender) were considered, frequency of A2 allele carriers in ADH2 was found higher in male patients than controls. In women, the relative frequency for c1 allele in CYP2E1 was lower in controls than alcoholics. The ALDH2 locus is monomorphic. No significant differences in allele distributions of the loci examined to compare two populations were observed, however when stratifying the same trend was found that these differences tended to be significant. This study allows us to conclude the positive association between family history of alcoholism and alcoholism suggesting that there is a favourable hereditary predisposition. Since substance dependence requires interaction of multiple genes, the combination of genotypes ADH2 * 2, CYP2E1 * 1 combined with genotype homozygous ALDH2 * 1 found in this study could be leading to the population to a potential risk to alcoholism.

  18. [Toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect].

    Science.gov (United States)

    Liao, R Y; Liu, S

    2016-06-20

    To investigate the toxic effect of trichloroethylene on liver cells with CYP3A4 gene defect. The normal human liver cells (L02 cells) and liver cells with CYP3A4 gene defect were exposed to trichloroethylene at different doses (0.0, 0.4, 0.8, 1.6, 3.2, and 6.4 mmol/L). CCK8 assay and RT-qPCR were used to measure cell viability and changes in the expression of apoptosis genes and oncogenes. After being exposed to trichloroethylene at doses of 1.6, 3.2, and 6.4 mmol/L, the liver cells with CYP3A4 gene defect showed significantly higher cell viability than L02 cells (0.91±0.06/0.89±0.05/0.85±0.07 vs 0.80±0.04/0.73±0.06/0.67±0.07, Ptrichloroethylene groups showed significant increases in the expression of the apoptosis genes caspase-3, caspase-8, and caspase-9 (PTrichloroethylene exposure has a less effect on the expression of apoptosis genes and oncogenes in liver cells with CYP3A4 gene defect than in normal human liver cells, suggesting that CYP3A4 gene defect reduces the inductive effect of trichloroethylene on apoptosis genes and oncogenes.

  19. Association between NLPR1, NLPR3, and P2X7R Gene Polymorphisms with Partial Seizures

    Directory of Open Access Journals (Sweden)

    Haidong Wang

    2017-01-01

    Full Text Available Objectives. Clinical and experimental evidence has clarified that the inflammatory processes within the brain play a pivotal role in the pathophysiology of seizures and epilepsy. Inflammasomes and P2X7 purinergic receptor (P2X7R are important mediators during the inflammatory process. Therefore, we investigated the possible association between partial seizures and inflammasomes NLPR1, NLRP3, and P2X7R gene polymorphisms in the present study. Method. A total of 163 patients and 201 health controls were enrolled in this study and polymorphisms of NLPR1, NLRP3, and P2X7R genes were detected using polymerase chain reaction- (PCR- ligase detection reaction method. Result. The frequency of rs878329 (G>C genotype with C (CG + CC was significantly lower among patients with partial seizures relative to controls (OR = 2.033, 95% CI = 1.290–3.204, p=0.002 for GC + CC versus GG. Intriguingly, we found that the significant difference of rs878329 (G>C genotype and allele frequency only existed among males (OR = 2.542, 95% CI = 1.344–4.810, p=0.004 for GC + CC versus GG, while there was no statistically significant difference among females. However, no significant results were presented for the genotype distributions of rs8079034, rs4612666, rs10754558, rs2027432, rs3751143, and rs208294 polymorphisms between patients and controls. Conclusion. Our study demonstrated the potentially significant role of NLRP1 rs878329 (G>C in developing susceptibility to the partial seizures in a Chinese Han population.

  20. A mutation in the XPB/ERCC3 DNA repair transcription gene, associated with trichothiodystrophy.

    NARCIS (Netherlands)

    G. Weeda (Geert); E. Eveno; I. Donker (Ingrid); W. Vermeulen (Wim); O. Chevalier-Lagente (Odile); A. Taieb; A. Stary; J.H.J. Hoeijmakers (Jan); M. Mezzina; A. Sarasin

    1997-01-01

    textabstractTrichothiodystrophy (TTD) is a rare, autosomal recessive disorder characterized by sulfur-deficient brittle hair and nails, mental retardation, impaired sexual development, and ichthyosis. Photosensitivity has been reported in approximately 50% of the cases, but no skin cancer is

