WorldWideScience

Sample records for generators radioisotope

  1. Modular Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.

    2016-01-01

    High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific

  2. Advanced Stirling Radioisotope Generator Life Certification Plan

    Science.gov (United States)

    Rusick, Jeffrey J.; Zampino, Edward

    2013-01-01

    An Advanced Stirling Radioisotope Generator (ASRG) power supply is being developed by the Department of Energy (DOE) in partnership with NASA for potential future deep space science missions. Unlike previous radioisotope power supplies for space exploration, such as the passive MMRTG used recently on the Mars Curiosity rover, the ASRG is an active dynamic power supply with moving Stirling engine mechanical components. Due to the long life requirement of 17 years and the dynamic nature of the Stirling engine, the ASRG project faced some unique challenges trying to establish full confidence that the power supply will function reliably over the mission life. These unique challenges resulted in the development of an overall life certification plan that emphasizes long-term Stirling engine test and inspection when analysis is not practical. The ASRG life certification plan developed is described.

  3. Thermal Model Predictions of Advanced Stirling Radioisotope Generator Performance

    Science.gov (United States)

    Wang, Xiao-Yen J.; Fabanich, William Anthony; Schmitz, Paul C.

    2014-01-01

    This presentation describes the capabilities of three-dimensional thermal power model of advanced stirling radioisotope generator (ASRG). The performance of the ASRG is presented for different scenario, such as Venus flyby with or without the auxiliary cooling system.

  4. Investigation of Miniaturized Radioisotope Thermionic Power Generation for General Use

    Science.gov (United States)

    Duzik, Adam J.; Choi, Sang H.

    2016-01-01

    Radioisotope thermoelectric generators (RTGs) running off the radioisotope Pu238 are the current standard in deep space probe power supplies. While reliable, these generators are very inefficient, operating at only approx.7% efficiency. As an alternative, more efficient radioisotope thermionic emission generators (RTIGs) are being explored. Like RTGs, current RTIGs concepts use exotic materials for the emitter, limiting applicability to space and other niche applications. The high demand for long-lasting mobile power sources would be satisfied if RTIGs could be produced inexpensively. This work focuses on exposing several common materials, such as Al, stainless steel, W, Si, and Cu, to elevated temperatures under vacuum to determine the efficiency of each material as inexpensive replacements for thermoelectric materials.

  5. Procurement of a fully licensed radioisotope thermoelectric generator transportation system

    Science.gov (United States)

    Adkins, Harold E.; Bearden, Thomas E.

    1991-01-01

    A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable U.S. Department of Transportation regulations without the use of a ``DOE Alternative.'' The U.S. Department of Transportation has special ``double containment'' requirements for plutonium. The system packaging uses a doubly contained ``bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992.

  6. Advanced Thermoelectric Materials for Radioisotope Thermoelectric Generators

    Science.gov (United States)

    Caillat, Thierry; Hunag, C.-K.; Cheng, S.; Chi, S. C.; Gogna, P.; Paik, J.; Ravi, V.; Firdosy, S.; Ewell, R.

    2008-01-01

    This slide presentation reviews the progress and processes involved in creating new and advanced thermoelectric materials to be used in the design of new radioiootope thermoelectric generators (RTGs). In a program with Department of Energy, NASA is working to develop the next generation of RTGs, that will provide significant benefits for deep space missions that NASA will perform. These RTG's are planned to be capable of delivering up to 17% system efficiency and over 12 W/kg specific power. The thermoelectric materials being developed are an important step in this process.

  7. Development of Next Generation Segmented Thermoelectric Radioisotope Power Systems

    Science.gov (United States)

    Fleurial, J.; Caillat, T.; Ewell, R. C.

    2005-12-01

    Radioisotope thermoelectric generators have been used for space-based applications since 1961 with a total of 22 space missions that have successfully used RTGs for electrical power production. The key advantages of radioisotope thermoelectric generators (RTGs) are their long life, robustness, compact size, and high reliability. Thermoelectric converters are easily scalable, and possess a linear current-voltage curve, making power generation easy to control via a shunt regulator and shunt radiator. They produce no noise, vibration or torque during operation. These properties have made RTGs ideally suitable for autonomous missions in the extreme environments of outer space and on planetary surfaces. More advanced radioisotope power systems (RPS) with higher specific power (W/kg) and/or power output are desirable for future NASA missions, including the Europa Geophysical Orbiter mission. For the past few years, the Jet Propulsion Laboratory (JPL) has been developing more efficient thermoelectric materials and has demonstrated significant increases in the conversion efficiency of high temperature thermocouples, up to 14% when operated across a 975K to 300K temperature differential. In collaboration with NASA Glenn Research Center, universities (USC and UNM), Ceramic and Metal Composites Corporation and industrial partners, JPL is now planning to lead the research and development of advanced thermoelectric technology for integration into the next generations of RPS. Preliminary studies indicate that this technology has the potential for improving the RPS specific power by more than 50% over the current state-of-the-art multi-mission RTG being built for the Mars Science Laboratory mission. A second generation advanced RPS is projected at more than doubling the specific power.

  8. Development of Advanced Stirling Radioisotope Generator for Space Exploration

    Science.gov (United States)

    Chan, Jack; Wood, J. Gary; Schreiber, Jeffrey G.

    2007-01-01

    Under the joint sponsorship of the Department of Energy and NASA, a radioisotope power system utilizing Stirling power conversion technology is being developed for potential future space missions. The higher conversion efficiency of the Stirling cycle compared with that of Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, and New Horizons) offers the advantage of a four-fold reduction in PuO2 fuel, thereby saving cost and reducing radiation exposure to support personnel. With the advancement of state-of-the-art Stirling technology development under the NASA Research Announcement (NRA) project, the Stirling Radioisotope Generator program has evolved to incorporate the advanced Stirling convertor (ASC), provided by Sunpower, into an engineering unit. Due to the reduced envelope and lighter mass of the ASC compared to the previous Stirling convertor, the specific power of the flight generator is projected to increase from 3.5 We/kg to 7 We/kg, along with a 25% reduction in generator length. Modifications are being made to the ASC design to incorporate features for thermal, mechanical, and electrical integration with the engineering unit. These include the heat collector for hot end interface, cold-side flange for waste heat removal and structural attachment, and piston position sensor for ASC control and power factor correction. A single-fault tolerant, active power factor correction controller is used to synchronize the Stirling convertors, condition the electrical power from AC to DC, and to control the ASCs to maintain operation within temperature and piston stroke limits. Development activities at Sunpower and NASA Glenn Research Center (GRC) are also being conducted on the ASC to demonstrate the capability for long life, high reliability, and flight qualification needed for use in future missions.

  9. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    2012-01-19

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 2 copies in the file.

  10. Radioisotope Stirling Generator Options for Pluto Fast Flyby Mission

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1993-10-01

    The preceding paper described conceptual designs and analytical results for five Radioisotope Thermoelectric Generator (RTG) options for the Pluto Fast Flyby (PFF) mission, and the present paper describes three Radioisotope Stirling Generator (RSG) options for the same mission. The RSG options are based on essentially the same radioisotope heat source modules used in previously flown RTGs and on designs and analyses of a 75-watt free-piston Stirling engine produced by Mechanical Technology Incorporated (MTI) for NASA's Lewis Research Center. The integrated system design options presented were generated in a Fairchild Space study sponsored by the Department of Energy's Office of Special Applications, in support of ongoing PFF mission and spacecraft studies that the Jet Propulsion Laboratory (JPL) is conducting for the National Aeronautics and Space Administration (NASA). That study's NASA-directed goal is to reduce the spacecraft mass from its baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for a power source able to deliver 69 watts(e) at the end of the 9.2-year mission. In general, the Stirling options were found to be lighter than the thermoelectric options described in the preceding paper. But they are less mature, requiring more development, and entailing greater programmatic risk. The Stirling power system mass ranged from 7.3 kg (well below the 10-kg goal) for a non-redundant system to 11.3 kg for a redundant system able to maintain full power if one of its engines fails. In fact, the latter system could deliver as much as 115 watts(e) if desired by the mission planners. There are 5 copies in the file.

  11. Characterization of the Advanced Stirling Radioisotope Generator Engineering Unit 2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Niholas A.

    2016-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG) 140-W radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA Glenn Research Center recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's Advanced Stirling Convertor E3 (ASC-E3) Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth-generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included measurement of convertor, controller, and generator performance and efficiency; quantification of control authority of the controller; disturbance force measurement with varying piston phase and piston amplitude; and measurement of the effect of spacecraft direct current (DC) bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  12. Characterization of the Advanced Stirling Radioisotope Generator EU2

    Science.gov (United States)

    Lewandowski, Edward J.; Oriti, Salvatore M.; Schifer, Nicholas A.

    2015-01-01

    Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-watt radioisotope power system. While the ASRG flight development project has ended, the hardware that was designed and built under the project is continuing to be tested to support future Stirling-based power system development. NASA GRC recently completed the assembly of the ASRG Engineering Unit 2 (EU2). The ASRG EU2 consists of the first pair of Sunpower's ASC-E3 Stirling convertors mounted in an aluminum housing, and Lockheed Martin's Engineering Development Unit (EDU) 4 controller (a fourth generation controller). The ASC-E3 convertors and Generator Housing Assembly (GHA) closely match the intended ASRG Qualification Unit flight design. A series of tests were conducted to characterize the EU2, its controller, and the convertors in the flight-like GHA. The GHA contained an argon cover gas for these tests. The tests included: measurement of convertor, controller, and generator performance and efficiency, quantification of control authority of the controller, disturbance force measurement with varying piston phase and piston amplitude, and measurement of the effect of spacecraft DC bus voltage on EU2 performance. The results of these tests are discussed and summarized, providing a basic understanding of EU2 characteristics and the performance and capability of the EDU 4 controller.

  13. Parametric System Model for a Stirling Radioisotope Generator

    Science.gov (United States)

    Schmitz, Paul C.

    2015-01-01

    A Parametric System Model (PSM) was created in order to explore conceptual designs, the impact of component changes and power level on the performance of the Stirling Radioisotope Generator (SRG). Using the General Purpose Heat Source (GPHS approximately 250 Wth) modules as the thermal building block from which a SRG is conceptualized, trade studies are performed to understand the importance of individual component scaling on isotope usage. Mathematical relationships based on heat and power throughput, temperature, mass, and volume were developed for each of the required subsystems. The PSM uses these relationships to perform component- and system-level trades.

  14. GRC Supporting Technology for NASA's Advanced Stirling Radioisotope Generator (ASRG)

    Science.gov (United States)

    Schreiber, Jeffrey G.; Thieme, Lanny G.

    2008-01-01

    From 1999 to 2006, the NASA Glenn Research Center (GRC) supported a NASA project to develop a high-efficiency, nominal 110-We Stirling Radioisotope Generator (SRG110) for potential use on NASA missions. Lockheed Martin was selected as the System Integration Contractor for the SRG110, under contract to the Department of Energy (DOE). The potential applications included deep space missions, and Mars rovers. The project was redirected in 2006 to make use of the Advanced Stirling Convertor (ASC) that was being developed by Sunpower, Inc. under contract to GRC, which would reduce the mass of the generator and increase the power output. This change would approximately double the specific power and result in the Advanced Stirling Radioisotope Generator (ASRG). The SRG110 supporting technology effort at GRC was replanned to support the integration of the Sunpower convertor and the ASRG. This paper describes the ASRG supporting technology effort at GRC and provides details of the contributions in some of the key areas. The GRC tasks include convertor extended-operation testing in air and in thermal vacuum environments, heater head life assessment, materials studies, permanent magnet characterization and aging tests, structural dynamics testing, electromagnetic interference and electromagnetic compatibility characterization, evaluation of organic materials, reliability studies, and analysis to support controller development.

  15. Heat Transfer Analysis for Optimal Design of Radioisotope Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Han; Son, Kwang Jae; Hong, Jintae; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    A new approach is need in the space development and requires a technique having a high degree of reliability. For example, there is radioisotope thermoelectric generator(RTG) using radioisotope that has different mechanism in comparison with solar power as power source. This is a technology that has already been trusted by generator for space in the developed countries. For example, RTG is essential for moon explorer because no other power exist source night of moon. In this study, we investigated the thermal efficiency according to the structure of RTG. Specifically, the thermal properties were analyzed according to the presence of the shield inside vacuum heat-insulating part of the RTG through the finite element analysis. Finite element analysis was used to analyze the characteristics of the temperature distribution in the RTG models according to the shield. The structure of the shield came out less heat loss than the structure without shield. As a result, the structure with a shield is advantage in the RTG design.

  16. Multi-Watt Small Radioisotope Thermoelectric Generator Conceptual Design Study

    Science.gov (United States)

    Determan, William R.; Otting, William; Frye, Patrick; Abelson, Robert; Ewell, Richard; Miyake, Bob; Synder, Jeff

    2007-01-01

    A need has been identified for a small, light-weight, reliable power source using a radioisotope heat source, to power the next generation of NASA's small surface rovers and exploration probes. Unit performance, development costs, and technical risk are key criteria to be used to select the best design approach. Because safety can be a major program cost and schedule driver, RTG designs should utilize the DOE radioisotope safety program's data base to the maximum extent possible. Other aspects important to the conceptual design include: 1) a multi-mission capable design for atmospheric and vacuum environments, 2) a module size based on one GPHS Step 2 module, 3) use of flight proven thermoelectric converter technologies, 4) a long service lifetime of up to 14 years, 5) maximize unit specific power consistent with all other requirements, and 6) be ready by 2013. Another critical aspect of the design is the thermal integration of the RTG with the rover or probe's heat rejection subsystem and the descent vehicle's heat rejection subsystem. This paper describes two multi-watt RTG design concepts and their integration with a MER-class rover.

  17. Stirling Convertor Technologies Being Developed for a Stirling Radioisotope Generator

    Science.gov (United States)

    Thieme, Lanny G.

    2003-01-01

    The Department of Energy, Lockheed Martin, Stirling Technology Company (STC), and the NASA Glenn Research Center are developing a high-efficiency Stirling Radioisotope Generator (SRG) for NASA space science missions. The SRG is being developed for multimission use, including providing electric power for unmanned Mars rovers and deep space missions. On Mars, rovers with SRGs would be used for missions that might not be able to use photovoltaic power systems, such as exploration at high Martian latitudes and missions of long duration. The projected SRG system efficiency of 23 percent will reduce the required amount of radioisotope by a factor of 4 or more in comparison to currently used Radioisotope Thermoelectric Generators. The Department of Energy recently named Lockheed Martin as the system integration contractor. Lockheed Martin has begun to develop the SRG engineering unit under contract to the Department of Energy, and has contract options to develop the qualification unit and the first flight units. The developers expect the SRG to produce about 114 Wdc at the beginning of mission, using two opposed Stirling convertors and two General Purpose Heat Source modules. STC previously developed the Stirling convertor under contract to the Department of Energy and is now providing further development as a subcontractor to Lockheed Martin. Glenn is conducting an in-house technology project to assist in developing the convertor for space qualification and mission implementation. A key milestone was recently reached with the accumulation of 12 000 hr of long-term aging on two types of neodymium-iron boron permanent magnets. These tests are characterizing any possible aging in the strength or demagnetization resistance of the magnets used in the linear alternator. Preparations are underway for a thermal/vacuum system demonstration and unattended operation during endurance testing of the 55-We Technology Demonstration Convertors. In addition, Glenn is developing a

  18. End-on radioisotope thermoelectric generator impact tests

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, M.A.H.; Hhinckley, J.E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  19. Radioisotope thermoelectric generator/thin fragment impact test

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, M.A.H.; Hinckley, J.E.

