WorldWideScience

Sample records for genes differentially regulated

  1. Multiple Catalase Genes Are Differentially Regulated in Aspergillus nidulans

    OpenAIRE

    Kawasaki, Laura; Aguirre, Jesús

    2001-01-01

    Detoxification of hydrogen peroxide is a fundamental aspect of the cellular antioxidant responses in which catalases play a major role. Two differentially regulated catalase genes, catA and catB, have been studied in Aspergillus nidulans. Here we have characterized a third catalase gene, designated catC, which predicts a 475-amino-acid polypeptide containing a peroxisome-targeting signal. With a molecular mass of 54 kDa, CatC shows high similarity to other small-subunit monofunctional catalas...

  2. Identification of differentially regulated genes in human patent ductus arteriosus.

    Science.gov (United States)

    Parikh, Pratik; Bai, Haiqing; Swartz, Michael F; Alfieris, George M; Dean, David A

    2016-07-27

    In order to identify differentially expressed genes that are specific to the ductus arteriosus, 18 candidate genes were evaluated in matched ductus arteriosus and aortic samples from infants with coarctation of the aorta. The cell specificity of the gene's promoters was assessed by performing transient transfection studies in primary cells derived from several patients. Segments of ductus arteriosus and aorta were isolated from infants requiring repair for coarctation of the aorta and used for mRNA quantitation and culturing of cells. Differences in expression were determined by quantitative PCR using the ΔΔCt method. Promoter regions of six of these genes were cloned into luciferase reporter plasmids for transient transfection studies in matched human ductus arteriosus and aorta cells. Transcription factor AP-2b and phospholipase A2 were significantly up-regulated in ductus arteriosus compared to aorta in whole tissues and cultured cells, respectively. In transient transfection experiments, Angiotensin II type 1 receptor and Prostaglandin E receptor 4 promoters consistently gave higher expression in matched ductus arteriosus versus aorta cells from multiple patients. Taken together, these results demonstrate that several genes are differentially expressed in ductus arteriosus and that their promoters may be used to drive ductus arteriosus-enriched transgene expression.

  3. Differential gene regulation by the SRC family of coactivators

    Institute of Scientific and Technical Information of China (English)

    HuaZhang; XiaYi; Xiaojingsun; NaYin; BinShi; HuijianWu; DanWang; GeWu; YongfengShang

    2005-01-01

    SRCs (steroid receptor coactivatorsl are required for nuclear receptor-mediated transcription and are also implicated in the transcription initiation by other transcription factors, such as STATs and NFKB. Despite phenotypic manifestations in gene knockout mice for SRC-1, GRIP1, and AIB1 of the SRC (Steroid Receptor Coactivator) family indicating their differential roles in animal physiology, there is no clear evidence, at the molecular level, to support a functional specificity for these proteins. We demonstrated in this report that two species of SRC coactivators, either as AIBI:GRIP1 or as AIBI:SRC-1 are recruited, possibly through heterodimerization, on the promoter of genes that contain a classical hormone responsive element (HRE). In contrast, on non-HRE-containing gene promoters, on which steroid receptors bind indirectly, either GRIP1 orSRC-1 is recruited as a monomer, depending on the cellular abundance of the protein. Typically, non-HRE-containing genes are early genes activated by steroid receptors, whereas HRE-containing genes are activated later. Our results also showed that SRC proteins contribute to the temporal regulation of gene transcription. In addition, our experiments revealed a positive correlation between AIB1/c-myc overexpression in ER+ breast carcinoma samples, suggesting a possible mechanism for AIB1/n breast cancer carcinogenesis.

  4. Differential gene expression regulated by oscillatory transcription factors.

    Directory of Open Access Journals (Sweden)

    Luca Cerone

    Full Text Available Cells respond to changes in the internal and external environment by a complex regulatory system whose end-point is the activation of transcription factors controlling the expression of a pool of ad-hoc genes. Recent experiments have shown that certain stimuli may trigger oscillations in the concentration of transcription factors such as NF-κB and p53 influencing the final outcome of the genetic response. In this study we investigate the role of oscillations in the case of three different well known gene regulatory mechanisms using mathematical models based on ordinary differential equations and numerical simulations. We considered the cases of direct regulation, two-step regulation and feed-forward loops, and characterized their response to oscillatory input signals both analytically and numerically. We show that in the case of indirect two-step regulation the expression of genes can be turned on or off in a frequency dependent manner, and that feed-forward loops are also able to selectively respond to the temporal profile of oscillating transcription factors.

  5. Gene profile analysis of osteoblast genes differentially regulated by histone deacetylase inhibitors

    Directory of Open Access Journals (Sweden)

    Lamblin Anne-Francoise

    2007-10-01

    Full Text Available Abstract Background Osteoblast differentiation requires the coordinated stepwise expression of multiple genes. Histone deacetylase inhibitors (HDIs accelerate the osteoblast differentiation process by blocking the activity of histone deacetylases (HDACs, which alter gene expression by modifying chromatin structure. We previously demonstrated that HDIs and HDAC3 shRNAs accelerate matrix mineralization and the expression of osteoblast maturation genes (e.g. alkaline phosphatase, osteocalcin. Identifying other genes that are differentially regulated by HDIs might identify new pathways that contribute to osteoblast differentiation. Results To identify other osteoblast genes that are altered early by HDIs, we incubated MC3T3-E1 preosteoblasts with HDIs (trichostatin A, MS-275, or valproic acid for 18 hours in osteogenic conditions. The promotion of osteoblast differentiation by HDIs in this experiment was confirmed by osteogenic assays. Gene expression profiles relative to vehicle-treated cells were assessed by microarray analysis with Affymetrix GeneChip 430 2.0 arrays. The regulation of several genes by HDIs in MC3T3-E1 cells and primary osteoblasts was verified by quantitative real-time PCR. Nine genes were differentially regulated by at least two-fold after exposure to each of the three HDIs and six were verified by PCR in osteoblasts. Four of the verified genes (solute carrier family 9 isoform 3 regulator 1 (Slc9a3r1, sorbitol dehydrogenase 1, a kinase anchor protein, and glutathione S-transferase alpha 4 were induced. Two genes (proteasome subunit, beta type 10 and adaptor-related protein complex AP-4 sigma 1 were suppressed. We also identified eight growth factors and growth factor receptor genes that are significantly altered by each of the HDIs, including Frizzled related proteins 1 and 4, which modulate the Wnt signaling pathway. Conclusion This study identifies osteoblast genes that are regulated early by HDIs and indicates pathways that

  6. Expression profiling of genes regulated by TGF-beta: Differential regulation in normal and tumour cells

    Directory of Open Access Journals (Sweden)

    Takahashi Takashi

    2007-04-01

    Full Text Available Abstract Background TGF-beta is one of the key cytokines implicated in various disease processes including cancer. TGF-beta inhibits growth and promotes apoptosis in normal epithelial cells and in contrast, acts as a pro-tumour cytokine by promoting tumour angiogenesis, immune-escape and metastasis. It is not clear if various actions of TGF-beta on normal and tumour cells are due to differential gene regulations. Hence we studied the regulation of gene expression by TGF-beta in normal and cancer cells. Results Using human 19 K cDNA microarrays, we show that 1757 genes are exclusively regulated by TGF-beta in A549 cells in contrast to 733 genes exclusively regulated in HPL1D cells. In addition, 267 genes are commonly regulated in both the cell-lines. Semi-quantitative and real-time qRT-PCR analysis of some genes agrees with the microarray data. In order to identify the signalling pathways that influence TGF-beta mediated gene regulation, we used specific inhibitors of p38 MAP kinase, ERK kinase, JNK kinase and integrin signalling pathways. The data suggest that regulation of majority of the selected genes is dependent on at least one of these pathways and this dependence is cell-type specific. Interestingly, an integrin pathway inhibitor, RGD peptide, significantly affected TGF-beta regulation of Thrombospondin 1 in A549 cells. Conclusion These data suggest major differences with respect to TGF-beta mediated gene regulation in normal and transformed cells and significant role of non-canonical TGF-beta pathways in the regulation of many genes by TGF-beta.

  7. ZNF750 is expressed in differentiated keratinocytes and regulates epidermal late differentiation genes.

    Directory of Open Access Journals (Sweden)

    Idan Cohen

    Full Text Available Disrupted skin barrier due to altered keratinocyte differentiation is common in pathologic conditions such as atopic dermatitis, ichthyosis and psoriasis. However, the molecular cascades governing keratinocyte terminal differentiation are poorly understood. We have previously demonstrated that a dominant mutation in ZNF750 leads to a clinical phenotype reminiscent of psoriasis and seborrheic dermatitis. Here we show that ZNF750 is a nuclear protein bearing a functional C-terminal nuclear localization signal. ZNF750 was specifically expressed in the epidermal suprabasal layers and its expression was augmented during differentiation, both in human skin and in-vitro, peaking in the granular layer. Silencing of ZNF750 in Ca2+-induced HaCaT keratinocytes led to morphologically apparent arrest in the progression of late differentiation, as well as diminished apoptosis and sustained proliferation. ZNF750 knockdown cells presented with markedly reduced expression of epidermal late differentiation markers, including gene subsets of epidermal differentiation complex and skin barrier formation such as FLG, LOR, SPINK5, ALOX12B and DSG1, known to be mutated in various human skin diseases. Furthermore, overexpression of ZNF750 in undifferentiated cells induced terminal differentiation genes. Thus, ZNF750 is a regulator of keratinocyte terminal differentiation and with its downstream targets can serve in future elucidation of therapeutics for common diseases of skin barrier.

  8. Detection of differentially regulated genes in ischaemic equine intestinal mucosa.

    NARCIS (Netherlands)

    Tschetter, J.R.; Blikslager, A.T.; Little, D.; Howard, R.; Woody, S.L.; Beex, L.V.A.M.; Crisman, M.V.

    2005-01-01

    REASONS FOR PERFORMING STUDY: Colic is a serious disease syndrome in horses. Much of the mortality is associated with ischaemic-injured intestine during strangulating obstruction, yet there is limited understanding of the associated molecular events. Identification of differentially expressed genes

  9. Differential regulation of GS-GOGAT gene expression by plant growth regulators in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Dragićević Milan

    2016-01-01

    Full Text Available Primary and secondary ammonium assimilation is catalyzed by the glutamine synthetase-glutamate synthase (GS-GOGAT pathway in plants. The Arabidopsis genome contains five cytosolic GS1 genes (GLN1;1 - GLN1;5, one nuclear gene for chloroplastic GS2 isoform (GLN2, two Fd-GOGAT genes (GLU1 and GLU2 and a GLT1 gene coding for NADH-GOGAT. Even though the regulation of GS and GOGAT isoforms has been extensively studied in response to various environmental and metabolic cues in many plant species, little is known about the effects of phytohormones on their regulation. The objective of this study was to investigate the impact of representative plant growth regulators, kinetin (KIN, abscisic acid (ABA, gibberellic acid (GA3 and 2,4-dichlorophenoxyacetic acid (2,4-D, on the expression of A. thaliana GS and GOGAT genes. The obtained results indicate that GS and GOGAT genes are differentially regulated by growth regulators in shoots and roots. KIN and 2,4-D repressed GS and GOGAT expression in roots, with little effect on transcript levels in shoots. KIN affected all tested genes; 2,4-D was apparently more selective and less potent. ABA induced the expression of GLN1;1 and GLU2 in whole seedlings, while GA3 enhanced the expression of all tested genes in shoots, except GLU2. The observed expression patterns are discussed in relation to physiological roles of investigated plant growth regulators and N-assimilating enzymes. [Projekat Ministarstva nauke Republike Srbije, br. ON173024

  10. Differential regulation of genes by retrotransposons in rice promoters.

    Science.gov (United States)

    Dhadi, Surendar Reddy; Xu, Zijun; Shaik, Rafi; Driscoll, Kyle; Ramakrishna, Wusirika

    2015-04-01

    Rice genome harbors genes and promoters with retrotransposon insertions. There is very little information about their function. The effect of retrotransposon insertions in four rice promoter regions on gene regulation, was investigated using promoter-reporter gene constructs with and without retrotransposons. Differences in expression levels of gus and egfp reporter genes in forward orientation and rfp in reverse orientation were evaluated in rice plants with transient expression employing quantitative RT-PCR analysis, histochemical GUS staining, and eGFP and RFP fluorescent microscopy. The presence of SINE in the promoter 1 (P1) resulted in higher expression levels of the reporter genes, whereas the presence of LINE in P2 or gypsy LTR retrotransposon in P3 reduced expression of the reporter genes. Furthermore, the SINE in P1 acts as an enhancer in contrast with the LINE in P2 and the gypsy LTR retrotransposon in P3 which act as silencers. CTAA and CGG motifs in these retrotransposons are the likely candidates for the downregulation compared to TCTT motif (SINE) which is a candidate for the upregulation of gene expression. The effect of retrotransposons on gene regulation correlated with the earlier investigation of conservation patterns of these four retrotransposon insertions in several rice accessions implying their evolutionary significance.

  11. Statistical modelling of transcript profiles of differentially regulated genes

    Directory of Open Access Journals (Sweden)

    Sergeant Martin J

    2008-07-01

    Full Text Available Abstract Background The vast quantities of gene expression profiling data produced in microarray studies, and the more precise quantitative PCR, are often not statistically analysed to their full potential. Previous studies have summarised gene expression profiles using simple descriptive statistics, basic analysis of variance (ANOVA and the clustering of genes based on simple models fitted to their expression profiles over time. We report the novel application of statistical non-linear regression modelling techniques to describe the shapes of expression profiles for the fungus Agaricus bisporus, quantified by PCR, and for E. coli and Rattus norvegicus, using microarray technology. The use of parametric non-linear regression models provides a more precise description of expression profiles, reducing the "noise" of the raw data to produce a clear "signal" given by the fitted curve, and describing each profile with a small number of biologically interpretable parameters. This approach then allows the direct comparison and clustering of the shapes of response patterns between genes and potentially enables a greater exploration and interpretation of the biological processes driving gene expression. Results Quantitative reverse transcriptase PCR-derived time-course data of genes were modelled. "Split-line" or "broken-stick" regression identified the initial time of gene up-regulation, enabling the classification of genes into those with primary and secondary responses. Five-day profiles were modelled using the biologically-oriented, critical exponential curve, y(t = A + (B + CtRt + ε. This non-linear regression approach allowed the expression patterns for different genes to be compared in terms of curve shape, time of maximal transcript level and the decline and asymptotic response levels. Three distinct regulatory patterns were identified for the five genes studied. Applying the regression modelling approach to microarray-derived time course data

  12. TET-catalyzed 5-hydroxymethylcytosine regulates gene expression in differentiating colonocytes and colon cancer.

    Science.gov (United States)

    Chapman, Christopher G; Mariani, Christopher J; Wu, Feng; Meckel, Katherine; Butun, Fatma; Chuang, Alice; Madzo, Jozef; Bissonette, Marc B; Kwon, John H; Godley, Lucy A

    2015-12-03

    The formation of differentiated cell types from pluripotent progenitors involves epigenetic regulation of gene expression. DNA hydroxymethylation results from the enzymatic oxidation of 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) by the ten-eleven translocation (TET) 5-mC dioxygenase enzymes. Previous work has mapped changes in 5-mC during differentiation of intestinal stem cells. However, whether or not 5-hmC regulates colonocyte differentiation is unknown. Here we show that 5-hmC regulates gene expression during colonocyte differentiation and controls gene expression in human colon cancers. Genome-wide profiling of 5-hmC during in vitro colonic differentiation demonstrated that 5-hmC is gained at highly expressed and induced genes and is associated with intestinal transcription factor binding sites, including those for HNF4A and CDX2. TET1 induction occurred during differentiation, and TET1 knockdown altered gene expression and inhibited barrier formation of colonocytes. We find that the 5-hmC distribution in primary human colonocytes parallels the distribution found in differentiated cells in vitro, and that gene-specific 5-hmC changes in human colon cancers are directly correlated with changes in gene expression. Our results support a model in which 5-hmC regulates differentiation of adult human intestine and 5-hmC alterations contribute to the disrupted gene expression in colon cancer.

  13. Differential regulation of two period genes in the Xenopus eye.

    Science.gov (United States)

    Zhuang, M; Wang, Y; Steenhard, B M; Besharse, J C

    2000-10-20

    The recent identification and analysis of mammalian homologues of the well characterized Drosophila circadian clock gene, Period (Per), has led to the idea that key features of vertebrate circadian rhythmicity are conserved at the molecular level. The Xenopus laevis retina contains a circadian clock mechanism that can be studied in vitro. To study the rhythmic expression of Per in the Xenopus retina, we used a degenerate RT-PCR strategy to obtain cDNA clones covering the entire 1427 amino acid coding region of a Xenopus homologue of Per2 and a partial cDNA sequence for a Xenopus homologue of Per1. Northern blot analysis shows that xPer1 and xPer2 transcripts are expressed most abundantly in the eye and the brain. However, rhythmic expression of xPer2 transcripts in the retina and retinal pigment epithelium (RPE) is light dependent and occurs only under 12 h light/12 h dark (LD) conditions, not in constant dark (DD). In contrast, xPer1 mRNA accumulation is rhythmic under both LD and DD conditions. Light dependent regulation of xPer2 mRNA and circadian regulation of xPer1 mRNA in the Xenopus retina differs from that in Drosophila and mammals. Light dependence of xPer2 mRNA levels and the offset phase relationship of the xPer2 rhythm to that for xPer1 suggests a role for xPer2 in circadian entrainment.

  14. Polymorphic GGC repeat differentially regulates human reelin gene expression levels.

    Science.gov (United States)

    Persico, A M; Levitt, P; Pimenta, A F

    2006-10-01

    The human gene encoding Reelin (RELN), a pivotal protein in neurodevelopment, includes a polymorphic GGC repeat in its 5' untranslated region (UTR). CHO cells transfected with constructs encompassing the RELN 5'UTR with 4-to-13 GGC repeats upstream of the luciferase reporter gene show declining luciferase activity with increasing GGC repeat number (P autism.

  15. Differential Regulation of α7 Nicotinic Receptor Gene (CHRNA7) Expression in Schizophrenic Smokers

    OpenAIRE

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G.; Freedman, Robert; Leonard, Sherry

    2009-01-01

    The α7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the α7* receptor, as measured by [125I]α-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene...

  16. Differential regulation of Foxo3a target genes in erythropoiesis

    NARCIS (Netherlands)

    W.J. Bakker (Walter Jacob); T.B. van Bijk (Thamar); M. Parren-Van Amelsvoort (Martine); A. Kolbus (Andrea); K. Yamamoto (Kazuo); P. Steinlein (Peter); R.G.W. Verhaak (Roel); T.W. Mak (Tak); H. Beug (Hartmut); B. Löwenberg (Bob); M.M. von Lindern (Marieke)

    2007-01-01

    textabstractThe cooperation of stem cell factor (SCF) and erythropoietin (Epo) is required to induce renewal divisions in erythroid progenitors, whereas differentiation to mature erythrocytes requires the presence of Epo only. Epo and SCF activate common signaling pathways such as the activation of

  17. The nuclear protein-coding gene ANKRD23 negatively regulates myoblast differentiation.

    Science.gov (United States)

    Wang, Xiaojing; Zeng, Rui; Xu, Haiyang; Xu, Zaiyan; Zuo, Bo

    2017-09-20

    Muscle fiber formation is a complex process and subject to fine regulation of a variety of protein-coding genes and non-coding RNA. In this study, we identified a nuclear protein-coding gene ANKRD23 which was highly expressed in muscle. Quantitative real-time PCR, western blotting and immunofluorescence were used to detect the expression change of myoblast differentiation marker genes after knockdown and overexpression of ANKRD23. The results showed that the expression of myoblast differentiation marker genes were increased by interference and reduced by ANKRD23 overexpression, indicating that ANKRD23 played a negative role in the myoblast differentiation. Interestingly, we discovered a long non-coding RNA-AK004293 which was overlapped with the 3'UTR of ANKRD23 gene. Then we detected the effect of AK004293 on the expression of ANKRD23 and myoblast differentiation marker genes in C2C12 myoblasts. The results showed that AK004293 had no significant effect on the expression of myoblast differentiation maker genes and ANKRD23. In conclusion, our results established the foundation for further studies about the regulation mechanism of ANKRD23 in muscle development. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Gastrointestinal differentiation marker Cytokeratin 20 is regulated by homeobox gene CDX1

    DEFF Research Database (Denmark)

    Chan, Carol W M; Wong, Newton A; Liu, Ying

    2009-01-01

    -expression analysis and other approaches. Keratin 20 (KRT20), a member of the intermediate filament and a well-known marker of intestinal differentiation, was initially identified as one of the genes likely to be directly regulated by CDX1. CDX1 and KRT20 mRNA expression were significantly correlated in a panel of 38...

  19. Differential regulation of alpha7 nicotinic receptor gene (CHRNA7) expression in schizophrenic smokers.

    Science.gov (United States)

    Mexal, Sharon; Berger, Ralph; Logel, Judy; Ross, Randal G; Freedman, Robert; Leonard, Sherry

    2010-01-01

    The alpha7 neuronal nicotinic receptor gene (CHRNA7) has been implicated in the pathophysiology of schizophrenia by genetic and pharmacological studies. Expression of the alpha7* receptor, as measured by [(125)I]alpha-bungarotoxin autoradiography, is decreased in postmortem brain of schizophrenic subjects compared to non-mentally ill controls. Most schizophrenic patients are heavy smokers, with high levels of serum cotinine. Smoking changes the expression of multiple genes and differentially regulates gene expression in schizophrenic hippocampus. We examined the effects of smoking on CHRNA7 expression in the same tissue and find that smoking differentially regulates expression of both mRNA and protein for this gene. CHRNA7 mRNA and protein levels are significantly lower in schizophrenic nonsmokers compared to control nonsmokers and are brought to control levels in schizophrenic smokers. Sufficient protein but low surface expression of the alpha7* receptor, seen in the autoradiographic studies, suggests aberrant assembly or trafficking of the receptor.

  20. Differential expression of genes involved in the epigenetic regulation of cell identity in normal human mammary cell commitment and differentiation

    Institute of Scientific and Technical Information of China (English)

    Danila Coradini; Patrizia Boracchi; Saro Oriana; Elia Biganzoli; Federico Ambrogi

    2014-01-01

    The establishment and maintenance of mammary epithelial cell identity depends on the activity of a group of proteins, collectively called maintenance proteins, that act as epigenetic regulators of gene transcription through DNA methylation, histone modification, and chromatin remodeling. Increasing evidence indicates that dysregulation of these crucial proteins may disrupt epithelial cellintegrity and trigger breast tumor initiation. Therefore, we exploredin silico the expression pattern of a panel of 369 genes known to be involved in the establishment and maintenance of epithelial cellidentity and mammary gland remodeling in cell subpopulations isolated from normal human mammary tissue and selectively enriched in their content of bipotent progenitors, committed luminal progenitors, and differentiated myoepithelial or differentiated luminal cells. The results indicated that, compared to bipotent cells, differentiated myoepithelial and luminal subpopulations were both characterized by the differential expression of 4 genes involved in cell identity maintenance:CBX6 andPCGF2, encoding proteins belonging to the Polycomb group, andSMARCD3 andSMARCE1, encoding proteins belonging to the Trithorax group. In addition to these common genes, the myoepithelial phenotype was associated with the differential expression of HDAC1, which encodes histone deacetylase 1, whereas the luminal phenotype was associated with the differential expression ofSMARCA4 andHAT1, which encode a Trithorax protein and histone acetylase 1, respectively. The luminal compartment was further characterized by the overexpression ofALDH1A3 and GATA3, and the down-regulation ofNOTCH4and CCNB1, with the latter suggesting a block in cell cycle progression at the G2 phase. In contrast, myoepithelial differentiation was associated with the overexpression ofMYC and the down-regulation ofCCNE1, with the latter suggesting a block in cellcycle progression at the G1 phase.

  1. Eos negatively regulates human γ-globin gene transcription during erythroid differentiation.

    Directory of Open Access Journals (Sweden)

    Hai-Chuan Yu

    Full Text Available BACKGROUND: Human globin gene expression is precisely regulated by a complicated network of transcription factors and chromatin modifying activities during development and erythropoiesis. Eos (Ikaros family zinc finger 4, IKZF4, a member of the zinc finger transcription factor Ikaros family, plays a pivotal role as a repressor of gene expression. The aim of this study was to examine the role of Eos in globin gene regulation. METHODOLOGY/PRINCIPAL FINDINGS: Western blot and quantitative real-time PCR detected a gradual decrease in Eos expression during erythroid differentiation of hemin-induced K562 cells and Epo-induced CD34+ hematopoietic stem/progenitor cells (HPCs. DNA transfection and lentivirus-mediated gene transfer demonstrated that the enforced expression of Eos significantly represses the expression of γ-globin, but not other globin genes, in K562 cells and CD34+ HPCs. Consistent with a direct role of Eos in globin gene regulation, chromatin immunoprecipitaion and dual-luciferase reporter assays identified three discrete sites located in the DNase I hypersensitivity site 3 (HS3 of the β-globin locus control region (LCR, the promoter regions of the Gγ- and Aγ- globin genes, as functional binding sites of Eos protein. A chromosome conformation capture (3C assay indicated that Eos may repress the interaction between the LCR and the γ-globin gene promoter. In addition, erythroid differentiation was inhibited by enforced expression of Eos in K562 cells and CD34+ HPCs. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that Eos plays an important role in the transcriptional regulation of the γ-globin gene during erythroid differentiation.

  2. Regulation of adipocyte differentiation and gene expression-crosstalk between TGFβ and wnt signaling pathways.

    Science.gov (United States)

    Lu, Hang; Ward, Meliza G; Adeola, Olayiwola; Ajuwon, Kolapo M

    2013-09-01

    Obesity results in reduced differentiation potential of adipocytes leading to adipose tissue insulin resistance. Elevated proinflammatory cytokines from adipose tissue in obesity, such as TNFα have been implicated in the reduced adipocyte differentiation. Other mediators of reduced adipocyte differentiation include TGFβ and wnt proteins. Although some overlap exists in the signaling cascades of the wnt and TGFβ pathways it is unknown if TGFβ or wnt proteins reciprocally induce the expression of each other to maximize their biological effects in adipocytes. Therefore, we investigated the possible involvement of TGFβ signaling in wnt induced gene expression and vice versa in 3T3-L1 adipocyte. Effect of TGFβ and Wnt pathways on differentiation was studied in preadipocytes induced to differentiate in the presence of Wnt3a or TGFβ1 and their inhibitors (FZ8-CRD and SB431542, respectively). Regulation of intracellular signaling and gene expression was also studied in mature adipocytes. Our results show that both TGFβ1 and Wnt3a lead to increased accumulation of β-catenin, phosphorylation of AKT and p44/42 MAPK. However, differences were found in the pattern of gene expression induced by the two proteins suggesting that distinct, but complex, signaling pathways are activated by TGFβ and wnt proteins to independently regulate adipocyte function.

  3. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth.

    Science.gov (United States)

    Du, Juan; Mansfield, Shawn D; Groover, Andrew T

    2009-12-01

    The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX homeobox gene, ARBORKNOX2 (ARK2), which we show influences terminal cell differentiation and cell wall properties during secondary growth. In the early stages of secondary growth, ARK2 is expressed broadly in the cambial zone and in terminally differentiating cell types, before becoming progressively restricted to the cambium. ARK2 overexpression and synthetic miRNA-suppression transgenics reveal positive correlations between ARK2 expression level and the timing of cambium formation, the width of the cambial zone and inhibition of cambial daughter cell differentiation. These phenotypes in turn correlate with changes in the expression of genes affecting transcription, cell division, auxin and cell wall synthesis. Notably, wood properties associated with secondary cell wall synthesis are negatively associated with ARK2 expression, including lignin and cellulose content. Together, our results suggest that ARK2 functions primarily to regulate a complex suite of genes that together influence cell differentiation during secondary growth. We propose that ARK2 may represent a co-evolved transcriptional module that influences complex, adaptive wood properties.

  4. Differential control of Zap1-regulated genes in response to zinc deficiency in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Wu Chang-Yi

    2008-08-01

    Full Text Available Abstract Background The Zap1 transcription factor is a central player in the response of yeast to changes in zinc status. We previously used transcriptome profiling with DNA microarrays to identify 46 potential Zap1 target genes in the yeast genome. In this new study, we used complementary methods to identify additional Zap1 target genes. Results With alternative growth conditions for the microarray experiments and a more sensitive motif identification algorithm, we identified 31 new potential targets of Zap1 activation. Moreover, an analysis of the response of Zap1 target genes to a range of zinc concentrations and to zinc withdrawal over time demonstrated that these genes respond differently to zinc deficiency. Some genes are induced under mild zinc deficiency and act as a first line of defense against this stress. First-line defense genes serve to maintain zinc homeostasis by increasing zinc uptake, and by mobilizing and conserving intracellular zinc pools. Other genes respond only to severe zinc limitation and act as a second line of defense. These second-line defense genes allow cells to adapt to conditions of zinc deficiency and include genes involved in maintaining secretory pathway and cell wall function, and stress responses. Conclusion We have identified several new targets of Zap1-mediated regulation. Furthermore, our results indicate that through the differential regulation of its target genes, Zap1 prioritizes mechanisms of zinc homeostasis and adaptive responses to zinc deficiency.

  5. Differential regulation of the foraging gene associated with task behaviors in harvester ants.

    Science.gov (United States)

    Ingram, Krista K; Kleeman, Lindsay; Peteru, Swetha

    2011-08-10

    The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor), we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among social insect species are likely due to differences in gene

  6. Differential regulation of the foraging gene associated with task behaviors in harvester ants

    Directory of Open Access Journals (Sweden)

    Kleeman Lindsay

    2011-08-01

    Full Text Available Abstract Background The division of labor in social insect colonies involves transitions by workers from one task to another and is critical to the organization and ecological success of colonies. The differential regulation of genetic pathways is likely to be a key mechanism involved in plasticity of social insect task behavior. One of the few pathways implicated in social organization involves the cGMP-activated protein kinase gene, foraging, a gene associated with foraging behavior in social insect species. The association of the foraging gene with behavior is conserved across diverse species, but the observed expression patterns and proposed functions of this gene vary across taxa. We compared the protein sequence of foraging across social insects and explored whether the differential regulation of this gene is associated with task behaviors in the harvester ant, Pogonomyrmex occidentalis. Results Phylogenetic analysis of the coding region of the foraging gene reveals considerable conservation in protein sequence across insects, particularly among hymenopteran species. The absence of amino acid variation in key active and binding sites suggests that differences in behaviors associated with this gene among species may be the result of changes in gene expression rather than gene divergence. Using real time qPCR analyses with a harvester ant ortholog to foraging (Pofor, we found that the brains of harvester ant foragers have a daily fluctuation in expression of foraging with mRNA levels peaking at midday. In contrast, young workers inside the nest have low levels of Pofor mRNA with no evidence of daily fluctuations in expression. As a result, the association of foraging expression with task behavior within a species changes depending on the time of day the individuals are sampled. Conclusions The amino acid protein sequence of foraging is highly conserved across social insects. Differences in foraging behaviors associated with this gene among

  7. Microarray analysis of differentially expressed genes regulating lipid metabolism during melanoma progression.

    Science.gov (United States)

    Sumantran, Venil N; Mishra, Pratik; Sudhakar, N

    2015-04-01

    A new hallmark of cancer involves acquisition of a lipogenic phenotype which promotes tumorigenesis. Little is known about lipid metabolism in melanomas. Therefore, we used BRB (Biometrics Research Branch) class comparison tool with multivariate analysis to identify differentially expressed genes in human cutaneous melanomas, compared with benign nevi and normal skin derived from the microarray dataset (GDS1375). The methods were validated by identifying known melanoma biomarkers (CITED1, FGFR2, PTPRF, LICAM, SPP1 and PHACTR1) in our results. Eighteen genes regulating metabolism of fatty acids, lipid second messengers and gangliosides were 2-9 fold upregulated in melanomas of GDS-1375. Out of the 18 genes, 13 were confirmed by KEGG pathway analysis and 10 were also significantly upregulated in human melanoma cell lines of NCI-60 Cell Miner database. Results showed that melanomas upregulated PPARGC1A transcription factor and its target genes regulating synthesis of fatty acids (SCD) and complex lipids (FABP3 and ACSL3). Melanoma also upregulated genes which prevented lipotoxicity (CPT2 and ACOT7) and regulated lipid second messengers, such as phosphatidic acid (AGPAT-4, PLD3) and inositol triphosphate (ITPKB, ITPR3). Genes for synthesis of pro-tumorigenic GM3 and GD3 gangliosides (UGCG, HEXA, ST3GAL5 and ST8SIA1) were also upregulated in melanoma. Overall, the microarray analysis of GDS-1375 dataset indicated that melanomas can become lipogenic by upregulating genes, leading to increase in fatty acid metabolism, metabolism of specific lipid second messengers, and ganglioside synthesis.

  8. Organization and Differential Regulation of a Cluster of Lignin Peroxidase Genes of Phanerochaete chrysosporium

    Science.gov (United States)

    Stewart, Philip; Cullen, Daniel

    1999-01-01

    The lignin peroxidases of Phanerochaete chrysosporium are encoded by a minimum of 10 closely related genes. Physical and genetic mapping of a cluster of eight lip genes revealed six genes occurring in pairs and transcriptionally convergent, suggesting that portions of the lip family arose by gene duplication events. The completed sequence of lipG and lipJ, together with previously published sequences, allowed phylogenetic and intron/exon classifications, indicating two main branches within the lip family. Competitive reverse transcription-PCR was used to assess lip transcript levels in both carbon- and nitrogen-limited media. Transcript patterns showed differential regulation of lip genes in response to medium composition. No apparent correlation was observed between genomic organization and transcript levels. Both constitutive and upregulated transcripts, structurally unrelated to peroxidases, were identified within the lip cluster. PMID:10348854

  9. A single enhancer regulating the differential expression of duplicated red-sensitive opsin genes in zebrafish.

    Directory of Open Access Journals (Sweden)

    Taro Tsujimura

    2010-12-01

    Full Text Available A fundamental step in the evolution of the visual system is the gene duplication of visual opsins and differentiation between the duplicates in absorption spectra and expression pattern in the retina. However, our understanding of the mechanism of expression differentiation is far behind that of spectral tuning of opsins. Zebrafish (Danio rerio have two red-sensitive cone opsin genes, LWS-1 and LWS-2. These genes are arrayed in a tail-to-head manner, in this order, and are both expressed in the long member of double cones (LDCs in the retina. Expression of the longer-wave sensitive LWS-1 occurs later in development and is thus confined to the peripheral, especially ventral-nasal region of the adult retina, whereas expression of LWS-2 occurs earlier and is confined to the central region of the adult retina, shifted slightly to the dorsal-temporal region. In this study, we employed a transgenic reporter assay using fluorescent proteins and P1-artificial chromosome (PAC clones encompassing the two genes and identified a 0.6-kb "LWS-activating region" (LAR upstream of LWS-1, which regulates expression of both genes. Under the 2.6-kb flanking upstream region containing the LAR, the expression pattern of LWS-1 was recapitulated by the fluorescent reporter. On the other hand, when LAR was directly conjugated to the LWS-2 upstream region, the reporter was expressed in the LDCs but also across the entire outer nuclear layer. Deletion of LAR from the PAC clones drastically lowered the reporter expression of the two genes. These results suggest that LAR regulates both LWS-1 and LWS-2 by enhancing their expression and that interaction of LAR with the promoters is competitive between the two genes in a developmentally restricted manner. Sharing a regulatory region between duplicated genes could be a general way to facilitate the expression differentiation in duplicated visual opsins.

  10. Plasma cell differentiation is coupled to division-dependent DNA hypomethylation and gene regulation.

    Science.gov (United States)

    Barwick, Benjamin G; Scharer, Christopher D; Bally, Alexander P R; Boss, Jeremy M

    2016-10-01

    The epigenetic processes that regulate antibody-secreting plasma cells are not well understood. Here, analysis of plasma cell differentiation revealed DNA hypomethylation of 10% of CpG loci that were overrepresented at enhancers. Inhibition of DNA methylation enhanced plasma cell commitment in a cell-division-dependent manner. Analysis of B cells differentiating in vivo stratified by cell division revealed a fivefold increase in mRNA transcription coupled to DNA hypomethylation. Demethylation occurred first at binding motifs for the transcription factors NF-κB and AP-1 and later at those for the transcription factors IRF and Oct-2 and was coincident with activation and differentiation gene-expression programs in a cell-division-dependent manner. These data provide mechanistic insight into cell-division-coupled transcriptional and epigenetic reprogramming and suggest that DNA hypomethylation reflects the cis-regulatory history of plasma cell differentiation.

  11. The Gene bldA, a regulator of morphological differentiation and antibiotic production in streptomyces.

    Science.gov (United States)

    Hackl, Stefanie; Bechthold, Andreas

    2015-07-01

    Streptomyces species are well known for their particular features of morphological differentiation. On solid agar, a mold-like aerial mycelium is formed and spores are produced, in which the bld genes play a crucial role. In S. coelicolor, mutations in one specific bld gene called bldA led to a "naked" phenotype lacking aerial hyphae and spores. This peculiar behavior became a major interest for scientific research in the past and it was revealed that bldA is coding for a unique tRNA able to translate a UUA codon into the amino acid leucine. UUA codons are a very rare property of G + C-rich Streptomyces genomes. The impact of bldA on morphology can in parts be attributed to the regulatory effect of bldA on the translational level, because TTA-containing genes can only be translated into their corresponding protein in the presence of a fully functioning bldA gene. In addition to the visible effect of bldA expression on the phenotype of S. coelicolor, bldA mutants were also deficient in antibiotic production. This led to the assumption that the role of bldA must exceed translational control. Many TTA-containing genes are coding for transcriptional regulators which are activating or repressing the transcription of many more genes. Proteomics and transcriptomics are two powerful methods for identifying bldA target genes and it was possible to assign also post-translational regulation to bldA. This review wants to give a short overview on the importance of bldA as a regulator of morphological differentiation and antibiotic production by switching on "silent" gene clusters in Streptomyces.

  12. Differential regulation of horizontally acquired and core genome genes by the bacterial modulator H-NS.

    Directory of Open Access Journals (Sweden)

    Rosa C Baños

    2009-06-01

    Full Text Available Horizontal acquisition of DNA by bacteria dramatically increases genetic diversity and hence successful bacterial colonization of several niches, including the human host. A relevant issue is how this newly acquired DNA interacts and integrates in the regulatory networks of the bacterial cell. The global modulator H-NS targets both core genome and HGT genes and silences gene expression in response to external stimuli such as osmolarity and temperature. Here we provide evidence that H-NS discriminates and differentially modulates core and HGT DNA. As an example of this, plasmid R27-encoded H-NS protein has evolved to selectively silence HGT genes and does not interfere with core genome regulation. In turn, differential regulation of both gene lineages by resident chromosomal H-NS requires a helper protein: the Hha protein. Tight silencing of HGT DNA is accomplished by H-NS-Hha complexes. In contrast, core genes are modulated by H-NS homoligomers. Remarkably, the presence of Hha-like proteins is restricted to the Enterobacteriaceae. In addition, conjugative plasmids encoding H-NS variants have hitherto been isolated only from members of the family. Thus, the H-NS system in enteric bacteria presents unique evolutionary features. The capacity to selectively discriminate between core and HGT DNA may help to maintain horizontally transmitted DNA in silent form and may give these bacteria a competitive advantage in adapting to new environments, including host colonization.

  13. The Fto Gene Regulates the Proliferation and Differentiation of Pre-Adipocytes in Vitro

    Directory of Open Access Journals (Sweden)

    Yang Jiao

    2016-02-01

    Full Text Available The highly regulated differentiation and proliferation of pre-adipocytes play a key role in the initiation of obesity. Fat mass and obesity associated (FTO is a novel gene strongly associated with the risk of obesity. A deficiency of FTO may cause growth retardation in addition to fat mass and adipocyte size reduction in vivo. To investigate the potential role of Fto gene on the proliferation and differentiation of pre-adipocytes, we generated Fto-knockdown and overexpressed 3T3-L1 cells. Using numerous proliferation assays our results suggest that Fto knockdown leads to suppression of proliferation, lower mitochondrial membrane potential, less cellular ATP, and decreased and smaller intracellular lipid droplets compared with controls (p < 0.05. Western blot analysis demonstrated that Fto knockdown can significantly suppress peroxisome proliferator-activated receptor gamma (PPARγ and glucose transporter type 4 (GLUT4 expression and inhibit Akt phosphorylation. By contrast, overexpression of Fto had the opposing effect on proliferation, mitochondrial membrane potential, ATP generation, in vitro differentiation, Akt phosphorylation, and PPARγ and GLUT4 expression. Moreover, we demonstrated that Wortmannin, a phosphoinositide 3-kinase (PI3K inhibitor, could inhibit phospho-Akt in Fto overexpressed 3T3-L1 cells. Taken together, the results suggest that Fto regulates the proliferation and differentiation of 3T3-L1 cells via multiple mechanisms, including PPARγ and PI3K/Akt signaling.

  14. TALE homeodomain proteins regulate site-specific terminal differentiation, LCE genes and epidermal barrier.

    Science.gov (United States)

    Jackson, Ben; Brown, Stuart J; Avilion, Ariel A; O'Shaughnessy, Ryan F L; Sully, Katherine; Akinduro, Olufolake; Murphy, Mark; Cleary, Michael L; Byrne, Carolyn

    2011-05-15

    The epidermal barrier varies over the body surface to accommodate regional environmental stresses. Regional skin barrier variation is produced by site-dependent epidermal differentiation from common keratinocyte precursors and often manifests as site-specific skin disease or irritation. There is strong evidence for body-site-dependent dermal programming of epidermal differentiation in which the epidermis responds by altering expression of key barrier proteins, but the underlying mechanisms have not been defined. The LCE multigene cluster encodes barrier proteins that are differentially expressed over the body surface, and perturbation of LCE cluster expression is linked to the common regional skin disease psoriasis. LCE subclusters comprise genes expressed variably in either external barrier-forming epithelia (e.g. skin) or in internal epithelia with less stringent barriers (e.g. tongue). We demonstrate here that a complex of TALE homeobox transcription factors PBX1, PBX2 and Pknox (homologues of Drosophila Extradenticle and Homothorax) preferentially regulate external rather than internal LCE gene expression, competitively binding with SP1 and SP3. Perturbation of TALE protein expression in stratified squamous epithelia in mice produces external but not internal barrier abnormalities. We conclude that epidermal barrier genes, such as the LCE multigene cluster, are regulated by TALE homeodomain transcription factors to produce regional epidermal barriers.

  15. Sirtuin 1 regulation of developmental genes during differentiation of stem cells

    Science.gov (United States)

    Calvanese, Vincenzo; Lara, Ester; Suárez-Álvarez, Beatriz; Abu Dawud, Raed; Vázquez-Chantada, Mercedes; Martínez-Chantar, Maria Luz; Embade, Nieves; López-Nieva, Pilar; Horrillo, Angelica; Hmadcha, Abdelkrim; Soria, Bernat; Piazzolla, Daniela; Herranz, Daniel; Serrano, Manuel; Mato, Jose María; Andrews, Peter W.; López-Larrea, Carlos; Esteller, Manel; Fraga, Mario F.

    2010-01-01

    The longevity-promoting NAD+–dependent class III histone deacetylase Sirtuin 1 (SIRT1) is involved in stem cell function by controlling cell fate decision and/or by regulating the p53-dependent expression of NANOG. We show that SIRT1 is down-regulated precisely during human embryonic stem cell differentiation at both mRNA and protein levels and that the decrease in Sirt1 mRNA is mediated by a molecular pathway that involves the RNA-binding protein HuR and the arginine methyltransferase coactivator-associated arginine methyltransferase 1 (CARM1). SIRT1 down-regulation leads to reactivation of key developmental genes such as the neuroretinal morphogenesis effectors DLL4, TBX3, and PAX6, which are epigenetically repressed by this histone deacetylase in pluripotent human embryonic stem cells. Our results indicate that SIRT1 is regulated during stem cell differentiation in the context of a yet-unknown epigenetic pathway that controls specific developmental genes in embryonic stem cells. PMID:20631301

  16. Differential expression and co-regulation of carrot AOX genes (Daucus carota).

    Science.gov (United States)

    Campos, Maria Doroteia; Cardoso, Hélia Guerra; Linke, Bettina; Costa, José Hélio; de Melo, Dirce Fernandes; Justo, Lígia; Frederico, António Miguel; Arnholdt-Schmitt, Birgit

    2009-12-01

    Alternative oxidase (AOX) is a mitochondrial protein encoded by the nuclear genome. In higher plants AOX genes form a small multigene family mostly consisting of the two subfamilies AOX1 and AOX2. Daucus carota L. is characterized by a unique extension pattern of AOX genes. Different from other plant species studied so far it contains two genes in both subfamilies. Therefore, carrot was recently highlighted as an important model in AOX stress research to understand the evolutionary importance of both AOX subfamilies. Here we report on the expression patterns of DcAOX1a, DcAOX1b and DcAOX2a and DcAOX2b. Our results demonstrate that all of the four carrot AOX genes are expressed. Differential expression was observed in organs, tissues and during de novo induction of secondary root phloem explants to growth and development. DcAOX1a and DcAOX2a indicated a differential transcript accumulation but a similar co-expression pattern. The genes of each carrot AOX sub-family revealed a differential regulation and responsiveness. DcAOX2a indicated high inducibility in contrast to DcAOX2b, which generally revealed low transcript abundance and rather weak responses. In search for within-gene sequence differences between both genes as a potential reason for the differential expression patterns, the structural organization of the two genes was compared. DcAOX2a and DcAOX2b showed high sequence similarity in their open reading frames (ORFs). However, length variability was observed in the N-terminal exon1 region. The predicted cleavage site of the mitochondrial targeting sequence in this locus is untypical small for both genes and consists of 35 amino acids for DcAOX2a and of 21 amino acids for DcAOX2b. The importance of structural gene organization and the relevancy of within-gene sequence variations are discussed. Our results strengthen the value of carrot as a model plant for future studies on the importance of AOX sub family evolution.

  17. Peroxisome proliferator-activated receptor-gamma gene: a key regulator of adipocyte differentiation in chickens.

    Science.gov (United States)

    Wang, Y; Mu, Y; Li, H; Ding, N; Wang, Q; Wang, Y; Wang, S; Wang, N

    2008-02-01

    The peroxisome proliferator-activated receptors (PPAR) are members of the nuclear hormone receptor superfamily. Peroxisome proliferator-activated receptor-gamma is regarded as a "master regulator" of adipocyte differentiation in mammals. The current study was designed to investigate the function and regulatory mechanism of PPARgamma in chicken adipogenesis by RNA interference. Preadipocytes were isolated from the abdominal fat tissue of 12-d-old chickens and cultured. Small-interference PPARgamma RNA (siPPARgamma) was synthesized by in vitro transcription and transfected into chicken preadipocytes by using liposomes. The suppressive effect of siPPARgamma was detected by real-time reverse-transcription PCR and reverse-transcription PCR. The results showed that transient transfection with siPPARgamma significantly inhibited differentiation and enhanced proliferation of chicken preadipocytes (P adipogenesis-associated adipocyte fatty acid-binding protein gene was down-regulated when PPARgamma was silenced. The current work indicates that PPARgamma is a key regulator of chicken preadipocyte differentiation.

  18. MicroRNA-regulated gene networks during mammary cell differentiation are associated with breast cancer.

    Science.gov (United States)

    Aydoğdu, Eylem; Katchy, Anne; Tsouko, Efrosini; Lin, Chin-Yo; Haldosén, Lars-Arne; Helguero, Luisa; Williams, Cecilia

    2012-08-01

    MicroRNAs (miRNAs) play pivotal roles in stem cell biology, differentiation and oncogenesis and are of high interest as potential breast cancer therapeutics. However, their expression and function during normal mammary differentiation and in breast cancer remain to be elucidated. In order to identify which miRNAs are involved in mammary differentiation, we thoroughly investigated miRNA expression during functional differentiation of undifferentiated, stem cell-like, murine mammary cells using two different large-scale approaches followed by qPCR. Significant changes in expression of 21 miRNAs were observed in repeated rounds of mammary cell differentiation. The majority, including the miR-200 family and known tumor suppressor miRNAs, was upregulated during differentiation. Only four miRNAs, including oncomiR miR-17, were downregulated. Pathway analysis indicated complex interactions between regulated miRNA clusters and major pathways involved in differentiation, proliferation and stem cell maintenance. Comparisons with human breast cancer tumors showed the gene profile from the undifferentiated, stem-like stage clustered with that of poor-prognosis breast cancer. A common nominator in these groups was the E2F pathway, which was overrepresented among genes targeted by the differentiation-induced miRNAs. A subset of miRNAs could further discriminate between human non-cancer and breast cancer cell lines, and miR-200a/miR-200b, miR-146b and miR-148a were specifically downregulated in triple-negative breast cancer cells. We show that miR-200a/miR-200b can inhibit epithelial-mesenchymal transition (EMT)-characteristic morphological changes in undifferentiated, non-tumorigenic mammary cells. Our studies propose EphA2 as a novel and important target gene for miR-200a. In conclusion, we present evidentiary data on how miRNAs are involved in mammary cell differentiation and indicate their related roles in breast cancer.

  19. Ezh1 and Ezh2 differentially regulate PSD-95 gene transcription in developing hippocampal neurons.

    Science.gov (United States)

    Henriquez, Berta; Bustos, Fernando J; Aguilar, Rodrigo; Becerra, Alvaro; Simon, Felipe; Montecino, Martin; van Zundert, Brigitte

    2013-11-01

    Polycomb Repressive Complex 2 (PRC2) mediates transcriptional silencing by catalyzing histone H3 lysine 27 trimethylation (H3K27me3), but its role in the maturation of postmitotic mammalian neurons remains largely unknown. We report that the PRC2 paralogs Ezh1 and Ezh2 are differentially expressed during hippocampal development. We show that depletion of Ezh2 leads to increased expression of PSD-95, a critical plasticity gene, and that reduced PSD-95 gene transcription is correlated with enrichment of Ezh2 at the PSD-95 gene promoter; however, the H3K27me3 epigenetic mark is not present at the PSD-95 gene promoter, likely due to the antagonizing effects of the H3S28P and H3K27Ac marks and the activity of the H3K27 demethylases JMJD3 and UTX. In contrast, increased PSD-95 gene transcription is accompanied by the presence of Ezh1 and elongation-engaged RNA Polymerase II complexes at the PSD-95 gene promoter, while knock-down of Ezh1 reduces PSD-95 transcription. These results indicate that Ezh1 and Ezh2 have antagonistic roles in regulating PSD-95 transcription. © 2013.

  20. Convergent differential regulation of SLIT-ROBO axon guidance genes in the brains of vocal learners.

    Science.gov (United States)

    Wang, Rui; Chen, Chun-Chun; Hara, Erina; Rivas, Miriam V; Roulhac, Petra L; Howard, Jason T; Chakraborty, Mukta; Audet, Jean-Nicolas; Jarvis, Erich D

    2015-04-15

    Only a few distantly related mammals and birds have the trait of complex vocal learning, which is the ability to imitate novel sounds. This ability is critical for speech acquisition and production in humans, and is attributed to specialized forebrain vocal control circuits that have several unique connections relative to adjacent brain circuits. As a result, it has been hypothesized that there could exist convergent changes in genes involved in neural connectivity of vocal learning circuits. In support of this hypothesis, expanding on our related study (Pfenning et al. [2014] Science 346: 1256846), here we show that the forebrain part of this circuit that makes a relatively rare direct connection to brainstem vocal motor neurons in independent lineages of vocal learning birds (songbird, parrot, and hummingbird) has specialized regulation of axon guidance genes from the SLIT-ROBO molecular pathway. The SLIT1 ligand was differentially downregulated in the motor song output nucleus that makes the direct projection, whereas its receptor ROBO1 was developmentally upregulated during critical periods for vocal learning. Vocal nonlearning bird species and male mice, which have much more limited vocal plasticity and associated circuits, did not show comparable specialized regulation of SLIT-ROBO genes in their nonvocal motor cortical regions. These findings are consistent with SLIT and ROBO gene dysfunctions associated with autism, dyslexia, and speech sound language disorders and suggest that convergent evolution of vocal learning was associated with convergent changes in the SLIT-ROBO axon guidance pathway.

  1. Social defeat during adolescence and adulthood differentially induce BDNF-regulated immediate early genes

    Directory of Open Access Journals (Sweden)

    Caroline M. Coppens

    2011-11-01

    Full Text Available Stressful life events generally enhance the vulnerability for the development of human psychopathologies such as anxiety disorders and depression. The incidence rates of adult mental disorders steeply rises during adolescence in parallel with a structural and functional reorganization of the neural circuitry underlying stress reactivity. However, the mechanisms underlying susceptibility to stress and manifestation of mental disorders during adolescence are little understood. We hypothesized that heightened sensitivity to stress during adolescence reflects age-dependent differences in the expression of activity-dependent genes involved in synaptic plasticity. Therefore, we compared the effect of social stress during adolescence with social stress in adulthood on the expression of a panel of genes linked to induction of long-term potentiation (LTP and brain-derived neurotrophic factor (BDNF signaling. We show that social defeat during adolescence and adulthood differentially regulates expression of the immediate early genes BDNF, Arc, Carp, and Tieg1, as measured by qPCR in tissue lysates from prefrontal cortex, nucleus accumbens, and hippocampus. In the hippocampus, mRNA levels for all four genes were robustly elevated following social defeat in adolescence, whereas none were induced by defeat in adulthood. The relationship to coping style was also examined using adult reactive and proactive coping rats. Gene expression levels of reactive and proactive animals were similar in the prefrontal cortex and hippocampus. However, a trend toward a differential expression of BDNF and Arc mRNA in the nucleus accumbens was detected. BDNF mRNA was increased in the nucleus accumbens of proactive defeated animals, whereas the expression level in reactive defeated animals was comparable to control animals. The results demonstrate striking differences in immediate early gene expression in response to social defeat in adolescent and adult rats.

  2. Epigenetic repressor-like genes are differentially regulated during grapevine (Vitis vinifera L.) development.

    Science.gov (United States)

    Almada, Rubén; Cabrera, Nuri; Casaretto, José A; Peña-Cortés, Hugo; Ruiz-Lara, Simón; González Villanueva, Enrique

    2011-10-01

    Grapevine sexual reproduction involves a seasonal separation between inflorescence primordia (flowering induction) and flower development. We hypothesized that a repression mechanism implicating epigenetic changes could play a role in the seasonal separation of these two developmental processes in grapevine. Therefore, the expression of five grapevine genes with homology to the Arabidopsis epigenetic repressor genes FERTILIZATION INDEPENDENT ENDOSPERM (FIE), EMBRYONIC FLOWER 2 (EMF2), CURLY LEAF (CLF), MULTICOPY SUPPRESSOR OF IRA 1 (MSI1) and SWINGER (SWN) was analyzed during the development of buds and vegetative and reproductive organs. During bud development, the putative grapevine epigenetic repressor genes VvCLF, VvEMF2, VvMSI1, VvSWN and VvFIE are mainly expressed in latent buds at the flowering induction period, but also detected during bud burst and inflorescence/flower development. The overlapping expression patterns of grapevine PcG-like genes in buds suggest that chromatin remodeling mechanisms could be operating during grapevine bud development for controlling processes such as seasonal flowering, dormancy and bud burst. Furthermore, the expression of grapevine PcG-like genes was also detected in fruits and vegetative organs, suggesting that epigenetic changes could be at the basis of the regulation of various proliferation-differentiation cell transitions that occur during grapevine development.

  3. Global regulation of gene expression and cell differentiation in Caulobacter crescentus in response to nutrient availability.

    Science.gov (United States)

    England, Jennifer C; Perchuk, Barrett S; Laub, Michael T; Gober, James W

    2010-02-01

    In a developmental strategy designed to efficiently exploit and colonize sparse oligotrophic environments, Caulobacter crescentus cells divide asymmetrically, yielding a motile swarmer cell and a sessile stalked cell. After a relatively fixed time period under typical culture conditions, the swarmer cell differentiates into a replicative stalked cell. Since differentiation into the stalked cell type is irreversible, it is likely that environmental factors such as the availability of essential nutrients would influence the timing of the decision to abandon motility and adopt a sessile lifestyle. We measured two different parameters in nutrient-limited chemostat cultures, biomass concentration and the ratio of nonstalked to stalked cells, over a range of flow rates and found that nitrogen limitation significantly extended the swarmer cell life span. The transcriptional profiling experiments described here generate the first comprehensive picture of the global regulatory strategies used by an oligotroph when confronted with an environment where key macronutrients are sparse. The pattern of regulated gene expression in nitrogen- and carbon-limited cells shares some features in common with most copiotrophic organisms, but critical differences suggest that Caulobacter, and perhaps other oligotrophs, have evolved regulatory strategies to deal distinctly with their natural environments. We hypothesize that nitrogen limitation extends the swarmer cell lifetime by delaying the onset of a sequence of differentiation events, which when initiated by the correct combination of external environmental cues, sets the swarmer cell on a path to differentiate into a stalked cell within a fixed time period.

  4. TGF-beta 1 Gene-Activated Matrices Regulated the Osteogenic Differentiation of BMSCs

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Poly (lactic acid/glycolic acid/asparagic acid-co-polyethylene glycol)(PLGA-[ASP-PEG]) scaffold materials were linked with a novel nonviral vector (K)16GRGDSPC through cross linker Sulfo-LC-SPDP to construct a new type of nonviral gene transfer system. Eukaryotic expressing vector containing transforming growth factor beta 1 (pcDNA3-TGFβ1) was encapsulated by the system. Bone marrow stromal cells (BMSCs) obtained from rabbit were cultured on PLGA-[ASP-PEG] modified by (K)16GRGDSPC and TGF-β1 gene and PLGA-[ASP-PEG] modified by (K)16GRGDSPC and empty vector pcDNA3 as control.The expressions of osteogenic makers of the BMSCs cultured on the TGF-β1 gene-activated scaffold materials were found significantly higher than those of the control group (P<0.05). A brand-new way was provided for regulating seed cells to directionally differentiate into osteoblasts for bone defect restoration in bone tissue engineering.

  5. Nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number.

    Science.gov (United States)

    Targoff, Kimara L; Schell, Thomas; Yelon, Deborah

    2008-10-15

    Heart formation is a complex morphogenetic process, and perturbations in cardiac morphogenesis lead to congenital heart disease. NKX2-5 is a key causative gene associated with cardiac birth defects, presumably because of its essential roles during the early steps of cardiogenesis. Previous studies in model organisms implicate NKX2-5 homologs in numerous processes, including cardiac progenitor specification, progenitor proliferation, and chamber morphogenesis. By inhibiting function of the zebrafish NKX2-5 homologs, nkx2.5 and nkx2.7, we show that nkx genes are essential to establish the original dimensions of the linear heart tube. The nkx-deficient heart tube fails to elongate normally: its ventricular portion is atypically short and wide, and its atrial portion is disorganized and sprawling. This atrial phenotype is associated with a surplus of atrial cardiomyocytes, whereas ventricular cell number is normal at this stage. However, ventricular cell number is decreased in nkx-deficient embryos later in development, when cardiac chambers are emerging. Thus, we conclude that nkx genes regulate heart tube extension and exert differential effects on ventricular and atrial cell number. Our data suggest that morphogenetic errors could originate during early stages of heart tube assembly in patients with NKX2-5 mutations.

  6. Neuronal differentiation of human iPS cells induced by baicalin via regulation of bHLH gene expression.

    Science.gov (United States)

    Morita, Akihiro; Soga, Kohei; Nakayama, Hironobu; Ishida, Torao; Kawanishi, Shosuke; Sato, Eisuke F

    2015-09-25

    Efficient differentiation is important for regenerative medicine based on pluripotent stem cells, including treatment of neurodegenerative disorders and trauma. Baicalin promotes neuronal differentiation of neural stem/progenitor cells of rats and mice. To evaluate the suitability of baicalin for neuronal differentiation of human iPS cells, we investigated whether it promotes neuronal differentiation in human iPS cells and monitored basic helix-loop-helix (bHLH) gene expression during neuronal differentiation. Baicalin promoted neuronal differentiation and inhibited glial differentiation, suggesting that baicalin can influence the neuronal fate decision in human iPS cells. Notch signaling, which is upstream of bHLH proteins, was not involved in baicalin-induced neuronal differentiation. Baicalin treatment did not down-regulate Hes1 gene expression, but it reduced Hes1 protein levels and up-regulated Ascl1 gene expression. Thus, baicalin promoted neuronal differentiation via modulation of bHLH transcriptional factors. Therefore, baicalin has potential to be used as a small-molecule drug for regenerative treatment of neurodegenerative disorders.

  7. Alfalfa Enod12 genes are differentially regulated during nodule development by Nod factors and Rhizobium invasion.

    Science.gov (United States)

    Bauer, P; Crespi, M D; Szécsi, J; Allison, L A; Schultze, M; Ratet, P; Kondorosi, E; Kondorosi, A

    1994-01-01

    MsEnod12A and MsEnod12B are two early nodulin genes from alfalfa (Medicago sativa). Differential expression of these genes was demonstrated using a reverse transcription-polymerase chain reaction approach. MsEnod12A RNA was detected only in nodules and not in other plant tissues. In contrast, MsEnod12B transcripts were found in nodules and also at low levels in roots, flowers, stems, and leaves. MsEnod12B expression was enhanced in the root early after inoculation with the microsymbiont Rhizobium meliloti and after treatment with purified Nod factors, whereas MsEnod12A induction was detected only when developing nodules were visible. In situ hybridization showed that in nodules, MsEnod12 expression occurred in the infection zone. In empty Fix- nodules the MsEnod12A transcript level was much reduced, and in spontaneous nodules it was not detectable. These data indicate that MsEnod12B expression in roots is related to the action of Nod factors, whereas MsEnod12A expression is associated with the invasion process in nodules. Therefore, alfalfa possesses different mechanisms regulating MsEnod12A and MsEnod12B expression. PMID:8066132

  8. Thiol synthetases of legumes: immunogold localization and differential gene regulation by phytohormones.

    Science.gov (United States)

    Clemente, Maria R; Bustos-Sanmamed, Pilar; Loscos, Jorge; James, Euan K; Pérez-Rontomé, Carmen; Navascués, Joaquín; Gay, Marina; Becana, Manuel

    2012-06-01

    In plants and other organisms, glutathione (GSH) biosynthesis is catalysed sequentially by γ-glutamylcysteine synthetase (γECS) and glutathione synthetase (GSHS). In legumes, homoglutathione (hGSH) can replace GSH and is synthesized by γECS and a specific homoglutathione synthetase (hGSHS). The subcellular localization of the enzymes was examined by electron microscopy in several legumes and gene expression was analysed in Lotus japonicus plants treated for 1-48 h with 50 μM of hormones. Immunogold localization studies revealed that γECS is confined to chloroplasts and plastids, whereas hGSHS is also in the cytosol. Addition of hormones caused differential expression of thiol synthetases in roots. After 24-48 h, abscisic and salicylic acids downregulated GSHS whereas jasmonic acid upregulated it. Cytokinins and polyamines activated GSHS but not γECS or hGSHS. Jasmonic acid elicited a coordinated response of the three genes and auxin induced both hGSHS expression and activity. Results show that the thiol biosynthetic pathway is compartmentalized in legumes. Moreover, the similar response profiles of the GSH and hGSH contents in roots of non-nodulated and nodulated plants to the various hormonal treatments indicate that thiol homeostasis is independent of the nitrogen source of the plants. The differential regulation of the three mRNA levels, hGSHS activity, and thiol contents by hormones indicates a fine control of thiol biosynthesis at multiple levels and strongly suggests that GSH and hGSH play distinct roles in plant development and stress responses.

  9. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells.

    NARCIS (Netherlands)

    Jong, D.S. de; Steegenga, W.T.; Hendriks, J.M.; Zoelen, E.J.J. van; Olijve, W.; Dechering, K.J.

    2004-01-01

    The bone morphogenetic protein (BMP)-induced Smad signal transduction pathway is an important positive regulator of osteoblast differentiation. BMP and other members of the transforming growth factor-beta (TGF-beta) family have distinct effects on osteoblast differentiation, depending on cell type a

  10. Regulation of Notch signaling genes during BMP2-induced differentiation of osteoblast precursor cells

    NARCIS (Netherlands)

    Jong, de D.S.; Steegenga, W.T.; Hendriks, J.M.A.; Zoelen, van E.J.J.; Olijve, W.; Dechering, K.J.

    2004-01-01

    The bone morphogenetic protein (BMP)-induced Smad signal transduction pathway is an important positive regulator of osteoblast differentiation. BMP and other members of the transforming growth factor-beta (TGF-beta) family have distinct effects on osteoblast differentiation, depending on cell type a

  11. DNA topoisomerase II is involved in regulation of cyst wall protein genes and differentiation in Giardia lamblia.

    Science.gov (United States)

    Lin, Bo-Chi; Su, Li-Hsin; Weng, Shih-Che; Pan, Yu-Jiao; Chan, Nei-Li; Li, Tsai-Kun; Wang, Hsin-Chih; Sun, Chin-Hung

    2013-01-01

    The protozoan Giardia lamblia differentiates into infectious cysts within the human intestinal tract for disease transmission. Expression of the cyst wall protein (cwp) genes increases with similar kinetics during encystation. However, little is known how their gene regulation shares common mechanisms. DNA topoisomerases maintain normal topology of genomic DNA. They are necessary for cell proliferation and tissue development as they are involved in transcription, DNA replication, and chromosome condensation. A putative topoisomerase II (topo II) gene has been identified in the G. lamblia genome. We asked whether Topo II could regulate Giardia encystation. We found that Topo II was present in cell nuclei and its gene was up-regulated during encystation. Topo II has typical ATPase and DNA cleavage activity of type II topoisomerases. Mutation analysis revealed that the catalytic important Tyr residue and cleavage domain are important for Topo II function. We used etoposide-mediated topoisomerase immunoprecipitation assays to confirm the binding of Topo II to the cwp promoters in vivo. Interestingly, Topo II overexpression increased the levels of cwp gene expression and cyst formation. Microarray analysis identified up-regulation of cwp and specific vsp genes by Topo II. We also found that the type II topoisomerase inhibitor etoposide has growth inhibition effect on Giardia. Addition of etoposide significantly decreased the levels of cwp gene expression and cyst formation. Our results suggest that Topo II has been functionally conserved during evolution and that Topo II plays important roles in induction of the cwp genes, which is key to Giardia differentiation into cysts.