  1. Introducing the "TCDD-inducible AhR-Nrf2 gene battery".

    Science.gov (United States)

    Yeager, Ronnie L; Reisman, Scott A; Aleksunes, Lauren M; Klaassen, Curtis D

    2009-10-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces genes via the transcription factor aryl hydrocarbon receptor (AhR), including Cyp1a1, NAD(P)H:quinone oxidoreductase 1 (Nqo1), UDP-glucuronosyltransferase 1a6 (Ugt1a6), and glutathione S-transferase a1 (Gsta1). These genes are referred to as the "AhR gene battery." However, Nqo1 is also considered a prototypical target gene of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). In mice, TCDD induction of Nrf2 and Nrf2 target, Nqo1, is dependent on AhR, and thus TCDD induction of drug-processing genes may be routed through an AhR-Nrf2 sequence. There has been speculation that Nrf2 may be involved in the TCDD induction of drug-processing genes; however, the data are not definitive. Therefore, to address whether TCDD induction of Nqo1, Ugts, and Gsts is dependent on Nrf2, we conducted the definitive experiment by administering TCDD (50 mug/kg, ip) to Nrf2-null and wild-type (WT) mice and collecting livers 24 h later to quantify the mRNA of drug-processing genes. TCDD induction of Cyp1a1 and Ugt1a1 was similar in WT and Nrf2-null mice, whereas TCDD induction of Ugt1a5 and 1a9 was blunted in Nrf2-null mice. TCDD induced Nqo1, Ugt1a6, 2b34, 2b35, 2b36, UDP-glucuronic acid-synthesizing gene UDP-glucose dehydrogenase, and Gsta1, m1, m2, m3, m6, p2, t2, and microsomal Gst1 in WT mice but not in Nrf2-null mice. Therefore, the present study demonstrates the novel finding that Nrf2 is required for TCDD induction of classical AhR battery genes Nqo1, Ugt1a6, and Gsta1, as well as most Ugt and Gst isoforms in livers of mice.

  2. Isolation and characterization of ScGluD2, a new sugarcane beta-1,3-glucanase D family gene induced by Sporisorium scitamineum, ABA, H2O2, NaCl, and CdCl2 stresses

    Directory of Open Access Journals (Sweden)

    Yachun Su

    2016-09-01

    Full Text Available Beta-1,3-glucanases (EC 3.2.1.39, commonly known as pathogenesis-related (PR proteins, play an important role not only in plant defense against fungal pathogens but also in plant physiological and developmental processes. However, only a limited number of sugarcane beta-1,3-glucanase genes have been isolated. In the present study, we identified and characterized a new beta-1,3-glucanase gene ScGluD2 (GenBank Acc No. KF664181 from sugarcane. An X8 domain was present at the C terminal region of ScGluD2, suggesting beta-1,3-glucan-binding function. Phylogenetic analysis showed that the predicted ScGluD2 protein was classified into subfamily D beta-1,3-glucanase. Localization of the ScGluD2 protein in the plasma membrane was determined by tagging it with green fluorescent protein. The expression of ScGluD2 was more up-regulated in sugarcane smut-resistant cultivars in the early stage (1 d or 3 d than in the susceptible ones after being challenged by the smut pathogen, revealing that ScGluD2 may be involved in defense against the invasion of Sporisorium scitamineum. Transient overexpression of ScGluD2 in Nicotiana benthamiana leaves induced a defense response and exhibited antimicrobial action on the tobacco pathogens Pseudomonas solanacearum and Botrytis cinerea, further demonstrating that ScGluD2 was related to the resistance to plant pathogens. However, the transcripts of ScGluD2 partially increased (12 h under NaCl stress, and were steadily up-regulated from 6 h to 24 h upon ABA, H2O2, and CdCl2 treatments, suggesting that ABA may be a signal molecule regulating oxidative stress and play a role in the salt and heavy metal stress-induced stimulation of ScGluD2 transcripts. Taken together, ScGluD2, a novel member of subfamily D beta-1,3-glucanase, was a stress-related gene of sugarcane involved in plant defense against smut pathogen attack and salt and heavy metal stresses.

  3. Analysis of expression profile of mce operon genes (mce1, mce2, mce3 operon) in different Mycobacterium tuberculosis isolates at different growth phases.