    1998-12-31

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

  20. Radioisotope thermoelectric generator/thin fragment impact test

    Science.gov (United States)

    Reimus, M. A. H.; Hinckley, J. E.

    1998-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  1. End-on radioisotope thermoelectric generator impact tests

    Science.gov (United States)

    Reimus, M. A. H.; Hinckley, J. E.

    1997-01-01

    The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of 238Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

  2. Efficient, Long-Lived Radioisotope Power Generator Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radiation Monitoring Devices, Inc., (RMD) proposes to develop an alternative very long term, radioisotope power source with thermoelectric power conversion with...

  3. Thermal vacuum life test facility for radioisotope thermoelectric generators

    Energy Technology Data Exchange (ETDEWEB)

    Deaton, R.L.; Goebel, C.J.; Amos, W.R.

    1990-01-01

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al. (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met. 4 refs., 3 figs.

  4. Thermal vacuum life test facility for radioisotope thermoelectric generators

    Science.gov (United States)

    Deaton, R. L.; Goebel, C. J.; Amos, W. R.

    In the late 1970's, the Department of Energy (DOE) assigned Monsanto Research Corporation, Mound Facility, now operated by EG and G Mound Applied Technologies, the responsibility for assembling and testing General Purpose Heat Source (GPHS) radioisotope thermoelectric generators (RTGs). Assembled and tested were five RTGs, which included four flight units and one non-flight qualification unit. Figure 1 shows the RTG, which was designed by General Electric AstroSpace Division (GE/ASD) to produce 285 W of electrical power. A detailed description of the processes for RTG assembly and testing is presented by Amos and Goebel (1989). The RTG performance data are described by Bennett, et al., (1986). The flight units will provide electrical power for the National Aeronautics and Space Administration's (NASA) Galileo mission to Jupiter (two RTGs) and the joint NASA/European Space Agency (ESA) Ulysses mission to study the polar regions of the sun (one RTG). The remaining flight unit will serve as the spare for both missions, and a non-flight qualification unit was assembled and tested to ensure that performance criteria were adequately met.

  5. Radioisotope Thermoelectric Generator Options for Pluto Fast Flyby Mission

    Science.gov (United States)

    Schock, Alfred

    1994-07-01

    A small spacecraft design for the Pluto Fast Flyby (PFF) mission is under study by the Jet Propulsion Laboratory (PL) for the National Aeronautics and Space Administration (NASA), for a possible launch as early as 1998. JPL's 1992 baseline design calls for a power source able to furnish an energy output of 3963 kWh and a power output of 69 Watts(e) at the end of the 9.2-year mission. Satisfying those demands is made difficult because NASA management has set a goal of reducing the spacecraft mass from a baseline value of 166 kg to ~110 kg, which implies a mass goal of less than 10 kg for the power source. To support the ongoing NASA/JPL studies, the Department of Energy's Office of Special Applications (DOE/OSA) commissioned Fairchild Space to prepare and analyze conceptual designs of radioisotope power systems for the PFF mission. Thus far, a total of eight options employing essentially the same radioisotope heat source modules were designed and subjected to thermal, electrical, structural, and mass analyses by Fairchild. Five of these - employing thermoelectric converters - are described in the present paper, and three - employing free-piston Stirling converters - are described in the companion paper presented next. The system masses of the thermoelectric options ranged from 19.3 kg to 10.2 kg. In general, the options requiring least development are the heaviest, and the lighter options require more development with greater programmatic risk.

  6. Radioisotope Thermophotovoltaic (RTPV) Generator and Its Application to the Pluto Fast Flyby Mission

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred; Mukunda, Meera; Or, Chuen T; Kumar, Vasanth; Summers, G.

    1994-01-16

    This paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator. Instead of conducting a generic study, it was decided to focus the design by directing it at a specific space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a one-year post-encounter cruise. Because of Pluto's long distance from the sun (30-50 A.U.) and the mission's large energy demand, JPL has baselined the use of a radioisotope power system for the PFF spacecraft. The chief advantage of Radioisotope Thermophotovoltaic (RTPV) power systems over current Radioisotope Thermoelectric Generators (RTGs) is their much higher conversion efficiency, which greatly reduces the mass and cost of the required radioisotope heat source. Those attributes are particularly important for the PFF mission, which - like all NASA missions under current consideration - is severely mass- and cost-limited. The paper describes the design of the radioisotope heat source, the thermophotovoltaic converter, and the heat rejection system; and presents the results of the thermal, electrical, and structural analysis and the design optimization of the integrated RTPV system. It briefly summarizes the RTPV system's current technology status, and lists a number of factors that my greatly reduce the need for long-term tests to demonstrate generator lifetime. Our analytical results show very substantial performance improvements over an RTG designed for the same mission, and suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the PFF mission but also for other future missions requiring small, long

  7. [Radioisotope thermoelectric generators and ancillary activities]. Monthly technical progress report, 1 April--28 April 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Tehnical progress achieved during this period on radioisotope thermoelectric generators is described under the following tasks: engineering support, safety analysis, qualified unicouple fabrication, ETG fabrication/assembly/test, RTG shipping/launch support, design/review/mission applications, and project management/quality assurance/reliability.

  8. Radioisotope Thermophotovoltaic (RTPV) Generator and Its Applicability to an Illustrative Space Mission

    Energy Technology Data Exchange (ETDEWEB)

    Schock, A.; Mukunda, M.; Or, T.; Kumar, V.; Summers, G.

    1994-02-14

    The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the author. Instead of conducting a generic study, it was decided to focus the design effort by directing it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a post-encounter cruise lasting up to one year.

  9. Vibration Testing of the Pluto/New Horizons Radioisotope Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Charles D. Griffin

    2006-06-01

    The Radioisotopic Thermal Generator (RTG) for the Pluto/New Horizons spacecraft was subjected to a flight dynamic acceptance test to demonstrate that it would perform successfully following launch. Seven RTGs of this type had been assembled and tested at Mound, Ohio from 1984 to 1997. This paper chronicles major events in establishing a new vibration test laboratory at the Idaho National Laboratory and the nineteen days of dynamic testing.

  10. Radioisotope Power System Delivery, Ground Support and Nuclear Safety Implementation: Use of the Multi-Mission Radioisotope Thermoelectric Generator for the NASA's Mars Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2014-07-01

    Radioisotope power systems have been used for over 50 years to enable missions in remote or hostile environments. They are a convenient means of supplying a few milliwatts up to a few hundred watts of useable, long-term electrical power. With regard to use of a radioisotope power system, the transportation, ground support and implementation of nuclear safety protocols in the field is a complex process that requires clear identification of needed technical and regulatory requirements. The appropriate care must be taken to provide high quality treatment of the item to be moved so it arrives in a condition to fulfill its missions in space. Similarly it must be transported and managed in a manner compliant with requirements for shipment and handling of special nuclear material. This presentation describes transportation, ground support operations and implementation of nuclear safety and security protocols for a radioisotope power system using recent experience involving the Multi-Mission Radioisotope Thermoelectric Generator for National Aeronautics and Space Administration’s Mars Science Laboratory, which launched in November of 2011.

  11. Advanced Stirling Radioisotope Generator (ASRG) Thermal Power Model in MATLAB

    Science.gov (United States)

    Wang, Xiao-Yen, J.

    2012-01-01

    This paper presents a one-dimensional steady-state mathematical thermal power model of the ASRG. It aims to provide a guideline of understanding how the ASRG works and what can change its performance. The thermal dynamics and energy balance of the generator is explained using the thermal circuit of the ASRG. The Stirling convertor performance map is used to represent the convertor. How the convertor performance map is coupled in the thermal circuit is explained. The ASRG performance characteristics under i) different sink temperatures and ii) over the years of mission (YOM) are predicted using the one-dimensional model. Two Stirling converter control strategies, i) fixing the hot-end of temperature of the convertor by adjusting piston amplitude and ii) fixing the piston amplitude, were tested in the model. Numerical results show that the first control strategy can result in a higher system efficiency than the second control strategy when the ambient gets warmer or the general-purpose heat source (GPHS) fuel load decays over the YOM. The ASRG performance data presented in this paper doesn't pertain to the ASRG flight unit. Some data of the ASRG engineering unit (EU) and flight unit that are available in public domain are used in this paper for the purpose of numerical studies.

  12. Test Program for Stirling Radioisotope Generator Hardware at NASA Glenn Research Center

    Science.gov (United States)

    Lewandowski, Edward J.; Bolotin, Gary S.; Oriti, Salvatore M.

    2015-01-01

    Stirling-based energy conversion technology has demonstrated the potential of high efficiency and low mass power systems for future space missions. This capability is beneficial, if not essential, to making certain deep space missions possible. Significant progress was made developing the Advanced Stirling Radioisotope Generator (ASRG), a 140-W radioisotope power system. A variety of flight-like hardware, including Stirling convertors, controllers, and housings, was designed and built under the ASRG flight development project. To support future Stirling-based power system development NASA has proposals that, if funded, will allow this hardware to go on test at the NASA Glenn Research Center. While future flight hardware may not be identical to the hardware developed under the ASRG flight development project, many components will likely be similar, and system architectures may have heritage to ASRG. Thus, the importance of testing the ASRG hardware to the development of future Stirling-based power systems cannot be understated. This proposed testing will include performance testing, extended operation to establish an extensive reliability database, and characterization testing to quantify subsystem and system performance and better understand system interfaces. This paper details this proposed test program for Stirling radioisotope generator hardware at NASA Glenn. It explains the rationale behind the proposed tests and how these tests will meet the stated objectives.

  13. NASA Glenn Research Center Support of the Advanced Stirling Radioisotope Generator Project

    Science.gov (United States)

    Wilson, Scott D.; Wong, Wayne A.

    2015-01-01

    A high-efficiency radioisotope power system was being developed for long-duration NASA space science missions. The U.S. Department of Energy (DOE) managed a flight contract with Lockheed Martin Space Systems Company to build Advanced Stirling Radioisotope Generators (ASRGs), with support from NASA Glenn Research Center. DOE initiated termination of that contract in late 2013, primarily due to budget constraints. Sunpower, Inc., held two parallel contracts to produce Advanced Stirling Convertors (ASCs), one with Lockheed Martin to produce ASC-F flight units, and one with Glenn for the production of ASC-E3 engineering unit "pathfinders" that are built to the flight design. In support of those contracts, Glenn provided testing, materials expertise, Government-furnished equipment, inspection capabilities, and related data products to Lockheed Martin and Sunpower. The technical support included material evaluations, component tests, convertor characterization, and technology transfer. Material evaluations and component tests were performed on various ASC components in order to assess potential life-limiting mechanisms and provide data for reliability models. Convertor level tests were conducted to characterize performance under operating conditions that are representative of various mission conditions. Despite termination of the ASRG flight development contract, NASA continues to recognize the importance of high-efficiency ASC power conversion for Radioisotope Power Systems (RPS) and continues investment in the technology, including the continuation of the ASC-E3 contract. This paper describes key Government support for the ASRG project and future tests to be used to provide data for ongoing reliability assessments.

  14. Power from Radioisotopes (Rev.)

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, William R; Mead, Robert L

    1971-01-01

    This booklet discusses Systems for Nuclear Auxiliary Power (SNAP), called isotope power generators, that are based on using heat from the decay of radioisotopes to produce electricity. These are the SNAP systems with odd-numbered designators. The basics of radioisotope thermoelectric generators (RTGs) are discussed and their uses as power sources in space exploration and on earth are described. Various radioisotope heat sources are discussed and a table of RTGs built under the SNAP program listing their uses, electrical power, weight, the radioisotope used, the radioisotope's half-life, and the generator life is given.

  15. Development of the data base for a degradation model of a selenide RTG. [Radioisotope Thermoelectric Generator

    Science.gov (United States)

    Stapfer, G.; Truscello, V. C.

    1977-01-01

    The paper is concerned with the evaluation of the materials used in a selenide radioisotope thermoelectric generator (RTG). These materials are composed of n-type gadolinium selenide and n-type copper selenide. A three-fold evaluation approach is being used: (1) the study of the rate of change of the thermal conductivity of the material, (2) the investigation of the long-term stability of the material's Seebeck voltage and electrical resistivity under current and temperature gradient conditions, and (3) determination of the physical behavior and compatibility of the material with surrounding insulation at elevated temperatures. Programmatically, the third category of characteristic evaluation is being emphasized.

  16. Development of disposal technologies for radioactive waste generated from radioisotope users and research institutes

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    In order to safely dispose of a radioactive waste, which is generated from radioisotope users and research institutes, investigation of characteristics of the waste and conceptual design of disposal facility were carried out. As a result of investigating JAERI that the waste has mainly been stored, it became clear that radioactivities of 19 nuclides are important from the viewpoint of the safety of the disposal. And the result of the conceptual design of disposal facilities on the assumption of 3 kinds of sites, the differences on the safety could not be recognized in either case, though the installation depth to construct the facilities influenced the economical efficiency. (author)

  17. Development of a Power Electronics Controller for the Advanced Stirling Radioisotope Generator

    Science.gov (United States)

    Leland, Douglas K.; Priest, Joel F.; Keiter, Douglas E.; Schreiber, Jeffrey G.

    2008-01-01

    Under a U.S. Department of Energy program for radioisotope power systems, Lockheed Martin is developing an Engineering Unit of the Advanced Stirling Radioisotope Generator (ASRG). This is an advanced version of the previously reported SRG110 generator. The ASRG uses Advanced Stirling Convertors (ASCs) developed by Sunpower Incorporated under a NASA Research Announcement contract. The ASRG makes use of a Stirling controller based on power electronics that eliminates the tuning capacitors. The power electronics controller synchronizes dual-opposed convertors and maintains a fixed frequency operating point. The controller is single-fault tolerant and uses high-frequency pulse width modulation to create the sinusoidal currents that are nearly in phase with the piston velocity, eliminating the need for large series tuning capacitors. Sunpower supports this effort through an extension of their controller development intended for other applications. Glenn Research Center (GRC) supports this effort through system dynamic modeling, analysis and test support. The ASRG design arrived at a new baseline based on a system-level trade study and extensive feedback from mission planners on the necessity of single-fault tolerance. This paper presents the baseline design with an emphasis on the power electronics controller detailed design concept that will meet space mission requirements including single fault tolerance.

  18. System-Level Testing of the Advanced Stirling Radioisotope Generator Engineering Hardware

    Science.gov (United States)

    Chan, Jack; Wiser, Jack; Brown, Greg; Florin, Dominic; Oriti, Salvatore M.

    2014-01-01

    To support future NASA deep space missions, a radioisotope power system utilizing Stirling power conversion technology was under development. This development effort was performed under the joint sponsorship of the Department of Energy and NASA, until its termination at the end of 2013 due to budget constraints. The higher conversion efficiency of the Stirling cycle compared with that of the Radioisotope Thermoelectric Generators (RTGs) used in previous missions (Viking, Pioneer, Voyager, Galileo, Ulysses, Cassini, Pluto New Horizons and Mars Science Laboratory) offers the advantage of a four-fold reduction in Pu-238 fuel, thereby extending its limited domestic supply. As part of closeout activities, system-level testing of flight-like Advanced Stirling Convertors (ASCs) with a flight-like ASC Controller Unit (ACU) was performed in February 2014. This hardware is the most representative of the flight design tested to date. The test fully demonstrates the following ACU and system functionality: system startup; ASC control and operation at nominal and worst-case operating conditions; power rectification; DC output power management throughout nominal and out-of-range host voltage levels; ACU fault management, and system command / telemetry via MIL-STD 1553 bus. This testing shows the viability of such a system for future deep space missions and bolsters confidence in the maturity of the flight design.