  12. Differential regulation of genes encoding manganese peroxidase (MnP) in the basidiomycete Ceriporiopsis subvermispora.

    Science.gov (United States)

    Manubens, Augusto; Avila, Marcela; Canessa, Paulo; Vicuña, Rafael

    2003-09-01

    We previously identified and characterized three mnp genes coding for manganese peroxidase (MnP) in the white rot fungus Ceriporiopsis subvermispora. In this work, we assessed transcript levels of mnp genes in liquid cultures of this fungus grown under various conditions. In the absence of Mn(2+), mnp1 and mnp2 mRNA were detected by Northern hybridization, irrespective of the lack of extracellular MnP activity. Addition of Mn(2+) to the cultures led to a marked increase in both transcripts, the highest titers being observed at 10 micro M Mn(2+). mnp1 mRNA was not detected at Mn(2+ )concentrations above 80 micro M, whereas mnp2 mRNA was still observed at 320 micro M Mn(2+). Differential regulation of these genes was confirmed by the addition of Cu(2+), Zn(2+), Ag(+) and Cd(2+). These metal ions dramatically elevated both transcripts and also allowed the detection of the mnp3 transcript. In most cases, the increase in mRNA levels was partially abolished by the simultaneous presence of Mn(2+), although the latter was strictly required to detect extracellular MnP activity. However, the lignin-related compound syringic acid specifically increased the mnp1 transcript, although only in the absence of Mn(2+). These results indicate that there is no clear correlation between mnp mRNA levels and MnP activity. In addition, they strongly suggest that Mn(2+) plays a post-transcriptional role which is essential for the presence of active MnP in the extracellular fluid.

  13. HPV16 E2 could act as down-regulator in cellular genes implicated in apoptosis, proliferation and cell differentiation

    Directory of Open Access Journals (Sweden)

    Valencia-Hernández Armando

    2011-05-01

    Full Text Available Abstract Background Human Papillomavirus (HPV E2 plays several important roles in the viral cycle, including the transcriptional regulation of the oncogenes E6 and E7, the regulation of the viral genome replication by its association with E1 helicase and participates in the viral genome segregation during mitosis by its association with the cellular protein Brd4. It has been shown that E2 protein can regulate negative or positively the activity of several cellular promoters, although the precise mechanism of this regulation is uncertain. In this work we constructed a recombinant adenoviral vector to overexpress HPV16 E2 and evaluated the global pattern of biological processes regulated by E2 using microarrays expression analysis. Results The gene expression profile was strongly modified in cells expressing HPV16 E2, finding 1048 down-regulated genes, and 581 up-regulated. The main cellular pathway modified was WNT since we found 28 genes down-regulated and 15 up-regulated. Interestingly, this pathway is a convergence point for regulating the expression of genes involved in several cellular processes, including apoptosis, proliferation and cell differentiation; MYCN, JAG1 and MAPK13 genes were selected to validate by RT-qPCR the microarray data as these genes in an altered level of expression, modify very important cellular processes. Additionally, we found that a large number of genes from pathways such as PDGF, angiogenesis and cytokines and chemokines mediated inflammation, were also modified in their expression. Conclusions Our results demonstrate that HPV16 E2 has regulatory effects on cellular gene expression in HPV negative cells, independent of the other HPV proteins, and the gene profile observed indicates that these effects could be mediated by interactions with cellular proteins. The cellular processes affected suggest that E2 expression leads to the cells in to a convenient environment for a replicative cycle of the virus.

  14. Functional dissection of HOXD cluster genes in regulation of neuroblastoma cell proliferation and differentiation.

    Directory of Open Access Journals (Sweden)

    Yunhong Zha

    Full Text Available Retinoic acid (RA can induce growth arrest and neuronal differentiation of neuroblastoma cells and has been used in clinic for treatment of neuroblastoma. It has been reported that RA induces the expression of several HOXD genes in human neuroblastoma cell lines, but their roles in RA action are largely unknown. The HOXD cluster contains nine genes (HOXD1, HOXD3, HOXD4, and HOXD8-13 that are positioned sequentially from 3' to 5', with HOXD1 at the 3' end and HOXD13 the 5' end. Here we show that all HOXD genes are induced by RA in the human neuroblastoma BE(2-C cells, with the genes located at the 3' end being activated generally earlier than those positioned more 5' within the cluster. Individual induction of HOXD8, HOXD9, HOXD10 or HOXD12 is sufficient to induce both growth arrest and neuronal differentiation, which is associated with downregulation of cell cycle-promoting genes and upregulation of neuronal differentiation genes. However, induction of other HOXD genes either has no effect (HOXD1 or has partial effects (HOXD3, HOXD4, HOXD11 and HOXD13 on BE(2-C cell proliferation or differentiation. We further show that knockdown of HOXD8 expression, but not that of HOXD9 expression, significantly inhibits the differentiation-inducing activity of RA. HOXD8 directly activates the transcription of HOXC9, a key effector of RA action in neuroblastoma cells. These findings highlight the distinct functions of HOXD genes in RA induction of neuroblastoma cell differentiation.

  15. Differential regulation of polo-like kinase 1, 2, 3, and 4 gene expression in mammalian cells and tissues.

    Science.gov (United States)

    Winkles, Jeffrey A; Alberts, Gregory F

    2005-01-10

    The four mammalian polo-like kinase (Plk) family members are critical regulators of cell cycle progression, mitosis, cytokinesis, and the DNA damage response. Research conducted to date has primarily investigated the expression patterns, structural features, substrates, and subcellular distribution of these important serine-threonine kinases. Here, we review the published data describing the regulation of Plk1, 2, 3, or 4 gene expression either during mammalian cell cycle progression or in tissue samples. These studies have demonstrated that the Plk family genes are differentially expressed following growth factor stimulation of quiescent fibroblasts. Furthermore, although Plk1 and Plk2 mRNA and protein levels are coordinately regulated during cell cycle progression, this is not the case for Plk3. In addition, the Plk1, 2 and 4 proteins have relatively short intracellular half-lives, but Plk3 is very stable. The Plk family genes are also differentially regulated in stressed cells; for example, when DNA-damaging agents are added to cycling cells, Plk1 expression decreases, but Plk2 and Plk3 expression increases. Finally, Plk1, 2, 3, and 4 are expressed to varying degrees in different human tissue types and it has been reported that Plk1 expression is increased and Plk3 expression is decreased in tumor specimens. These results indicate that the differential regulation of Plk family member gene expression is one cellular strategy for controlling Plk activity in mammalian cells.

  16. Differential regulation of the period genes in striatal regions following cocaine exposure.

    Directory of Open Access Journals (Sweden)

    Edgardo Falcon

    Full Text Available Several studies have suggested that disruptions in circadian rhythms contribute to the pathophysiology of multiple psychiatric diseases, including drug addiction. In fact, a number of the genes involved in the regulation of circadian rhythms are also involved in modulating the reward value for drugs of abuse, like cocaine. Thus, we wanted to determine the effects of chronic cocaine on the expression of several circadian genes in the Nucleus Accumbens (NAc and Caudate Putamen (CP, regions of the brain known to be involved in the behavioral responses to drugs of abuse. Moreover, we wanted to explore the mechanism by which these genes are regulated following cocaine exposure. Here we find that after repeated cocaine exposure, expression of the Period (Per genes and Neuronal PAS Domain Protein 2 (Npas2 are elevated, in a somewhat regionally selective fashion. Moreover, NPAS2 (but not CLOCK (Circadian Locomotor Output Cycles Kaput protein binding at Per gene promoters was enhanced following cocaine treatment. Mice lacking a functional Npas2 gene failed to exhibit any induction of Per gene expression after cocaine, suggesting that NPAS2 is necessary for this cocaine-induced regulation. Examination of Per gene and Npas2 expression over twenty-four hours identified changes in diurnal rhythmicity of these genes following chronic cocaine, which were regionally specific. Taken together, these studies point to selective disruptions in Per gene rhythmicity in striatial regions following chronic cocaine treatment, which are mediated primarily by NPAS2.

  17. E2Fs regulate the expression of genes involved in differentiation, development, proliferation, and apoptosis

    DEFF Research Database (Denmark)

    Müller, H; Bracken, A P; Vernell, R;

    2001-01-01

    The retinoblastoma protein (pRB) and its two relatives, p107 and p130, regulate development and cell proliferation in part by inhibiting the activity of E2F-regulated promoters. We have used high-density oligonucleotide arrays to identify genes in which expression changed in response to activatio...

  18. Differential epigenetic regulation of TOX subfamily high mobility group box genes in lung and breast cancers.

    Directory of Open Access Journals (Sweden)

    Mathewos Tessema

    Full Text Available Aberrant cytosine methylation affects regulation of hundreds of genes during cancer development. In this study, a novel aberrantly hypermethylated CpG island in cancer was discovered within the TOX2 promoter. TOX2 was unmethylated in normal cells but 28% lung (n = 190 and 23% breast (n = 80 tumors were methylated. Expression of two novel TOX2 transcripts identified was significantly reduced in primary lung tumors than distant normal lung (p<0.05. These transcripts were silenced in methylated lung and breast cancer cells and 5-Aza-2-deoxycytidine treatment re-expressed both. Extension of these assays to TOX, TOX3, and TOX4 genes that share similar genomic structure and protein homology with TOX2 revealed distinct methylation profiles by smoking status, histology, and cancer type. TOX was almost exclusively methylated in breast (43% than lung (5% cancer, whereas TOX3 was frequently methylated in lung (58% than breast (30% tumors. TOX4 was unmethylated in all samples and showed the highest expression in normal lung. Compared to TOX4, expression of TOX, TOX2 and TOX3 in normal lung was 25, 44, and 88% lower, respectively, supporting the premise that reduced promoter activity confers increased susceptibility to methylation during lung carcinogenesis. Genome-wide assays revealed that siRNA-mediated TOX2 knockdown modulated multiple pathways while TOX3 inactivation targeted neuronal development and function. Although these knockdowns did not result in further phenotypic changes of lung cancer cells in vitro, the impact on tissue remodeling, inflammatory response, and cell differentiation pathways suggest a potential role for TOX2 in modulating tumor microenvironment.

  19. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    Energy Technology Data Exchange (ETDEWEB)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal; Thomsen, Bo; Larsen, Knud; Hedegaard, Jakob; Bendixen, Christian; Madsen, Lone Bruhn, E-mail: LoneB.Madsen@agrsci.dk

    2013-08-23

    Highlights: •Transcriptome sequencing yielded 223 mill porcine RNA-seq reads, and 59,000 transcribed locations. •Establishment of unique transcription profiles for ten porcine tissues including four brain tissues. •Comparison of transcription profiles at gene, isoform, promoter and transcription start site level. •Highlights a high level of regulation of neuro-related genes at both gene, isoform, and TSS level. •Our results emphasize the pig as a valuable animal model with respect to human biological issues. -- Abstract: The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform expression level, together with an analysis of variation in transcription start sites, promoter usage, and splicing. Totally, 223 million RNA fragments were sequenced leading to the identification of 59,930 transcribed gene locations and 290,936 transcript variants using Cufflinks with similarity to approximately 13,899 annotated human genes. Pairwise analysis of tissues for differential expression at the gene level showed that the smallest differences were between tissues originating from the porcine brain. Interestingly, the relative level of differential expression at the isoform level did generally not vary between tissue contrasts. Furthermore, analysis of differential promoter usage between tissues, revealed a proportionally higher variation between cerebellum (CBE) versus frontal cortex and cerebellum versus hypothalamus (HYP) than in the remaining comparisons. In addition, the comparison of differential transcription start sites showed that the number of these sites is generally increased in comparisons including hypothalamus in contrast to other pairwise assessments. A comprehensive analysis of one of the tissue contrasts, i

  20. Inference of Gene Regulation via miRNAs During ES Cell Differentiation Using MiRaGE Method

    Directory of Open Access Journals (Sweden)

    Jun Yasuda

    2011-12-01

    Full Text Available MicroRNA (miRNA is a critical regulator of cell growth, differentiation, and development. To identify important miRNAs in a biological process, many bioinformatical tools have been developed. We have developed MiRaGE (MiRNA Ranking by Gene Expression method to infer the regulation of gene expression by miRNAs from changes of gene expression profiles. The method does not require precedent array normalization. We applied the method to elucidate possibly important miRNAs during embryonic stem (ES cell differentiation to neuronal cells and we infer that certain miRNAs, including miR-200 family, miR-429, miR-302 family, and miR-17-92 cluster members may be important to the maintenance of undifferentiated status in ES cells.

  1. CHD1 regulates cell fate determination by activation of differentiation-induced genes

    DEFF Research Database (Denmark)

    Baumgart, Simon J; Najafova, Zeynab; Hossan, Tareq

    2017-01-01

    . Furthermore, we observed that CHD1-dependent genes are mainly induced during osteoblast differentiation and are characterized by higher levels of CHD1 occupancy around the TSS. Interestingly, CHD1 depletion resulted in increased pausing of RNA Polymerase II (RNAPII) and decreased H2A.Z occupancy close......The coordinated temporal and spatial activation of gene expression is essential for proper stem cell differentiation. The Chromodomain Helicase DNA-binding protein 1 (CHD1) is a chromatin remodeler closely associated with transcription and nucleosome turnover downstream of the transcriptional start...... to the TSS, but not at enhancer regions. These findings reveal a novel role for CHD1 during osteoblast differentiation and provide further insights into the intricacies of epigenetic regulatory mechanisms controlling cell fate determination....

  2. The Populus homeobox gene ARBORKNOX2 regulates cell differentiation during secondary growth

    Science.gov (United States)

    Juan Du; Shawn D. Mansfield; Andrew T. Groover

    2009-01-01

    The stem cells of the vascular cambium divide to produce daughter cells, which in turn divide before undergoing differentiation during the radial growth of woody stems. The genetic regulation of these developmental events is poorly understood, however. We report here the cloning and functional characterization of a Populus class-I KNOX...

  3. Differential protein-DNA interactions at the promoter and enhancer regions of developmentally regulated U4 snRNA genes.

    Science.gov (United States)

    Miyake, J H; Botros, I W; Stumph, W E

    1992-01-01

    In the chicken genome there are two closely-linked genes, U4B and U4X, that code for different sequence variants of U4 small nuclear RNA (snRNA). Both genes are expressed with nearly equal efficiency in the early embryo, but U4X gene expression is specifically down-regulated relative to U4B as development proceeds. At the present time, little is known about the mechanisms that regulate differential expression of snRNA genes. We have now identified a novel chicken factor, PPBF, that binds sequence-specifically in vitro to the proximal regulatory region of the U4X gene, but not to the proximal region of the U4B gene. PPBF is itself regulated during development and may therefore be a key factor involved in differentially regulating U4X gene transcription relative to U4B. The U4X and U4B enhancers contain distinct sequence variants of two essential motifs (octamer and SPH). The Oct-1 transcription factor binds with similar affinities to both the U4X and U4B octamer motifs. However, a second essential snRNA enhancer-binding protein, SBF, has a 20- to 30-fold lower affinity for the SPH motif in the U4X enhancer than for the homologous SPH motif in the U4B enhancer. A potential role therefore exists for SBF, as well as PPBF, in the preferential down-regulation of the U4X RNA gene during chicken development.

  4. Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily

    DEFF Research Database (Denmark)

    Østergaard, L; Lauvergeat, V; Naested, H

    2001-01-01

    Two tandem genes were identified on Arabidopsis chromosome II (AtCRL1 and AtCRL2) encoding proteins with homology to members of the dihydroflavonol-4-reductase (DFR) superfamily. The encoded CRL1 and CRL2 proteins share 87% mutual amino acid sequence identity whereas their promoter regions...... resembling the expression pattern of late embryogenic abundant ABA-responsive genes. Differential expression of the two genes during plant development was confirmed in plants expressing transcriptional fusions between the two promoters and the Escherichia coli beta-glucuronidase reporter gene. This showed...... that, whereas high expression of AtCRL1 in mature seeds declines during subsequent vegetative growth, transcriptional activity from the AtCRL2 promoter increases during vegetative growth. Expression of both genes is restricted to vascular tissue. Based upon their homology to proteins involved in lignin...

  5. Mechanisms contributing to differential regulation of PAX3 downstream target genes in normal human epidermal melanocytes versus melanoma cells.

    Science.gov (United States)

    Bartlett, Danielle; Boyle, Glen M; Ziman, Mel; Medic, Sandra

    2015-01-01

    Melanoma is a highly aggressive and drug resistant form of skin cancer. It arises from melanocytes, the pigment producing cells of the skin. The formation of these melanocytes is driven by the transcription factor PAX3 early during embryonic development. As a result of alternative splicing, the PAX3 gene gives rise to eight different transcripts which encode isoforms that have different structures and activate different downstream target genes involved in pathways of cell proliferation, migration, differentiation and survival. Furthermore, post-translational modifications have also been shown to alter the functions of PAX3. We previously identified PAX3 downstream target genes in melanocytes and melanoma cells. Here we assessed the effects of PAX3 down-regulation on this panel of target genes in primary melanocytes versus melanoma cells. We show that PAX3 differentially regulates various downstream target genes involved in cell proliferation in melanoma cells compared to melanocytes. To determine mechanisms behind this differential downstream target gene regulation, we performed immunoprecipitation to assess post-translational modifications of the PAX3 protein as well as RNAseq to determine PAX3 transcript expression profiles in melanocytes compared to melanoma cells. Although PAX3 was found to be post-translationally modified, there was no qualitative difference in phosphorylation and ubiquitination between melanocytes and melanoma cells, while acetylation of PAX3 was reduced in melanoma cells. Additionally, there were differences in PAX3 transcript expression profiles between melanocytes and melanoma cells. In particular the PAX3E transcript, responsible for reducing melanocyte proliferation and increasing apoptosis, was found to be down-regulated in melanoma cells compared to melanocytes. These results suggest that alternate transcript expression profiles activate different downstream target genes leading to the melanoma phenotype.

  6. Transcriptional profiling of chickpea genes differentially regulated in response to high-salinity, cold and drought

    Directory of Open Access Journals (Sweden)

    Pang Edwin CK

    2007-09-01

    Full Text Available Abstract Background Cultivated chickpea (Cicer arietinum has a narrow genetic base making it difficult for breeders to produce new elite cultivars with durable resistance to major biotic and abiotic stresses. As an alternative to genome mapping, microarrays have recently been applied in crop species to identify and assess the function of putative genes thought to be involved in plant abiotic stress and defence responses. In the present study, a cDNA microarray approach was taken in order to determine if the transcription of genes, from a set of previously identified putative stress-responsive genes from chickpea and its close relative Lathyrus sativus, were altered in chickpea by the three abiotic stresses; drought, cold and high-salinity. For this, chickpea genotypes known to be tolerant and susceptible to each abiotic stress were challenged and gene expression in the leaf, root and/or flower tissues was studied. The transcripts that were differentially expressed among stressed and unstressed plants in response to the particular stress were analysed in the context of tolerant/susceptible genotypes. Results The transcriptional change of more than two fold was observed for 109, 210 and 386 genes after drought, cold and high-salinity treatments, respectively. Among these, two, 15 and 30 genes were consensually differentially expressed (DE between tolerant and susceptible genotypes studied for drought, cold and high-salinity, respectively. The genes that were DE in tolerant and susceptible genotypes under abiotic stresses code for various functional and regulatory proteins. Significant differences in stress responses were observed within and between tolerant and susceptible genotypes highlighting the multiple gene control and complexity of abiotic stress response mechanism in chickpea. Conclusion The annotation of these genes suggests that they may have a role in abiotic stress response and are potential candidates for tolerance/susceptibility.

  7. Altered Pathway Analyzer: A gene expression dataset analysis tool for identification and prioritization of differentially regulated and network rewired pathways

    Science.gov (United States)

    Kaushik, Abhinav; Ali, Shakir; Gupta, Dinesh

    2017-01-01

    Gene connection rewiring is an essential feature of gene network dynamics. Apart from its normal functional role, it may also lead to dysregulated functional states by disturbing pathway homeostasis. Very few computational tools measure rewiring within gene co-expression and its corresponding regulatory networks in order to identify and prioritize altered pathways which may or may not be differentially regulated. We have developed Altered Pathway Analyzer (APA), a microarray dataset analysis tool for identification and prioritization of altered pathways, including those which are differentially regulated by TFs, by quantifying rewired sub-network topology. Moreover, APA also helps in re-prioritization of APA shortlisted altered pathways enriched with context-specific genes. We performed APA analysis of simulated datasets and p53 status NCI-60 cell line microarray data to demonstrate potential of APA for identification of several case-specific altered pathways. APA analysis reveals several altered pathways not detected by other tools evaluated by us. APA analysis of unrelated prostate cancer datasets identifies sample-specific as well as conserved altered biological processes, mainly associated with lipid metabolism, cellular differentiation and proliferation. APA is designed as a cross platform tool which may be transparently customized to perform pathway analysis in different gene expression datasets. APA is freely available at http://bioinfo.icgeb.res.in/APA. PMID:28084397

  8. Pathways for epidermal cell differentiation via the homeobox gene GLABRA2: update on the roles of the classic regulator.

    Science.gov (United States)

    Lin, Qing; Qing, Lin; Aoyama, Takashi

    2012-10-01

    Recent plant development studies have identified regulatory pathways for epidermal cell differentiation in Arabidopsis thaliana. Interestingly, some of such pathways contain transcriptional networks with a common structure in which the homeobox gene GLABLA2 (GL2) is downstream of the transactivation complex consisting of MYB, bHLH, and WD40 proteins. Here, we review the role of GL2 as an output device of the conserved network, and update the knowledge of epidermal cell differentiation pathways downstream of GL2. Despite the consistent position of GL2 within the network, its role in epidermal tissues varies; in the root epidermis, GL2 promotes non-hair cell differentiation after cell pattern formation, whereas in the leaf epidermis, it is likely to be involved in both pattern formation and differentiation of trichomes. GL2 expression levels act as quantitative factors for initiation of cell differentiation in the root and leaf epidermis; the quantity of hairless cells in non-root hair cell files is reduced by gl2 mutations in a semi-dominant manner, and entopically additive expression of GL2 and a heterozygous gl2 mutation increase and decrease the number of trichomes, respectively. Although few direct target genes have been identified, evidence from genetic and expression analyses suggests that GL2 directly regulates genes with various hierarchies in epidermal cell differentiation pathways. © 2012 Institute of Botany, Chinese Academy of Sciences.

  9. Pathways for Epidermal Cell Differentiation via the Homeobox Gene GLABRA2: Update on the Roles of the Classic Regulator

    Institute of Scientific and Technical Information of China (English)

    Lin Qing; Takashi Aoyama

    2012-01-01

    Recent plant development studies have identified regulatory pathways for epidermal cell differentiation in Arabidopsis thaliana.Interestingly,some of such pathways contain transcriptional networks with a common structure in which the homeobox gene GLABLA2 (GL2) is downstream of the transactivation complex consisting of MYB,bHLH,and WD40 proteins.Here,we review the role of GL2 as an output device of the conserved network,and update the knowledge of epidermal cell differentiation pathways downstream of GL2.Despite the consistent position of GL2 within the network,its role in epidermal tissues varies; in the root epidermis,GL2 promotes non-hair cell differentiation after cell pattern formation,whereas in the leaf epidermis,it is likely to be involved in both pattern formation and differentiation of trichomes.GL2 expression levels act as quantitative factors for initiation of cell differentiation in the root and leaf epidermis; the quantity of hairless cells in non-root hair cell files is reduced by g/2 mutations in a semi-dominant manner,and entopically additive expression of GL2 and a heterozygous g/2 mutation increase and decrease the number of trichomes,respectively.Although few direct target genes have been identified,evidence from genetic and expression analyses suggests that GL2 directly regulates genes with various hierarchies in epidermal cell differentiation pathways.

  10. Cdx and Hox Genes Differentially Regulate Posterior Axial Growth in Mammalian Embryos

    NARCIS (Netherlands)

    Young, Teddy; Rowland, Jennifer Elizabeth; van de Ven, Cesca; Bialecka, Monika; Novoa, Ana; Carapuco, Marta; van Nes, Johan; de Graaff, Wim; Duluc, Isabelle; Freund, Jean-Noel; Beck, Felix; Mallo, Moises; Deschamps, Jacqueline

    2009-01-01

    Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant

  11. Cdx and Hox Genes Differentially Regulate Posterior Axial Growth in Mammalian Embryos

    NARCIS (Netherlands)

    Young, Teddy; Rowland, Jennifer Elizabeth; van de Ven, Cesca; Bialecka, Monika; Novoa, Ana; Carapuco, Marta; van Nes, Johan; de Graaff, Wim; Duluc, Isabelle; Freund, Jean-Noel; Beck, Felix; Mallo, Moises; Deschamps, Jacqueline

    2009-01-01

    Hox and Cdx transcription factors regulate embryonic positional identities. Cdx mutant mice display posterior body truncations of the axial skeleton, neuraxis, and caudal urorectal structures. We show that trunk Hox genes stimulate axial extension, as they can largely rescue these Cdx mutant phenoty

  12. Super-Enhancers at the Nanog Locus Differentially Regulate Neighboring Pluripotency-Associated Genes.

    Science.gov (United States)

    Blinka, Steven; Reimer, Michael H; Pulakanti, Kirthi; Rao, Sridhar

    2016-09-27

    Super-enhancers are tissue-specific cis-regulatory elements that drive expression of genes associated with cell identity and malignancy. A cardinal feature of super-enhancers is that they are transcribed to produce enhancer-derived RNAs (eRNAs). It remains unclear whether super-enhancers robustly activate genes in situ and whether their functions are attributable to eRNAs or the DNA element. CRISPR/Cas9 was used to systematically delete three discrete super-enhancers at the Nanog locus in embryonic stem cells, revealing functional differences in Nanog transcriptional regulation. One distal super-enhancer 45 kb upstream of Nanog (-45 enhancer) regulates both nearest neighbor genes, Nanog and Dppa3. Interestingly, eRNAs produced at the -45 enhancer specifically regulate Dppa3 expression by stabilizing looping of the -45 enhancer and Dppa3. Our work illustrates that genomic editing is required to determine enhancer function and points to a method to selectively target a subset of super-enhancer-regulated genes by depleting eRNAs.

  13. Expression profiling of chickpea genes differentially regulated during a resistance response to Ascochyta rabiei.

    Science.gov (United States)

    Coram, Tristan E; Pang, Edwin C K

    2006-11-01

    Using microarray technology and a set of chickpea (Cicer arietinum L.) unigenes, grasspea (Lathyrus sativus L.) expressed sequence tags (ESTs) and lentil (Lens culinaris Med.) resistance gene analogues, the ascochyta blight (Ascochyta rabiei (Pass.) L.) resistance response was studied in four chickpea genotypes, including resistant, moderately resistant, susceptible and wild relative (Cicer echinospermum L.) genotypes. The experimental system minimized environmental effects and was conducted in reference design, in which samples from mock-inoculated controls acted as reference against post-inoculation samples. Robust data quality was achieved through the use of three biological replicates (including a dye swap), the inclusion of negative controls and strict selection criteria for differentially expressed genes, including a fold change cut-off determined by self-self hybridizations, Student's t-test and multiple testing correction (P resistant and A. rabiei-susceptible genotypes revealed potential gene 'signatures' predictive of effective A. rabiei resistance. These genes included several pathogenesis-related proteins, SNAKIN2 antimicrobial peptide, proline-rich protein, disease resistance response protein DRRG49-C, environmental stress-inducible protein, leucine-zipper protein, polymorphic antigen membrane protein, Ca-binding protein and several unknown proteins. The potential involvement of these genes and their pathways of induction are discussed. This study represents the first large-scale gene expression profiling in chickpea, and future work will focus on the functional validation of the genes of interest.

  14. Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Schuller Dorit

    2011-04-01

    Full Text Available Abstract Background Saccharomyces cerevisiae (Baker's yeast is found in diverse ecological niches and is characterized by high adaptive potential under challenging environments. In spite of recent advances on the study of yeast genome diversity, little is known about the underlying gene expression plasticity. In order to shed new light onto this biological question, we have compared transcriptome profiles of five environmental isolates, clinical and laboratorial strains at different time points of fermentation in synthetic must medium, during exponential and stationary growth phases. Results Our data unveiled diversity in both intensity and timing of gene expression. Genes involved in glucose metabolism and in the stress response elicited during fermentation were among the most variable. This gene expression diversity increased at the onset of stationary phase (diauxic shift. Environmental isolates showed lower average transcript abundance of genes involved in the stress response, assimilation of nitrogen and vitamins, and sulphur metabolism, than other strains. Nitrogen metabolism genes showed significant variation in expression among the environmental isolates. Conclusions Wild type yeast strains respond differentially to the stress imposed by nutrient depletion, ethanol accumulation and cell density increase, during fermentation of glucose in synthetic must medium. Our results support previous data showing that gene expression variability is a source of phenotypic diversity among closely related organisms.

  15. Nitric Oxide Prevents Mouse Embryonic Stem Cell Differentiation Through Regulation of Gene Expression, Cell Signaling, and Control of Cell Proliferation.

    Science.gov (United States)

    Tapia-Limonchi, Rafael; Cahuana, Gladys M; Caballano-Infantes, Estefania; Salguero-Aranda, Carmen; Beltran-Povea, Amparo; Hitos, Ana B; Hmadcha, Abdelkrim; Martin, Franz; Soria, Bernat; Bedoya, Francisco J; Tejedo, Juan R

    2016-09-01

    Nitric oxide (NO) delays mouse embryonic stem cell (mESC) differentiation by regulating genes linked to pluripotency and differentiation. Nevertheless, no profound study has been conducted on cell differentiation regulation by this molecule through signaling on essential biological functions. We sought to demonstrate that NO positively regulates the pluripotency transcriptional core, enforcing changes in the chromatin structure, in addition to regulating cell proliferation, and signaling pathways with key roles in stemness. Culturing mESCs with 2 μM of the NO donor diethylenetriamine/NO (DETA/NO) in the absence of leukemia inhibitory factor (LIF) induced significant changes in the expression of 16 genes of the pluripotency transcriptional core. Furthermore, treatment with DETA/NO resulted in a high occupancy of activating H3K4me3 at the Oct4 and Nanog promoters and repressive H3K9me3 and H3k27me3 at the Brachyury promoter. Additionally, the activation of signaling pathways involved in pluripotency, such as Gsk3-β/β-catenin, was observed, in addition to activation of PI3 K/Akt, which is consistent with the protection of mESCs from cell death. Finally, a decrease in cell proliferation coincides with cell cycle arrest in G2/M. Our results provide novel insights into NO-mediated gene regulation and cell proliferation and suggest that NO is necessary but not sufficient for the maintenance of pluripotency and the prevention of cell differentiation. J. Cell. Biochem. 117: 2078-2088, 2016. © 2016 Wiley Periodicals, Inc.

  16. A genetic analysis of intersex, a gene regulating sexual differentiation in Drosophila melanogaster females

    Energy Technology Data Exchange (ETDEWEB)

    Chase, B.A. [Stanford Univ., CA (United States)]|[Univ. of Nebraska, Omaha, NE (United States); Baker, B.S. [Stanford Univ., CA (United States)

    1995-04-01

    Sex-type in Drosophila melanogaster is controlled by a hierarchically acting set of regulatory genes. At the terminus of this hierarchy lie those regulatory genes responsible for implementing sexual differentiation: genes that control the activity of target loci whose products give rise to sexually dimorphic phenotypes. The genetic analysis of the intersex (ix) gene presented here demonstrates that ix is such a terminally positioned regulatory locus. The ix locus has been localized to the cytogenetic interval between 47E3-6 and 47F11-18. A comparison of the morphological and behavioral phenotypes of homozygotes and hemizygotes for three point mutations at ix indicates that the null phenotypes of homozygotes diplo-X animals into intersexes while leaving haplo-X animals unaffected. Analysis of X-ray induced, mitotic recombination clones lacking ix{sup +} function in the abdomen of diplo-X individuals indicates that the ix{sup +} product functions in a cell-autonomous manner and that it is required at least until the termination of cell division in this tissue. Taken together with previous analyses, our results indicate that the ix{sup +} product is required to function with the female-specific product of doublesex to implement appropriate female sexual differentiation in diplo-X animals. 55 refs., 4 figs., 4 tabs.

  17. Differential regulation of gene expression by LXRs in response to macrophage cholesterol loading.

    Science.gov (United States)

    Ignatova, Irena D; Angdisen, Jerry; Moran, Erin; Schulman, Ira G

    2013-07-01

    The ability of cells to precisely control gene expression in response to intracellular and extracellular signals plays an important role in both normal physiology and in pathological settings. For instance, the accumulation of excess cholesterol by macrophages initiates a genetic response mediated by the liver X receptors (LXRs)-α (NR1H3) and LXRβ (NR1H2), which facilitates the transport of cholesterol out of cells to high-density lipoprotein particles. Studies using synthetic LXR agonists have also demonstrated that macrophage LXR activation simultaneously induces a second network of genes that promotes fatty acid and triglyceride synthesis that may support the detoxification of excess free cholesterol by storage in the ester form. We now show that treatment of human THP-1 macrophages with endogenous or synthetic LXR ligands stimulates both transcriptional and posttranscriptional pathways that result in the selective recruitment of the LXRα subtype to LXR-regulated promoters. Interestingly, when human or mouse macrophages are loaded with cholesterol under conditions that mimic the development of atherogenic macrophage foam cells, a selective LXR response is generated that induces genes mediating cholesterol transport but does not coordinately regulate genes involved in fatty acid synthesis. The gene-selective response to cholesterol loading occurs, even in the presence of LXRα binding to the promoter of the gene encoding the sterol regulatory element-binding protein-1c, the master transcriptional regulator of fatty acid synthesis. The ability of promoter bound LXRα to recruit RNA polymerase to the sterol regulatory element-binding protein-1c promoter, however, appears to be ligand selective.

  18. Transient expression of βC1 protein differentially regulates host genes related to stress response, chloroplast and mitochondrial functions

    Directory of Open Access Journals (Sweden)

    Briddon Rob W

    2010-12-01

    Full Text Available Abstract Background Geminiviruses are emerging plant pathogens that infect a wide variety of crops including cotton, cassava, vegetables, ornamental plants and cereals. The geminivirus disease complex consists of monopartite begomoviruses that require betasatellites for the expression of disease symptoms. These complexes are widespread throughout the Old World and cause economically important diseases on several crops. A single protein encoded by betasatellites, termed βC1, is a suppressor of gene silencing, inducer of disease symptoms and is possibly involved in virus movement. Studies of the interaction of βC1 with hosts can provide useful insight into virus-host interactions and aid in the development of novel control strategies. We have used the differential display technique to isolate host genes which are differentially regulated upon transient expression of the βC1 protein of chili leaf curl betasatellite (ChLCB in Nicotiana tabacum. Results Through differential display analysis, eight genes were isolated from Nicotiana tabacum, at two and four days after infitration with βC1 of ChLCB, expressed under the control of the Cauliflower mosaic virus 35S promoter. Cloning and sequence analysis of differentially amplified products suggested that these genes were involved in ATP synthesis, and acted as electron carriers for respiration and photosynthesis processes. These differentially expressed genes (DEGs play an important role in plant growth and development, cell protection, defence processes, replication mechanisms and detoxification responses. Kegg orthology based annotation system analysis of these DEGs demonstrated that one of the genes, coding for polynucleotide nucleotidyl transferase, is involved in purine and pyrimidine metabolic pathways and is an RNA binding protein which is involved in RNA degradation. Conclusion βC1 differentially regulated genes are mostly involved in chloroplast and mitochondrial functions. βC1 also

  19. Continuous versus cyclic progesterone exposure differentially regulates hippocampal gene expression and functional profiles.

    Directory of Open Access Journals (Sweden)

    Liqin Zhao

    Full Text Available This study investigated the impact of chronic exposure to continuous (CoP4 versus cyclic progesterone (CyP4 alone or in combination with 17β-estradiol (E2 on gene expression profiles targeting bioenergetics, metabolism and inflammation in the adult female rat hippocampus. High-throughput qRT-PCR analyses revealed that ovarian hormonal depletion induced by ovariectomy (OVX led to multiple significant gene expression alterations, which were to a great extent reversed by co-administration of E2 and CyP4. In contrast, co-administration of E2 and CoP4 induced a pattern highly resembling OVX. Bioinformatics analyses further revealed clear disparities in functional profiles associated with E2+CoP4 and E2+CyP4. Genes involved in mitochondrial energy (ATP synthase α subunit; Atp5a1, redox homeostasis (peroxiredoxin 5; Prdx5, insulin signaling (insulin-like growth factor I; Igf1, and cholesterol trafficking (liver X receptor α subtype; Nr1h3, differed in direction of regulation by E2+CoP4 (down-regulation relative to OVX and E2+CyP4 (up-regulation relative to OVX. In contrast, genes involved in amyloid metabolism (β-secretase; Bace1 differed only in degree of regulation, as both E2+CoP4 and E2+CyP4 induced down-regulation at different efficacy. E2+CyP4-induced changes could be associated with regulation of progesterone receptor membrane component 1(Pgrmc1. In summary, results from this study provide evidence at the molecular level that differing regimens of hormone therapy (HT can induce disparate gene expression profiles in brain. From a translational perspective, confirmation of these results in a model of natural menopause, would imply that the common regimen of continuous combined HT may have adverse consequences whereas a cyclic combined regimen, which is more physiological, could be an effective strategy to maintain neurological health and function throughout menopausal aging.

  20. Transcriptome meta-analysis reveals common differential and global gene expression profiles in cystic fibrosis and other respiratory disorders and identifies CFTR regulators.

    Science.gov (United States)

    Clarke, Luka A; Botelho, Hugo M; Sousa, Lisete; Falcao, Andre O; Amaral, Margarida D

    2015-11-01

    A meta-analysis of 13 independent microarray data sets was performed and gene expression profiles from cystic fibrosis (CF), similar disorders (COPD: chronic obstructive pulmonary disease, IPF: idiopathic pulmonary fibrosis, asthma), environmental conditions (smoking, epithelial injury), related cellular processes (epithelial differentiation/regeneration), and non-respiratory "control" conditions (schizophrenia, dieting), were compared. Similarity among differentially expressed (DE) gene lists was assessed using a permutation test, and a clustergram was constructed, identifying common gene markers. Global gene expression values were standardized using a novel approach, revealing that similarities between independent data sets run deeper than shared DE genes. Correlation of gene expression values identified putative gene regulators of the CF transmembrane conductance regulator (CFTR) gene, of potential therapeutic significance. Our study provides a novel perspective on CF epithelial gene expression in the context of other lung disorders and conditions, and highlights the contribution of differentiation/EMT and injury to gene signatures of respiratory disease.

  1. Differential regulation of the tomato ETR gene family throughout plant development.

    Science.gov (United States)

    Lashbrook, C C; Tieman, D M; Klee, H J

    1998-07-01

    Ethylene perception in plants is co-ordinated by multiple hormone receptor candidates sharing sequence commonalties with prokaryotic environmental sensor proteins known as two-component regulators. Two tomato homologs of the Arabidopsis ethylene receptor ETR1 were cloned from a root cDNA library. Both cDNAs, termed LeETR1 and LeETR2, were highly homologous to ETR1, exhibiting approximately 90% deduced amino acid sequence similarity and 80% deduced amino acid sequence identity. LeETR1 and LeETR2 contained all the major structural elements of two-component regulators, including the response regulator motif absent in LeETR3, the gene encoding tomato NEVER RIPE (NR). Using RNase protection analysis, the mRNAs of LeETR1, LeETR2 and NR were quantified in tissues engaged in key processes of the plant life cycle, including seed germination, shoot elongation, leaf and flower senescence, floral abscission, fruit set and fruit ripening. LeETR1 was expressed constitutively in all plant tissues examined. LeETR2 mRNA was expressed at low levels throughout the plant but was induced in imbibing tomato seeds prior to germination and was down-regulated in elongating seedlings and senescing leaf petioles. NR expression was developmentally regulated in floral ovaries and ripening fruit. Notably, hormonal regulation of NR was highly tissue-specific. Ethylene biosynthesis induced NR mRNA accumulation in ripening fruit but not in elongating seedlings or in senescing leaves or flowers. Furthermore, the abundance of mRNAs for all three LeETR genes remained uniform in multiple plant tissues experiencing marked changes in ethylene sensitivity, including the cell separation layer throughout tomato flower abscission.

  2. Ehrlichia chaffeensis TRP32 is a Nucleomodulin that Directly Regulates Expression of Host Genes Governing Differentiation and Proliferation.

    Science.gov (United States)

    Farris, Tierra R; Dunphy, Paige S; Zhu, Bing; Kibler, Clayton E; McBride, Jere W

    2016-08-29

    Ehrlichia chaffeensis is an obligately intracellular bacterium that reprograms the mononuclear phagocyte through diverse effector-host interactions to modulate numerous host cell processes, including transcription. In a previous study, we reported that E. chaffeensis TRP32, a type 1 secreted effector, interacts with multiple host nucleus-associated proteins and also auto-activates reporter gene expression in yeast. In this study, we demonstrate that TRP32 is a nucleomodulin that binds host DNA and alters host gene transcription. TRP32 enters the host cell nucleus via a noncanonical translocation mechanism that involves phosphorylation of Y179 located in a C-terminal tri-tyrosine motif. Both genistein and mutation of Y179 inhibited TRP32 nuclear entry. An electromobility shift assay (EMSA) demonstrated TRP32 host DNA binding via its tandem repeat domain. TRP32 DNA binding and motif preference were further confirmed by supershift assays, as well as competition and mutant probe analyses. Using ChIP-Seq, we determined that TRP32 binds a G-rich motif primarily within ±500 bp of the gene transcription start site. An ontology analysis identified genes involved in processes such as immune cell differentiation, chromatin remodeling, and RNA transcription and processing, as primary TRP32 targets. TRP32 bound genes (n=1223) were distributed on all chromosomes and included several global regulators of proliferation and inflammation such as FOS and JUN, AKT3 and NRAS, and non-coding RNA genes, miRNA 21 and miRNA 142. TRP32 target genes were differentially regulated during infection, the majority of which were repressed, and direct repression/activation of these genes by TRP32 was confirmed in vitro with a cellular luciferase reporter assay.

  3. A systems-level approach to parental genomic imprinting: the imprinted gene network includes extracellular matrix genes and regulates cell cycle exit and differentiation.

    Science.gov (United States)

    Al Adhami, Hala; Evano, Brendan; Le Digarcher, Anne; Gueydan, Charlotte; Dubois, Emeric; Parrinello, Hugues; Dantec, Christelle; Bouschet, Tristan; Varrault, Annie; Journot, Laurent

    2015-03-01

    Genomic imprinting is an epigenetic mechanism that restrains the expression of ∼ 100 eutherian genes in a parent-of-origin-specific manner. The reason for this selective targeting of genes with seemingly disparate molecular functions is unclear. In the present work, we show that imprinted genes are coexpressed in a network that is regulated at the transition from proliferation to quiescence and differentiation during fibroblast cell cycle withdrawal, adipogenesis in vitro, and muscle regeneration in vivo. Imprinted gene regulation is not linked to alteration of DNA methylation or to perturbation of monoallelic, parent-of-origin-dependent expression. Overexpression and knockdown of imprinted gene expression alters the sensitivity of preadipocytes to contact inhibition and adipogenic differentiation. In silico and in cellulo experiments showed that the imprinted gene network includes biallelically expressed, nonimprinted genes. These control the extracellular matrix composition, cell adhesion, cell junction, and extracellular matrix-activated and growth factor-activated signaling. These observations show that imprinted genes share a common biological process that may account for their seemingly diverse roles in embryonic development, obesity, diabetes, muscle physiology, and neoplasm.

  4. LOST MERISTEMS genes regulate cell differentiation of central zone descendants in Arabidopsis shoot meristems.

    Science.gov (United States)

    Schulze, Silke; Schäfer, Barbara Nicole; Parizotto, Eneida Abreu; Voinnet, Olivier; Theres, Klaus

    2010-11-01

    Meristems of seed plants continuously produce new cells for incorporation into maturing tissues. A tightly controlled balance between cell proliferation in the center and cell differentiation at the periphery of the shoot meristem maintains its integrity. Here, we describe the role of three GRAS genes, named LOST MERISTEMS genes, in shoot apical meristem maintenance and axillary meristem formation. Under short photoperiods, the lom1 lom2 and lom1 lom2 lom3 mutants have arrested meristems characterized by an over-proliferation of meristematic cells and loss of polar organization. They also show early arrest of axillary meristem development and formation of ectopic meristematic cell clusters within the stem. LOM1 and LOM2 transcripts accumulate in the peripheral and basal zones of the SAM and in vascular strands. We show that LOM1 and LOM2 promote cell differentiation at the periphery of shoot meristems and help to maintain their polar organization. © 2010 The Authors. The Plant Journal © 2010 Blackwell Publishing Ltd.

  5. Differential regulation of mitochondrial pyruvate carrier genes modulates respiratory capacity and stress tolerance in yeast.

    Directory of Open Access Journals (Sweden)

    Alba Timón-Gómez

    Full Text Available Mpc proteins are highly conserved from yeast to humans and are necessary for the uptake of pyruvate at the inner mitochondrial membrane, which is used for leucine and valine biosynthesis and as a fuel for respiration. Our analysis of the yeast MPC gene family suggests that amino acid biosynthesis, respiration rate and oxidative stress tolerance are regulated by changes in the Mpc protein composition of the mitochondria. Mpc2 and Mpc3 are highly similar but functionally different: Mpc2 is most abundant under fermentative non stress conditions and important for amino acid biosynthesis, while Mpc3 is the most abundant family member upon salt stress or when high respiration rates are required. Accordingly, expression of the MPC3 gene is highly activated upon NaCl stress or during the transition from fermentation to respiration, both types of regulation depend on the Hog1 MAP kinase. Overexpression experiments show that gain of Mpc2 function leads to a severe respiration defect and ROS accumulation, while Mpc3 stimulates respiration and enhances tolerance to oxidative stress. Our results identify the regulated mitochondrial pyruvate uptake as an important determinant of respiration rate and stress resistance.

  6. Cloning and expression of two human genes encoding calcium-binding proteins that are regulated during myeloid differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Lagasse, E.; Clerc, R.G.

    1988-06-01

    The cellular mechanisms involved in chronic inflammatory processes are poorly understood. This is especially true for the role of macrophages, which figure prominently in the inflammatory response. Two proteins, MRP8 and MRP14, which are expressed in infiltrate macrophages during inflammatory reactions but not in normal tissue macrophages, which have been characterized. Here the authors report that MRP8 and MRP14 mRNAs are specially expressed in human cells of myeloid origin and that their expression is regulated during monocycle-macrophage and granulocyte differentiation. To initiate the analysis of cis-acting elements governing the tissue-specific expression of the MRP genes, the authors cloned the human genes encoding MRP8 and MRP14. Both genes contain three exons, are single copy, and have a strikingly similar organization. They belong to a novel subfamily of highly homologous calcium-binding proteins which includes S100..cap alpha.., S100BETA, intestinal calcium-binding protein, P11, and calcyclin (2A9). A transient expression assay was devised to investigate the tissue-specific regulatory elements responsible for MRP gene expression after differentiation in leukemia HL60 cells. The results of this investigation demonstrated that the cis-acting element responsible for MRP expression are present on the cloned DNA fragment containing the MRP gene loci.

  7. Pilocarpine-induced seizures trigger differential regulation of microRNA-stability related genes in rat hippocampal neurons

    Science.gov (United States)

    Kinjo, Erika R.; Higa, Guilherme S. V.; Santos, Bianca A.; de Sousa, Erica; Damico, Marcio V.; Walter, Lais T.; Morya, Edgard; Valle, Angela C.; Britto, Luiz R. G.; Kihara, Alexandre H.

    2016-01-01

    Epileptogenesis in the temporal lobe elicits regulation of gene expression and protein translation, leading to reorganization of neuronal networks. In this process, miRNAs were described as being regulated in a cell-specific manner, although mechanistics of miRNAs activity are poorly understood. The specificity of miRNAs on their target genes depends on their intracellular concentration, reflecting the balance of biosynthesis and degradation. Herein, we confirmed that pilocarpine application promptly (<30 min) induces status epilepticus (SE) as revealed by changes in rat electrocorticogram particularly in fast-beta range (21–30 Hz). SE simultaneously upregulated XRN2 and downregulated PAPD4 gene expression in the hippocampus, two genes related to miRNA degradation and stability, respectively. Moreover, SE decreased the number of XRN2-positive cells in the hilus, while reduced the number of PAPD4-positive cells in CA1. XRN2 and PAPD4 levels did not change in calretinin- and CamKII-positive cells, although it was possible to determine that PAPD4, but not XRN2, was upregulated in parvalbumin-positive cells, revealing that SE induction unbalances the accumulation of these functional-opposed proteins in inhibitory interneurons that directly innervate distinct domains of pyramidal cells. Therefore, we were able to disclose a possible mechanism underlying the differential regulation of miRNAs in specific neurons during epileptogenesis. PMID:26869208

  8. Macrophage activation and differentiation signals regulate schlafen-4 gene expression: evidence for Schlafen-4 as a modulator of myelopoiesis.

    Directory of Open Access Journals (Sweden)

    Wendy J van Zuylen

    Full Text Available BACKGROUND: The ten mouse and six human members of the Schlafen (Slfn gene family all contain an AAA domain. Little is known of their function, but previous studies suggest roles in immune cell development. In this report, we assessed Slfn regulation and function in macrophages, which are key cellular regulators of innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: Multiple members of the Slfn family were up-regulated in mouse bone marrow-derived macrophages (BMM by the Toll-like Receptor (TLR4 agonist lipopolysaccharide (LPS, the TLR3 agonist Poly(I∶C, and in disease-affected joints in the collagen-induced model of rheumatoid arthritis. Of these, the most inducible was Slfn4. TLR agonists that signal exclusively through the MyD88 adaptor protein had more modest effects on Slfn4 mRNA levels, thus implicating MyD88-independent signalling and autocrine interferon (IFN-β in inducible expression. This was supported by the substantial reduction in basal and LPS-induced Slfn4 mRNA expression in IFNAR-1⁻/⁻ BMM. LPS causes growth arrest in macrophages, and other Slfn family genes have been implicated in growth control. Slfn4 mRNA levels were repressed during macrophage colony-stimulating factor (CSF-1-mediated differentiation of bone marrow progenitors into BMM. To determine the role of Slfn4 in vivo, we over-expressed the gene specifically in macrophages in mice using a csf1r promoter-driven binary expression system. Transgenic over-expression of Slfn4 in myeloid cells did not alter macrophage colony formation or proliferation in vitro. Monocyte numbers, as well as inflammatory macrophages recruited to the peritoneal cavity, were reduced in transgenic mice that specifically over-expressed Slfn4, while macrophage numbers and hematopoietic activity were increased in the livers and spleens. CONCLUSIONS: Slfn4 mRNA levels were up-regulated during macrophage activation but down-regulated during differentiation. Constitutive Slfn4 expression in the

  9. Regulated expression of the MRP8 and MRP14 genes during terminal differentiation of human promyelocytic leukemic HL-60 cells

    Energy Technology Data Exchange (ETDEWEB)

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.; Huberman, E.

    1992-02-14

    The calcium-binding proteins MRP8 and MRP14 are induced during monomyelocytic cell maturation and may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenolic acid. Elevated levels of the PC were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 mRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters, suggesting that this initiation is the major control of MRP8 and MRP14 gene expression during terminal differentiation of human promyelocytic cells.

  10. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes.

    Science.gov (United States)

    Purcell, Maureen K; Laing, Kerry J; Woodson, James C; Thorgaard, Gary H; Hansen, John D

    2009-02-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-gamma) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-gamma gene (rtIFN-gamma2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in naïve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-gamma1 and rtIFN-gamma2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-gamma2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection.

  11. Characterization of the interferon genes in homozygous rainbow trout reveals two novel genes, alternate splicing and differential regulation of duplicated genes

    Science.gov (United States)

    Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.

    2009-01-01

    The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.

  12. Differential regulation of the zebrafish orthopedia1 gene during fate determination of diencephalic neurons

    Directory of Open Access Journals (Sweden)

    Tarallo Raffaella

    2006-10-01

    Full Text Available Abstract Background The homeodomain transcription factor Orthopedia (Otp is essential in restricting the fate of multiple classes of secreting neurons in the neuroendocrine hypothalamus of vertebrates. However, there is little information on the intercellular factors that regulate Otp expression during development. Results Here, we identified two otp orthologues in zebrafish (otp1 and otp2 and explored otp1 in the context of the morphogenetic pathways that specify neuroectodermal regions. During forebrain development, otp1 is expressed in anterior groups of diencephalic cells, positioned in the preoptic area (PO (anterior alar plate and the posterior tuberculum (PT (posterior basal plate. The latter structure is characterized by Tyrosine Hydroxylase (TH-positive cells, suggesting a role for otp1 in the lineage restriction of catecholaminergic (CA neurons. Disruptions of Hedgehog (HH and Fibroblast Growth Factor (FGF pathways point to the ability of SHH protein to trigger otp1 expression in PO presumptive neuroblasts, with the attenuating effect of Dzip1 and FGF8. In addition, our data disclose otp1 as a determinant of CA neurons in the PT, where otp1 activity is strictly dependent on Nodal signaling and it is not responsive to SHH and FGF. Conclusion In this study, we pinpoint the evolutionary importance of otp1 transcription factor in cell states of the diencephalon anlage and early neuronal progenitors. Furthermore, our data indicate that morphogenetic mechanisms differentially regulate otp1 expression in alar and basal plates.

  13. Klf5 regulates muscle differentiation by directly targeting muscle-specific genes in cooperation with MyoD in mice

    Science.gov (United States)

    Hayashi, Shinichiro; Manabe, Ichiro; Suzuki, Yumi; Relaix, Frédéric; Oishi, Yumiko

    2016-01-01

    Krüppel-like factor 5 (Klf5) is a zinc-finger transcription factor that controls various biological processes, including cell proliferation and differentiation. We show that Klf5 is also an essential mediator of skeletal muscle regeneration and myogenic differentiation. During muscle regeneration after injury (cardiotoxin injection), Klf5 was induced in the nuclei of differentiating myoblasts and newly formed myofibers expressing myogenin in vivo. Satellite cell-specific Klf5 deletion severely impaired muscle regeneration, and myotube formation was suppressed in Klf5-deleted cultured C2C12 myoblasts and satellite cells. Klf5 knockdown suppressed induction of muscle differentiation-related genes, including myogenin. Klf5 ChIP-seq revealed that Klf5 binding overlaps that of MyoD and Mef2, and Klf5 physically associates with both MyoD and Mef2. In addition, MyoD recruitment was greatly reduced in the absence of Klf5. These results indicate that Klf5 is an essential regulator of skeletal muscle differentiation, acting in concert with myogenic transcription factors such as MyoD and Mef2. DOI: http://dx.doi.org/10.7554/eLife.17462.001 PMID:27743478

  14. Three nicotianamine synthase genes isolated from maize are differentially regulated by iron nutritional status.

    Science.gov (United States)

    Mizuno, Daichi; Higuchi, Kyoko; Sakamoto, Tatsuya; Nakanishi, Hiromi; Mori, Satoshi; Nishizawa, Naoko K

    2003-08-01

    Nicotianamine synthase (NAS) is an enzyme that is critical for the biosynthesis of the mugineic acid family of phytosiderophores in graminaceous plants, and for the homeostasis of metal ions in nongraminaceous plants. We isolated one genomic NAS clone, ZmNAS3, and two cDNA NAS clones, ZmNAS1 and ZmNAS2, from maize (Zea mays cv Alice). In agreement with the increased secretion of phytosiderophores with Fe deficiency, ZmNAS1 and ZmNAS2 were positively expressed only in Fe-deficient roots. In contrast, ZmNAS3 was expressed under Fe-sufficient conditions, and was negatively regulated by Fe deficiency. This is the first report describing down-regulation of NAS gene expression in response to Fe deficiency in plants, shedding light on the role of nicotianamine in graminaceous plants, other than as a precursor in phytosiderophore production. ZmNAS1-green fluorescent protein (sGFP) and ZmNAS2-sGFP were localized at spots in the cytoplasm of onion (Allium cepa) epidermal cells, whereas ZmNAS3-sGFP was distributed throughout the cytoplasm of these cells. ZmNAS1 and ZmNAS3 showed NAS activity in vitro, whereas ZmNAS2 showed none. Due to its duplicated structure, ZmNAS2 was much larger (65.8 kD) than ZmNAS1, ZmNAS3, and previously characterized NAS proteins (30-38 kD) from other plant species. We reveal that maize has two types of NAS proteins based on their expression pattern and subcellular localization.

  15. Jarid1b targets genes regulating development and is involved in neural differentiation

    DEFF Research Database (Denmark)

    Schmitz, Sandra U; Albert, Mareike; Malatesta, Martina

    2011-01-01

    -renewal and differentiation is just starting to emerge. Here, we show that the H3K4me2/3 histone demethylase Jarid1b (Kdm5b/Plu1) is dispensable for ESC self-renewal, but essential for ESC differentiation along the neural lineage. By genome-wide location analysis, we demonstrate that Jarid1b localizes predominantly...

  16. Aspergillus asexual reproduction and sexual reproduction are differentially affected by transcriptional and translational mechanisms regulating stunted gene expression.

    Science.gov (United States)

    Wu, J; Miller, B L

    1997-10-01

    The Stunted protein (StuAp) is a member of a family of transcription factors that regulate fungal development and cell cycle progression. Regulated stuA gene expression is required for correct cell pattern formation during asexual reproduction (conidiation) and for initiation of the sexual reproductive cycle in Aspergillus nidulans. Transcriptional initiation from two different promoters yields overlapping mRNAs (stuA alpha and stuAbeta) that upon translation yield the same protein. Here we show that multiple regulatory mechanisms interact to control (i) developmental competence-dependent expression of both transcripts and (ii) induction-dependent expression of stuA alpha, but not stuAbeta, by the conidiation-specific Bristle (BrlAp) transcriptional activator. Quantitative levels of both mRNAs are further modulated by (i) an activator(s) located at a far-upstream upstream activation sequence, (ii) feedback regulation by StuAp, and (iii) positive translational regulation that requires the peptide product of a micro-open reading frame unique to the stuA alpha mRNA 5' untranslated region. Gradients in stuA alpha expression were most important for correct cell and tissue type development. Threshold requirements were as follows: metula-phialide differentiation < ascosporogenesis < cleistothecial shell-Hülle cell differentiation. Altered stuA expression affected conidiophore morphology and conidial yields quantitatively but did not alter the temporal development of cell types or conidiophore density. By contrast, the sexual cycle showed both temporal delay and quantitative reduction in the number of cleistothecial initials but normal morphogenesis of tissue types.

  17. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Hye Youn; Choi, Eun Nam [Department of Biochemistry, School of Medicine, Ewha Womans University, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-710 (Korea, Republic of); Ahn Jo, Sangmee [Department of Pharmacy, College of Pharmacy, Dankook University, San 29 Anseo-dong, Dongnam-gu, Cheonan-si, Chungnam 330-714 (Korea, Republic of); Oh, Seikwan [Department of Neuroscience and TIDRC, School of Medicine, Ewha Womans University, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-710 (Korea, Republic of); Ahn, Jung-Hyuck, E-mail: ahnj@ewha.ac.kr [Department of Biochemistry, School of Medicine, Ewha Womans University, 911-1 Mok-6-dong, Yangcheon-ku, Seoul 158-710 (Korea, Republic of)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory

  18. Differential timing of gene expression regulation between leptocephali of North Atlantic eels in the Sargasso Sea

    DEFF Research Database (Denmark)

    Bernatchez, Louis; Saint-Cyr, Jérôme; Maes, Gregory E.;

    2011-01-01

    The unique life-history characteristics of North Atlantic catadromous eels have long intrigued evolutionary biologists, especially with respect to mechanisms that could explain their persistence as two ecologically very similar but reproductively and geographically distinct species. Differential ...

  19. Analysis of differential gene expression in rat tibia after an osteogenic stimulus in vivo: mechanical loading regulates osteopontin and myeloperoxidase.

    Science.gov (United States)

    Miles, R R; Turner, C H; Santerre, R; Tu, Y; McClelland, P; Argot, J; DeHoff, B S; Mundy, C W; Rosteck, P R; Bidwell, J; Sluka, J P; Hock, J; Onyia, J E

    1998-03-01

    The skeleton has the ability to alter its mass, geometry, and strength in response to mechanical stress. In order to elucidate the molecular mechanisms underlying this phenomenon, differential display reverse transcriptase-polymerase chain reaction (DDRT-PCR) was used to analyze gene expression in endocortical bone of mature female rats. Female Sprague-Dawley rats, approximately 8 months old, received either a sham or bending load using a four-point loading apparatus on the right tibia. RNA was collected at 1 h and 24 h after load was applied, reverse-transcribed into cDNA, and used in DDRT-PCR. Parallel display of samples from sham and loaded bones on a sequencing gel showed several regulated bands. Further analysis of seven of these bands allowed us to isolate two genes that are regulated in response to a loading stimulus. Nucleotide analysis showed that one of the differentially expressed bands shares 99% sequence identity with rat osteopontin (OPN), a noncollagenous bone matrix protein. Northern blot analysis confirms that OPN mRNA expression is increased by nearly 4-fold, at 6 h and 24 h after loading. The second band shares 90% homology with mouse myeloperoxidase (MPO), a bactericidal enzyme found primarily in neutrophils and monocytes. Semiquantitative PCR confirms that MPO expression is decreased 4- to 10-fold, at 1 h and 24 h after loading. Tissue distribution analysis confirmed MPO expression in bone but not in other tissues examined. In vitro analysis showed that MPO expression was not detectable in total RNA from UMR 106 osteoblastic cells or in confluent primary cultures of osteoblasts derived from either rat primary spongiosa or diaphyseal marrow. Database analysis suggests that MPO is expressed by osteocytes. These findings reinforce the association of OPN expression to bone turnover and describes for the first time, decreased expression of MPO during load-induced bone formation. These results suggest a role for both OPN and MPO expression in bone

  20. Calcitonin gene-related peptide regulation of glial cell-line derived neurotrophic factor in differentiated rat myotubes.

    Science.gov (United States)

    Rosa, Elyse; Cha, Jieun; Bain, James R; Fahnestock, Margaret

    2015-03-01

    Glial cell-line derived neurotrophic factor (GDNF) is the most potent trophic factor for motoneuron survival and neuromuscular junction formation. GDNF is upregulated in injured or denervated skeletal muscle and returns to normal levels following reinnervation. However, the mechanism by which GDNF is regulated in denervated muscle is not well understood. The nerve-derived neurotransmitter calcitonin gene-related peptide (CGRP) is upregulated following neuromuscular injury and is subsequently released from motoneurons at the neuromuscular junction. CGRP also promotes nerve regeneration, but the mechanism is not well understood. The current study investigates whether this increase in CGRP regulates GDNF, thus playing a key role in promoting regeneration of injured nerves. This study demonstrates that CGRP increases GDNF secretion without affecting its transcription or translation. Rat L6 myoblasts were differentiated into myotubes and subsequently treated with CGRP. GDNF mRNA expression levels were quantified by quantitative real-time reverse transcription-polymerase chain reaction, and secreted GDNF was quantified in the conditioned medium by ELISA. CGRP treatment increased secreted GDNF protein without altering GDNF mRNA levels. The translational inhibitor cycloheximide did not affect CGRP-induced GDNF secreted protein levels, whereas the secretional inhibitor brefeldin A blocked the CGRP-induced increase in GDNF. This study highlights the importance of injury-induced upregulation of CGRP by exposing its ability to increase GDNF levels and demonstrates a secretional mechanism for regulation of this key regeneration-promoting neurotrophic factor.

  1. Sex hormones in autism: androgens and estrogens differentially and reciprocally regulate RORA, a novel candidate gene for autism.

    Directory of Open Access Journals (Sweden)

    Tewarit Sarachana

    Full Text Available Autism, a pervasive neurodevelopmental disorder manifested by deficits in social behavior and interpersonal communication, and by stereotyped, repetitive behaviors, is inexplicably biased towards males by a ratio of ∼4∶1, with no clear understanding of whether or how the sex hormones may play a role in autism susceptibility. Here, we show that male and female hormones differentially regulate the expression of a novel autism candidate gene, retinoic acid-related orphan receptor-alpha (RORA in a neuronal cell line, SH-SY5Y. In addition, we demonstrate that RORA transcriptionally regulates aromatase, an enzyme that converts testosterone to estrogen. We further show that aromatase protein is significantly reduced in the frontal cortex of autistic subjects relative to sex- and age-matched controls, and is strongly correlated with RORA protein levels in the brain. These results indicate that RORA has the potential to be under both negative and positive feedback regulation by male and female hormones, respectively, through one of its transcriptional targets, aromatase, and further suggest a mechanism for introducing sex bias in autism.

  2. Sex hormones in autism: androgens and estrogens differentially and reciprocally regulate RORA, a novel candidate gene for autism.

    Science.gov (United States)

    Sarachana, Tewarit; Xu, Minyi; Wu, Ray-Chang; Hu, Valerie W

    2011-02-16

    Autism, a pervasive neurodevelopmental disorder manifested by deficits in social behavior and interpersonal communication, and by stereotyped, repetitive behaviors, is inexplicably biased towards males by a ratio of ∼4∶1, with no clear understanding of whether or how the sex hormones may play a role in autism susceptibility. Here, we show that male and female hormones differentially regulate the expression of a novel autism candidate gene, retinoic acid-related orphan receptor-alpha (RORA) in a neuronal cell line, SH-SY5Y. In addition, we demonstrate that RORA transcriptionally regulates aromatase, an enzyme that converts testosterone to estrogen. We further show that aromatase protein is significantly reduced in the frontal cortex of autistic subjects relative to sex- and age-matched controls, and is strongly correlated with RORA protein levels in the brain. These results indicate that RORA has the potential to be under both negative and positive feedback regulation by male and female hormones, respectively, through one of its transcriptional targets, aromatase, and further suggest a mechanism for introducing sex bias in autism.

  3. Isolation of Two Unknown Genes Potentially Involved in Differentiation of the Hematopoietic Pathway, and Studies of Spermidine/Spermine Acetyltransferase Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Kubera, C.; Gavin, I.; Huberman, E.