    Science.gov (United States)

    Singh, Pratibha; Katoch, V M; Mohanty, K K; Chauhan, Devendra Singh

    2016-04-01

    Mycobacterium tuberculosis (M. tuberculosis) has four homologous mammalian cell entry (mce) operons (mce1-4) that encode exported proteins and have a possible role in the virulence mechanism of this pathogen. The expression of mce operon is considered to be complex and not completely understood. Although expression of mce operon at different in vitro growth phases has been studied earlier, its expression in different M. tuberculosis isolates under different growth phases is not yet studied. The present preliminary study was conducted on a limited number of isolates to know the trend of expression pattern of mce operon genes in different M. tuberculosis isolates under different growth stages. In this study, we monitored the transcriptional profile of selected mce operon genes (mce1A, mce1D, mce2A, mce2D, mce3A, mce3C) in different M.tuberculosis isolates (MDR1, MDR2, and sensitive isolate) at early exponential and stationary phases using real-time quantitative PCR. The expression ratio of all selected mce operon genes in all M. tuberculosis isolates was reduced at the initial phase and increased substantially at a later phase of growth. Higher expression of mce1 operon genes was found in all M. tuberculosis isolates as compared to other mce operon genes (mce2 and mce3 operons) at stationary growth phase. the higher expression of mce operon genes at stationary phase (as compared to early exponential phase) suggested growth phase dependent expression of mce operon genes. This indicated that the mce operon genes might have a role in M. tuberculosis survival and adaptation on the onset of adverse condition like stationary phase. Identification of differentially expressed genes will add to our understanding of the bacilli involved in adaptation to different growth conditions.

  4. Human longevity and variation in GH/IGF-1/insulin signaling, DNA damage signaling and repair and pro/antioxidant pathway genes

    DEFF Research Database (Denmark)

    Soerensen, Mette; Dato, Serena; Tan, Qihua

    2012-01-01

    SNPs (rs13320360 (MLH1), rs2509049 (H2AFX) and rs705649 (XRCC5)) to be associated with mortality in late life after correction for multiple testing. When examining the 11 SNPs from the case-control study in the longitudinal data, rs3842755 (INS), rs13251813 (WRN) and rs3211994 (NTHL1) demonstrated...

  5. Deletion of GOLGA2P3Y but not GOLGA2P2Y is a risk factor for oligozoospermia.

    Science.gov (United States)

    Sen, Sanjukta; Agarwal, Rupesh; Ambulkar, Prafulla; Hinduja, Indira; Zaveri, Kusum; Gokral, Jyotsna; Pal, Asoke; Modi, Deepak

    2016-02-01

    The AZFc locus on the human Y chromosome harbours several multicopy genes, some of which are required for spermatogenesis. It is believed that deletion of one or more copies of these genes is a cause of infertility in some men. GOLGA2LY is one of the genes in the AZFc locus and it exists in two copies, GOLGA2P2Y and GOLGA2P3Y. The involvement of GOLGA2LY gene copy deletions in male infertility, however, is unknown. This study aimed to investigate the association of deletions of GOLGA2P2Y and GOLGA2P3Y gene copies with male infertility and with sperm concentration and motility. The frequency of GOLGA2P3Y deletion was significantly higher in oligozoospermic men compared with normozoospermic men (7.7% versus 1.2%; P = 0.0001), whereas the frequency of GOLGA2P2Y deletion was comparable between oligozoospermic and normozoospermic men (10.3% versus 11.3%). The deletion of GOLGA2P3Y but not GOLGA2P2Y was significantly higher (P = 0.03) in men with gr/gr rearrangements, indicating that GOLGA2P3Y deletions increase the susceptibility of men with gr/gr rearrangements to oligozoospermia. Furthermore, men with GOLGA2P3Y deletion had reduced sperm concentration and motility compared with men without deletion or with deletion of GOLGA2P2Y. These findings indicate GOLGA2P3Y gene copy may be candidate AZFc gene for male infertility. Copyright © 2015 Reproductive Healthcare Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Clinical, in silico, and experimental evidence for pathogenicity of two novel splice site mutations in the SH3TC2 gene

    Czech Academy of Sciences Publication Activity Database

    Laššuthová, P.; Gregor, Martin; Sarnová, Lenka; Machalová, Eliška; Sedláček, Radislav; Seeman, P.