  19. Increasing the Efficiency of the Multi-mission Radioisotope Thermoelectric Generator

    Science.gov (United States)

    Holgate, Tim C.; Bennett, Russell; Hammel, Tom; Caillat, Thierry; Keyser, Steve; Sievers, Bob

    2015-06-01

    The National Aeronautics and Space Administration's Mars Science Laboratory terrestrial rover, Curiosity, has recently completed its first Martian year (687 Earth days) during which it has provided a wealth of information and insight into the red planet's atmosphere and geology. The success of this mission was made possible in part by the reliable electrical power provided by its onboard thermoelectric power source—the multi-mission radioisotope thermoelectric generator (MMRTG). In an effort to increase the output power and efficiency of these generators, a newly designed enhanced MMRTG (eMMRTG) that will utilize the more efficient skutterudite-based thermoelectric materials has been conceptualized and modeled, and is now being developed. A discussion of the motivations, modeling results and key design factors are presented and discussed.

  20. Radioisotope instruments

    CERN Document Server

    Cameron, J F; Silverleaf, D J

    1971-01-01

    International Series of Monographs in Nuclear Energy, Volume 107: Radioisotope Instruments, Part 1 focuses on the design and applications of instruments based on the radiation released by radioactive substances. The book first offers information on the physical basis of radioisotope instruments; technical and economic advantages of radioisotope instruments; and radiation hazard. The manuscript then discusses commercial radioisotope instruments, including radiation sources and detectors, computing and control units, and measuring heads. The text describes the applications of radioisotop

  1. Advanced Stirling Radioisotope Generator Engineering Unit 2 (ASRG EU2) Final Assembly

    Science.gov (United States)

    Oriti, Salvatore M.

    2015-01-01

    NASA Glenn Research Center (GRC) has recently completed the assembly of a unique Stirling generator test article for laboratory experimentation. Under the Advanced Stirling Radioisotope Generator (ASRG) flight development contract, NASA GRC initiated a task to design and fabricate a flight-like generator for in-house testing. This test article was given the name ASRG Engineering Unit 2 (EU2) as it was effectively the second engineering unit to be built within the ASRG project. The intent of the test article was to duplicate Lockheed Martin's qualification unit ASRG design as much as possible to enable system-level tests not previously possible at GRC. After the cancellation of the ASRG flight development project, the decision was made to continue the EU2 build, and make use of a portion of the hardware from the flight development project. GRC and Lockheed Martin engineers collaborated to develop assembly procedures, leveraging the valuable knowledge gathered by Lockheed Martin during the ASRG development contract. The ASRG EU2 was then assembled per these procedures at GRC with Lockheed Martin engineers on site. The assembly was completed in August 2014. This paper details the components that were used for the assembly, and the assembly process itself.

  2. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    Science.gov (United States)

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  3. Feasibility of Thulium-170, Produced on Site, for Radioisotope Power Generation

    Science.gov (United States)

    Brennan, Charles; Mathews, Kirk

    1994-07-01

    Thulium-170 has been suggested as a replacement for 238Pu jn some radioisotope power generation applications. The proposed approach is to activate 169Tm within the core or reflector of a stationary site power nuclear reactor at a Lunar or Mars outpost. The 170Tm so produced offers high theoretical power densities without the toxicity, availability, and nuclear launch problems of plutonium (only stable 169Tm would be launched). We examined issues raised by previous studies. It would be desirable to activate the thulia repeatedly. The ORIGEN2 code was used to model repeated irradiation/decay of thulium sesquioxide. We found no substantial buildup of neutron absorbing activation products that would prohibit repeated irradiation of the sample. Throughout the life of the sample, the dominant activity was the 170Tm. There was no buildup of toxic substances. At end of life, the sample would be Class B waste. Another advantage of recycling is that, for the first several recyclings, recycled targets achieve the same power level as fresh ones, but with shorter activation periods (or higher power levels with the same activation periods). However, sufficient 170Tm could not be produced. Using neutron conservation arguments, we developed an absolute upper bound on l70Tm power production of 1/3 watt thermal per kilowatt thermal of reactor power. Realistic values are much lower. Thus, the envisioned application appears impractical, although limited uses for 170Tm power might be found.

  4. Operational readiness review plan for the radioisotope thermoelectric generator materials production tasks

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.H.; Martin, M.M.; Riggs, C.R.; Beatty, R.L.; Ohriner, E.K.; Escher, R.N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium-alloy component used to contain the plutonia heat source and a carbon-composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon-composite material. Because of the importance to DOE that Energy Systems deliver these high-quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP-24 entitled Operational Readiness Process'' describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management-approved readiness plan'' to be issued. This document is the readiness plan for the RTG materials production tasks. 6 refs., 11 figs., 1 tab.

  5. Economical Radioisotope Power Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Almost all robotic space exploration missions and all Apollo missions to the moon used Radioisotopic Thermoelectric Generators (RTGs) to provide electrical power to...

  6. Multi-Mission Radioisotope Thermoelectric Generator Heat Exchangers for the Mars Science Laboratory Rover

    Science.gov (United States)

    Mastropietro, A. J.; Beatty, John S.; Kelly, Frank P.; Bhandari, Pradeep; Bame, David P.; Liu, Yuanming; Birux, Gajanana C.; Miller, Jennifer R.; Pauken, Michael T.; Illsley, Peter M.

    2012-01-01

    The addition of the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to the Mars Science Laboratory (MSL) Rover requires an advanced thermal control system that is able to both recover and reject the waste heat from the MMRTG as needed in order to maintain the onboard electronics at benign temperatures despite the extreme and widely varying environmental conditions experienced both on the way to Mars and on the Martian surface. Based on the previously successful Mars landed mission thermal control schemes, a mechanically pumped fluid loop (MPFL) architecture was selected as the most robust and efficient means for meeting the MSL thermal requirements. The MSL heat recovery and rejection system (HRS) is comprised of two Freon (CFC-11) MPFLs that interact closely with one another to provide comprehensive thermal management throughout all mission phases. The first loop, called the Rover HRS (RHRS), consists of a set of pumps, thermal control valves, and heat exchangers (HXs) that enables the transport of heat from the MMRTG to the rover electronics during cold conditions or from the electronics straight to the environment for immediate heat rejection during warm conditions. The second loop, called the Cruise HRS (CHRS), is thermally coupled to the RHRS during the cruise to Mars, and provides a means for dissipating the waste heat more directly from the MMRTG as well as from both the cruise stage and rover avionics by promoting circulation to the cruise stage radiators. A multifunctional structure was developed that is capable of both collecting waste heat from the MMRTG and rejecting the waste heat to the surrounding environment. It consists of a pair of honeycomb core sandwich panels with HRS tubes bonded to both sides. Two similar HX assemblies were designed to surround the MMRTG on the aft end of the rover. Heat acquisition is accomplished on the interior (MMRTG facing) surface of each HX while heat rejection is accomplished on the exterior surface of

  7. Mass Properties Testing and Evaluation for the Multi-Mission Radioisotope Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Felicione, Frank S.

    2009-12-01

    Mass properties (MP) measurements were performed for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), serial number (S/N) 0X730401, the power system designated for the Mars Science Laboratory (MSL) mission. Measurements were made using new mounting fixtures at the mass properties testing station in the Idaho National Laboratory (INL) Space and Security Power Systems Facility (SSPSF). The objective of making mass properties measurements was to determine the generator’s flight configured mass and center of mass or center of gravity (CG). Using an extremely accurate platform scale, the mass of the as-tested generator was determined to be 100.117 ± 0.007 lb. Weight accuracy was determined by checking the platform scale with calibrated weights immediately prior to weighing the MMRTG.a CG measurement accuracy was assessed by surrogate testing using an inert mass standard for which the CG could be readily determined analytically. Repeated testing using the mass standard enabled the basic measurement precision of the system to be quantified in terms of a physical confidence interval about the measured CG position. However, repetitious testing with the MMRTG itself was not performed in deference to the gamma and neutron radiation dose to operators and the damage potential to the flight unit from extra handling operations. Since the mass standard had been specially designed to have a total weight and CG location that closely matched the MMRTG, the uncertainties determined from its testing were assigned to the MMRTG as well. On this basis, and at the 99% confidence level, a statistical analysis found the direct, as-measured MMRTG-MSL CG to be located at 10.816 ± 0.0011 in. measured perpendicular from the plane of the lower surface of the generator’s mounting lugs (Z direction), and offset from the generator’s long axis centerline in the X and Y directions by 0.0968 ± 0.0040 in. and 0.0276 ± 0.0026 in., respectively. These uncertainties are based

  8. Design, Analysis, and Optimization of a Radioisotope Thermophotovoltaic (RTPV) Generator, and its Applicability to an Illustrative Space Mission

    Science.gov (United States)

    Schock, A.; Mukunda, M.; Or, C.; Kumar, V.; Summers, G.

    1995-10-01

    The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the author. To focus the design effort, it was decided to direct it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by the Jet Propulsion Laboratory (JPL), envisages a direct eight to nine-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a six-week post-encounter cruise. Because of Pluto's long distance from the sun (30-50 A.U.) and the mission's large energy demand, JPL has baselined the use of a radioisotope power system for the PFF spacecraft. RTGs have been tentatively selected, because they have been successfully flown on many space missions, and have demonstrated exceptional reliability and durability. The only reason for exploring the applicability of the far less mature RTPV systems is their potential for much higher conversion efficiencies, which would greatly reduce the mass and cost of the required radioisotope heat source. Those attributes are particularly important for the PFF mission, which — like all NASA missions under current consideration — is severely mass- and cost-limited. The paper describes the design of an RTPV system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system; and depicts its integration with the PFF spacecraft. It then describes the optical, thermal, electrical, and structural analyses which led to that optimized design, and compares the computed performance of an RTPV system to that of an RTG designed for the same mission. Our analytical

  9. Radioisotope fueled pulsed power generation system for propulsion and electrical power for deep space missions

    Science.gov (United States)

    Howe, Troy

    Space exploration missions to the moon, Mars, and other celestial bodies have allowed for great scientific leaps to enhance our knowledge of the universe; yet the astronomical cost of these missions limits their utility to only a few select agencies. Reducing the cost of exploratory space travel will give rise to a new era of exploration, where private investors, universities, and world governments can send satellites to far off planets and gather important data. By using radioisotope power sources and thermal storage devices, a duty cycle can be introduced to extract large amounts of energy in short amounts of time, allowing for efficient space travel. The same device can also provide electrical power for subsystems such as communications, drills, lasers, or other components that can provide valuable scientific information. This project examines the use of multiple radioisotope sources combined with a thermal capacitor using Phase Change Materials (PCMs) which can collect energy over a period of time. The result of this design culminates in a variety of possible spacecraft with their own varying costs, transit times, and objectives. Among the most promising are missions to Mars which cost less than 17M, missions that can provide power to satellite constellations for decades, or missions that can deliver large, Opportunity-sized (185kg) payloads to mars for less than 53M. All made available to a much wider range of customer with commercially available satellite launches from earth. The true cost of such progress though lies in the sometimes substantial increase in transit times for these missions.

  10. Sublimation behavior of silicon nitride /Si3N4/ coated silicon germanium /SiGe/ unicouples. [for Radioisotope Thermoelectric Generators

    Science.gov (United States)

    Stapfer, G.; Truscello, V. C.

    1975-01-01

    For the Multi-Hundred Watt (MHW) Radioisotope Thermoelectric Generator (RTG), the silicon germanium unicouples are coated with silicon nitride to minimize degradation mechanisms which are directly attributable to material sublimation effects. A program is under way to determine the effective vapor suppression of this coating as a function of temperature and gas environment. The results of weight loss experiments, using Si3N4 coated hot shoes (SiMo), operating over a temperature range from 900 C to 1200 C, are analyzed and discussed. These experiments were conducted both in high vacuum and at different pressures of carbon monoxide (CO) to determine its effect on the coating. Although the results show a favorable vapor suppression at all operating temperatures, the pressure of the CO and the thickness of the coating have a decided effect on the useful lifetime of the coating.

  11. General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, M.A.H.; Hinckley, J.E.

    1996-11-01

    The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

  12. Radioisotope Power System Pool Concept

    Science.gov (United States)

    Rusick, Jeffrey J.; Bolotin, Gary S.

    2015-01-01

    Advanced Radioisotope Power Systems (RPS) for NASA deep space science missions have historically used static thermoelectric-based designs because they are highly reliable, and their radioisotope heat sources can be passively cooled throughout the mission life cycle. Recently, a significant effort to develop a dynamic RPS, the Advanced Stirling Radioisotope Generator (ASRG), was conducted by NASA and the Department of Energy, because Stirling based designs offer energy conversion efficiencies four times higher than heritage thermoelectric designs; and the efficiency would proportionately reduce the amount of radioisotope fuel needed for the same power output. However, the long term reliability of a Stirling based design is a concern compared to thermoelectric designs, because for certain Stirling system architectures the radioisotope heat sources must be actively cooled via the dynamic operation of Stirling converters throughout the mission life cycle. To address this reliability concern, a new dynamic Stirling cycle RPS architecture is proposed called the RPS Pool Concept.

  13. GPHS-RTG system explosion test direct course experiment 5000. [General Purpose Heat Source-Radioisotope Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-01

    The General Purpose Heat Source-Radioisotope Thermoelectric Generator (GPHS-RTG) has been designed and is being built to provide electrical power for spacecrafts to be launched on the Space Shuttle. The objective of the RTG System Explosion Test was to expose a mock-up of the GPHS-RTG with a simulated heat source to the overpressure and impulse representative of a potential upper magnitude explosion of the Space Shuttle. The test was designed so that the heat source module would experience an overpressure at which the survival of the fuel element cladding would be expected to be marginal. Thus, the mock-up was placed where the predicted incident overpressure would be 1300 psi. The mock-up was mounted in an orientation representative of the launch configuration on the spacecraft to be used on the NASA Galileo Mission. The incident overpressure measured was in the range of 1400 to 2100 psi. The mock-up and simulated heat source were destroyed and only very small fragments were recovered. This damage is believed to have resulted from a combination of the overpressure and impact by very high velocity fragments from the ANFO sphere. Post-test analysis indicated that extreme working of the iridium clad material occurred, indicative of intensive impulsive loading on the metal.

  14. Epoxy Adhesives for Stator Magnet Assembly in Stirling Radioisotope Generators (SRG)

    Science.gov (United States)

    Cater, George M.