    2002-01-01

    Differential display identified a number of candidate genes involved with growth and differentiation in the human leukemia cell lines HL-60 and HL-525. Two of these genes were previously unknown, and one is the gene for the enzyme spermidine/spermine acetyltransferase (SSAT). One of our objectives is to isolate and sequence the unknown genes, 631A1 and 510C1, in order to characterize them and determine their functions. The other is to determine how SSAT is regulated, and look at how the polyamines that SSAT regulates effect macrophage differentiation. By screening the CEM T-cell DNA library and the fetal brain library, we were able to identify clones that had inserts with homology to the 631A1 cDNA probe sequence. The insert was amplified using the polymerase chain reaction (PCR) and is currently being sent to the University of Chicago for automated sequencing. The library screens for 510C1 are currently underway, but hybridization of the 510C1 cDNA probe with nylon membranes containing CEM library phage DNA produced strong signal, indicating the gene is there. SSAT experiments identified that the rate-limiting enzyme that marks the polyamines spermidine and spermine for degradation is regulated by PKC and a transcription factor called Nrf2. The knowledge of regulation and function of these genes involved in macrophage differentiation will provide new insight into this cellular process, potentially making it possible to discover the roots of the problems that cause cancerous diseases.

  4. Differential control of Bradyrhizobium japonicum iron stimulon genes through variable affinity of the iron response regulator (Irr) for target gene promoters and selective loss of activator function.

    Science.gov (United States)

    Jaggavarapu, Siddharth; O'Brian, Mark R

    2014-05-01

    Bradyrhizobium japonicum Irr is a conditionally stable transcriptional activator and repressor that accumulates in cells under iron-limited, manganese-replete conditions, but degrades in a haem-dependent manner under high iron conditions, manganese limitation or upon exposure to H2 O2 . Here, we identified Irr-regulated genes that were relatively unresponsive to factors that promote Irr degradation. The promoters of those genes bound Irr with at least 200-fold greater affinity than promoters of the responsive genes, resulting in maintenance of promoter occupancy over a wide cellular Irr concentration range. For Irr-repressible genes, promoter occupancy correlated with transcriptional repression, resulting in differential levels of expression based on Irr affinity for target promoters. However, inactivation of positively controlled genes required neither promoter vacancy nor loss of DNA-binding activity by Irr. Thus, activation and repression functions of Irr may be uncoupled from each other under certain conditions. Abrogation of Irr activation function was haem-dependent, thus haem has two functionally separable roles in modulating Irr activity. The findings imply a greater complexity of control by Irr than can be achieved by conditional stability alone. We suggest that these regulatory mechanisms accommodate the differing needs for Irr regulon genes in response to the prevailing metabolic state of the cell.

  5. Differential type 1 interferon-regulated gene expression in the brain during AIDS: interactions with viral diversity and neurovirulence.

    Science.gov (United States)

    Polyak, Maria J; Vivithanaporn, Pornpun; Maingat, Ferdinand G; Walsh, John G; Branton, William; Cohen, Eric A; Meeker, Rick; Power, Christopher

    2013-07-01

    The lentiviruses, human and feline immunodeficiency viruses (HIV-1 and FIV, respectively), infect the brain and cause neurovirulence, evident as neuronal injury, inflammation, and neurobehavioral abnormalities with diminished survival. Herein, different lentivirus infections in conjunction with neural cell viability were investigated, concentrating on type 1 interferon-regulated pathways. Transcriptomic network analyses showed a preponderance of genes involved in type 1 interferon signaling, which was verified by increased expression of the type 1 interferon-associated genes, Mx1 and CD317, in brains from HIV-infected persons (P<0.05). Leukocytes infected with different strains of FIV or HIV-1 showed differential Mx1 and CD317 expression (P<0.05). In vivo studies of animals infected with the FIV strains, FIV(ch) or FIV(ncsu), revealed that FIV(ch)-infected animals displayed deficits in memory and motor speed compared with the FIV(ncsu)- and mock-infected groups (P<0.05). TNF-α, IL-1β, and CD40 expression was increased in the brains of FIV(ch)-infected animals; conversely, Mx1 and CD317 transcript levels were increased in the brains of FIV(ncsu)-infected animals, principally in microglia (P<0.05). Gliosis and neuronal loss were evident among FIV(ch)-infected animals compared with mock- and FIV(ncsu)-infected animals (P<0.05). Lentiviral infections induce type 1 interferon-regulated gene expression in microglia in a viral diversity-dependent manner, representing a mechanism by which immune responses might be exploited to limit neurovirulence.

  6. The housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT regulates multiple developmental and metabolic pathways of murine embryonic stem cell neuronal differentiation.

    Directory of Open Access Journals (Sweden)

    Tae Hyuk Kang

    Full Text Available The mechanisms by which mutations of the purinergic housekeeping gene hypoxanthine guanine phosphoribosyltransferase (HPRT cause the severe neurodevelopmental Lesch Nyhan Disease (LND are poorly understood. The best recognized neural consequences of HPRT deficiency are defective basal ganglia expression of the neurotransmitter dopamine (DA and aberrant DA neuronal function. We have reported that HPRT deficiency leads to dysregulated expression of multiple DA-related developmental functions and cellular signaling defects in a variety of HPRT-deficient cells, including human induced pluripotent stem (iPS cells. We now describe results of gene expression studies during neuronal differentiation of HPRT-deficient murine ESD3 embryonic stem cells and report that HPRT knockdown causes a marked switch from neuronal to glial gene expression and dysregulates expression of Sox2 and its regulator, genes vital for stem cell pluripotency and for the neuronal/glial cell fate decision. In addition, HPRT deficiency dysregulates many cellular functions controlling cell cycle and proliferation mechanisms, RNA metabolism, DNA replication and repair, replication stress, lysosome function, membrane trafficking, signaling pathway for platelet activation (SPPA multiple neurotransmission systems and sphingolipid, sulfur and glycan metabolism. We propose that the neural aberrations of HPRT deficiency result from combinatorial effects of these multi-system metabolic errors. Since some of these aberrations are also found in forms of Alzheimer's and Huntington's disease, we predict that some of these systems defects play similar neuropathogenic roles in diverse neurodevelopmental and neurodegenerative diseases in common and may therefore provide new experimental opportunities for clarifying pathogenesis and for devising new potential therapeutic targets in developmental and genetic disease.

  7. VEGF-A isoforms differentially regulate ATF-2–dependent VCAM-1 gene expression and endothelial–leukocyte interactions

    Science.gov (United States)

    Fearnley, Gareth W.; Odell, Adam F.; Latham, Antony M.; Mughal, Nadeem A.; Bruns, Alexander F.; Burgoyne, Nicholas J.; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C.; Hollstein, Monica C.; Wheatcroft, Stephen B.; Ponnambalam, Sreenivasan

    2014-01-01

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell–cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform–specific stimulation of VCAM-1 gene expression, which controls endothelial–leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform–specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A–stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A–stimulated VCAM-1 expression and endothelial–leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial–leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. PMID:24966171

  8. Pubertal Social Isolation and Hypervigilance Regulate Gene Expression Mechanisms of Mammary Differentiation and Cancer Risks

    Science.gov (United States)

    2010-08-01

    which prevent pheromonal communication within our animal colony. Fortunately, the mouse’s response to pheromonal isolation is opposite that of rats...central nervous system of mice and the peripheral blood lymphocytes of humans . To examine gene expression differences, RNA was extracted from a subset of...hexokinase 2 (Hk2). The human orthologues of mouse Acly and Acaca were previously shown to be upregulated in aggressive, metastatic breast cancer cell

  9. Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle.

    Science.gov (United States)

    Tan, Bie; Yin, Yulong; Liu, Zhiqiang; Tang, Wenjie; Xu, Haijun; Kong, Xiangfeng; Li, Xinguo; Yao, Kang; Gu, Wanting; Smith, Stephen B; Wu, Guoyao

    2011-05-01

    Obesity is a major health crisis worldwide and new treatments are needed to fight this epidemic. Using the swine model, we recently reported that dietary L-arginine (Arg) supplementation promotes muscle gain and reduces body-fat accretion. The present study tested the hypothesis that Arg regulates expression of key genes involved in lipid metabolism in skeletal muscle and white adipose tissue. Sixteen 110-day-old barrows were fed for 60 days a corn- and soybean-meal-based diet supplemented with 1.0% Arg or 2.05% L-alanine (isonitrogenous control). Blood samples, longissimus dorsi muscle and overlying subcutaneous adipose tissue were obtained from 170-day-old pigs for biochemical studies. Serum concentrations of leptin, alanine and glutamine were lower, but those for Arg and proline were higher in Arg-supplemented pigs than in control pigs. The percentage of oleic acid was higher but that of stearic acid and linoleic acid was lower in muscle of Arg-supplemented pigs, compared with control pigs. Dietary Arg supplementation increased mRNA levels for fatty acid synthase in muscle, while decreasing those for lipoprotein lipase, glucose transporter-4, and acetyl-coenzyme A carboxylase-α in adipose tissue. Additionally, mRNA levels for hormone sensitive lipase were higher in adipose tissue of Arg-supplemented pigs compared with control pigs. These results indicate that Arg differentially regulates expression of fat-metabolic genes in skeletal muscle and white adipose tissue, therefore favoring lipogenesis in muscle but lipolysis in adipose tissue. Our novel findings provide a biochemical basis for explaining the beneficial effect of Arg in improving the metabolic profile in mammals (including obese humans). Copyright © 2011 Elsevier Inc. All rights reserved.

  10. H2A.Z acidic patch couples chromatin dynamics to regulation of gene expression programs during ESC differentiation.

    Directory of Open Access Journals (Sweden)

    Vidya Subramanian

    Full Text Available The histone H2A variant H2A.Z is essential for embryonic development and for proper control of developmental gene expression programs in embryonic stem cells (ESCs. Divergent regions of amino acid sequence of H2A.Z likely determine its functional specialization compared to core histone H2A. For example, H2A.Z contains three divergent residues in the essential C-terminal acidic patch that reside on the surface of the histone octamer as an uninterrupted acidic patch domain; however, we know little about how these residues contribute to chromatin structure and function. Here, we show that the divergent amino acids Gly92, Asp97, and Ser98 in the H2A.Z C-terminal acidic patch (H2A.Z(AP3 are critical for lineage commitment during ESC differentiation. H2A.Z is enriched at most H3K4me3 promoters in ESCs including poised, bivalent promoters that harbor both activating and repressive marks, H3K4me3 and H3K27me3 respectively. We found that while H2A.Z(AP3 interacted with its deposition complex and displayed a highly similar distribution pattern compared to wild-type H2A.Z, its enrichment levels were reduced at target promoters. Further analysis revealed that H2A.Z(AP3 was less tightly associated with chromatin, suggesting that the mutant is more dynamic. Notably, bivalent genes in H2A.Z(AP3 ESCs displayed significant changes in expression compared to active genes. Moreover, bivalent genes in H2A.Z(AP3 ESCs gained H3.3, a variant associated with higher nucleosome turnover, compared to wild-type H2A.Z. We next performed single cell imaging to measure H2A.Z dynamics. We found that H2A.Z(AP3 displayed higher mobility in chromatin compared to wild-type H2A.Z by fluorescent recovery after photobleaching (FRAP. Moreover, ESCs treated with the transcriptional inhibitor flavopiridol resulted in a decrease in the H2A.Z(AP3 mobile fraction and an increase in its occupancy at target genes indicating that the mutant can be properly incorporated into chromatin

  11. Differential regulation of gene products in newly synthesized Brassica napus allotetraploids is not related to protein function nor subcellular localization

    Directory of Open Access Journals (Sweden)

    Valot Benoît

    2007-02-01

    -represented among the proteins displaying non-additive values in the allopolyploids. Conclusion Protein identification showed that functionally related polypeptides (isoforms and complex subunits could be differentially regulated in synthetic B. napus in comparison to its diploid progenitors while such proteins are usually expected to display co-regulation. The genetic redundancy within an allopolyploid could explain why functionally related proteins could display imbalanced levels of expression. No functional category, no metabolic pathway and no subcellular localization was found to be over- or under-represented within non-additive polypeptides, suggesting that the differential regulation of gene products was not related to functional properties of the proteins. Thus, at the protein level, there is no evidence for the "genomic shock" expected in neo-polyploids and the overall topology of protein networks and metabolic pathways is conserved in synthetic allotetraploids of B. napus in comparison to its diploid progenitors B. rapa and B. oleracea.

  12. The dynamics of supernumerary tooth development are differentially regulated by Sprouty genes.

    Science.gov (United States)

    Lagronova-Churava, Svatava; Spoutil, Frantisek; Vojtechova, Simona; Lesot, Herve; Peterka, Miroslav; Klein, Ophir D; Peterkova, Renata

    2013-07-01

    In mice, a toothless diastema separates the single incisor from the three molars in each dental quadrant. In the prospective diastema of the embryo, small rudimentary buds are found that are presumed to be rudiments of suppressed teeth. A supernumerary tooth occurs in the diastema of adult mice carrying mutations in either Spry2 or Spry4. In the case of Spry2 mutants, the origin of the supernumerary tooth involves the revitalization of a rudimentary tooth bud (called R2), whereas its origin in the Spry4 mutants is not known. In addition to R2, another rudimentary primordium (called MS) arises more anteriorly in the prospective diastema. We investigated the participation of both rudiments (MS and R2) in supernumerary tooth development in Spry2 and Spry4 mutants by comparing morphogenesis, proliferation, apoptosis, size and Shh expression in the dental epithelium of MS and R2 rudiments. Increased proliferation and decreased apoptosis were found in MS and R2 at embryonic day (ED) 12.5 and 13.5 in Spry2(-/-) embryos. Apoptosis was also decreased in both rudiments in Spry4(-/-) embryos, but the proliferation was lower (similar to WT mice), and supernumerary tooth development was accelerated, exhibiting a cap stage by ED13.5. Compared to Spry2(-/-) mice, a high number of Spry4(-/-) supernumerary tooth primordia degenerated after ED13.5, resulting in a low percentage of supernumerary teeth in adults. We propose that Sprouty genes were implicated during evolution in reduction of the cheek teeth in Muridae, and their deletion can reveal ancestral stages of murine dental evolution. Copyright © 2013 Wiley Periodicals, Inc.

  13. GAMYB controls different sets of genes and is differentially regulated by microRNA in aleurone cells and anthers.

    Science.gov (United States)

    Tsuji, Hiroyuki; Aya, Koichiro; Ueguchi-Tanaka, Miyako; Shimada, Yukihisa; Nakazono, Mikio; Watanabe, Ryosuke; Nishizawa, Naoko K; Gomi, Kenji; Shimada, Asako; Kitano, Hidemi; Ashikari, Motoyuki; Matsuoka, Makoto

    2006-08-01

    GAMYB is a component of gibberellin (GA) signaling in cereal aleurone cells, and has an important role in flower development. However, it is unclear how GAMYB function is regulated. We examined the involvement of a microRNA, miR159, in the regulation of GAMYB expression in cereal aleurone cells and flower development. In aleurone cells, no miR159 expression was observed with or without GA treatment, suggesting that miR159 is not involved in the regulation of GAMYB and GAMYB-like genes in this tissue. miR159 was expressed in tissues other than aleurone, and miR159 over-expressors showed similar but more severe phenotypes than the gamyb mutant. GAMYB and GAMYB-like genes are co-expressed with miR159 in anthers, and the mRNA levels for GAMYB and GAMYB-like genes are negatively correlated with miR159 levels during anther development. Thus, OsGAMYB and OsGAMYB-like genes are regulated by miR159 in flowers. A microarray analysis revealed that OsGAMYB and its upstream regulator SLR1 are involved in the regulation of almost all GA-mediated gene expression in rice aleurone cells. Moreover, different sets of genes are regulated by GAMYB in aleurone cells and anthers. GAMYB binds directly to promoter regions of its target genes in anthers as well as aleurone cells. Based on these observations, we suggest that the regulation of GAMYB expression and GAMYB function are different in aleurone cells and flowers in rice.

  14. Molecular cloning, modeling and differential expression of a gene encoding a silent information regulator-like protein from Sporothrix schenckii.

    Science.gov (United States)

    Hou, Binbin; Liu, Xiaoming; Zheng, Fangliang; Xu, Xuezhu; Zhang, Zhenying

    2014-06-01

    Sporothrix schenckii (S. schenckii) is a dimorphic fungus that produces lymphocutaneous lesions. The signature characteristic of S. schenckii is a temperature-induced phase transition. Silent information regulator (Sir) has been proven to be involved in phenotypic switching in Saccharomyces cerevisiae (S. cerevisiae) and Candida albicans (C. albicans) by organizing chromatin structure. In this study, we isolated and characterized a Sir homologue gene, designated as SsSir2, from the yeast form of S. schenckii. The full-length SsSir2 cDNA sequence is 1753 bp in size and contains an open reading frame of 1329 bp encoding 442 amino acids. The predicted molecular mass of SsSir2 is 48.1 kDa with an estimated theoretical isoelectric point of 4.6. The SsSir2 kinase domain shows a 78% identity with that of Hst2, a Sir2 Ib gene from S. cerevisiae. Three exons and two introns were identified within the 1472‑bp SsSir2 genomic DNA sequence of S. schenckii. A three-dimensional model of SsSir2 was constructed using a homology modeling method, and its reliability was evaluated. The active site of SsSir2 was identified by docking simulation, which indicated that several important residues, such as Asn127 and Asp129, play an important role in the histone deacetylase activity of Sir2 family proteins. The differential expression of the SsSir2 in two stages was demonstrated by real-time RT-PCR. The expression of SsSir2 was higher in the yeast stage compared with that in the mycelial one, which indicated that SsSir2 may be involved in the phenotypic switching and morphogenesis of the yeast phase in S. schenckii.

  15. VEGF-A isoforms differentially regulate ATF-2-dependent VCAM-1 gene expression and endothelial-leukocyte interactions.

    Science.gov (United States)

    Fearnley, Gareth W; Odell, Adam F; Latham, Antony M; Mughal, Nadeem A; Bruns, Alexander F; Burgoyne, Nicholas J; Homer-Vanniasinkam, Shervanthi; Zachary, Ian C; Hollstein, Monica C; Wheatcroft, Stephen B; Ponnambalam, Sreenivasan

    2014-08-15

    Vascular endothelial growth factor A (VEGF-A) regulates many aspects of vascular physiology. VEGF-A stimulates signal transduction pathways that modulate endothelial outputs such as cell migration, proliferation, tubulogenesis, and cell-cell interactions. Multiple VEGF-A isoforms exist, but the biological significance of this is unclear. Here we analyzed VEGF-A isoform-specific stimulation of VCAM-1 gene expression, which controls endothelial-leukocyte interactions, and show that this is dependent on both ERK1/2 and activating transcription factor-2 (ATF-2). VEGF-A isoforms showed differential ERK1/2 and p38 MAPK phosphorylation kinetics. A key feature of VEGF-A isoform-specific ERK1/2 activation and nuclear translocation was increased phosphorylation of ATF-2 on threonine residue 71 (T71). Using reverse genetics, we showed ATF-2 to be functionally required for VEGF-A-stimulated endothelial VCAM-1 gene expression. ATF-2 knockdown blocked VEGF-A-stimulated VCAM-1 expression and endothelial-leukocyte interactions. ATF-2 was also required for other endothelial cell outputs, such as cell migration and tubulogenesis. In contrast, VCAM-1 was essential only for promoting endothelial-leukocyte interactions. This work presents a new paradigm for understanding how soluble growth factor isoforms program complex cellular outputs and responses by modulating signal transduction pathways. © 2014 Fearnley et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. Characterization of mammary epithelial cell line HC11 using the NIA 15k gene array reveals potential regulators of the undifferentiated and differentiated phenotypes.

    Science.gov (United States)

    Perotti, C; Wiedl, T; Florin, L; Reuter, H; Moffat, S; Silbermann, M; Hahn, M; Angel, P; Shemanko, C S

    2009-12-01

    Differentiation of undifferentiated mammary epithelial stem and/or progenitor cells results in the production of luminal-ductal and myoepithelial cells in the young animal and upon pregnancy, the production of luminal alveolar cells. A few key regulators of differentiation have been identified, though it is not known yet how these proteins function together to achieve their well-orchestrated products. In an effort to identify regulators of early differentiation, we screened the NIA 15k gene array of 15,247 developmentally expressed genes using mouse mammary epithelial HC11 cells as a model of differentiation. We have confirmed a number of genes preferentially expressed in the undifferentiated cells (Lgals1, Ran, Jam-A and Bmpr1a) and in those induced to undergo differentiation (Id1, Nfkbiz, Trib1, Rps21, Ier3). Using antibodies to the proteins encoded by Lgals1, and Jam-A, we confirmed that their proteins levels were higher in the undifferentiated cells. Although the amounts of bone morphogenetic protein receptor-1A (BMPR1A) protein were present at all stages, we found the activity of its downstream signal transduction pathway, as measured by the presence of phosphorylated-SMAD1, -SMAD5, and -SMAD8, is elevated in undifferentiated cells and decreases in fully differentiated cells. This evidence supports that the BMPR1A pathway functions primarily in undifferentiated mammary epithelial cells. We have identified a number of genes, of known and unknown function, that are candidates for the maintenance of the undifferentiated phenotype and for early regulators of mammary alveolar cell differentiation.

  17. Pairwise comparisons of ten porcine tissues identify differential transcriptional regulation at the gene, isoform, promoter and transcription start site level

    DEFF Research Database (Denmark)

    Farajzadeh, Leila; Hornshøj, Henrik; Momeni, Jamal

    2013-01-01

    The transcriptome is the absolute set of transcripts in a tissue or cell at the time of sampling. In this study RNA-Seq is employed to enable the differential analysis of the transcriptome profile for ten porcine tissues in order to evaluate differences between the tissues at the gene and isoform...

  18. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment.

    Science.gov (United States)

    Murholm, Maria; Dixen, Karen; Qvortrup, Klaus; Hansen, Lillian H L; Amri, Ez-Zoubir; Madsen, Lise; Barbatelli, Giorgio; Quistorff, Bjørn; Hansen, Jacob B

    2009-12-24

    Brown adipocytes are specialised in dissipating energy through adaptive thermogenesis, whereas white adipocytes are specialised in energy storage. These essentially opposite functions are possible for two reasons relating to mitochondria, namely expression of uncoupling protein 1 (UCP1) and a remarkably higher mitochondrial abundance in brown adipocytes. Here we report a comprehensive characterisation of gene expression linked to mitochondrial DNA replication, transcription and function during white and brown fat cell differentiation in vitro as well as in white and brown fat, brown adipose tissue fractions and in selected adipose tissues during cold exposure. We find a massive induction of the majority of such genes during brown adipocyte differentiation and recruitment, e.g. of the mitochondrial transcription factors A (Tfam) and B2 (Tfb2m), whereas only a subset of the same genes were induced during white adipose conversion. In addition, PR domain containing 16 (PRDM16) was found to be expressed at substantially higher levels in brown compared to white pre-adipocytes and adipocytes. We demonstrate that forced expression of Tfam but not Tfb2m in brown adipocyte precursor cells promotes mitochondrial DNA replication, and that silencing of PRDM16 expression during brown fat cell differentiation blunts mitochondrial biogenesis and expression of brown fat cell markers. Using both in vitro and in vivo model systems of white and brown fat cell differentiation, we report a detailed characterisation of gene expression linked to mitochondrial biogenesis and function. We find significant differences in differentiating white and brown adipocytes, which might explain the notable increase in mitochondrial content observed during brown adipose conversion. In addition, our data support a key role of PRDM16 in triggering brown adipocyte differentiation, including mitochondrial biogenesis and expression of UCP1.

  19. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment.

    Directory of Open Access Journals (Sweden)

    Maria Murholm

    Full Text Available BACKGROUND: Brown adipocytes are specialised in dissipating energy through adaptive thermogenesis, whereas white adipocytes are specialised in energy storage. These essentially opposite functions are possible for two reasons relating to mitochondria, namely expression of uncoupling protein 1 (UCP1 and a remarkably higher mitochondrial abundance in brown adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a comprehensive characterisation of gene expression linked to mitochondrial DNA replication, transcription and function during white and brown fat cell differentiation in vitro as well as in white and brown fat, brown adipose tissue fractions and in selected adipose tissues during cold exposure. We find a massive induction of the majority of such genes during brown adipocyte differentiation and recruitment, e.g. of the mitochondrial transcription factors A (Tfam and B2 (Tfb2m, whereas only a subset of the same genes were induced during white adipose conversion. In addition, PR domain containing 16 (PRDM16 was found to be expressed at substantially higher levels in brown compared to white pre-adipocytes and adipocytes. We demonstrate that forced expression of Tfam but not Tfb2m in brown adipocyte precursor cells promotes mitochondrial DNA replication, and that silencing of PRDM16 expression during brown fat cell differentiation blunts mitochondrial biogenesis and expression of brown fat cell markers. CONCLUSIONS/SIGNIFICANCE: Using both in vitro and in vivo model systems of white and brown fat cell differentiation, we report a detailed characterisation of gene expression linked to mitochondrial biogenesis and function. We find significant differences in differentiating white and brown adipocytes, which might explain the notable increase in mitochondrial content observed during brown adipose conversion. In addition, our data support a key role of PRDM16 in triggering brown adipocyte differentiation, including mitochondrial biogenesis and

  20. Promoter Analysis Reveals Globally Differential Regulation of Human Long Non-Coding RNA and Protein-Coding Genes

    KAUST Repository

    Alam, Tanvir

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  1. Autoimmune regulator, Aire, is a novel regulator of chondrocyte differentiation.

    Science.gov (United States)

    Si, Yuan; Inoue, Kazuki; Igarashi, Katsuhide; Kanno, Jun; Imai, Yuuki

    2013-08-09

    Chondrocyte differentiation is controlled by various regulators, such as Sox9 and Runx2, but the process is complex. To further understand the precise underlying molecular mechanisms of chondrocyte differentiation, we aimed to identify a novel regulatory factor of chondrocyte differentiation using gene expression profiles of micromass-cultured chondrocytes at different differentiation stages. From the results of microarray analysis, the autoimmune regulator, Aire, was identified as a novel regulator. Aire stable knockdown cells, and primary cultured chondrocytes obtained from Aire(-/-) mice, showed reduced mRNA expression levels of chondrocyte-related genes. Over-expression of Aire induced the early stages of chondrocyte differentiation by facilitating expression of Bmp2. A ChIP assay revealed that Aire was recruited on an Airebinding site (T box) in the Bmp2 promoter region in the early stages of chondrocyte differentiation and histone methylation was modified. These results suggest that Aire can facilitate early chondrocyte differentiation by expression of Bmp2 through altering the histone modification status of the promoter region of Bmp2. Taken together, Aire might play a role as an active regulator of chondrocyte differentiation, which leads to new insights into the regulatory mechanisms of chondrocyte differentiation. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. DMSO efficiently down regulates pluripotency genes in human embryonic stem cells during definitive endoderm derivation and increases the proficiency of hepatic differentiation.

    Directory of Open Access Journals (Sweden)

    Katherine Czysz

    Full Text Available BACKGROUND: Definitive endoderm (DE is one of the three germ layers which during in vivo vertebrate development gives rise to a variety of organs including liver, lungs, thyroid and pancreas; consequently efficient in vitro initiation of stem cell differentiation to DE cells is a prerequisite for successful cellular specification to subsequent DE-derived cell types [1, 2]. In this study we present a novel approach to rapidly and efficiently down regulate pluripotency genes during initiation of differentiation to DE cells by addition of dimethyl sulfoxide (DMSO to Activin A-based culture medium and report its effects on the downstream differentiation to hepatocyte-like cells. MATERIALS AND METHODS: Human embryonic stem cells (hESC were differentiated to DE using standard methods in medium supplemented with 100ng/ml of Activin A and compared to cultures where DE specification was additionally enhanced with different concentrations of DMSO. DE cells were subsequently primed to generate hepatic-like cells to investigate whether the addition of DMSO during formation of DE improved subsequent expression of hepatic markers. A combination of flow cytometry, real-time quantitative reverse PCR and immunofluorescence was applied throughout the differentiation process to monitor expression of pluripotency (POUF5/OCT4 & NANOG, definitive endoderm (SOX17, CXCR4 & GATA4 and hepatic (AFP & ALB genes to generate differentiation stage-specific signatures. RESULTS: Addition of DMSO to the Activin A-based medium during DE specification resulted in rapid down regulation of the pluripotency genes OCT4 and NANOG, accompanied by an increase expression of the DE genes SOX17, CXCR4 and GATA4. Importantly, the expression level of ALB in DMSO-treated cells was also higher than in cells which were differentiated to the DE stage via standard Activin A treatment.

  3. Expression profile and differential regulation of the Human I-mfa domain-Containing protein (HIC) gene in immune cells.

    Science.gov (United States)

    Gu, Lili; Dean, Jonathan; Oliveira, André L A; Sheehy, Noreen; Hall, William W; Gautier, Virginie W

    2009-04-27

    The Human I-mfa domain-Containing protein, HIC, is a 246 amino acid protein that functions as a transcriptional regulator. Although the precise function of HIC remains to be clarified, the association of the HIC gene locus with myeloid neoplasms, its interactions with lymphotropic viruses such as EBV, HIV-1 and HTLV-1 and its expression in immune tissues suggest that HIC might have a modulatory role in immune cells. To further characterise the HIC functional relationship with the immune system, we sought to analyse the HIC gene expression profile in immune cells and to determine if immunomodulatory cytokines, such as interleukin (IL)-2, could regulate the expression of HIC mRNA. Relative quantitative real-time RT-PCR revealed that HIC mRNA is highly expressed in PBMCs and in various hematopoietic cell lines. The immunomodulatory cytokine IL-2 up-regulated HIC gene expression in PBMCs, CEM, MT-2 and U937 but markedly reduced HIC gene expression in Raji. Addition of cycloheximide indicated that the IL-2 effects were independent of de novo protein synthesis and that the HIC gene is a direct target of IL-2. Two cell lines (Jurkat and BJAB) displayed a distinct loss in HIC gene expression. However, when these cell lines were subjected to a combination of DNA methyltransferase and histone-deacetylase inhibitors, (5-aza-2-deoxycytidine and trichostatin A, respectively), HIC expression was de-repressed, indicating possible epigenetic control of HIC expression. Overall, our study describes that the immune expression of HIC is cell-specific, dynamic, and identifies the HIC gene as an IL-2 responsive gene. Furthermore, our de-repression studies support the hypothesis that HIC might represent a candidate tumor suppressor gene. Overall, this report provides new insights for a putative role of HIC in the modulation of immune and inflammatory responses and/or hematological malignancies.

  4. Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia.

    Science.gov (United States)

    Dai, D; Li, L; Huebner, A; Zeng, H; Guevara, E; Claypool, D J; Liu, A; Chen, J

    2013-01-01

    Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components.

  5. Transcription factor TEAD4 regulates expression of myogenin and the unfolded protein response genes during C2C12 cell differentiation.

    Science.gov (United States)

    Benhaddou, A; Keime, C; Ye, T; Morlon, A; Michel, I; Jost, B; Mengus, G; Davidson, I

    2012-02-01

    The TEAD (1-4) transcription factors comprise the conserved TEA/ATTS DNA-binding domain recognising the MCAT element in the promoters of muscle-specific genes. Despite extensive genetic analysis, the function of TEAD factors in muscle differentiation has proved elusive due to redundancy among the family members. Expression of the TEA/ATTS DNA-binding domain that acts as a dominant negative repressor of TEAD factors in C2C12 myoblasts inhibits their differentiation, whereas selective shRNA knockdown of TEAD4 results in abnormal differentiation characterised by the formation of shortened myotubes. Chromatin immunoprecipitation coupled to array hybridisation shows that TEAD4 occupies 867 promoters including those of myogenic miRNAs. We show that TEAD factors directly induce Myogenin, CDKN1A and Caveolin 3 expression to promote myoblast differentiation. RNA-seq identifies a set of genes whose expression is strongly reduced upon TEAD4 knockdown among which are structural and regulatory proteins and those required for the unfolded protein response. In contrast, TEAD4 represses expression of the growth factor CTGF (connective tissue growth factor) to promote differentiation. Together these results show that TEAD factor activity is essential for normal C2C12 cell differentiation and suggest a role for TEAD4 in regulating expression of the unfolded protein response genes.

  6. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    OpenAIRE

    Arcà Bruno; Zazzaro Vincenzo; Milano Andreina; Lombardo Fabrizio; Mauro Umberto; Salvemini Marco; Polito Lino C; Saccone Giuseppe

    2011-01-01

    Abstract Background In the model system Drosophila melanogaster, doublesex (dsx) is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are tr...

  7. Differential Regulation of Gene Expression of Alveolar Epithelial Cell Markers in Human Lung Adenocarcinoma-Derived A549 Clones

    Directory of Open Access Journals (Sweden)

    Hiroshi Kondo

    2015-01-01

    Full Text Available Stem cell therapy appears to be promising for restoring damaged or irreparable lung tissue. However, establishing a simple and reproducible protocol for preparing lung progenitor populations is difficult because the molecular basis for alveolar epithelial cell differentiation is not fully understood. We investigated an in vitro system to analyze the regulatory mechanisms of alveolus-specific gene expression using a human alveolar epithelial type II (ATII cell line, A549. After cloning A549 subpopulations, each clone was classified into five groups according to cell morphology and marker gene expression. Two clones (B7 and H12 were further analyzed. Under serum-free culture conditions, surfactant protein C (SPC, an ATII marker, was upregulated in both H12 and B7. Aquaporin 5 (AQP5, an ATI marker, was upregulated in H12 and significantly induced in B7. When the RAS/MAPK pathway was inhibited, SPC and thyroid transcription factor-1 (TTF-1 expression levels were enhanced. After treatment with dexamethasone (DEX, 8-bromoadenosine 3′5′-cyclic monophosphate (8-Br-cAMP, 3-isobutyl-1-methylxanthine (IBMX, and keratinocyte growth factor (KGF, surfactant protein B and TTF-1 expression levels were enhanced. We found that A549-derived clones have plasticity in gene expression of alveolar epithelial differentiation markers and could be useful in studying ATII maintenance and differentiation.

  8. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    Science.gov (United States)

    2011-01-01

    Background In the model system Drosophila melanogaster, doublesex (dsx) is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs. Results In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti (Aeadsx). Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR) led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators. Conclusions This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae Anopheles gambiae orthologue

  9. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Arcà Bruno

    2011-02-01

    Full Text Available Abstract Background In the model system Drosophila melanogaster, doublesex (dsx is the double-switch gene at the bottom of the somatic sex determination cascade that determines the differentiation of sexually dimorphic traits. Homologues of dsx are functionally conserved in various dipteran species, including the malaria vector Anopheles gambiae. They show a striking conservation of sex-specific regulation, based on alternative splicing, and of the encoded sex-specific proteins, which are transcriptional regulators of downstream terminal genes that influence sexual differentiation of cells, tissues and organs. Results In this work, we report on the molecular characterization of the dsx homologue in the dengue and yellow fever vector Aedes aegypti (Aeadsx. Aeadsx produces sex-specific transcripts by alternative splicing, which encode isoforms with a high degree of identity to Anopheles gambiae and Drosophila melanogaster homologues. Interestingly, Aeadsx produces an additional novel female-specific splicing variant. Genomic comparative analyses between the Aedes and Anopheles dsx genes revealed a partial conservation of the exon organization and extensive divergence in the intron lengths. An expression analysis showed that Aeadsx transcripts were present from early stages of development and that sex-specific regulation starts at least from late larval stages. The analysis of the female-specific untranslated region (UTR led to the identification of putative regulatory cis-elements potentially involved in the sex-specific splicing regulation. The Aedes dsx sex-specific splicing regulation seems to be more complex with the respect of other dipteran species, suggesting slightly novel evolutionary trajectories for its regulation and hence for the recruitment of upstream splicing regulators. Conclusions This study led to uncover the molecular evolution of Aedes aegypti dsx splicing regulation with the respect of the more closely related Culicidae

  10. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Science.gov (United States)

    Altintas, Dogus Murat; Allioli, Nathalie; Decaussin, Myriam; de Bernard, Simon; Ruffion, Alain; Samarut, Jacques; Vlaeminck-Guillem, Virginie

    2013-01-01

    Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa) among androgen-regulated genes (ARG) and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely) give rise to cancer. ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens) using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1). By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91) and DLX1 (0.94). We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could be complementary to known genes overexpressed in PCa and included along

  11. Gene expression profiling of lymphoblastoid cell lines from monozygotic twins discordant in severity of autism reveals differential regulation of neurologically relevant genes

    Directory of Open Access Journals (Sweden)

    Lee Norman H

    2006-05-01

    Full Text Available Abstract Background The autism spectrum encompasses a set of complex multigenic developmental disorders that severely impact the development of language, non-verbal communication, and social skills, and are associated with odd, stereotyped, repetitive behavior and restricted interests. To date, diagnosis of these neurologically based disorders relies predominantly upon behavioral observations often prompted by delayed speech or aberrant behavior, and there are no known genes that can serve as definitive biomarkers for the disorders. Results Here we demonstrate, for the first time, that lymphoblastoid cell lines from monozygotic twins discordant with respect to severity of autism and/or language impairment exhibit differential gene expression patterns on DNA microarrays. Furthermore, we show that genes important to the development, structure, and/or function of the nervous system are among the most differentially expressed genes, and that many of these genes map closely in silico to chromosomal regions containing previously reported autism candidate genes or quantitative trait loci. Conclusion Our results provide evidence that novel candidate genes for autism may be differentially expressed in lymphoid cell lines from individuals with autism spectrum disorders. This finding further suggests the possibility of developing a molecular screen for autism based on expressed biomarkers in peripheral blood lymphocytes, an easily accessible tissue. In addition, gene networks are identified that may play a role in the pathophysiology of autism.

  12. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    Science.gov (United States)

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  13. Regulating cell differentiation at different layers

    Institute of Scientific and Technical Information of China (English)

    Jiarui Wu

    2011-01-01

    Cell differentiation is a basic behavior in the developmental process of multi-cellular organisms,through which various cell types are generated from one embryonic cell for further building different tissues and organs of animals or plants.It is estimated that there are more than two hundred cell types in a human body.To understand the molecular mechanisms of cell differentiation,researchers usually focus on a question how particular genes are selectively expressed during the differentiation process.However,more and more evidence indicates that the regulation of cell differentiation is far beyond simply controlling the expression of genetic program,which is supported by the collection of four research articles in this issue that the regulation of cell differentiation involves various factors at different layers,including epigenetics,metabolism and cell-cell interaction.

  14. Differential Regulation of Genes Coding for Organelle and Cytosolic ClpATPases under Biotic and Abiotic Stresses in Wheat

    Science.gov (United States)

    Muthusamy, Senthilkumar K.; Dalal, Monika; Chinnusamy, Viswanathan; Bansal, Kailash C.

    2016-01-01

    A sub-group of class I Caseinolytic proteases (Clps) function as molecular chaperone and confer thermotolerance to plants. We identified class I Clp family consisting of five ClpB/HSP100, two ClpC, and two ClpD genes from bread wheat. Phylogenetic analysis showed that these genes were highly conserved across grass genomes. Subcellular localization prediction revealed that TaClpC and TaClpD subgroup proteins and TaClpB1 proteins are potentially targeted to chloroplast, while TaClpB5 to mitochondria, and TaClpB2, TaClpB3, and TaClpB4 to cytoplasm. Spatio-temporal expression pattern analysis revealed that four TaClpB and TaClpD2 genes are expressed in majority of all tissues and developmental stages of wheat. Real-time RT-PCR analysis of expression levels of Clp genes in seven wheat genotypes under different abiotic stresses revealed that genes coding for the cytosolic Clps namely TaClpB2 and TaClpB3 were upregulated under heat, salt and oxidative stress but were downregulated by cold stress in most genotypes. In contrast, genes coding for the chloroplastic Clps TaClpC1, TaClpC2, and TaClpD1 genes were significantly upregulated by mainly by cold stress in most genotypes, while TaClpD2 gene was upregulated >2 fold by salt stress in DBW16. The TaClpB5 gene coding for mitochondrial Clp was upregulated in all genotypes under heat, salt and oxidative stresses. In addition, we found that biotic stresses also upregulated TaClpB4 and TaClpD1. Among biotic stresses, Tilletia caries induced TaClpB2, TaClpB3, TaClpC1, and TaClpD1. Differential expression pattern under different abiotic and biotic stresses and predicted differential cellular localization of Clps suggest their non-redundant organelle and stress-specific roles. Our results also suggest the potential role of Clps in cold, salt and biotic stress responses in addition to the previously established role in thermotolerance of wheat. PMID:27446158

  15. IKAP/hELP1 deficiency in the cerebrum of familial dysautonomia patients results in down regulation of genes involved in oligodendrocyte differentiation and in myelination.

    Science.gov (United States)

    Cheishvili, David; Maayan, Channa; Smith, Yoav; Ast, Gil; Razin, Aharon

    2007-09-01

    The gene affected in the congenital neuropathy familial dysautonomia (FD) is IKBKAP that codes for the IKAP/hELP1 protein. Several different functions have been suggested for this protein, but none of them have been verified in vivo or shown to have some link with the FD phenotype. In an attempt to elucidate the involvement of IKAP/hELP1 in brain function, we searched for IKAP/hELP1 target genes associated with neuronal function. In a microarray expression analysis using RNA extracted from the cerebrum of two FD patients as well as sex and age matched controls, no genes were found to be upregulated in the FD cerebrum. However, 25 genes were downregulated more than 2-fold in the cerebrum of both the male FD child and female FD mature woman. Thirteen of them are known to be involved in oligodendrocyte development and myelin formation. The down regulation of all these genes was verified by real-time PCR. Four of these genes were also confirmed to be downregulated at the protein level. These results are statistically significant and have high biological relevance, since seven of the downregulated genes in the cerebrum of the FD patients were shown by others to be upregulated during oligodendrocyte differentiation in vitro. Our results therefore suggest that IKAP/hELP1 may play a role in oligodendrocyte differentiation and/or myelin formation.

  16. Abrupt onset of mutations in a developmentally regulated gene during terminal differentiation of post-mitotic photoreceptor neurons in mice.

    Directory of Open Access Journals (Sweden)

    Ivette M Sandoval

    Full Text Available For sensitive detection of rare gene repair events in terminally differentiated photoreceptors, we generated a knockin mouse model by replacing one mouse rhodopsin allele with a form of the human rhodopsin gene that causes a severe, early-onset form of retinitis pigmentosa. The human gene contains a premature stop codon at position 344 (Q344X, cDNA encoding the enhanced green fluorescent protein (EGFP at its 3' end, and a modified 5' untranslated region to reduce translation rate so that the mutant protein does not induce retinal degeneration. Mutations that eliminate the stop codon express a human rhodopsin-EGFP fusion protein (hRho-GFP, which can be readily detected by fluorescence microscopy. Spontaneous mutations were observed at a frequency of about one per retina; in every case, they gave rise to single fluorescent rod cells, indicating that each mutation occurred during or after the last mitotic division. Additionally, the number of fluorescent rods did not increase with age, suggesting that the rhodopsin gene in mature rod cells is less sensitive to mutation than it is in developing rods. Thus, there is a brief developmental window, coinciding with the transcriptional activation of the rhodopsin locus, in which somatic mutations of the rhodopsin gene abruptly begin to appear.

  17. Postnatal visual deprivation in rats regulates several retinal genes and proteins, including differentiation-associated fibroblast growth factor-2.

    Science.gov (United States)

    Prokosch-Willing, Verena; Meyer zu Hoerste, Melissa; Mertsch, Sonja; Stupp, Tobias; Thanos, Solon

    2015-01-01

    Little is known about the retinal cellular basis of amblyopia, which is a developmental disease characterized by impaired visual acuity. This study examined the retinal transcripts associated with experimentally induced unilateral amblyopia in rats. Surgical tarsorrhaphy of the eyelids on one side was performed in pups prior to eye opening at postnatal day 14, thereby preventing any visual experience. This condition was maintained for over 2 months, after which electroretinograms (ERGs) were recorded, the retinal ganglion cell (RGC) arrangement and number were determined using neuroanatomical tracing, the retinal transcripts were studied using microarray analysis, regulated mRNAs were confirmed with quantitative reverse-transcriptase PCR, and proteins were stained using Western blotting and immunohistochemistry. An attenuated ERG was found in eyes that were deprived of visual experience. Retrograde neuroanatomical staining disclosed a larger number of RGCs within the retina on the visually deprived side compared to the non-deprived, control side, and a multilayered distribution of RGCs. At the retinomic level, several transcripts associated with retinal differentiation, such as fibroblast growth factor 2 (FGF-2), were either up- or downregulated. Most of the transcripts could be verified at the mRNA level. To unravel the role of a differentiation-associated protein, we tested FGF-2 in dissociated postnatal retinal cell cultures and found that FGF-2 is a potent factor triggering ganglion cell differentiation. The data suggest that visual experience shapes the postnatal retinal differentiation, whereas visual deprivation induces changes at the functional, cellular and molecular levels within the retina.

  18. Regulated Gene Therapy.

    Science.gov (United States)

    Breger, Ludivine; Wettergren, Erika Elgstrand; Quintino, Luis; Lundberg, Cecilia

    2016-01-01

    Gene therapy represents a promising approach for the treatment of monogenic and multifactorial neurological disorders. It can be used to replace a missing gene and mutated gene or downregulate a causal gene. Despite the versatility of gene therapy, one of the main limitations lies in the irreversibility of the process: once delivered to target cells, the gene of interest is constitutively expressed and cannot be removed. Therefore, efficient, safe and long-term gene modification requires a system allowing fine control of transgene expression.Different systems have been developed over the past decades to regulate transgene expression after in vivo delivery, either at transcriptional or post-translational levels. The purpose of this chapter is to give an overview on current regulatory system used in the context of gene therapy for neurological disorders. Systems using external regulation of transgenes using antibiotics are commonly used to control either gene expression using tetracycline-controlled transcription or protein levels using destabilizing domain technology. Alternatively, specific promoters of genes that are regulated by disease mechanisms, increasing expression as the disease progresses or decreasing expression as disease regresses, are also examined. Overall, this chapter discusses advantages and drawbacks of current molecular methods for regulated gene therapy in the central nervous system.

  19. Dynamic regulation of genes involved in mitochondrial DNA replication and transcription during mouse brown fat cell differentiation and recruitment

    DEFF Research Database (Denmark)

    Murholm, Maria; Dixen, Karen; Qvortrup, Klaus

    2009-01-01

    BACKGROUND: Brown adipocytes are specialised in dissipating energy through adaptive thermogenesis, whereas white adipocytes are specialised in energy storage. These essentially opposite functions are possible for two reasons relating to mitochondria, namely expression of uncoupling protein 1 (UCP1......) and a remarkably higher mitochondrial abundance in brown adipocytes. METHODOLOGY/PRINCIPAL FINDINGS: Here we report a comprehensive characterisation of gene expression linked to mitochondrial DNA replication, transcription and function during white and brown fat cell differentiation in vitro as well as in white...... precursor cells promotes mitochondrial DNA replication, and that silencing of PRDM16 expression during brown fat cell differentiation blunts mitochondrial biogenesis and expression of brown fat cell markers. CONCLUSIONS/SIGNIFICANCE: Using both in vitro and in vivo model systems of white and brown fat cell...

  20. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Gregersen, Per L.

    2014-01-01

    The senescence process of plants is important for the completion of their life cycle, particularly for crop plants, it is essential for efficient nutrient remobilization during seed filling. It is a highly regulated process, and in order to address the regulatory aspect, the role of genes...... in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated...... activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription–PCR (qRT–PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47...

  1. Identification of Wnt Pathway Target Genes Regulating the Division and Differentiation of Larval Seam Cells and Vulval Precursor Cells in Caenorhabditis elegans.

    Science.gov (United States)

    Gorrepati, Lakshmi; Krause, Michael W; Chen, Weiping; Brodigan, Thomas M; Correa-Mendez, Margarita; Eisenmann, David M

    2015-06-05

    The evolutionarily conserved Wnt/β-catenin signaling pathway plays a fundamental role during metazoan development, regulating numerous processes including cell fate specification, cell migration, and stem cell renewal. Wnt ligand binding leads to stabilization of the transcriptional effector β-catenin and upregulation of target gene expression to mediate a cellular response. During larval development of the nematode Caenorhabditis elegans, Wnt/β-catenin pathways act in fate specification of two hypodermal cell types, the ventral vulval precursor cells (VPCs) and the lateral seam cells. Because little is known about targets of the Wnt signaling pathways acting during larval VPC and seam cell differentiation, we sought to identify genes regulated by Wnt signaling in these two hypodermal cell types. We conditionally activated Wnt signaling in larval animals and performed cell type-specific "mRNA tagging" to enrich for VPC and seam cell-specific mRNAs, and then used microarray analysis to examine gene expression compared to control animals. Two hundred thirty-nine genes activated in response to Wnt signaling were identified, and we characterized 50 genes further. The majority of these genes are expressed in seam and/or vulval lineages during normal development, and reduction of function for nine genes caused defects in the proper division, fate specification, fate execution, or differentiation of seam cells and vulval cells. Therefore, the combination of these techniques was successful at identifying potential cell type-specific Wnt pathway target genes from a small number of cells and at increasing our knowledge of the specification and behavior of these C. elegans larval hypodermal cells.

  2. Transcriptional expression of Stilbene synthase genes are regulated developmentally and differentially in response to powdery mildew in Norton and Cabernet Sauvignon grapevine.

    Science.gov (United States)

    Dai, Ru; Ge, Hui; Howard, Susanne; Qiu, Wenping

    2012-12-01

    Stilbenic compounds are natural phytoalexins that have antimicrobial activities in plant defense against pathogens. Stilbene synthase (STS) is the key enzyme that catalyzes the biosynthesis of stilbenic compounds. Grapevine genome contains a family of preliminarily annotated 35 STS genes, the regulation of each STS gene needs to be studied to define their roles. In this study, we selected eight STS genes, STS8, STS27/31, STS16/22, STS13/17/23, and applied quantitative polymerase chain reaction (qPCR) to characterize their transcriptional expression profiles in leaf tissues upon infection by the powdery mildew fungus (PM), Erysiphe necator (Schw.) Burr. Their transcripts were also compared in young and old leaves as well as in the berry skin at five developmental stages in Vitis vinifera 'Cabernet Sauvignon' and Vitis aestivalis 'Norton'. The results showed that transcripts of selected STS genes increased significantly in Cabernet Sauvignon leaves at 24 and 48 h post inoculation with PM spores and remained unchanged in Norton leaves in response to the PM infection. Transcripts of STS8, STS27/31 and STS13/17/23 were more abundant in the old leaves of Norton than in Cabernet Sauvignon. STS genes showed lower expression levels in young leaves than in old leaves. Transcript levels of the eight STS genes increased drastically in the berry skin of Cabernet Sauvignon and Norton post véraison. In addition, the content of trans-resveratrol in the berry skin rapidly increased post véraison and reached the highest level at harvest. These assays demonstrated that individual STS genes are regulated differentially in response to PM infection and during development in the two grape varieties. The present study yields basic knowledge for further investigation of the regulation and function of each STS gene in grapevine and provides experimental evidences for the functional annotation of the STS gene family in the grapevine genome.

  3. Differentially expressed androgen-regulated genes in androgen-sensitive tissues reveal potential biomarkers of early prostate cancer.

    Directory of Open Access Journals (Sweden)

    Dogus Murat Altintas

    Full Text Available BACKGROUND: Several data favor androgen receptor implication in prostate cancer initiation through the induction of several gene activation programs. The aim of the study is to identify potential biomarkers for early diagnosis of prostate cancer (PCa among androgen-regulated genes (ARG and to evaluate comparative expression of these genes in normal prostate and normal prostate-related androgen-sensitive tissues that do not (or rarely give rise to cancer. METHODS: ARG were selected in non-neoplastic adult human prostatic epithelial RWPE-1 cells stably expressing an exogenous human androgen receptor, using RNA-microarrays and validation by qRT-PCR. Expression of 48 preselected genes was quantified in tissue samples (seminal vesicles, prostate transitional zones and prostate cancers, benign prostatic hypertrophy obtained from surgical specimens using TaqMan® low-density arrays. The diagnostic performances of these potential biomarkers were compared to that of genes known to be associated with PCa (i.e. PCA3 and DLX1. RESULTS AND DISCUSSION: By crossing expression studies in 26 matched PCa and normal prostate transitional zone samples, and 35 matched seminal vesicle and PCa samples, 14 genes were identified. Similarly, 9 genes were overexpressed in 15 benign prostatic hypertrophy samples, as compared to PCa samples. Overall, we selected 8 genes of interest to evaluate their diagnostic performances in comparison with that of PCA3 and DLX1. Among them, 3 genes: CRYAB, KCNMA1 and SDPR, were overexpressed in all 3 reference non-cancerous tissues. The areas under ROC curves of these genes reached those of PCA3 (0.91 and DLX1 (0.94. CONCLUSIONS: We identified ARG with reduced expression in PCa and with significant diagnostic values for discriminating between cancerous and non-cancerous prostatic tissues, similar that of PCA3. Given their expression pattern, they could be considered as potentially protective against prostate cancer. Moreover, they could

  4. Two iron-regulated transporter (IRT) genes showed differential expression in poplar trees under iron or zinc deficiency.

    Science.gov (United States)

    Huang, Danqiong; Dai, Wenhao

    2015-08-15

    Two iron-regulated transporter (IRT) genes were cloned from the iron chlorosis resistant (PtG) and susceptible (PtY) Populus tremula 'Erecta' lines. Nucleotide sequence analysis showed no significant difference between PtG and PtY. The predicted proteins contain a conserved ZIP domain with 8 transmembrane (TM) regions. A ZIP signature sequence was found in the fourth TM domain. Phylogenetic analysis revealed that PtIRT1 was clustered with tomato and tobacco IRT genes that are highly responsible to iron deficiency. The PtIRT3 gene was clustered with the AtIRT3 gene that was related to zinc and iron transport in plants. Tissue specific expression indicated that PtIRT1 only expressed in the root, while PtIRT3 constitutively expressed in all tested tissues. Under iron deficiency, the expression of PtIRT1 was dramatically increased and a significantly higher transcript level was detected in PtG than in PtY. Iron deficiency also enhanced the expression of PtIRT3 in PtG. On the other hand, zinc deficiency down-regulated the expression of PtIRT1 and PtIRT3 in both PtG and PtY. Zinc accumulated significantly under iron-deficient conditions, whereas the zinc deficiency showed no significant effect on iron accumulation. A yeast complementation test revealed that the PtIRT1 and PtIRT3 genes could restore the iron uptake ability under the iron uptake-deficiency condition. The results will help understand the mechanisms of iron deficiency response in poplar trees and other woody species.

  5. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    cells are capable of regulating their gene expression, so that each cell can only express a particular set of genes yielding limited numbers of proteins with specialized functions. Therefore a rigid control of differential gene expression is necessary for cellular diversity. On the other hand, aberrant...... gene regulation will disrupt the cell’s fundamental processes, which in turn can cause disease. Hence, understanding gene regulation is essential for deciphering the code of life. Along with the development of high throughput sequencing (HTS) technology and the subsequent large-scale data analysis......, genome-wide assays have increased our understanding of gene regulation significantly. This thesis describes the integration and analysis of HTS data across different important aspects of gene regulation. Gene expression can be regulated at different stages when the genetic information is passed from gene...

  6. Androgen receptor and its splice variant, AR-V7, differentially regulate FOXA1 sensitive genes in LNCaP prostate cancer cells.

    Science.gov (United States)

    Krause, William C; Shafi, Ayesha A; Nakka, Manjula; Weigel, Nancy L

    2014-09-01

    Prostate cancer (PCa) is an androgen-dependent disease, and tumors that are resistant to androgen ablation therapy often remain androgen receptor (AR) dependent. Among the contributors to castration-resistant PCa are AR splice variants that lack the ligand-binding domain (LBD). Instead, they have small amounts of unique sequence derived from cryptic exons or from out of frame translation. The AR-V7 (or AR3) variant is constitutively active and is expressed under conditions consistent with CRPC. AR-V7 is reported to regulate a transcriptional program that is similar but not identical to that of AR. However, it is unknown whether these differences are due to the unique sequence in AR-V7, or simply to loss of the LBD. To examine transcriptional regulation by AR-V7, we have used lentiviruses encoding AR-V7 (amino acids 1-627 of AR with the 16 amino acids unique to the variant) to prepare a derivative of the androgen-dependent LNCaP cells with inducible expression of AR-V7. An additional cell line was generated with regulated expression of AR-NTD (amino acids 1-660 of AR); this mutant lacks the LBD but does not have the AR-V7 specific sequence. We find that AR and AR-V7 have distinct activities on target genes that are co-regulated by FOXA1. Transcripts regulated by AR-V7 were similarly regulated by AR-NTD, indicating that loss of the LBD is sufficient for the observed differences. Differential regulation of target genes correlates with preferential recruitment of AR or AR-V7 to specific cis-regulatory DNA sequences providing an explanation for some of the observed differences in target gene regulation.

  7. The arogenate dehydratase gene family: towards understanding differential regulation of carbon flux through phenylalanine into primary versus secondary metabolic pathways.

    Science.gov (United States)

    Corea, Oliver R A; Bedgar, Diana L; Davin, Laurence B; Lewis, Norman G

    2012-10-01

    Phe is formed from arogenate in planta through the action of arogenate dehydratase (ADT), and there are six ADT isoenzymes in the "model" vascular plant species Arabidopsis thaliana. This raised the possibility that specific ADTs may be differentially regulated so as to control Phe biosynthesis for protein synthesis vs its much more massive deployment for phenylpropanoid metabolism. In our previous reverse genetics study using 25 single/multiple ADT knockout (KO) lines, a subset of these knockouts was differentially reduced in their lignin contents. In the current investigation, it was hypothesized that Phe pool sizes might correlate well with reduction in lignin contents in the affected KO lines. The free amino acid contents of these KO lines were thus comprehensively analyzed in stem, leaf and root tissues, over a growth/developmental time course from 3 to 8 weeks until senescence. The data obtained were then compared to, and contrasted with, the differential extent of lignin deposition occurring in the various lines. Relative changes in pool sizes were also analyzed by performing a pairwise confirmatory factor analysis for Phe:Tyr, Phe:Trp and Tyr:Trp, following determination of the deviation from the mean for Phe, Tyr and Trp in each plant line. It was found that the Phe pool sizes measured were differentially reduced only in lignin-deficient lines, and in tissues and at time points where lignin biosynthesis was constitutively highly active (in wild type lines) under the growth conditions employed. In contrast, this trend was not evident across all ADT KO lines, possibly due to maintenance of Phe pools by non-targeted isoenzymes, or by feedback mechanisms known to be in place.

  8. Transcription of Genes in the Biosynthetic Pathway for Fumonisin Mycotoxins Is Epigenetically and Differentially Regulated in the Fungal Maize Pathogen Fusarium verticillioides

    Science.gov (United States)

    Visentin, I.; Montis, V.; Döll, K.; Alabouvette, C.; Tamietti, G.; Karlovsky, P.

    2012-01-01

    When the fungal pathogen Gibberella moniliformis (anamorph, Fusarium verticillioides) colonizes maize and maize-based products, it produces class B fumonisin (FB) mycotoxins, which are a significant threat to human and animal health. FB biosynthetic enzymes and accessory proteins are encoded by a set of clustered and cotranscribed genes collectively named FUM, whose molecular regulation is beginning to be unraveled by researchers. FB accumulation correlates with the amount of transcripts from the key FUM genes, FUM1, FUM21, and FUM8. In fungi in general, gene expression is often partially controlled at the chromatin level in secondary metabolism; when this is the case, the deacetylation and acetylation (and other posttranslational modifications) of histones are usually crucial in the regulation of transcription. To assess whether epigenetic factors regulate the FB pathway, we monitored FB production and FUM1, FUM21, and FUM8 expression in the presence of a histone deacetylase inhibitor and verified by chromatin immunoprecipitation the relative degree of histone acetylation in the promoter regions of FUM1, FUM21, and FUM8 under FB-inducing and noninducing conditions. Moreover, we generated transgenic F. verticillioides strains expressing GFP under the control of the FUM1 promoter to determine whether its strength under FB-inducing and noninducing conditions was influenced by its location in the genome. Our results indicate a clear and differential role for chromatin remodeling in the regulation of FUM genes. This epigenetic regulation can be attained through the modulation of histone acetylation at the level of the promoter regions of the key biosynthetic genes FUM1 and FUM21, but less so for FUM8. PMID:22117026

  9. Differential distribution and energy status-dependent regulation of the four CART neuropeptide genes in the zebrafish brain.

    Science.gov (United States)

    Akash, G; Kaniganti, Tarun; Tiwari, Neeraj Kumar; Subhedar, Nishikant K; Ghose, Aurnab

    2014-07-01

    The cocaine- and amphetamine-regulated transcript (CART) neuropeptide has been implicated in the neural regulation of energy homeostasis across vertebrate phyla. By using gene-specific in situ hybridization, we have mapped the distribution of the four CART mRNAs in the central nervous system of the adult zebrafish. The widespread neuronal expression pattern for CART 2 and 4 suggests a prominent role for the peptide in processing sensory information from diverse modalities including olfactory and visual inputs. In contrast, CART 1 and 3 have a much more restricted distribution, predominantly located in the nucleus of the medial longitudinal fasciculus (NMLF) and entopeduncular nucleus (EN), respectively. Enrichment of CART 2 and 4 in the preoptic and tuberal areas emphasizes the importance of CART in neuroendocrine functions. Starvation resulted in a significant decrease in CART-positive cells in the nucleus recessus lateralis (NRL) and nucleus lateralis tuberis (NLT) hypothalamic regions, suggesting a function in energy homeostasis for these neurons. Similarly, the EN emerges as a novel energy status-responsive region. Not only is there abundant and overlapping expression of CART 2, 3, and 4 in the EN, but also starvation induced a decrease in CART-expressing neurons in this region. The cellular resolution mapping of CART mRNA and the response of CART-expressing nuclei to starvation underscores the importance of CART neuropeptide in energy processing. Additionally, the regional and gene-specific responses to energy levels suggest a complex, interactive network whereby the four CART gene products may have nonredundant functions in energy homeostasis.

  10. Restraint stress differentially regulates inflammation and glutamate receptor gene expression in the hippocampus of C57BL/6 and BALB/c mice.

    Science.gov (United States)

    Sathyanesan, Monica; Haiar, Jacob M; Watt, Michael J; Newton, Samuel S

    2017-03-01

    The inbred mouse strains, C57BL/6 and BALB/c have been used widely in preclinical psychiatric research. The differences in stress susceptibility of available strains has provided a useful platform to test pharmacological agents and behavioral responses. Previous brain gene profiling efforts have indicated that the inflammation and immune response gene pathway is the predominant gene network in the differential stress response of BALB/c and C57BL/6 mice. The implication is that a composite stress paradigm that includes a sequence of extended, varied and unpredictable stressors induces inflammation-related genes in the hippocampus. We hypothesized that the regulation of inflammation genes in the brain could constitute a primary stress response and tested this by employing a simple stress protocol, repeated exposure to the same stressor for 10 days, 2 h of restraint per day. We examined stress-induced regulation of 13 proinflammatory cytokine genes in male BALB/c and C57BL/6 mice using quantitative PCR. Elevated cytokine genes included tumor necrosis factor alpha (TNFα), interleukin 6 (IL6), interleukin 10 (IL10), tumor necrosis factor (TNF) super family members and interleukin 1 receptor 1 (IL1R1). In addition, we examined restraint stress-induced regulation of 12 glutamate receptor genes in both strains. Our results show that restraint stress is sufficient to elevate the expression of inflammation-related genes in the hippocampus of both BABLB/c and C57BL/6 mice, but they differ in the genes that are induced and the magnitude of change. Cell types that are involved in this response include endothelial cells and astrocytes. Lay summary Repeated exposure to a simple restraint stress altered the activities of genes involved in inflammation and the functions of the excitatory neurotransmitter, glutamate. These changes in the hippocampus of the mouse brain showed differences that were dependent on the strain of mice and the length of the stress exposure. The effects

  11. Differential recruitment of coregulators to the RORA promoter adds another layer of complexity to gene (dys) regulation by sex hormones in autism.

    Science.gov (United States)

    Sarachana, Tewarit; Hu, Valerie W

    2013-10-11

    Our independent cohort studies have consistently shown the reduction of the nuclear receptor RORA (retinoic acid-related orphan receptor-alpha) in lymphoblasts as well as in brain tissues from individuals with autism spectrum disorder (ASD). Moreover, we have found that RORA regulates the gene for aromatase, which converts androgen to estrogen, and that male and female hormones regulate RORA in opposite directions, with androgen suppressing RORA, suggesting that the sexually dimorphic regulation of RORA may contribute to the male bias in ASD. However, the molecular mechanisms through which androgen and estrogen differentially regulate RORA are still unknown. Here we use functional knockdown of hormone receptors and coregulators with small interfering RNA (siRNA) to investigate their involvement in sex hormone regulation of RORA in human neuronal cells. Luciferase assays using a vector containing various RORA promoter constructs were first performed to identify the promoter regions required for inverse regulation of RORA by male and female hormones. Sequential chromatin immunoprecipitation methods followed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analyses of RORA expression in hormone-treated SH-SY5Y cells were then utilized to identify coregulators that associate with hormone receptors on the RORA promoter. siRNA-mediated knockdown of interacting coregulators was performed followed by qRT-PCR analyses to confirm the functional requirement of each coregulator in hormone-regulated RORA expression. Our studies demonstrate the direct involvement of androgen receptor (AR) and estrogen receptor (ER) in the regulation of RORA by male and female hormones, respectively, and that the promoter region between -10055 bp and -2344 bp from the transcription start site of RORA is required for the inverse hormonal regulation. We further show that AR interacts with SUMO1, a reported suppressor of AR transcriptional activity, whereas ERα interacts

  12. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line.

    Science.gov (United States)

    Khan, Junaid A; Bellance, Catherine; Guiochon-Mantel, Anne; Lombès, Marc; Loosfelt, Hugues

    2012-01-01

    Progesterone receptor isoforms (PRA and PRB) are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG) playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF) on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.

  13. Differential regulation of breast cancer-associated genes by progesterone receptor isoforms PRA and PRB in a new bi-inducible breast cancer cell line.