    2012-01-01

    Roč. 26, 3-4 (2012), s. 413-420 ISSN 0167-7063 R&D Projects: GA ČR GAP303/10/2044 Institutional support: RVO:68378050 Keywords : exon trapping * peripheral neuropathy * SH3TC2 gene * splice site mutation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.159, year: 2012

  7. Engineering low-cadmium rice through stress-inducible expression of OXS3-family member genes.

    Science.gov (United States)

    Wang, Changhu; Guo, Weili; Cai, Xingzhe; Li, Ruyu; Ow, David W

    2018-04-21

    Cadmium (Cd) as a carcinogen poses a great threat to food security and public health through plant-derived foods such as rice, the staple for nearly half of the world's population. We have previously reported that overexpression of truncated gene fragments derived from the rice genes OsO3L2 and OsO3L3 could reduce Cd accumulation in transgenic rice. However, we did not test the full length genes due to prior work in Arabidopsis where overexpression of these genes caused seedling lethality. Here, we report on limiting the overexpression of OsO3L2 and OsO3L3 through the use of the stress- inducible promoter RD29B. However, despite generating 625 putative transformants, only 7 lines survived as T1 seedlings and only 1 line of each overexpressed OsO3L2 or OsO3L3-produced T2 progeny. The T2 homozygotes from these 2 lines showed the same effect of reducing accumulation of Cd in root and shoot as well as in T3 grain. As importantly, the concentrations of essential metals copper (Cu), iron (Fe), manganese (Mn) and zinc (Zn) were unaffected. Analysis of the expression profile suggested that low Cd accumulation may be due to high expression of OsO3L2 and OsO3L3 in the root tip region. Cellular localization of OsO3L2 and OsO3L3 indicate that they are histone H2A interacting nuclear proteins in vascular cells and especially in the root tip region. It is possible that interaction with histone H2A modifies chromatin to regulate downstream gene expression. Copyright © 2018. Published by Elsevier B.V.

  8. Polymorphic Variants rs3088442 and rs2292334 in the Organic Cation Transporter 3 (OCT3) Gene and Susceptibility Against Type 2 Diabetes: Role of their Interaction.

    Science.gov (United States)

    Mahrooz, Abdolkarim; Alizadeh, Ahad; Hashemi-Soteh, Mohammad Bagher; Ghaffari-Cherati, Maryam; Hosseyni-Talei, Seyyedeh Raheleh

    2017-02-01

    In this study, we investigated whether two common variants (rs3088442G>A and rs2292334G>A) in the organic cation transporter 3 (OCT3) gene, a high-capacity transporter widely expressed in various tissues, affect susceptibility to type 2 diabetes (T2D) in patients newly diagnosed with T2D. We performed a study with 150 newly diagnosed patients with T2D and 152 controls. The genetic analyses were performed using the restricted fragment length polymorphism (RFLP) after PCR amplification. For the rs3088442G>A variant, A allele carriers had a significantly lower odds ratio (OR) vs. GG homozygotes in the BMI A variant was associated with a decreased risk of T2D (OR = 0.016, p A in the 3'-untranslated region of the OCT3 gene in susceptibility to T2D, and that the protective role is maintained in the presence of risky alleles of the variant rs2292334G>A. The association of the A allele of rs3088442G>A with T2D become weaker in obese people than that of non-obese. If confirmed in other populations, the rs3088442G>A variant as a genetic marker may potentially assist in the identification of individuals at an increased risk of T2D. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.

  9. Deficient expression of DNA repair enzymes in early progression to sporadic colon cancer

    Science.gov (United States)