    2004-01-01

    As NASA seeks to fulfill its goals of exploration and understanding through missions planned to visit the moons of Saturn and beyond, a number of challenges arise from the idea of deep space flight. One of the first problems associated with deep space travel is electrical power production for systems on the spacecraft. Conventional methods such as solar power are not practical because efficiency decreases substantially as the craft moves away from the Sun. The criterion for power generation during deep space missions are very specific, the main points requiring high reliability, low mass, minimal vibration and a long lifespan. A Stirling generator, although fairly old in concept, is considered to be a potential solution for electrical power generation for deep space flight. A Stirling generator works on the same electromagnetic principles of a standard generator, using the linear motion of the alternator through the stationary stator which produces electric induction. The motion of the alternator, however, is produced by the heating and cooling dynamics of pressurized gases. Essentially heating one end and cooling another of a contained gas will cause a periodic expansion and compression of the gas from one side to the other, which a displacer translates into linear mechanical motion. NASA needs to confirm that the materials used in the generator will be able to withstand the rigors of space and the life expectancy of the mission. I am working on the verification of the epoxy adhesives used to bond magnets to the steel lamination stack to complete the stator; in terms of in-service performance and durability under various space environments. Understanding the proper curing conditions, high temperature properties, and degassing problems as well as production difficulties are crucial to the long term success of the generator. system and steel substrate used in the stator. To optimize the curing conditions of the epoxies, modulated differential scanning calorimetry

  15. Economic Radioisotope Thermoelectric Generator (RTG) study. Volume I. ERTG design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1973-12-01

    The objectives of this study were: (1) to develop and evaluate an ERTG design for a high power, Curium-244 fueled system based on the tubular thermoelectric module technology; (2) to prepare a program plan for the development of a flight qualified ERTG; and (3) to estimate the costs associated with the production of one, ten and twenty flight qualified ERTG's. This volume presents the Reference Design ERTG approach, the results of the engineering trade studies leading to its selection, and the Second Generation ERTG Design proposed for development. (WHK)

  16. Radioisotope Thermoelectric Generators Based on Segmented BiTe/PbTe-BiTe/TAGS/PbSnTe

    Science.gov (United States)

    McAlonan, Malachy; Patel, Kalpesh; Cummer, Keith

    2006-01-01

    This paper reports on Phase 1 of a multifaceted effort to develop a more efficient radioisotope thermoelectric generator (RTG) for future NASA missions. The conversion efficiency goal is 10% or higher at a power level of 20 watt or higher. The thermoelectric (T/E) efficiency achievable with present T/E materials is about 8% for favorable temperatures. Thermoelectric converter designs, T/E material properties, and T/E couple thermal and electrical performance were investigated in Phase 1 of this program to find paths to improve conversion efficiency. T/E properties can be improved by optimizing the composition of the materials and by improving the micro structural characteristics such as homogeneity, grain size, and phases present. T/E couple performance can be improved by reducing the electrical and thermal contact resistances of the couple and within the segmented T/E elements. Performance and reliability improvements can be achieved by reducing the thermo-mechanical stresses, improving the quality of the bonds and interfaces, minimizing the number of required bonds, and reducing the degradation rates of both the T/E materials and the bonds. This paper focuses on one portion of the activity, i.e., the design of a small converter. In the converter design effort, a prototypic 20-watt device, suitable for use with a single general-purpose heat source (GPHS), was built using an optimized converter design of segmented thermoelectric elements of heritage composition. The 20-watt prototype achieved the power predicted for the test conditions. The chosen couple design used segmented BiTe/PbTe for the n-type element and BiTe/TAGS/PbSnTe, for the p-type T/E element. Use of the BiTe segment exploits the opportunity of the small RTG to operate at lower heat rejection temperatures and results in much higher conversion efficiency, the main objective of the NASA program. Long term data on similarly segmented couples at Teledyne together with the 20-watt module test results

  17. Radioisotope trithiol complexes

    Energy Technology Data Exchange (ETDEWEB)

    Jurisson, Silvia S.; Cutler, Cathy S.; Degraffenreid, Anthony J.

    2016-08-30

    The present invention is directed to a series of stable radioisotope trithiol complexes that provide a simplified route for the direct complexation of radioisotopes present in low concentrations. In certain embodiments, the complex contains a linking domain configured to conjugate the radioisotope trithiol complex to a targeting vector. The invention is also directed to a novel method of linking the radioisotope to a trithiol compound to form the radioisotope trithiol complex. The inventive radioisotope trithiol complexes may be utilized for a variety of applications, including diagnostics and/or treatment in nuclear medicine.

  18. Radioisotope Power Supply Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Between 1998 and 2003, Hi-Z Technology developed and built a 40 mW radioisotope power supply (RPS) that used a 1 watt radioisotope heater unit (RHU) as the energy...

  19. Radioisotope detection with accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mast, T.S.; Muller, R.A.; Tans, P.P.

    1979-12-01

    High energy mass spectrometry is a new and very sensitive technique of measuring rare radioisotopes. This paper describes the techniques used to select and identify the individual radioisotope atoms in a sample and the status of the radioisotope measurements and their applications.

  20. Investigation of the excitation functions for some medical radioisotopes production

    Science.gov (United States)

    Kılınç, Fatma; Karpuz, Nurdan; Çetin, Betül

    2016-11-01

    One of the main application fields of nuclear technology is medicine and radioisotopes are used in medicine. Production of those radioisotopes is important and in the production processes the cross section must be known. All the production of radioisotope used in medicine is based on the nuclear reactions means they are not natural. The decay time of produced radioisotopes is important as from production to hospital can take time and thus generally generator is used to produce some radioisotopes. Radioisotopes are widely produced in reactors or cyclotron type accelerator. Type of radioisotopes direct way to be used in production processes. Thus obtaining of cross section becomes crucial. For this purposes the theoretical calculation cross section of some radioisotopes used in medicine will be calculated in this study. The calculations will be done using Monte Carlo code of TALYS 1.6

  1. Radioisotope production in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Wan Anuar Wan Awang [Medical Technology Div., Malaysian Inst. for Nuclear Technology Research (MINT) (Malaysia)

    1998-10-01

    Production of Mo-99 by neutron activation of Mo-99 in Malaysia began as early as 1984. Regular supply of the Tc-99m extracted from it to the hospitals began in early 1988 after going through formal registration with the Malaysian Ministry of Health. Initially, the weekly demand was about 1.2 Ci of Mo-99 which catered the needs of 3 nuclear medicine centres. Sensitive to the increasing demand of Tc-99m, we have producing our own Tc-99m generator from imported TeO{sub 2} because irradiation TeO{sub 2} with our reactor give low yield of I-131. We have established the production of radioisotope for industrial use. By next year, Sm-153 EDTMP will be produce after we have license from our competent authority. (author)

  2. Radioisotopes: Today's Applications.

    Science.gov (United States)

    Department of Energy, Washington, DC. Nuclear Energy Office.

    Radioisotopes are useful because of their three unique characteristics: (1) radiation emission; (2) predictable radioactive lives; and (3) the same chemical properties as the nonradioactive atoms of that element. Researchers are able to "order" a radioisotope with the right radiation, half-life, and chemical property to perform a given task with…

  3. The Use of Redundancy to Improve Reliability of Deep Space Missions Using Stirling Radioisotope Generator Power Sources

    Science.gov (United States)

    Bolotin, Gary; Everline, Chet; Schmitz, Paul; Distefano, Sal

    2014-01-01

    This study will look at the 140 We class generator as originally envisioned for the ASRG and a larger generator that is scaled up to use four times the fuel. The results discussed below quantify the effect of the use of smaller generators and indicates that a scheme that makes use of several smaller generators enhances the system reliability and allows for more graceful degradation.

  4. The Use of Redundancy to Improve Reliability of Deep Space Missions Using Stirling Radioisotope Generator Power Sources

    Science.gov (United States)

    Bolotin, Gary; Everline, Chet; Schmitz, Paul; Distefano, Sal

    2014-01-01

    This study will look at the 140 We class generator as originally envisioned for the ASRG and a larger generator that is scaled up to use four times the fuel. The results discussed below quantify the effect of the use of smaller generators and indicates that a scheme that makes use of several smaller generators enhances the system reliability and allows for more graceful degradation.

  5. NASA's Radioisotope Power Systems Program Status

    Science.gov (United States)

    Dudzinski, Leonard A.; Hamley, John A.; McCallum, Peter W.; Sutliff, Thomas J.; Zakrajsek, June F.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Program began formal implementation in December 2010. The RPS Program's goal is to make available RPS for the exploration of the solar system in environments where conventional solar or chemical power generation is impractical or impossible to meet mission needs. To meet this goal, the RPS Program manages investments in RPS system development and RPS technologies. The current keystone of the RPS Program is the development of the Advanced Stirling Radioisotope Generator (ASRG). This generator will be about four times more efficient than the more traditional thermoelectric generators, while providing a similar amount of power. This paper provides the status of the RPS Program and its related projects. Opportunities for RPS generator development and targeted research into RPS component performance enhancements, as well as constraints dealing with the supply of radioisotope fuel, are also discussed in the context of the next ten years of planetary science mission plans.

  6. Production and utilization of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Toshiaki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsuoka, Hiromitsu

    1999-03-01

    A plan of developing radioisotopes with a high power proton accelerator of the Neutron Science Project is presented. The status of production and utilization of radioisotopes in Japan is briefly discussed. The radioisotopes to be produced for biomedical use are discussed together with the facility for production of those radioisotopes and for research with the products. (author)

  7. Using SpaceClaimTD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    Science.gov (United States)

    Fabanich, William A., Jr.

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractor's thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces/solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing/repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the "mark-up" of that geometry. These so-called "mark-ups" control how finite element (FE) meshes are to be generated through the "tagging" of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. "Domain-tags" were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine the objects each time as one would if using TDMesher. The use of SpaceClaim/TD Direct helps simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It also saves time and effort in the subsequent analysis.

  8. Using SpaceClaim/TD Direct for Modeling Components with Complex Geometries for the Thermal Desktop-Based Advanced Stirling Radioisotope Generator Model

    Science.gov (United States)

    Fabanich, William

    2014-01-01

    SpaceClaim/TD Direct has been used extensively in the development of the Advanced Stirling Radioisotope Generator (ASRG) thermal model. This paper outlines the workflow for that aspect of the task and includes proposed best practices and lessons learned. The ASRG thermal model was developed to predict component temperatures and power output and to provide insight into the prime contractors thermal modeling efforts. The insulation blocks, heat collectors, and cold side adapter flanges (CSAFs) were modeled with this approach. The model was constructed using mostly TD finite difference (FD) surfaces solids. However, some complex geometry could not be reproduced with TD primitives while maintaining the desired degree of geometric fidelity. Using SpaceClaim permitted the import of original CAD files and enabled the defeaturing repair of those geometries. TD Direct (a SpaceClaim add-on from CRTech) adds features that allowed the mark-up of that geometry. These so-called mark-ups control how finite element (FE) meshes were generated and allowed the tagging of features (e.g. edges, solids, surfaces). These tags represent parameters that include: submodels, material properties, material orienters, optical properties, and radiation analysis groups. TD aliases were used for most tags to allow analysis to be performed with a variety of parameter values. Domain-tags were also attached to individual and groups of surfaces and solids to allow them to be used later within TD to populate objects like, for example, heaters and contactors. These tools allow the user to make changes to the geometry in SpaceClaim and then easily synchronize the mesh in TD without having to redefine these objects each time as one would if using TD Mesher.The use of SpaceClaim/TD Direct has helped simplify the process for importing existing geometries and in the creation of high fidelity FE meshes to represent complex parts. It has also saved time and effort in the subsequent analysis.

  9. Analysis of metal radioisotope impurities generated in [{sup 18}O]H{sub 2}O during the cyclotron production of fluorine-18

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, J.M. [Cancer Research-UK/UMIST Radiochemical Targeting and Imaging Group, Christie Hospital NHS Trust, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, M20 4BX (United Kingdom)]. E-mail: jgillies@picr.man.ac.uk; Najim, N. [Cancer Research-UK/UMIST Radiochemical Targeting and Imaging Group, Christie Hospital NHS Trust, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, M20 4BX (United Kingdom); School of Chemical Engineering and Analytical Sciences, University of Manchester, P.O. Box 88, Manchester, M60 1QD (United Kingdom); Zweit, J. [Cancer Research-UK/UMIST Radiochemical Targeting and Imaging Group, Christie Hospital NHS Trust, Paterson Institute for Cancer Research, Wilmslow Road, Manchester, M20 4BX (United Kingdom); School of Chemical Engineering and Analytical Sciences, University of Manchester, P.O. Box 88, Manchester, M60 1QD (United Kingdom)

    2006-04-15

    We show the separation of metal radioistope impurities using capillary electrophoresis (CE). The methodology used is an improvement of existent protocols for separation of stable metal ions. Production of fluorine-18 using [{sup 18}O]H{sub 2}O-enriched water encased in a titanium target body results in the production of several metal radioisotope impurities. Optimisation of the conditions for CE separation of the metal radioisotope impurities incorporated the use of 6 mM 18-Crown-6 in combination with 12 mM glycolic acid as complexing agents within the running buffer (10 mM pyridine, pH 4.0). Using this optimised procedure, we were able to separate and detect a number of metal radioisotopes, including chromium, cobalt, manganese, vanadium and berillium, within the fM concentration range.

  10. Radioisotope Production for Medical and Physics Applications

    Science.gov (United States)

    Mausner, Leonard

    2012-10-01

    Radioisotopes are critical to the science and technology base of the US. Discoveries and applications made as a result of the availability of radioisotopes span widely from medicine, biology, physics, chemistry and homeland security. The clinical use of radioisotopes for medical diagnosis is the largest sector of use, with about 16 million procedures a year in the US. The use of ^99Mo/^99mTc generator and ^18F make up the majority, but ^201Tl, ^123I, ^111In, and ^67Ga are also used routinely to perform imaging of organ function. Application of radioisotopes for therapy is dominated by use of ^131I for thyroid malignancies, ^90Y for some solid tumors, and ^89Sr for bone cancer, but production of several more exotic species such as ^225Ac and ^211At are of significant current research interest. In physics ^225Ra is of interest for CP violation studies, and the actinides ^242Am, ^249Bk, and ^254Es are needed as targets for experiments to create superheavy elements. Large amounts of ^252Cf are needed as a fission source for the CARIBU experiment at ANL. The process of radioisotope production is multidisciplinary. Nuclear physics input based on nuclear reaction excitation function data is needed to choose an optimum target/projectile in order to maximize desired isotope production and minimize unwanted byproducts. Mechanical engineering is needed to address issues of target heating, induced mechanical stress and material compatibility of target and claddings. Radiochemists are involved as well since chemical separation to purify the desired final radioisotope product from the bulk target and impurities is also usually necessary. Most neutron rich species are produced at a few government and university reactors. Other radioisotopes are produced in cyclotrons in the commercial sector, university/hospital based facilities, and larger devices at the DOE labs. The landscape of US facilities, the techniques involved, and current supply challenges will be reviewed.

  11. Radioisotopic Thermoelectric Generator (RTG) Surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Mulford, Roberta Nancy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    This lecture discusses stockpile stewardship efforts and the role surveillance plays in the process. Performance of the RTGs is described, and the question of the absence of anticipated He is addressed.

  12. Radioisotopes in Industry

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Philip S. [Oak Ridge National Laboratory; Fuccillo, Jr., Domenic A. [Oak Ridge National Laboratory; Gerrard, Martha W. [Oak Ridge National Laboratory; Lafferty, Jr., Robert H. [Oak Ridge National Laboratory

    1967-05-01

    Radioisotopes, man-made radioactive elements, are used in industry primarily for measuring, testing and processing. How and why they are useful is the subject of this booklet. The booklet discusses their origin, their properties, their uses, and how they may be used in the future.

  13. Commercial Superconducting Electron Linac for Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Terry Lee [Niowave, Inc., Lansing, MI (United States); Boulware, Charles H. [Niowave, Inc., Lansing, MI (United States); Hollister, Jerry L. [Niowave, Inc., Lansing, MI (United States); Jecks, Randall W. [Niowave, Inc., Lansing, MI (United States); Mamtimin, Mayir [Niowave, Inc., Lansing, MI (United States); Starovoitova, Valeriia [Niowave, Inc., Lansing, MI (United States)

    2015-08-13

    The majority of radioisotopes used in the United States today come from foreign suppliers or are generated parasitically in large government accelerators and nuclear reactors. Both of these restrictions limit the availability of radioisotopes and discourage the development and evaluation of new isotopes and for nuclear medicine, science, and industry. Numerous studies have been recommending development of dedicated accelerators for production of radioisotopes for over 20 years (Institute of Medicine, 1995; Reba, et al, 2000; National Research Council, 2007; NSAC 2009). The 2015 NSAC Long Range Plan for Isotopes again identified electron accelerators as an area for continued research and development. Recommendation 1(c) from the 2015 NSAC Isotope report specifically identifies electron accelerators for continued funding for the purpose of producing medical and industrial radioisotopes. Recognizing the pressing need for new production methods of radioisotopes, the United States Congress passed the American Medical Isotope Production Act of 2012 to develop a domestic production of 99Mo and to eliminate the use of highly enriched uranium (HEU) in the production of 99Mo. One of the advantages of high power electron linear accelerators (linacs) is they can create both proton- and neutron-rich isotopes by generating high energy x-rays that knock out protons or neutrons from stable atoms or by fission of uranium. This allows for production of isotopes not possible in nuclear reactors. Recent advances in superconducting electron linacs have decreased the size and complexity of these systems such that they are economically competitive with nuclear reactors and large, high energy accelerators. Niowave, Inc. has been developing a radioisotope production facility based on a superconducting electron linac with liquid metal converters.