    Directory of Open Access Journals (Sweden)

    Junaid A Khan

    Full Text Available Progesterone receptor isoforms (PRA and PRB are expressed at equal levels in normal mammary cells. However, alteration in PRA/PRB expression is often observed in aggressive breast cancer suggesting differential contribution of PR isoforms in carcinogenesis. The mechanisms underlying such processes remain to be established mainly due to paucity of appropriate cellular models. To investigate the role of PR isoforms and the impact of imbalanced PRA/PRB ratio in transcriptional regulation, we have generated an original human breast cancer cell line conditionally expressing PRA and/or PRB in dose-dependence of non-steroid inducers. We first focused on PR-dependent transcriptional regulation of the paracrine growth factor gene amphiregulin (AREG playing important role in cancer. Interestingly, unliganded PRA increases AREG expression, independently of estrogen receptor, yet inhibitable by antiprogestins. We show that functional outcome of epidermal growth factor (EGF on such regulation is highly dependent on PRA/PRB ratio. Using this valuable model, genome-wide transcriptomic studies allowed us to determine the differential effects of PRA and PRB as a function of hormonal status. We identified a large number of novel PR-regulated genes notably implicated in breast cancer and metastasis and demonstrated that imbalanced PRA/PRB ratio strongly impact their expression predicting poor outcome in breast cancer. In sum, our unique cell-based system strongly suggests that PRA/PRB ratio is a critical determinant of PR target gene selectivity and responses to hormonal/growth factor stimuli. These findings provide molecular support for the aggressive phenotype of breast cancers with impaired expression of PRA or PRB.

  14. Timed and targeted differential regulation of nitric oxide synthase (NOS) and anti-NOS genes by reward conditioning leading to long-term memory formation.

    Science.gov (United States)

    Korneev, Sergei A; Straub, Volko; Kemenes, Ildikó; Korneeva, Elena I; Ott, Swidbert R; Benjamin, Paul R; O'Shea, Michael

    2005-02-02

    In a number of neuronal models of learning, signaling by the neurotransmitter nitric oxide (NO), synthesized by the enzyme neuronal NO synthase (nNOS), is essential for the formation of long-term memory (LTM). Using the molluscan model system Lymnaea, we investigate here whether LTM formation is associated with specific changes in the activity of members of the NOS gene family: Lym-nNOS1, Lym-nNOS2, and the antisense RNA-producing pseudogene (anti-NOS). We show that expression of the Lym-nNOS1 gene is transiently upregulated in cerebral ganglia after conditioning. The activation of the gene is precisely timed and occurs at the end of a critical period during which NO is required for memory consolidation. Moreover, we demonstrate that this induction of the Lym-nNOS1 gene is targeted to an identified modulatory neuron called the cerebral giant cell (CGC). This neuron gates the conditioned feeding response and is an essential part of the neural network involved in LTM formation. We also show that the expression of the anti-NOS gene, which functions as a negative regulator of nNOS expression, is downregulated in the CGC by training at 4 h after conditioning, during the critical period of NO requirement. This appears to be the first report of the timed and targeted differential regulation of the activity of a group of related genes involved in the production of a neurotransmitter that is necessary for learning, measured in an identified neuron of known function. We also provide the first example of the behavioral regulation of a pseudogene.

  15. Identification of adaptive mutations in the influenza A virus non-structural 1 gene that increase cytoplasmic localization and differentially regulate host gene expression.

    Directory of Open Access Journals (Sweden)

    Nicole Forbes

    Full Text Available The NS1 protein of influenza A virus (IAV is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2 (HK to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30. Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I, the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression.

  16. Identification of Adaptive Mutations in the Influenza A Virus Non-Structural 1 Gene That Increase Cytoplasmic Localization and Differentially Regulate Host Gene Expression

    Science.gov (United States)

    Forbes, Nicole; Selman, Mohammed; Pelchat, Martin; Jia, Jian Jun; Stintzi, Alain; Brown, Earl G.

    2013-01-01

    The NS1 protein of influenza A virus (IAV) is a multifunctional virulence factor. We have previously characterized gain-of-function mutations in the NS1 protein arising from the experimental adaptation of the human isolate A/Hong Kong/1/1968(H3N2) (HK) to the mouse. The majority of these mouse adapted NS1 mutations were demonstrated to increase virulence, viral fitness, and interferon antagonism, but differ in binding to the post-transcriptional processing factor cleavage and polyadenylation specificity factor 30 (CPSF30). Because nuclear trafficking is a major genetic determinant of influenza virus host adaptation, we assessed subcellular localization and host gene expression of NS1 adaptive mutations. Recombinant HK viruses with adaptive mutations in the NS1 gene were assessed for NS1 protein subcellular localization in mouse and human cells using confocal microscopy and cellular fractionation. In human cells the HK wild-type (HK-wt) virus NS1 protein partitioned equivalently between the cytoplasm and nucleus but was defective in cytoplasmic localization in mouse cells. Several adaptive mutations increased the proportion of NS1 in the cytoplasm of mouse cells with the greatest effects for mutations M106I and D125G. The host gene expression profile of the adaptive mutants was determined by microarray analysis of infected mouse cells to show either high or low extents of host-gene regulation (HGR or LGR) phenotypes. While host genes were predominantly down regulated for the HGR group of mutants (D2N, V23A, F103L, M106I+L98S, L98S, M106V, and M106V+M124I), the LGR phenotype mutants (D125G, M106I, V180A, V226I, and R227K) were characterized by a predominant up regulation of host genes. CPSF30 binding affinity of NS1 mutants did not predict effects on host gene expression. To our knowledge this is the first report of roles of adaptive NS1 mutations that impact intracellular localization and regulation of host gene expression. PMID:24391972

  17. Transcriptional Analysis of the Genetic Element pSSVx: Differential and Temporal Regulation of Gene Expression Reveals Correlation between Transcription and Replication

    DEFF Research Database (Denmark)

    Contursi, Patrizia; Cannio, Raffaele; Prato, Santina

    2007-01-01

    long transcriptional unit comprised the genes for the plasmid copy number control protein ORF60 (CopG), ORF91, and the replication protein ORF892 (RepA). We propose that a termination readthrough mechanism might be responsible for the formation of more than one RNA species from a single 5' end......pSSVx from Sulfolobus islandicus strain REY15/4 is a hybrid between a plasmid and a fusellovirus. A systematic study performed by a combination of Northern blot analysis, primer extension, and reverse transcriptase PCR revealed the presence of nine major transcripts whose expression...... was differentially and temporally regulated over the growth cycle of S. islandicus. The map positions of the RNAs as well as the clockwise and the anticlockwise directions of their transcription were determined. Some genes were clustered and appeared to be transcribed as polycistronic messengers, among which one...

  18. The Phytohormone Ethylene Enhances Cellulose Production, Regulates CRP/FNRKx Transcription and Causes Differential Gene Expression within the Bacterial Cellulose Synthesis Operon of Komagataeibacter (Gluconacetobacter) xylinus ATCC 53582.

    Science.gov (United States)

    Augimeri, Richard V; Strap, Janice L

    2015-01-01

    Komagataeibacter (formerly Gluconacetobacter) xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC) biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid) to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx). Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR), we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx, and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA) induced differential expression of genes within the bacterial cellulose synthesis (bcs) operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature.

  19. The phytohormone ethylene enhances bacterial cellulose production, regulates CRP/FNRKx transcription and causes differential gene expression within the cellulose synthesis operon of Komagataeibacter (Gluconacetobacter xylinus ATCC 53582

    Directory of Open Access Journals (Sweden)

    Richard Vincent Augimeri

    2015-12-01

    Full Text Available Komagataeibacter (formerly Gluconacetobacter xylinus ATCC 53582 is a plant-associated model organism for bacterial cellulose (BC biosynthesis. This bacterium inhabits the carposphere where it interacts with fruit through the bi-directional transfer of phytohormones. The majority of research regarding K. xylinus has been focused on identifying and characterizing structural and regulatory factors that control BC biosynthesis, but its ecophysiology has been generally overlooked. Ethylene is a phytohormone that regulates plant development in a variety of ways, but is most commonly known for its positive role on fruit ripening. In this study, we utilized ethephon (2-chloroethylphosphonic acid to produce in situ ethylene to investigate the effects of this phytohormone on BC production and the expression of genes known to be involved in K. xylinus BC biosynthesis (bcsA, bcsB, bcsC, bcsD, cmcAx, ccpAx and bglAx. Using pellicle assays and reverse transcription quantitative polymerase chain reaction (RT-qPCR, we demonstrate that ethephon-derived ethylene enhances BC directly in K. xylinus by up-regulating the expression of bcsA and bcsB, and indirectly though the up-regulation of cmcAx, ccpAx and bglAx. We confirm that IAA directly decreases BC biosynthesis by showing that IAA down-regulates bcsA expression. Similarly, we confirm that ABA indirectly influences BC biosynthesis by showing it does not affect the expression of bcs operon genes. In addition, we are the first to report the ethylene and indole-3-acetic acid (IAA induced differential expression of genes within the bacterial cellulose synthesis (bcs operon. Using bioinformatics we have identified a novel phytohormone-regulated CRP/FNRKx transcription factor and provide evidence that it influences BC biosynthesis in K. xylinus. Lastly, utilizing current and previous data, we propose a model for the phytohormone-mediated fruit-bacteria interactions that K. xylinus experiences in nature.

  20. Identifying differentially regulated subnetworks from phosphoproteomic data

    Directory of Open Access Journals (Sweden)

    Tebbe Andreas

    2010-06-01

    Full Text Available Abstract Background Various high throughput methods are available for detecting regulations at the level of transcription, translation or posttranslation (e.g. phosphorylation. Integrating these data with protein networks should make it possible to identify subnetworks that are significantly regulated. Furthermore, such integration can support identification of regulated entities from often noisy high throughput data. In particular, processing mass spectrometry-based phosphoproteomic data in this manner may expose signal transduction pathways and, in the case of experiments with drug-treated cells, reveal the drug's mode of action. Results Here, we introduce SubExtractor, an algorithm that combines phosphoproteomic data with protein network information from STRING to identify differentially regulated subnetworks and individual proteins. The method is based on a Bayesian probabilistic model combined with a genetic algorithm and rigorous significance testing. The Bayesian model accounts for information about both differential regulation and network topology. The method was tested with artificial data and subsequently applied to a comprehensive phosphoproteomics study investigating the mode of action of sorafenib, a small molecule kinase inhibitor. Conclusions SubExtractor reliably identifies differentially regulated subnetworks from phosphoproteomic data by integrating protein networks. The method can also be applied to gene or protein expression data.

  1. Long-range enhancer associated with chromatin looping allows AP-1 regulation of the peptidylarginine deiminase 3 gene in differentiated keratinocyte.

    Directory of Open Access Journals (Sweden)

    Stéphane Chavanas

    Full Text Available Transcription control at a distance is a critical mechanism, particularly for contiguous genes. The peptidylarginine deiminases (PADs catalyse the conversion of protein-bound arginine into citrulline (deimination, a critical reaction in the pathophysiology of multiple sclerosis, Alzheimer's disease and rheumatoid arthritis, and in the metabolism of the major epidermal barrier protein filaggrin, a strong predisposing factor for atopic dermatitis. PADs are encoded by 5 clustered PADI genes (1p35-6. Unclear are the mechanisms controlling the expression of the gene PADI3 encoding the PAD3 isoform, a strong candidate for the deimination of filaggrin in the terminally differentiating epidermal keratinocyte. We describe the first PAD Intergenic Enhancer (PIE, an evolutionary conserved non coding segment located 86-kb from the PADI3 promoter. PIE is a strong enhancer of the PADI3 promoter in Ca2+-differentiated epidermal keratinocytes, and requires bound AP-1 factors, namely c-Jun and c-Fos. As compared to proliferative keratinocytes, calcium stimulation specifically associates with increased local DNase I hypersensitivity around PIE, and increased physical proximity of PIE and PADI3 as assessed by Chromosome Conformation Capture. The specific AP-1 inhibitor nordihydroguaiaretic acid suppresses the calcium-induced increase of PADI3 mRNA levels in keratinocytes. Our findings pave the way to the exploration of deimination control during tumorigenesis and wound healing, two conditions for which AP-1 factors are critical, and disclose that long-range transcription control has a role in the regulation of the gene PADI3. Since invalidation of distant regulators causes a variety of human diseases, PIE results to be a plausible candidate in association studies on deimination-related disorders or atopic disease.

  2. The trpE gene negatively regulates differentiation of heterocysts at the level of induction in Anabaena sp. strain PCC 7120.

    Science.gov (United States)

    Videau, Patrick; Cozy, Loralyn M; Young, Jasmine E; Ushijima, Blake; Oshiro, Reid T; Rivers, Orion S; Burger, Andrew H; Callahan, Sean M

    2015-01-01

    Levels of 2-oxoglutarate (2-OG) reflect nitrogen status in many bacteria. In heterocystous cyanobacteria, a spike in the 2-OG level occurs shortly after the removal of combined nitrogen from cultures and is an integral part of the induction of heterocyst differentiation. In this work, deletion of one of the two annotated trpE genes in Anabaena sp. strain PCC 7120 resulted in a spike in the 2-OG level and subsequent differentiation of a wild-type pattern of heterocysts when filaments of the mutant were transferred from growth on ammonia to growth on nitrate. In contrast, 2-OG levels were unaffected in the wild type, which did not differentiate under the same conditions. An inverted-repeat sequence located upstream of trpE bound a central regulator of differentiation, HetR, in vitro and was necessary for HetR-dependent transcription of a reporter fusion and complementation of the mutant phenotype in vivo. Functional complementation of the mutant phenotype with the addition of tryptophan suggested that levels of tryptophan, rather than the demonstrated anthranilate synthase activity of TrpE, mediated the developmental response of the wild type to nitrate. A model is presented for the observed increase in 2-OG in the trpE mutant.

  3. Expression of genes involved in mouse lung cell differentiation/regulation after acute exposure to photons and protons with or without low-dose preirradiation.

    Science.gov (United States)

    Tian, Jian; Zhao, WeiLing; Tian, Sisi; Slater, James M; Deng, Zhiyong; Gridley, Daila S

    2011-11-01

    The goal of this study was to compare the effects of acute 2 Gy irradiation with photons (0.8 Gy/min) or protons (0.9 Gy/min), both with and without pre-exposure to low-dose/low-dose-rate γ rays (0.01 Gy at 0.03 cGy/h), on 84 genes involved in stem cell differentiation or regulation in mouse lungs on days 21 and 56. Genes with a ≥1.5-fold difference in expression and P photons in modulating the genes. More genes were affected by protons than by photons (22 compared to 2 and 6 compared to 2 on day 21 and day 56, respectively) compared to 0 Gy. Preirradiation with low-dose-rate γ rays enhanced the acute photon-induced gene modulation on day 21 (11 compared to 2), and all 11 genes were significantly downregulated on day 56. On day 21, seven genes (aldh2, bmp2, cdc2a, col1a1, dll1, foxa2 and notch1) were upregulated in response to most of the radiation regimens. Immunoreactivity of Clara cell secretory protein was enhanced by all radiation regimens. The number of alveolar type 2 cells positive for prosurfactant protein C in irradiated groups was higher on day 56 (12.4-14.6 cells/100) than on day 21 (8.5-11.2 cells/100) (P photons and protons induced different gene expression profiles in the lungs and that pre-exposure to low-dose-rate γ rays sometimes had modulatory effects. In addition, proteins associated with lung-specific stem cells/progenitors were highly sensitive to radiation.

  4. DNA methylation analysis of human myoblasts during in vitro myogenic differentiation: de novo methylation of promoters of muscle-related genes and its involvement in transcriptional down-regulation.

    Science.gov (United States)

    Miyata, Kohei; Miyata, Tomoko; Nakabayashi, Kazuhiko; Okamura, Kohji; Naito, Masashi; Kawai, Tomoko; Takada, Shuji; Kato, Kiyoko; Miyamoto, Shingo; Hata, Kenichiro; Asahara, Hiroshi

    2015-01-15

    Although DNA methylation is considered to play an important role during myogenic differentiation, chronological alterations in DNA methylation and gene expression patterns in this process have been poorly understood. Using the Infinium HumanMethylation450 BeadChip array, we obtained a chronological profile of the genome-wide DNA methylation status in a human myoblast differentiation model, where myoblasts were cultured in low-serum medium to stimulate myogenic differentiation. As the differentiation of the myoblasts proceeded, their global DNA methylation level increased and their methylation patterns became more distinct from those of mesenchymal stem cells. Gene ontology analysis revealed that genes whose promoter region was hypermethylated upon myoblast differentiation were highly significantly enriched with muscle-related terms such as 'muscle contraction' and 'muscle system process'. Sequence motif analysis identified 8-bp motifs somewhat similar to the binding motifs of ID4 and ZNF238 to be most significantly enriched in hypermethylated promoter regions. ID4 and ZNF238 have been shown to be critical transcriptional regulators of muscle-related genes during myogenic differentiation. An integrated analysis of DNA methylation and gene expression profiles revealed that de novo DNA methylation of non-CpG island (CGI) promoters was more often associated with transcriptional down-regulation than that of CGI promoters. These results strongly suggest the existence of an epigenetic mechanism in which DNA methylation modulates the functions of key transcriptional factors to coordinately regulate muscle-related genes during myogenic differentiation.

  5. Differential regulation of manganese peroxidases and characterization of two variable MnP encoding genes in the white-rot fungus Physisporinus rivulosus.

    Science.gov (United States)

    Hakala, Terhi K; Hildén, Kristiina; Maijala, Pekka; Olsson, Cia; Hatakka, Annele

    2006-12-01

    Manganese peroxidase (MnP) production in the white-rot basidiomycete Physisporinus rivulosus T241i was studied. Separate MnP isoforms were produced in carbon-limited liquid media supplemented with Mn(2+), veratryl alcohol, or sawdust. The isoforms had different pH ranges for the oxidation of Mn(2+) and 2,6-dimethoxyphenol. Although lignin degradation by white-rot fungi is often triggered by nitrogen depletion, MnPs of P. rivulosus were efficiently produced also in the presence of high-nutrient nitrogen, especially in cultures supplemented with veratryl alcohol. Two MnP encoding genes, mnpA and mnpB, were identified, and their corresponding cDNAs were characterized. Structurally, the genes showed marked dissimilarity, and the expression of the two genes implicated quantitative variation and differential regulation in response to manganese, veratryl alcohol, or sawdust. The variability in regulation and properties of the isoforms may widen the operating range for efficient lignin degradation by P. rivulosus.

  6. Positional mapping and candidate gene analysis of the mouse Ccs3 locus that regulates differential susceptibility to carcinogen-induced colorectal cancer.

    Directory of Open Access Journals (Sweden)

    Charles Meunier

    Full Text Available The Ccs3 locus on mouse chromosome 3 regulates differential susceptibility of A/J (A, susceptible and C57BL/6J (B6, resistant mouse strains to chemically-induced colorectal cancer (CRC. Here, we report the high-resolution positional mapping of the gene underlying the Ccs3 effect. Using phenotype/genotype correlation in a series of 33 AcB/BcA recombinant congenic mouse strains, as well as in groups of backcross populations bearing unique recombinant chromosomes for the interval, and in subcongenic strains, we have delineated the maximum size of the Ccs3 physical interval to a ∼2.15 Mb segment. This interval contains 12 annotated transcripts. Sequencing of positional candidates in A and B6 identified many either low-priority coding changes or non-protein coding variants. We found a unique copy number variant (CNV in intron 15 of the Nfkb1 gene. The CNV consists of two copies of a 54 bp sequence immediately adjacent to the exon 15 splice site, while only one copy is found in CRC-susceptible A. The Nfkb1 protein (p105/p50 expression is much reduced in A tumors compared to normal A colonic epithelium as analyzed by immunohistochemistry. Studies in primary macrophages from A and B6 mice demonstrate a marked differential activation of the NfκB pathway by lipopolysaccharide (kinetics of stimulation and maximum levels of phosphorylated IκBα, with a more robust activation being associated with resistance to CRC. NfκB has been previously implicated in regulating homeostasis and inflammatory response in the intestinal mucosa. The interval contains another positional candidate Slc39a8 that is differentially expressed in A vs B6 colons, and that has recently been associated in CRC tumor aggressiveness in humans.

  7. The Niemann-Pick C1 gene interacts with a high-fat diet to promote weight gain through differential regulation of central energy metabolism pathways.

    Science.gov (United States)

    Castillo, Joseph J; Jelinek, David; Wei, Hao; Gannon, Nicholas P; Vaughan, Roger A; Horwood, L John; Meaney, F John; Garcia-Smith, Randi; Trujillo, Kristina A; Heidenreich, Randall A; Meyre, David; Orlando, Robert A; LeBoeuf, Renee C; Garver, William S

    2017-08-01

    A genome-wide association study (GWAS) reported that common variation in the human Niemann-Pick C1 gene (NPC1) is associated with morbid adult obesity. This study was confirmed using our BALB/cJ Npc1 mouse model, whereby heterozygous mice (Npc1(+/-) ) with decreased gene dosage were susceptible to weight gain when fed a high-fat diet (HFD) compared with homozygous normal mice (Npc1(+/+) ) fed the same diet. The objective for our current study was to validate this Npc1 gene-diet interaction using statistical modeling with fitted growth trajectories, conduct body weight analyses for different measures, and define the physiological basis responsible for weight gain. Metabolic phenotype analysis indicated no significant difference between Npc1(+/+) and Npc1(+/-) mice fed a HFD for food and water intake, oxygen consumption, carbon dioxide production, locomotor activity, adaptive thermogenesis, and intestinal lipid absorption. However, the livers from Npc1(+/-) mice had significantly increased amounts of mature sterol regulatory element-binding protein-1 (SREBP-1) and increased expression of SREBP-1 target genes that regulate glycolysis and lipogenesis with an accumulation of triacylglycerol and cholesterol. Moreover, white adipose tissue from Npc1(+/-) mice had significantly decreased amounts of phosphorylated hormone-sensitive lipase with decreased triacylglycerol lipolysis. Consistent with these results, cellular energy metabolism studies indicated that Npc1(+/-) fibroblasts had significantly increased glycolysis and lipogenesis, in addition to significantly decreased substrate (glucose and endogenous fatty acid) oxidative metabolism with an accumulation of triacylglycerol and cholesterol. In conclusion, these studies demonstrate that the Npc1 gene interacts with a HFD to promote weight gain through differential regulation of central energy metabolism pathways. Copyright © 2017 the American Physiological Society.

  8. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature

    Directory of Open Access Journals (Sweden)

    Shillito Bruce

    2009-05-01

    Full Text Available Abstract Background Hydrothermal vents and cold seeps represent oases of life in the deep-sea environment, but are also characterized by challenging physical and chemical conditions. The effect of temperature fluctuations on vent organisms in their habitat has not been well explored, in particular at a molecular level, most gene expression studies being conducted on coastal marine species. In order to better understand the response of hydrothermal organisms to different temperature regimes, differentially expressed genes (obtained by a subtractive suppression hybridization approach were identified in the mussel Bathymodiolus thermophilus and the annelid Paralvinella pandorae irlandei to characterize the physiological processes involved when animals are subjected to long term exposure (2 days at two contrasting temperatures (10° versus 20°C, while maintained at in situ pressures. To avoid a potential effect of pressure, the experimental animals were initially thermally acclimated for 24 hours in a pressurized vessel. Results For each species, we produced two subtractive cDNA libraries (forward and reverse from sets of deep-sea mussels and annelids exposed together to a thermal challenge under pressure. RNA extracted from the gills, adductor muscle, mantle and foot tissue were used for B. thermophilus. For the annelid model, whole animals (small individuals were used. For each of the four libraries, we sequenced 200 clones, resulting in 78 and 83 unique sequences in mussels and annelids (about 20% of the sequencing effort, respectively, with only half of them corresponding to known genes. Real-time PCR was used to validate differentially expressed genes identified in the corresponding libraries. Strong expression variations have been observed for some specific genes such as the intracellular hemoglobin, the nidogen protein, and Rab7 in P. pandorae, and the SPARC protein, cyclophilin, foot protein and adhesive plaque protein in B. thermophilus

  9. Molecular identification of differentially regulated genes in the hydrothermal-vent species Bathymodiolus thermophilus and Paralvinella pandorae in response to temperature.

    Science.gov (United States)

    Boutet, Isabelle; Jollivet, Didier; Shillito, Bruce; Moraga, Dario; Tanguy, Arnaud

    2009-05-13

    Hydrothermal vents and cold seeps represent oases of life in the deep-sea environment, but are also characterized by challenging physical and chemical conditions. The effect of temperature fluctuations on vent organisms in their habitat has not been well explored, in particular at a molecular level, most gene expression studies being conducted on coastal marine species. In order to better understand the response of hydrothermal organisms to different temperature regimes, differentially expressed genes (obtained by a subtractive suppression hybridization approach) were identified in the mussel Bathymodiolus thermophilus and the annelid Paralvinella pandorae irlandei to characterize the physiological processes involved when animals are subjected to long term exposure (2 days) at two contrasting temperatures (10 degrees versus 20 degrees C), while maintained at in situ pressures. To avoid a potential effect of pressure, the experimental animals were initially thermally acclimated for 24 hours in a pressurized vessel. For each species, we produced two subtractive cDNA libraries (forward and reverse) from sets of deep-sea mussels and annelids exposed together to a thermal challenge under pressure. RNA extracted from the gills, adductor muscle, mantle and foot tissue were used for B. thermophilus. For the annelid model, whole animals (small individuals) were used. For each of the four libraries, we sequenced 200 clones, resulting in 78 and 83 unique sequences in mussels and annelids (about 20% of the sequencing effort), respectively, with only half of them corresponding to known genes. Real-time PCR was used to validate differentially expressed genes identified in the corresponding libraries. Strong expression variations have been observed for some specific genes such as the intracellular hemoglobin, the nidogen protein, and Rab7 in P. pandorae, and the SPARC protein, cyclophilin, foot protein and adhesive plaque protein in B. thermophilus. Our results indicate that

  10. Role of ChIP-seq in the discovery of transcription factor binding sites, differential gene regulation mechanism, epigenetic marks and beyond.

    Science.gov (United States)

    Mundade, Rasika; Ozer, Hatice Gulcin; Wei, Han; Prabhu, Lakshmi; Lu, Tao

    2014-01-01

    Many biologically significant processes, such as cell differentiation and cell cycle progression, gene transcription and DNA replication, chromosome stability and epigenetic silencing etc. depend on the crucial interactions between cellular proteins and DNA. Chromatin immunoprecipitation (ChIP) is an important experimental technique for studying interactions between specific proteins and DNA in the cell and determining their localization on a specific genomic locus. In recent years, the combination of ChIP with second generation DNA-sequencing technology (ChIP-seq) allows precise genomic functional assay. This review addresses the important applications of ChIP-seq with an emphasis on its role in genome-wide mapping of transcription factor binding sites, the revelation of underlying molecular mechanisms of differential gene regulation that are governed by specific transcription factors, and the identification of epigenetic marks. Furthermore, we also describe the ChIP-seq data analysis workflow and a perspective for the exciting potential advancement of ChIP-seq technology in the future.

  11. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    Science.gov (United States)

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  12. Differential gene regulation under altered gravity conditions in follicular thyroid cancer cells: relationship between the extracellular matrix and the cytoskeleton

    NARCIS (Netherlands)

    Ulbrich, C.; Pietsch, J.; Grosse, J.; Wehland, M.; Schulz, H.; Saar, K.; Hübner, N.; Hauslage, J.; Hemmersbach, R.; Braun, M.; van Loon, J.; Vagt, N.; Egli, M.; Richter, P.; Einspanier, R.; Sharbati, S.; Baltz, T.; Infanger, M.; Ma, X.; Grimm, D.

    2011-01-01

    Extracellular matrix proteins, adhesion molecules, and cytoskeletal proteins form a dynamic network interacting with signalling molecules as an adaptive response to altered gravity. An important issue is the exact differentiation between real microgravity responses of the cells or cellular reactions

  13. Regulators of Tfh cell differentiation

    Directory of Open Access Journals (Sweden)

    Gajendra Motiram Jogdand

    2016-11-01

    Full Text Available The follicular helper T (Tfh cells help is critical for activation of B cells, antibody class switching and germinal center formation. The Tfh cells are characterized by the expression of CXCR5, ICOS, PD-1, Bcl-6, and IL-21. They are involved in clearing infections and are adversely linked with autoimmune diseases and also have a role in viral replication as well as clearance. Tfh cells are generated from naïve CD4 T cells with sequential steps involving cytokine signaling (IL-21, IL-6, IL-12, activin A, migration and positioning in the germinal center by CXCR5, surface receptors (ICOS/ICOSL, SAP/SLAM as well as transcription factor (Bcl-6, c-Maf, STAT3 signaling and repressor miR155. On the other hand Tfh generation is negatively regulated at specific steps of Tfh generation by specific cytokine (IL-2, IL-7, surface receptor (PD-1, CTLA-4, transcription factors Blimp-1, STAT5, T-bet, KLF-2 signaling and repressor miR 146a. Interestingly, miR 17-92 and FOXO1 acts as a positive as well as a negative regulator of Tfh differentiation depending on the time of expression and disease specificity. Tfh cells are also generated from the conversion of other effector T cells as exemplified by Th1 cells converting into Tfh during viral infection. The mechanistic details of effector T cells conversion into Tfh are yet to be clear. To manipulate Tfh cells for therapeutic implication and or for effective vaccination strategies, it is important to know positive and negative regulators of Tfh generation. Hence, in this review we have highlighted and interlinked molecular signaling from cytokines, surface receptors, transcription factors, ubiquitin Ligase and miRNA as positive and negative regulators for Tfh differentiation.

  14. Adipose tissue gene expression is differentially regulated with different rates of weight loss in overweight and obese humans

    NARCIS (Netherlands)

    Vink, R G; Roumans, N J; Fazelzadeh, P; Tareen, S H K; Boekschoten, M V; van Baak, M A; Mariman, E C

    2016-01-01

    BACKGROUND/OBJECTIVES: Moderate weight loss (WL) can ameliorate adverse health effects associated with obesity, reflected by an improved adipose tissue (AT) gene expression profile. However, the effect of rate of WL on the AT transcriptome is unknown. We investigated the global AT gene expression pr

  15. Adipose tissue gene expression is differentially regulated with different rates of weight loss in overweight and obese humans

    NARCIS (Netherlands)

    Vink, R.G.; Roumans, N.J.; Fazelzadeh, P.; Tareen, S.H.K.; Boekschoten, M.V.; Baak, Van M.A.; Mariman, E.C.

    2017-01-01

    Background/Objectives:Moderate weight loss (WL) can ameliorate adverse health effects associated with obesity, reflected by an improved adipose tissue (AT) gene expression profile. However, the effect of rate of WL on the AT transcriptome is unknown. We investigated the global AT gene expression pro

  16. The gene desert mammary carcinoma susceptibility locus Mcs1a regulates Nr2f1 modifying mammary epithelial cell differentiation and proliferation.

    Directory of Open Access Journals (Sweden)

    Bart M G Smits

    2013-06-01

    Full Text Available Genome-wide association studies have revealed that many low-penetrance breast cancer susceptibility loci are located in non-protein coding genomic regions; however, few have been characterized. In a comparative genetics approach to model such loci in a rat breast cancer model, we previously identified the mammary carcinoma susceptibility locus Mcs1a. We now localize Mcs1a to a critical interval (277 Kb within a gene desert. Mcs1a reduces mammary carcinoma multiplicity by 50% and acts in a mammary cell-autonomous manner. We developed a megadeletion mouse model, which lacks 535 Kb of sequence containing the Mcs1a ortholog. Global gene expression analysis by RNA-seq revealed that in the mouse mammary gland, the orphan nuclear receptor gene Nr2f1/Coup-tf1 is regulated by Mcs1a. In resistant Mcs1a congenic rats, as compared with susceptible congenic control rats, we found Nr2f1 transcript levels to be elevated in mammary gland, epithelial cells, and carcinoma samples. Chromatin looping over ∼820 Kb of sequence from the Nr2f1 promoter to a strongly conserved element within the Mcs1a critical interval was identified. This element contains a 14 bp indel polymorphism that affects a human-rat-mouse conserved COUP-TF binding motif and is a functional Mcs1a candidate. In both the rat and mouse models, higher Nr2f1 transcript levels are associated with higher abundance of luminal mammary epithelial cells. In both the mouse mammary gland and a human breast cancer global gene expression data set, we found Nr2f1 transcript levels to be strongly anti-correlated to a gene cluster enriched in cell cycle-related genes. We queried 12 large publicly available human breast cancer gene expression studies and found that the median NR2F1 transcript level is consistently lower in 'triple-negative' (ER-PR-HER2- breast cancers as compared with 'receptor-positive' breast cancers. Our data suggest that the non-protein coding locus Mcs1a regulates Nr2f1, which is a candidate

  17. CPG OLIGONUCLEOTIDES REGULATE OSTEOCLAST DIFFERENTIATION

    Institute of Scientific and Technical Information of China (English)

    Zhao Weigong; Han Xuezhe; Li Xinyou; Guo Xong; Liu Miao

    2005-01-01

    Objective Bacterial DNA is a pathogen-derived molecule which can regulate the innate immune system by stimulating NF-κB activation. The activity of bacterial DNA relies on its content of unmethylated CpG dinucleotides in particular base contexts("CpG motif"). In light of the pivotal role played by NF-κB in osteoclast differentiation, the ability of CpG oligodeoxynucleotides (CpG ODN) coming from bacterial DNA to modulate osteoclastogenesis was studied. Methods Bone marrow mononuclear cells (BMM) were purified from Balb/c mice, cultured in α-MEM media containing 10% FCS in the presence of mouse M-CSF, with either RANKL or ODNs for 5 days. Osteoclast formation was evaluated on day 5 according to TRAP and May-Grunwald-Giemsa staining. Results CpG ODN alone could induce osteoclast formation in the low degree in BMM culture. The relationship between CpG ODN and RANKL was that CpG ODN could inhibit RANKL-induced osteoclastogenesis when present from the beginning of BMM culture, but strongly increased RANKL-induced osteoclastogenesis in RANKL-pretreated BMMs. Conclusion The mechanism of CpG ODN regulating osteoclast differentiation was bidirectional, which might be a potential therapy for treating metabolic bone disease.

  18. Amphetamine and environmentally induced hyperthermia differentially alter the expression of genes regulating vascular tone and angiogenesis in the meninges and associated vasculature.

    Science.gov (United States)

    Thomas, Monzy; George, Nysia I; Patterson, Tucker A; Bowyer, John F

    2009-10-01

    An amphetamine (AMPH) regimen that does not produce a prominent blood-brain barrier breakdown was shown to significantly alter the expression of genes regulating vascular tone, immune function, and angiogenesis in vasculature associated with arachnoid and pia membranes of the forebrain. Adult-male Sprague-Dawley rats were given either saline injections during environmentally-induced hyperthermia (EIH) or four doses of AMPH with 2 h between each dose (5, 7.5, 10, and 10 mg/kg d-AMPH, s.c.) that produced hyperthermia. Rats were sacrificed either 3 h or 1 day after dosing, and total RNA and protein was isolated from the meninges, arachnoid and pia membranes, and associated vasculature (MAV) that surround the forebrain. Vip, eNos, Drd1a, and Edn1 (genes regulating vascular tone) were increased by either EIH or AMPH to varying degrees in MAV, indicating that EIH and AMPH produce differential responses to enhance vasodilatation. AMPH, and EIH to a lesser extent, elicited a significant inflammatory response at 3 h as indicated by an increased MAV expression of cytokines Il1b, Il6, Ccl-2, Cxcl1, and Cxcl2. Also, genes related to heat shock/stress and disruption of vascular homeostasis such as Icam1 and Hsp72 were also observed. The increased expression of Ctgf and Timp1 and the decreased expression of Akt1, Anpep, and Mmp2 and Tek (genes involved in stimulating angiogenesis) from AMPH exposure suggest that angiogenesis was arrested or disrupted in MAV to a greater extent by AMPH compared to EIH. Alterations in vascular-related gene expression in the parietal cortex and striatum after AMPH were less in magnitude than in MAV, indicating less of a disruption of vascular homeostasis in these two regions. Changes in the levels of insulin-like growth factor binding proteins Igfbp1, 2, and 5 in MAV, compared to those in striatum and parietal cortex, imply an interaction between these regions to regulate the levels of insulin-like growth factor after AMPH damage. Thus, the

  19. Differential regulation of hepatopancreatic vitellogenin (VTG) gene expression by two putative molt-inhibiting hormones (MIH1/2) in Pacific white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Luo, Xing; Chen, Ting; Zhong, Ming; Jiang, Xiao; Zhang, Lvping; Ren, Chunhua; Hu, Chaoqun

    2015-06-01

    Molt-inhibiting hormone (MIH), a peptide member of the crustacean hyperglycemic hormone (CHH) family, is commonly considered as a negative regulator during the molt cycle in crustaceans. Phylogenetic analysis of CHH family peptides in penaeidae shrimps suggested that there is no significant differentiation between MIH and vitellogenesis-inhibiting hormone (VIH, another peptide member of CHH family), by far the most potent negative regulator of crustacean vitellogenesis known. Thus, MIH may also play a role in regulating vitellogenesis. In this study, two previously reported putative MIHs (LivMIH1 and LivMIH2) in the Pacific white shrimp (Litopenaeus vannamei) were expressed in Escherichia coli, purified by immobilized metal ion affinity chromatography (IMAC) and further confirmed by western blot. Regulation of vitellogenin (VTG) mRNA expression by recombinant LivMIH1 and LivMIH2 challenge was performed by both in vitro hepatopancreatic primary cells culture and in vivo injection approaches. In in vitro primary culture of shrimp hepatopancreatic cells, only LivMIH2 but not LivMIH1 administration could improve the mRNA expression of VTG. In in vivo injection experiments, similarly, only LivMIH2 but not LivMIH1 could stimulate hepatopancreatic VTG gene expression and induce ovary maturation. Our study may provide evidence for one isoform of MIH (MIH2 in L. vannamei) may serve as one of the mediators of the physiological progress of molting and vitellogenesis. Our study may also give new insight in CHH family peptides regulating reproduction in crustaceans, in particular penaeidae shrimps.

  20. Lineage-Specific and Non-specific Cytokine-Sensing Genes Respond Differentially to the Master Regulator STAT5.

    Science.gov (United States)

    Zeng, Xianke; Willi, Michaela; Shin, Ha Youn; Hennighausen, Lothar; Wang, Chaochen

    2016-12-20

    STAT5, a member of the family of signal transducers and activators of transcription, senses cytokines and controls the biology of cell lineages, including mammary, liver, and T cells. Here, we show that STAT5 activates lineage-specific and widely expressed genes through different mechanisms. STAT5 preferentially binds to promoter sequences of cytokine-responsive genes expressed across cell types and to putative enhancers of lineage-specific genes. While chromatin accessibility of STAT5-based enhancers was dependent on cytokine exposure, STAT5-responsive promoters of widely expressed target genes were generally constitutively accessible. While the contribution of STAT5 to enhancers is well established, its role on promoters is poorly understood. To address this, we focused on Socs2, a widely expressed cytokine-sensing gene. Upon deletion of the STAT5 response elements from the Socs2 promoter in mice, cytokine induction was abrogated, while basal activity remained intact. Our data suggest that promoter-bound STAT5 modulates cytokine responses and enhancer-bound STAT5 is mandatory for gene activation.

  1. Gene expression in skeletal muscle biopsies from people with type 2 diabetes and relatives: differential regulation of insulin signaling pathways.

    Directory of Open Access Journals (Sweden)

    Jane Palsgaard

    Full Text Available BACKGROUND: Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease. METHODS/PRINCIPAL FINDINGS: We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin. LDHB was found to have a decreased expression in both groups compared to controls. CONCLUSIONS/SIGNIFICANCE: We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced.

  2. Regulation of FAT/CD36 mRNA gene expression by long chain fatty acids in the differentiated 3T3-L1 cells.

    Science.gov (United States)

    Yang, Yingkui; Chen, Min; Loux, Tara J; Harmon, Carroll M

    2007-07-01

    Defects in fatty acid translocase (FAT/CD36) have been identified as a major factor in insulin resistance and defective fatty acid and glucose metabolism. Therefore, understanding of the regulation of FAT/CD36 expression and function is important for a potential therapeutic target for type II diabetes. We differentiated 3T3-L1 preadipocytes into matured adipocytes and examined the roles of insulin and long chain fatty acids on FAT/CD36 expression and function. Our results indicate that FAT/CD36 mRNA expression was not detected at preadipocyte but was significantly increased at matured adipocyte. In fully differentiated 3T3-L1 adipocytes, insulin significantly increased FAT/CD36 mRNA and protein expression in a dose dependent manner. The free fatty acid stearic acid reduced FAT/CD36 mRNA expression while the non-metabolizable free fatty acid alpha-bromopalmitate (2-BP) significantly increased FAT/CD36 mRNA and protein expression. Isoproterenol, in contrast, dose-dependently reduced FAT/CD36 mRNA expression and increased free fatty acid release. Mechanism analysis indicated that the effect of insulin and 2-BP on the FAT/CD36 mRNA gene expression may be mediated through activation of PPAR-gamma, suggesting that FAT/CD36 may have important implications in the pathophysiology of defective fatty acid metabolism.

  3. Ligninolytic peroxidase gene expression by Pleurotus ostreatus: differential regulation in lignocellulose medium and effect of temperature and pH.

    Science.gov (United States)

    Fernández-Fueyo, Elena; Castanera, Raul; Ruiz-Dueñas, Francisco J; López-Lucendo, María F; Ramírez, Lucía; Pisabarro, Antonio G; Martínez, Angel T

    2014-11-01

    Pleurotus ostreatus is an important edible mushroom and a model lignin degrading organism, whose genome contains nine genes of ligninolytic peroxidases, characteristic of white-rot fungi. These genes encode six manganese peroxidase (MnP) and three versatile peroxidase (VP) isoenzymes. Using liquid chromatography coupled to tandem mass spectrometry, secretion of four of these peroxidase isoenzymes (VP1, VP2, MnP2 and MnP6) was confirmed when P. ostreatus grows in a lignocellulose medium at 25°C (three more isoenzymes were identified by only one unique peptide). Then, the effect of environmental parameters on the expression of the above nine genes was studied by reverse transcription-quantitative PCR by changing the incubation temperature and medium pH of P. ostreatus cultures pre-grown under the above conditions (using specific primers and two reference genes for result normalization). The cultures maintained at 25°C (without pH adjustment) provided the highest levels of peroxidase transcripts and the highest total activity on Mn(2+) (a substrate of both MnP and VP) and Reactive Black 5 (a VP specific substrate). The global analysis of the expression patterns divides peroxidase genes into three main groups according to the level of expression at optimal conditions (vp1/mnp3>vp2/vp3/mnp1/mnp2/mnp6>mnp4/mnp5). Decreasing or increasing the incubation temperature (to 10°C or 37°C) and adjusting the culture pH to acidic or alkaline conditions (pH 3 and 8) generally led to downregulation of most of the peroxidase genes (and decrease of the enzymatic activity), as shown when the transcription levels were referred to those found in the cultures maintained at the initial conditions. Temperature modification produced less dramatic effects than pH modification, with most genes being downregulated during the whole 10°C treatment, while many of them were alternatively upregulated (often 6h after the thermal shock) and downregulated (12h) at 37°C. Interestingly, mnp4 and

  4. Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17β-estradiol.

    Science.gov (United States)

    Yasrebi, Ali; Hsieh, Anna; Mamounis, Kyle J; Krumm, Elizabeth A; Yang, Jennifer A; Magby, Jason; Hu, Pu; Roepke, Troy A

    2016-02-15

    Ghrelin's receptor, growth hormone secretagogue receptor (GHSR), is highly expressed in the arcuate nucleus (ARC) and in neuropeptide Y (NPY) neurons. Fasting, diet-induced obesity (DIO), and 17β-estradiol (E2) influence ARC Ghsr expression. It is unknown if these effects occur in NPY neurons. Therefore, we examined the expression of Npy, Agrp, and GHSR signaling pathway genes after fasting, DIO, and E2 replacement in ARC and pools of NPY neurons. In males, fasting increased ARC Ghsr and NPY Foxo1 but decreased NPY Ucp2. In males, DIO decreased ARC and NPY Ghsr and Cpt1c. In fed females, E2 increased Agrp, Ghsr, Cpt1c, and Foxo1 in ARC. In NPY pools, E2 decreased Foxo1 in fed females but increased Foxo1 in fasted females. DIO in females suppressed Agrp and augmented Cpt1c in NPY neurons. In summary, genes involved in GHSR signaling are differentially regulated between the ARC and NPY neurons in a sex-dependent manner.

  5. Differential gene regulation of GHSR signaling pathway in the arcuate nucleus and NPY neurons by fasting, diet-induced obesity, and 17β-estradiol

    Science.gov (United States)

    Yasrebi, Ali; Hsieh, Anna; Mamounis, Kyle J.; Krumm, Elizabeth A.; Yang, Jennifer A.; Magby, Jason; Hu, Pu; Roepke, Troy A.

    2015-01-01

    Ghrelin’s receptor, growth hormone secretagogue receptor (GHSR), is highly expressed in the arcuate nucleus (ARC) and in neuropeptide Y (NPY) neurons. Fasting, diet-induced obesity (DIO), and 17β-estradiol (E2) influence ARC Ghsr expression. It is unknown if these effects occur in NPY neurons. Therefore, we examined the expression of Npy, Agrp, and GHSR signaling pathway genes after fasting, DIO, and E2 replacement in ARC and pools of NPY neurons. In males, fasting increased ARC Ghsr and NPY Foxo1 but decreased NPY Ucp2. In males, DIO decreased ARC and NPY Ghsr and Cpt1c. In fed females, E2 increased Agrp, Ghsr, Cpt1c, and Foxo1 in ARC. In NPY pools, E2 decreased Foxo1 in fed females but increased Foxo1 in fasted females. DIO in females suppressed Agrp and augmented Cpt1c in NPY neurons. In summary, genes involved in GHSR signaling are differentially regulated between the ARC and NPY neurons in a sex-dependent manner. PMID:26577678

  6. Non-raft adenylyl cyclase 2 defines a cAMP signaling compartment that selectively regulates IL-6 expression in airway smooth muscle cells: differential regulation of gene expression by AC isoforms.

    Science.gov (United States)

    Bogard, Amy S; Birg, Anna V; Ostrom, Rennolds S

    2014-04-01

    Adenylyl cyclase (AC) isoforms differ in their tissue distribution, cellular localization, regulation, and protein interactions. Most cell types express multiple AC isoforms. We hypothesized that cAMP produced by different AC isoforms regulates unique cellular responses in human bronchial smooth muscle cells (BSMC). Overexpression of AC2, AC3, or AC6 had distinct effects on forskolin (Fsk)-induced expression of a number of known cAMP-responsive genes. These data show that different AC isoforms can differentially regulate gene expression. Most notable, overexpression and activation of AC2 enhanced interleukin 6 (IL-6) expression, but overexpression of AC3 or AC6 had no effect. IL-6 production by BSMC was induced by Fsk and select G protein-coupled receptor (GPCR) agonists, though IL-6 levels did not directly correlate with global cAMP levels. Treatment with PKA selective 6-Bnz-cAMP or Epac selective 8-CPT-2Me-cAMP cAMP analogs revealed a predominant role for PKA in cAMP-mediated induction of IL-6. IL-6 promoter mutations demonstrated that AP-1 and CRE transcription sites were required for Fsk to stimulate IL-6 expression. Our present study defines an AC2 cAMP signaling compartment that specifically regulates IL-6 expression in BSMC via Epac and PKA and demonstrates that other AC isoforms are excluded from this pool.

  7. Chromatin-bound IκBα regulates a subset of polycomb target genes in differentiation and cancer.

    Science.gov (United States)

    Mulero, María Carmen; Ferres-Marco, Dolors; Islam, Abul; Margalef, Pol; Pecoraro, Matteo; Toll, Agustí; Drechsel, Nils; Charneco, Cristina; Davis, Shelly; Bellora, Nicolás; Gallardo, Fernando; López-Arribillaga, Erika; Asensio-Juan, Elena; Rodilla, Verónica; González, Jessica; Iglesias, Mar; Shih, Vincent; Mar Albà, M; Di Croce, Luciano; Hoffmann, Alexander; Miyamoto, Shigeki; Villà-Freixa, Jordi; López-Bigas, Nuria; Keyes, William M; Domínguez, María; Bigas, Anna; Espinosa, Lluís

    2013-08-12

    IκB proteins are the primary inhibitors of NF-κB. Here, we demonstrate that sumoylated and phosphorylated IκBα accumulates in the nucleus of keratinocytes and interacts with histones H2A and H4 at the regulatory region of HOX and IRX genes. Chromatin-bound IκBα modulates Polycomb recruitment and imparts their competence to be activated by TNFα. Mutations in the Drosophila IκBα gene cactus enhance the homeotic phenotype of Polycomb mutants, which is not counteracted by mutations in dorsal/NF-κB. Oncogenic transformation of keratinocytes results in cytoplasmic IκBα translocation associated with a massive activation of Hox. Accumulation of cytoplasmic IκBα was found in squamous cell carcinoma (SCC) associated with IKK activation and HOX upregulation.

  8. Light and auxin responsive cytochrome P450s from Withania somnifera Dunal: cloning, expression and molecular modelling of two pairs of homologue genes with differential regulation.

    Science.gov (United States)

    Srivastava, Sudhakar; Sangwan, Rajender Singh; Tripathi, Sandhya; Mishra, Bhawana; Narnoliya, L K; Misra, L N; Sangwan, Neelam S

    2015-11-01

    Cytochrome P450s (CYPs) catalyse a wide variety of oxygenation/hydroxylation reactions that facilitate diverse metabolic functions in plants. Specific CYP families are essential for the biosynthesis of species-specialized metabolites. Therefore, we investigated the role of different CYPs related to secondary metabolism in Withania somnifera, a medicinally important plant of the Indian subcontinent. In this study, complete complementary DNAs (cDNAs) of four different CYP genes were isolated and christened as WSCYP93Id, WSCYP93Sm, WSCYP734B and WSCYP734R. These cDNAs encoded polypeptides comprising of 498, 496, 522 and 550 amino acid residues with their deduced molecular mass of 56.7, 56.9, 59.4 and 62.2 kDa, respectively. Phylogenetic study and molecular modelling analysis of the four cloned WSCYPs revealed their categorization into two CYP families (CYP83B1 and CYP734A1) belonging to CYP71 and CYP72 clans, respectively. BLASTp searches showed similarity of 75 and 56 %, respectively, between the two CYP members of CYP83B1 and CYP734A1 with major variances exhibited in their N-terminal regions. The two pairs of homologues exhibited differential expression profiles in the leaf tissues of selected chemotypes of W. somnifera as well as in response to treatments such as methyl jasmonate, wounding, light and auxin. Light and auxin regulated two pairs of WSCYP homologues in a developing seedling in an interesting differential manner. Their lesser resemblance and homology with other CYP sequences suggested these genes to be more specialized and distinct ones. The results on chemotype-specific expression patterns of the four genes strongly suggested their key/specialized involvement of the CYPs in the biosynthesis of chemotype-specific metabolites, though their further biochemical characterization would reveal the specificity in more detail. It is revealed that WSCYP93Id and WSCYP93Sm may be broadly involved in the oxygenation reactions in the plant and, thereby, control

  9. Differential regulation by MK801 of immediate-early genes, brain-derived neurotrophic factor and trk receptor mRNA induced by a kindling after-discharge.

    Science.gov (United States)

    Hughes, P E; Young, D; Preston, K M; Yan, Q; Dragunow, M

    1998-01-01

    Transient changes in immediate-early genes and neurotrophin expression produced by kindling stimulation may mediate secondary downstream events involved in kindling development. Recent experiments have demonstrated conclusively that both kindling progression and mossy fibre sprouting are significantly impaired by administration of the N-methyl-D-aspartate (NMDA) receptor antagonist MK801. To further examine the link between kindling, changes in gene expression and the NMDA receptor, we examined the effects of MK801 on neuronal induction of immediate-early genes, brain-derived neurotrophic factor (BDNF) and trk receptor mRNA expression produced by a single electrically induced hippocampal after-discharge in rats. The after-discharge produced a rapid (after 1 h) increase in Fos, Jun-B, c-Jun, Krox-24 mRNA and protein and Krox-20 protein in dentate granule neurons and a delayed, selective expression of Fos, Jun-D and Krox-24 in hilar interneurons. MK801 pretreatment produced a very strong inhibition of Fos, Jun-D and Krox-20 increases in dentate neurons but had a much smaller effect on Jun-B and c-Jun expression. MK801 did not inhibit Krox-24 expression in granule neurons or the delayed expression of Fos, Jun-D and Krox-24 in hilar interneurons. BDNF protein and trk B and trk C mRNA expression were also strongly induced in dentate granule cells 4 h following an after-discharge. MK801 abolished the increase in BDNF protein and trk B, but not trk C mRNA in granule cells at 4 h. These results demonstrate that MK801 differentially regulates the AD-increased expression of a group of genes previously identified as being likely candidates for an involvement in kindling. Because MK801 significantly retards the development of kindling and mossy fibre sprouting, it can be argued that those genes whose induction is not significantly attenuated by MK801 are unlikely to play an important role in the MK801-sensitive component of kindling and the changes in neural connectivity

  10. Ethephon regulated differential gene expression in sugarcane%乙烯利调控甘蔗基因差异表达研究

    Institute of Scientific and Technical Information of China (English)

    魏源文; 邓智年; 黄诚梅; 李杨瑞

    2011-01-01

    [Objective]The present experiment was conducted to develop the optimized cDNA-AFLP protocol and an efficient silver staining system to study the differential expressions of genes regulated by ethephon, and to understand the molecular mechanism of ethephon regulated growth and development in sugarcane. [Method]Forty-day old plants of sugarcane variety ROC16 were foliarly sprayed with ethephon (200 mg/L), and the leaves were sampled at 0,3,6, 12,24 and 48 hours to extract the total RNA and establish the cDNA-AFLP protocol and silver staining system. Using combinations of 193 primer pairs, some transcript derived fragments (TDFs) were isolated, cloned, detected with reverse Northem blotting and sequenced. [Result]The cDNA-AFLP analysis results showed high level of polymorphism amongst the treatment and control. 35 to 80 bands were amplified in each sample. Eleven samples with 24 TDFs did not display any differential expression, and the ratio of hypocrite positive TDFs was recorded as 46%. The chitinase I(CHI), glutathione S-transferase(GST) ,auxin-responsive protein(ARP),light harvesting chlorophyll a/b-binding protein (LHC),nuclear binding protein gene and a set of unknown genes were differentially expressed in the ethephon treatments. CHI and GST have an important role in resistance to stress and various diseases, while LHC and nuclear binding protein are related to light harvesting and CO2 fixation in photosynthesis,respectively. [Conclusion]The cDNA-AFLP technique was found to be very effective and feasible to study the differential expression of genes in sugarcane. Ethophen was found to regulate the expression of genes related to the primary metabolism of sugarcane and resistance to disease and stress by regulating the expression of related genes.%[目的]建立并优化乙烯利调控甘蔗基因差异表达的cDNA-AFLP分析体系和银染体系,利用该技术对乙烯利处理的甘蔗进行基因差异表达研究,探讨乙烯利调控甘蔗生长的分

  11. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation.

    Science.gov (United States)

    Kabat, Agnieszka M; Harrison, Oliver J; Riffelmacher, Thomas; Moghaddam, Amin E; Pearson, Claire F; Laing, Adam; Abeler-Dörner, Lucie; Forman, Simon P; Grencis, Richard K; Sattentau, Quentin; Simon, Anna Katharina; Pott, Johanna; Maloy, Kevin J

    2016-02-24

    A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4(+) T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3(+) Treg cells. Specific ablation of Atg16l1 in Foxp3(+) Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders.

  12. Combinatorial Regulation of Photoreceptor Differentiation Factor, Neural Retina Leucine Zipper Gene Nrl, Revealed by in Vivo Promoter Analysis*

    Science.gov (United States)

    Kautzmann, Marie-Audrey I.; Kim, Douglas S.; Felder-Schmittbuhl, Marie-Paule; Swaroop, Anand

    2011-01-01

    Development and homeostasis require stringent spatiotemporal control of gene expression patterns that are established, to a large extent, by combinatorial action of transcription regulatory proteins. The bZIP transcription factor NRL (neural retina leucine zipper) is critical for rod versus cone photoreceptor cell fate choice during retinal development and acts as a molecular switch to produce rods from postmitotic precursors. Loss of Nrl in mouse leads to a cone-only retina, whereas ectopic expression of Nrl in photoreceptor precursors generates rods. To decipher the transcriptional regulatory mechanisms upstream of Nrl, we identified putative cis-control elements in the Nrl promoter/enhancer region by examining cross-species sequence conservation. Using in vivo transfection of promoter-reporter constructs into the mouse retina, we show that a 0.9-kb sequence upstream of the Nrl transcription initiation site is sufficient to drive reporter gene expression in photoreceptors. We further define a 0.3-kb sequence including a proximal promoter (cluster A1) and an enhancer (cluster B) that can direct rod-specific expression in vivo. Electrophoretic mobility shift assays using mouse retinal nuclear extracts, in combination with specific antibodies, demonstrate the binding of retinoid-related orphan nuclear receptor β (RORβ), cone rod homeobox, orthodenticle homolog 2, and cyclic AMP response element-binding protein to predicted consensus elements within clusters A and B. Our studies demonstrate Nrl as a direct transcriptional target of RORβ and suggest that combinatorial action of multiple regulatory factors modulates the expression of Nrl in developing and mature retina. PMID:21673114

  13. Combinatorial regulation of photoreceptor differentiation factor, neural retina leucine zipper gene NRL, revealed by in vivo promoter analysis.

    Science.gov (United States)

    Kautzmann, Marie-Audrey I; Kim, Douglas S; Felder-Schmittbuhl, Marie-Paule; Swaroop, Anand

    2011-08-12

    Development and homeostasis require stringent spatiotemporal control of gene expression patterns that are established, to a large extent, by combinatorial action of transcription regulatory proteins. The bZIP transcription factor NRL (neural retina leucine zipper) is critical for rod versus cone photoreceptor cell fate choice during retinal development and acts as a molecular switch to produce rods from postmitotic precursors. Loss of Nrl in mouse leads to a cone-only retina, whereas ectopic expression of Nrl in photoreceptor precursors generates rods. To decipher the transcriptional regulatory mechanisms upstream of Nrl, we identified putative cis-control elements in the Nrl promoter/enhancer region by examining cross-species sequence conservation. Using in vivo transfection of promoter-reporter constructs into the mouse retina, we show that a 0.9-kb sequence upstream of the Nrl transcription initiation site is sufficient to drive reporter gene expression in photoreceptors. We further define a 0.3-kb sequence including a proximal promoter (cluster A1) and an enhancer (cluster B) that can direct rod-specific expression in vivo. Electrophoretic mobility shift assays using mouse retinal nuclear extracts, in combination with specific antibodies, demonstrate the binding of retinoid-related orphan nuclear receptor β (RORβ), cone rod homeobox, orthodenticle homolog 2, and cyclic AMP response element-binding protein to predicted consensus elements within clusters A and B. Our studies demonstrate Nrl as a direct transcriptional target of RORβ and suggest that combinatorial action of multiple regulatory factors modulates the expression of Nrl in developing and mature retina.

  14. DNA microarray analysis of genes differentially expressed in adipocyte differentiation

    Indian Academy of Sciences (India)

    Chunyan Yin; Yanfeng Xiao; Wei Zhang; Erdi Xu; Weihua Liu; Xiaoqing Yi; Ming Chang

    2014-06-01

    In the present study, the human liposarcoma cell line SW872 was used to identify global changes in gene expression profiles occurring during adipogenesis. We further explored some of the genes expressed during the late phase of adipocyte differentiation. These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes exhibited a ≥ 10-fold increase in the late phase of adipocyte differentiation by polymerase chain reaction (RT-PCR). Compared with undifferentiated preadipocytes, we found that 763 genes were increased in early differentiated adipocytes, and 667 genes were increased in later differentiated adipocytes. Furthermore, 21 genes were found being expressed 10-fold higher in the late phase of adipocyte differentiation. The results were in accordance with the RT-PCR test, which validated 11 genes, namely, CIDEC, PID1, LYRM1, ADD1, PPAR2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Most of these genes were found being expressed in the later phase of adipocyte differentiation involved in obesity-related diseases. The findings may help to better understand the mechanism of obesity and related diseases.

  15. DNA microarray analysis of genes differentially expressed in adipocyte differentiation.

    Science.gov (United States)

    Yin, Chunyan; Xiao, Yanfeng; Zhang, Wei; Xu, Erdi; Liu, Weihua; Yi, Xiaoqing; Chang, Ming

    2014-06-01

    In the present study, the human liposarcoma cell line SW872 was used to identify global changes in gene expression profiles occurring during adipogenesis. We further explored some of the genes expressed during the late phase of adipocyte differentiation. These genes may play a major role in promoting excessive proliferation and accumulation of lipid droplets, which contribute to the development of obesity. By using microarray-based technology, we examined differential gene expression in early differentiated adipocytes and late differentiated adipocytes. Validated genes exhibited a greater than or equal to 10-fold increase in the late phase of adipocyte differentiation by polymerase chain reaction (RT-PCR). Compared with undifferentiated preadipocytes, we found that 763 genes were increased in early differentiated adipocytes, and 667 genes were increased in later differentiated adipocytes. Furthermore, 21 genes were found being expressed 10-fold higher in the late phase of adipocyte differentiation. The results were in accordance with the RTPCR test, which validated 11 genes, namely, CIDEC, PID1, LYRM1, ADD1, PPAR?2, ANGPTL4, ADIPOQ, ACOX1, FIP1L1, MAP3K2 and PEX14. Most of these genes were found being expressed in the later phase of adipocyte differentiation involved in obesity-related diseases. The findings may help to better understand the mechanism of obesity and related diseases.

  16. Differential regulation of leucine-rich primary response gene 1 (LRPR1) mRNA expression in rat testis and ovary

    NARCIS (Netherlands)

    K.E. Slegtenhorst-Eegdeman; M. Verhoef-Post (Miriam); M. Parvinen; J.A. Grootegoed (Anton); A.P.N. Themmen (Axel)

    1998-01-01

    textabstractIn immature rat Sertoli cells, leucine-rich primary response gene 1 (LRPR1) represents a follicle stimulating hormone (FSH)-responsive gene; the function of the encoded protein is not yet known. LRPR1 mRNA expression is up-regulated very rapidly and specific

  17. 3'-UTR-dependent regulation of mRNA turnover is critical for differential distribution patterns of cyclic gene mRNAs.

    Science.gov (United States)

    Nitanda, Yasuhide; Matsui, Takaaki; Matta, Tatsuro; Higami, Aya; Kohno, Kenji; Nakahata, Yasukazu; Bessho, Yasumasa

    2014-01-01

    Somite segmentation, a prominent periodic event in the development of vertebrates, is instructed by cyclic expression of several genes, including Hes7 and Lunatic fringe (Lfng). Transcriptional regulation accounts for the cyclic expression. In addition, because the expression patterns vary in a cycle, rapid turnover of mRNAs should be involved in the cyclic expression, although its contribution remains unclear. Here, we demonstrate that 3'-UTR-dependent rapid turnover of Lfng and Hes7 plays a critical role in their dynamic expression patterns. The regions active in the transcription of Lfng and Hes7 are wholly overlapped in the posterior presomitic mesoderm (PSM) of the mouse embryo. However, their distribution patterns are slightly different; Hes7 mRNA shows a broader distribution pattern than Lfng mRNA in the posterior PSM. Lfng mRNA is less stable than Hes7 mRNA, where their 3'-UTRs are responsible for the different stability. Using transgenic mice expressing Venus under the control of the Hes7 promoter, which leads to cyclic transcription in the PSM, we reveal that the Lfng 3'-UTR provides the narrow distribution pattern of Lfng mRNA, whereas the Hes7 3'-UTR contributes the relatively broad distribution pattern of Hes7 mRNA. Thus, we conclude that 3'-UTR-dependent mRNA stability accounts for the differential distribution patterns of Lfng and Hes7 mRNA. Our findings suggest that 3'-UTR-dependent regulation of mRNA turnover plays a crucial role in the diverse patterns of mRNA distribution during development.

  18. v-erbA overexpression is required to extinguish c-erbA function in erythroid cell differentiation and regulation of the erbA target gene CAII

    DEFF Research Database (Denmark)

    Disela, C; Glineur, C; Bugge, T

    1991-01-01

    The v-erbA oncoprotein represents a retrovirus-transduced oncogenic version of the thyroid hormone (T3/T4) receptor c-erbA (type alpha). It contributes to virus-induced erythroleukemia by efficiently arresting differentiation of red cell progenitors and by suppressing transcription of erythrocyte...... efficiently induced erythroid differentiation in these cells, thus overcoming the v-erbA-mediated differentiation arrest. Likewise, T3 activated CAII transcription as well as transient expression of a T3-responsive reporter gene containing the CAII-specific erbA-binding site. The c-erbA-dependent activation...

  19. MBA-induced differentiation of myeloid leukemic cell lines is associated with altered G1 cell cycle regulators and related genes

    Institute of Scientific and Technical Information of China (English)

    王钦红; 谢毅; 范华骅

    2004-01-01

    @@The proliferation and differentiation of hematopoietic cells can be regulated by a number of physiological agents including hexamethylene bisacetamide (HMBA). Clinically, HMBA has been used for the treatment of acute myeloid leukemia and myelodysplastic syndrome.1 However, the mechanism of the effect of HMBA on the differentiation of myeloid leukemic cells is largely unkown. Up to now, related reports have not been found. We used HL-60 and U937 cell lines to study the effect of HMBA on the differentiation of myeloid leukemic cells and to explore the possible mechanism.

  20. Regulation of gene expression by Goodwin's loop with many genes

    Science.gov (United States)

    Sielewiesiuk, Jan; Łopaciuk, Agata

    2012-01-01

    The paper presents a simple analysis of a long Goodwin's loop containing many genes. The genes form a closed series. The rate of transcription of any gene is up or down regulated by theprotein product of the preceding gene. We describe the loop with a system of ordinary differential equations of order s. Oscillatory solutions of the system are possible at the odd number of repressions and any number of inductions if the product of all Hill's coefficients, related to both repressions and inductions, is larger than:

  1. Screening of differentially expressed genes in pathological scar tissues using expression microarray.

    Science.gov (United States)

    Huang, L P; Mao, Z; Zhang, L; Liu, X X; Huang, C; Jia, Z S

    2015-09-09

    Pathological scar tissues and normal skin tissues were differentiated by screening for differentially expressed genes in pathologic scar tissues via gene expression microarray. The differentially expressed gene data was analyzed by gene ontology and pathway analyses. There were 5001 up- or down-regulated genes in 2-fold differentially expressed genes, 956 up- or down-regulated genes in 5-fold differentially expressed genes, and 114 up- or down-regulated genes in 20-fold differentially expressed genes. Therefore, significant differences were observed in the gene expression in pathological scar tissues and normal foreskin tissues. The development of pathological scar tissues has been correlated to changes in multiple genes and pathways, which are believed to form a dynamic network connection.