    2012-01-01

    Background Cancers often arise within an area of cells (e.g. an epithelial patch) that is predisposed to the development of cancer, i.e. a "field of cancerization" or "field defect." Sporadic colon cancer is characterized by an elevated mutation rate and genomic instability. If a field defect were deficient in DNA repair, DNA damages would tend to escape repair and give rise to carcinogenic mutations. Purpose To determine whether reduced expression of DNA repair proteins Pms2, Ercc1 and Xpf (pairing partner of Ercc1) are early steps in progression to colon cancer. Results Tissue biopsies were taken during colonoscopies of 77 patients at 4 different risk levels for colon cancer, including 19 patients who had never had colonic neoplasia (who served as controls). In addition, 158 tissue samples were taken from tissues near or within colon cancers removed by resection and 16 tissue samples were taken near tubulovillous adenomas (TVAs) removed by resection. 568 triplicate tissue sections (a total of 1,704 tissue sections) from these tissue samples were evaluated by immunohistochemistry for 4 DNA repair proteins. Substantially reduced protein expression of Pms2, Ercc1 and Xpf occurred in field defects of up to 10 cm longitudinally distant from colon cancers or TVAs and within colon cancers. Expression of another DNA repair protein, Ku86, was infrequently reduced in these areas. When Pms2, Ercc1 or Xpf were reduced in protein expression, then either one or both of the other two proteins most often had reduced protein expression as well. The mean inner colon circumferences, from 32 resections, of the ascending, transverse and descending/sigmoid areas were measured as 6.6 cm, 5.8 cm and 6.3 cm, respectively. When combined with other measurements in the literature, this indicates the approximate mean number of colonic crypts in humans is 10 million. Conclusions The substantial deficiencies in protein expression of DNA repair proteins Pms2, Ercc1 and Xpf in about 1 million

  10. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Chu, Hyosub; Jeong, Jae Cheol; Kim, Wook-Jin; Chung, Dong Min; Jeon, Hyo Kon; Ahn, Young Ock; Kim, Sun Ha; Lee, Haeng-Soon; Kwak, Sang-Soo; Kim, Cha Young

    2013-06-01

    R2R3-type MYB transcription factors (TFs) play important roles in transcriptional regulation of anthocyanins. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that transient expression of IbMYB1a led to anthocyanin pigmentation in tobacco leaves. In this article, we generated transgenic Arabidopsis plants expressing the IbMYB1a gene under the control of CaMV 35S promoter, and the sweetpotato SPO and SWPA2 promoters. Overexpression of IbMYBa in transgenic Arabidopsis produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems and seeds. Reverse transcription-polymerase chain reaction analysis showed that IbMYB1a expression induced upregulation of several structural genes in the anthocyanin biosynthetic pathway, including 4CL, CHI, F3'H, DFR, AGT, AAT and GST. Furthermore, overexpression of IbMYB1a led to enhanced expression of the AtTT8 (bHLH) and PAP1/AtMYB75 genes. high-performance liquid chromatography analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in Arabidopsis, as occurs in the purple leaves of sweetpotato (cv. Sinzami). This result shows that the IbMYB1a TF is sufficient to induce anthocyanin accumulation in seedlings, leaves, stems and seeds of Arabidopsis plants. Copyright © Physiologia Plantarum 2012.

  11. Diethylstilbestrol (DES)-stimulated hormonal toxicity is mediated by ERα alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle.

    Science.gov (United States)

    Li, Yin; Hamilton, Katherine J; Lai, Anne Y; Burns, Katherine A; Li, Leping; Wade, Paul A; Korach, Kenneth S

    2014-03-01

    Diethylstilbestrol (DES) is a synthetic estrogen associated with adverse effects on reproductive organs. DES-induced toxicity of the mouse seminal vesicle (SV) is mediated by estrogen receptor α (ERα), which alters expression of seminal vesicle secretory protein IV (Svs4) and lactoferrin (Ltf) genes. We examined a role for nuclear receptor activity in association with DNA methylation and altered gene expression. We used the neonatal DES exposure mouse model to examine DNA methylation patterns via bisulfite conversion sequencing in SVs of wild-type (WT) and ERα-knockout (αERKO) mice. The DNA methylation status at four specific CpGs (-160, -237, -306, and -367) in the Svs4 gene promoter changed during mouse development from methylated to unmethylated, and DES prevented this change at 10 weeks of age in WT SV. At two specific CpGs (-449 and -459) of the Ltf gene promoter, DES altered the methylation status from methylated to unmethylated. Alterations in DNA methylation of Svs4 and Ltf were not observed in αERKO SVs, suggesting that changes of methylation status at these CpGs are ERα dependent. The methylation status was associated with the level of gene expression. In addition, gene expression of three epigenetic modifiers-DNMT3A, MBD2, and HDAC2-increased in the SV of DES-exposed WT mice. DES-induced hormonal toxicity resulted from altered gene expression of Svs4 and Ltf associated with changes in DNA methylation that were mediated by ERα. Alterations in gene expression of DNMT3A, MBD2, and HDAC2 in DES-exposed male mice may be involved in mediating the changes in methylation status in the SV. Li Y, Hamilton KJ, Lai AY, Burns KA, Li L, Wade PA, Korach KS. 2014. Diethylstilbestrol (DES)-stimulated hormonal toxicity is mediated by ERα alteration of target gene methylation patterns and epigenetic modifiers (DNMT3A, MBD2, and HDAC2) in the mouse seminal vesicle. Environ Health Perspect 122:262-268; http://dx.doi.org/10.1289/ehp.1307351.