  14. Radioisotopes for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Carr, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division

    1998-03-01

    For more than 3 decades, the Australian Nuclear Science and Technology Organisation has been the country`s main supplier of radioisotopes for medical applications. The use of radioisotopes in medicine has revolutionised the diagnosis, management and treatment of many serious diseases such as cancer, heart disease and stroke. It is also beginning to play a key role in neurological disorders such as Parkinson and Alzheimers disease and epilepsy. More recently there has been considerable growth in the application of nuclear medicine to treat sport-related injuries - especially wrist, ankle and knees where more common techniques do not always enable accurate diagnosis. Australia is a recognised leader in nuclear medicine. This can be partially attributed to the close relationship between ANSTO and the medical community in providing opportunities to develop and evaluate new agents to support more effective patient care. A list of commercial isotopes produced in the reactor or the cyclotron and used in medical applications is given. Nuclear medicine plays an important role in the clinical environment and the timely supply of radioisotopes is a key element. ANSTO will continue to be the premier supplier of currently available and developing isotopes to support the health and well being of the Australian community 2 tabs., 1 fig.

  15. Development of radioisotope production in the Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Cabalfin, E.G. [Philippine Nuclear Research Institute, Quezon (Philippines)

    1998-10-01

    The Philippine Nuclear Research Institute (PNRI) started its activities on radioisotope production more than three decades ago, when the Philippine Research Reactor (PRR-1) started operating at its full rated power of 1 MW. Since then, several radionuclides in different chemical forms, were routinely produced and supplied for use in nuclear medicine, industry, agriculture, research and training, until the conversion of the PRR-1 to a 3 MW TRIGA type reactor. After the criticality test of the upgraded reactor, a leak was discovered in the pool liner. With the repair of the reactor still ongoing, routine radioisotope production activities have been reduced to dispensing of imported bulk {sup 131}I. In the Philippines, radioisotopes are widely used in nuclear medicine, with {sup 131}I and {sup 99m}Tc as the major radionuclides of interest. Thus the present radioisotope production program of PNRI is directed to meet this demand. With the technical assistance of the International Atomic Energy Agency (IAEA), PNRI is setting up a new {sup 131}I production facility. The in-cell equipment have been installed and tested using both inactive and active target, obtained from BATAN, Indonesia. In order to meet the need of producing {sup 99}Mo-{sup 99m}Tc generators, based on low specific activity reactor-produced {sup 99}Mo, research and development work on the preparation of {sup 99m}Tc gel generators is ongoing. (author)

  16. NASA's Radioisotope Power Systems - Plans

    Science.gov (United States)

    Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2015-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.

  17. Mission interplanetary: Using radioisotope power to explore the solar system

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Gary L., E-mail: UserSg4282@aol.com

    2008-03-15

    The exploration of space both by humans and robots has been greatly enhanced and, in many cases, enabled by the use of radioisotope power sources (RPSs) to power and/or heat scientific instruments. Radioisotope power sources have enabled such breakthrough missions as the Pioneer flights to Jupiter, Saturn and beyond; the Voyager flights to Jupiter, Saturn, Uranus, Neptune, and beyond; the Apollo lunar surface experiments; the Viking Lander studies of Mars; the Galileo spacecraft that orbited Jupiter; the Ulysses mission to study the polar regions of the Sun; the Cassini spacecraft orbiting Saturn; and the recently launched New Horizons spacecraft to Pluto. Radioisotope heater units have enhanced or enabled the Apollo Early Scientific Experiment Package and the Mars exploration rover missions (Sojourner, Spirit and Opportunity). Since 1961, the United States has successfully flown 41 radioisotope thermoelectric generators (RTGs) to provide electrical power for 23 space missions.

  18. Milliwatt Radioisotope Stirling Convertor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Studies of potential space missions have highlighted the need for very small electric power supplies for a variety of applications. The light weight radioisotope...

  19. Medical application of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Chang Woon; Lim, S. M.; Kim, E. H. [and others

    2000-05-01

    In this project, we studied following subjects: 1. Clinical research for radionuclide therapy 2. Development of in vitro assay method with radioisotope 3. Development of binary therapy; Boron neutron capture therapy and photodynamic therapy 4. Development of diagnostic methods in radionuclide imaging. The results can be applied for the following objectives: (1) Radionuclide therapy will be applied in clinical practice to treat the cancer patients or other diseases in multi-center trial (2) The newly developed monoclonal antibodies and biomolecules can be used in biology, chemistry or other basic life science research (3) The new methods for the analysis of therapeutic effects, such as dosimetry, and quantitative analysis methods of radioactivity, can be applied in basic research, such as radiation oncology and radiation biology (4) The result of the project will be expected to develop the new radioimmunoassay for drug monitoring following the clinical experiments (5) Boron porphyrin has been successfully labeled with iodine. This enables the pharmacodynamic study of the boron compound in human body (6) A method to evaluate the biological effect of neutrons on tumor cells has been developed (7) The establishment of macro- and microscopic dose assessment using alpha-track autoradiography (8) Clinical application of PDT in bladder cancers, oropharyngeal cancer and skin cancer (9) Radionuclide imaging of estrogen receptor in breast cancer, lipid metabolism, gene therapy, cancers, brain function and heart disease.

  20. Performance tuned radioisotope thermophotovoltaic space power system

    Science.gov (United States)

    Horne, W. E.; Morgan, M. D.; Saban, S. B.

    1998-01-01

    The trend in space exploration is to use many small, low-cost, special-purpose satellites instead of the large, high-cost, multipurpose satellites used in the past. As a result of this new trend, there is a need for lightweight, efficient, and compact radioisotope fueled electrical power generators. This paper presents an improved design for a radioisotope thermophotovoltaic (RTPV) space power system in the 10 W to 20 W class which promises up to 37.6 watts at 30.1% efficiency and 25 W/kg specific power. The RTPV power system concept has been studied and compared to radioisotope thermoelectric generators (RTG) radioisotope, Stirling generators and alkali metal thermal electric conversion (AMTEC) generators (Schock, 1995). The studies indicate that RTPV has the potential to be the lightest weight, most efficient and most reliable of the three concepts. However, in spite of the efficiency and light weight, the size of the thermal radiator required to eliminate excess heat from the PV cells and the lack of actual system operational performance data are perceived as obstacles to RTPV acceptance for space applications. Between 1994 and 1997 EDTEK optimized the key converter components for an RTPV generator under Department of Energy (DOE) funding administered via subcontracts to Orbital Sciences Corporation (OSC) and EG&G Mound Applied Technologies Laboratory (Horne, 1995). The optimized components included a resonant micromesh infrared bandpass filter, low-bandgap GaSb PV cells and cell arrays. Parametric data from these components were supplied to OSC who developed and analyzed the performance of 100 W, 20 W, and 10 W RTPV generators. These designs are described in references (Schock 1994, 1995 and 1996). Since the performance of each class of supply was roughly equivalent and simply scaled with size, this paper will consider the OSC 20 W design as a baseline. The baseline 20-W RTPV design was developed by Schock, et al of OSC and has been presented elsewhere. The

  1. Recent progress in radioisotope production in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Le Van So [Radioisotope Dept., Nuclear Research Institute, Dalat (Viet Nam)

    1998-10-01

    This is a report on the recent progress in radioisotope production in Vietnam. Using a nuclear research reactor of 500 KW with continuous operation cycles of 100 hours a month, the production of some important radioisotopes used in nuclear medicine and research was routinely carried out. More than 80 per cent of irradiation capacity of reactor for radioisotope production were exploited. The radioactivity of more than 150 Ci of {sup 131}I, {sup 99}Mo-{sup 99m}Tc, {sup 32}P, {sup 51}Cr, {sup 153}Sm, {sup 46}Sc, {sup 192}Ir was produced annually. Radiopharmaceuticals such as {sup 131}I-Hippuran and in-vivo Kits for {sup 99m}Tc labelling were also prepared routinely and regularly. More than 10 in-vivo Kits including modern radiopharmaceuticals such as HmPAO kit were supplied to hospitals in Vietnam. The research on the improvement of dry distillation technology for production of {sup 131}I was carried out. As a result obtained a new distillation apparatus made from glass was successfully put to routine use in place of expensive quartz distillation furnace. We have also continued the research programme on the development of {sup 99m}Tc generators using low power research reactors. Gel technology using Zr- and Ti- molybdate gel columns for {sup 99m}Tc generator production was developed and improved continually. Portable {sup 99m}Tc generator using Zr-({sup 99}Mo) molybdate gel column and ZISORB adsorbent column for {sup 99m}Tc concentration were developed. The ZISORB adsorbent of high adsorption capacity for {sup 99}Mo and other parent radionuclides was also studied for the development purpose of alternative technology of {sup 99m}Tc and other different radionuclide generator systems. The studies on the preparation of therapeutic radiopharmaceuticals labelling with {sup 153}Sm and {sup 131}I such as {sup 153}Sm-EDTMP, {sup 131}I-MIBG were carried out. (author)

  2. NASA Radioisotope Power System Program - Technology and Flight Systems

    Science.gov (United States)

    Sutliff, Thomas J.; Dudzinski, Leonard A.

    2009-01-01

    NASA sometimes conducts robotic science missions to solar system destinations for which the most appropriate power source is derived from thermal-to-electrical energy conversion of nuclear decay of radioactive isotopes. Typically the use of a radioisotope power system (RPS) has been limited to medium and large-scale missions, with 26 U,S, missions having used radioisotope power since 1961. A research portfolio of ten selected technologies selected in 2003 has progressed to a point of maturity, such that one particular technology may he considered for future mission use: the Advanced Stirling Converter. The Advanced Stirling Radioisotope Generator is a new power system in development based on this Stirling cycle dynamic power conversion technology. This system may be made available for smaller, Discovery-class NASA science missions. To assess possible uses of this new capability, NASA solicited and funded nine study teams to investigate unique opportunities for exploration of potential destinations for small Discovery-class missions. The influence of the results of these studies and the ongoing development of the Advanced Stirling Radioisotope Generator system are discussed in the context of an integrated Radioisotope Power System program. Discussion of other and future technology investments and program opportunities are provided.

  3. Miniaturized radioisotope solid state power sources

    Science.gov (United States)

    Fleurial, J.-P.; Snyder, G. J.; Patel, J.; Herman, J. A.; Caillat, T.; Nesmith, B.; Kolawa, E. A.

    2000-01-01

    Electrical power requirements for the next generation of deep space missions cover a wide range from the kilowatt to the milliwatt. Several of these missions call for the development of compact, low weight, long life, rugged power sources capable of delivering a few milliwatts up to a couple of watts while operating in harsh environments. Advanced solid state thermoelectric microdevices combined with radioisotope heat sources and energy storage devices such as capacitors are ideally suited for these applications. By making use of macroscopic film technology, microgenrators operating across relatively small temperature differences can be conceptualized for a variety of high heat flux or low heat flux heat source configurations. Moreover, by shrinking the size of the thermoelements and increasing their number to several thousands in a single structure, these devices can generate high voltages even at low power outputs that are more compatible with electronic components. Because the miniaturization of state-of-the-art thermoelectric module technology based on Bi2Te3 alloys is limited due to mechanical and manufacturing constraints, we are developing novel microdevices using integrated-circuit type fabrication processes, electrochemical deposition techniques and high thermal conductivity substrate materials. One power source concept is based on several thermoelectric microgenerator modules that are tightly integrated with a 1.1W Radioisotope Heater Unit. Such a system could deliver up to 50mW of electrical power in a small lightweight package of approximately 50 to 60g and 30cm3. An even higher degree of miniaturization and high specific power values (mW/mm3) can be obtained when considering the potential use of radioisotope materials for an alpha-voltaic or a hybrid thermoelectric/alpha-voltaic power source. Some of the technical challenges associated with these concepts are discussed in this paper. .

  4. Separation of lanthanum, hafnium, barium and radiotracers yttrium-88 and barium-133 using crystalline zirconium phosphate and phosphonate compounds as prospective materials for a Ra-223 radioisotope generator

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, Teresia [Lynntech Inc., 7610 Eastmark Dr, College Station, TX 77840 (United States); Bestaoui, Naima, E-mail: Naima.Bestaoui@Lynntech.co [Lynntech Inc., 7610 Eastmark Dr, College Station, TX 77840 (United States); Wierzbicki, Melissa; Adams, Todd; Clearfield, Abraham [Lynntech Inc., 7610 Eastmark Dr, College Station, TX 77840 (United States)

    2011-07-15

    Crystalline hybrid organic/inorganic ion exchangers based on zirconium phosphate and phosphonate compounds were evaluated for application in radium-223 generator for radiopharmaceutical applications. Various compositions were synthesized and the selectivity of these materials was determined for inactive lanthanum, hafnium and barium, and radiotracers yttrium-88 and barium-133. The hybrid materials show very efficient lanthanum/barium separation; the response for zirconium phosphate was even better. A small-scale column loaded with pelletized zirconium phosphate compound demonstrated excellent retention of {sup 88}Y and release of {sup 133}Ba.

  5. Preparing for Harvesting Radioisotopes from FRIB

    Energy Technology Data Exchange (ETDEWEB)

    Peaslee, Graham F. [Hope College, Holland, MI (United States); Lapi, Suzanne E. [Washington Univ., St. Louis, MO (United States)

    2015-02-02

    The Facility for Rare Isotope Beams (FRIB) is the next generation accelerator facility under construction at Michigan State University. FRIB will produce a wide variety of rare isotopes by a process called projectile fragmentation for a broad range of new experiments when it comes online in 2020. The accelerated rare isotope beams produced in this facility will be more intense than any current facility in the world - in many cases by more than 1000-fold. These beams will be available to the primary users of FRIB in order to do exciting new fundamental research with accelerated heavy ions. In the standard mode of operation, this will mean one radioisotope will be selected at a time for the user. However, the projectile fragmentation process also yields hundreds of other radioisotopes at these bombarding energies, and many of these rare isotopes are long-lived and could have practical applications in medicine, national security or the environment. This project developed new methods to collect these long-lived rare isotopes that are by-products of the standard FRIB operation. These isotopes are important to many areas of research, thus this project will have a broad impact in several scientific areas including medicine, environment and homeland security.

  6. Alpha indirect conversion radioisotope power source

    Energy Technology Data Exchange (ETDEWEB)

    Sychov, Maxim [TRACE Photonics Inc., 1680 West Polk, Charleston, IL 61920 (United States)], E-mail: msychov@yahoo.com; Kavetsky, Alexandr; Yakubova, Galina; Walter, Gabriel; Yousaf, Shahid; Lin, Qian; Chan, Doris; Socarras, Heather; Bower, Kenneth [TRACE Photonics Inc., 1680 West Polk, Charleston, IL 61920 (United States)

    2008-02-15

    Advantages of radioisotope-powered electric generators include long service life, wide temperature range operation and high-energy density. We report development of a long-life generator based on indirect conversion of alpha decay energy. Prototyping used 300 mCi Pu-238 alpha emitter and AlGaAs photovoltaic cells designed for low light intensity conditions. The alpha emitter, phosphor screens, and voltaic arrays were assembled into a power source with the following characteristics: I{sub sc}=14 {mu}A; U{sub oc}=2.3 V; power output -21 {mu}W. Using this prototype we have powered an eight-digit electronic calculator and wrist watch.