  2. ANALYSES ON DIFFERENTIALLY EXPRESSED GENES ASSOCIATED WITH HUMAN BREAST CANCER

    Institute of Scientific and Technical Information of China (English)

    MENG Xu-li; DING Xiao-wen; XU Xiao-hong

    2006-01-01

    Objective: To investigate the molecular etiology of breast cancer by way of studying the differential expression and initial function of the related genes in the occurrence and development of breast cancer. Methods: Two hundred and eighty-eight human tumor related genes were chosen for preparation of the oligochips probe. mRNA was extracted from 16 breast cancer tissues and the corresponding normal breast tissues, and cDNA probe was prepared through reverse-transcription and hybridized with the gene chip. A laser focused fluorescent scanner was used to scan the chip. The different gene expressions were thereafter automatically compared and analyzed between the two sample groups. Cy3/Cy5>3.5 meant significant up-regulation. Cy3/Cy5<0.25 meant significant down-regulation. Results: The comparison between the breast cancer tissues and their corresponding normal tissues showed that 84 genes had differential expression in the Chip. Among the differently expressed genes, there were 4 genes with significant down-regulation and 6 with significant up-regulation. Compared with normal breast tissues, differentially expressed genes did partially exist in the breast cancer tissues. Conclusion: Changes in multi-gene expression regulations take place during the occurrence and development of breast cancer; and the research on related genes can help understanding the mechanism of tumor occurrence.

  3. Integrative genomic analysis in K562 chronic myelogenous leukemia cells reveals that proximal NCOR1 binding positively regulates genes that govern erythroid differentiation and Imatinib sensitivity.

    Science.gov (United States)

    Long, Mark D; van den Berg, Patrick R; Russell, James L; Singh, Prashant K; Battaglia, Sebastiano; Campbell, Moray J

    2015-09-01

    To define the functions of NCOR1 we developed an integrative analysis that combined ENCODE and NCI-60 data, followed by in vitro validation. NCOR1 and H3K9me3 ChIP-Seq, FAIRE-seq and DNA CpG methylation interactions were related to gene expression using bootstrapping approaches. Most NCOR1 combinations (24/44) were associated with significantly elevated level expression of protein coding genes and only very few combinations related to gene repression. DAVID's biological process annotation revealed that elevated gene expression was uniquely associated with acetylation and ETS binding. A matrix of gene and drug interactions built on NCI-60 data identified that Imatinib significantly targeted the NCOR1 governed transcriptome. Stable knockdown of NCOR1 in K562 cells slowed growth and significantly repressed genes associated with NCOR1 cistrome, again, with the GO terms acetylation and ETS binding, and significantly dampened sensitivity to Imatinib-induced erythroid differentiation. Mining public microarray data revealed that NCOR1-targeted genes were significantly enriched in Imatinib response gene signatures in cell lines and chronic myelogenous leukemia (CML) patients. These approaches integrated cistrome, transcriptome and drug sensitivity relationships to reveal that NCOR1 function is surprisingly most associated with elevated gene expression, and that these targets, both in CML cell lines and patients, associate with sensitivity to Imatinib.

  4. Dietary soy isoflavones differentially regulate expression of the lipid-metabolic genes in different white adipose tissues of the female Bama mini-pigs.

    Science.gov (United States)

    Jiang, Guoli; Li, Lili; Fan, Juexin; Zhang, Bin; Oso, A O; Xiao, Chaowu; Yin, Yulong

    2015-05-22

    Soy isoflavones have been shown to affect lipid metabolism, however the underlying molecular mechanism(s) have not yet been fully understood. The present study, using female Bama mini-pig as a model, examined the effects of soy isoflavones on lipid metabolism and involved gene expression in different white adipose tissues. Female Bama Xiang mini-pigs of 35 days old were fed a basal diet (control, Con), or basal diet supplemented with increasing amounts of soy isoflavones (250, 500, or 1250 mg/kg diet) for 120 days. The results showed that soy isoflavones did not affect the body weight, but decreased the dorsal subcutaneous adipose tissue (DSA) mass and increased the mass of abdominal subcutaneous adipose tissue (ASA) and perirenal adipose tissue (PRA). Besides, soy isoflavones decreased the expression of lipogenic genes and increased the expression of lipolytic genes in DSA, while the opposite effects were observed in ASA and PRA. In addition, the expression of lipoprotein lipase was down regulated in DSA while up regulated in ASA and PRA by soy isoflavones. Moreover, the expression of estrogen receptors (ERs) was up regulated in DSA, and down regulated in ASA and PRA by soy isoflavones. Our results suggest that soy isoflavones affected the lipid metabolism in white adipose tissues of Bama mini-pigs in a site-specific manner, which might be mediated through PPARs and ERs regulated gene expression.

  5. Differentially Regulated Orthologs in Sorghum and the Subgenomes of Maize.

    Science.gov (United States)

    Zhang, Yang; Ngu, Daniel W; Carvalho, Daniel; Liang, Zhikai; Qiu, Yumou; Roston, Rebecca L; Schnable, James C

    2017-08-01

    Identifying interspecies changes in gene regulation, one of the two primary sources of phenotypic variation, is challenging on a genome-wide scale. The use of paired time-course data on cold-responsive gene expression in maize (Zea mays) and sorghum (Sorghum bicolor) allowed us to identify differentially regulated orthologs. While the majority of cold-responsive transcriptional regulation of conserved gene pairs is species specific, the initial transcriptional responses to cold appear to be more conserved than later responses. In maize, the promoters of genes with conserved transcriptional responses to cold tend to contain more micrococcal nuclease hypersensitive sites in their promoters, a proxy for open chromatin. Genes with conserved patterns of transcriptional regulation between the two species show lower ratios of nonsynonymous to synonymous substitutions. Genes involved in lipid metabolism, known to be involved in cold acclimation, tended to show consistent regulation in both species. Genes with species-specific cold responses did not cluster in particular pathways nor were they enriched in particular functional categories. We propose that cold-responsive transcriptional regulation in individual species may not be a reliable marker for function, while a core set of genes involved in perceiving and responding to cold stress are subject to functionally constrained cold-responsive regulation across the grass tribe Andropogoneae. © 2017 American Society of Plant Biologists. All rights reserved.

  6. Brief isoflurane anaesthesia affects differential gene expression, gene ontology and gene networks in rat brain.

    Science.gov (United States)

    Lowes, Damon A; Galley, Helen F; Moura, Alessandro P S; Webster, Nigel R

    2017-01-15

    Much is still unknown about the mechanisms of effects of even brief anaesthesia on the brain and previous studies have simply compared differential expression profiles with and without anaesthesia. We hypothesised that network analysis, in addition to the traditional differential gene expression and ontology analysis, would enable identification of the effects of anaesthesia on interactions between genes. Rats (n=10 per group) were randomised to anaesthesia with isoflurane in oxygen or oxygen only for 15min, and 6h later brains were removed. Differential gene expression and gene ontology analysis of microarray data was performed. Standard clustering techniques and principal component analysis with Bayesian rules were used along with social network analysis methods, to quantitatively model and describe the gene networks. Anaesthesia had marked effects on genes in the brain with differential regulation of 416 probe sets by at least 2 fold. Gene ontology analysis showed 23 genes were functionally related to the anaesthesia and of these, 12 were involved with neurotransmitter release, transport and secretion. Gene network analysis revealed much greater connectivity in genes from brains from anaesthetised rats compared to controls. Other importance measures were also altered after anaesthesia; median [range] closeness centrality (shortest path) was lower in anaesthetized animals (0.07 [0-0.30]) than controls (0.39 [0.30-0.53], pgenes after anaesthesia and suggests future targets for investigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Rhamnosyltransferase Genes migA and wapR Are Regulated in a Differential Manner To Modulate the Quantities of Core Oligosaccharide Glycoforms Produced by Pseudomonas aeruginosa

    OpenAIRE

    Kocíncová, Dana; Ostler, Sarah L.; Anderson, Erin M.; Lam, Joseph S.

    2012-01-01

    migA and wapR are rhamnosyltransferase genes involved in the biosynthesis of Pseudomonas aeruginosa lipopolysaccharide core oligosaccharide. Here, we show that preferential expression of migA and wapR correlated with the levels of uncapped and O polysaccharide-capped core, respectively. wapR is negatively regulated, while migA is positively regulated by RhlR/RhlI quorum sensing.

  8. Differentially Expressed Genes and Signature Pathways of Human Prostate Cancer.

    Directory of Open Access Journals (Sweden)

    Jennifer S Myers

    Full Text Available Genomic technologies including microarrays and next-generation sequencing have enabled the generation of molecular signatures of prostate cancer. Lists of differentially expressed genes between malignant and non-malignant states are thought to be fertile sources of putative prostate cancer biomarkers. However such lists of differentially expressed genes can be highly variable for multiple reasons. As such, looking at differential expression in the context of gene sets and pathways has been more robust. Using next-generation genome sequencing data from The Cancer Genome Atlas, differential gene expression between age- and stage- matched human prostate tumors and non-malignant samples was assessed and used to craft a pathway signature of prostate cancer. Up- and down-regulated genes were assigned to pathways composed of curated groups of related genes from multiple databases. The significance of these pathways was then evaluated according to the number of differentially expressed genes found in the pathway and their position within the pathway using Gene Set Enrichment Analysis and Signaling Pathway Impact Analysis. The "transforming growth factor-beta signaling" and "Ran regulation of mitotic spindle formation" pathways were strongly associated with prostate cancer. Several other significant pathways confirm reported findings from microarray data that suggest actin cytoskeleton regulation, cell cycle, mitogen-activated protein kinase signaling, and calcium signaling are also altered in prostate cancer. Thus we have demonstrated feasibility of pathway analysis and identified an underexplored area (Ran for investigation in prostate cancer pathogenesis.

  9. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from

  10. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    1993-01-01

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from cul

  11. FRUITING GENES OF SCHIZOPHYLLUM-COMMUNE ARE TRANSCRIPTIONALLY REGULATED

    NARCIS (Netherlands)

    SCHUREN, FHJ; VANDERLENDE, TR; WESSELS, JGH

    1993-01-01

    Fruiting genes in Schizophyllum commune are controlled by the mating-type genes and other regulatory genes. To examine whether differential accumulation of mRNAs for these fruiting genes is caused by transcriptional regulation, run-on transcription assaYs were performed with nuclei isolated from cul

  12. Yeast H2A.Z, FACT complex and RSC regulate transcription of tRNA gene through differential dynamics of flanking nucleosomes.

    Science.gov (United States)

    Mahapatra, Sahasransu; Dewari, Pooran S; Bhardwaj, Anubhav; Bhargava, Purnima

    2011-05-01

    FACT complex is involved in elongation and ensures fidelity in the initiation step of transcription by RNA polymerase (pol) II. Histone variant H2A.Z is found in nucleosomes at the 5'-end of many genes. We report here H2A.Z-chaperone activity of the yeast FACT complex on the short, nucleosome-free, non-coding, pol III-transcribed yeast tRNA genes. On a prototype gene, yeast SUP4, chromatin remodeler RSC and FACT regulate its transcription through novel mechanisms, wherein the two gene-flanking nucleosomes containing H2A.Z, play different roles. Nhp6, which ensures transcription fidelity and helps load yFACT onto the gene flanking nucleosomes, has inhibitory role. RSC maintains a nucleosome abutting the gene terminator downstream, which results in reduced transcription rate in active state while H2A.Z probably helps RSC in keeping the gene nucleosome-free and serves as stress-sensor. All these factors maintain an epigenetic state which allows the gene to return quickly from repressed to active state and tones down the expression from the active SUP4 gene, required probably to maintain the balance in cellular tRNA pool.

  13. Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes

    NARCIS (Netherlands)

    Mokry, M.; Hatzis, P.; Schuijers, J.; Lansu, N.; Ruzius, F.P.; Clevers, H.; Cuppen, E.

    2012-01-01

    Routine methods for assaying steady-state mRNA levels such as RNA-seq and micro-arrays are commonly used as readouts to study the role of transcription factors (TFs) in gene expression regulation. However, cellular RNA levels do not solely depend on activity of TFs and subsequent transcription by

  14. Integrated genome-wide analysis of transcription factor occupancy, RNA polymerase II binding and steady-state RNA levels identify differentially regulated functional gene classes

    NARCIS (Netherlands)

    Mokry, Michal; Hatzis, Pantelis; Schuijers, Jurian; Lansu, Nico; Ruzius, Frans-Paul; Clevers, Hans; Cuppen, Edwin

    2012-01-01

    Routine methods for assaying steady-state mRNA levels such as RNA-seq and micro-arrays are commonly used as readouts to study the role of transcription factors (TFs) in gene expression regulation. However, cellular RNA levels do not solely depend on activity of TFs and subsequent transcription by RN

  15. The parathyroid hormone-regulated transcriptome in osteocytes: parallel actions with 1,25-dihydroxyvitamin D3 to oppose gene expression changes during differentiation and to promote mature cell function.

    Science.gov (United States)

    St John, Hillary C; Meyer, Mark B; Benkusky, Nancy A; Carlson, Alex H; Prideaux, Mathew; Bonewald, Lynda F; Pike, J Wesley

    2015-03-01

    Although localized to the mineralized matrix of bone, osteocytes are able to respond to systemic factors such as the calciotropic hormones 1,25(OH)2D3 and PTH. In the present studies, we examined the transcriptomic response to PTH in an osteocyte cell model and found that this hormone regulated an extensive panel of genes. Surprisingly, PTH uniquely modulated two cohorts of genes, one that was expressed and associated with the osteoblast to osteocyte transition and the other a cohort that was expressed only in the mature osteocyte. Interestingly, PTH's effects were largely to oppose the expression of differentiation-related genes in the former cohort, while potentiating the expression of osteocyte-specific genes in the latter cohort. A comparison of the transcriptional effects of PTH with those obtained previously with 1,25(OH)2D3 revealed a subset of genes that was strongly overlapping. While 1,25(OH)2D3 potentiated the expression of osteocyte-specific genes similar to that seen with PTH, the overlap between the two hormones was more limited. Additional experiments identified the PKA-activated phospho-CREB (pCREB) cistrome, revealing that while many of the differentiation-related PTH regulated genes were apparent targets of a PKA-mediated signaling pathway, a reduction in pCREB binding at sites associated with osteocyte-specific PTH targets appeared to involve alternative PTH activation pathways. That pCREB binding activities positioned near important hormone-regulated gene cohorts were localized to control regions of genes was reinforced by the presence of epigenetic enhancer signatures exemplified by unique modifications at histones H3 and H4. These studies suggest that both PTH and 1,25(OH)2D3 may play important and perhaps cooperative roles in limiting osteocyte differentiation from its precursors while simultaneously exerting distinct roles in regulating mature osteocyte function. Our results provide new insight into transcription factor-associated mechanisms

  16. YAP regulates neuronal differentiation through Sonic hedgehog signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yi-Ting; Ding, Jing-Ya [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Li, Ming-Yang [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yeh, Tien-Shun [Department of Anatomy and Cell Biology, National Yang-Ming University, Taipei 112, Taiwan (China); Wang, Tsu-Wei, E-mail: twwang@ntnu.edu.tw [Department of Life Science, National Taiwan Normal University, Taipei 116, Taiwan (China); Yu, Jenn-Yah, E-mail: jyyu@ym.edu.tw [Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei 112, Taiwan (China); Brain Research Center, National Yang-Ming University, Taipei 112, Taiwan (China)

    2012-09-10

    Tight regulation of cell numbers by controlling cell proliferation and apoptosis is important during development. Recently, the Hippo pathway has been shown to regulate tissue growth and organ size in Drosophila. In mammalian cells, it also affects cell proliferation and differentiation in various tissues, including the nervous system. Interplay of several signaling cascades, such as Notch, Wnt, and Sonic Hedgehog (Shh) pathways, control cell proliferation during neuronal differentiation. However, it remains unclear whether the Hippo pathway coordinates with other signaling cascades in regulating neuronal differentiation. Here, we used P19 cells, a mouse embryonic carcinoma cell line, as a model to study roles of YAP, a core component of the Hippo pathway, in neuronal differentiation. P19 cells can be induced to differentiate into neurons by expressing a neural bHLH transcription factor gene Ascl1. Our results showed that YAP promoted cell proliferation and inhibited neuronal differentiation. Expression of Yap activated Shh but not Wnt or Notch signaling activity during neuronal differentiation. Furthermore, expression of Yap increased the expression of Patched homolog 1 (Ptch1), a downstream target of the Shh signaling. Knockdown of Gli2, a transcription factor of the Shh pathway, promoted neuronal differentiation even when Yap was over-expressed. We further demonstrated that over-expression of Yap inhibited neuronal differentiation in primary mouse cortical progenitors and Gli2 knockdown rescued the differentiation defect in Yap over-expressing cells. In conclusion, our study reveals that Shh signaling acts downstream of YAP in regulating neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer YAP promotes cell proliferation and inhibits neuronal differentiation in P19 cells. Black-Right-Pointing-Pointer YAP promotes Sonic hedgehog signaling activity during neuronal differentiation. Black-Right-Pointing-Pointer Knockdown of Gli2 rescues the Yap

  17. Different level of population differentiation among human genes

    Directory of Open Access Journals (Sweden)

    Zhang Ya-Ping

    2011-01-01

    Full Text Available Abstract Background During the colonization of the world, after dispersal out of African, modern humans encountered changeable environments and substantial phenotypic variations that involve diverse behaviors, lifestyles and cultures, were generated among the different modern human populations. Results Here, we study the level of population differentiation among different populations of human genes. Intriguingly, genes involved in osteoblast development were identified as being enriched with higher FST SNPs, a result consistent with the proposed role of the skeletal system in accounting for variation among human populations. Genes involved in the development of hair follicles, where hair is produced, were also found to have higher levels of population differentiation, consistent with hair morphology being a distinctive trait among human populations. Other genes that showed higher levels of population differentiation include those involved in pigmentation, spermatid, nervous system and organ development, and some metabolic pathways, but few involved with the immune system. Disease-related genes demonstrate excessive SNPs with lower levels of population differentiation, probably due to purifying selection. Surprisingly, we find that Mendelian-disease genes appear to have a significant excessive of SNPs with high levels of population differentiation, possibly because the incidence and susceptibility of these diseases show differences among populations. As expected, microRNA regulated genes show lower levels of population differentiation due to purifying selection. Conclusion Our analysis demonstrates different level of population differentiation among human populations for different gene groups.

  18. Phytochrome-regulated Gene Expression

    Institute of Scientific and Technical Information of China (English)

    Peter H. Quail

    2007-01-01

    Identification of all genes involved in the phytochrome (phy)-mediated responses of plants to their light environment is an important goal in providing an overall understanding of light-regulated growth and development. This article highlights and integrates the central findings of two recent comprehensive studies in Arabidopsis that have identified the genome-wide set of phy-regulated genes that respond rapidly to red-light signals upon first exposure of dark-grown seedlings, and have tested the functional relevance to normal seedling photomorphogenesis of an initial subset of these genes. The data: (a) reveal considerable complexity in the channeling of the light signals through the different phy-family members (phyA to phyE) to responsive genes; (b) identify a diversity of transcription-factor-encoding genes as major early, if not primary, targets of phy signaling, and, therefore, as potentially important regulators in the transcriptional-network hierarchy; and (c) identify auxin-related genes as the dominant class among rapidly-regulated, hormone-related genes. However, reverse-genetic functional profiling of a selected subset of these genes reveals that only a limited fraction are necessary for optimal phy-induced seedling deetiolation.

  19. Combinatorial Gene Regulation Using Auto-Regulation

    Science.gov (United States)

    Hermsen, Rutger; Ursem, Bas; ten Wolde, Pieter Rein

    2010-01-01

    As many as 59% of the transcription factors in Escherichia coli regulate the transcription rate of their own genes. This suggests that auto-regulation has one or more important functions. Here, one possible function is studied. Often the transcription rate of an auto-regulator is also controlled by additional transcription factors. In these cases, the way the expression of the auto-regulator responds to changes in the concentrations of the “input” regulators (the response function) is obviously affected by the auto-regulation. We suggest that, conversely, auto-regulation may be used to optimize this response function. To test this hypothesis, we use an evolutionary algorithm and a chemical–physical model of transcription regulation to design model cis-regulatory constructs with predefined response functions. In these simulations, auto-regulation can evolve if this provides a functional benefit. When selecting for a series of elementary response functions—Boolean logic gates and linear responses—the cis-regulatory regions resulting from the simulations indeed often exploit auto-regulation. Surprisingly, the resulting constructs use auto-activation rather than auto-repression. Several design principles show up repeatedly in the simulation results. They demonstrate how auto-activation can be used to generate sharp, switch-like activation and repression circuits and how linearly decreasing response functions can be obtained. Auto-repression, on the other hand, resulted only when a high response speed or a suppression of intrinsic noise was also selected for. The results suggest that, while auto-repression may primarily be valuable to improve the dynamical properties of regulatory circuits, auto-activation is likely to evolve even when selection acts on the shape of response function only. PMID:20548950

  20. Transcriptional Regulation and Macrophage Differentiation.

    Science.gov (United States)

    Hume, David A; Summers, Kim M; Rehli, Michael

    2016-06-01

    Monocytes and macrophages are professional phagocytes that occupy specific niches in every tissue of the body. Their survival, proliferation, and differentiation are controlled by signals from the macrophage colony-stimulating factor receptor (CSF-1R) and its two ligands, CSF-1 and interleukin-34. In this review, we address the developmental and transcriptional relationships between hematopoietic progenitor cells, blood monocytes, and tissue macrophages as well as the distinctions from dendritic cells. A huge repertoire of receptors allows monocytes, tissue-resident macrophages, or pathology-associated macrophages to adapt to specific microenvironments. These processes create a broad spectrum of macrophages with different functions and individual effector capacities. The production of large transcriptomic data sets in mouse, human, and other species provides new insights into the mechanisms that underlie macrophage functional plasticity.

  1. Differential Gene Expression and Protein Phosphorylation as Factors Regulating the State of the Arabidopsis SNX1 Protein Complexes in Response to Environmental Stimuli

    Science.gov (United States)

    Brumbarova, Tzvetina; Ivanov, Rumen

    2016-01-01

    Endosomal recycling of plasma membrane proteins contributes significantly to the regulation of cellular transport and signaling processes. Members of the Arabidopsis (Arabidopsis thaliana) SORTING NEXIN (SNX) protein family were shown to mediate the endosomal retrieval of transporter proteins in response to external challenges. Our aim is to understand the possible ways through which external stimuli influence the activity of SNX1 in the root. Several proteins are known to contribute to the function of SNX1 through direct protein–protein interaction. We, therefore, compiled a list of all Arabidopsis proteins known to physically interact with SNX1 and employed available gene expression and proteomic data for a comprehensive analysis of the transcriptional and post-transcriptional regulation of this interactome. The genes encoding SNX1-interaction partners showed distinct expression patterns with some, like FAB1A, being uniformly expressed, while others, like MC9 and BLOS1, were expressed in specific root zones and cell types. Under stress conditions known to induce SNX1-dependent responses, two genes encoding SNX1-interacting proteins, MC9 and NHX6, showed major gene-expression variations. We could also observe zone-specific transcriptional changes of SNX1 under iron deficiency, which are consistent with the described role of the SNX1 protein. This suggests that the composition of potential SNX1-containing protein complexes in roots is cell-specific and may be readjusted in response to external stimuli. On the level of post-transcriptional modifications, we observed stress-dependent changes in the phosphorylation status of SNX1, FAB1A, and CLASP. Interestingly, the phosphorylation events affecting SNX1 interactors occur in a pattern which is largely complementary to transcriptional regulation. Our analysis shows that transcriptional and post-transcriptional regulation play distinct roles in SNX1-mediated endosomal recycling under external stress. PMID:27725825

  2. Differential regulation of type III secretion and virulence genes in Bordetella pertussis and Bordetella bronchiseptica by a secreted anti-σ factor.

    Science.gov (United States)

    Ahuja, Umesh; Shokeen, Bhumika; Cheng, Ning; Cho, Yeonjoo; Blum, Charles; Coppola, Giovanni; Miller, Jeff F

    2016-03-01

    The BvgAS phosphorelay regulates ∼10% of the annotated genomes of Bordetella pertussis and Bordetella bronchiseptica and controls their infectious cycles. The hierarchical organization of the regulatory network allows the integration of contextual signals to control all or specific subsets of BvgAS-regulated genes. Here, we characterize a regulatory node involving a type III secretion system (T3SS)-exported protein, BtrA, and demonstrate its role in determining fundamental differences in T3SS phenotypes among Bordetella species. We show that BtrA binds and antagonizes BtrS, a BvgAS-regulated extracytoplasmic function (ECF) sigma factor, to couple the secretory activity of the T3SS apparatus to gene expression. In B. bronchiseptica, a remarkable spectrum of expression states can be resolved by manipulating btrA, encompassing over 80 BtrA-activated loci that include genes encoding toxins, adhesins, and other cell surface proteins, and over 200 BtrA-repressed genes that encode T3SS apparatus components, secretion substrates, the BteA effector, and numerous additional factors. In B. pertussis, BtrA retains activity as a BtrS antagonist and exerts tight negative control over T3SS genes. Most importantly, deletion of btrA in B. pertussis revealed T3SS-mediated, BteA-dependent cytotoxicity, which had previously eluded detection. This effect was observed in laboratory strains and in clinical isolates from a recent California pertussis epidemic. We propose that the BtrA-BtrS regulatory node determines subspecies-specific differences in T3SS expression among Bordetella species and that B. pertussis is capable of expressing a full range of T3SS-dependent phenotypes in the presence of appropriate contextual cues.

  3. Regulation of resin acid synthesis in Pinus densiflora by differential transcription of genes encoding multiple 1-deoxy-D-xylulose 5-phosphate synthase and 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase genes.

    Science.gov (United States)

    Kim, Yeon-Bok; Kim, Sang-Min; Kang, Min-Kyoung; Kuzuyama, Tomohisa; Lee, Jong Kyu; Park, Seung-Chan; Shin, Sang-Chul; Kim, Soo-Un

    2009-05-01

    with the selective transcriptions of PdDXS2 and PdHDR2. Introduction of PdDXS2, PdHDR1 and PdHDR2 rescued their respective knockout Escherichia coli mutants, confirming that at least these three genes were functionally active. Intracellular targeting of the green fluorescent protein fused to the N-terminal 100 amino acid residues of these genes in the Arabidopsis transient expression system showed that the proteins were all targeted to the chloroplasts. Our results suggest that the MEP pathway regulates resin biosynthesis in the wood of P. densiflora by differential transcription of the multiple PdDXS and PdHDR genes.

  4. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization

    DEFF Research Database (Denmark)

    Elsafadi, E; Manikandan, M; Dawud, RA;

    2016-01-01

    bone marrow-derived stromal (skeletal) stem cells (hMSC). siRNA-mediated gene silencing of TAGLN impaired lineage differentiation into osteoblasts and adipocytes but enhanced cell proliferation. Additional functional studies revealed that TAGLN deficiency impaired hMSC cell motility and in vitro...... transwell cell migration. On the other hand, TAGLN overexpression reduced hMSC cell proliferation, but enhanced cell migration, osteoblastic and adipocytic differentiation, and in vivo bone formation. In addition, deficiency or overexpression of TAGLN in hMSC was associated with significant changes...... in cellular and nuclear morphology and cytoplasmic organelle composition as demonstrated by high content imaging and transmission electron microscopy that revealed pronounced alterations in the distribution of the actin filament and changes in cytoskeletal organization. Molecular signature of TAGLN...

  5. Metabolome, transcriptome, and bioinformatic cis-element analyses point to HNF-4 as a central regulator of gene expression during enterocyte differentiation

    DEFF Research Database (Denmark)

    Stegmann, Anders; Hansen, Morten; Wang, Yulan

    2006-01-01

    networks during the differentiation of the small intestinal epithelial cell. In addition we have searched for connections between transcription factors and the villus metabolome. Transcriptome data were generated from mouse small intestinal villus, crypt, and fetal intestinal epithelial cells. Metabolome...... data were generated from crypt and villus cells. Our results show that genes that are upregulated during fetal to adult and crypt to villus differentiation have an overrepresentation of potential hepatocyte nuclear factor (HNF)-4 binding sites in their promoters. Moreover, metabolome analyses by magic...... that are involved in lipid metabolism. Our approach also identifies transcription factors of importance for crypt functions such as DNA replication (E2F) and stem cell maintenance (c-Myc)....

  6. Identification and classification of genes regulated by phosphatidylinositol 3-kinase- and TRKB-mediated signalling pathways during neuronal differentiation in two subtypes of the human neuroblastoma cell line SH-SY5Y

    Directory of Open Access Journals (Sweden)

    Sakaki Yoshiyuki

    2008-10-01

    Full Text Available Abstract Background SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA, but the molecular mechanism of activation in the signalling pathway mediated by phosphatidylinositol 3-kinase (PI3K is unclear. To investigate this mechanism, we compared the gene expression profiles in SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E, each of which show a different phenotype during RA-mediated differentiation. Findings SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF for full differentiation. After exposing cells to a PI3K inhibitor, LY294002, we identified 386 genes and categorised these genes into two clusters dependent on the PI3K signalling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster, including 158 neural genes, was greatly reduced in SK-N-SH cells and partially impaired in SH-SY5Y-E cells, which is consistent with a defect in the neuronal phenotype of these cells. Additional stimulation with BDNF induced a set of neural genes that were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in differentiated SH-SY5Y-A cells. Conclusion We identified gene clusters controlled by PI3K- and TRKB-mediated signalling pathways during the differentiation of two subtypes of SH-SY5Y cells. The TRKB-mediated bypass pathway compensates for impaired neural function generated by defects in several signalling pathways, including PI3K in SH-SY5Y-E cells. Our expression profiling data will be useful for further elucidation of the signal transduction-transcriptional network involving PI3K or TRKB.

  7. Gene function in early mouse embryonic stem cell differentiation

    Directory of Open Access Journals (Sweden)

    Campbell Pearl A

    2007-03-01

    Full Text Available Abstract Background Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5 undergoing undirected differentiation into embryoid bodies (EBs over a period of two weeks. Results We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1, our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2 that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. Conclusion Our analysis profiles for the first time gene expression at a very early stage of m

  8. The homeobox gene Gsx2 regulates the self-renewal and differentiation of neural stem cells and the cell fate of postnatal progenitors.

    Directory of Open Access Journals (Sweden)

    Héctor R Méndez-Gómez

    Full Text Available The Genetic screened homeobox 2 (Gsx2 transcription factor is required for the development of olfactory bulb (OB and striatal neurons, and for the regional specification of the embryonic telencephalon. Although Gsx2 is expressed abundantly by progenitor cells in the ventral telencephalon, its precise function in the generation of neurons from neural stem cells (NSCs is not clear. Similarly, the role of Gsx2 in regulating the self-renewal and multipotentiality of NSCs has been little explored. Using retroviral vectors to express Gsx2, we have studied the effect of Gsx2 on the growth of NSCs isolated from the OB and ganglionic eminences (GE, as well as its influence on the proliferation and cell fate of progenitors in the postnatal mouse OB. Expression of Gsx2 reduces proliferation and the self-renewal capacity of NSCs, without significantly affecting cell death. Furthermore, Gsx2 overexpression decreases the differentiation of NSCs into neurons and glia, and it maintains the cells that do not differentiate as cycling progenitors. These effects were stronger in GESCs than in OBSCs, indicating that the actions of Gsx2 are cell-dependent. In vivo, Gsx2 produces a decrease in the number of Pax6+ cells and doublecortin+ neuroblasts, and an increase in Olig2+ cells. In summary, our findings show that Gsx2 inhibits the ability of NSCs to proliferate and self-renew, as well as the capacity of NSC-derived progenitors to differentiate, suggesting that this transcription factor regulates the quiescent and undifferentiated state of NSCs and progenitors. Furthermore, our data indicate that Gsx2 negatively regulates neurogenesis from postnatal progenitor cells.

  9. The Regulation of Erythroid Differentiation-denucleation Factor(EDDF) on Myelomal Cell Malignancy and the Cloning of Its Stage Related Differentiation Genes%红细胞分化去核因子(EDDF)对细胞分化及肿瘤细胞恶性调控及其相关基因克隆的研究

    Institute of Scientific and Technical Information of China (English)

    薛社普; 章静波; 费仁仁; 刘友华; 张庆一; 陈克铨; 张世馥; 马文丽; 汪兆琦; 王鑫; 刘丕旭; 杜权; 刘世广; 章正琰; 董茂庆; 张乐英; 周国平; 马静

    1998-01-01

    The role of regulation of EDDF on erythroid differentiation and myelomal cell malignancy an well as cloning of its stage related differentiation genes were studied. Through a serious of cybrid- and hybridization experiments between mammalian erythroid cells, and erythroleukemia or non-erythroid myelomal cells, and by using various cloning techniques performed for cDNA related to erythroid terminal differentiation. It resulted that accumulated evidences verified that the mammalian erythroid cells containing some active proteins designated as EDDF which with a peak concentration at the intermediate/late erythroblast stages precided denucleation process. It could function to regulate the activities of genes in different stages of erythroblast terminal differentiation, and demonstrating a cause-effect relationships of the processes of globin gene expression, nuclear eccentric, pyknotic, denucleation, and the inhibition of malignant growth of myelomal and erythroleukemia cells. Cloning and identification of the stage related to be erythroid terminal differentiation genes from human fetal liver and mouse splenic erythroblasts were performed. Four full-length sequences of cDNA which containing reading frame that encoding different numbers of amino acids were successfully cloned and identified. All of them were tested by northern blot to be expressed only in the erythropoietic organs of probably regulates erythroid terminal differentiation. Also, all the four sequences were accepted by the Gen Bank as novel cDNA sequences that without comparable homology. The Gen Bank assigned No. of the four terminal differentiation related genes are respectively as follows: Accession No.:AA514190(759 bp.encoding 73 amino acids);Accession No.:AF040247(1.2 kb, 147 aa);AF040248(500 bp.107 aa);Accession NO. AF060220(505 bp.102aa).

  10. Biophysical regulation of stem cell differentiation.

    Science.gov (United States)

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  11. Regulated expression of the MRP8 and MRP14 genes in human promyelocytic leukemic HL-60 cell treated with the differentiation-inducing agents mycophenolic acid and 1{alpha},25-Dihydroxyvitamin D{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Warner-Bartnicki, A.L.; Murao, S.; Collart, F.R.; Huberman, E.

    1992-12-31

    The calcium-binding proteins MRP8 and MEP14 are present in mature monomyelocytic cells and are induced during differentiation. Previous studies have demonstrated that the proteins may mediate the growth arrest in differentiating HL-60 cells. We determined the levels of a protein complex (PC) containing MRP8 and MRP14 and investigated the mechanism by which the genes encoding these proteins are regulated in HL-60 cells treated with the differentiation-inducing agent mycophenorc acid (MPA)While the PC was barely detectable in untreated cells, MPA treatment resulted in elevated levels of the PC which were maximal at 3-4 d, and were found to directly parallel gains in the steady-state levels of MRP8 and MRP14 MRNA. Transcription studies with the use of nuclear run-on experiments revealed increased transcription initiation at the MRP8 and MRP14 promoters after MPA treatment. 1{alpha},25-Dihydroxyvitamin D{sub 3}, which induces HL-60 cell differentiation by another mechanism, was also found to increase transcription initiation at the MRP8 and MRP14 promoters. Our results suggest that this initiation is the major control of maturation agent-mediated increases in MRP8 and MRPl4 gene expression, and support a role for the PC in terminal differentiation of human monomyelocytic cells.

  12. Sox9基因参与动物性别决定与分化的分子机制%Molecular Mechanisms of Sox9 Gene in Regulating Sex Determination and Differentiation of Animals

    Institute of Scientific and Technical Information of China (English)

    陈维; 王昌留

    2012-01-01

    Sox9基因参与动物多种生理活动的调控,其最主要的功能还是性别决定.笔者通过阅读大量文献,分析不同物种的性别决定分子机制,对Sox9参与动物的性别决定和分化进行了综述,为进一步研究Sox9基因在性别决定和分化中的作用提供参考.%Sox9 gene can take part in many physiological activities of gene regulations.Its most important role is involved in sex determination.The molecular mechanisms of sex determination and differentiation regulated by Sox9 gene in different species are reviewed,which is expected to provide reference materials for further study on sex determination and differentiation of Sox9 gene.

  13. Insulin gene: organisation, expression and regulation.

    Science.gov (United States)

    Dumonteil, E; Philippe, J

    1996-06-01

    Insulin, a major hormone of the endocrine pancreas, plays a key role in the control of glucose homeostasis. This review discusses the mechanisms of cell-specific expression and regulation of the insulin gene. Whereas expression is restricted to islet beta-cells in adults, the insulin gene is more widely expressed at several embryonic stages, although the role of extrapancreatic expression is still unclear. beta-cell-specific expression relies on the interactions of 5'-flanking sequence motifs of the promoter with a number of ubiquitous and islet-specific transcription factors. IEF1 and IPF-1, by their binding to the E and A boxes, respectively, of the insulin gene promoter, appear to be the major determinants of beta-cell-specific expression. IEF1 is a heterodimer of the basic helix-loop-helix family of transcription factors, whereas IPF-1 belongs to the homeodomain-containing family. beta-cell specific determinants are conserved throughout evolution, although the human insulin gene 5'-flanking sequence also contains a polymorphic minisatellite which is unique to primates and may play a role in insulin gene regulation. Glucose modulates insulin gene transcription, with multiple elements of the promoter involved in glucose responsiveness. Remarkably, IPF-1 and IEF1 are involved in both beta-cell-specific expression and glucose regulation of the insulin gene. cAMP also regulates insulin gene transcription through a CRE, in response to various hormonal stimuli. On the whole, recent studies have provided a better understanding of beta-cell differentiation and function.

  14. Regulation of Gene Expression in Protozoa Parasites

    Directory of Open Access Journals (Sweden)

    Consuelo Gomez

    2010-01-01

    Full Text Available Infections with protozoa parasites are associated with high burdens of morbidity and mortality across the developing world. Despite extensive efforts to control the transmission of these parasites, the spread of populations resistant to drugs and the lack of effective vaccines against them contribute to their persistence as major public health problems. Parasites should perform a strict control on the expression of genes involved in their pathogenicity, differentiation, immune evasion, or drug resistance, and the comprehension of the mechanisms implicated in that control could help to develop novel therapeutic strategies. However, until now these mechanisms are poorly understood in protozoa. Recent investigations into gene expression in protozoa parasites suggest that they possess many of the canonical machineries employed by higher eukaryotes for the control of gene expression at transcriptional, posttranscriptional, and epigenetic levels, but they also contain exclusive mechanisms. Here, we review the current understanding about the regulation of gene expression in Plasmodium sp., Trypanosomatids, Entamoeba histolytica and Trichomonas vaginalis.

  15. Differential Gene Expression of Fibroblasts: Keloid versus Normal

    Directory of Open Access Journals (Sweden)

    Michael F. Angel

    2002-11-01

    Full Text Available Abstract: This study investigated gene regulation and unique gene products in both keloid (KDF and normal (NDF dermal fibroblasts in established cell lines. For gene regulation, NDF versus KDF were compared using Clontech's Atlas™ Human cDNA Expression Array while unique gene products were studied using RNA Fingerprinting Kit. RNA from each sample was converted to cDNA using oligo-dT primers. Down-regulated genes using Atlas Array in KDF were 1 60 S ribosomal protein, 2 Thioredoxin dependent peroxidase, 3 Nuclease sensitive element DNA binding protein, 4 c-myc purine-binding transcription factor, 5 c-AMP dependent protein kinase, and, 6 Heat Shock Protein 90 kDa. Genes that are up regulated in KDF were 1 Tubulin and 2 Heat Shock Protein 27 kDa. With the differential display, we found 17 bands unique to both KDF and NDF. The specific gene and the manner in which they were differentially regulated have direct implications to understanding keloid fibroblast proliferation.

  16. Modulation of keratinocyte gene expression and differentiation by PPAR-selective ligands and tetradecylthioacetic acid

    DEFF Research Database (Denmark)

    Westergaard, M; Henningsen, J; Svendsen, M L

    2001-01-01

    Peroxisome proliferator-activated receptors (PPARs) are pleiotropic regulators of growth and differentiation of many cell types. We have performed a comprehensive analysis of the expression of PPARs, transcriptional cofactors, and marker genes during differentiation of normal human keratinocytes ...

  17. Differential gene expression during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Marco Aurelio Krieger

    1999-09-01

    Full Text Available The transformation of epimastigotes into metacyclic trypomastigotes involves changes in the pattern of expressed genes, resulting in important morphological and functional differences between these developmental forms of Trypanosoma cruzi. In order to identify and characterize genes involved in triggering the metacyclogenesis process and in conferring to metacyclic trypomastigotes their stage specific biological properties, we have developed a method allowing the isolation of genes specifically expressed when comparing two close related cell populations (representation of differential expression or RDE. The method is based on the PCR amplification of gene sequences selected by hybridizing and subtracting the populations in such a way that after some cycles of hybridization-amplification genes specific to a given population are highly enriched. The use of this method in the analysis of differential gene expression during T. cruzi metacyclogenesis (6 hr and 24 hr of differentiation and metacyclic trypomastigotes resulted in the isolation of several clones from each time point. Northern blot analysis showed that some genes are transiently expressed (6 hr and 24 hr differentiating cells, while others are present in differentiating cells and in metacyclic trypomastigotes. Nucleotide sequencing of six clones characterized so far showed that they do not display any homology to gene sequences available in the GeneBank.

  18. Molecular regulation of devel- opment and differentiation in Streptomyces

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@\tDevelopment and differentiation is an important and leading research field in modern biology. Streptomyces has a complicated life cycle of morphological differentia-tion including the spore germination, aerial mycelium and spore formation. Each developmental stage has a distin-guished morphological feature which greatly facilitates the identification of developmental mutants, the comple-mentary cloning and the spatial and temporal expression of the genes involved in differentiation. This characteristic of Streptomyces is comparatively superior to other pro-karyotic bacteria such as Escherichia coli, Bacillus sub-tilis and Myxococcus xanthus. Moreover, Streptomyces also possesses a complicated physiological differentiation in which it produces a wide variety of secondary metabo-lites (more than half of the 12 000 or so known antibiot-ics), including many important antibiotics used in medi-cine, agriculture and industry. Studies on the molecular mechanism of antibiotic biosynthesis will be helpful in improving the antibiotic producer and developing some new medicines. In comparison with eukaryotic microor-ganism such as Asperillus nidulans, the structure of ge-netic material in Streptomyces is simple, and it is benefi-cial to studying gene expression and regulation. Remarka-bly, the genome of Streptomyces has some unusual char-acteristics in bacteria; for example, it is linear and con-tains more genes than other prokaryotes, even than eukaryotes such as saccharomyces cerevisiae. The large number of genes are the molecular basis of Streptomyces differentiation, suggesting that the regulation mechanism of gene expression in differentiation and development may be complex[1].

  19. Differential regulation of the histone chaperone HIRA during muscle cell differentiation by a phosphorylation switch.

    Science.gov (United States)

    Yang, Jae-Hyun; Song, Tae-Yang; Jo, Chanhee; Park, Jinyoung; Lee, Han-Young; Song, Ilang; Hong, Suji; Jung, Kwan Young; Kim, Jaehoon; Han, Jeung-Whan; Youn, Hong-Duk; Cho, Eun-Jung

    2016-08-12

    Replication-independent incorporation of variant histone H3.3 has a profound impact on chromatin function and numerous cellular processes, including the differentiation of muscle cells. The histone chaperone HIRA and H3.3 have essential roles in MyoD regulation during myoblast differentiation. However, the precise mechanism that determines the onset of H3.3 deposition in response to differentiation signals is unclear. Here we show that HIRA is phosphorylated by Akt kinase, an important signaling modulator in muscle cells. By generating a phosphospecific antibody, we found that a significant amount of HIRA was phosphorylated in myoblasts. The phosphorylation level of HIRA and the occupancy of phosphorylated protein on muscle genes gradually decreased during cellular differentiation. Remarkably, the forced expression of the phosphomimic form of HIRA resulted in reduced H3.3 deposition and suppressed the activation of muscle genes in myotubes. Our data show that HIRA phosphorylation limits the expression of myogenic genes, while the dephosphorylation of HIRA is required for proficient H3.3 deposition and gene activation, demonstrating that the phosphorylation switch is exploited to modulate HIRA/H3.3-mediated muscle gene regulation during myogenesis.

  20. Towards spatially differentiated regulation of nitrogen

    DEFF Research Database (Denmark)

    Lajer Højberg, Anker; Refsgaard, Jens Christian; Jørgensen, Lisbeth Flindt

    of drains and hydro-biogeochemical conditions in associated riparian lowlands. Hence, a shift of paradigm in regulation practice is needed, whit a cost-effective regulation accounting for this variability and differentiate the regulations/restrictions between resilient and vulnerable areas. However...... on control monitoring of nitrate outputs from agriculture utilising local scale data and knowledge. TReNDS supports a two-tiered approach, where areas subject to further abatement are identified by national screening approaches supported by detailed local studies for the design of optimal measures taking...... advantage of local data and knowledge....

  1. Biophysical Regulation of Vascular Differentiation and Assembly

    CERN Document Server

    Gerecht, Sharon

    2011-01-01

    The ability to grow stem cells in the laboratory and to guide their maturation to functional cells allows us to study the underlying mechanisms that govern vasculature differentiation and assembly in health and disease. Accumulating evidence suggests that early stages of vascular growth are exquisitely tuned by biophysical cues from the microenvironment, yet the scientific understanding of such cellular environments is still in its infancy. Comprehending these processes sufficiently to manipulate them would pave the way to controlling blood vessel growth in therapeutic applications. This book assembles the works and views of experts from various disciplines to provide a unique perspective on how different aspects of its microenvironment regulate the differentiation and assembly of the vasculature. In particular, it describes recent efforts to exploit modern engineering techniques to study and manipulate various biophysical cues. Biophysical Regulation of Vascular Differentiation and Assembly provides an inter...

  2. Sida rhomboidea. Roxb Leaf Extract Down-Regulates Expression of PPARγ2 and Leptin Genes in High Fat Diet Fed C57BL/6J Mice and Retards in Vitro 3T3L1 Pre-Adipocyte Differentiation

    Directory of Open Access Journals (Sweden)

    A. V. Ramachandran

    2011-07-01

    Full Text Available Sida rhomboidea. Roxb leaf extract (SRLE is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i in vivo modulation of genes controlling high fat diet (HFD induced obesity and (ii in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  3. Sida rhomboidea. Roxb leaf extract down-regulates expression of PPARγ2 and leptin genes in high fat diet fed C57BL/6J Mice and retards in vitro 3T3L1 pre-adipocyte differentiation.

    Science.gov (United States)

    Thounaojam, Menaka C; Jadeja, Ravirajsinh N; Ramani, Umed V; Devkar, Ranjitsinh V; Ramachandran, A V

    2011-01-01

    Sida rhomboidea. Roxb leaf extract (SRLE) is being used by the populace of North-East India to alleviate symptoms of diabetes and obesity. We have previously reported its hypolipidemic and anti-diabetic properties. In this study, we report the effect of SRLE on (i) in vivo modulation of genes controlling high fat diet (HFD) induced obesity and (ii) in vitro 3T3L1 pre-adipocyte differentiation and leptin release. Supplementation with SRLE significantly prevented HFD induced increment in bodyweight, plasma lipids and leptin, visceral adiposity and adipocyte hypertrophy. Also, SRLE supplementation reduced food intake, down regulated PPARγ2, SREBP1c, FAS and LEP expressions and up-regulated CPT-1 in epididymal adipose tissue compared to obese mice. In vitro adipogenesis of 3T3L1 pre-adipocytes was significantly retarded in the presence of SRLE extract. Also decreased triglyceride accumulation, leptin release and glyceraldehyde-3-Phosphate dehydrogenase activity along with higher glycerol release without significant alteration of viability of 3T3L1 pre-adipocytes, was recorded. Our findings suggest that prevention of HFD induced visceral adiposity is primarily by down regulation of PPARγ2 and leptin gene expression coupled with attenuation of food intake in C57BL/6J mice. SRLE induced prevention of pre-adipocytes differentiation, and leptin release further substantiated these findings and scientifically validates the potential application of SRLE as a therapeutic agent against obesity.

  4. Genome-wide Analysis of Gene Regulation

    DEFF Research Database (Denmark)

    Chen, Yun

    IP-seq and small RNA-seq, we delineated the landscape of the promoters with bidirectional transcriptions that yield steady-state RNA in only one directions (Paper III). A subsequent motif analysis enabled us to uncover specific DNA signals – early polyA sites – that make RNA on the reverse strand sensitive...... they regulated or if the sites had global elevated usage rates by multiple TFs. Using RNA-seq, 5’end-seq in combination with depletion of 5’exonuclease as well as nonsensemediated decay (NMD) factors, we systematically analyzed NMD substrates as well as their degradation intermediates in human cells (Paper V......). Gene enrichment analysis on the detected NMD substrates revealed an unappreciated NMD-based regulatory mechanism of the genes hosting multiple intronic snoRNAs, which can facilitate differential expression of individual snoRNAs from a single host gene locus. Finally, supported by RNA-seq and small RNA-seq...

  5. Regulation of gene expression in human tendinopathy

    Science.gov (United States)

    2011-01-01

    Background Chronic tendon injuries, also known as tendinopathies, are common among professional and recreational athletes. These injuries result in a significant amount of morbidity and health care expenditure, yet little is known about the molecular mechanisms leading to tendinopathy. Methods We have used histological evaluation and molecular profiling to determine gene expression changes in 23 human patients undergoing surgical procedures for the treatment of chronic tendinopathy. Results Diseased tendons exhibit altered extracellular matrix, fiber disorientation, increased cellular content and vasculature, and the absence of inflammatory cells. Global gene expression profiling identified 983 transcripts with significantly different expression patterns in the diseased tendons. Global pathway analysis further suggested altered expression of extracellular matrix proteins and the lack of an appreciable inflammatory response. Conclusions Identification of the pathways and genes that are differentially regulated in tendinopathy samples will contribute to our understanding of the disease and the development of novel therapeutics. PMID:21539748

  6. EBF2 regulates osteoblast-dependent differentiation of osteoclasts

    DEFF Research Database (Denmark)

    Kieslinger, Matthias; Folberth, Stephanie; Dobreva, Gergana;

    2005-01-01

    of osteoclast differentiation. We find that mice homozygous for a targeted inactivation of Ebf2 show reduced bone mass and an increase in the number of osteoclasts. These defects are accompanied by a marked downregulation of the osteoprotegerin (Opg) gene, encoding a RANK decoy receptor. EBF2 binds to sequences...... in the Opg promoter and transactivates the Opg promoter in synergy with the Wnt-responsive LEF1/TCF:beta-catenin pathway. Taken together, these data identify EBF2 as a regulator of RANK-RANKL signaling and osteoblast-dependent differentiation of osteoclasts....

  7. Expression of Werner and Bloom syndrome genes is differentially regulated by in vitro HIV-1 infection of peripheral blood mononuclear cells.

    Science.gov (United States)

    Bordi, L; Amendola, A; Ciccosanti, F; Abbate, I; Camilloni, G; Capobianchi, M R

    2004-11-01

    In HIV infection, continuous immune activation leads to accelerated ageing of the adaptive immune system, similar to that observed in elderly people. We investigated the expression of WRN and BLM (genes involved in disorders characterized by premature ageing, genomic instability and cancer predisposition) in peripheral blood mononuclear cells (PBMC) activated in vitro with phytohaemagglutinin (PHA) and infected with different HIV-1 strains. The steady state levels of mRNA were analysed by reverse transcription-polymerase chain reaction (RT-PCR), and protein expression was assayed using immunocytochemistry and Western blot techniques. In uninfected PBMC, PHA stimulation induced an increase in BLM mRNA and protein expression, while WRN expression remained virtually unchanged. When PBMC were infected in vitro with a lymphotropic HIV-1 strain, the level of BLM mRNA showed a peak at 24 h of infection, followed by a decline to uninfected culture levels. A similar result failed to be seen using an R5-tropic HIV-1 strain. In accordance with mRNA expression, in HIV-infected cultures PBMC were stained more frequently and more intensely by a BLM-specific antibody as compared to uninfected cultures, staining peaking at 24. Conversely, WRN expression was not modulated by HIV-1. The proportion of cells showing BLM up-regulation, established by immunocytochemical staining, was much greater than the proportion of productively infected PBMC, as established by proviral DNA measurement. This result indicates that BLM up-regulation is probably a result of an indirect bystander cell effect. Activation of the BLM gene in infected PBMC suggests that premature ageing could be a further immunopathogenetic mechanism involved in HIV-induced immunodeficiency, and points to a possible new candidate target for innovative therapeutic intervention.

  8. Multivariate search for differentially expressed gene combinations

    Directory of Open Access Journals (Sweden)

    Klebanov Lev

    2004-10-01

    Full Text Available Abstract Background To identify differentially expressed genes, it is standard practice to test a two-sample hypothesis for each gene with a proper adjustment for multiple testing. Such tests are essentially univariate and disregard the multidimensional structure of microarray data. A more general two-sample hypothesis is formulated in terms of the joint distribution of any sub-vector of expression signals. Results By building on an earlier proposed multivariate test statistic, we propose a new algorithm for identifying differentially expressed gene combinations. The algorithm includes an improved random search procedure designed to generate candidate gene combinations of a given size. Cross-validation is used to provide replication stability of the search procedure. A permutation two-sample test is used for significance testing. We design a multiple testing procedure to control the family-wise error rate (FWER when selecting significant combinations of genes that result from a successive selection procedure. A target set of genes is composed of all significant combinations selected via random search. Conclusions A new algorithm has been developed to identify differentially expressed gene combinations. The performance of the proposed search-and-testing procedure has been evaluated by computer simulations and analysis of replicated Affymetrix gene array data on age-related changes in gene expression in the inner ear of CBA mice.

  9. Linker histones in hormonal gene regulation.

    Science.gov (United States)

    Vicent, G P; Wright, R H G; Beato, M

    2016-03-01

    In the present review, we summarize advances in our knowledge on the role of the histone H1 family of proteins in breast cancer cells, focusing on their response to progestins. Histone H1 plays a dual role in gene regulation by hormones, both as a structural component of chromatin and as a dynamic modulator of transcription. It contributes to hormonal regulation of the MMTV promoter by stabilizing a homogeneous nucleosome positioning, which reduces basal transcription whereas at the same time promoting progesterone receptor binding and nucleosome remodeling. These combined effects enhance hormone dependent gene transcription, which eventually requires H1 phosphorylation and displacement. Various isoforms of histone H1 have specific functions in differentiated breast cancer cells and compact nucleosomal arrays to different extents in vitro. Genome-wide studies show that histone H1 has a key role in chromatin dynamics of hormone regulated genes. A complex sequence of enzymatic events, including phosphorylation by CDK2, PARylation by PARP1 and the ATP-dependent activity of NURF, are required for H1 displacement and gene de-repression, as a prerequisite for further nucleosome remodeling. Similarly, during hormone-dependent gene repression a dedicated enzymatic mechanism controls H1 deposition at promoters by a complex containing HP1γ, LSD1 and BRG1, the ATPase of the BAF complex. Thus, a broader vision of the histone code should include histone H1, as the linker histone variants actively participate in the regulation of the chromatin structure. How modifications of the core histones tails affect H1 modifications and vice versa is one of the many questions that remains to be addressed to provide a more comprehensive view of the histone cross-talk mechanisms.

  10. Coactivators in PPAR-Regulated Gene Expression

    Directory of Open Access Journals (Sweden)

    Navin Viswakarma

    2010-01-01

    Full Text Available Peroxisome proliferator-activated receptor (PPARα, β (also known as δ, and γ function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as heterodimers with retinoid X receptor-α bound to DNA with corepressor molecules. Upon ligand activation, PPARs undergo conformational changes that facilitate the dissociation of corepressor molecules and invoke a spatiotemporally orchestrated recruitment of transcription cofactors including coactivators and coactivator-associated proteins. While a given nuclear receptor regulates the expression of a prescribed set of target genes, coactivators are likely to influence the functioning of many regulators and thus affect the transcription of many genes. Evidence suggests that some of the coactivators such as PPAR-binding protein (PBP/PPARBP/thyroid hormone receptor-associated protein 220 (TRAP220/mediator complex subunit 1 (MED1 may exert a broader influence on the functions of several nuclear receptors and their target genes. Investigations into the role of coactivators in the function of PPARs should strengthen our understanding of the complexities of metabolic diseases associated with energy metabolism.

  11. Topography of methylphenidate (ritalin)-induced gene regulation in the striatum: differential effects on c-fos, substance P and opioid peptides.

    Science.gov (United States)

    Yano, Motoyo; Steiner, Heinz

    2005-05-01

    Dopamine action alters gene regulation in striatal neurons. Methylphenidate increases extracellular levels of dopamine. We investigated the effects of acute methylphenidate treatment on gene expression in the striatum of adult rats. Molecular changes were mapped in 23 striatal sectors mostly defined by their predominant cortical inputs in order to determine the functional domains affected. Acute administration of 5 and 10 mg/kg (i.p.) of methylphenidate produced robust increases in the expression of the transcription factor c-fos and the neuropeptide substance P. Borderline effects were found with 2 mg/kg, but not with 0.5 mg/kg. For 5 mg/kg, c-fos mRNA levels peaked at 40 min and returned to baseline by 3 h after injection, while substance P mRNA levels peaked at 40-60 min and were back near control levels by 24 h. These molecular changes occurred in most sectors of the caudate-putamen, but were maximal in dorsal sectors that receive sensorimotor and medial agranular cortical inputs, on middle to caudal levels. In rostral and ventral striatal sectors, changes in c-fos and substance P expression were weaker or absent. No effects were seen in the nucleus accumbens, with the exception of c-fos induction in the lateral part of the shell. In contrast to c-fos and substance P, acute methylphenidate treatment had minimal effects on the opioid peptides dynorphin and enkephalin. These results demonstrate that acute methylphenidate alters the expression of c-fos and substance P preferentially in the sensorimotor striatum. These molecular changes are similar, but not identical, to those produced by other psychostimulants.

  12. Dicer-dependent pathways regulate chondrocyte proliferation and differentiation.

    Science.gov (United States)

    Kobayashi, Tatsuya; Lu, Jun; Cobb, Bradley S; Rodda, Stephen J; McMahon, Andrew P; Schipani, Ernestina; Merkenschlager, Matthias; Kronenberg, Henry M

    2008-02-12

    Small noncoding RNAs, microRNAs (miRNAs), bind to messenger RNAs through base pairing to suppress gene expression. Despite accumulating evidence that miRNAs play critical roles in various biological processes across diverse organisms, their roles in mammalian skeletal development have not been demonstrated. Here, we show that Dicer, an essential component for biogenesis of miRNAs, is essential for normal skeletal development. Dicer-null growth plates show a progressive reduction in the proliferating pool of chondrocytes, leading to severe skeletal growth defects and premature death of mice. The reduction of proliferating chondrocytes in Dicer-null growth plates is caused by two distinct mechanisms: decreased chondrocyte proliferation and accelerated differentiation into postmitotic hypertrophic chondrocytes. These defects appear to be caused by mechanisms downstream or independent of the Ihh-PTHrP signaling pathway, a pivotal signaling system that regulates chondrocyte proliferation and differentiation. Microarray analysis of Dicer-null chondrocytes showed limited expression changes in miRNA-target genes, suggesting that, in the majority of cases, chondrocytic miRNAs do not directly regulate target RNA abundance. Our results demonstrate the critical role of the Dicer-dependent pathway in the regulation of chondrocyte proliferation and differentiation during skeletal development.

  13. Chromatin structure regulates gene conversion.

    Directory of Open Access Journals (Sweden)

    W Jason Cummings

    2007-10-01

    Full Text Available Homology-directed repair is a powerful mechanism for maintaining and altering genomic structure. We asked how chromatin structure contributes to the use of homologous sequences as donors for repair using the chicken B cell line DT40 as a model. In DT40, immunoglobulin genes undergo regulated sequence diversification by gene conversion templated by pseudogene donors. We found that the immunoglobulin Vlambda pseudogene array is characterized by histone modifications associated with active chromatin. We directly demonstrated the importance of chromatin structure for gene conversion, using a regulatable experimental system in which the heterochromatin protein HP1 (Drosophila melanogaster Su[var]205, expressed as a fusion to Escherichia coli lactose repressor, is tethered to polymerized lactose operators integrated within the pseudo-Vlambda donor array. Tethered HP1 diminished histone acetylation within the pseudo-Vlambda array, and altered the outcome of Vlambda diversification, so that nontemplated mutations rather than templated mutations predominated. Thus, chromatin structure regulates homology-directed repair. These results suggest that histone modifications may contribute to maintaining genomic stability by preventing recombination between repetitive sequences.

  14. Repression of genes involved in melanocyte differentiation in uveal melanoma

    Science.gov (United States)

    Bergeron, Marjorie-Allison; Champagne, Sophie; Gaudreault, Manon; Deschambeault, Alexandre

    2012-01-01

    Purpose Uveal melanoma (UM) has been the subject of intense interest due to its distinctive metastatic pattern, which involves hematogenous dissemination of cancerous cells toward the liver in 50% of patients. To search for new UM prognostic markers, the Suppressive Subtractive Hybridization (SSH) technique was used to isolate genes that are differentially expressed between UM primary tumors and normal uveal melanocytes (UVM). Methods A subtracted cDNA library was prepared using cDNA from uncultured UM primary tumors and UVM. The expression level of selected genes was further validated by cDNA microarray, semi-quantitative reverse transcription polymerase chain reaction (RT-PCR), and immunofluorescence analyses. Results One hundred-fifteen genes were identified using the SSH technique. Microarray analyses comparing the gene expression profiles of UM primary tumors to UVM validated a significant differential expression for 48% of these genes. The expression pattern of selected genes was then analyzed by semi-quantitative RT–PCR and was found to be consistent with the SSH and cDNA microarray findings. A down-regulation of genes associated with melanocyte differentiation was confirmed in UM primary tumors. Presence of undifferentiated cells in the UM was demonstrated by the expression of stem cell markers ATP-binding cassette sub-family G member 2 (ABCG2) and octamer-binding protein 4 (OCT4). Conclusions We demonstrated that the SSH technique is efficient to detect differentially expressed genes between UM and UVM. The genes identified in this study represent valuable candidates for further functional analysis in UM and should be informative in studying the biology of this tumor. In addition, deregulation of the melanocyte differentiation pathway revealed the presence of UM cells exhibiting a stem cell-like phenotype. PMID:22815634

  15. Identifying gene regulatory network rewiring using latent differential graphical models.

    Science.gov (United States)

    Tian, Dechao; Gu, Quanquan; Ma, Jian

    2016-09-30

    Gene regulatory networks (GRNs) are highly dynamic among different tissue types. Identifying tissue-specific gene regulation is critically important to understand gene function in a particular cellular context. Graphical models have been used to estimate GRN from gene expression data to distinguish direct interactions from indirect associations. However, most existing methods estimate GRN for a specific cell/tissue type or in a tissue-naive way, or do not specifically focus on network rewiring between different tissues. Here, we describe a new method called Latent Differential Graphical Model (LDGM). The motivation of our method is to estimate the differential network between two tissue types directly without inferring the network for individual tissues, which has the advantage of utilizing much smaller sample size to achieve reliable differential network estimation. Our simulation results demonstrated that LDGM consistently outperforms other Gaussian graphical model based methods. We further evaluated LDGM by applying to the brain and blood gene expression data from the GTEx consortium. We also applied LDGM to identify network rewiring between cancer subtypes using the TCGA breast cancer samples. Our results suggest that LDGM is an effective method to infer differential network using high-throughput gene expression data to identify GRN dynamics among different cellular conditions.

  16. Aberrant gene expression profiles, during in vitro osteoblast differentiation, of telomerase deficient mouse bone marrow stromal stem cells (mBMSCs)

    DEFF Research Database (Denmark)

    Saeed, H.; Iqtedar, M.

    2015-01-01

    Background: Telomerase deficiency has been associated with inadequate differentiation of mesenchymal stem cells. However, the effect of telomerase deficiency on differential regulation of osteoblast specific genes, based on functional gene grouping, during in vitro osteoblast differentiation has ...

  17. Differential regulation of grain sucrose accumulation and metabolism in Coffea arabica (Arabica) and Coffea canephora (Robusta) revealed through gene expression and enzyme activity analysis.

    Science.gov (United States)

    Privat, Isabelle; Foucrier, Séverine; Prins, Anneke; Epalle, Thibaut; Eychenne, Magali; Kandalaft, Laurianne; Caillet, Victoria; Lin, Chenwei; Tanksley, Steve; Foyer, Christine; McCarthy, James

    2008-01-01

    * Coffea arabica (Arabica) and Coffea canephora (Robusta) are the two main cultivated species used for coffee bean production. Arabica genotypes generally produce a higher coffee quality than Robusta genotypes. Understanding the genetic basis for sucrose accumulation during coffee grain maturation is an important goal because sucrose is an important coffee flavor precursor. * Nine new Coffea genes encoding sucrose metabolism enzymes have been identified: sucrose phosphate synthase (CcSPS1, CcSPS2), sucrose phosphate phosphatase (CcSP1), cytoplasmic (CaInv3) and cell wall (CcInv4) invertases and four invertase inhibitors (CcInvI1, 2, 3, 4). * Activities and mRNA abundance of the sucrose metabolism enzymes were compared at different developmental stages in Arabica and Robusta grains, characterized by different sucrose contents in mature grain. * It is concluded that Robusta accumulates less sucrose than Arabica for two reasons: Robusta has higher sucrose synthase and acid invertase activities early in grain development - the expression of CcSS1 and CcInv2 appears to be crucial at this stage and Robusta has a lower SPS activity and low CcSPS1 expression at the final stages of grain development and hence has less capacity for sucrose re-synthesis. Regulation of vacuolar invertase CcInv2 activity by invertase inhibitors CcInvI2 and/or CcInvI3 during Arabica grain development is considered.