  12. Epstein-Barr virus-induced gene 3 (EBI3) polymorphisms and expression are associated with susceptibility to pulmonary tuberculosis.

    Science.gov (United States)

    Zheng, Ruijuan; Liu, Haipeng; Song, Peng; Feng, Yonghong; Qin, Lianhua; Huang, Xiaochen; Chen, Jianxia; Yang, Hua; Liu, Zhonghua; Cui, Zhenglin; Hu, Zhongyi; Ge, Baoxue

    2015-07-01

    Tuberculosis (TB) remains a major global health problem and host genetic factors play a critical role in susceptibility and resistance to TB. The aim of this study was to identify novel candidate genes associated with TB susceptibility. We performed a population-based case-control study to genotype 13 tag SNPs spanning Epstein-Barr virus-induced gene 3 (EBI3), colony stimulating factor 2 (CSF2), IL-4, interferon beta 1 (IFNB1), chemokine (C-X-C motif) ligand 14 (CXCL14) and myeloid differentiation primary response gene 88 (Myd88) genes in 435 pulmonary TB patients and 375 health donors from China. We observed that EBI3 gene rs4740 polymorphism was associated with susceptibility to pulmonary tuberculosis (PTB) and the allele G was associated with a protective effect against PTB. Furthermore, EBI3 deficiency led to reduced bacterial burden and histopathological impairment in the lung of mice infected with Mycobacterium bovis BCG. Meanwhile, higher abundance of EBI3 was observed in the granuloma of PTB patients and in the lung tissue of BCG-infected mice. Of note, the expression of EBI3 in macrophages was remarkably induced by mycobacteria infection at both mRNA and protein level. In conclusion, EBI3 gene rs4740 polymorphism is closely associated with susceptibility to PTB and the elevation and enrichment of EBI3 in the lung which at least partially derived from macrophages may contribute to the exacerbation of mycobacterial infection. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. DNA Repair and Ethnic Differences in Prostate Cancer Risk

    National Research Council Canada - National Science Library

    Goldman, Radoslav

    2008-01-01

    .... To evaluate this hypothesis we quantify DNA repair capacity in blood cells using comet assay and evaluate how this repair capacity is related to genetic variants in OGG1 and XRCC1 DNA repair genes...

  14. DNA Repair and Ethnic Differences in Prostate Cancer Risk

    National Research Council Canada - National Science Library

    Goldman, Radoslav

    2007-01-01

    .... To evaluate this hypothesis we quantify DNA repair capacity in blood cells using comet assay and evaluate how this repair capacity is related to genetic variants in OGG1 and XRCC1 DNA repair genes...

  15. DNA Repair and Ethnic Differences in Prostate Cancer Risk

    National Research Council Canada - National Science Library

    Goldman, Radoslav

    2006-01-01

    .... To evaluate this hypothesis, we quantify DNA repair capacity in blood cells using comet assay and evaluate how this repair capacity is related to genetic variants in OGG1 and XRCC1 DNA repair genes...

  16. A homozygous mutation in the endothelin-3 gene associated with a combined Waardenburg type 2 and Hirschsprung phenotype (Shah-Waardenburg syndrome).