  7. Radioisotope Power Systems Program: A Program Overview

    Science.gov (United States)

    Hamley, John A.

    2016-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan, mature research in energy conversion, and partners with the Department of Energy (DOE) to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. Recent programs responsibilities include providing investment recommendations to NASA stakeholders on emerging thermoelectric and Stirling energy conversion technologies and insight on NASA investments at DOE in readying a generator for the Mars 2020 mission. This presentation provides an overview of the RPS Program content and status and the approach used to maintain the readiness of RPS to support potential future NASA missions.

  8. Performance tuned radioisotope thermophotovoltaic space power system

    Energy Technology Data Exchange (ETDEWEB)

    Horne, W.E.; Morgan, M.D.; Saban, S.B. [EDTEK, Inc., 7082 South 220th Street, Kent, Washington 98032-1910 (United States)

    1998-01-01

    The trend in space exploration is to use many small, low-cost, special-purpose satellites instead of the large, high-cost, multipurpose satellites used in the past. As a result of this new trend, there is a need for lightweight, efficient, and compact radioisotope fueled electrical power generators. This paper presents an improved design for a radioisotope thermophotovoltaic (RTPV) space power system in the 10 W to 20 W class which promises up to 37.6 watts at 30.1{percent} efficiency and 25 W/kg specific power. The RTPV power system concept has been studied and compared to radioisotope thermoelectric generators (RTG) radioisotope, Stirling generators and alkali metal thermal electric conversion (AMTEC) generators (Schock, 1995). The studies indicate that RTPV has the potential to be the lightest weight, most efficient and most reliable of the three concepts. However, in spite of the efficiency and light weight, the size of the thermal radiator required to eliminate excess heat from the PV cells and the lack of actual system operational performance data are perceived as obstacles to RTPV acceptance for space applications. Between 1994 and 1997 EDTEK optimized the key converter components for an RTPV generator under Department of Energy (DOE) funding administered via subcontracts to Orbital Sciences Corporation (OSC) and EG&G Mound Applied Technologies Laboratory (Horne, 1995). The optimized components included a resonant micromesh infrared bandpass filter, low-bandgap GaSb PV cells and cell arrays. Parametric data from these components were supplied to OSC who developed and analyzed the performance of 100 W, 20 W, and 10 W RTPV generators. These designs are described in references (Schock 1994, 1995 and 1996). Since the performance of each class of supply was roughly equivalent and simply scaled with size, this paper will consider the OSC 20 W design as a baseline. The baseline 20-W RTPV design was developed by Schock, et al of OSC and has been presented elsewhere

  9. Berkeley Off-line Radioisotope Generator (BORG)

    CERN Document Server

    Sudowe, R

    2001-01-01

    Development of chemical separations for the transactinides has traditionally been performed with longer-lived tracer activities purchased commercially. With these long-lived tracers, there is always the potential problem that the tracer atoms are not always in the same chemical form as the short-lived atoms produced in on-line experiments. This problem is especially severe for elements in groups 4 and 5 of the periodic table, where hydrolysis is present. The long-lived tracers usually are stored with a complexing agent to prevent sorption or precipitation. Chemistry experiments performed with these long-lived tracers are therefore not analogous to those chemical experiments performed in on-line experiments. One way to eliminate the differences between off-line and on-line chemistry experiments is through the use of a sup 2 sup 5 sup 2 Cf fission fragment collection device. A sup 2 sup 5 sup 2 Cf fission fragment collection device has already been constructed [1]. This device is limited in its capabilities. A ...

  10. Energy Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Sy, Amy [Jefferson Lab, Newport News, VA; Krafft, Geoffrey A. [Jefferson Lab, Newport News, VA; Johnson, Rolland [Muons, Inc., Batavia, IL; Roberts, Tom; Boulware, Chase; Hollister, Jerry

    2015-09-01

    Photonuclear reactions with bremsstrahlung photon beams from electron linacs can generate radioisotopes of critical interest. An SRF Energy Recovery Linac (ERL) provides a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes in a more compact footprint and at a lower cost than those produced by conventional reactor or ion accelerator methods. Use of an ERL enables increased energy efficiency of the complex through energy recovery of the waste electron beam, high electron currents for high production yields, and reduced neutron production and shielding activation at beam dump components. Simulation studies using G4Beamline/GEANT4 and MCNP6 through MuSim, as well as other simulation codes, will design an ERL-based isotope production facility utilizing bremsstrahlung photon beams from an electron linac. Balancing the isotope production parameters versus energy recovery requirements will inform a choice of isotope production target for future experiments.

  11. Investigation of Insulation Materials for Future Radioisotope Power Systems

    Science.gov (United States)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power Systems (RPS) Technology Advancement Project is developing next generation high-temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  12. Investigation of Insulation Materials for Future Radioisotope Power Systems (RPS)

    Science.gov (United States)

    Cornell, Peggy A.; Hurwitz, Frances I.; Ellis, David L.; Schmitz, Paul C.

    2013-01-01

    NASA's Radioisotope Power System (RPS) Technology Advancement Project is developing next generation high temperature insulation materials that directly benefit thermal management and improve performance of RPS for future science missions. Preliminary studies on the use of multilayer insulation (MLI) for Stirling convertors used on the Advanced Stirling Radioisotope Generator (ASRG) have shown the potential benefits of MLI for space vacuum applications in reducing generator size and increasing specific power (W/kg) as compared to the baseline Microtherm HT (Microtherm, Inc.) insulation. Further studies are currently being conducted at NASA Glenn Research Center (GRC) on candidate MLI foils and aerogel composite spacers. This paper presents the method of testing of foils and spacers and experimental results to date.

  13. Radioisotope electric propulsion of sciencecraft to the outer solar system and near-interstellar space

    Energy Technology Data Exchange (ETDEWEB)

    Noble, R.J.

    1998-08-01

    Recent results are presented in the study of radioisotope electric propulsion as a near-term technology for sending small robotic sciencecraft to the outer Solar System and near-interstellar space. Radioisotope electric propulsion (REP) systems are low-thrust, ion propulsion units based on radioisotope electric generators and ion thrusters. Powerplant specific masses are expected to be in the range of 100 to 200 kg/kW of thrust power. Planetary rendezvous missions to Pluto, fast missions to the heliopause (100 AU) with the capability to decelerate an orbiter for an extended science program and prestellar missions to the first gravitational lens focus of the Sun (550 AU) are investigated.

  14. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    Science.gov (United States)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualis, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Programs budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Programs portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  15. NASA's Radioisotope Power Systems Planning and Potential Future Systems Overview

    Science.gov (United States)

    Zakrajsek, June F.; Woerner, Dave F.; Cairns-Gallimore, Dirk; Johnson, Stephen G.; Qualls, Louis

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet the needs of the missions. To meet this goal, the RPS Program, working closely with the Department of Energy, performs mission and system studies (such as the recently released Nuclear Power Assessment Study), assesses the readiness of promising technologies to infuse in future generators, assesses the sustainment of key RPS capabilities and knowledge, forecasts and tracks the Program's budgetary needs, and disseminates current information about RPS to the community of potential users. This process has been refined and used to determine the current content of the RPS Program's portfolio. This portfolio currently includes an effort to mature advanced thermoelectric technology for possible integration into an enhanced Multi-Mission Radioisotope Generator (eMMRTG), sustainment and production of the currently deployed MMRTG, and technology investments that could lead to a future Stirling Radioisotope Generator (SRG). This paper describes the program planning processes that have been used, the currently available MMRTG, and one of the potential future systems, the eMMRTG.

  16. Production capabilities in US nuclear reactors for medical radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Mirzadeh, S.; Callahan, A.P.; Knapp, F.F. Jr. [Oak Ridge National Lab., TN (United States); Schenter, R.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-11-01

    The availability of reactor-produced radioisotopes in the United States for use in medical research and nuclear medicine has traditionally depended on facilities which are an integral part of the US national laboratories and a few reactors at universities. One exception is the reactor in Sterling Forest, New York, originally operated as part of the Cintichem (Union Carbide) system, which is currently in the process of permanent shutdown. Since there are no industry-run reactors in the US, the national laboratories and universities thus play a critical role in providing reactor-produced radioisotopes for medical research and clinical use. The goal of this survey is to provide a comprehensive summary of these production capabilities. With the temporary shutdown of the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) in November 1986, the radioisotopes required for DOE-supported radionuclide generators were made available at the Brookhaven National Laboratory (BNL) High Flux Beam Reactor (HFBR). In March 1988, however, the HFBR was temporarily shut down which forced investigators to look at other reactors for production of the radioisotopes. During this period the Missouri University Research Reactor (MURR) played an important role in providing these services. The HFIR resumed routine operation in July 1990 at 85 MW power, and the HFBR resumed operation in June 1991, at 30 MW power. At the time of the HFBR shutdown, there was no available comprehensive overview which could provide information on status of the reactors operating in the US and their capabilities for radioisotope production. The obvious need for a useful overview was thus the impetus for preparing this survey, which would provide an up-to-date summary of those reactors available in the US at both the DOE-funded national laboratories and at US universities where service irradiations are currently or expected to be conducted.

  17. BEST medical radioisotope production cyclotrons

    Science.gov (United States)

    Sabaiduc, Vasile; Milton, Bruce; Suthanthiran, Krishnan; Gelbart, W. Z.; Johnson, Richard R.

    2013-04-01

    Best Cyclotron Systems Inc (BCSI) is currently developing 14 MeV, 25 MeV, 35MeV and 70MeV cyclotrons for radioisotope production and research applications as well as the entire spectrum of targets and nuclear synthesis modules for the production of Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT) and radiation therapy isotopes. The company is a subsidiary of Best Medical International, renowned in the field of medical instrumentation and radiation therapy. All cyclotrons have external negative hydrogen ion sources, four radial sectors with two dees in opposite valleys, cryogenic vacuum system and simultaneous beam extraction on opposite lines. The beam intensity ranges from 400 μA to 1000 μA, depending on the cyclotron energy and application [1].

  18. Linear accelerator for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  19. US Department of Energy radioisotope customers with summary of radioisotope shipments, FY 1988

    Energy Technology Data Exchange (ETDEWEB)

    Van Houten, N.C.

    1989-06-01

    Pacific Northwest Laboratory (PNL) prepared this edition of the radioisotope customer list at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This is the 25th report in a series dating from 1964. This report covers DOE radioisotope sales and distribution activities by its facilities to domestic, foreign and other DOE facilities for FY 1988. The report is divided into five sections: radioisotope suppliers, facility contacts, and radioisotopes or services supplied; a list of customers, suppliers, and radioisotopes purchased; a list of radioisotopes purchased cross-referenced to customer numbers; geographic locations of radioisotope customers; and radioisotope sales and transfers -- FY 1988. Radioisotopes not previously reported in this series of reports were argon-37, arsenic-72, arsenic-73, bismuth-207, gadolinium-151, rhenium-188, rhodium-101, selenium-72, xenon-123 and zirconium-88. The total value of DOE radioisotope sales for FY 1988 was $11.1 million, an increase of 3% from FY 1987.

  20. Radioisotope Electric Propulsion (REP): A Near-Term Approach to Nuclear Propulsion

    Science.gov (United States)

    Schmidt, George R.; Manzella, David H.; Kamhawi, Hani; Kremic, Tibor; Oleson, Steven R.; Dankanich, John W.; Dudzinski, Leonard A.

    2009-01-01

    Studies over the last decade have shown radioisotope-based nuclear electric propulsion to be enhancing and, in some cases, enabling for many potential robotic science missions. Also known as radioisotope electric propulsion (REP), the technology offers the performance advantages of traditional reactor-powered electric propulsion (i.e., high specific impulse propulsion at large distances from the Sun), but with much smaller, affordable spacecraft. Future use of REP requires development of radioisotope power sources with system specific powers well above that of current systems. The US Department of Energy and NASA have developed an advanced Stirling radioisotope generator (ASRG) engineering unit, which was subjected to rigorous flight qualification-level tests in 2008, and began extended lifetime testing later that year. This advancement, along with recent work on small ion thrusters and life extension technology for Hall thrusters, could enable missions using REP sometime during the next decade.

  1. Safety status of space radioisotope and reactor power sources

    Science.gov (United States)

    Bennett, Gary L.

    1990-01-01

    The current overall safety criterion for both radioisotope and reactor power sources is containment or immobilization in the case of a reentry accident. In addition, reactors are designed to remain subcritical under conditions of land impact or water immersion. A very extensive safety test and analysis program was completed on the radioisotope thermoelectric generators (RTGs) in use on the Galileo spacecraft and planned for use on the Ulysses spacecraft. The results of this work show that the RTGs will pose little or no risk for any credible accident. The SP-100 space nuclear reactor program has begun addressing its safety criteria, and the design is planned to be such as to ensure meeting the various safety criteria. Preliminary mission risk analyses on SP-100 show the expected value population dose from postulated accidents on the reference mission to be very small. It is concluded that the current US nuclear power sources are the safest flown.

  2. Environmental assessment for radioisotope heat source fuel processing and fabrication

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    DOE has prepared an Environmental Assessment (EA) for radioisotope heat source fuel processing and fabrication involving existing facilities at the Savannah River Site (SRS) near Aiken, South Carolina and the Los Alamos National Laboratory (LANL) near Los Alamos, New Mexico. The proposed action is needed to provide Radioisotope Thermoelectric Generators (RTG) to support the National Aeronautics and Space Administration's (NASA) CRAF and Cassini Missions. Based on the analysis in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, an Environmental Impact Statement is not required. 30 refs., 5 figs.

  3. Radioisotope Power: A Key Technology for Deep Space Explorations

    Science.gov (United States)

    Schmidt, George R.; Sutliff, Thomas J.; Duddzinski, Leonard

    2009-01-01

    A Radioisotope Power System (RPS) generates power by converting the heat released from the nuclear decay of radioactive isotopes, such as Plutonium-238 (Pu-238), into electricity. First used in space by the U.S. in 1961, these devices have enabled some of the most challenging and exciting space missions in history, including the Pioneer and Voyager probes to the outer solar system; the Apollo lunar surface experiments; the Viking landers; the Ulysses polar orbital mission about the Sun; the Galileo mission to Jupiter; the Cassini mission orbiting Saturn; and the recently launched New Horizons mission to Pluto. Radioisotopes have also served as a versatile heat source for moderating equipment thermal environments on these and many other missions, including the Mars exploration rovers, Spirit and Opportunity. The key advantage of RPS is its ability to operate continuously, independent of orientation and distance relative to the Sun. Radioisotope systems are long-lived, rugged, compact, highly reliable, and relatively insensitive to radiation and other environmental effects. As such, they are ideally suited for missions involving long-lived, autonomous operations in the extreme conditions of space and other planetary bodies. This paper reviews the history of RPS for the U.S. space program. It also describes current development of a new Stirling cycle-based generator that will greatly expand the application of nuclear-powered missions in the future.