  18. De-regulation of common housekeeping genes in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    Wurmbach Elisa

    2007-07-01

    Full Text Available Abstract Background Tumorigenesis is associated with changes in gene expression and involves many pathways. Dysregulated genes include "housekeeping" genes that are often used for normalization for quantitative real-time RT-PCR (qPCR, which may lead to unreliable results. This study assessed eight stages of hepatitis C virus (HCV induced hepatocellular carcinoma (HCC to search for appropriate genes for normalization. Results Gene expression profiles using microarrays revealed differential expression of most "housekeeping" genes during the course of HCV-HCC, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH and beta-actin (ACTB, genes frequently used for normalization. QPCR reactions confirmed the regulation of these genes. Using them for normalization had strong effects on the extent of differential expressed genes, leading to misinterpretation of the results. Conclusion As shown here in the case of HCV-induced HCC, the most constantly expressed gene is the arginine/serine-rich splicing factor 4 (SFRS4. The utilization of at least two genes for normalization is robust and advantageous, because they can compensate for slight differences of their expression when not co-regulated. The combination of ribosomal protein large 41 (RPL41 and SFRS4 used for normalization led to very similar results as SFRS4 alone and is a very good choice for reference in this disease as shown on four differentially expressed genes.

  19. Furin gene (fur) regulation in differentiating human megakaryoblastic Dami cells: involvement of the proximal GATA recognition motif in the P1 promoter and impact on the maturation of furin substrates.

    Science.gov (United States)

    Laprise, Marie-Hélène; Grondin, Francine; Cayer, Pauline; McDonald, Patrick P; Dubois, Claire M

    2002-11-15

    The convertase furin is involved in the maturation of key growth/aggregation mediators synthesized by the platelet producers, megakaryocytes, but the regulation of furin in these cells remains unknown. Computer-assisted search of the furin promoter sequence revealed multiple potential binding motifs for GATA-1, suggesting that furin is expressed and regulated in these cells. Using megakaryoblastic Dami cells, we observed that fur mRNA expression increased gradually on phorbol 12-myristate 13-acetate-induced differentiation, reaching maximum levels (8.3-fold increase) at 10 days. Transient transfections with P1, P1A, or P1B fur-LUC-promoter constructs revealed that in Dami cells, the P1 promoter is the strongest and the most sensitive to forced expression of GATA-1. Coexpression of GATA-1 and its comodulator, Friend of GATA-1 (FOG-1), resulted in a cooperative increase in P1 activity. Deletion analysis indicated that important GATA-1-regulated sequences are located in the most proximal region of the P1 promoter. Further analysis revealed 2 potential GATA-binding motifs at positions -66 and +62. Point mutation of each of the 2 motifs indicated that the intactness of the first GATA site is required for full basal and GATA-1-stimulated promoter activity. Finally, the inhibition of furin activity through gene transfer of the inhibitor alpha1-AT-PDX led to a block in maturation of the furin substrates transforming growth factor-beta1 and platelet-derived growth factor. Taken together, these results indicate that the most proximal GATA element in the P1 promoter is needed for fur gene expression in megakaryoblastic cells. They also suggest that proper regulation of the fur gene in megakaryocytes has an impact on the activation of furin substrates involved in megakaryocyte maturation and platelet functions.

  20. Prion protein expression regulates embryonic stem cell pluripotency and differentiation.

    Directory of Open Access Journals (Sweden)

    Alberto Miranda

    Full Text Available Cellular prion protein (PRNP is a glycoprotein involved in the pathogenesis of transmissible spongiform encephalopathies (TSEs. Although the physiological function of PRNP is largely unknown, its key role in prion infection has been extensively documented. This study examines the functionality of PRNP during the course of embryoid body (EB differentiation in mouse Prnp-null (KO and WT embryonic stem cell (ESC lines. The first feature observed was a new population of EBs that only appeared in the KO line after 5 days of differentiation. These EBs were characterized by their expression of several primordial germ cell (PGC markers until Day 13. In a comparative mRNA expression analysis of genes playing an important developmental role during ESC differentiation to EBs, Prnp was found to participate in the transcription of a key pluripotency marker such as Nanog. A clear switching off of this gene on Day 5 was observed in the KO line as opposed to the WT line, in which maximum Prnp and Nanog mRNA levels appeared at this time. Using a specific antibody against PRNP to block PRNP pathways, reduced Nanog expression was confirmed in the WT line. In addition, antibody-mediated inhibition of ITGB5 (integrin αvβ5 in the KO line rescued the low expression of Nanog on Day 5, suggesting the regulation of Nanog transcription by Prnp via this Itgb5. mRNA expression analysis of the PRNP-related proteins PRND (Doppel and SPRN (Shadoo, whose PRNP function is known to be redundant, revealed their incapacity to compensate for the absence of PRNP during early ESC differentiation. Our findings provide strong evidence for a relationship between Prnp and several key pluripotency genes and attribute Prnp a crucial role in regulating self-renewal/differentiation status of ESC, confirming the participation of PRNP during early embryogenesis.

  1. QB1 - Stochastic Gene Regulation

    Energy Technology Data Exchange (ETDEWEB)

    Munsky, Brian [Los Alamos National Laboratory

    2012-07-23

    Summaries of this presentation are: (1) Stochastic fluctuations or 'noise' is present in the cell - Random motion and competition between reactants, Low copy, quantization of reactants, Upstream processes; (2) Fluctuations may be very important - Cell-to-cell variability, Cell fate decisions (switches), Signal amplification or damping, stochastic resonances; and (3) Some tools are available to mode these - Kinetic Monte Carlo simulations (SSA and variants), Moment approximation methods, Finite State Projection. We will see how modeling these reactions can tell us more about the underlying processes of gene regulation.

  2. Differential age-dependent import regulation by signal peptides.

    Directory of Open Access Journals (Sweden)

    Yi-Shan Teng

    Full Text Available Gene-specific, age-dependent regulations are common at the transcriptional and translational levels, while protein transport into organelles is generally thought to be constitutive. Here we report a new level of differential age-dependent regulation and show that chloroplast proteins are divided into three age-selective groups: group I proteins have a higher import efficiency into younger chloroplasts, import of group II proteins is nearly independent of chloroplast age, and group III proteins are preferentially imported into older chloroplasts. The age-selective signal is located within the transit peptide of each protein. A group III protein with its transit peptide replaced by a group I transit peptide failed to complement its own mutation. Two consecutive positive charges define the necessary motif in group III signals for older chloroplast preference. We further show that different members of a gene family often belong to different age-selective groups because of sequence differences in their transit peptides. These results indicate that organelle-targeting signal peptides are part of cells' differential age-dependent regulation networks. The sequence diversity of some organelle-targeting peptides is not a result of the lack of selection pressure but has evolved to mediate regulation.

  3. Gene expression regulators--MicroRNAs

    Institute of Scientific and Technical Information of China (English)

    CHEN Fang; YIN Q. James

    2005-01-01

    A large class of non-coding RNAs found in small molecule RNAs are closely associated with the regulation of gene expression, which are called microRNA (miRNA). MiRNAs are coded in intergenic or intronic regions and can be formed into foldback hairpin RNAs. These transcripts are cleaved by Dicer, generating mature miRNAs that can silence their target genes in different modes of action. Now, research on small molecule RNAs has gotten breakthrough advance in biology. To discover miRNA genes and their target genes has become hot topics in RNA research. This review attempts to look back the history of miRNA discovery, to introduce the methods of screening miRNAs, to localize miRNA loci in genome, to seek miRNA target genes and the biological function, and to discuss the working mechanisms of miRNAs. Finally, we will discuss the potential important roles of miRNAs in modulating the genesis, development, growth, and differentiation of organisms. Thus, it can be predicted that a complete understanding of miRNA functions will bring us some new concepts, approaches and strategies for the study of living beings.

  4. BMAL1基因对骨髓间充质干细胞成骨分化的调控作用%BMAL1 gene regulates the osteogenic differentiation of bone marrow mesenchymal stem cells

    Institute of Scientific and Technical Information of China (English)

    李晓光; 郭小龙; 郭斌

    2016-01-01

    Periodontitis is a chronic infective disease characterized as the destruction of the supporting tissues of the teeth. Bone marrow mesenchymal stem cells, which are ideal adult stem cells for the regeneration of supporting tissues, may play important roles in restoring the structure and function of the periodontium and in promoting the treatment of periodontal disease. As a consequence, the characteristics, especially osteogenic differentiation mechanism, of these stem cells have been extensively investigated. The regulation of the physiological behavior of these stem cells is associated with BMAL1 gene. This gene is a potential treatment target for periodontal disease, although the specific mechanism remains inconclusive. This study aimed to describe the characteristics of BMAL1 gene and its ability to regulate the osteogenic differentiation of stem cells.%牙周炎是以牙周组织破坏为特征的感染性疾病,作为重要的牙周组织再生种子细胞,骨髓间充质干细胞在重构牙周组织结构和功能、促进牙周病好转乃至愈合方面具有重要作用,因此骨髓间充质干细胞的特性尤其是其成骨分化的相关调控机制是目前研究热点之一。BMAL1基因与骨髓间充质干细胞成骨分化等诸多生理行为的调控关系密切,有望成为牙周疾病新的治疗靶点。本文对BMAL1基因的特性以及调控骨髓间充质干细胞成骨分化的机制作一综述。

  5. Bayesian modeling of differential gene expression.

    Science.gov (United States)

    Lewin, Alex; Richardson, Sylvia; Marshall, Clare; Glazier, Anne; Aitman, Tim

    2006-03-01

    We present a Bayesian hierarchical model for detecting differentially expressing genes that includes simultaneous estimation of array effects, and show how to use the output for choosing lists of genes for further investigation. We give empirical evidence that expression-level dependent array effects are needed, and explore different nonlinear functions as part of our model-based approach to normalization. The model includes gene-specific variances but imposes some necessary shrinkage through a hierarchical structure. Model criticism via posterior predictive checks is discussed. Modeling the array effects (normalization) simultaneously with differential expression gives fewer false positive results. To choose a list of genes, we propose to combine various criteria (for instance, fold change and overall expression) into a single indicator variable for each gene. The posterior distribution of these variables is used to pick the list of genes, thereby taking into account uncertainty in parameter estimates. In an application to mouse knockout data, Gene Ontology annotations over- and underrepresented among the genes on the chosen list are consistent with biological expectations.

  6. Sonic Hedgehog regulates thymic epithelial cell differentiation.

    Science.gov (United States)

    Saldaña, José Ignacio; Solanki, Anisha; Lau, Ching-In; Sahni, Hemant; Ross, Susan; Furmanski, Anna L; Ono, Masahiro; Holländer, Georg; Crompton, Tessa

    2016-04-01

    Sonic Hedgehog (Shh) is expressed in the thymus, where it regulates T cell development. Here we investigated the influence of Shh on thymic epithelial cell (TEC) development. Components of the Hedgehog (Hh) signalling pathway were expressed by TEC, and use of a Gli Binding Site-green fluorescence protein (GFP) transgenic reporter mouse demonstrated active Hh-dependent transcription in TEC in the foetal and adult thymus. Analysis of Shh-deficient foetal thymus organ cultures (FTOC) showed that Shh is required for normal TEC differentiation. Shh-deficient foetal thymus contained fewer TEC than wild type (WT), the proportion of medullary TEC was reduced relative to cortical TEC, and cell surface expression of MHC Class II molecules was increased on both cortical and medullary TEC populations. In contrast, the Gli3-deficient thymus, which shows increased Hh-dependent transcription in thymic stroma, had increased numbers of TEC, but decreased cell surface expression of MHC Class II molecules on both cortical and medullary TEC. Neutralisation of endogenous Hh proteins in WT FTOC led to a reduction in TEC numbers, and in the proportion of mature Aire-expressing medullary TEC, but an increase in cell surface expression of MHC Class II molecules on medullary TEC. Likewise, conditional deletion of Shh from TEC in the adult thymus resulted in alterations in TEC differentiation and consequent changes in T cell development. TEC numbers, and the proportion of mature Aire-expressing medullary TEC were reduced, and cell surface expression of MHC Class II molecules on medullary TEC was increased. Differentiation of mature CD4 and CD8 single positive thymocytes was increased, demonstrating the regulatory role of Shh production by TEC on T cell development. Treatment of human thymus explants with recombinant Shh or neutralising anti-Shh antibody indicated that the Hedgehog pathway is also involved in regulation of differentiation from DP to mature SP T cells in the human thymus.

  7. Redox-sensing regulator Rex regulates aerobic metabolism, morphological differentiation, and avermectin production in Streptomyces avermitilis

    Science.gov (United States)

    Liu, Xingchao; Cheng, Yaqing; Lyu, Mengya; Wen, Ying; Song, Yuan; Chen, Zhi; Li, Jilun

    2017-01-01

    The regulatory role of redox-sensing regulator Rex was investigated in Streptomyces avermitilis. Eleven genes/operons were demonstrated to be directly regulated by Rex; these genes/operons are involved in aerobic metabolism, morphological differentiation, and secondary metabolism. Rex represses transcription of target genes/operons by binding to Rex operator (ROP) sequences in the promoter regions. NADH reduces DNA-binding activity of Rex to target promoters, while NAD+ competitively binds to Rex and modulates its DNA-binding activity. Rex plays an essential regulatory role in aerobic metabolism by controlling expression of the respiratory genes atpIBEFHAGDC, cydA1B1CD, nuoA1-N1, rex-hemAC1DB, hppA, and ndh2. Rex also regulates morphological differentiation by repressing expression of wblE, which encodes a putative WhiB-family transcriptional regulator. A rex-deletion mutant (Drex) showed higher avermectin production than the wild-type strain ATCC31267, and was more tolerant of oxygen limitation conditions in regard to avermectin production. PMID:28303934

  8. Polymorphic cis- and trans-regulation of human gene expression.

    Directory of Open Access Journals (Sweden)

    Vivian G Cheung

    Full Text Available Expression levels of human genes vary extensively among individuals. This variation facilitates analyses of expression levels as quantitative phenotypes in genetic studies where the entire genome can be scanned for regulators without prior knowledge of the regulatory mechanisms, thus enabling the identification of unknown regulatory relationships. Here, we carried out such genetic analyses with a large sample size and identified cis- and trans-acting polymorphic regulators for about 1,000 human genes. We validated the cis-acting regulators by demonstrating differential allelic expression with sequencing of transcriptomes (RNA-Seq and the trans-regulators by gene knockdown, metabolic assays, and chromosome conformation capture analysis. The majority of the regulators act in trans to the target (regulated genes. Most of these trans-regulators were not known to play a role in gene expression regulation. The identification of these regulators enabled the characterization of polymorphic regulation of human gene expression at a resolution that was unattainable in the past.

  9. Muscle Biological Characteristics of Differentially Expressed Genes in Wujin and Landrace Pigs

    Institute of Scientific and Technical Information of China (English)

    XU Hong; HUANG Ying; LI Wei-zhen; YANG Ming-hua; GE Chang-rong; ZHANG Xi; LI Liu-an; GAO Shi-zheng; ZHAO Su-mei

    2014-01-01

    The biological chemistry would be responsible for the meat quality. This study tried to investigate the transcript expression proifle and explain the characteristics of differentially expressed genes between the Wujin and Landrace pigs. The results showed that 526 differentially expressed genes were found by comparing the transcript expression proifle of muscle tissue between Wujin and Landrace pigs. Among them, 335 genes showed up-regulations and 191 genes showed down-regulations in Wujin pigs compared with the Landrace pigs. Gene ontology (GO) analysis indicated that the differentially expressed genes were clustered into three groups involving in protein synthesis, energy metabolism and immune response. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis found that these differentially expressed genes participated in protein synthesis metabolism, energy metabolism and immune response pathway. The Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis of protein function and protein domains function also conifrmed that differentially expressed genes belonged to protein synthesis, energy metabolism and immune response. Genes related protein synthesis metabolism pathway in Landrace was higher than in Wujin pigs. However, differentially expressed genes related energy metabolism and immune response was up-regulated in Wujin pigs compared with Landrace pigs. Quantitative real-time RT-PCR on selected genes was used to conifrm the results from the microarray. These suggested that the genes related to protein synthesis, energy metabolism and immune response would contribute to the growth performance, meat quality as well as anti-disease capacity.

  10. MicroRNA-145 regulates human corneal epithelial differentiation.

    Directory of Open Access Journals (Sweden)

    Sharon Ka-Wai Lee

    Full Text Available BACKGROUND: Epigenetic factors, such as microRNAs, are important regulators in the self-renewal and differentiation of stem cells and progenies. Here we investigated the microRNAs expressed in human limbal-peripheral corneal (LPC epithelia containing corneal epithelial progenitor cells (CEPCs and early transit amplifying cells, and their role in corneal epithelium. METHODOLOGY/PRINCIPAL FINDINGS: Human LPC epithelia was extracted for small RNAs or dissociated for CEPC culture. By Agilent Human microRNA Microarray V2 platform and GeneSpring GX11.0 analysis, we found differential expression of 18 microRNAs against central corneal (CC epithelia, which were devoid of CEPCs. Among them, miR-184 was up-regulated in CC epithelia, similar to reported finding. Cluster miR-143/145 was expressed strongly in LPC but weakly in CC epithelia (P = 0.0004, Mann-Whitney U-test. This was validated by quantitative polymerase chain reaction (qPCR. Locked nucleic acid-based in situ hybridization on corneal rim cryosections showed miR-143/145 presence localized to the parabasal cells of limbal epithelium but negligible in basal and superficial epithelia. With holoclone forming ability, CEPCs transfected with lentiviral plasmid containing mature miR-145 sequence gave rise to defective epithelium in organotypic culture and had increased cytokeratin-3/12 and connexin-43 expressions and decreased ABCG2 and p63 compared with cells transfected with scrambled sequences. Global gene expression was analyzed using Agilent Whole Human Genome Oligo Microarray and GeneSpring GX11.0. With a 5-fold difference compared to cells with scrambled sequences, miR-145 up-regulated 324 genes (containing genes for immune response and down-regulated 277 genes (containing genes for epithelial development and stem cell maintenance. As validated by qPCR and luciferase reporter assay, our results showed miR-145 suppressed integrin β8 (ITGB8 expression in both human corneal epithelial cells

  11. Palmitoylation regulates epidermal homeostasis and hair follicle differentiation.

    Directory of Open Access Journals (Sweden)

    Pleasantine Mill

    2009-11-01

    Full Text Available Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs. Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear beta-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.

  12. Assessment of differential gene expression in human peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Sangameswaran Lakshmi

    2002-09-01

    Full Text Available Abstract Background Microarray technology is a powerful methodology for identifying differentially expressed genes. However, when thousands of genes in a microarray data set are evaluated simultaneously by fold changes and significance tests, the probability of detecting false positives rises sharply. In this first microarray study of brachial plexus injury, we applied and compared the performance of two recently proposed algorithms for tackling this multiple testing problem, Significance Analysis of Microarrays (SAM and Westfall and Young step down adjusted p values, as well as t-statistics and Welch statistics, in specifying differential gene expression under different biological states. Results Using SAM based on t statistics, we identified 73 significant genes, which fall into different functional categories, such as cytokines / neurotrophin, myelin function and signal transduction. Interestingly, all but one gene were down-regulated in the patients. Using Welch statistics in conjunction with SAM, we identified an additional set of up-regulated genes, several of which are engaged in transcription and translation regulation. In contrast, the Westfall and Young algorithm identified only one gene using a conventional significance level of 0.05. Conclusion In coping with multiple testing problems, Family-wise type I error rate (FWER and false discovery rate (FDR are different expressions of Type I error rates. The Westfall and Young algorithm controls FWER. In the context of this microarray study, it is, seemingly, too conservative. In contrast, SAM, by controlling FDR, provides a promising alternative. In this instance, genes selected by SAM were shown to be biologically meaningful.

  13. Identifying sexual differentiation genes that affect Drosophila life span

    Directory of Open Access Journals (Sweden)

    Tower John

    2009-12-01

    Full Text Available Abstract Background Sexual differentiation often has significant effects on life span and aging phenotypes. For example, males and females of several species have different life spans, and genetic and environmental manipulations that affect life span often have different magnitude of effect in males versus females. Moreover, the presence of a differentiated germ-line has been shown to affect life span in several species, including Drosophila and C. elegans. Methods Experiments were conducted to determine how alterations in sexual differentiation gene activity might affect the life span of Drosophila melanogaster. Drosophila females heterozygous for the tudor[1] mutation produce normal offspring, while their homozygous sisters produce offspring that lack a germ line. To identify additional sexual differentiation genes that might affect life span, the conditional transgenic system Geneswitch was employed, whereby feeding adult flies or developing larvae the drug RU486 causes the over-expression of selected UAS-transgenes. Results In this study germ-line ablation caused by the maternal tudor[1] mutation was examined in a long-lived genetic background, and was found to increase life span in males but not in females, consistent with previous reports. Fitting the data to a Gompertz-Makeham model indicated that the maternal tudor[1] mutation increases the life span of male progeny by decreasing age-independent mortality. The Geneswitch system was used to screen through several UAS-type and EP-type P element mutations in genes that regulate sexual differentiation, to determine if additional sex-specific effects on life span would be obtained. Conditional over-expression of transformer female isoform (traF during development produced male adults with inhibited sexual differentiation, however this caused no significant change in life span. Over-expression of doublesex female isoform (dsxF during development was lethal to males, and produced a limited

  14. Metabolome, transcriptome, and bioinformatic cis-element analyses point to HNF-4 as a central regulator of gene expression during enterocyte differentiation

    DEFF Research Database (Denmark)

    Stegmann, Anders; Hansen, Morten; Wang, Yulan;

    2006-01-01

    DNA-binding transcription factors bind to promoters that carry their binding sites. Transcription factors therefore function as nodes in gene regulatory networks. In the present work we used a bioinformatic approach to search for transcription factors that might function as nodes in gene regulatory...

  15. Identification of Candidate Signaling Genes Including Regulators of Chromosome Condensation 1 Protein Family Differentially Expressed in the Soybean - Phytophthora Sojae Interaction

    Science.gov (United States)

    Stem and root rot caused by the oomycete pathogen, Phytopthora sojae, is a serious soybean disease. Use of Phytophthora resistance genes (Rps) in soybean cultivars has been very effective in controlling this pathogen. Resistance encoded by Rps genes is manifested through activation of defense resp...

  16. Microarray analysis of differentially expressed genes in preeclamptic and normal placental tissues.

    Science.gov (United States)

    Ma, K; Lian, Y; Zhou, S; Hu, R; Xiong, Y; Ting, P; Xiong, Y; Li, X; Wang, X

    2014-01-01

    To detect the candidate genes for preeclampsia (PE). The gene expression profiles in preeclamptic and normal placental tissues were analyzed using cDNA microarray approach and the altered expression of important genes were further confirmed by real-time RT-PCR (reverse transcription polymerase chain reaction) technique. Total RNA was extracted from placental tissues of three cases with severe PE and from three cases with normal pregnancy. After scanning, differentially expressed genes were detected by software. In two experiments (the fluorescent labels were exchanged), a total of 111 differentially expressed genes were detected. In placental tissue ofpreeclamptic pregnancy, 68 differentially expressed genes were up-regulated, and 44 differentially expressed genes were down-regulated. Of these genes, 16 highly differentially expressed genes were confirmed by real-time fluorescent quantitative RT-PCR, and the result showed that the ratio of gene expression differences was comparable to that detected by cDNA microarray. The results of bioinformatic analysis showed that encoding products of differentially expressed genes were correlated to infiltration of placenta trophoblastic cells, immunomodulatory factors, pregnancy-associated plasma protein, signal transduction pathway, and cell adhesion. Further studies on the biological function and regulating mechanism of these genes will provide new clues for better understanding of etiology and pathogenesis of PE.

  17. Dynamics of bacterial gene regulation

    Science.gov (United States)

    Narang, Atul

    2009-03-01

    The phenomenon of diauxic growth is a classical problem of bacterial gene regulation. The most well studied example of this phenomenon is the glucose-lactose diauxie, which occurs because the expression of the lac operon is strongly repressed in the presence of glucose. This repression is often explained by appealing to molecular mechanisms such as cAMP activation and inducer exclusion. I will begin by analyzing data showing that these molecular mechanisms cannot explain the strong lac repression because they exert a relatively weak effect. I will then present a minimal model accounting only for enzyme induction and dilution, which yields strong repression despite the absence of catabolite repression and inducer exclusion. The model also explains the growth patterns observed in batch and continuous cultures of various bacterial strains and substrate mixtures. The talk will conclude with a discussion of the experimental evidence regarding positive feedback, the key component of the minimal model.

  18. AMFR gene silencing inhibits the differentiation of porcine preadipocytes.

    Science.gov (United States)

    Chen, C Z; Zhu, Y N; Chai, M L; Dai, L S; Gao, Y; Jiang, H; Zhang, L J; Ding, Y; Liu, S Y; Li, Q Y; Lu, W F; Zhang, J B

    2016-04-07

    Our study clarifies the role of the autocrine motility factor receptor (AMFR) gene in porcine preadipocyte differentiation. AMFR-siRNA was transfected into porcine preadipocytes and the preadipocytes were induced to differentiation. Subsequently, qRT-PCR was conducted to examine changes in mRNA expression of a series of genes in porcine preadipocytes, including AMFR, sterol-regulatory element-binding protein-1a (SREBP1a), SREBP2, insulin-induced gene 1 (Insig1), and Insig2. Expression changes in the mRNA of genes regulating adipocyte differentiation were also analyzed using qRT-PCR, including peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and Kruppel-like factor 2 (KLF2). Western blot analysis was conducted to examine the changes in AMFR protein expression in porcine preadipocytes. Additionally, morphological changes in differentiated porcine preadipocytes were examined by oil red O staining, and changes in optical density (OD) values were measured using an ultraviolet spectrophotometer. At 24 h after transfection with AMFR-siRNA, AMFR mRNA expression significantly reduced (P SREBP1a, SREBP2, Insig1, and C/EBPα was significantly reduced (P < 0.01), whereas the expression of KLF2 mRNA was significantly elevated (P < 0.01). After induction of preadipocyte differentiation, the number of lipid droplets decreased in the AMFR-silenced group, and the OD value markedly reduced (P < 0.05). In addition, the expression of C/EBPα mRNA significantly decreased (P < 0.05), whereas the expression of KLF2 mRNA considerably increased (P < 0.05). Taken together, silencing of the AMFR gene inhibits the differentiation of porcine preadipocytes.

  19. Mutant Forkhead L2 (FOXL2) proteins associated with premature ovarian failure (POF) dimerize with wild-type FOXL2, leading to altered regulation of genes associated with granulosa cell differentiation.

    Science.gov (United States)

    Kuo, Fang-Ting; Bentsi-Barnes, Ikuko K; Barlow, Gillian M; Pisarska, Margareta D

    2011-10-01

    Premature ovarian failure in the autosomal dominant disorder blepharophimosis-ptosis-epicanthus inversus is due to mutations in the gene encoding Forkhead L2 (FOXL2), producing putative truncated proteins. We previously demonstrated that FOXL2 is a transcriptional repressor of the steroidogenic acute regulatory (StAR), P450SCC (CYP11A), P450aromatase (CYP19), and cyclin D2 (CCND2) genes, markers of ovarian follicle proliferation and differentiation. Furthermore, we found that mutations of FOXL2 may regulate wild-type FOXL2, leading to loss of transcriptional repression of CYP19, similar to StAR. However, the regulatory mechanisms underlying these premature ovarian failure-associated mutations remain largely unknown. Therefore, we examined the effects of a FOXL2 mutant protein on the transcriptional repression of the CYP19 promoter by the full-length protein. We found that mutant FOXL2 exerts a dominant-negative effect on the repression of CYP19 by wild-type FOXL2. Both wild-type and mutant FOXL2 and can form homo- and heterodimers. We identified a minimal -57-bp human CYP19 promoter containing two potential FOXL2-binding regions and found that both wild-type and mutant FOXL2 can bind to either of these regions. Mutational analysis revealed that either site is sufficient for transcriptional repression by wild-type FOXL2, and the dominant-negative effect of mutant FOXL2, but these are eliminated when both sites are mutated. These findings confirm that mutant FOXL2 exerts a dominant-negative effect on wild-type FOXL2's activity as a transcriptional repressor of key genes in ovarian follicle differentiation and suggest that this is likely due to heterodimer formation and possibly also competition for DNA binding.

  20. Dietary methanol regulates human gene activity.

    Directory of Open Access Journals (Sweden)

    Anastasia V Shindyapina

    Full Text Available Methanol (MeOH is considered to be a poison in humans because of the alcohol dehydrogenase (ADH-mediated conversion of MeOH to formaldehyde (FA, which is toxic. Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and a modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC from volunteers after pectin intake showed various responses for 30 significantly differentially regulated mRNAs, most of which were somehow involved in the pathogenesis of Alzheimer's disease (AD. There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes were not significantly expressed. A qRT-PCR analysis of volunteer WBCs after pectin and red wine intake confirmed the complicated relationship between the plasma MeOH content and the mRNA accumulation of both genes that were previously identified, namely, GAPDH and SNX27, and genes revealed in this study, including MME, SORL1, DDIT4, HBA and HBB. We hypothesized that human plasma MeOH has an impact on the WBC mRNA levels of genes involved in cell signaling.

  1. DIFFERENTIAL RENAL GENE EXPRESSION IN EXPERIMENTAL DIABETIC RATS AFTER ASTRAGALUS MEMBRANACEUS TREATMENT

    Institute of Scientific and Technical Information of China (English)

    WU Yi; HUANG Sheng-lin; YING Lei; ZHAO Han-fang; YANG Rong; NI Zhao-hui

    2006-01-01

    Objective To find the genes involved in pathogenesis of diabetic nephropathy using gene chip technology. Methods We established a type 1 diabetic rat model by streptozotocin injection and divided these diabetic rats into two groups: diabetic rats group( D group) and diabetic rats group treated with Astragalus Membranaceus (DA group). The renal tissue was collected and total RNA was extracted for gene chips. With the help of gene chip, we tried to discover the differential-displayed genes between these two groups. Results Totally 201 differential-displayed genes were found between the two groups, among which 126 genes were up-regulated and 75 genes were down-regulated in the rat renal tissue. Conclusion With gene chip results, we find several genes which are associated with diabetes in the rat renal tissue. The further research on the function of these genes will be helpful to understand the mechanism of diabetic nephropathy.

  2. Differential gene expression analysis of tubule forming and non-tubule forming endothelial cells: CDC42GAP as a counter-regulator in tubule formation

    NARCIS (Netherlands)

    Engelse, M.A.; Laurens, N.; Verloop, R.E.; Koolwijk, P.; Hinsbergh, V.W.M. van

    2008-01-01

    The formation of new tubular structures from a quiescent endothelial lining is one of the hallmarks of sprouting angiogenesis. This process can be mimicked in vitro by inducing capillary-like tubular structures in a three-dimensional (3D) fibrin matrix. We aimed to analyze the differential mRNA expr

  3. An A20/AN1-zinc-finger domain containing protein gene in tea is differentially expressed during winter dormancy and in response to abiotic stress and plant growth regulators

    Directory of Open Access Journals (Sweden)

    Asosii Paul

    2015-03-01

    Full Text Available The present manuscript describes cloning and expression characterization of A20/AN1-zinc-finger domain containing protein (CsZfp gene in an evergreen tree tea [Camellia sinensis (L. O. Kuntze] in response to winter dormancy (WD, abiotic stresses (polyethylene glycol, hydrogen peroxide, and sodium chloride and plant growth regulators [abscisic acid (ABA, and gibberellic acid (GA3]. CsZfp encoded a putative protein of 173 amino acids with a calculated molecular weight of 18.44 kDa, an isoelectric point (pI of 6.50 and grand average of hydropathicity (GRAVY value of −0.334. The gene did not have an intron, and belonged to a multi-gene family. During the period of active growth (PAG, CsZfp showed maximum expression in root and fruit as compared to leaf, floral bud and stem. Interaction studies between temperature and plant growth regulators on the expression of CsZfp showed that ABA upregulated CsZfp expression at growth temperature (GT; 25 °C but had no effect at low temperature (LT; 4 °C. In response to GA3, upregulation was observed at LT but not at GT. Further, the expression was not modulated by LT either in the tissue harvested during PAG or during WD. It was interesting to record that the expression of CsZfp was upregulated by hydrogen peroxide and sodium chloride, whereas it was non-responsive to polyethylene glycol. The possible role of CsZfp in playing key but differential roles in tea to various abiotic stresses is discussed.

  4. Hierarchical Parallelization of Gene Differential Association Analysis

    Directory of Open Access Journals (Sweden)

    Dwarkadas Sandhya

    2011-09-01

    Full Text Available Abstract Background Microarray gene differential expression analysis is a widely used technique that deals with high dimensional data and is computationally intensive for permutation-based procedures. Microarray gene differential association analysis is even more computationally demanding and must take advantage of multicore computing technology, which is the driving force behind increasing compute power in recent years. In this paper, we present a two-layer hierarchical parallel implementation of gene differential association analysis. It takes advantage of both fine- and coarse-grain (with granularity defined by the frequency of communication parallelism in order to effectively leverage the non-uniform nature of parallel processing available in the cutting-edge systems of today. Results Our results show that this hierarchical strategy matches data sharing behavior to the properties of the underlying hardware, thereby reducing the memory and bandwidth needs of the application. The resulting improved efficiency reduces computation time and allows the gene differential association analysis code to scale its execution with the number of processors. The code and biological data used in this study are downloadable from http://www.urmc.rochester.edu/biostat/people/faculty/hu.cfm. Conclusions The performance sweet spot occurs when using a number of threads per MPI process that allows the working sets of the corresponding MPI processes running on the multicore to fit within the machine cache. Hence, we suggest that practitioners follow this principle in selecting the appropriate number of MPI processes and threads within each MPI process for their cluster configurations. We believe that the principles of this hierarchical approach to parallelization can be utilized in the parallelization of other computationally demanding kernels.

  5. Modulation of Gene Expression Networks underlying Realgar-Induced Differentiation of Acute Promyelocytic Leukemia Cells

    Institute of Scientific and Technical Information of China (English)

    王怀宇; 刘陕西

    2002-01-01

    Objective: To elucidate the molecular mechanism of the differentiation of acute promyelocytic leukemia (APL) cell line NB4 induced by realgar. Methods: The response of NB4 cell to realgar was explored with a cDNA microarray representing 1003 different human genes. Results: The analysis of gene expression profiles indicated that 8 genes were up-regulated and 33 genes were down-regulated 48 hrs after realgar treatment. Among the 8 up-regulated genes, 2 genes were involved in ubiquitin proteasome degradation pathway. Some genes related to RNA processing, protein synthesis and signal transduction were down-regulated. Conclusion: The ubiquitin-proteasome degradation pathway may play an important role in the degradation of PML/RAR α fusion protein and the differentiation of NB4 cells.

  6. Silibinin regulates lipid metabolism and differentiation in functional human adipocytes

    Directory of Open Access Journals (Sweden)

    Ignazio eBarbagallo

    2016-01-01

    Full Text Available Silibinin, a natural plant flavonoid, is the main active constituent found in milk thistle (Silybum marianum. It is known to have hepatoprotective, anti-neoplastic effect and suppresses lipid accumulation in adipocytes. Objective of this study was to investigate the effect of silibinin on adipogenic differentiation and thermogenic capacity of human adipose tissue derived mesenchymal stem cells. Silibinin (10 μM treatment, either at the beginning or at the end of adipogenic differentiation, resulted in an increase of SIRT-1, PPARα, Pgc-1α and UCPs gene expression. Moreover, silibinin administration resulted in a decrease of PPARγ, FABP4, FAS and MEST/PEG1 gene expression during the differentiation, confirming that this compound is able to reduce fatty acid accumulation and adipocyte size. Our data showed that silibinin regulated adipocyte lipid metabolism, inducing thermogenesis and promoting a brown remodelling in adipocyte. Taken together, our findings suggest that silibinin increases UCPs expression by stimulation of SIRT1, PPARα and Pgc-1α, improved metabolic parameters, decreased lipid mass leading to the formation of functional adipocytes.

  7. Transgelin is a TGFβ-inducible gene that regulates osteoblastic and adipogenic differentiation of human skeletal stem cells through actin cytoskeleston organization

    DEFF Research Database (Denmark)

    Elsafadi, E; Manikandan, M; Dawud, R. A.

    2016-01-01

    in cellular and nuclear morphology and cytoplasmic organelle composition as demonstrated by high content imaging and transmission electron microscopy that revealed pronounced alterations in the distribution of the actin filament and changes in cytoskeletal organization. Molecular signature of TAGLN......MSC by regulating cytoskeleton organization. Targeting TAGLN is a plausible approach to enrich for committed hMSC cells needed for regenerative medicine application....

  8. Early and late trisporoids differentially regulate β-carotene production and gene transcript Levels in the mucoralean fungi Blakeslea trispora and Mucor mucedo.

    Science.gov (United States)

    Sahadevan, Yamuna; Richter-Fecken, Mareike; Kaerger, Kerstin; Voigt, Kerstin; Boland, Wilhelm

    2013-12-01

    The multistep cleavage of carotenoids in Mucorales during the sexual phase results in a cocktail of trisporic acid (C18) sex pheromones. We hypothesized that the C18 trisporoid intermediates have a specific regulatory function for sex pheromone production and carotenogenesis that varies with genus/species and vegetative and sexual phases of their life cycles. Real-time quantitative PCR kinetics determined for Blakeslea trispora displayed a very high transcript turnover in the gene for carotenoid cleavage dioxygenase, tsp3, during the sexual phase. An in vivo enzyme assay and chromatographic analysis led to the identification of β-apo-12'-carotenal as the first apocarotenoid involved in trisporic acid biosynthesis in B. trispora. Supplementation of C18 trisporoids, namely D'orenone, methyl trisporate C, and trisporin C, increased tsp3 transcripts in the plus compared to minus partners. Interestingly, the tsp1 gene, which is involved in trisporic acid biosynthesis, was downregulated compared to tsp3 irrespective of asexual or sexual phase. Only the minus partners of both B. trispora and Mucor mucedo had enhanced β-carotene production after treatment with C20 apocarotenoids, 15 different trisporoids, and their analogues. We conclude that the apocarotenoids and trisporoids influence gene transcription and metabolite production, depending upon the fungal strain, corresponding genus, and developmental phase, representing a "chemical dialect" during sexual communication.

  9. RGMa regulates cortical interneuron migration and differentiation.

    Directory of Open Access Journals (Sweden)

    Conor O'Leary

    Full Text Available The etiology of neuropsychiatric disorders, including schizophrenia and autism, has been linked to a failure to establish the intricate neural network comprising excitatory pyramidal and inhibitory interneurons during neocortex development. A large proportion of cortical inhibitory interneurons originate in the medial ganglionic eminence (MGE of the ventral telencephalon and then migrate through the ventral subventricular zone, across the corticostriatal junction, into the embryonic cortex. Successful navigation of newborn interneurons through the complex environment of the ventral telencephalon is governed by spatiotemporally restricted deployment of both chemorepulsive and chemoattractive guidance cues which work in concert to create a migratory corridor. Despite the expanding list of interneuron guidance cues, cues responsible for preventing interneurons from re-entering the ventricular zone of the ganglionic eminences have not been well characterized. Here we provide evidence that the chemorepulsive axon guidance cue, RGMa (Repulsive Guidance Molecule a, may fulfill this function. The ventricular zone restricted expression of RGMa in the ganglionic eminences and the presence of its receptor, Neogenin, in the ventricular zone and on newborn and maturing MGE-derived interneurons implicates RGMa-Neogenin interactions in interneuron differentiation and migration. Using an in vitro approach, we show that RGMa promotes interneuron differentiation by potentiating neurite outgrowth. In addition, using in vitro explant and migration assays, we provide evidence that RGMa is a repulsive guidance cue for newborn interneurons migrating out of the ganglionic eminence ventricular zone. Intriguingly, the alternative Neogenin ligand, Netrin-1, had no effect on migration. However, we observed complete abrogation of RGMa-induced chemorepulsion when newborn interneurons were simultaneously exposed to RGMa and Netrin-1 gradients, suggesting a novel mechanism for

  10. Regulation of mammalian cell differentiation by long non-coding RNAs.

    Science.gov (United States)

    Hu, Wenqian; Alvarez-Dominguez, Juan R; Lodish, Harvey F

    2012-11-06

    Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development.

  11. Macrophage colony-stimulating factor gene transduction into human lung cancer cells differentially regulates metastasis formations in various organ microenvironments of natural killer cell-depleted SCID mice.

    Science.gov (United States)

    Yano, S; Nishioka, Y; Nokihara, H; Sone, S

    1997-02-15

    We investigated whether local production of macrophage colony-stimulating factor (M-CSF), responsible for migration and activation of monocytes/macrophages at a tumor growth site, affected the metastatic pattern of lung cancer. For this, highly metastatic human squamous (RERF-LC-AI) or small (H69/VP) cell lung carcinoma cells were transduced with the human M-CSF gene inserted into pRc/CMV-MCSF to establish M-CSF-producing clones (MCSF-AI-9-18, MCSF-AI-9-24, and MCSF-VP-5). M-CSF gene transduction had no effect on the expression of surface antigen or on in vitro proliferation. After s.c. injection into SCID mice, the growth rates of M-CSF-producing cells were slower than those of parent or mock-transduced cells. In the metastatic model in SCID mice depleted of natural killer cells, RERF-LC-AI cells formed metastases mainly in the liver and kidneys, whereas H69/VP cells metastasized mainly to the liver and systemic lymph nodes. The numbers of metastatic colonies of MCSF-AI-9-18 and MCSF-AI-9-24 cells in the liver but not the kidneys were significantly reduced. The development of lymph node metastases of MCSF-VP-5 cells was also less than that of parent or mock-transduced cells. Treatment of SCID mice with anti-human M-CSF antibody resulted in a significant increase in liver metastases of their M-CSF gene transfectants. No significant differences were observed in the distributions in mice or in the in vitro invasive potentials of MCSF-AI-9-18 cells and Neo-AI-3 cells. These findings indicate that the antimetastatic effect of M-CSF may be specific to particular organs, suggesting the influence of heterogeneity of organ microenvironments on the metastasis of lung cancer.

  12. Chronic moderate ethanol intake differentially regulates vitamin D hydroxylases gene expression in kidneys and xenografted breast cancer cells in female mice.

    Science.gov (United States)

    García-Quiroz, Janice; García-Becerra, Rocío; Lara-Sotelo, Galia; Avila, Euclides; López, Sofía; Santos-Martínez, Nancy; Halhali, Ali; Ordaz-Rosado, David; Barrera, David; Olmos-Ortiz, Andrea; Ibarra-Sánchez, María J; Esparza-López, José; Larrea, Fernando; Díaz, Lorenza

    2017-10-01

    Factors affecting vitamin D metabolism may preclude anti-carcinogenic effects of its active metabolite calcitriol. Chronic ethanol consumption is an etiological factor for breast cancer that affects vitamin D metabolism; however, the mechanisms underlying this causal association have not been fully clarified. Using a murine model, we examined the effects of chronic moderate ethanol intake on tumoral and renal CYP27B1 and CYP24A1 gene expression, the enzymes involved in calcitriol synthesis and inactivation, respectively. Ethanol (5% w/v) was administered to 25-hydroxyvitamin D3-treated or control mice during one month. Afterwards, human breast cancer cells were xenografted and treatments continued another month. Ethanol intake decreased renal Cyp27b1 while increased tumoral CYP24A1 gene expression.Treatment with 25-hydroxyvitamin D3 significantly stimulated CYP27B1 in tumors of non-alcohol-drinking mice, while increased both renal and tumoral CYP24A1. Coadministration of ethanol and 25-hydroxyvitamin D3 reduced in 60% renal 25-hydroxyvitamin D3-dependent Cyp24a1 upregulation (P<0.05). We found 5 folds higher basal Cyp27b1 than Cyp24a1 gene expression in kidneys, whereas this relation was inverted in tumors, showing 5 folds more CYP24A1 than CYP27B1. Tumor expression of the calcitriol target cathelicidin increased only in 25-hydroxyvitamin D3-treated non-ethanol drinking animals (P<0.05). Mean final body weight was higher in 25-hydroxyvitamin D3 treated groups (P<0.001). Overall, these results suggest that moderate ethanol intake decreases renal and tumoral 25-hydroxyvitamin D3 bioconversion into calcitriol, while favors degradation of both vitamin D metabolites in breast cancer cells. The latter may partially explain why alcohol consumption is associated with vitamin D deficiency and increased breast cancer risk and progression. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Gravity-regulated gene expression in Arabidopsis thaliana

    Science.gov (United States)

    Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa

    Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.

  14. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-{alpha}

    Energy Technology Data Exchange (ETDEWEB)

    Tsukasaki, Masayuki [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Yamada, Atsushi, E-mail: yamadaa@dent.showa-u.ac.jp [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Suzuki, Dai [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Aizawa, Ryo [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyazono, Agasa [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan); Morimura, Naoko [Laboratory for Comparative Neurogenesis, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Yamamoto, Matsuo [Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta, Tokyo 145-8515 (Japan); Kamijo, Ryutaro [Department of Biochemistry, School of Dentistry, Showa University, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555 (Japan)

    2011-07-15

    Highlights: {yields} TNF-{alpha} inhibits POEM gene expression. {yields} Inhibition of POEM gene expression is caused by NF-{kappa}B activation by TNF-{alpha}. {yields} Over-expression of POEM recovers inhibition of osteoblast differentiation by TNF-{alpha}. -- Abstract: POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-{alpha} (TNF-{alpha}), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-{alpha}-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-{kappa}B) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-{alpha} in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-{alpha}-induced inhibition of osteoblast differentiation. These results suggest that TNF-{alpha} inhibits POEM expression through the NF-{kappa}B signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-{alpha}.

  15. Differential Regulation of NF-κB-Mediated Proviral and Antiviral Host Gene Expression by Primate Lentiviral Nef and Vpu Proteins

    Directory of Open Access Journals (Sweden)

    Daniel Sauter

    2015-02-01

    Full Text Available NF-κB is essential for effective transcription of primate lentiviral genomes and also activates antiviral host genes. Here, we show that the early protein Nef of most primate lentiviruses enhances NF-κB activation. In contrast, the late protein Vpu of HIV-1 and its simian precursors inhibits activation of NF-κB, even in the presence of Nef. Although this effect of Vpu did not correlate with its ability to interact with β-TrCP, it involved the stabilization of IκB and reduced nuclear translocation of p65. Interestingly, however, Vpu did not affect casein kinase II-mediated phosphorylation of p65. Lack of Vpu was associated with increased NF-κB activation and induction of interferon and interferon-stimulated genes (ISGs in HIV-1-infected T cells. Thus, HIV-1 and its simian precursors employ Nef to boost NF-κB activation early during the viral life cycle to initiate proviral transcription, while Vpu is used to downmodulate NF-κB-dependent expression of ISGs at later stages.

  16. Differential regulation of Salmonella typhimurium genes involved in O-antigen capsule production and their role in persistence within tomato fruit.

    Science.gov (United States)

    Marvasi, Massimiliano; Cox, Clayton E; Xu, Yimin; Noel, Jason T; Giovannoni, James J; Teplitski, Max

    2013-07-01

    Enteric pathogens, including non-typhoidal Salmonella spp. and enterovirulent Escherichia coli, are capable of persisting and multiplying within plants. Yet, little is still known about the mechanisms of these interactions. This study identified the Salmonella yihT gene (involved in synthesis of the O-antigen capsule) as contributing to persistence in immature tomato fruit. Deletion of yihT reduced competitive fitness of S. enterica sv. Typhimurium in green (but not ripe, regardless of color) tomato fruit by approximately 3 logs. The yihT recombinase-based in vivo expression technology (RIVET) reporter was strongly activated in unripe tomato fruit, and fitness of the mutant inversely correlated with the level of the yihT gene expression. Expression of yihT in mature tomato fruit was low, and yihT did not affect competitive fitness within mature fruit. To better understand the molecular basis of the phenotype, behaviors of the yihT RIVET reporter and the yihT mutant were tested in tomato fruit defective in ethylene signaling. These experiments suggest a role for functional ethylene-mediated signaling in the persistence of Salmonella spp. within tomato fruit. Furthermore, jasmonic acid and its precursors strongly reduced expression of yihT.

  17. Fat accumulation in differentiated brown adipocytes is linked with expression of Hox genes.

    Science.gov (United States)

    Singh, Smita; Rajput, Yudhishthir S; Barui, Amit K; Sharma, Rajan; Datta, Tirtha K

    2016-03-01

    Homeobox (Hox) genes are involved in body plan of embryo along the anterior-posterior axis. Presence of several Hox genes in white adipose tissue (WAT) and brown adipose tissue (BAT) is indicative of involvement of Hox genes in adipogenesis. We propose that differentiation inducing agents viz. isobutyl-methyl-xanthine (IBMX), indomethacin, dexamethasone (DEX), triiodothyronine (T3) and insulin may regulate differentiation in brown adipose tissue through Hox genes. In vitro culture of brown fat stromalvascular fraction (SVF) in presence or absence of differentiation inducing agents was used for establishing relationship between fat accumulation in differentiated adipocytes and expression of Hox genes. Relative expression of Pref1, UCP1 and Hox genes was determined in different stages of adipogenesis. Presence or absence of IBMX, indomethacin and DEX during differentiation of proliferated pre-adipocytes resulted in marked differences in expression of Hox genes and lipid accumulation. In presence of these inducing agents, lipid accumulation as well as expression of HoxA1, HoxA5, HoxC4 &HoxC8 markedly enhanced. Irrespective of presence or absence of T3, insulin down regulates HoxA10. T3 results in over expression of HoxA5, HoxC4 and HoxC8 genes, whereas insulin up regulates expression of only HoxC8. Findings suggest that accumulation of fat in differentiated adipocytes is linked with expression of Hox genes.

  18. Identification of differentially expressed genes in human uterine leiomy omas using differential display

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In searching of differentially expressed genes in human uterine leiomyomas, differential display was used with twelve pairs of primers to compare human uterine leiomyomas with matched myometrium. False positives were eliminated by reverse Northern analysis. Positives were confirmed by Northern blot analysis.RESULTS: [1] Four of 69 cDNA fragments (3 up-regulated named L1, L2 and L3 and 1 down-regulated named M1 in leiomyoma) were confirmed by Northern analysis. [2] Sequence comparison and Northern analysis proved that L1 is exactly the human ribosomal protein S19. [3] It was present ubiquitously in 13tissues tested but in various levels and even in different size. [4] L1 was highly expressed in parotidean cystadenocarcinoma, pancreatic cancer and breast cancer examined. [5] No mutations have been found in human uterine leiomyomas (n=6). CONCLUSIONS: hRPS19 overexpression might be a universal signal in rapid cell growth tissues.

  19. Differential expression and regulation of vitamin D hydroxylases and inflammatory genes in prostate stroma and epithelium by 1,25-dihydroxyvitamin D in men with prostate cancer and an in vitro model.

    Science.gov (United States)

    Giangreco, Angeline A; Dambal, Shweta; Wagner, Dennis; Van der Kwast, Theodorus; Vieth, Reinhold; Prins, Gail S; Nonn, Larisa

    2015-04-01

    Previous work on vitamin D in the prostate has focused on the prostatic epithelium, from which prostate cancer arises. Prostatic epithelial cells are surrounded by stroma, which has well-established regulatory control over epithelial proliferation, differentiation, and the inflammatory response. Here we examined the regulation of vitamin D-related genes and inflammatory genes by 1α,25-dihydroxyvitamin D3 (1,25(OH)2D) in laser-capture microdissected prostate tissue from a vitamin D3 clinical trial and in an in vitro model that facilitates stromal-epithelial crosstalk. Analysis of the trial tissues showed that VDR was present in both cell types, whereas expression of the hydroxylases was the highest in the epithelium. Examination of gene expression by prostatic (1,25(OH)2D) concentrations showed that VDR was significantly lower in prostate tissues with the highest concentration of 1,25(OH)2D, and down-regulation of VDR by 1,25(OH) 2D was confirmed in the primary cell cultures. Analysis of inflammatory genes in the patient tissues revealed that IL-6 expression was the highest in the prostate stroma while PTGS2 (COX2) levels were lowest in the prostate cancer tissues from men in the highest tertile of prostatic 1,25(OH)2D. In vitro, TNF-α, IL-6 and IL-8 were suppressed by 1,25 (OH)2D in the primary epithelial cells, whereas TNF-α and PTGS2 were suppressed by 1,25(OH) 2D in the stromal cells. Importantly, the ability of 1,25(OH)2D to alter pro-inflammatory-induced changes in epithelial cell growth were dependent on the presence of the stromal cells. In summary, whereas both stromal and epithelial cells of the prostate express VDR and can presumably respond to 1,25(OH)2D, the prostatic epithelium appears to be the main producer of 1,25(OH)2D. Further, while the prostate epithelium was more responsive to the anti-inflammatory activity of 1,25 (OH)2D than stromal cells, stroma-epithelial crosstalk enhanced the phenotypic effects of 1,25(OH)2D and the inflammatory

  20. INTERFEROME: the database of interferon regulated genes

    OpenAIRE

    Samarajiwa, Shamith A.; Forster, Sam; Auchettl, Katie; Hertzog, Paul J.

    2008-01-01

    INTERFEROME is an open access database of types I, II and III Interferon regulated genes (http://www.interferome.org) collected from analysing expression data sets of cells treated with IFNs. This database of interferon regulated genes integrates information from high-throughput experiments with annotation, ontology, orthologue sequences from 37 species, tissue expression patterns and gene regulatory information to enable a detailed investigation of the molecular mechanisms underlying IFN bio...

  1. miR-381 Regulates Neural Stem Cell Proliferation and Differentiation via Regulating Hes1 Expression.

    Directory of Open Access Journals (Sweden)

    Xiaodong Shi

    Full Text Available Neural stem cells are self-renewing, multipotent and undifferentiated precursors that retain the capacity for differentiation into both glial (astrocytes and oligodendrocytes and neuronal lineages. Neural stem cells offer cell-based therapies for neurological disorders such as Alzheimer's disease, Parkinson's disease, Huntington's disease and spinal cord injuries. However, their cellular behavior is poorly understood. MicroRNAs (miRNAs are a class of small noncoding RNAs involved in cell development, proliferation and differentiation through regulating gene expression at post-transcriptional level. The role of miR-381 in the development of neural stem cells remains unknown. In this study, we showed that overexpression of miR-381 promoted neural stem cells proliferation. It induced the neural stem cells differentiation to neurons and inhibited their differentiation to astrocytes. Furthermore, we identified HES1 as a direct target of miR-381 in neural stem cells. Moreover, re-expression of HES1 impaired miR-381-induced promotion of neural stem cells proliferation and induce neural stem cells differentiation to neurons. In conclusion, miR-381 played important role in neural stem cells proliferation and differentiation.

  2. Cloning and characterisation of a putative pollen-specific polygalacturonase gene (CpPG1) differentially regulated during pollen development in zucchini (Cucurbita pepo L.).

    Science.gov (United States)

    Carvajal, F; Garrido, D; Jamilena, M; Rosales, R

    2014-03-01

    Studies in zucchini (Cucurbita pepo L. spp. pepo) pollen have been limited to the viability and morphology of the mature pollen grain. The enzyme polygalacturonase (PG) is involved in pollen development and pollination in many species. In this work, we study anther and pollen development of C. pepo and present the cloning and characterisation of a putative PG CpPG1 (Accession no. HQ232488) from pollen cDNA in C. pepo. The predicted protein for CpPG1 has 416 amino acids, with a high homology to other pollen PGs, such as P22 from Oenothera organensis (76%) and PGA3 from Arabidopsis thaliana (73%). CpPG1 belongs to clade C, which comprises PGs expressed in pollen, and presents a 34 amino acid signal peptide for secretion towards the cell wall. DNA-blot analysis revealed that there are at least another two genes that code for PGs in C. pepo. The spatial and temporal accumulation of CpPG1 was studied by semi-quantitative- and qRT-PCR. In addition, mRNA was detected only in anthers, pollen and the rudimentary anthers of bisexual flowers (only present in some zucchini cultivars under certain environmental conditions that trigger anther development in the third whorl of female flowers). However, no expression was detected in cotyledons, stem or fruit. Furthermore, CpPG1 mRNA was accumulated throughout anther development, with the highest expression found in mature pollen. Similarly, exo-PG activity increased from immature anther stages to mature anthers and mature pollen. Overall, these data support the pollen specificity of this gene and suggest an involvement of CpPG1 in pollen development in C. pepo.

  3. Overexpression and Suppression of Artemisia annua 4-Hydroxy-3-Methylbut-2-enyl Diphosphate Reductase 1 Gene (AaHDR1) Differentially Regulate Artemisinin and Terpenoid Biosynthesis

    Science.gov (United States)

    Ma, Dongming; Li, Gui; Zhu, Yue; Xie, De-Yu

    2017-01-01

    4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) catalyzes the last step of the 2-C-methyl-D-erythritol 4- phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl diphosphate (DMAPP). To date, little is known regarding effects of an increase or a decrease of a HDR expression on terpenoid and other metabolite profiles in plants. In our study, an Artemisia annua HDR cDNA (namely AaHDR1) was cloned from leaves. Expression profiling showed that it was highly expressed in leaves, roots, stems, and flowers with different levels. Green florescence protein fusion and confocal microscope analyses showed that AaHDR1 was localized in chloroplasts. The overexpression of AaHDR1 increased contents of artemisinin, arteannuin B and other sesquiterpenes, and multiple monoterpenes. By contrast, the suppression of AaHDR1 by anti-sense led to opposite results. In addition, an untargeted metabolic profiling showed that the overexpression and suppression altered non-polar metabolite profiles. In conclusion, the overexpression and suppression of AaHDR1 protein level in plastids differentially affect artemisinin and other terpenoid biosynthesis, and alter non-polar metabolite profiles of A. annua. Particularly, its overexpression leading to the increase of artemisinin production is informative to future metabolic engineering of this antimalarial medicine. PMID:28197158

  4. Social Regulation of Gene Expression in Threespine Sticklebacks.

    Directory of Open Access Journals (Sweden)

    Anna K Greenwood

    Full Text Available Identifying genes that are differentially expressed in response to social interactions is informative for understanding the molecular basis of social behavior. To address this question, we described changes in gene expression as a result of differences in the extent of social interactions. We housed threespine stickleback (Gasterosteus aculeatus females in either group conditions or individually for one week, then measured levels of gene expression in three brain regions using RNA-sequencing. We found that numerous genes in the hindbrain/cerebellum had altered expression in response to group or individual housing. However, relatively few genes were differentially expressed in either the diencephalon or telencephalon. The list of genes upregulated in fish from social groups included many genes related to neural development and cell adhesion as well as genes with functions in sensory signaling, stress, and social and reproductive behavior. The list of genes expressed at higher levels in individually-housed fish included several genes previously identified as regulated by social interactions in other animals. The identified genes are interesting targets for future research on the molecular mechanisms of normal social interactions.

  5. Identification of genes differentially expressed during ripening of banana.

    Science.gov (United States)

    Manrique-Trujillo, Sandra Mabel; Ramírez-López, Ana Cecilia; Ibarra-Laclette, Enrique; Gómez-Lim, Miguel Angel

    2007-08-01

    The banana (Musa acuminata, subgroup Cavendish 'Grand Nain') is a climacteric fruit of economic importance. A better understanding of the banana ripening process is needed to improve fruit quality and to extend shelf life. Eighty-four up-regulated unigenes were identified by differential screening of a banana fruit cDNA subtraction library at a late ripening stage. The ripening stages in this study were defined according to the peel color index (PCI). Unigene sequences were analyzed with different databases to assign a putative identification. The expression patterns of 36 transcripts confirmed as positive by differential screening were analyzed comparing the PCI 1, PCI 5 and PCI 7 ripening stages. Expression profiles were obtained for unigenes annotated as orcinol O-methyltransferase, putative alcohol dehydrogenase, ubiquitin-protein ligase, chorismate mutase and two unigenes with non-significant matches with any reported sequence. Similar expression profiles were observed in banana pulp and peel. Our results show differential expression of a group of genes involved in processes associated with fruit ripening, such as stress, detoxification, cytoskeleton and biosynthesis of volatile compounds. Some of the identified genes had not been characterized in banana fruit. Besides providing an overview of gene expression programs and metabolic pathways at late stages of banana fruit ripening, this study contributes to increasing the information available on banana fruit ESTs.

  6. Characterization and functional analysis of eugenol O-methyltransferase gene reveal metabolite shifts, chemotype specific differential expression and developmental regulation in Ocimum tenuiflorum L.

    Science.gov (United States)

    Renu, Indu Kumari; Haque, Inamul; Kumar, Manish; Poddar, Raju; Bandopadhyay, Rajib; Rai, Amit; Mukhopadhyay, Kunal

    2014-03-01

    Eugenol-O-methyltransferase (EOMT) catalyzes the conversion of eugenol to methyleugenol in one of the final steps of phenylpropanoid pathway. There are no comprehensive reports on comparative EOMT gene expression and developmental stage specific accumulation of phenylpropenes in Ocimum tenuiflorum. Seven chemotypes, rich in eugenol and methyleugenol, were selected by assessment of volatile metabolites through multivariate data analysis. Isoeugenol accumulated in higher levels during juvenile stage (36.86 ng g(-1)), but reduced sharply during preflowering (8.04 ng g(-1)), flowering (2.29 ng g(-1)) and postflowering stages (0.17 ng g(-1)), whereas methyleugenol content gradually increased from juvenile (12.25 ng g(-1)) up to preflowering (16.35 ng g(-1)) and then decreased at flowering (7.13 ng g(-1)) and post flowering (5.95 ng g(-1)) from fresh tissue. Extreme variations of free intracellular and alkali hydrolysable cell wall released phenylpropanoid compounds were observed at different developmental stages. Analyses of EOMT genomic and cDNA sequences revealed a 843 bp open reading frame and the presence of a 90 bp intron. The translated proteins had eight catalytic domains, the major two being dimerisation superfamily and methyltransferase_2 superfamily. A validated 3D structure of EOMT protein was also determined. The chemotype Ot7 had a reduced reading frame that lacked both dimerisation domains and one of the two protein-kinase-phosphorylation sites; this was also reflected in reduced accumulation of methyleugenol compared to other chemotypes. EOMT transcripts showed enhanced expression in juvenile stage that increased further during preflowering but decreased at flowering and further at postflowering. The expression patterns may possibly be compared and correlated to the amounts of eugenol/isoeugenol and methyleugenol in different developmental stages of all chemotypes.

  7. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    panel of breast cancer cell lines. Subnetwork enrichment of these genes has identifed 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.

  8. Prediction of epigenetically regulated genes in breast cancer cell lines

    Directory of Open Access Journals (Sweden)

    Lu Yontao

    2010-06-01

    methylation profles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identifed 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Conclusions Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.

  9. Ubx Regulates Differential Enlargement and Diversification of Insect Hind Legs

    Science.gov (United States)

    Mahfooz, Najmus; Turchyn, Nataliya; Mihajlovic, Michelle; Hrycaj, Steven; Popadić, Aleksandar

    2007-01-01

    Differential enlargement of hind (T3) legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s) responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug) and Acheta domesticus (house cricket). In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx) is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs. PMID:17848997

  10. Ubx regulates differential enlargement and diversification of insect hind legs.

    Directory of Open Access Journals (Sweden)

    Najmus Mahfooz

    Full Text Available Differential enlargement of hind (T3 legs represents one of the hallmarks of insect evolution. However, the actual mechanism(s responsible are yet to be determined. To address this issue, we have now studied the molecular basis of T3 leg enlargement in Oncopeltus fasciatus (milkweed bug and Acheta domesticus (house cricket. In Oncopeltus, the T3 tibia displays a moderate increase in size, whereas in Acheta, the T3 femur, tibia, and tarsus are all greatly enlarged. Here, we show that the hox gene Ultrabithorax (Ubx is expressed in the enlarged segments of hind legs. Furthermore, we demonstrate that depletion of Ubx during embryogenesis has a primary effect in T3 legs and causes shortening of leg segments that are enlarged in a wild type. This result shows that Ubx is regulating the differential growth and enlargement of T3 legs in both Oncopeltus and Acheta. The emerging view suggests that Ubx was co-opted for a novel role in regulating leg growth and that the transcriptional modification of its expression may be a universal mechanism for the evolutionary diversification of insect hind legs.

  11. Epigenetic regulation of transposable element derived human gene promoters.

    Science.gov (United States)

    Huda, Ahsan; Bowen, Nathan J; Conley, Andrew B; Jordan, I King

    2011-04-01

    It was previously thought that epigenetic histone modifications of mammalian transposable elements (TEs) serve primarily to defend the genome against deleterious effects associated with their activity. However, we recently showed that, genome-wide, human TEs can also be epigenetically modified in a manner consistent with their ability to regulate host genes. Here, we explore the ability of TE sequences to epigenetically regulate individual human genes by focusing on the histone modifications of promoter sequences derived from TEs. We found 1520 human genes that initiate transcription from within TE-derived promoter sequences. We evaluated the distributions of eight histone modifications across these TE-promoters, within and between the GM12878 and K562 cell lines, and related their modification status with the cell-type specific expression patterns of the genes that they regulate. TE-derived promoters are significantly enriched for active histone modifications, and depleted for repressive modifications, relative to the genomic background. Active histone modifications of TE-promoters peak at transcription start sites and are positively correlated with increasing expression within cell lines. Furthermore, differential modification of TE-derived promoters between cell lines is significantly correlated with differential gene expression. LTR-retrotransposon derived promoters in particular play a prominent role in mediating cell-type specific gene regulation, and a number of these LTR-promoter genes are implicated in lineage-specific cellular functions. The regulation of human genes mediated by histone modifications targeted to TE-derived promoters is consistent with the ability of TEs to contribute to the epigenomic landscape in a way that provides functional utility to the host genome.

  12. Characterization of differentially expressed genes involved in pathways associated with gastric cancer.

    Directory of Open Access Journals (Sweden)

    Hao Li

    Full Text Available To explore the patterns of gene expression in gastric cancer, a total of 26 paired gastric cancer and noncancerous tissues from patients were enrolled for gene expression microarray analyses. Limma methods were applied to analyze the data, and genes were considered to be significantly differentially expressed if the False Discovery Rate (FDR value was 2. Subsequently, Gene Ontology (GO categories were used to analyze the main functions of the differentially expressed genes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG database, we found pathways significantly associated with the differential genes. Gene-Act network and co-expression network were built respectively based on the relationships among the genes, proteins and compounds in the database. 2371 mRNAs and 350 lncRNAs considered as significantly differentially expressed genes were selected for the further analysis. The GO categories, pathway analyses and the Gene-Act network showed a consistent result that up-regulated genes were responsible for tumorigenesis, migration, angiogenesis and microenvironment formation, while down-regulated genes were involved in metabolism. These results of this study provide some novel findings on coding RNAs, lncRNAs, pathways and the co-expression network in gastric cancer which will be useful to guide further investigation and target therapy for this disease.