    Science.gov (United States)

    Hofstra, R M; Osinga, J; Tan-Sindhunata, G; Wu, Y; Kamsteeg, E J; Stulp, R P; van Ravenswaaij-Arts, C; Majoor-Krakauer, D; Angrist, M; Chakravarti, A; Meijers, C; Buys, C H

    1996-04-01

    Hirschsprung disease (HSCR) or colonic aganglionosis is a congenital disorder characterized by an absence of intramural ganglia along variable lengths of the colon resulting in intestinal obstruction. The incidence of HSCR is 1 in 5,000 live births. Mutations in the RET gene, which codes for a receptor tyrosine kinase, and in EDNRB which codes for the endothelin-B receptor, have been shown to be associated with HSCR in humans. The lethal-spotted mouse which has pigment abnormalities, but also colonic aganglionosis, carries a mutation in the gene coding for endothelin 3 (Edn3), the ligand for the receptor protein encoded by EDNRB. Here, we describe a mutation of the human gene for endothelin 3 (EDN3), homozygously present in a patient with a combined Waardenburg syndrome type 2 (WS2) and HSCR phenotype (Shah-Waardenburg syndrome). The mutation, Cys159Phe, in exon 3 in the ET-3 like domain of EDN3, presumably affects the proteolytic processing of the preproendothelin to the mature peptide EDN3. The patient's parents were first cousins. A previous child in this family had been diagnosed with a similar combination of HSCR, depigmentation and deafness. Depigmentation and deafness were present in other relatives. Moreover, we present a further indication for the involvement of EDNRB in HSCR by reporting a novel mutation detected in one of 40 unselected HSCR patients.

  17. Drosophila KDM2 is a H3K4me3 demethylase regulating nucleolar organization

    Directory of Open Access Journals (Sweden)

    Birchler James A

    2009-10-01

    Full Text Available Abstract Background CG11033 (dKDM2 is the Drosophila homolog of the gene KDM2B. dKDM2 has been known to possess histone lysine demethylase activity towards H3K36me2 in cell lines and it regulates H2A ubiquitination. The human homolog of the gene has dual activity towards H3K36me2 as well as H3K4me3, and plays an important role in cellular senescence. Findings We have used transgenic flies bearing an RNAi construct for the dKDM2 gene. The knockdown of dKDM2 gene was performed by crossing UAS-RNAi-dKDM2 flies with actin-Gal4 flies. Western blots of acid extracted histones and immunofluoresence analysis of polytene chromosome showed the activity of the enzyme dKDM2 to be specific for H3K4me3 in adult flies. Immunofluoresence analysis of polytene chromosome also revealed the presence of multiple nucleoli in RNAi knockdown mutants of dKDM2 and decreased H3-acetylation marks associated with active transcription. Conclusion Our findings indicate that dKDM2 is a histone lysine demethylase with specificity for H3K4me3 and regulates nucleolar organization.

  18. Efficacy of Exome-Targeted Capture Sequencing to Detect Mutations in Known Cerebellar Ataxia Genes.

    Science.gov (United States)

    Coutelier, Marie; Hammer, Monia B; Stevanin, Giovanni; Monin, Marie-Lorraine; Davoine, Claire-Sophie; Mochel, Fanny; Labauge, Pierre; Ewenczyk, Claire; Ding, Jinhui; Gibbs, J Raphael; Hannequin, Didier; Melki, Judith; Toutain, Annick; Laugel, Vincent; Forlani, Sylvie; Charles, Perrine; Broussolle, Emmanuel; Thobois, Stéphane; Afenjar, Alexandra; Anheim, Mathieu; Calvas, Patrick; Castelnovo, Giovanni; de Broucker, Thomas; Vidailhet, Marie; Moulignier, Antoine; Ghnassia, Robert T; Tallaksen, Chantal; Mignot, Cyril; Goizet, Cyril; Le Ber, Isabelle; Ollagnon-Roman, Elisabeth; Pouget, Jean; Brice, Alexis; Singleton, Andrew; Durr, Alexandra