  4. Analysis of status of radiation/radioisotopes utilization

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chan Hee; Lee, Seung Hyun; Kim, Na Kyung; Kim, Kon Wuk [Business Innovation Office, Korean Association for Radiation Application, Seoul (Korea, Republic of)

    2017-03-15

    The use of radiation and radioisotopes in Korea has been increasing each year, and its impact on economy and industry is expected to be increasing progressively following the development of industrial technology and the expansion of their usage. To establish and supporting policies for industries using radiation and radioisotopes, it is necessary to check the status of related industries accurately, as well as to gather data required to establish plans for industrial development by studying both revenues and economic scale (contributing to revenue). o analyze the status of utilization, surveys were carried out on 6,621 organizations engaged in nuclear operations handling radiation and radioisotopes pursuant to the Nuclear Safety Act as of end 2014, on 33,471 medical institutions using radiation generators for medical and diagnostic purposes pursuant to the Medical Service Act, and on 2,218 organizations using radiation generators for animal diagnostics pursuant to the Veterinary License Act. he overall status of the domestic radiation market including the number of user organizations, that of employees, and the size of distributions (imports, productions, and exports) with which the scale of domestic radiation market can be judged showed a growth trend compared to the previous year, though the number of employees for radiation operation in industrial sector, research sector, education sector, military sector, and power plants (nuclear power plants) and the size of imports was reduced somewhat. t is expected that data acquired through periodic surveys on the status of utilization would be utilized practically in establishing governmental policies related to the promotion of usage of radiation and radioisotopes, and also be utilized widely in cultivating and developing the industry efficiently to invigorate the related industries.

  5. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1986

    Energy Technology Data Exchange (ETDEWEB)

    Lamar, D.A.

    1987-10-01

    This document describes radioisotope distribution from DOE facilities to private firms including foreign and other DOE facilities. The information is divided into five sections: (1)isotope suppliers, facility contact, and isotopes or services supplied; (2) customers, suppliers, and isotopes purchased; (3) isotopes purchased cross-referenced with customer numbers; (4) geographic locations of radioisotope customers; and (5) radioisotope sales and transfers for fiscal year 1986.

  6. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1987

    Energy Technology Data Exchange (ETDEWEB)

    Lamar, D.A.; Van Houten, N.C.

    1988-08-01

    This edition of the radioisotope customer list was prepared at the request of the Office of Health and Environmental Research (ER-73), Office of Energy Research, US Department of Energy (DOE). This document describes radioisotope distribution from DOE facilities to private firms, including foreign and other DOE facilities. The information is divided into five sections: 1) isotope suppliers, facility contact, and isotopes or services supplied; 2) customers, suppliers, and isotopes purchased; 3) isotopes purchased cross- referenced with customer numbers; 4) geographic locations of radioisotope customers; and 5) radioisotope sales and transfers for fiscal year 1987.

  7. Radioisotope Power Systems Technology Development Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radioisotope Power Systems (RPS) is a multicenter, multiagency (with the Department of Energy (DOE)) program whose purpose is to manage the Science Mission...

  8. Medical Radioisotopes Production Without A Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Van der Keur, H.

    2010-05-15

    This report is answering the key question: Is it possible to ban the use of research reactors for the production of medical radioisotopes? Chapter 2 offers a summarized overview on the history of nuclear medicine. Chapter 3 gives an overview of the basic principles and understandings of nuclear medicine. The production of radioisotopes and its use in radiopharmaceuticals as a tracer for imaging particular parts of the inside of the human body (diagnosis) or as an agent in radiotherapy. Chapter 4 lists the use of popular medical radioisotopes used in nuclear imaging techniques and radiotherapy. Chapter 5 analyses reactor-based radioisotopes that can be produced by particle accelerators on commercial scale, other alternatives and the advantages of the cyclotron. Chapter 6 gives an overview of recent developments and prospects in worldwide radioisotopes production. Chapter 7 presents discussion, conclusions and recommendations, and is answering the abovementioned key question of this report: Is it possible to ban the use of a nuclear reactor for the production of radiopharmaceuticals? Is a safe and secure production of radioisotopes possible?.

  9. Development of radioisotope tracer technology

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee; Park, Soon Chul; Lim, Dong Soon; Kim, Jae Ho; Lee, Jae Choon; Lee, Doo Sung; Cho, Yong Suk; Shin, Sung Kuan

    2000-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and to build a strong tracer group to support the local industries. In relation to the tracer technology in 1999, experiments to estimate the efficiencies of a sludge digester of a waste water treatment plant and a submerged biological reactor of a dye industry were conducted. As a result, the tracer technology for optimization of facilities related to wastewater treatment has been developed and is believed to contribute to improve their operation efficiency. The quantification of the experimental result was attempted to improve the confidence of tracer technology by ECRIN program which basically uses the MCNP simulation principle. Using thin layer activation technique, wear of tappet shim was estimated. Thin layer surface of a tappet shim was irradiated by proton beam and the correlation between the measured activity loss and the amount of wear was established. The equipment was developed to adjust the energy of proton which collides with the surface of tappet. The tracer project team has participated into the tracer test for estimating the efficiency of RFCC system in SK cooperation. From the experiment the tracer team has obtained the primary elements to be considered for judging the efficiency of RFCC unit. By developing the tracer techniques to test huge industrial units like RFCC, the tracer team will be able to support the local industries that require technical services to solve any urgent trouble. (author)

  10. Advanced radioisotope power source options for Pluto Express

    Energy Technology Data Exchange (ETDEWEB)

    Underwood, M.L. [California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Lab.

    1995-12-31

    In the drive to reduce mass and cost, Pluto Express is investigating using an advanced power conversion technology in a small Radioisotope Power Source (RPS) to deliver the required mission power of 74 W(electric) at end of mission. Until this year the baseline power source under consideration has been a Radioisotope Thermoelectric Generator (RTG). This RTG would be a scaled down GPHS RTG with an inventory of 6 General Purpose Heat Sources (GPHS) and a mass of 17.8 kg. High efficiency, advanced technology conversion options are being examined to lower the power source mass and to reduce the amount of radioisotope needed. Three technologies are being considered as the advanced converter technology: the Alkali Metal Thermal-to-Electric Converter (AMTEC), Thermophotovoltaic (TPV) converters, and Stirling Engines. Conceptual designs for each of these options have been prepared. Each converter would require only 2 GPHSs to provide the mission power and would have a mass of 6.1, 7.2, and 12.4 kg for AMTEC, TPV, and Stirling Engines respectively. This paper reviews the status of each technology and the projected performance of an advanced RPS based on each technology. Based on the projected performance and spacecraft integration issues, Pluto Express would prefer to use the AMTEC based RPS. However, in addition to technical performance, selection of a power technology will be based on many other factors.

  11. Progress on 241Am Production for Use in Radioisotope Power Systems

    Science.gov (United States)

    Baker, S. R.; Bell, K. J.; Brown, J.; Carrigan, C.; Carrott, M. J.; Gregson, C.; Clough, M.; Maher, C. J.; Mason, C.; Rhodes, C. J.; Rice, T. G.; Sarsfield, M. J.; Stephenson, K.; Taylor, R. J.; Tinsley, T. P.; Woodhead, D. A.; Wiss, T.

    2014-08-01

    Electrical power sources used in outer planet missions are a key enabling technology for data acquisition and communications. Power sources generate electricity from the thermal energy from alpha decay of the radioisotope 238Pu via thermo-electric conversion. Production of 238Pu requires specialist facilities including a nuclear reactor and reprocessing plants that are expensive to build and operate, so naturally, a more economical alternative is attractive to the industry. Within Europe 241Am is a feasible alternative to 238Pu that can provide a heat source for radioisotope thermoelectric generators (RTGs) and radioisotope heating units (RHUs). As a daughter product of 241Pu decay, 241Am is present at 1000s kg levels within the UK civil plutonium stockpile.A chemical separation process is required to extract the 241Am in a pure form and this paper describes such a process, successfully developed to the proof of concept stage.

  12. Diffusion of Implanted Radioisotopes in Solids

    CERN Multimedia

    2002-01-01

    Implantation of radioisotopes into metal and semiconductor samples is performed. The implanted isotope or its decay-product should have a half-life long enough for radiotracer diffusion experiments. Such radioisotopes are utilized to investigate basic diffusion properties in semiconductors and metals and to improve our understanding of the atomic mechanisms of diffusion. For suitably chosen systems the combination of on-line production and clean implantation of radioisotopes at the ISOLDE facility opens new possibilities for diffusion studies in solids. \\\\ \\\\ The investigations are concentrated on diffusion studies of $^{195}$Au in amorphous materials. The isotope $^{195}$Au was obtained from the mass 195 of the mercury beam. $^{195}$Hg decays into $^{195}$Au which is a very convenient isotope for diffusion experiments. \\\\ \\\\ It was found that $^{195}$Au is a slow diffusor in amorphous Co-Zr alloys, whereas Co is a fast diffusor in the same matrix. The ``asymmetry'' in the diffusion behaviour is of considerab...

  13. Thyroiditis: Radioisotope Scan Findings and Clinical Significance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Chae; Han, Duck Sup; Park, Jung Suck; Kim, Se Jong; Park, Byung Lan; Kim, Byoung Geun [Kwangju Christian Hospital, Kwangju (Korea, Republic of)

    1991-07-15

    We analyzed Radioisotope scan findings of 46 patients of thyroiditis which were proven pathologically at K.C.H. The results were as follows 1) 45 patients were female, one was male and average age of patients was 37 years old. 2) The lesion site was predominant in both lobe (67%) Hashimoto's thyroiditis showed enlarged thyroid (85%) with cold nodule (20%), diffuse decreased activity (10%), while subacute thyroiditis was presented absent activity (53%), poor visualization (20%) or cold nodule (7%). 4) Radioisotope scan was valuable in evaluating function of thyroid gland and detection of lesion but there was a limit of pathological nature.

  14. Milliwatt radioisotope power supply for the PASCAL Mars surface stations

    Science.gov (United States)

    Allen, Daniel T.; Murbach, Marcus S.

    2001-02-01

    A milliwatt power supply is being developed based on the 1 watt Light-Weight Radioisotope Heater Unit (RHU), which has already been used to provide heating alone on numerous spacecraft. In the past year the power supply has been integrated into the design of the proposed PASCAL Mars Network Mission, which is intended to place 24 surface climate monitoring stations on Mars. The PASCAL Mars mission calls for the individual surface stations to be transported together in one spacecraft on a trajectory direct from launch to orbit around Mars. From orbit around Mars each surface station will be deployed on a SCRAMP (slotted compression ramp) probe and, after aerodynamic and parachute deceleration, land at a preselected location on the planet. During descent sounding data and still images will be accumulated, and, once on the surface, the station will take measurements of pressure, temperature and overhead atmospheric optical depth for a period of 10 Mars years (18.8 Earth years). Power for periodic data acquisition and transmission to orbital then to Earth relay will come from a bank of ultracapacitors which will be continuously recharged by the radioisotope power supply. This electronic system has been designed and a breadboard built. In the ultimate design the electronics will be arrayed on the exterior surface of the radioisotope power supply in order to take advantage of the reject heat. This assembly in turn is packaged within the SCRAMP, and that assembly comprises the surface station. An electrically heated but otherwise prototypical power supply was operated in combination with the surface station breadboard system, which included the ultracapacitors. Other issues addressed in this work have been the capability of the generator to withstand the mechanical shock of the landing on Mars and the effectiveness of the generator's multi-foil vacuum thermal insulation. .

  15. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    Directory of Open Access Journals (Sweden)

    Kalomba Mboyi

    2015-04-01

    Full Text Available A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the emitting material with the radioisotope decay heat and by powering the different valves of the plasma rocket engine with the same radioisotope decay heat using a radioisotope thermoelectric generator. This rocket engine is then benchmarked against a 1 N hydrazine thruster configuration operated on one of the Pleiades-HR-1 constellation spacecraft. A maximal specific impulse and power saving of respectively 529 s and 32% are achieved with helium as propellant. Its advantages are its power saving capability, high specific impulses and simultaneous ease of storage and restart. It can however be extremely voluminous and potentially hazardous. The Kabila rocket is found to bring great benefits to the existing spacecraft and further research should optimize its geometric characteristics and investigate the physical principals of its operation.

  16. List of DOE radioisotope customers with summary of radioisotope shipments, FY 1979

    Energy Technology Data Exchange (ETDEWEB)

    Burlison, J.S. (comp.)

    1980-06-01

    The fifteenth edition of the radioisotope customer list was prepared at the request of the Division of Financial Services, Office of the Assistant Secretary for Environment, Department of Energy (DOE). This document lists DOE's radioisotope production and distribution activities by its facilities at Argonne National Laboratory; Pacific Northwest Laboratory; Brookhaven National Laboratory; Hanford Engineering Development Laboratory; Idaho Operations Office; Los Alamos Scientific Laboratory; Mound Facility; Oak Ridge National Laboratory; Rocky Flats Area Office; Savannah River Laboratory; and UNC Nuclear Industries, Inc. The information is divided into five sections: Isotope suppliers, facility, contracts and isotopes or services supplied; alphabetical list of customers, and isotopes purchased; alphabetical list of isotopes cross-referenced to customer numbers; geographical location of radioisotope customers; and radioisotope sales and transfers-FY 1979.

  17. ILLUSTRATIONS OF RADIOISOTOPES--DEFINITIONS AND APPLICATIONS.

    Science.gov (United States)

    Atomic Energy Commission, Oak Ridge, TN. Div. of Technical Information.

    THIS PUBLICATION IS COMPOSED OF OVER 150 PAGES OF BLACK AND WHITE ILLUSTRATIONS DEALING WITH RADIOISOTOPES AND THEIR USES. THESE ILLUSTRATIONS CONSIST OF CHARTS, GRAPHS, AND PICTORIAL REPRESENTATIONS WHICH COULD BE PREPARED AS HANDOUTS, TRANSPARENCIES FOR OVERHEAD PROJECTION, OR WHICH COULD BE USED IN A NUMBER OF OTHER WAYS FOR PRESENTING SUCH…

  18. Radioisotopes as Political Instruments, 1946-1953.

    Science.gov (United States)

    Creager, Angela N H

    2009-01-01

    The development of nuclear "piles," soon called reactors, in the Manhattan Project provided a new technology for manufacturing radioactive isotopes. Radioisotopes, unstable variants of chemical elements that give off detectable radiation upon decay, were available in small amounts for use in research and therapy before World War II. In 1946, the U.S. government began utilizing one of its first reactors, dubbed X-10 at Oak Ridge, as a production facility for radioisotopes available for purchase to civilian institutions. This program of the U.S. Atomic Energy Commission was meant to exemplify the peacetime dividends of atomic energy. The numerous requests from scientists outside the United States, however, sparked a political debate about whether the Commission should or even could export radioisotopes. This controversy manifested the tension in U.S. politics between scientific internationalism as a tool of diplomacy, associated with the aims of the Marshall Plan, and the desire to safeguard the country's atomic monopoly at all costs, linked to American anti-Communism. This essay examines the various ways in which radioisotopes were used as political instruments-both by the U.S. federal government in world affairs, and by critics of the civilian control of atomic energy-in the early Cold War.

  19. An Adjunct Galilean Satellite Orbiter Using a Small Radioisotope Power Source

    Science.gov (United States)

    Abelson, Robert Dean; Randolph, J.; Alkalai, L.; Collins, D.; Moore, W.

    2005-01-01

    This is a conceptual mission study intended to demonstrate the range of possible missions and applications that could be enabled were a new generation of Small Radioisotope Power Systems to be developed by NASA and DOE. While such systems are currently being considered by NASA and DOE, they do not currently exist. This study is one of several small RPS-enabled mission concepts that were studied and presented in the NASA/JPL document "Enabling Exploration with Small Radioisotope Power Systems" available at: http://solarsystem.nasa.gov/multimedia/download-detail.cfm?DL_ID=82

  20. List of ERDA radioisotope (customers with summary of radioisotope shipments FY 1975

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, J.L.; Gano, S.R. (comp.)