  13. Differential and correlation analyses of microarray gene expression data in the CEPH Utah families

    DEFF Research Database (Denmark)

    Tan, Qihua; Zhao, Jinghua; Li, Shuxia;

    2008-01-01

    The widespread microarray technology capable of analyzing global gene expression at the level of transcription is expanding its application not only in medicine but also in studies on basic biology. This paper presents our analysis on microarray gene expression data in the CEPH Utah families...... focusing on the demographic characteristics such as age and sex on differential gene expression patterns. Our results show that the differential gene expression pattern between age groups is dominated by down-regulated transcriptional activities in the old subjects. Functional analysis on age......-regulated genes identifies cell-cell signaling as an important functional category implicated in human aging. Sex-dependent gene expression is characterized by genes that may escape X-inactivation and, most interestingly, such a pattern is not affected by the aging process. Analysis on sibship correlation on gene...

  14. Sex Differences in Drosophila Somatic Gene Expression: Variation and Regulation by doublesex

    Directory of Open Access Journals (Sweden)

    Michelle N. Arbeitman

    2016-07-01

    Full Text Available Sex differences in gene expression have been widely studied in Drosophila melanogaster. Sex differences vary across strains, but many molecular studies focus on only a single strain, or on genes that show sexually dimorphic expression in many strains. How extensive variability is and whether this variability occurs among genes regulated by sex determination hierarchy terminal transcription factors is unknown. To address these questions, we examine differences in sexually dimorphic gene expression between two strains in Drosophila adult head tissues. We also examine gene expression in doublesex (dsx mutant strains to determine which sex-differentially expressed genes are regulated by DSX, and the mode by which DSX regulates expression. We find substantial variation in sex-differential expression. The sets of genes with sexually dimorphic expression in each strain show little overlap. The prevalence of different DSX regulatory modes also varies between the two strains. Neither the patterns of DSX DNA occupancy, nor mode of DSX regulation explain why some genes show consistent sex-differential expression across strains. We find that the genes identified as regulated by DSX in this study are enriched with known sites of DSX DNA occupancy. Finally, we find that sex-differentially expressed genes and genes regulated by DSX are highly enriched on the fourth chromosome. These results provide insights into a more complete pool of potential DSX targets, as well as revealing the molecular flexibility of DSX regulation.

  15. INTERFEROME: the database of interferon regulated genes.

    Science.gov (United States)

    Samarajiwa, Shamith A; Forster, Sam; Auchettl, Katie; Hertzog, Paul J

    2009-01-01

    INTERFEROME is an open access database of types I, II and III Interferon regulated genes (http://www.interferome.org) collected from analysing expression data sets of cells treated with IFNs. This database of interferon regulated genes integrates information from high-throughput experiments with annotation, ontology, orthologue sequences from 37 species, tissue expression patterns and gene regulatory information to enable a detailed investigation of the molecular mechanisms underlying IFN biology. INTERFEROME fulfils a need in infection, immunity, development and cancer research by providing computational tools to assist in identifying interferon signatures in gene lists generated by high-throughput expression technologies, and their potential molecular and biological consequences.

  16. Identification of Human HK Genes and Gene Expression Regulation Study in Cancer from Transcriptomics Data Analysis

    Science.gov (United States)

    Zhang, Zhang; Liu, Jingxing; Wu, Jiayan; Yu, Jun

    2013-01-01

    The regulation of gene expression is essential for eukaryotes, as it drives the processes of cellular differentiation and morphogenesis, leading to the creation of different cell types in multicellular organisms. RNA-Sequencing (RNA-Seq) provides researchers with a powerful toolbox for characterization and quantification of transcriptome. Many different human tissue/cell transcriptome datasets coming from RNA-Seq technology are available on public data resource. The fundamental issue here is how to develop an effective analysis method to estimate expression pattern similarities between different tumor tissues and their corresponding normal tissues. We define the gene expression pattern from three directions: 1) expression breadth, which reflects gene expression on/off status, and mainly concerns ubiquitously expressed genes; 2) low/high or constant/variable expression genes, based on gene expression level and variation; and 3) the regulation of gene expression at the gene structure level. The cluster analysis indicates that gene expression pattern is higher related to physiological condition rather than tissue spatial distance. Two sets of human housekeeping (HK) genes are defined according to cell/tissue types, respectively. To characterize the gene expression pattern in gene expression level and variation, we firstly apply improved K-means algorithm and a gene expression variance model. We find that cancer-associated HK genes (a HK gene is specific in cancer group, while not in normal group) are expressed higher and more variable in cancer condition than in normal condition. Cancer-associated HK genes prefer to AT-rich genes, and they are enriched in cell cycle regulation related functions and constitute some cancer signatures. The expression of large genes is also avoided in cancer group. These studies will help us understand which cell type-specific patterns of gene expression differ among different cell types, and particularly for cancer. PMID:23382867

  17. Integration of the Transcription Factor-Regulated and Epigenetic Mechanisms in the Control of Keratinocyte Differentiation

    Science.gov (United States)

    Botchkarev, Vladimir A.

    2016-01-01

    The epidermal differentiation program is regulated at several levels including signaling pathways, lineage-specific transcription factors, and epigenetic regulators that establish well-coordinated process of terminal differentiation resulting in formation of the epidermal barrier. The epigenetic regulatory machinery operates at several levels including modulation of covalent DNA/histone modifications, as well as through higher-order chromatin remodeling to establish long-range topological interactions between the genes and their enhancer elements. Epigenetic regulators exhibit both activating and repressive effects on chromatin in keratinocytes (KCs): whereas some of them promote terminal differentiation, the others stimulate proliferation of progenitor cells, as well as inhibit premature activation of terminal differentiation-associated genes. Transcription factor-regulated and epigenetic mechanisms are highly connected, and the p63 transcription factor has an important role in the higher-order chromatin remodeling of the KC-specific gene loci via direct control of the genome organizer Satb1 and ATP-dependent chromatin remodeler Brg1. However, additional efforts are required to fully understand the complexity of interactions between distinct transcription factors and epigenetic regulators in the control of KC differentiation. Further understanding of these interactions and their alterations in different pathological skin conditions will help to progress toward the development of novel approaches for the treatment of skin disorders by targeting epigenetic regulators and modulating chromatin organization in KCs. PMID:26551942

  18. The function of a regulatory gene,scrX related to differentiation in Streptomyces coelicolor

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new gene, scrX from Streptomyces coelicolor was cloned and sequenced. It consists of 660 base pair, encoding a peptide of 220 amino acids. There are three rare codons in scrX which are AAA, AAA and ATA. scrX gene may be a typical differentiation regulator which was strictly controlled at translational level. The comparison of amino acids also revealed that ScrX belonged to Ic1R family which acted in transcriptional regulation of prokaryote. Studies on gene function by gene disruption and complementation indicated that scrX may play a positive regulation role in spore formation of Streptomyces coelicolor.

  19. Identifying disease feature genes based on cellular localized gene functional modules and regulation networks

    Institute of Scientific and Technical Information of China (English)

    ZHANG Min; ZHU Jing; GUO Zheng; LI Xia; YANG Da; WANG Lei; RAO Shaoqi

    2006-01-01

    Identifying disease-relevant genes and functional modules, based on gene expression profiles and gene functional knowledge, is of high importance for studying disease mechanisms and subtyping disease phenotypes. Using gene categories of biological process and cellular component in Gene Ontology, we propose an approach to selecting functional modules enriched with differentially expressed genes, and identifying the feature functional modules of high disease discriminating abilities. Using the differentially expressed genes in each feature module as the feature genes, we reveal the relevance of the modules to the studied diseases. Using three datasets for prostate cancer, gastric cancer, and leukemia, we have demonstrated that the proposed modular approach is of high power in identifying functionally integrated feature gene subsets that are highly relevant to the disease mechanisms. Our analysis has also shown that the critical disease-relevant genes might be better recognized from the gene regulation network, which is constructed using the characterized functional modules, giving important clues to the concerted mechanisms of the modules responding to complex disease states. In addition, the proposed approach to selecting the disease-relevant genes by jointly considering the gene functional knowledge suggests a new way for precisely classifying disease samples with clear biological interpretations, which is critical for the clinical diagnosis and the elucidation of the pathogenic basis of complex diseases.

  20. Profiling of differentially expressed genes in haemophilia A with inhibitor.

    Science.gov (United States)

    Hwang, S H; Lim, J A; Kim, M J; Kim, H C; Lee, H W; Yoo, K Y; You, C W; Lee, K S; Kim, H S

    2012-05-01

    Inhibitor development is the most significant complication in the therapy of haemophilia A (HA) patients. In spite of many studies, not much is known regarding the mechanism underlying inhibitor development. To understand the mechanism, we analysed profiles of differentially expressed genes (DEGs) between inhibitor and non-inhibitor HA via a microarray technique. Twenty unrelated Korean HAs were studied: 11 were non-inhibitor and nine were HA with inhibitor (≥5 BU mL(-1)). Microarray analysis was conducted using a Human Ref-8 expression Beadchip system (Illumina) and the data were analysed using Beadstudio software. We identified 545 DEGs in inhibitor HA as compared with the non-inhibitor patients; 384 genes were up-regulated and 161 genes were down-regulated. Among them, 75 genes whose expressions were altered by at least two-fold (>+2 or genes differed significantly in the two groups. For validation of the DEGs, semi-quantitative RT-PCR (semi-qRT-PCR) was conducted with the six selected DEGs. The results corresponded to the microarray data, with the exception of one gene. We also examined the expression of the genes associated with the antigen presentation process via real-time PCR. The average levels of IL10, CTLA4 and TNFα slightly reduced, whereas that of IFNγ increased in the inhibitor HA group. We are currently unable to explain whether this phenomenon is a function of the inhibitor-inducing factor or is an epiphenomenon of antibody production. Nevertheless, our results provide a possible explanation for inhibitor development. © 2011 Blackwell Publishing Ltd.

  1. SETD7 Regulates the Differentiation of Human Embryonic Stem Cells.

    Science.gov (United States)

    Castaño, Julio; Morera, Cristina; Sesé, Borja; Boue, Stephanie; Bonet-Costa, Carles; Martí, Merce; Roque, Alicia; Jordan, Albert; Barrero, Maria J

    2016-01-01

    The successful use of specialized cells in regenerative medicine requires an optimization in the differentiation protocols that are currently used. Understanding the molecular events that take place during the differentiation of human pluripotent cells is essential for the improvement of these protocols and the generation of high quality differentiated cells. In an effort to understand the molecular mechanisms that govern differentiation we identify the methyltransferase SETD7 as highly induced during the differentiation of human embryonic stem cells and differentially expressed between induced pluripotent cells and somatic cells. Knock-down of SETD7 causes differentiation defects in human embryonic stem cell including delay in both the silencing of pluripotency-related genes and the induction of differentiation genes. We show that SETD7 methylates linker histone H1 in vitro causing conformational changes in H1. These effects correlate with a decrease in the recruitment of H1 to the pluripotency genes OCT4 and NANOG during differentiation in the SETD7 knock down that might affect the proper silencing of these genes during differentiation.

  2. Differential subtraction display: a unified approach for isolation of cDNAs from differentially expressed genes.

    Science.gov (United States)

    Pardinas, J R; Combates, N J; Prouty, S M; Stenn, K S; Parimoo, S

    1998-03-15

    We have developed a novel efficient approach, termed differential subtraction display, for the identification of differentially expressed genes. Several critical parameters for the reproducibility and enhanced sensitivity of display, as well as steps to reduce the number of false positive cDNA species, have been defined. These include- (a) use of standardized oligo(dT)-primed cDNA pools rather than total RNA as the starting material for differential display, (b) critical role of optimal cDNA input for each distinct class of primers, (c) phenomena of primer dominance and interference, and (d) design of a novel set of enhanced specificity anchor primers. Introduction of an efficient subtractive hybridization step prior to cloning of cDNA species enriches the bona fide cDNA species that are either exclusively present in one sample (+/-) or show altered expression (up-/down-regulation) in RNA samples from two different tissues or cell types. This approach, in comparison to differential display, has several advantages in terms of reproducibility and enhanced sensitivity of display coupled to the cloning of enriched bona fide cDNA species corresponding to differentially expressed RNAs.

  3. FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription.

    Directory of Open Access Journals (Sweden)

    Nishal S Patel

    Full Text Available Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR signalling in Raldh2-/- embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that

  4. Feedback-Regulation of Strigolactone Biosynthetic Genes and Strigolactone-Regulated Genes in Arabidopsis

    National Research Council Canada - National Science Library

    MASHIGUCHI, Kiyoshi; SASAKI, Eriko; SHIMADA, Yukihisa; NAGAE, Miyu; UENO, Kotomi; NAKANO, Takeshi; YONEYAMA, Koichi; SUZUKI, Yoshihito; ASAMI, Tadao

    2009-01-01

    Strigolactones (SLs) have recently been found to regulate shoot branching, but the functions of SLs at other stages of development and the regulation of SL-related gene expression are mostly unknown in Arabidopsis...

  5. Differential Expression of Salinity Resistance Gene on Cotton

    Institute of Scientific and Technical Information of China (English)

    YE Wu-wei; YU Shu-xun

    2008-01-01

    @@ Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on the cotton production.The salinityresisted genes and their differential expression were studied under the stress of NaCI on cotton.There were found,under the NaCI stress,1644 genes differentially expressed from the salinity-sensitive cotton and only 817 genes differentially expressed from the salinityresisted cotton.

  6. Sp3 controls fibroblast growth factor receptor 4 gene activity during myogenic differentiation.

    Science.gov (United States)

    Cavanaugh, Eric; DiMario, Joseph X

    2017-03-27

    Fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling is a critical component in the regulation of myoblast proliferation and differentiation. The transient FGFR4 gene expression during the transition from proliferating myoblasts to differentiated myotubes indicates that FGFR4 regulates this critical phase of myogenesis. The Specificity Protein (SP) family of transcription factors controls FGFR family member gene activity. We sought to determine if members of the Sp family regulate mouse FGFR4 gene activity during myogenic differentiation. RT-PCR and western blot analysis of FGFR4 mRNA and protein revealed transient expression over 72h, with peak expression between 24 and 36h after addition of differentiation medium to C2C12 myogenic cultures. Sp3 also displayed a transient expression pattern with peak expression occurring after 6h of differentiation. We cloned a 1527bp fragment of the mouse FGFR4 promoter into a luciferase reporter. This FGFR4 promoter contains eight putative Sp binding sites and directed luciferase gene activity comparable to native FGFR4 expression. Overexpression of Sp1 and Sp3 showed that Sp1 repressed FGFR4 gene activity, and Sp3 activated FGFR4 gene activity during myogenic differentiation. Mutational analyses of multiple Sp binding sites within the FGFR4 promoter revealed that three of these sites were transcriptionally active. Electromobility shift assays and chromatin immunoprecipitation of the area containing the activator sites showed that Sp3 bound to this promoter location.

  7. Differential Gene Expression in Colon Tissue Associated With Diet, Lifestyle, and Related Oxidative Stress.

    Directory of Open Access Journals (Sweden)

    Martha L Slattery

    Full Text Available Several diet and lifestyle factors may impact health by influencing oxidative stress levels. We hypothesize that level of cigarette smoking, alcohol, anti-inflammatory drugs, and diet alter gene expression. We analyzed RNA-seq data from 144 colon cancer patients who had information on recent cigarette smoking, recent alcohol consumption, diet, and recent aspirin/non-steroidal anti-inflammatory use. Using a false discovery rate of 0.1, we evaluated gene differential expression between high and low levels of exposure using DESeq2. Ingenuity Pathway Analysis (IPA was used to determine networks associated with de-regulated genes in our data. We identified 46 deregulated genes associated with recent cigarette use; these genes enriched causal networks regulated by TEK and MAP2K3. Different differentially expressed genes were associated with type of alcohol intake; five genes were associated with total alcohol, six were associated with beer intake, six were associated with wine intake, and four were associated with liquor consumption. Recent use of aspirin and/or ibuprofen was associated with differential expression of TMC06, ST8SIA4, and STEAP3 while a summary oxidative balance score (OBS was associated with SYCP3, HDX, and NRG4 (all up-regulated with greater oxidative balance. Of the dietary antioxidants and carotenoids evaluated only intake of beta carotene (1 gene, Lutein/Zeaxanthine (5 genes, and Vitamin E (4 genes were associated with differential gene expression. There were similarities in biological function of de-regulated genes associated with various dietary and lifestyle factors. Our data support the hypothesis that diet and lifestyle factors associated with oxidative stress can alter gene expression. However genes altered were unique to type of alcohol and type of antioxidant. Because of potential differences in associations observed between platforms these findings need replication in other populations.

  8. T cell immunity as a tool for studying epigenetic regulation of cellular differentiation

    Directory of Open Access Journals (Sweden)

    Brendan Edward Russ

    2013-11-01

    Full Text Available Cellular differentiation is regulated by the strict spatial and temporal control of gene expression. This is achieved, in part, by regulating changes in histone post-translational modifications (PTMs and DNA methylation that in-turn, impact transcriptional activity. Further, histone PTMs and DNA methylation are often propagated faithfully at cell division (termed epigenetic propagation, and thus contribute to maintaining cellular identity in the absence of signals driving differentiation. Cardinal features of adaptive T cell immunity include the ability to differentiate in response to infection, resulting in acquisition of immune functions required for pathogen clearance; and the ability to maintain this functional capacity in the long-term, allowing more rapid and effective pathogen elimination following re-infection. These characteristics underpin vaccination strategies by effectively establishing a long-lived T cell population that contributes to an immunologically protective state (termed immunological memory. As we discuss in this review, epigenetic mechanisms provide attractive and powerful explanations for key aspects of T cell-mediated immunity - most obviously and notably, immunological memory, because of the capacity of epigenetic circuits to perpetuate cellular identities in the absence of the initial signals that drive differentiation. Indeed, T cell responses to infection are an ideal model system for studying how epigenetic factors shape cellular differentiation and development generally. This review will examine how epigenetic mechanisms regulate T cell function and differentiation, and how these model systems are providing general insights into the epigenetic regulation of gene transcription during cellular differentiation.

  9. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  10. Decorin gene expression and its regulation in human keratinocytes

    Energy Technology Data Exchange (ETDEWEB)

    Velez-DelValle, Cristina; Marsch-Moreno, Meytha; Castro-Munozledo, Federico [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico); Kuri-Harcuch, Walid, E-mail: walidkuri@gmail.com [Department of Cell Biology, Centro de Investigacion y de Estudios Avanzados del IPN, Apdo. Postal 14-740, Mexico D.F. 07000 (Mexico)

    2011-07-22

    Highlights: {yields} We showed that cultured human diploid epidermal keratinocytes express and synthesize decorin. {yields} Decorin is found intracytoplasmic in suprabasal cells of cultures and in human epidermis. {yields} Decorin mRNA expression in cHEK is regulated by pro-inflammatory and proliferative cytokines. {yields} Decorin immunostaining of psoriatic lesions showed a lower intensity and altered intracytoplasmic arrangements. -- Abstract: In various cell types, including cancer cells, decorin is involved in regulation of cell attachment, migration and proliferation. In skin, decorin is seen in dermis, but not in keratinocytes. We show that decorin gene (DCN) is expressed in the cultured keratinocytes, and the protein is found in the cytoplasm of differentiating keratinocytes and in suprabasal layers of human epidermis. RT-PCR experiments showed that DCN expression is regulated by pro-inflammatory and proliferative cytokines. Our data suggest that decorin should play a significant role in keratinocyte terminal differentiation, cutaneous homeostasis and dermatological diseases.

  11. Growth hormone regulation of rat liver gene expression assessed by SSH and microarray.

    Science.gov (United States)

    Gardmo, Cissi; Swerdlow, Harold; Mode, Agneta

    2002-04-25

    The sexually dimorphic secretion of growth hormone (GH) that prevails in the rat leads to a sex-differentiated expression of GH target genes, particularly in the liver. We have used subtractive suppressive hybridization (SSH) to search for new target genes induced by the female-characteristic, near continuous, pattern of GH secretion. Microarrays and dot-blot hybridizations were used in an attempt to confirm differential ratios of expression of obtained SSH clones. Out of 173 unique SSH clones, 41 could be verified as differentially expressed. Among these, we identified 17 known genes not previously recognized as differentially regulated by the sex-specific GH pattern. Additional SSH clones may also represent genes subjected to sex-specific GH regulation since only transcripts abundantly expressed could be verified. Optimized analyses, specific for each gene, are required to fully characterize the degree of differential expression.

  12. Global regulator SATB1 recruits beta-catenin and regulates T(H2 differentiation in Wnt-dependent manner.

    Directory of Open Access Journals (Sweden)

    Dimple Notani

    2010-01-01

    Full Text Available In vertebrates, the conserved Wnt signalling cascade promotes the stabilization and nuclear accumulation of beta-catenin, which then associates with the lymphoid enhancer factor/T cell factor proteins (LEF/TCFs to activate target genes. Wnt/beta -catenin signalling is essential for T cell development and differentiation. Here we show that special AT-rich binding protein 1 (SATB1, the T lineage-enriched chromatin organizer and global regulator, interacts with beta-catenin and recruits it to SATB1's genomic binding sites. Gene expression profiling revealed that the genes repressed by SATB1 are upregulated upon Wnt signalling. Competition between SATB1 and TCF affects the transcription of TCF-regulated genes upon beta-catenin signalling. GATA-3 is a T helper type 2 (T(H2 specific transcription factor that regulates production of T(H2 cytokines and functions as T(H2 lineage determinant. SATB1 positively regulated GATA-3 and siRNA-mediated knockdown of SATB1 downregulated GATA-3 expression in differentiating human CD4(+ T cells, suggesting that SATB1 influences T(H2 lineage commitment by reprogramming gene expression. In the presence of Dickkopf 1 (Dkk1, an inhibitor of Wnt signalling, GATA-3 is downregulated and the expression of signature T(H2 cytokines such as IL-4, IL-10, and IL-13 is reduced, indicating that Wnt signalling is essential for T(H2 differentiation. Knockdown of beta-catenin also produced similar results, confirming the role of Wnt/beta-catenin signalling in T(H2 differentiation. Furthermore, chromatin immunoprecipitation analysis revealed that SATB1 recruits beta-catenin and p300 acetyltransferase on GATA-3 promoter in differentiating T(H2 cells in a Wnt-dependent manner. SATB1 coordinates T(H2 lineage commitment by reprogramming gene expression. The SATB1:beta-catenin complex activates a number of SATB1 regulated genes, and hence this study has potential to find novel Wnt responsive genes. These results demonstrate that SATB1

  13. Regulation of germinal center B-cell differentiation.

    Science.gov (United States)

    Zhang, Yang; Garcia-Ibanez, Laura; Toellner, Kai-Michael

    2016-03-01

    Germinal centers (GC) are the main sites where antigen-activated B-cell clones expand and undergo immunoglobulin gene hypermutation and selection. Iterations of this process will lead to affinity maturation, replicating Darwinian evolution on the cellular level. GC B-cell selection can lead to four different outcomes: further expansion and evolution, apoptosis (non-selection), or output from the GC with differentiation into memory B cells or plasma cells. T-helper cells in GC have been shown to have a central role in regulating B-cell selection by sensing the density of major histocompatibility complex (MHC):peptide antigen complexes. Antigen is provided on follicular dendritic cells in the form of immune complex. Antibody on these immune complexes regulates antigen accessibility by shielding antigen from B-cell receptor access. Replacement of antibody on immune complexes by antibody generated from GC-derived plasma cell output will gradually reduce the availability of antigen. This antibody feedback can lead to a situation where a slow rise in selection stringency caused by a changing environment leads to directional evolution toward higher affinity antibody.

  14. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    Science.gov (United States)

    Roy, Priti; Kumar, Brijesh; Shende, Akhilesh; Singh, Anupama; Meena, Anil; Ghosal, Ritika; Ranganathan, Madhav; Bandyopadhyay, Amitabha

    2013-01-01

    Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus) embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  15. A genome-wide screen indicates correlation between differentiation and expression of metabolism related genes.

    Directory of Open Access Journals (Sweden)

    Priti Roy

    Full Text Available Differentiated tissues may be considered as materials with distinct properties. The differentiation program of a given tissue ensures that it acquires material properties commensurate with its function. It may be hypothesized that some of these properties are acquired through production of tissue-specific metabolites synthesized by metabolic enzymes. To establish correlation between metabolism and organogenesis we have carried out a genome-wide expression study of metabolism related genes by RNA in-situ hybridization. 23% of the metabolism related genes studied are expressed in a tissue-restricted but not tissue-exclusive manner. We have conducted the screen on whole mount chicken (Gallus gallus embryos from four distinct developmental stages to correlate dynamic changes in expression patterns of metabolic enzymes with spatio-temporally unique developmental events. Our data strongly suggests that unique combinations of metabolism related genes, and not specific metabolic pathways, are upregulated during differentiation. Further, expression of metabolism related genes in well established signaling centers that regulate different aspects of morphogenesis indicates developmental roles of some of the metabolism related genes. The database of tissue-restricted expression patterns of metabolism related genes, generated in this study, should serve as a resource for systematic identification of these genes with tissue-specific functions during development. Finally, comprehensive understanding of differentiation is not possible unless the downstream genes of a differentiation cascade are identified. We propose, metabolic enzymes constitute a significant portion of these downstream target genes. Thus our study should help elucidate different aspects of tissue differentiation.

  16. Output Regulation Problem for Differentiable Families of Linear Systems

    Science.gov (United States)

    Compta, Albert; Ferrer, Josep; Peña, Marta

    2009-09-01

    Given a family of linear systems depending on a parameter varying in a differentiable manifold, we obtain sufficient conditions for the existence of a (global or local) differentiable family of controllers solving the output regulation problem for the given family. Moreover, we construct it when these conditions hold.

  17. Doublesex: a conserved downstream gene controlled by diverse upstream regulators

    Indian Academy of Sciences (India)

    J. N. Shukla; J. Nagaraju

    2010-09-01

    Sex determination, an integral precursor to sexual reproduction, is required to generate morphologically distinct sexes. The molecular components of sex-determination pathways regulating sexual differentiation have been identified and characterized in different organisms. The Drosophila doublesex (dsx) gene at the bottom of the sex-determination cascade is the best characterized candidate so far, and is conserved from worms (mab3 of Caenorhabditis elegans) to mammals (Dmrt-1). Studies of dsx homologues from insect species belonging to different orders position them at the bottom of their sex-determination cascade. The dsx homologues are regulated by a series of upstream regulators that show amazing diversity in different insect species. These results support the Wilkin’s hypothesis that evolution of the sex-determination cascade has taken place in reverse order, the bottom most gene being most conserved and the upstream genes having been recruited at different times during evolution. The pre-mRNA of dsx is sex-specifically spliced to encode male or female-specific transcription factors that play an important role in the regulation of sexually dimorphic characters in different insect species. The generalization that dsx is required for somatic sexual differentiation culminated with its functional analysis through transgenesis and knockdown experiments in diverse species of insects. This brief review will focus on the similarities and variations of dsx homologues that have been investigated in insects to date.

  18. Myostatin inhibits brown adipocyte differentiation via regulation of Smad3-mediated β-catenin stabilization.

    Science.gov (United States)

    Kim, Won Kon; Choi, Hye-Ryung; Park, Sung Goo; Ko, Yong; Bae, Kwang-Hee; Lee, Sang Chul

    2012-02-01

    Brown adipocytes play an important role in regulating energy balance, and there is a good correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism of white adipocyte differentiation has been well characterized, brown adipogenesis has not been studied extensively. Moreover, extracellular factors that regulate brown adipogenic differentiation are not fully understood. Here, we assessed the mechanism of the regulatory action of myostatin in brown adipogenic differentiation using primary brown preadipocytes. Our results clearly showed that differentiation of brown adipocytes was significantly inhibited by myostatin treatment. In addition, myostatin-induced suppression of brown adipogenesis was observed during the early phase of differentiation. Myostatin induced the phosphorylation of Smad3, which led to increased β-catenin stabilization. These effects were blocked by treatment with a Smad3 inhibitor. Expression of brown adipocyte-related genes, such as PPAR-γ, UCP-1, PGC-1α, and PRDM16, were dramatically down-regulated by treatment with myostatin, and further down-regulated by co-treatment with a β-catenin activator. Taken together, the present study demonstrated that myostatin is a potent negative regulator of brown adipogenic differentiation by modulation of Smad3-induced β-catenin stabilization. Our findings suggest that myostatin could be used as an extracellular factor in the control of brown adipocyte differentiation.

  19. Differential Regulation of Brain-Derived Neurotrophic Factor Transcripts during the Consolidation of Fear Learning

    Science.gov (United States)

    Ressler, Kerry J.; Rattiner, Lisa M.; Davis, Michael

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) has been implicated as a molecular mediator of learning and memory. The BDNF gene contains four differentially regulated promoters that generate four distinct mRNA transcripts, each containing a unique noncoding 5[prime]-exon and a common 3[prime]-coding exon. This study describes novel evidence for the…

  20. Cartilage stem cells: regulation of differentiation.

    Science.gov (United States)

    Solursh, M

    1989-01-01

    The developing limb bud is a useful source of cartilage stem cells for studies on the regulation of chondrogenesis. In high density cultures these cells can progress through all stages of chondrogenesis to produce mineralized hypertrophic cartilage. If the cells are maintained in a spherical shape, single stem cells can progress through a similar sequence. The actin cytoskeleton is implicated in the regulation of chondrogenesis since conditions that favor its disruption promote chondrogenesis and conditions that favor actin assembly inhibit chondrogenesis. Since a number of extracellular matrix receptors mediate effects of the extracellular matrix on cytoskeletal organization and some of these receptors are developmentally regulated, it is proposed that matrix receptor expression plays a central role in the divergence of connective tissue cells during development.

  1. Reciprocal role of vitamin D receptor on β-catenin regulated keratinocyte proliferation and differentiation.

    Science.gov (United States)

    Hu, Lizhi; Bikle, Daniel D; Oda, Yuko

    2014-10-01

    The active metabolite of vitamin D, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), suppresses the proliferation while promoting the differentiation of keratinocytes through the vitamin D receptor (VDR). β-Catenin, on the other hand, promotes proliferation and blocks epidermal differentiation, although it stimulates hair follicle differentiation. In intestinal epithelia VDR binds β-catenin and blocks its proliferative effects. In this study we investigated the role of 1,25(OH)2D3/VDR on β-catenin regulated gene transcription during keratinocyte proliferation and differentiation. 1,25(OH)2D3 suppressed promoter reporter activity driven by synthetic and natural TCF/β-catenin response elements. Over-expression of VDR further suppressed these TCF/β-catenin promoter activities. 1,25(OH)2D3 also suppressed the mRNA expression of the β-catenin regulated gene Gli1 through VDR. These data were consistent with our previous observations that VDR silencing resulted in keratinocyte hyperproliferation with increased expression of Gli1 in vitro, whereas VDR null skin showed hyperproliferation in vivo. In contrast, 1,25(OH)2D3 induced expression of another β-catenin regulated gene, PADI1, important for both epidermal and hair follicle differentiation. Deletion of VDR resulted in defects in hair differentiation in vivo, with decreased expression of β-catenin regulated hair differentiation genes such as PADI1, hair keratin KRT31 and calcium binding protein S100a3. These genes possess vitamin D response elements (VDRE) adjacent to TCF/β-catenin response elements and are regulated by both VDR and β-catenin signaling. Therefore, we propose that VDR and β-catenin interact reciprocally to promote VDR stimulation of genes involved with differentiation that contain both VDR and β-catenin response elements while inhibiting β-catenin stimulation of genes involved with proliferation. Thus the major finding of this study is that while 1,25(OH)2D3/VDR inhibits the actions of β-catenin to

  2. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  3. PPARγ agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes.

    Directory of Open Access Journals (Sweden)

    Saravanan Kanakasabai

    Full Text Available Neural stem cells (NSCs are a small population of resident cells that can grow, migrate and differentiate into neuro-glial cells in the central nervous system (CNS. Peroxisome proliferator-activated receptor gamma (PPARγ is a nuclear receptor transcription factor that regulates cell growth and differentiation. In this study we analyzed the influence of PPARγ agonists on neural stem cell growth and differentiation in culture. We found that in vitro culture of mouse NSCs in neurobasal medium with B27 in the presence of epidermal growth factor (EGF and basic fibroblast growth factor (bFGF induced their growth and expansion as neurospheres. Addition of all-trans retinoic acid (ATRA and PPARγ agonist ciglitazone or 15-Deoxy-Δ(12,14-Prostaglandin J(2 (15d-PGJ2 resulted in a dose-dependent inhibition of cell viability and proliferation of NSCs in culture. Interestingly, NSCs cultured with PPARγ agonists, but not ATRA, showed significant increase in oligodendrocyte precursor-specific O4 and NG2 reactivity with a reduction in NSC marker nestin, in 3-7 days. In vitro treatment with PPARγ agonists and ATRA also induced modest increase in the expression of neuronal β-III tubulin and astrocyte-specific GFAP in NSCs in 3-7 days. Further analyses showed that PPARγ agonists and ATRA induced significant alterations in the expression of many stemness and differentiation genes associated with neuro-glial differentiation in NSCs. These findings highlight the influence of PPARγ agonists in promoting neuro-glial differentiation of NSCs and its significance in the treatment of neurodegenerative diseases.

  4. Regulation of noise in gene expression.

    Science.gov (United States)

    Sanchez, Alvaro; Choubey, Sandeep; Kondev, Jane

    2013-01-01

    The biochemical processes leading to the synthesis of new proteins are random, as they typically involve a small number of diffusing molecules. They lead to fluctuations in the number of proteins in a single cell as a function of time and to cell-to-cell variability of protein abundances. These in turn can lead to phenotypic heterogeneity in a population of genetically identical cells. Phenotypic heterogeneity may have important consequences for the development of multicellular organisms and the fitness of bacterial colonies, raising the question of how it is regulated. Here we review the experimental evidence that transcriptional regulation affects noise in gene expression, and discuss how the noise strength is encoded in the architecture of the promoter region. We discuss how models based on specific molecular mechanisms of gene regulation can make experimentally testable predictions for how changes to the promoter architecture are reflected in gene expression noise.

  5. Molecular Study on Differentiation-Associated Genes Involved in Both Malignant Progression of Glioma and Differentiation of Human Fetal Neural Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Jun Dong; Yinyan Wu; Qiang Huang; Fei Wang; Aidong Wang; Qing Lan

    2006-01-01

    OBJECTIVE It is unclear whether differentiation disturbances or deregulation of neural stem cells (NSCs) are the early key steps for gliomagenesis and tumor development. Furthermore, relevant molecular changes and gene-regulation pathways are unknown. This study focused on screening and validating differentiation-associated genes from both human NSCs and glioma cells with malignant progression, for the purpose of offering an experimental basis for the cellular origin of gilomas and molecular pathology of gliomagenesis.METHODS The differential-gene expression profiles of malignant progression of gliomas were established, then the differentiation related genes were screened out with a bioinformatics analysis. Expression levels of these genes was further analyzed in cultured human fetal NSCs undergoing differentiation processes with a semi-quantitative RT-PCR assay.RESULTS Eight genes were screened out from the gene-expression profiling of which the expression levels were associated with the differentiation processes of NSCs, namely CXCR4, TN-C, GLT1, IL1-RI, EGFR8, CDC2, Ndr3 and MAPKK4. Three of them, ie., GLT1, CDC2 and MAPKK4, were further analyzed, showing that expression levels decreased with the differentiation processes of NSCs, and increased with the malignant progression of ganglioglioma.CONCLUSION Three differentiation associated genes were found negatively associated with NSCs differentiation and positively associated with malignant progression of gliomas, suggesting that differentiation disturbances of neural stem ceils may be involved in oncogenesis, and that further studies on their roles in gliomagenesis should be conducted.

  6. Expression of POEM, a positive regulator of osteoblast differentiation, is suppressed by TNF-α.

    Science.gov (United States)

    Tsukasaki, Masayuki; Yamada, Atsushi; Suzuki, Dai; Aizawa, Ryo; Miyazono, Agasa; Miyamoto, Yoichi; Suzawa, Tetsuo; Takami, Masamichi; Yoshimura, Kentaro; Morimura, Naoko; Yamamoto, Matsuo; Kamijo, Ryutaro

    2011-07-15

    POEM, also known as nephronectin, is an extracellular matrix protein considered to be a positive regulator of osteoblast differentiation. In the present study, we found that tumor necrosis factor-α (TNF-α), a key regulator of bone matrix properties and composition that also inhibits terminal osteoblast differentiation, strongly inhibited POEM expression in the mouse osteoblastic cell line MC3T3-E1. TNF-α-induced down-regulation of POEM gene expression occurred in both time- and dose-dependent manners through the nuclear factor kappa B (NF-κB) pathway. In addition, expressions of marker genes in differentiated osteoblasts were down-regulated by TNF-α in a manner consistent with our findings for POEM, while over-expression of POEM recovered TNF-α-induced inhibition of osteoblast differentiation. These results suggest that TNF-α inhibits POEM expression through the NF-κB signaling pathway and down-regulation of POEM influences the inhibition of osteoblast differentiation by TNF-α.

  7. Regulation of meiotic gene expression in plants

    Directory of Open Access Journals (Sweden)

    Adele eZhou

    2014-08-01

    Full Text Available With the recent advances in genomics and sequencing technologies, databases of transcriptomes representing many cellular processes have been built. Meiotic transcriptomes in plants have been studied in Arabidopsis thaliana, rice (Oryza sativa, wheat (Triticum aestivum, petunia (Petunia hybrida, sunflower (Helianthus annuus, and maize (Zea mays. Studies in all organisms, but particularly in plants, indicate that a very large number of genes are expressed during meiosis, though relatively few of them seem to be required for the completion of meiosis. In this review, we focus on gene expression at the RNA level and analyze the meiotic transcriptome datasets and explore expression patterns of known meiotic genes to elucidate how gene expression could be regulated during meiosis. We also discuss mechanisms, such as chromatin organization and non-coding RNAs, that might be involved in the regulation of meiotic transcription patterns.

  8. Parallel differentiation of embryonic stem cells into different cell types by a single gene-based differentiation system.

    Science.gov (United States)

    Thoma, Eva C; Maurus, Katja; Wagner, Toni U; Schartl, Manfred

    2012-04-01

    The generation of defined somatic cell types from pluripotent stem cells represents a promising system for many applications for regenerative therapy or developmental studies. Certain key developmental genes have been shown to be able to influence the fate determination of differentiating stem cells suggesting an alternative differentiation strategy to conventional medium-based methods. Here, we present a system allowing controlled, directed differentiation of embryonic stem cells (ESCs) solely by ectopic expression of single genes. We demonstrate that the myogenic master regulator myoD1 is sufficient to induce formation of skeletal muscle. In contrast to previous studies, our data suggest that myoD1-induced differentiation is independent of additional differentiation-inducing or lineage-promoting signals and occurs even under pluripotency-promoting conditions. Moreover, we demonstrate that single gene-induced differentiation enables the controlled formation of two distinct cell types in parallel. By mixing ES cell lines expressing myoD1 or the neural transcription factor ngn2, respectively, we generated a mixed culture of myocytes and neurons. Our findings provide new insights in the role of key developmental genes during cell fate decisions. Furthermore, this study represents an interesting strategy to obtain mixed cultures of different cells from stem cells, suggesting a valuable tool for cellular development and cell-cell interaction studies.

  9. Novel flutamide regulated genes in the rat ventral prostate: differential modulation of their expression by castration and flutamide treatments%大鼠腹侧前列腺中受氟他胺调控的新基因:去势和氟他胺处理对其表达的调控

    Institute of Scientific and Technical Information of China (English)

    A. M. Limaye; I. Asangani; N. Bora; P. Kondaiah

    2007-01-01

    Aim: To identify flutamide regulated genes in the rat ventral prostate. Methods: Total RNA from ventral prostates of control and flutamide treated rats were isolated. Differentially expressed transcripts were identified using differential display reverse transcriptase polymerase chain reaction. The effect of castration on the expression of flutamideregulated transcripts was studied. Results: We have identified β2-microglobulin, cytoplasmic FMR1 interacting protein 2 and pumilio 1 as flutamide induced and spermine binding protein and ribophorin Ⅱ as flutamide repressed targets in the rat ventral prostate. Although flutamide treatment caused an induction of pumilio 1 mRNA, castration had no effect. Conclusion: Castration and flutamide treatments exert differential effects on gene expression. Flutamide might also have direct AR independent effects, which might have implications in the emergence of androgen independent prostate cancer and the failure of flutamide therapy.

  10. CLONING AND IDENTIFICATION OF A GENE RELATED TO THE DIFFERENTIATION OF HUMAN GASTRIC ADENOCARCINOMA CELLS

    Institute of Scientific and Technical Information of China (English)

    王建华; 陈诗书

    2002-01-01

    Objective: To compare the differential expression of mRNA between MKN-28 (highly differentiated) and MKN-45 (poorly differentiated) gastric adenocarcinoma cells and identify genes involved in human gastric adenocarcinoma differentiation. Methods: Differential expression of mRNA between MKN-28 and MKN-45 adenocarcinoma cells was investigated by fluorescent differential display (FDD). Differentially expressed cDNA was analyzed by bio-informatics and confirmed by RT-PCR and Northern-blot. Results: 45 differential fragments were finally attained. One of them (No. 10) was an approximate 750 bp cDNA and highly up-regulated in MKN-45 cells as compared with MKN-28 cells. By using Blastn and UniGene database analysis, we found the fragment was mapped to chromosome 14q11.2(q12 and showed a significant homology to Bcl-2 binding protein gene (BNip3), which was recently identified encoding pro-apoptosis protein located in mitochondrial. Conclusion: The BNip3 induced apoptosis could be suppressed by interacting with bcl-2. The BNip3 gene in tumor cells might be up-regulated by the hypoxia response element through the HIF1a transcription factor, causing death of the hypoxic cells at the center of the tumor where vascularization is usually poor in the process of tumor development.

  11. Genes Differentially Expressed in Human Lung Fibroblast Cells Transformed by Glycidyl Methacrylate

    Institute of Scientific and Technical Information of China (English)

    XUE-JUN YIN; JIAN-NING XU; CHANG-QI ZOU; FENG-SHENG HE; FU-DE FANG

    2004-01-01

    To define the differences in gene expression patterns between glycidyl methacrylate (GMA)-transformed human lung fibroblast cells (2BS cells) and controls. Methods The mRNA differential display polymerase chain reaction (DD-PCR) technique was used. cDNAs were synthesized by reverse transcription and amplified by PCR using 30 primer combinations. After being screened by dot blot analysis, differentially expressed cDNAs were cloned, sequenced and confirmed by Northern blot analysis. Results Eighteen differentially expressed cDNAs were cloned and sequenced, of which 17 were highly homologous to known genes (homology = 89%-100%) and one was an unknown gene. Northern blot analysis confirmed that eight genes encoding human zinc finger protein 217 (ZNF217), mixed-lineage kinase 3 (MLK-3), ribosomal protein (RP) L15, RPL41, RPS16, TBX3, stanniocalcin 2 (STC2) and mouse ubiquitin conjugating enzyme (UBC), respectively, were up-regulated, and three genes including human transforming growth factor ( inducible gene (Betaig-h3), (-1,2-mannosidase 1A2 (MAN 1A2) gene and an unknown gene were down-regulated in the GMA-transformed cells. Conclusion Analysis of the potential function of these genes suggest that they may be possibly linked to a variety of cellular processes such as transcription, signal transduction, protein synthesis and growth, and that their differential expression could contribute to the GMA-induced neoplastic transformation.

  12. Differential regulation of transforming growth factor beta and interleukin 2 genes in human T cells: demonstration by usage of novel competitor DNA constructs in the quantitative polymerase chain reaction

    OpenAIRE

    1991-01-01

    The regulation of mRNA encoding transforming growth factor beta (TGF- beta) and interleukin 2 (IL-2) in normal human T cells was explored using novel competitor DNA constructs in the quantitative polymerase chain reaction and accessory cell-independent T cell activation models. Our experimental design revealed the following: (a) TGF-beta mRNA and IL-2 mRNA are regulated differentially in normal human T cells, quiescent or signaled with the synergistic combinations of: sn-1,2- dioctanoylglycer...

  13. Transcriptional regulation of human thromboxane synthase gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.D.; Baek, S.J.; Fleischer, T [Univ. of Maryland Medical School, Baltimore, MD (United States)] [and others

    1994-09-01

    The human thromboxane synthase (TS) gene encodes a microsomal enzyme catalyzing the conversion of prostaglandin endoperoxide into thromboxane A{sub 2}(TxA{sub 2}), a potent inducer of vasoconstriction and platelet aggregation. A deficiency in platelet TS activity results in bleeding disorders, but the underlying molecular mechanism remains to be elucidated. Increased TxA{sub 2} has been associated with many pathophysiological conditions such as cardiovascular disease, pulmonary hypertension, pre-eclampsia, and thrombosis in sickle cell patients. Since the formation of TxA{sub 2} is dependent upon TS, the regulation of TS gene expression may presumably play a crucial role in vivo. Abrogation of the regulatory mechanism in TS gene expression might contribute, in part, to the above clinical manifestations. To gain insight into TS gene regulation, a 1.7 kb promoter of the human TS gene was cloned and sequenced. RNase protection assay and 5{prime} RACE protocols were used to map the transcription initiation site to nucleotide A, 30 bp downstream from a canonical TATA box. Several transcription factor binding sites, including AP-1, PU.1, and PEA3, were identified within this sequence. Transient expression studies in HL-60 cells transfected with constructs containing various lengths (0.2 to 5.5 kb) of the TS promoter/luciferase fusion gene indicated the presence of multiple repressor elements within the 5.5 kb TS promoter. However, a lineage-specific up-regulation of TS gene expression was observed in HL-60 cells induced by TPA to differentiate along the macrophage lineage. The increase in TS transcription was not detectable until 36 hr after addition of the inducer. These results suggest that expression of the human TS gene may be regulated by a mechanism involving repression and derepression of the TS promoter.

  14. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Directory of Open Access Journals (Sweden)

    Jun-Ha Hwang

    Full Text Available Mesenchymal stem cell (MSC differentiation is regulated by the extracellular matrix (ECM through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  15. Extracellular Matrix Stiffness Regulates Osteogenic Differentiation through MAPK Activation.

    Science.gov (United States)

    Hwang, Jun-Ha; Byun, Mi Ran; Kim, A Rum; Kim, Kyung Min; Cho, Hang Jun; Lee, Yo Han; Kim, Juwon; Jeong, Mi Gyeong; Hwang, Eun Sook; Hong, Jeong-Ho

    2015-01-01

    Mesenchymal stem cell (MSC) differentiation is regulated by the extracellular matrix (ECM) through activation of intracellular signaling mediators. The stiffness of the ECM was shown to be an important regulatory factor for MSC differentiation, and transcriptional coactivator with PDZ-binding motif (TAZ) was identified as an effector protein for MSC differentiation. However, the detailed underlying mechanism regarding the role of ECM stiffness and TAZ in MSC differentiation is not yet fully understood. In this report, we showed that ECM stiffness regulates MSC fate through ERK or JNK activation. Specifically, a stiff hydrogel matrix stimulates osteogenic differentiation concomitant with increased nuclear localization of TAZ, but inhibits adipogenic differentiation. ERK and JNK activity was significantly increased in cells cultured on a stiff hydrogel. TAZ activation was induced by ERK or JNK activation on a stiff hydrogel because exposure to an ERK or JNK inhibitor significantly decreased the nuclear localization of TAZ, indicating that ECM stiffness-induced ERK or JNK activation is important for TAZ-driven osteogenic differentiation. Taken together, these results suggest that ECM stiffness regulates MSC differentiation through ERK or JNK activation.

  16. Identification of novel regulators in T-cell differentiation of aplastic anemia patients

    Directory of Open Access Journals (Sweden)

    Probst-Kepper Michael

    2006-10-01

    Full Text Available Abstract Background Aplastic anemia (AA is a bone marrow failure syndrome mostly characterized by an immune-mediated destruction of marrow hematopoietic progenitor/stem cells. The resulting hypocellularity limits a detailed analysis of the cellular immune response. To overcome this technical problem we performed a microarray analysis of CD3+ T-cells derived from bone marrow aspirates and peripheral blood samples of newly diagnosed AA patients and healthy volunteers. Two AA patients were additionally analyzed after achieving a partial remission following immunosuppression. The regulation of selected candidate genes was confirmed by real-time RT-PCR. Results Among more than 22.200 transcripts, 583 genes were differentially expressed in the bone marrow of AA patients compared to healthy controls. Dysregulated genes are involved in T-cell mediated cytotoxicity, immune response of Th1 differentiated T-cells, and major regulators of immune function. In hematological remission the expression levels of several candidate genes tend to normalize, such as immune regulators and genes involved in proinflammatory immune response. Conclusion Our study suggests a pivotal role of Th1/Tc1 differentiated T-cells in immune-mediated marrow destruction of AA patients. Most importantly, immune regulatory genes could be identified, which are likely involved in the recovery of hematopoiesis and may help to design new therapeutic strategies in bone marrow failure syndromes.

  17. Cadmium-regulated gene fusions in Pseudomonas fluorescens.

    Science.gov (United States)

    Rossbach, S; Kukuk, M L; Wilson, T L; Feng, S F; Pearson, M M; Fisher, M A

    2000-08-01

    To study the mechanisms soil bacteria use to cope with elevated concentrations of heavy metals in the environment, a mutagenesis with the lacZ-based reporter gene transposon Tn5B20 was performed. Random gene fusions in the genome of the common soil bacterium Pseudomonas fluorescens strain ATCC 13525 were used to create a bank of 5,000 P. fluorescens mutants. This mutant bank was screened for differential gene expression in the presence of the toxic metal cadmium. Fourteen mutants were identified that responded with increased or reduced gene expression to the presence of cadmium. The mutants were characterized with respect to their metal-dependent gene expression and their metal tolerance. Half the identified mutants reacted with differential gene expression specifically to the metal cadmium, whereas some of the other mutants also responded to elevated concentrations of copper and zinc ions. One of the mutants, strain C8, also showed increased gene expression in the presence of the solvent ethanol, but otherwise no overlap between cadmium-induced gene expression and general stress response was detected. Molecular analysis of the corresponding genetic loci was performed using arbitrary polymerase chain reaction (PCR), DNA sequencing and comparison of the deduced protein products with sequences deposited in genetic databases. Some of the genetic loci targeted by the transposon did not show any similarities to any known genes; thus, they may represent 'novel' loci. The hypothesis that genes that are differentially expressed in the presence of heavy metals play a role in metal tolerance was verified for one of the mutants. This mutant, strain C11, was hypersensitive to cadmium and zinc ions. In mutant C11, the transposon had inserted into a genetic region displaying similarity to genes encoding the sensor/regulator protein pairs of two-component systems that regulate gene expression in metal-resistant bacteria, including czcRS of Ralstonia eutropha, czrRS of Pseudomonas

  18. Deciphering c-MYC-regulated genes in two distinct tissues

    Directory of Open Access Journals (Sweden)

    Hunter Ewan

    2011-09-01

    Full Text Available Abstract Background The transcription factor MYC is a critical regulator of diverse cellular processes, including both replication and apoptosis. Differences in MYC-regulated gene expression responsible for such opposing outcomes in vivo remain obscure. To address this we have examined time-dependent changes in global gene expression in two transgenic mouse models in which MYC activation, in either skin suprabasal keratinocytes or pancreatic islet β-cells, promotes tissue expansion or involution, respectively. Results Consistent with observed phenotypes, expression of cell cycle genes is increased in both models (albeit enriched in β-cells, as are those involved in cell growth and metabolism, while expression of genes involved in cell differentiation is down-regulated. However, in β-cells, which unlike suprabasal keratinocytes undergo prominent apoptosis from 24 hours, there is up-regulation of genes associated with DNA-damage response and intrinsic apoptotic pathways, including Atr, Arf, Bax and Cycs. In striking contrast, this is not the case for suprabasal keratinocytes, where pro-apoptotic genes such as Noxa are down-regulated and key anti-apoptotic pathways (such as Igf1-Akt and those promoting angiogenesis are up-regulated. Moreover, dramatic up-regulation of steroid hormone-regulated Kallikrein serine protease family members in suprabasal keratinocytes alone could further enhance local Igf1 actions, such as through proteolysis of Igf1 binding proteins. Conclusions Activation of MYC causes cell growth, loss of differentiation and cell cycle entry in both β-cells and suprabasal keratinocytes in vivo. Apoptosis, which is confined to β-cells, may involve a combination of a DNA-damage response and downstream activation of pro-apoptotic signalling pathways, including Cdc2a and p19Arf/p53, and downstream targets. Conversely, avoidance of apoptosis in suprabasal keratinocytes may result primarily from the activation of key anti

  19. The genes that encode the gonococcal transferrin binding proteins, TbpB and TbpA, are differentially regulated by MisR under iron-replete and iron-depleted conditions.

    Science.gov (United States)

    Kandler, Justin L; Acevedo, Rosuany Vélez; Dickinson, Mary Kathryne; Cash, Devin R; Shafer, William M; Cornelissen, Cynthia Nau

    2016-10-01

    Neisseria gonorrhoeae produces two transferrin binding proteins, TbpA and TbpB, which together enable efficient iron transport from human transferrin. We demonstrate that expression of the tbp genes is controlled by MisR, a response regulator in the two-component regulatory system that also includes the sensor kinase MisS. The tbp genes were up-regulated in the misR mutant under iron-replete conditions but were conversely down-regulated in the misR mutant under iron-depleted conditions. The misR mutant was capable of transferrin-iron uptake at only 50% of wild-type levels, consistent with decreased tbp expression. We demonstrate that phosphorylated MisR specifically binds to the tbpBA promoter and that MisR interacts with five regions upstream of the tbpB start codon. These analyses confirm that MisR directly regulates tbpBA expression. The MisR binding sites in the gonococcus are only partially conserved in Neisseria meningitidis, which may explain why tbpBA was not MisR-regulated in previous studies using this related pathogen. This is the first report of a trans-acting protein factor other than Fur that can directly contribute to gonococcal tbpBA regulation.

  20. The TRANSFAC system on gene expression regulation.

    Science.gov (United States)

    Wingender, E; Chen, X; Fricke, E; Geffers, R; Hehl, R; Liebich, I; Krull, M; Matys, V; Michael, H; Ohnhäuser, R; Prüss, M; Schacherer, F; Thiele, S; Urbach, S

    2001-01-01

    The TRANSFAC database on transcription factors and their DNA-binding sites and profiles (http://www.gene-regulation.de/) has been quantitatively extended and supplemented by a number of modules. These modules give information about pathologically relevant mutations in regulatory regions and transcription factor genes (PathoDB), scaffold/matrix attached regions (S/MARt DB), signal transduction (TRANSPATH) and gene expression sources (CYTOMER). Altogether, these distinct database modules constitute the TRANSFAC system. They are accompanied by a number of program routines for identifying potential transcription factor binding sites or for localizing individual components in the regulatory network of a cell.

  1. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish

    Directory of Open Access Journals (Sweden)

    Zizhen Yao

    2013-04-01

    The basic helix–loop–helix factor Myod initiates skeletal muscle differentiation by directly and sequentially activating sets of muscle differentiation genes, including those encoding muscle contractile proteins. We hypothesize that Pbx homeodomain proteins direct Myod to a subset of its transcriptional targets, in particular fast-twitch muscle differentiation genes, thereby regulating the competence of muscle precursor cells to differentiate. We have previously shown that Pbx proteins bind with Myod on the promoter of the zebrafish fast muscle gene mylpfa and that Pbx proteins are required for Myod to activate mylpfa expression and the fast-twitch muscle-specific differentiation program in zebrafish embryos. Here we have investigated the interactions of Pbx with another muscle fiber-type regulator, Prdm1a, a SET-domain DNA-binding factor that directly represses mylpfa expression and fast muscle differentiation. The prdm1a mutant phenotype, early and increased fast muscle differentiation, is the opposite of the Pbx-null phenotype, delayed and reduced fast muscle differentiation. To determine whether Pbx and Prdm1a have opposing activities on a common set of genes, we used RNA-seq analysis to globally assess gene expression in zebrafish embryos with single- and double-losses-of-function for Pbx and Prdm1a. We find that the levels of expression of certain fast muscle genes are increased or approximately wild type in pbx2/4-MO;prdm1a−/− embryos, suggesting that Pbx activity normally counters the repressive action of Prdm1a for a subset of the fast muscle program. However, other fast muscle genes require Pbx but are not regulated by Prdm1a. Thus, our findings reveal that subsets of the fast muscle program are differentially regulated by Pbx and Prdm1a. Our findings provide an example of how Pbx homeodomain proteins act in a balance with other transcription factors to regulate subsets of a cellular differentiation program.

  2. Differential Gene Expression in Retina of Myopic Chicken Eyes Using mRNA Differential Display

    Institute of Scientific and Technical Information of China (English)

    ShenHX; ZhangQJ

    1999-01-01

    Purpose:To study differentially expressed genes in retina of experimental myopic chicken.Methods:Experimental myopia in chicken was induced by form-deprivatin.The mRNA in chicen retina was analyzed by using differential display.Results:Experimental myopia was successfully induced in chicken through form-deprivation.Differentially expressed gene fragments were detected in retina of chicken with myopic evelopment and recovery as compared with normal controld.Conclusion:The differential display of mRNA may be a useful way in cloning myopic-related genes.

  3. Study of rat neuronal genes with ordered differential display method

    Institute of Scientific and Technical Information of China (English)

    KANG; Jiansheng; (

    2001-01-01

    [1]Wang, Y., Du, Z. W., eds., Neurobiology and Molecular Biology, Beijing: People's Medical Publishing House, 1997, 184-207, 244-248.[2]Liang, P., Pardee, A., Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction, Science, 1992, 257: 967-971.[3]Michiels, L., Van Leuven, F., van den Oord, J. J. et al., Representational difference analysis using minute quantities of DNA, Nucleic Acids Res., 1998, 26(15): 3608-3610.[4]Diatchenko, L., Lau, Y. F., Campbell, A. P. et al., Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries, Proc. Natl. Acad. Sci. USA, 1996, 93(12): 6025-6030.[5]Matz, M., Lukyanov, S., Different strategies of differential display: areas of application, Nucleic Acids Res., 1998, 26: 5537-5543.[6]Matz, M., Usman, N., Shagin, D. et al., Ordered differential display: a simple method for systematic comparison of gene expression profiles, Nucleic Acids Res, 1997, 25: 2541-2542.[7]Chen, X. X., Guan, L. C., Bao, S. M. et al., Comparison and study of memory and open field behavior of four different mouse strain, Psychological Science, 1994, 17(1): 39-41.[8]Chapman, C. R., Casey, K. L., Dubner, R. et al., Pain measurement: an overview, Pain, 1985, 22: 1-31.[9]Mitchell, .D., Hellon, R. F., Neuronal and behavioral responses in rats during noxious stimulation of the tail, Proc. R. Soc. Lond., 1977, 197: 169-194.[10]Shen, Y., Yan, Y. S., eds., Medical Statistics, Shanghai: Shanghai Medical University Press, 1999, 39-44.[11]Kang, J. S., Li, R. X., Du, Y. C., Ordered differential display, Chemistry of Life, 1999, 19(6): 282-283.[12]Mou, L., Miller, H., Li, J. et al., Improvements to the differential display method for gene analysis, Biochem. Biophys. Res. Commun., 1994, 199: 564-569.[13]Lee, H. N., Weinstock, K. G., Kirkness, E. F. et al., Comparative expressed-sequence-tag analysis of differential gene

  4. Studies of Differentially-Expressed Genes in Human Endometrial Cancer of Various Differentiated Grades

    Institute of Scientific and Technical Information of China (English)

    Bin Cai; David Hogg; Guangzhong Lu; Ling Liu; Xiaowei Xi; Wei Xu; Huifang Lu; Yongbin Yang; Xiaoping Wan

    2007-01-01

    OBJECTIVE To study the gene expression profiles of human endometrial cancers at various differentiaOted grade levels and to identify the genes related to differentiation of the endometrial cancers. METHODS cDNA microarray technology was used to analyze the differentially-expressed genes among different differentiated grades of 32 cases of endometrial cancer. Hierarchical cluster analysis (HCA) for the gene expression profiles of the cases was employed. RESULTS The tissue samples were grouped based on the various dif ferentiated tumor grades with 33 differentiation-related genes identified out (P<0.001). Based on the results from the HCA, the conformity rate was 91% among the 33 differentially-expressed genes and the analysis of pathological classification.CONCLUSION Genes related to the differentiation of endometrial cancer can be identified by using gene chips to analyze the expression profiles of endometrial cancers at various differentiated grades; HCA of the gene expression profiles can be helpful for distinguishing high-risk endometrial cancers before surgery.

  5. Gene bionetworks that regulate ovarian primordial follicle assembly.

    Science.gov (United States)

    Nilsson, Eric; Zhang, Bin; Skinner, Michael K

    2013-07-23

    Primordial follicle assembly is the process by which ovarian primordial follicles are formed. During follicle assembly oocyte nests break down and a layer of pre-granulosa cells surrounds individual oocytes to form primordial follicles. The pool of primordial follicles formed is the source of oocytes for ovulation during a female's reproductive life. The current study utilized a systems approach to detect all genes that are differentially expressed in response to seven different growth factor and hormone treatments known to influence (increase or decrease) primordial follicle assembly in a neonatal rat ovary culture system. One novel factor, basic fibroblast growth factor (FGF2), was experimentally determined to inhibit follicle assembly. The different growth factor and hormone treatments were all found to affect similar physiological pathways, but each treatment affected a unique set of differentially expressed genes (signature gene set). A gene bionetwork analysis identified gene modules of coordinately expressed interconnected genes and it was found that different gene modules appear to accomplish distinct tasks during primordial follicle assembly. Predictions of physiological pathways important to follicle assembly were validated using ovary culture experiments in which ERK1/2 (MAPK1) activity was increased. A number of the highly interconnected genes in these gene networks have previously been linked to primary ovarian insufficiency (POI) and polycystic ovarian disease syndrome (PCOS). Observations have identified novel factors and gene networks that regulate primordial follicle assembly. This systems biology approach has helped elucidate the molecular control of primordial follicle assembly and provided potential therapeutic targets for the treatment of ovarian disease.

  6. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation

    Directory of Open Access Journals (Sweden)

    Keisuke eKatsushima

    2014-02-01

    Full Text Available Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs, which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. Differentiation of GSCs may be regulated by multi-tiered epigenetic mechanisms that orchestrate the expression of thousands of genes. One such regulatory mechanism involves functional non-coding RNAs (ncRNAs, such as microRNAs (miRNAs; a large number of ncRNAs have been identified and shown to regulate the expression of genes associated with cell differentiation programs. Given the roles of miRNAs in cell differentiation, it is possible they are involved in the regulation of gene expression networks in GSCs that are important for the maintenance of the pluripotent state and for directing differentiation. Here, we review recent findings on ncRNAs associated with GSC differentiation and discuss how these ncRNAs contribute to the establishment of tissue heterogeneity during glioblastoma tumor formation.

  7. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  8. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  9. High and Low Molecular Weight Hyaluronic Acid Differentially Regulate Human Fibrocyte Differentiation

    OpenAIRE

    Maharjan, Anu S; Darrell Pilling; Gomer, Richard H.

    2011-01-01

    BACKGROUND: Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6) Da). During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5) Da). METHODS AND FINDINGS: In this report, we show that HMWHA potentiates the differentiation of human monocytes into ...

  10. Differential regulation of native estrogen receptor-regulatory elements by estradiol, tamoxifen, and raloxifene.

    Science.gov (United States)

    Levy, Nitzan; Tatomer, Dierdre; Herber, Candice B; Zhao, Xiaoyue; Tang, Hui; Sargeant, Toby; Ball, Lonnele J; Summers, Jonathan; Speed, Terence P; Leitman, Dale C

    2008-02-01

    Estrogen receptors (ERs) regulate gene transcription by interacting with regulatory elements. Most information regarding how ER activates genes has come from studies using a small set of target genes or simple consensus sequences such as estrogen response element, activator protein 1, and Sp1 elements. However, these elements cannot explain the differences in gene regulation patterns and clinical effects observed with estradiol (E(2)) and selective estrogen receptor modulators. To obtain a greater understanding of how E(2) and selective estrogen receptor modulators differentially regulate genes, it is necessary to investigate their action on a more comprehensive set of native regulatory elements derived from ER target genes. Here we used chromatin immunoprecipitation-cloning and sequencing to isolate 173 regulatory elements associated with ERalpha. Most elements were found in the introns (38%) and regions greater than 10 kb upstream of the transcription initiation site (38%); 24% of the elements were found in the proximal promoter region (tamoxifen with ERalpha or ERbeta. Tamoxifen was more effective than raloxifene at activating the elements with ERalpha, whereas raloxifene was superior with ERbeta. Our findings demonstrate that E(2), tamoxifen, and raloxifene differentially regulate native ER-regulatory elements isolated by chromatin immunoprecipitation with ERalpha and ERbeta.

  11. Pathway-specific regulation revisited: cross-regulation of multiple disparate gene clusters by PAS-LuxR transcriptional regulators.

    Science.gov (United States)

    Vicente, Cláudia M; Payero, Tamara D; Santos-Aberturas, Javier; Barreales, Eva G; de Pedro, Antonio; Aparicio, Jesús F

    2015-06-01

    PAS-LuxR regulators are highly conserved proteins devoted to the control of antifungal production by binding to operators located in given promoters of polyene biosynthetic genes. The canonical operator of PimM, archetype of this class of regulators, has been used here to search for putative targets of orthologous protein PteF in the genome of Streptomyces avermitilis, finding 97 putative operators outside the pentaene filipin gene cluster (pte). The processes putatively affected included genetic information processing; energy, carbohydrate, and lipid metabolism; DNA replication and repair; morphological differentiation; secondary metabolite biosynthesis; and transcriptional regulation, among others. Seventeen of these operators were selected, and their binding to PimM DNA-binding domain was assessed by electrophoretic mobility shift assays. Strikingly, the protein bound all predicted operators suggesting a direct control over targeted processes. As a proof of concept, we studied the biosynthesis of the ATP-synthase inhibitor oligomycin whose gene cluster included two operators. Regulator mutants showed a severe loss of oligomycin production, whereas gene complementation of the mutant restored phenotype, and gene duplication in the wild-type strain boosted oligomycin production. Comparative gene expression analyses in parental and mutant strains by reverse transcription-quantitative polymerase chain reaction of selected olm genes corroborated production results. These results demonstrate that PteF is able to cross-regulate the biosynthesis of two related secondary metabolites, filipin and oligomycin, but might be extended to all the processes indicated above. This study highlights the complexity of the network of interactions in which PAS-LuxR regulators are involved and opens new possibilities for the manipulation of metabolite production in Streptomycetes.