    2018-05-01

    Molecular diagnosis is difficult to achieve in disease groups with a highly heterogeneous genetic background, such as cerebellar ataxia (CA). In many patients, candidate gene sequencing or focused resequencing arrays do not allow investigators to reach a genetic conclusion. To assess the efficacy of exome-targeted capture sequencing to detect mutations in genes broadly linked to CA in a large cohort of undiagnosed patients and to investigate their prevalence. Three hundred nineteen index patients with CA and without a history of dominant transmission were included in the this cohort study by the Spastic Paraplegia and Ataxia Network. Centralized storage was in the DNA and cell bank of the Brain and Spine Institute, Salpetriere Hospital, Paris, France. Patients were classified into 6 clinical groups, with the largest being those with spastic ataxia (ie, CA with pyramidal signs [n = 100]). Sequencing was performed from January 1, 2014, through December 31, 2016. Detected variants were classified as very probably or definitely causative, possibly causative, or of unknown significance based on genetic evidence and genotype-phenotype considerations. Identification of variants in genes broadly linked to CA, classified in pathogenicity groups. The 319 included patients had equal sex distribution (160 female [50.2%] and 159 male patients [49.8%]; mean [SD] age at onset, 27.9 [18.6] years). The age at onset was younger than 25 years for 131 of 298 patients (44.0%) with complete clinical information. Consanguinity was present in 101 of 298 (33.9%). Very probable or definite diagnoses were achieved for 72 patients (22.6%), with an additional 19 (6.0%) harboring possibly pathogenic variants. The most frequently mutated genes were SPG7 (n = 14), SACS (n = 8), SETX (n = 7), SYNE1 (n = 6), and CACNA1A (n = 6). The highest diagnostic rate was obtained for patients with an autosomal recessive CA with oculomotor apraxia-like phenotype (6 of 17 [35.3%]) or

  19. Cloning and characterization of a novel human zinc finger gene, hKid3, from a C2H2-ZNF enriched human embryonic cDNA library

    International Nuclear Information System (INIS)

    Gao Li; Sun Chong; Qiu Hongling; Liu Hui; Shao Huanjie; Wang Jun; Li Wenxin

    2004-01-01

    To investigate the zinc finger genes involved in human embryonic development, we constructed a C 2 H 2 -ZNF enriched human embryonic cDNA library, from which a novel human gene named hKid3 was identified. The hKid3 cDNA encodes a 554 amino acid protein with an amino-terminal KRAB domain and 11 carboxyl-terminal C 2 H 2 zinc finger motifs. Northern blot analysis indicates that two hKid3 transcripts of 6 and 8.5 kb express in human fetal brain and kidney. The 6 kb transcript can also be detected in human adult brain, heart, and skeletal muscle while the 8.5 kb transcript appears to be embryo-specific. GFP-fused hKid3 protein is localized to nuclei and the ZF domain is necessary and sufficient for nuclear localization. To explore the DNA-binding specificity of hKid3, an oligonucleotide library was selected by GST fusion protein of hKid3 ZF domain, and the consensus core sequence 5'-CCAC-3' was evaluated by competitive electrophoretic mobility shift assay. Moreover, The KRAB domain of hKid3 exhibits transcription repressor activity when tested in GAL4 fusion protein assay. These results indicate that hKid3 may function as a transcription repressor with regulated expression pattern during human development of brain and kidney

  20. Cloning, Expression, and Characterization of budC Gene Encoding meso-2,3-Butanediol Dehydrogenase from Bacillus licheniformis.

    Science.gov (United States)

    Xu, Guo-Chao; Bian, Ya-Qian; Han, Rui-Zhi; Dong, Jin-Jun; Ni, Ye

    2016-02-01

    The budC gene encoding a meso-2,3-butanediol dehydrogenase (BlBDH) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli BL21(DE3). Sequence analysis reveals that this BlBDH belongs to short-chain dehydrogenase/reductase (SDR) superfamily. In the presence of NADH, BlBDH catalyzes the reduction of diacetyl to (3S)-acetoin (97.3% ee), and further to (2S,3S)-2,3-butanediol (97.3% ee and 96.5% de). Similar to other meso-2,3-BDHs, it shows oxidative activity to racemic 2,3-butanediol whereas no activity toward racemic acetoin in the presence of NAD(+). For diacetyl reduction and 2,3-butanediol oxidation, the pH optimum of BlBDH is 5.0 and 10.0, respectively. Unusually, it shows relatively high activity over a wide pH range from 5.0 to 8.0 for racemic acetoin reduction. BlBDH shows lower K m and higher catalytic efficiency toward racemic acetoin (K m = 0.47 mM, k cat /K m = 432 s(-1)·mM(-1)) when compared with 2,3-butanediol (K m = 7.25 mM, k cat /K m = 81.5 s(-1)·mM(-1)), indicating its physiological role in favor of reducing racemic acetoin into 2,3-butanediol. The enzymatic characterization of BlBDH provides evidence for the directed engineering of B. licheniformis for producing enantiopure 2,3-butanediol.