  12. Regulation of Gene Expression Patterns in Mosquito Reproduction.

    Directory of Open Access Journals (Sweden)

    Sourav Roy

    2015-08-01

    Full Text Available In multicellular organisms, development, growth and reproduction require coordinated expression of numerous functional and regulatory genes. Insects, in addition to being the most speciose animal group with enormous biological and economical significance, represent outstanding model organisms for studying regulation of synchronized gene expression due to their rapid development and reproduction. Disease-transmitting female mosquitoes have adapted uniquely for ingestion and utilization of the huge blood meal required for swift reproductive events to complete egg development within a 72-h period. We investigated the network of regulatory factors mediating sequential gene expression in the fat body, a multifunctional organ analogous to the vertebrate liver and adipose tissue, of the female Aedes aegypti mosquito. Transcriptomic and bioinformatics analyses revealed that ~7500 transcripts are differentially expressed in four sequential waves during the 72-h reproductive period. A combination of RNA-interference gene-silencing and in-vitro organ culture identified the major regulators for each of these waves. Amino acids (AAs regulate the first wave of gene activation between 3 h and 12 h post-blood meal (PBM. During the second wave, between 12 h and 36 h, most genes are highly upregulated by a synergistic action of AAs, 20-hydroxyecdysone (20E and the Ecdysone-Receptor (EcR. Between 36 h and 48 h, the third wave of gene activation-regulated mainly by HR3-occurs. Juvenile Hormone (JH and its receptor Methoprene-Tolerant (Met are major regulators for the final wave between 48 h and 72 h. Each of these key regulators also has repressive effects on one or more gene sets. Our study provides a better understanding of the complexity of the regulatory mechanisms related to temporal coordination of gene expression during reproduction. We have detected the novel function of 20E/EcR responsible for transcriptional repression. This study also reveals the

  13. Identification of differentially expressed genes associated with differential body size in mandarin fish (Siniperca chuatsi).

    Science.gov (United States)

    Tian, Changxu; Li, Ling; Liang, Xu-Fang; He, Shan; Guo, Wenjie; Lv, Liyuan; Wang, Qingchao; Song, Yi

    2016-08-01

    Body size is an obvious and important characteristic of fish. Mandarin fish Siniperca chuatsi (Basilewsky) is one of the most valuable perciform species widely cultured in China. Individual differences in body size are common in mandarin fish and significantly influence the aquaculture production. However, little is currently known about its genetic control. In this study, digital gene expression profiling and transcriptome sequencing were performed in mandarin fish with differential body size at 30 and 180 days post-hatch (dph), respectively. Body weight, total length and body length of fish with big-size were significantly higher than those with small-size at both 30 and 180 dph (P mandarin fish that went through the same training procedure. The genes were involved in the growth hormone-insulin-like growth factor axis, cell proliferation and differentiation, appetite control, glucose metabolism, reproduction and sexual size dimorphism pathways. This study will help toward a comprehensive understanding of the complexity of regulation of body size in mandarin fish individuals and provide valuable information for future research.

  14. Identification of Differentially Expressed Genes During Ethylene Climacteric of Melon Fruit by Suppression Subtractive Hybridization

    Institute of Scientific and Technical Information of China (English)

    GAO Feng; NIU Yi-ding; HAO Jin-feng; BADE Rengui; ZHANG Li-quan; HASI Agula

    2013-01-01

    Melon (Cucumis melo L.) is an important horticultural crop worldwide. Ethylene regulates the ripening process and affects the ripening rate. To screen genes that are differentially expressed at the burst of ethylene climacteric in melon fruit, we performed suppression subtractive hybridization (SSH) to generate forward and reverse libraries, for which we sequenced 439 and 445 clones, respectively. Our BLAST analysis showed that the genes from the 2 libraries were involved in metabolism, signal transduction, cell structure, transcription, translation, and defense. Six genes were analyzed by qRT-PCR during the differential developmental stage of melon fruit. Our results provide new insight into the understanding of climacteric ripening of melon fruit.

  15. Regulation of pluripotency and differentiation by deubiquitinating enzymes.

    Science.gov (United States)

    Suresh, B; Lee, J; Kim, H; Ramakrishna, S

    2016-08-01

    Post-translational modifications (PTMs) of stemness-related proteins are essential for stem cell maintenance and differentiation. In stem cell self-renewal and differentiation, PTM of stemness-related proteins is tightly regulated because the modified proteins execute various stem cell fate choices. Ubiquitination and deubiquitination, which regulate protein turnover of several stemness-related proteins, must be carefully coordinated to ensure optimal embryonic stem cell maintenance and differentiation. Deubiquitinating enzymes (DUBs), which specifically disassemble ubiquitin chains, are a central component in the ubiquitin-proteasome pathway. These enzymes often control the balance between ubiquitination and deubiquitination. To maintain stemness and achieve efficient differentiation, the ubiquitination and deubiquitination molecular switches must operate in a balanced manner. Here we summarize the current information on DUBs, with a focus on their regulation of stem cell fate determination and deubiquitinase inhibition as a therapeutic strategy. Furthermore, we discuss the possibility of using DUBs with defined stem cell transcription factors to enhance cellular reprogramming efficiency and cell fate conversion. Our review provides new insight into DUB activity by emphasizing their cellular role in regulating stem cell fate. This role paves the way for future research focused on specific DUBs or deubiquitinated substrates as key regulators of pluripotency and stem cell differentiation.

  16. Differential expression of ZFX gene in gastric cancer

    Indian Academy of Sciences (India)

    Parvaneh Nikpour; Modjtaba Emadi-Baygi; Faezeh Mohammad-Hashem; Mohamad Reza Maracy; Shaghayegh Haghjooy-Javanmard

    2012-03-01

    Gastric cancer accounts for 8% of the total cancer cases and 10% of total cancer deaths worldwide. In Iran, gastric cancer is the leading cause of national cancer-related mortality. Most human cancers show substantial heterogeneity. The cancer stem cell (CSC) hypothesis has been proposed to reconcile this heterogeneity. ZFX encodes a member of the krueppel C2H2-type zinc-finger protein family that is required as a transcriptional regulator for self-renewal of stem cells. A total of 30 paired tissue gastric samples were examined for ZFX gene expression by quantitative real-time RT-PCR. Although the relative expression of the gene was significantly high in 47% of the examined tumour tissues, its expression was low in the others (53%). There was a statistically significant association between the ZFX gene expression and different tumour types and grades. This is the first report that shows ZFX was differentially expressed in gastric cancer. Of note, it was overexpressed in diffused-type and grade III gastric tumoural tissues. Due to this, ZFX may have the potential to be used as a target for therapeutic interventions.

  17. Comparative differential gene expression analysis of nucleus-encoded proteins for Rafflesia cantleyi against Arabidopsis thaliana

    Science.gov (United States)

    Ng, Siuk-Mun; Lee, Xin-Wei; Wan, Kiew-Lian; Firdaus-Raih, Mohd

    2015-09-01

    Regulation of functional nucleus-encoded proteins targeting the plastidial functions was comparatively studied for a plant parasite, Rafflesia cantleyi versus a photosynthetic plant, Arabidopsis thaliana. This study involved two species of different feeding modes and different developmental stages. A total of 30 nucleus-encoded proteins were found to be differentially-regulated during two stages in the parasite; whereas 17 nucleus-encoded proteins were differentially-expressed during two developmental stages in Arabidopsis thaliana. One notable finding observed for the two plants was the identification of genes involved in the regulation of photosynthesis-related processes where these processes, as expected, seem to be present only in the autotroph.

  18. Estrogen-related receptor alpha modulates the expression of adipogenesis-related genes during adipocyte differentiation.

    Science.gov (United States)

    Ijichi, Nobuhiro; Ikeda, Kazuhiro; Horie-Inoue, Kuniko; Yagi, Ken; Okazaki, Yasushi; Inoue, Satoshi

    2007-07-06

    Estrogen-related receptor alpha (ERRalpha) is an orphan nuclear receptor that regulates cellular energy metabolism by modulating gene expression involved in fatty acid oxidation and mitochondrial biogenesis in brown adipose tissue. However, the physiological role of ERRalpha in adipogenesis and white adipose tissue development has not been well studied. Here, we show that ERRalpha and ERRalpha-related transcriptional coactivators, peroxisome proliferator-activated receptor gamma (PPARgamma) coactivator-1alpha (PGC-1alpha) and PGC-1beta, can be up-regulated in 3T3-L1 preadipocytes at mRNA levels under the adipogenic differentiation condition including the inducer of cAMP, glucocorticoid, and insulin. Gene knockdown by ERRalpha-specific siRNA results in mRNA down-regulation of fatty acid binding protein 4, PPARgamma, and PGC-1alpha in 3T3-L1 cells in the adipogenesis medium. ERRalpha and PGC-1beta mRNA expression can be also up-regulated in another preadipocyte lineage DFAT-D1 cells and a pluripotent mesenchymal cell line C3H10T1/2 under the differentiation condition. Furthermore, stable expression of ERRalpha in 3T3-L1 cells up-regulates adipogenic marker genes and promotes triglyceride accumulation during 3T3-L1 differentiation. These results suggest that ERRalpha may play a critical role in adipocyte differentiation by modulating the expression of various adipogenesis-related genes.

  19. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression.

    Science.gov (United States)

    Kim, Sang Yun; Kim, A Young; Lee, Hyun Woo; Son, You Hwa; Lee, Gha Young; Lee, Joo-Won; Lee, Yun Sok; Kim, Jae Bum

    2010-02-12

    microRNAs (miRNAs) are non-coding small RNAs regulating gene expression, cell growth, and differentiation. Although several miRNAs have been implicated in cell growth and differentiation, it is barely understood their roles in adipocyte differentiation. In the present study, we reveal that miR-27a is involved in adipocyte differentiation by binding to the PPARgamma 3'-UTR whose sequence motifs are highly conserved in mammals. During adipogenesis, the expression level of miR-27a was inversely correlated with that of adipogenic marker genes such as PPARgamma and adiponectin. In white adipose tissue, miR-27a was more abundantly expressed in stromal vascular cell fraction than in mature adipocyte fraction. Ectopic expression of miR-27a in 3T3-L1 pre-adipocytes repressed adipocyte differentiation by reducing PPARgamma expression. Interestingly, the level of miR-27a in mature adipocyte fraction of obese mice was down-regulated than that of lean mice. Together, these results suggest that miR-27a would suppress adipocyte differentiation through targeting PPARgamma and thereby down-regulation of miR-27a might be associated with adipose tissue dysregulation in obesity.

  20. Gene regulation in the immediate-early response process.

    Science.gov (United States)

    Bahrami, Shahram; Drabløs, Finn

    2016-09-01

    Immediate-early genes (IEGs) can be activated and transcribed within minutes after stimulation, without the need for de novo protein synthesis, and they are stimulated in response to both cell-extrinsic and cell-intrinsic signals. Extracellular signals are transduced from the cell surface, through receptors activating a chain of proteins in the cell, in particular extracellular-signal-regulated kinases (ERKs), mitogen-activated protein kinases (MAPKs) and members of the RhoA-actin pathway. These communicate through a signaling cascade by adding phosphate groups to neighboring proteins, and this will eventually activate and translocate TFs to the nucleus and thereby induce gene expression. The gene activation also involves proximal and distal enhancers that interact with promoters to simulate gene expression. The immediate-early genes have essential biological roles, in particular in stress response, like the immune system, and in differentiation. Therefore they also have important roles in various diseases, including cancer development. In this paper we summarize some recent advances on key aspects of the activation and regulation of immediate-early genes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells

    Energy Technology Data Exchange (ETDEWEB)

    Noah, Taeko K.; Kazanjian, Avedis [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Whitsett, Jeffrey [Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Neonatology and Pulmonary Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Shroyer, Noah F., E-mail: noah.shroyer@cchmc.org [Gastroenterology, Hepatology and Nutrition, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States); Developmental Biology, Cincinnati Children' s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH (United States)

    2010-02-01

    Background and Aims: SPDEF (also termed PDEF or PSE) is an ETS family transcription factor that regulates gene expression in the prostate and goblet cell hyperplasia in the lung. Spdef has been reported to be expressed in the intestine. In this paper, we identify an important role for Spdef in regulating intestinal epithelial cell homeostasis and differentiation. Methods: SPDEF expression was inhibited in colon cancer cells to determine its ability to control goblet cell gene activation. The effects of transgenic expression of Spdef on intestinal differentiation and homeostasis were determined. Results: In LS174T colon cancer cells treated with Notch/{gamma}-secretase inhibitor to activate goblet cell gene expression, shRNAs that inhibited SPDEF also repressed expression of goblet cell genes AGR2, MUC2, RETLNB, and SPINK4. Transgenic expression of Spdef caused the expansion of intestinal goblet cells and corresponding reduction in Paneth, enteroendocrine, and absorptive enterocytes. Spdef inhibited proliferation of intestinal crypt cells without induction of apoptosis. Prolonged expression of the Spdef transgene caused a progressive reduction in the number of crypts that expressed Spdef, consistent with its inhibitory effects on cell proliferation. Conclusions: Spdef was sufficient to inhibit proliferation of intestinal progenitors and induce differentiation into goblet cells; SPDEF was required for activation of goblet cell associated genes in vitro. These data support a model in which Spdef promotes terminal differentiation into goblet cells of a common goblet/Paneth progenitor.

  2. DNA Methylation Profiling Reveals Correlation of Differential Methylation Patterns with Gene Expression in Human Epilepsy.

    Science.gov (United States)

    Wang, Liang; Fu, Xinwei; Peng, Xi; Xiao, Zheng; Li, Zhonggui; Chen, Guojun; Wang, Xuefeng

    2016-05-01

    DNA methylation plays important roles in regulating gene expression and has been reported to be related with epilepsy. This study aimed to define differential DNA methylation patterns in drug-refractory epilepsy patients and to investigate the role of DNA methylation in human epilepsy. We performed DNA methylation profiling in brain tissues from epileptic and control patients via methylated-cytosine DNA immunoprecipitation microarray chip. Differentially methylated loci were validated by bisulfite sequencing PCR, and the messenger RNA (mRNA) levels of candidate genes were evaluated by reverse transcriptase PCR. We found 224 genes that showed differential DNA methylation between epileptic patients and controls. Among the seven candidate genes, three genes (TUBB2B, ATPGD1, and HTR6) showed relative transcriptional regulation by DNA methylation. TUBB2B and ATPGD1 exhibited hypermethylation and decreased mRNA levels, whereas HTR6 displayed hypomethylation and increased mRNA levels in the epileptic samples. Our findings suggest that certain genes become differentially regulated by DNA methylation in human epilepsy.

  3. Differentially expressed gene in osteosarcoma cell lines with different metastatic potentials

    Institute of Scientific and Technical Information of China (English)

    Xinzhi Li; Lin Meng; Anming Chen; Fengjin Guo; Zhenqiang Luo; Heng Zeng

    2009-01-01

    Objective: To study the expression of osteosarcoma metastasis associated gene using a cDNA microarray, and screen new candidate genes related'to the development, progress and osteosarcoma metastasis. Methods: Total RNA of a low metastatic osteosarcoma and a high metastatic osteosarcoma (M6 and M8 cell lines, respectively) was extracted, purified to mRNA and then reverse transcribed to cDNA. M6 was used as the experimental group and M8 as the control group, and the gene expression of cells from both of these two sublines was investigated using cDNA microarrays containig 8064 cDNA clones. The cDNA of M6 was labeled with cy3 and the cDNA of M8 was labeled with cy5. The two sublines were hybridized with the cDNA microarray. The hybridization signals were scanned with a Generation Ⅲ array scanner and analyzed by Imagequant 5.0 software. Results: There were 330 differentially expressed genes between M6 and M8. In the M6 subline,152 genes were up-regulated and 178 genes were down-regulated compared to the M8 subline. These genes could be classified according to their function. Cell growth-related genes that were down-regulated included CCNG1, CDC2, APCl0,and RPA3, while expression of the tumor suppressor genes, CDKN1A and CDKN2D, was up-regulated. Other genes that were differentially expressed included those that have been implicated in the regulation of signal transduction, metabolism and apoptosis. Conclusion: This study exploits a cDNA microarray approach to identifying genes that may be associated with metastasis. The gene expression profiles of osteosarcoma cell lines is a potentially important index in the search of new candidate genes related to tumor occurrence, development and metastasis.

  4. Suppression subtractive hybridization identified differentially expressed genes in lung adenocarcinoma: ERGIC3 as a novel lung cancer-related gene

    Directory of Open Access Journals (Sweden)

    Wu Mingsong

    2013-02-01

    Full Text Available Abstract Background To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes. Methods Two cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression. Results Two libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL and the reverse-subtracted library (RSL contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1 from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3 from the RSL were significantly down-regulated (P  Conclusions The two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer

  5. A comparison of key aspects of gene regulation in Streptomyces coelicolor and Escherichia coli using nucleotide-resolution transcription maps produced in parallel by global and differential RNA sequencing.

    Science.gov (United States)

    Romero, David A; Hasan, Ayad H; Lin, Yu-Fei; Kime, Louise; Ruiz-Larrabeiti, Olatz; Urem, Mia; Bucca, Giselda; Mamanova, Lira; Laing, Emma E; van Wezel, Gilles P; Smith, Colin P; Kaberdin, Vladimir R; McDowall, Kenneth J

    2014-09-30

    Streptomyces coelicolor is a model for studying bacteria renowned as the foremost source of natural products used clinically. Post-genomic studies have revealed complex patterns of gene expression and links to growth, morphological development and individual genes. However, the underlying regulation remains largely obscure, but undoubtedly involves steps after transcription initiation. Here we identify sites involved in RNA processing and degradation as well as transcription within a nucleotide-resolution map of the transcriptional landscape. This was achieved by combining RNA-sequencing approaches suited to the analysis of GC-rich organisms. Escherichia coli was analysed in parallel to validate the methodology and allow comparison. Previously, sites of RNA processing and degradation had not been mapped on a transcriptome-wide scale for E. coli. Through examples, we show the value of our approach and data sets. This includes the identification of new layers of transcriptional complexity associated with several key regulators of secondary metabolism and morphological development in S. coelicolor and the identification of host-encoded leaderless mRNA and rRNA processing associated with the generation of specialized ribosomes in E. coli. New regulatory small RNAs were identified for both organisms. Overall the results illustrate the diversity in mechanisms used by different bacterial groups to facilitate and regulate gene expression. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  6. Gene expression profiles resulting from stable loss of p53 mirrors its role in tissue differentiation.

    Directory of Open Access Journals (Sweden)

    Oliver Couture

    Full Text Available The tumor suppressor gene p53 is involved in a variety of cellular activities such as cellular stress responses, cell cycle regulation and differentiation. In our previous studies we have shown p53's transcription activating role to be important in osteoblast differentiation. There is still a debate in the literature as to whether p53 inhibits or promotes differentiation. We have found p53 heterozygous mice to show a p53 dependency on some bone marker gene expression that is absent in knockout mice. Mice heterozygous for p53 also show a higher incidence of osteosarcomas than p53 knockout mice. This suggests that p53 is able to modify the environment within osteoblasts. In this study we compare changes in gene expression resulting after either a transient or stable reduction in p53. Accordingly we reduced p53 levels transiently and stably in C2C12 cells, which are capable of both myoblast and osteoblast differentiation, and compared the changes in gene expression of candidate genes regulated by the p53 pathway. Using a PCR array to assay for p53 target genes, we have found different expression profiles when comparing stable versus transient knockdown of p53. As expected, several genes with profound changes after transient p53 loss were related to apoptosis and cell cycle regulation. In contrast, stable p53 loss produced a greater change in MyoD and other transcription factors with tissue specific roles, suggesting that long term loss of p53 affects tissue homeostasis to a greater degree than changes resulting from acute loss of p53. These differences in gene expression were validated by measuring promoter activity of different pathway specific genes involved in differentiation. These studies suggest that an important role for p53 is context dependent, with a stable reduction in p53 expression affecting normal tissue physiology more than acute loss of p53.

  7. Gene expression regulation in roots under drought.

    Science.gov (United States)

    Janiak, Agnieszka; Kwaśniewski, Mirosław; Szarejko, Iwona

    2016-02-01

    Stress signalling and regulatory networks controlling expression of target genes are the basis of plant response to drought. Roots are the first organs exposed to water deficiency in the soil and are the place of drought sensing. Signalling cascades transfer chemical signals toward the shoot and initiate molecular responses that lead to the biochemical and morphological changes that allow plants to be protected against water loss and to tolerate stress conditions. Here, we present an overview of signalling network and gene expression regulation pathways that are actively induced in roots under drought stress. In particular, the role of several transcription factor (TF) families, including DREB, AP2/ERF, NAC, bZIP, MYC, CAMTA, Alfin-like and Q-type ZFP, in the regulation of root response to drought are highlighted. The information provided includes available data on mutual interactions between these TFs together with their regulation by plant hormones and other signalling molecules. The most significant downstream target genes and molecular processes that are controlled by the regulatory factors are given. These data are also coupled with information about the influence of the described regulatory networks on root traits and root development which may translate to enhanced drought tolerance. This is the first literature survey demonstrating the gene expression regulatory machinery that is induced by drought stress, presented from the perspective of roots.

  8. Redox regulation of differentiation in symbiotic nitrogen fixation.

    Science.gov (United States)

    Ribeiro, Carolina Werner; Alloing, Geneviève; Mandon, Karine; Frendo, Pierre

    2015-08-01

    Nitrogen-fixing symbiosis between Rhizobium bacteria and legumes leads to the formation of a new organ, the root nodule. The development of the nodule requires the differentiation of plant root cells to welcome the endosymbiotic bacterial partner. This development includes the formation of an efficient vascular tissue which allows metabolic exchanges between the root and the nodule, the formation of a barrier to oxygen diffusion necessary for the bacterial nitrogenase activity and the enlargement of cells in the infection zone to support the large bacterial population. Inside the plant cell, the bacteria differentiate into bacteroids which are able to reduce atmospheric nitrogen to ammonia needed for plant growth in exchange for carbon sources. Nodule functioning requires a tight regulation of the development of plant cells and bacteria. Nodule functioning requires a tight regulation of the development of plant cells and bacteria. The importance of redox control in nodule development and N-fixation is discussed in this review. The involvement of reactive oxygen and nitrogen species and the importance of the antioxidant defense are analyzed. Plant differentiation and bacterial differentiation are controlled by reactive oxygen and nitrogen species, enzymes involved in the antioxidant defense and antioxidant compounds. The establishment and functioning of nitrogen-fixing symbiosis involve a redox control important for both the plant-bacteria crosstalk and the consideration of environmental parameters. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Identification of up-regulated genes in human uterine leiomyoma by suppression subtractive hybridization

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    In searching for differentially expressed genes in human uterine leiomyomas (ULs), suppression sub-tractive hybridization was used to construct an UL up-regulated library, which turned out to represent 88genes. After two rounds of screening by reverse Northern analysis, twenty genes were proved to be up-regulated, including seventeen known genes and three genes with unknown function. All these genes werefirstly associated with UL. Three genes with notable difference were selected for Northern confirmationOur results proved the authenticity of the twenty genes. One gene named Phospholipase A2 (PLA2) showedup-regulation in 4/6 of the patients and investigation of tissue distribution indicated that it had obviousexpression in prostate, testis, liver, heart and skeletal muscle.

  10. Identifying the optimal gene and gene set in hepatocellular carcinoma based on differential expression and differential co-expression algorithm.

    Science.gov (United States)

    Dong, Li-Yang; Zhou, Wei-Zhong; Ni, Jun-Wei; Xiang, Wei; Hu, Wen-Hao; Yu, Chang; Li, Hai-Yan

    2017-02-01

    The objective of this study was to identify the optimal gene and gene set for hepatocellular carcinoma (HCC) utilizing differential expression and differential co-expression (DEDC) algorithm. The DEDC algorithm consisted of four parts: calculating differential expression (DE) by absolute t-value in t-statistics; computing differential co-expression (DC) based on Z-test; determining optimal thresholds on the basis of Chi-squared (χ2) maximization and the corresponding gene was the optimal gene; and evaluating functional relevance of genes categorized into different partitions to determine the optimal gene set with highest mean minimum functional information (FI) gain (Δ*G). The optimal thresholds divided genes into four partitions, high DE and high DC (HDE-HDC), high DE and low DC (HDE-LDC), low DE and high DC (LDE‑HDC), and low DE and low DC (LDE-LDC). In addition, the optimal gene was validated by conducting reverse transcription-polymerase chain reaction (RT-PCR) assay. The optimal threshold for DC and DE were 1.032 and 1.911, respectively. Using the optimal gene, the genes were divided into four partitions including: HDE-HDC (2,053 genes), HED-LDC (2,822 genes), LDE-HDC (2,622 genes), and LDE-LDC (6,169 genes). The optimal gene was microtubule‑associated protein RP/EB family member 1 (MAPRE1), and RT-PCR assay validated the significant difference between the HCC and normal state. The optimal gene set was nucleoside metabolic process (GO\\GO:0009116) with Δ*G = 18.681 and 24 HDE-HDC partitions in total. In conclusion, we successfully investigated the optimal gene, MAPRE1, and gene set, nucleoside metabolic process, which may be potential biomarkers for targeted therapy and provide significant insight for revealing the pathological mechanism underlying HCC.

  11. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2004-12-31

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  12. Signal Transduction Pathways that Regulate CAB Gene Expression

    Energy Technology Data Exchange (ETDEWEB)

    Chory, Joanne

    2006-01-16

    The process of chloroplast differentiation, involves the coordinate regulation of many nuclear and chloroplast genes. The cues for the initiation of this developmental program are both extrinsic (e.g., light) and intrinsic (cell-type and plastid signals). During this project period, we utilized a molecular genetic approach to select for Arabidopsis mutants that did not respond properly to environmental light conditions, as well as mutants that were unable to perceive plastid damage. These latter mutants, called gun mutants, define two retrograde signaling pathways that regulate nuclear gene expression in response to chloroplasts. A major finding was to identify a signal from chloroplasts that regulates nuclear gene transcription. This signal is the build-up of Mg-Protoporphyrin IX, a key intermediate of the chlorophyll biosynthetic pathway. The signaling pathways downstream of this signal are currently being studied. Completion of this project has provided an increased understanding of the input signals and retrograde signaling pathways that control nuclear gene expression in response to the functional state of chloroplasts. These studies should ultimately influence our abilities to manipulate plant growth and development, and will aid in the understanding of the developmental control of photosynthesis.

  13. A Hox Gene, Antennapedia, Regulates Expression of Multiple Major Silk Protein Genes in the Silkworm Bombyx mori.

    Science.gov (United States)

    Tsubota, Takuya; Tomita, Shuichiro; Uchino, Keiro; Kimoto, Mai; Takiya, Shigeharu; Kajiwara, Hideyuki; Yamazaki, Toshimasa; Sezutsu, Hideki

    2016-03-25

    Hoxgenes play a pivotal role in the determination of anteroposterior axis specificity during bilaterian animal development. They do so by acting as a master control and regulating the expression of genes important for development. Recently, however, we showed that Hoxgenes can also function in terminally differentiated tissue of the lepidopteranBombyx mori In this species,Antennapedia(Antp) regulates expression of sericin-1, a major silk protein gene, in the silk gland. Here, we investigated whether Antpcan regulate expression of multiple genes in this tissue. By means of proteomic, RT-PCR, and in situ hybridization analyses, we demonstrate that misexpression of Antpin the posterior silk gland induced ectopic expression of major silk protein genes such assericin-3,fhxh4, and fhxh5 These genes are normally expressed specifically in the middle silk gland as is Antp Therefore, the evidence strongly suggests that Antpactivates these silk protein genes in the middle silk gland. The putativesericin-1 activator complex (middle silk gland-intermolt-specific complex) can bind to the upstream regions of these genes, suggesting that Antpdirectly activates their expression. We also found that the pattern of gene expression was well conserved between B. moriand the wild species Bombyx mandarina, indicating that the gene regulation mechanism identified here is an evolutionarily conserved mechanism and not an artifact of the domestication of B. mori We suggest that Hoxgenes have a role as a master control in terminally differentiated tissues, possibly acting as a primary regulator for a range of physiological processes.

  14. Meis1 regulates Foxn4 expression during retinal progenitor cell differentiation

    Directory of Open Access Journals (Sweden)

    Mohammed M. Islam

    2013-09-01

    The transcription factor forkhead box N4 (Foxn4 is a key regulator in a variety of biological processes during development. In particular, Foxn4 plays an essential role in the genesis of horizontal and amacrine neurons from neural progenitors in the vertebrate retina. Although the functions of Foxn4 have been well established, the transcriptional regulation of Foxn4 expression during progenitor cell differentiation remains unclear. Here, we report that an evolutionarily conserved 129 bp noncoding DNA fragment (Foxn4CR4.2 or CR4.2, located ∼26 kb upstream of Foxn4 transcription start site, functions as a cis-element for Foxn4 regulation. CR4.2 directs gene expression in Foxn4-positive cells, primarily in progenitors, differentiating horizontal and amacrine cells. We further determined that the gene regulatory activity of CR4.2 is modulated by Meis1 binding motif, which is bound and activated by Meis1 transcription factor. Deletion of the Meis1 binding motif or knockdown of Meis1 expression abolishes the gene regulatory activity of CR4.2. In addition, knockdown of Meis1 expression diminishes the endogenous Foxn4 expression and affects cell lineage development. Together, we demonstrate that CR4.2 and its interacting Meis1 transcription factor play important roles in regulating Foxn4 expression during early retinogenesis. These findings provide new insights into molecular mechanisms that govern gene regulation in retinal progenitors and specific cell lineage development.

  15. Perturbation-expression analysis identifies RUNX1 as a regulator of human mammary stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Ethan S Sokol

    2015-04-01

    Full Text Available The search for genes that regulate stem cell self-renewal and differentiation has been hindered by a paucity of markers that uniquely label stem cells and early progenitors. To circumvent this difficulty we have developed a method that identifies cell-state regulators without requiring any markers of differentiation, termed Perturbation-Expression Analysis of Cell States (PEACS. We have applied this marker-free approach to screen for transcription factors that regulate mammary stem cell differentiation in a 3D model of tissue morphogenesis and identified RUNX1 as a stem cell regulator. Inhibition of RUNX1 expanded bipotent stem cells and blocked their differentiation into ductal and lobular tissue rudiments. Reactivation of RUNX1 allowed exit from the bipotent state and subsequent differentiation and mammary morphogenesis. Collectively, our findings show that RUNX1 is required for mammary stem cells to exit a bipotent state, and provide a new method for discovering cell-state regulators when markers are not available.

  16. High and low molecular weight hyaluronic acid differentially regulate human fibrocyte differentiation.

    Directory of Open Access Journals (Sweden)

    Anu S Maharjan

    Full Text Available BACKGROUND: Following tissue injury, monocytes can enter the tissue and differentiate into fibroblast-like cells called fibrocytes, but little is known about what regulates this differentiation. Extracellular matrix contains high molecular weight hyaluronic acid (HMWHA; ∼2×10(6 Da. During injury, HMWHA breaks down to low molecular weight hyaluronic acid (LMWHA; ∼0.8-8×10(5 Da. METHODS AND FINDINGS: In this report, we show that HMWHA potentiates the differentiation of human monocytes into fibrocytes, while LMWHA inhibits fibrocyte differentiation. Digestion of HMWHA with hyaluronidase produces small hyaluronic acid fragments, and these fragments inhibit fibrocyte differentiation. Monocytes internalize HMWHA and LMWHA equally well, suggesting that the opposing effects on fibrocyte differentiation are not due to differential internalization of HMWHA or LMWHA. Adding HMWHA to PBMC does not appear to affect the levels of the hyaluronic acid receptor CD44, whereas adding LMWHA decreases CD44 levels. The addition of anti-CD44 antibodies potentiates fibrocyte differentiation, suggesting that CD44 mediates at least some of the effect of hyaluronic acid on fibrocyte differentiation. The fibrocyte differentiation-inhibiting factor serum amyloid P (SAP inhibits HMWHA-induced fibrocyte differentiation and potentiates LMWHA-induced inhibition. Conversely, LMWHA inhibits the ability of HMWHA, interleukin-4 (IL-4, or interleukin-13 (IL-13 to promote fibrocyte differentiation. CONCLUSIONS: We hypothesize that hyaluronic acid signals at least in part through CD44 to regulate fibrocyte differentiation, with a dominance hierarchy of SAP>LMWHA≥HMWHA>IL-4 or IL-13.

  17. Alternative Splicing of G9a Regulates Neuronal Differentiation

    Directory of Open Access Journals (Sweden)

    Ana Fiszbein

    2016-03-01

    Full Text Available Chromatin modifications are critical for the establishment and maintenance of differentiation programs. G9a, the enzyme responsible for histone H3 lysine 9 dimethylation in mammalian euchromatin, exists as two isoforms with differential inclusion of exon 10 (E10 through alternative splicing. We find that the G9a methyltransferase is required for differentiation of the mouse neuronal cell line N2a and that E10 inclusion increases during neuronal differentiation of cultured cells, as well as in the developing mouse brain. Although E10 inclusion greatly stimulates overall H3K9me2 levels, it does not affect G9a catalytic activity. Instead, E10 increases G9a nuclear localization. We show that the G9a E10+ isoform is necessary for neuron differentiation and regulates the alternative splicing pattern of its own pre-mRNA, enhancing E10 inclusion. Overall, our findings indicate that by regulating its own alternative splicing, G9a promotes neuron differentiation and creates a positive feedback loop that reinforces cellular commitment to differentiation.

  18. Expression profiles for six zebrafish genes during gonadal sex differentiation

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Morthorst, Jane E.; Andersen, Ole;

    2008-01-01

    the precise timing of expression of six genes previously suggested to be associated with sex differentiation in zebrafish. The current study investigates the expression of all six genes in the same individual fish with extensive sampling dates during sex determination and -differentiation. RESULTS...... the same fish allowing comparison of the high and low expressers of genes that are expected to be highest expressed in either males or females. There were 78% high or low expressers of all three "male" genes (ar, sox9a and dmrt1) in the investigated period and 81% were high or low expressers of both...

  19. Differential gene expression profiles in foetal skin of Rex rabbits with different wool density

    Directory of Open Access Journals (Sweden)

    L. Liu

    2016-09-01

    Full Text Available This study investigated the mechanisms controlling hair follicle development in the Rex rabbit. The Agilent rabbit gene expression microarray was used to determine differentially expressed genes in Rex rabbit foetuses with different wool densities. The expression patterns of selected differentially-expressed genes were further investigated by quantitative real-time PCR. Compared to low wool density rabbits, 1342 differentially expressed probes were identified in high wool density rabbits, including 950 upregulated probes and 392 downregulated probes. Gene ontology analysis revealed that the most upregulated differentially expressed probes belonged to receptors and the most downregulated differentially expressed probes belonged to DNA binding molecules. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the differentially expressed probes were mainly involved in the sonic hedgehog (Shh and Eph signalling pathways. The results also suggest that transforming growth factor-beta 1, growth hormone receptor, and the keratin-associated protein 6.1 genes, as well as the Shh and Eph signalling pathways, may be involved in the regulation of hair follicle developmental in Rex rabbits.

  20. Differential Expression of Salinity Resistance Gene on Cotton

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Salinity resistance and differential gene expression associated with salinity in cotton germplasm were studied,because of the large scale area of salinity in China,and its significant negative effects on

  1. Regulation of virulence gene expression in pathogenic Listeria.

    Science.gov (United States)

    Brehm, K; Kreft, J; Ripio, M T; Vázquez-Boland, J A

    1996-06-01

    Dynamic interactions between host and pathogen are characteristic of infections caused by intracellular bacteria. This has favoured the evolution of highly effective control systems by which these pathogens regulate the expression of different virulence factors during sequential steps of the infection process. In the case of the facultative intracellular bacterium Listeria monocytogenes, these steps involve internalization by eukaryotic cells, lysis of the resulting phagosome, replication as well as movement within the host cytoplasm, direct cell-to-cell spread, and subsequent lysis of a double-membrane vacuole when entering neighbouring cells. Virulence factors which are involved in each of these steps have been identified and the expression of these factors is subject to a co-ordinate and differential control exerted by the major listerial virulence regulator PrfA. This protein belongs to the Crp/Fnr-family of transcriptional activators and recognizes specific target sequences in promoter regions of several listerial virulence genes. Differential expression of these genes during sequential steps of the infection seems to be at least partially mediated by different binding affinities of PrfA to its target sequences. Activity of PrfA-dependent genes and of prfA itself is under the control of several environmental variables which are used by the pathogen to recognize its transition from the free environment into a eukaryotic host.

  2. Stem cell regulation: Implications when differentiated cells regulate symmetric stem cell division.

    Science.gov (United States)

    Høyem, Marte Rørvik; Måløy, Frode; Jakobsen, Per; Brandsdal, Bjørn Olav

    2015-09-07

    We use a mathematical model to show that if symmetric stem cell division is regulated by differentiated cells, then changes in the population dynamics of the differentiated cells can lead to changes in the population dynamics of the stem cells. More precisely, the relative fitness of the stem cells can be affected by modifying the death rate of the differentiated cells. This result is interesting because stem cells are less sensitive than differentiated cells to environmental factors, such as medical therapy. Our result implies that stem cells can be manipulated indirectly by medical treatments that target the differentiated cells. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Comparative transcriptomic analyses of differentially expressed genes in transgenic melatonin biosynthesis ovine HIOMT gene in switchgrass

    Directory of Open Access Journals (Sweden)

    Shan Yuan

    2016-11-01

    Full Text Available Melatonin serves pleiotropic functions in prompting plant growth and resistance to various stresses. The accurate biosynthetic pathway of melatonin remains elusive in plant species, while the N-acetyltransferase and O-methyltransferase were considered to be the last two key enzymes during its biosynthesis. To investigate the biosynthesis and metabolic pathway of melatonin in plants, the RNA-seq profile of overexpression of the ovine HIOMT was analyzed and compared with the previous transcriptome of transgenic oAANAT gene in switchgrass, a model plant for cellulosic ethanol production. A total of 946, 405 and 807 differentially expressed unigenes were observed in AANAT vs. control, HIOMT vs. control, and AANAT vs. HIOMT, respectively. The significantly upregulated (F-box/kelch-repeat protein, zinc finger BED domain-containing protein-3 genes were consistent with enhanced phenotypes of shoot, stem and root growth in transgenic oHIOMT switchgrass. Early flowering in overexpression of oHIOMT switchgrass involved in the regulation of flowering-time genes (APETALA2. Several stress resistant related genes (SPX domain-containing membrane protein, copper transporter 1, late blight resistance protein homolog R1A-6 OS etc. were specifically and significantly upregulated in transgenic oHIOMT only, while metabolism-related genes (phenylalanine-4-hydroxylase, tyrosine decarboxylase 1, protein disulfide-isomerase and galactinol synthase 2 etc. were significantly upregulated in transgenic oAANAT only. These results provide new sights into the biosynthetic and physiological functional networks of melatonin in plants.

  4. Preliminary screening of differentially expressed genes involved in methyl-CpG-binding protein 2 gene-mediated proliferation in human osteosarcoma cells.

    Science.gov (United States)

    Meng, Gang; Li, Yi; Lv, YangFan; Dai, Huanzi; Zhang, Xi; Guo, Qiao-Nan

    2015-04-01

    Methyl-CpG-binding protein 2 (MeCP2) is essential in human brain development and has been linked to several cancer types and neuro-developmental disorders. This study aims to screen the MeCP2 related differentially expressed genes and discover the therapeutic targets for osteosarcoma. CCK8 assay was used to detect the proliferation and SaOS2 and U2OS cells. Apoptosis of cells was detected by flow cytometry analysis that monitored Annexin V-APC/7-DD binding and 7-ADD uptake simultaneously. Denaturing formaldehyde agarose gel electrophoresis was employed to examine the quality of total RNA 18S and 28S units. Gene chip technique was utilized to discover the differentially expressed genes correlated with MeCP2 gene. Differential gene screening criteria were used to screen the changed genes. The gene up-regulation or down-regulation more than 1.5 times was regarded as significant differential expression genes. The CCK8 results indicated that the cell proliferation of MeCP2 silencing cells (LV-MeCP2-RNAi) was significantly decreased compared to non-silenced cells (LV-MeCP2-RNAi-CN) (P genes were screened from a total of 49,395 transcripts. Among the total 107 transcripts, 34 transcripts were up-regulated and 73 transcripts were down-regulated. There were five significant differentially expressed genes, including IGFBP4, HOXC8, LMO4, MDK, and CTGF, which correlated with the MeCP2 gene. The methylation frequency of CpG in IGFBP4 gene could achieve 55%. In conclusion, the differentially expressed IGFBP4, HOXC8, LMO4, MDK, and CTGF genes may be involved in MeCP2 gene-mediated proliferation and apoptosis in osteosarcoma cells.

  5. Regulation of Pax6 by CTCF during induction of mouse ES cell differentiation.

    Directory of Open Access Journals (Sweden)

    Jie Gao

    Full Text Available Pax6 plays an important role in embryonic cell (ES differentiation during embryonic development. Expression of Pax6 undergoes from a low level to high levels following ES cell differentiation to neural stem cells, and then fades away in most of the differentiated cell types. There is a limited knowledge concerning how Pax6 is regulated in ES cell differentiation. We report that Pax6 expression in mouse ES cells was controlled by CCCTC binding factor (CTCF through a promoter repression mechanism. Pax6 expression was significantly enhanced while CTCF activity was kept in the constant during ES cell differentiation to radial glial cells. Instead, the interaction of CTCF with Pax6 gene was regulated by decreased CTCF occupancy in its binding motifs upstream from Pax6 P0 promoter following the course of ES cell differentiation. Reduced occupancy of CTCF in the binding motif region upstream from the P0 promoter was due to increased DNA methylations in the CpG sites identified in the region. Furthermore, changes in DNA methylation levels in vitro and in vivo effectively altered methylation status of these identified CpG sites, which affected ability of CTCF to interact with the P0 promoter, resulting in increases in Pax6 expression. We conclude that there is an epigenetic mechanism involving regulations of Pax6 gene during ES cell differentiation to neural stem cells, which is through increases or decreases in methylation levels of Pax6 gene to effectively alter the ability of CTCF in control of Pax6 expression, respectively.

  6. Identification of genes differentially expressed in myogenin knock-down bovine muscle satellite cells during differentiation through RNA sequencing analysis.

    Directory of Open Access Journals (Sweden)

    Eun Ju Lee

    Full Text Available BACKGROUND: The expression of myogenic regulatory factors (MRFs consisting of MyoD, Myf5, myogenin (MyoG and MRF4 characterizes various phases of skeletal muscle development including myoblast proliferation, cell-cycle exit, cell fusion and the maturation of myotubes to form myofibers. Although it is well known that the function of MyoG cannot be compensated for other MRFs, the molecular mechanism by which MyoG controls muscle cell differentiation is still unclear. Therefore, in this study, RNA-Seq technology was applied to profile changes in gene expression in response to MyoG knock-down (MyoGkd in primary bovine muscle satellite cells (MSCs. RESULTS: About 61-64% of the reads of over 42 million total reads were mapped to more than 13,000 genes in the reference bovine genome. RNA-Seq analysis identified 8,469 unique genes that were differentially expressed in MyoGkd. Among these genes, 230 were up-regulated and 224 were down-regulated by at least four-fold. DAVID Functional Annotation Cluster (FAC and pathway analysis of all up- and down-regulated genes identified overrepresentation for cell cycle and division, DNA replication, mitosis, organelle lumen, nucleoplasm and cytosol, phosphate metabolic process, phosphoprotein phosphatase activity, cytoskeleton and cell morphogenesis, signifying the functional implication of these processes and pathways during skeletal muscle development. The RNA-Seq data was validated by real time RT-PCR analysis for eight out of ten genes as well as five marker genes investigated. CONCLUSIONS: This study is the first RNA-Seq based gene expression analysis of MyoGkd undertaken in primary bovine MSCs. Computational analysis of the differentially expressed genes has identified the significance of genes such as SAP30-like (SAP30L, Protein lyl-1 (LYL1, various matrix metalloproteinases, and several glycogenes in myogenesis. The results of the present study widen our knowledge of the molecular basis of skeletal muscle

  7. Dynamic model of gene regulation for the lac operon

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Maia; Ben-Halim, Asma, E-mail: maia.angelova@northumbria.ac.uk, E-mail: asma.benhalim@northumbria.ac.uk [Intelligent Modelling Lab, School of Computing, Engineering and Information Sciences, Northumbria University, Newcastle upon Tyne NE2 1XE (United Kingdom)

    2011-03-01

    Gene regulatory network is a collection of DNA which interact with each other and with other matter in the cell. The lac operon is an example of a relatively simple genetic network and is one of the best-studied structures in the Escherichia coli bacteria. In this work we consider a deterministic model of the lac operon with a noise term, representing the stochastic nature of the regulation. The model is written in terms of a system of simultaneous first order differential equations with delays. We investigate an analytical and numerical solution and analyse the range of values for the parameters corresponding to a stable solution.

  8. Regulation of root hair cell differentiation by R3 MYB transcription factors in tomato and Arabidopsis.

    Science.gov (United States)

    Tominaga-Wada, Rumi; Wada, Takuji

    2014-01-01

    CAPRICE (CPC) encodes a small protein with an R3 MYB motif and regulates root hair and trichome cell differentiation in Arabidopsis thaliana. Six additional CPC-like MYB proteins including TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), ENHANCER OF TRY AND CPC3/CPC-LIKE MYB3 (ETC3/CPL3), TRICHOMELESS1 (TCL1), and TRICHOMELESS2/CPC-LIKE MYB4 (TCL2/CPL4) also have the ability to regulate root hair and/or trichome cell differentiation in Arabidopsis. In this review, we describe our latest findings on how CPC-like MYB transcription factors regulate root hair cell differentiation. Recently, we identified the tomato SlTRY gene as an ortholog of the Arabidopsis TRY gene. Transgenic Arabidopsis plants harboring SlTRY produced more root hairs, a phenotype similar to that of 35S::CPC transgenic plants. CPC is also known to be involved in anthocyanin biosynthesis. Anthocyanin accumulation was repressed in the SlTRY transgenic plants, suggesting that SlTRY can also influence anthocyanin biosynthesis. We concluded that tomato and Arabidopsis partially use similar transcription factors for root hair cell differentiation, and that a CPC-like R3 MYB may be a key common regulator of plant root-hair development.

  9. Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation.

    Science.gov (United States)

    Kouwenhoven, Evelyn N; Oti, Martin; Niehues, Hanna; van Heeringen, Simon J; Schalkwijk, Joost; Stunnenberg, Hendrik G; van Bokhoven, Hans; Zhou, Huiqing

    2015-07-01

    The transcription factor p63 plays a pivotal role in keratinocyte proliferation and differentiation in the epidermis. However, how p63 regulates epidermal genes during differentiation is not yet clear. Using epigenome profiling of differentiating human primary epidermal keratinocytes, we characterized a catalog of dynamically regulated genes and p63-bound regulatory elements that are relevant for epithelial development and related diseases. p63-bound regulatory elements occur as single or clustered enhancers, and remarkably, only a subset is active as defined by the co-presence of the active enhancer mark histone modification H3K27ac in epidermal keratinocytes. We show that the dynamics of gene expression correlates with the activity of p63-bound enhancers rather than with p63 binding itself. The activity of p63-bound enhancers is likely determined by other transcription factors that cooperate with p63. Our data show that inactive p63-bound enhancers in epidermal keratinocytes may be active during the development of other epithelial-related structures such as limbs and suggest that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates genes through temporal- and spatial-specific active enhancers.

  10. Exercise training alters DNA methylation patterns in genes related to muscle growth and differentiation in mice.

    Science.gov (United States)

    Kanzleiter, Timo; Jähnert, Markus; Schulze, Gunnar; Selbig, Joachim; Hallahan, Nicole; Schwenk, Robert Wolfgang; Schürmann, Annette

    2015-05-15

    The adaptive response of skeletal muscle to exercise training is tightly controlled and therefore requires transcriptional regulation. DNA methylation is an epigenetic mechanism known to modulate gene expression, but its contribution to exercise-induced adaptations in skeletal muscle is not well studied. Here, we describe a genome-wide analysis of DNA methylation in muscle of trained mice (n = 3). Compared with sedentary controls, 2,762 genes exhibited differentially methylated CpGs (P 5%, coverage >10) in their putative promoter regions. Alignment with gene expression data (n = 6) revealed 200 genes with a negative correlation between methylation and expression changes in response to exercise training. The majority of these genes were related to muscle growth and differentiation, and a minor fraction involved in metabolic regulation. Among the candidates were genes that regulate the expression of myogenic regulatory factors (Plexin A2) as well as genes that participate in muscle hypertrophy (Igfbp4) and motor neuron innervation (Dok7). Interestingly, a transcription factor binding site enrichment study discovered significantly enriched occurrence of CpG methylation in the binding sites of the myogenic regulatory factors MyoD and myogenin. These findings suggest that DNA methylation is involved in the regulation of muscle adaptation to regular exercise training.

  11. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  12. Regulation of methane genes and genome expression

    Energy Technology Data Exchange (ETDEWEB)

    John N. Reeve

    2009-09-09

    At the start of this project, it was known that methanogens were Archaeabacteria (now Archaea) and were therefore predicted to have gene expression and regulatory systems different from Bacteria, but few of the molecular biology details were established. The goals were then to establish the structures and organizations of genes in methanogens, and to develop the genetic technologies needed to investigate and dissect methanogen gene expression and regulation in vivo. By cloning and sequencing, we established the gene and operon structures of all of the “methane” genes that encode the enzymes that catalyze methane biosynthesis from carbon dioxide and hydrogen. This work identified unique sequences in the methane gene that we designated mcrA, that encodes the largest subunit of methyl-coenzyme M reductase, that could be used to identify methanogen DNA and establish methanogen phylogenetic relationships. McrA sequences are now the accepted standard and used extensively as hybridization probes to identify and quantify methanogens in environmental research. With the methane genes in hand, we used northern blot and then later whole-genome microarray hybridization analyses to establish how growth phase and substrate availability regulated methane gene expression in Methanobacterium thermautotrophicus ΔH (now Methanothermobacter thermautotrophicus). Isoenzymes or pairs of functionally equivalent enzymes catalyze several steps in the hydrogen-dependent reduction of carbon dioxide to methane. We established that hydrogen availability determine which of these pairs of methane genes is expressed and therefore which of the alternative enzymes is employed to catalyze methane biosynthesis under different environmental conditions. As were unable to establish a reliable genetic system for M. thermautotrophicus, we developed in vitro transcription as an alternative system to investigate methanogen gene expression and regulation. This led to the discovery that an archaeal protein

  13. The population genetics of cooperative gene regulation

    Directory of Open Access Journals (Sweden)

    Stewart Alexander J

    2012-09-01

    Full Text Available Abstract Background Changes in gene regulatory networks drive the evolution of phenotypic diversity both within and between species. Rewiring of transcriptional networks is achieved either by changes to transcription factor binding sites or by changes to the physical interactions among transcription factor proteins. It has been suggested that the evolution of cooperative binding among factors can facilitate the adaptive rewiring of a regulatory network. Results We use a population-genetic model to explore when cooperative binding of transcription factors is favored by evolution, and what effects cooperativity then has on the adaptive re-writing of regulatory networks. We consider a pair of transcription factors that regulate multiple targets and overlap in the sets of target genes they regulate. We show that, under stabilising selection, cooperative binding between the transcription factors is favoured provided the amount of overlap between their target genes exceeds a threshold. The value of this threshold depends on several population-genetic factors: strength of selection on binding sites, cost of pleiotropy associated with protein-protein interactions, rates of mutation and population size. Once it is established, we find that cooperative binding of transcription factors significantly accelerates the adaptive rewiring of transcriptional networks under positive selection. We compare our qualitative predictions to systematic data on Saccharomyces cerevisiae transcription factors, their binding sites, and their protein-protein interactions. Conclusions Our study reveals a rich set of evolutionary dynamics driven by a tradeoff between the beneficial effects of cooperative binding at targets shared by a pair of factors, and the detrimental effects of cooperative binding for non-shared targets. We find that cooperative regulation will evolve when transcription factors share a sufficient proportion of their target genes. These findings help to

  14. Deciphering the transcriptional circuitry of microRNA genes expressed during human monocytic differentiation

    KAUST Repository

    Schmeier, Sebastian

    2009-12-10

    Background: Macrophages are immune cells involved in various biological processes including host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology has been linked to increased pathogen infection, inflammation and malignant diseases. Differential gene expression observed in monocytic differentiation is primarily regulated by interacting transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and repress translation of mRNA, but also may target genes involved in differentiation. We focus on getting insights into the transcriptional circuitry regulating miRNA genes expressed during monocytic differentiation. Results: We computationally analysed the transcriptional circuitry of miRNA genes during monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of TF?miRNA associations was derived from predicted TF binding sites in promoter regions of miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the TF?miRNA associations. Our analysis identified 12 TFs that potentially play a central role in regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their inferred transcriptional regulation impacts monocytic differentiation. Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control are integral molecular mechanisms during differentiation. Furthermore, it is the first study to decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this differentiation process. 2009 Schmeier et al; licensee Bio

  15. Differential expression of genes during aflatoxin B1-induced hepatocarcinogenesis in tree shrews

    Institute of Scientific and Technical Information of China (English)

    Yuan Li; Dan Luo; Hui-Fen Yue; Li-Sheng Zhang; Jian-Ren Gu; Da-Fang Wan; Jian-Jia Su; Ji Cao; Chao Ou; Xiao-Kun Qiu; Ke-Chen Ban; Chun Yang; Liu-Liang Qin

    2004-01-01

    AIM: Through exploring the regulation of gene expression during hepatocarcinogenesis induced by aflatoxin B1 (AFB1),to find out the responsible genes for hepatocellular carcinoma (HCC) and to further understand the underlying molecular mechanism.METHODS: Tree shrews ( 7upaia belangeri chinensis)were treated with or without AFB1 for about 90 weeks. Liver biopsies were performed regularly during the animal experiment. Eight shares of total RNA were respectively isolated from 2 HCC tissues, 2 HCC-surrounding noncancerous liver tissues, 2 biopsied tissues at the early stage (30th week) of the experiment from the same animals as above, 1 mixed sample of three liver tissues biopsied at the beginning (0th week) of the experiment, and another 1 mixed sample of two liver tissues from the untreated control animals biopsied at the 90th week of the experiment. The samples were then tested with the method of AtlasTM cDNA microarray assay. The levels of gene expression in these tissues taken at different time points during hepatocarcinogenesis were compared.RESULTS: The profiles of differently expressed genes were quite different in different ways of comparison. At the same period of hepatocarcinogenesis, the genes in the same function group usually had the same tendency for up- or down-regulation. Among the checked 588 genes that were known to be related to human cancer, 89 genes (15.1%) were recognized as "important genes" because they showed frequent changes in different ways of comparison. The differentially expressed genes during hepatocarcinogenesis could be classified into four categories: genes up-regulated in HCC tissue, genes with similar expressing levels in both HCC and HCC-surrounding liver tissues which were higher than that in the tissues prior to the development of HCC,genes down-regulated in HCC tissue, and genes up-regulated prior to the development of HCC but down-regulated after the development of HCC.CONCLUSION: A considerable number of genes could change

  16. Sugar- and nitrogen-dependent regulation of an Amanita muscaria phenylalanine ammonium lyase gene.

    Science.gov (United States)

    Nehls, U; Ecke, M; Hampp, R

    1999-03-01

    The cDNA of a key enzyme of secondary metabolism, phenylalanine ammonium lyase, was identified for an ectomycorrhizal fungus by differential screening of a mycorrhizal library. The gene was highly expressed in hyphae grown at low external monosaccharide concentrations, but its expression was 30-fold reduced at elevated concentrations. Gene repression was regulated by hexokinase.

  17. Epigenetic Modifications Unlock the Milk Protein Gene Loci during Mouse Mammary Gland Development and Differentiation

    Science.gov (United States)

    Rijnkels, Monique; Freeman-Zadrowski, Courtneay; Hernandez, Joseph; Potluri, Vani; Wang, Liguo; Li, Wei; Lemay, Danielle G.

    2013-01-01

    Background Unlike other tissues, development and differentiation of the mammary gland occur mostly after birth. The roles of systemic hormones and local growth factors important for this development and functional differentiation are well-studied. In other tissues, it has been shown that chromatin organization plays a key role in transcriptional regulation and underlies epigenetic regulation during development and differentiation. However, the role of chromatin organization in mammary gland development and differentiation is less well-defined. Here, we have studied the changes in chromatin organization at the milk protein gene loci (casein, whey acidic protein, and others) in the mouse mammary gland before and after functional differentiation. Methodology/Principal Findings Distal regulatory elements within the casein gene cluster and whey acidic protein gene region have an open chromatin organization after pubertal development, while proximal promoters only gain open-chromatin marks during pregnancy in conjunction with the major induction of their expression. In contrast, other milk protein genes, such as alpha-lactalbumin, already have an open chromatin organization in the mature virgin gland. Changes in chromatin organization in the casein gene cluster region that are present after puberty persisted after lactation has ceased, while the changes which occurred during pregnancy at the gene promoters were not maintained. In general, mammary gland expressed genes and their regulatory elements exhibit developmental stage- and tissue-specific chromatin organization. Conclusions/Significance A progressive gain of epigenetic marks indicative of open/active chromatin on genes marking functional differentiation accompanies the development of the mammary gland. These results support a model in which a chromatin organization is established during pubertal development that is then poised to respond to the systemic hormonal signals of pregnancy and lactation to achieve the

  18. Digital Gene Expression Profiling to Explore Differentially Expressed Genes Associated with Terpenoid Biosynthesis during Fruit Development in Litsea cubeba.

    Science.gov (United States)

    Gao, Ming; Lin, Liyuan; Chen, Yicun; Wang, Yangdong

    2016-09-20

    Mountain pepper (Litseacubeba (Lour.) Pers.) (Lauraceae) is an important industrial crop as an ingredient in cosmetics, pesticides, food additives and potential biofuels. These properties are attributed to monoterpenes and sesquiterpenes. However, there is still no integrated model describing differentially expressed genes (DEGs) involved in terpenoid biosynthesis during the fruit development of L. cubeba. Here, we performed digital gene expression (DGE) using the Illumina NGS platform to evaluated changes in gene expression during fruit development in L. cubeba. DGE generated expression data for approximately 19354 genes. Fruit at 60 days after flowering (DAF) served as the control, and a total of 415, 1255, 449 and 811 up-regulated genes and 505, 1351, 1823 and 1850 down-regulated genes were identified at 75, 90, 105 and 135 DAF, respectively. Pathway analysis revealed 26 genes involved in terpenoid biosynthesis pathways. Three DEGs had continued increasing or declining trends during the fruit development. The quantitative real-time PCR (qRT-PCR) results of five differentially expressed genes were consistent with those obtained from Illumina sequencing. These results provide a comprehensive molecular biology background for research on fruit development, and information that should aid in metabolic engineering to increase the yields of L. cubeba essential oil.

  19. Gene therapy on demand: site specific regulation of gene therapy.

    Science.gov (United States)

    Jazwa, Agnieszka; Florczyk, Urszula; Jozkowicz, Alicja; Dulak, Jozef

    2013-08-10

    Since 1990 when the first clinical gene therapy trial was conducted, much attention and considerable promise have been given to this form of treatment. Gene therapy has been used with success in patients suffering from severe combined immunodeficiency syndromes (X-SCID and ADA-deficiency), Leber's congenital amaurosis, hemophilia, β-thalassemia and adrenoleukodystrophy. Last year, the first therapeutic vector (Glybera) for treatment of lipoprotein lipase deficiency has been registered in the European Union. Nevertheless, there are still several numerous issues that need to be improved to make this technique more safe, effective and easily accessible for patients. Introduction of the therapeutic gene to the given cells should provide the level of expression which will restore the production of therapeutic protein to normal values or will provide therapeutic efficacy despite not fully physiological expression. However, in numerous diseases the expression of therapeutic genes has to be kept at certain level for some time, and then might be required to be switched off to be activated again when worsening of the symptoms may aggravate the risk of disease relapse. In such cases the promoters which are regulated by local conditions may be more required. In this article the special emphasis is to discuss the strategies of regulation of gene expression by endogenous stimuli. Particularly, the hypoxia- or miRNA-regulated vectors offer the possibilities of tight but, at the same time, condition-dependent and cell-specific expression. Such means have been already tested in certain pathophysiological conditions. This creates the chance for the translational approaches required for development of effective treatments of so far incurable diseases.

  20. Transcriptomic analysis in the developing zebrafish embryo after compound exposure: Individual gene expression and pathway regulation

    Energy Technology Data Exchange (ETDEWEB)

    Hermsen, Sanne A.B., E-mail: Sanne.Hermsen@rivm.nl [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands); Pronk, Tessa E. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Toxicogenomics, Maastricht University, P.O. Box 616, 6200 MD, Maastricht (Netherlands); Brandhof, Evert-Jan van den [Centre for Environmental Quality, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Ven, Leo T.M. van der [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Piersma, Aldert H. [Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA Bilthoven (Netherlands); Institute for Risk Assessment Sciences (IRAS), Utrecht University, P.O. Box 80.178, 3508 TD, Utrecht (Netherlands)

    2013-10-01

    The zebrafish embryotoxicity test is a promising alternative assay for developmental toxicity. Classically, morphological assessment of the embryos is applied to evaluate the effects of compound exposure. However, by applying differential gene expression analysis the sensitivity and predictability of the test may be increased. For defining gene expression signatures of developmental toxicity, we explored the possibility of using gene expression signatures of compound exposures based on commonly expressed individual genes as well as based on regulated gene pathways. Four developmental toxic compounds were tested in concentration-response design, caffeine, carbamazepine, retinoic acid and valproic acid, and two non-embryotoxic compounds, D-mannitol and saccharin, were included. With transcriptomic analyses we were able to identify commonly expressed genes, which were mostly development related, after exposure to the embryotoxicants. We also identified gene pathways regulated by the embryotoxicants, suggestive of their modes of action. Furthermore, whereas pathways may be regulated by all compounds, individual gene expression within these pathways can differ for each compound. Overall, the present study suggests that the use of individual gene expression signatures as well as pathway regulation may be useful starting points for defining gene biomarkers for predicting embryotoxicity. - Highlights: • The zebrafish embryotoxicity test in combination with transcriptomics was used. • We explored two approaches of defining gene biomarkers for developmental toxicity. • Four compounds in concentration-response design were tested. • We identified commonly expressed individual genes as well as regulated gene pathways. • Both approaches seem suitable starting points for defining gene biomarkers.

  1. Differential expression of genes during aflatoxin B1-induced hepatocarcinogenesis in tree shrews

    Science.gov (United States)

    Li, Yuan; Wan, Da-Fang; Su, Jian-Jia; Cao, Ji; Ou, Chao; Qiu, Xiao-Kun; Ban, Ke-Chen; Yang, Chun; Qin, Liu-Liang; Luo, Dan; Yue, Hui-Fen; Zhang, Li-Sheng; Gu, Jian-Ren

    2004-01-01

    AIM: Through exploring the regulation of gene expression during hepatocarcinogenesis induced by aflatoxin B1 (AFB1), to find out the responsible genes for hepatocellular carcinoma (HCC) and to further understand the underlying molecular mechanism. METHODS: Tree shrews (Tupaia belangeri chinensis) were treated with or without AFB1 for about 90 weeks. Liver biopsies were performed regularly during the animal experiment. Eight shares of total RNA were respectively isolated from 2 HCC tissues, 2 HCC-surrounding non-cancerous liver tissues, 2 biopsied tissues at the early stage (30th week) of the experiment from the same animals as above, 1 mixed sample of three liver tissues biopsied at the beginning (0th week) of the experiment, and another 1 mixed sample of two liver tissues from the untreated control animals biopsied at the 90th week of the experiment. The samples were then tested with the method of AtlasTM cDNA microarray assay. The levels of gene expression in these tissues taken at different time points during hepatocarcinogenesis were compared. RESULTS: The profiles of differently expressed genes were quite different in different ways of comparison. At the same period of hepatocarcinogenesis, the genes in the same function group usually had the same tendency for up- or down-regulation. Among the checked 588 genes that were known to be related to human cancer, 89 genes (15.1%) were recognized as “important genes” because they showed frequent changes in different ways of comparison. The differentially expressed genes during hepatocarcinogenesis could be classified into four categories: genes up-regulated in HCC tissue, genes with similar expressing levels in both HCC and HCC-surrounding liver tissues which were higher than that in the tissues prior to the development of HCC, genes down-regulated in HCC tissue, and genes up-regulated prior to the development of HCC but down-regulated after the development of HCC. CONCLUSION: A considerable number of genes could

  2. Nutlin-3 down-regulates retinoblastoma protein expression and inhibits muscle cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, Erica M. [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Niu, MengMeng; Bergholz, Johann [Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China); Jim Xiao, Zhi-Xiong, E-mail: jxiao@bu.edu [Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118 (United States); Center of Growth, Metabolism and Aging, College of Life Sciences, Sichuan University, Chengdu, 610014 China (China)

    2015-05-29

    The p53 tumor suppressor gene plays a critical role in regulation of proliferation, cell death and differentiation. The MDM2 oncoprotein is a major negative regulator for p53 by binding to and targeting p53 for proteasome-mediated degradation. The small molecule inhibitor, nutlin-3, disrupts MDM2-p53 interaction resulting in stabilization and activation of p53 protein. We have previously shown that nutlin-3 activates p53, leading to MDM2 accumulation as concomitant of reduced retinoblastoma (Rb) protein stability. It is well known that Rb is important in muscle development and myoblast differentiation and that rhabdomyosarcoma (RMS), or cancer of the skeletal muscle, typically harbors MDM2 amplification. In this study, we show that nutlin-3 inhibited myoblast proliferation and effectively prevented myoblast differentiation, as evidenced by lack of expression of muscle differentiation markers including myogenin and myosin heavy chain (MyHC), as well as a failure to form multinucleated myotubes, which were associated with dramatic increases in MDM2 expression and decr