    1976-01-01

    The twelfth edition of the ERDA radioisotope customer list has been prepared at the request of the Division of Biomedical and Environmental Research. The purpose of this document is to list the FY 1975 commercial radioisotope production and distribution activities of USERDA facilities at Argonne National Laboratory, Battelle, Pacific Northwest Laboratories, Brookhaven National Laboratory, United Nuclear Inc., Idaho Operations Office, Hanford Engineering Development Laboratory, Mound Laboratory, Oak Ridge National Laboratory, and Savannah River Plant. (TFD)

  1. A radioisotope powered cryobot for penetrating the Europan ice shell

    Science.gov (United States)

    Zimmerman, Wayne; Bryant, Scott; Zitzelberger, John; Nesmith, Bill

    2001-02-01

    The Cryobot team at JPL has been working on the design of a Cryo-Hydro Integrated Robotic Penetrator System (CHIRPS), which can be used to penetrate the Mars North Polar Cap or the thick sheet ice surrounding Jupiter's moon, Europa. The science for either one of these missions is compelling. For both Mars and Europa the major scientific interest is to reach regions where there is a reservoir of water that may yield signs of past or extant life. Additionally, a Mars polar cap penetration would help us understand both climatic and depositional histories for perhaps as far back as 20 million years. Similarly, penetration of the Europa ice sheet would allow scientists to unravel the mysteries surrounding the thick ice crust, its chemical composition, and subsurface ocean properties. Extreme mass and power constraints make deep drilling/coring impractical. The best way to explore either one of these environments is a cryobot mole penetrator vehicle, which carries a suite of instruments suitable for sampling and analyzing the ice or ocean environments. This paper concentrates on a Europa deep ice (i.e., kilometers thick) application of the CHIRPS, and introduces the reader to the vehicle design with focus on the use of radioisotope thermoelectric generator (RTG) technology as the primary heat (1 kW total) and power source for the robotic vehicle. Radioisotope heater unit (RHU) milli-watt power systems (120 mW total) are also employed to power the mini-radiowave ice transceivers, which are used to relay data through the ice up to the surface lander. The results of modeling and design work for both of these areas are discussed in this paper. Although radioisotope power is baselined for the Europa flight version of the cyrobot, no decision on the final design of the cryobot will be made until the environmental review process is complete. Any use of the cryobot for Mars or Europa will conform to all environmental and planetary protection requirements. .

  2. Planetary Protection Concerns During Pre-Launch Radioisotope Power System Final Integration Activities

    Science.gov (United States)

    Chen, Fei; McKay, Terri; Spry, James A.; Colozza, Anthony J.; DiStefano, Salvador

    2012-01-01

    The Advanced Stirling Radioisotope Generator (ASRG) is a next-generation radioisotope-based power system that is currently being developed as an alternative to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). Power sources such as these may be needed for proposed missions to solar system planets and bodies that have challenging Planetary Protection (PP) requirements (e.g. Mars, Europa, Enceladus) that may support NASA s search for life, remnants of past life, and the precursors of life. One concern is that the heat from the ASRG could potentially create a region in which liquid water may occur. As advised by the NASA Planetary Protection Officer, when deploying an ASRG to Mars, the current COSPAR/NASA PP policy should be followed for Category IVc mission. Thus, sterilization processing of the ASRG to achieve bioburden reduction would be essential to meet the Planetary Protection requirements. Due to thermal constraints and associated low temperature limits of elements of the ASRG, vapor hydrogen peroxide (VHP) was suggested as a candidate alternative sterilization process to complement dry heat microbial reduction (DHMR) for the assembled ASRG. The following proposed sterilization plan for the ASRG anticipates a mission Category IVc level of cleanliness. This plan provides a scenario in which VHP is used as the final sterilization process. Keywords: Advanced Stirling Radioisotope Generator (ASRG), Planetary Protection (PP), Vapor hydrogen peroxide (VHP) sterilization.

  3. Nuclear energy in the service of biomedicine: the U.S. Atomic Energy Commission's radioisotope program, 1946-1950.

    Science.gov (United States)

    Creager, Angela N H

    2006-01-01

    The widespread adoption of radioisotopes as tools in biomedical research and therapy became one of the major consequences of the "physicists' war" for postwar life science. Scientists in the Manhattan Project, as part of their efforts to advocate for civilian uses of atomic energy after the war, proposed using infrastructure from the wartime bomb project to develop a government-run radioisotope distribution program. After the Atomic Energy Bill was passed and before the Atomic Energy Commission (AEC) was formally established, the Manhattan Project began shipping isotopes from Oak Ridge. Scientists and physicians put these reactor-produced isotopes to many of the same uses that had been pioneered with cyclotron-generated radioisotopes in the 1930s and early 1940s. The majority of early AEC shipments were radioiodine and radiophosphorus, employed to evaluate thyroid function, diagnose medical disorders, and irradiate tumors. Both researchers and politicians lauded radioisotopes publicly for their potential in curing diseases, particularly cancer. However, isotopes proved less successful than anticipated in treating cancer and more successful in medical diagnostics. On the research side, reactor-generated radioisotopes equipped biologists with new tools to trace molecular transformations from metabolic pathways to ecosystems. The U.S. government's production and promotion of isotopes stimulated their consumption by scientists and physicians (both domestic and abroad), such that in the postwar period isotopes became routine elements of laboratory and clinical use. In the early postwar years, radioisotopes signified the government's commitment to harness the atom for peace, particularly through contributions to biology, medicine, and agriculture.

  4. Energy-Recovery Linacs for Commercial Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland Paul [Muplus, Inc., Newport News, VA (United States)

    2016-11-19

    Most radioisotopes are produced by nuclear reactors or positive ion accelerators, which are expensive to construct and to operate. Photonuclear reactions using bremsstrahlung photon beams from less-expensive electron linacs can generate isotopes of critical interest, but much of the beam energy in a conventional electron linac is dumped at high energy, making unwanted radioactivation. The largest part of this radioactivation may be completely eliminated by applying energy recovery linac technology to the problem with an additional benefit that the energy cost to produce a given amount of isotope is reduced. Consequently, a Superconducting Radio Frequency (SRF) Energy Recovery Linac (ERL) is a path to a more diverse and reliable domestic supply of short-lived, high-value, high-demand isotopes at a cost lower than that of isotopes produced by reactors or positive-ion accelerators. A Jefferson Lab approach to this problem involves a thin photon production radiator, which allows the electron beam to recirculate through rf cavities so the beam energy can be recovered while the spent electrons are extracted and absorbed at a low enough energy to minimize unwanted radioactivation. The thicker isotope photoproduction target is not in the beam. MuPlus, with Jefferson Lab and Niowave, proposed to extend this ERL technology to the commercial world of radioisotope production. In Phase I we demonstrated that 1) the ERL advantage for producing radioisotopes is at high energies (~100 MeV), 2) the range of acceptable radiator thickness is narrow (too thin and there is no advantage relative to other methods and too thick means energy recovery is too difficult), 3) using optics techniques developed under an earlier STTR for collider low beta designs greatly improves the fraction of beam energy that can be recovered (patent pending), 4) many potentially useful radioisotopes can be made with this ERL technique that have never before been available in significant commercial quantities

  5. Sodium Variable Conductance Heat Pipe for Radioisotope Stirling Systems

    Science.gov (United States)

    Tarau, Calin; Anderson, William G.; Walker, Kara

    2009-01-01

    In a Stirling radioisotope system, heat must continually be removed from the General Purpose Heat Source (GPHS) modules to maintain the modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the converter stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, and also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) has been designed to allow multiple stops and restarts of the Stirling convertor in an Advanced Stirling Radioisotope Generator (ASRG). When the Stirling convertor is turned off, the VCHP will activate when the temperatures rises 30 C above the setpoint temperature. A prototype VCHP with sodium as the working fluid was fabricated and tested in both gravity aided and against gravity conditions for a nominal heater head temperature of 790 C. The results show very good agreement with the predictions and validate the model. The gas front was located at the exit of the reservoir when heater head temperature was 790 C while cooling was ON, simulating an operating Advanced Stirling Converter (ASC). When cooling stopped, the temperature increased by 30 C, allowing the gas front to move past the radiator, which transferred the heat to the case. After resuming the cooling flow, the front returned at the initial location turning OFF the VCHP. The against gravity working conditions showed a colder reservoir and faster transients.

  6. Utilizing Radioisotope Power System Waste Heat for Spacecraft Thermal Management

    Science.gov (United States)

    Pantano, David R.; Dottore, Frank; Tobery, E. Wayne; Geng, Steven M.; Schreiber, Jeffrey G.; Palko, Joseph L.

    2005-01-01

    An advantage of using a Radioisotope Power System (RPS) for deep space or planetary surface missions is the readily available waste heat, which can be used for a number of beneficial purposes including: maintaining electronic components within a controlled temperature range, warming propulsion tanks and mobility actuators, and maintaining liquid propellants above their freezing temperature. Previous missions using Radioisotope Thermoelectric Generators (RTGs) dissipated large quantities of waste heat due to the low efficiency of the thermoelectric conversion technology. The next generation RPSs, such as the 110-Watt Stirling Radioisotope Generator (SRG110) will have higher conversion efficiencies, thereby rejecting less waste heat at a lower temperature and may require alternate approaches to transferring waste heat to the spacecraft. RTGs, with efficiencies of 6 to 7 percent, reject their waste heat at the relatively high heat rejection temperature of 200 C. This is an advantage when rejecting heat to space; however, transferring heat to the internal spacecraft components requires a large and heavy radiator heat exchanger. At the same time, sensitive spacecraft instruments must be shielded from the thermal radiation of the RTG. The SRG110, with an efficiency around 22 percent and 50 C nominal housing surface temperature, can readily transfer the available waste heat directly via heat pipes, thermal straps, or fluid loops. The lower temperatures associated with the SRG110 avoid the chances of overheating other scientific components, eliminating the need for thermal shields. This provides the spacecraft designers more flexibility when locating the generator for a specific mission. A common misconception with high-efficiency systems is that there is not enough waste heat for spacecraft thermal management. This paper will dispel this misconception and investigate the use of a high-efficiency SRG110 for spacecraft thermal management and outline potential methods of

  7. Development of radioisotope labeled polymeric carriers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Jin; Jeong, Jea Min; Hwang, Hyun Jeong [Ewha Womans University, Seoul (Korea)

    2000-04-01

    This research was performed with the aim of developing polymeric radioisotope or drug carriers for obtaining efficient diagnostic therapeutic efficacy. As polymers, polyethylene oxides, polylactides, polycaprolactone were chosen to prepare the devices including micelle system, microemulsion, nanospheres. In addition, anticancer drug loaded polylactide microparticulates were fabricated as a regional chemotherapeutics for the treatment of cancer. Technetium or radioactive iodine was labeled to the polymeric carriers via ligands such as DTPA and HPP, respectively. Labeling efficiency was above 90% and stable enough up to 24 hours. Moreover, injected polymer carriers demonstrated higher blood maintenance and bone uptake than Tin colloid, a control. These results suggested that radioisotope carrying polymeric particulate are promising tools for diagnosing blood vessels or bones. Besides, anticancer drug loaded particulates demonstrated appropriate maintenance of therapeutic concentration and localization. Therefore it was proposed that this therapeutic system may be potential as a cancer therapy modality. 20 refs., 24 figs.,5 tabs. (Author)

  8. Wolf-Rayet stars and radioisotope production

    CERN Document Server

    Meynet, G

    1999-01-01

    Radioisotopes are natural clocks which can be used to estimate the age of the solar system. They also influence the shape of supernova light curves. In addition, the diffuse emission at 1.8 MeV from the decay of 26Al may provide a measure of the present day nucleosynthetic activity in the Galaxy. Therefore, even if radionuclides represent only a tiny fraction of the cosmic matter, they carry a unique piece of information. A large number of radioisotopes are produced by massive stars at the time of their supernova explosion. A more or less substantial fraction of them are also synthesized during the previous hydrostatic burning phases. These nuclides are then ejected either at the time of the supernova event, or through stellar winds during their hydrostatic burning phases. This paper focusses of the non explosive ejection of radionuclides by non-rotating or rotating Wolf-Rayet stars.

  9. Visualization of Radioisotope Detectability Over Time.

    Energy Technology Data Exchange (ETDEWEB)

    Huynh, Brady [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-02-01

    A radioactive isotope is an atom that has an unstable nucleus. The isotope can undergo radioactive decay, the process in which excessive nuclear energy is emitted from the nucleus in many different forms, such as gamma radiation, alpha particles, or beta particles. The important thing to note is that these emissions act as a signature for the isotope. Each radioisotope has a particular emission spectrum, emitting radiation at different energies and at different rates.

  10. Development of Radioisotope Micropower Sources

    Science.gov (United States)

    Robertson, J. David

    2016-09-01

    Microelectromechanical systems (MEMS) are considered to be one of the discriminating technologies of the 21st century. In order to take full advantage of the MEMS revolution, the power sources for these electromechanical systems must follow a similar trend of increased functionality at decreased size. Because of their high energy density, radioactive micropower sources are an alternative to next generation battery and fuel cell technologies for applications where volume is at a premium. This presentation will focus on our development of liquid-semiconductor nuclear batteries as compact power supplies for MEMS.

  11. Quantitation of renal function using radioisotopic techniques.

    Science.gov (United States)

    O'Malley, J P; Ziessman, H A

    1993-03-01

    Radioisotopic methods are practical for clinical use because they do not require continuous intravenous infusion or urine collection. This obviously is of great advantage in infants and small children, in whom accurate urine collection is difficult, but the techniques apply to adults as well. The ability to determine individual kidney function is a major benefit. Accuracies of the radioisotopic techniques vary but generally are within clinically acceptable ranges. The need for accuracy and reproducibility can be balanced with the desire for speed and convenience when choosing among the different techniques. Methods that use plasma sampling provide greater accuracy and are recommended in cases of severe dysfunction, whereas methods such as Gates' camera method, which eliminates plasma samples, can be completed in minutes. Radioisotopic techniques are most useful in the ranges of mild to moderately decreased function, in which serum creatinine concentration is nondiagnostic, and although they are much less accurate at markedly low renal function levels, so is 24-hour creatinine clearance. In conclusion, radiopharmaceutical agents offer a wide array of possible techniques for simple, accurate, and noninvasive measurement of global as well as individual GFR and ERPF.

  12. A high power, Coated Particle Fuel Compact Radioisotope Heat Unit

    Science.gov (United States)

    King, Jeffrey C.; El-Genk, Mohamed S.

    2001-02-01

    A Coated Particle Fuel Compact, Radioisotope Heater Unit (CPFC-RHU) is proposed, which is capable of generating thermal power in excess of 27 W. This power output is more than four times that of a Hexa-RHU, which generates only six watts of thermal power. The design of the CPFC-RHU is identical to that of the Hexa-RHU, except that the six Pt-30Rh clad fuel pellets and the POCO graphite support in the latter are replaced with single-sized, ZrC coated, 238PuO2 fuel particles ~500 μm in diameter. In addition to fully retaining the helium gas generated by the radioactive decay of the fuel, the CPFC offers promise for enhanced safety. Thermal analyses of the CPFC-RHU show that while the Hexa-RHU is suitable for use in a radioisotope power system (RPS) operating at a converter hot-side temperature of 473 K, the CPFC-RHU could also be used at higher temperatures of 773 K and 973 K with a thermal efficiency >60%. Even at a 473 K converter hot-side temperature, the CPFC-RHU offers higher thermal efficiency (>90%) than the Hexa-RHU (~75%). The CPFC-RHU final design provides constant temperature, with almost uniform radial heat flux to the converter, for enhanced performance, better integration, and higher overall efficiency of the RPS. The present CPFC-RHU fills a gap in the power needs for future space missions requiring electric power of 1-15 W, from a single RPS. .

  13. Markets for reactor-produced non-fission radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, R.G.

    1995-01-01

    Current market segments for reactor produced radioisotopes are developed and reported from a review of current literature. Specific radioisotopes studied in is report are the primarily selected from those with major medical or industrial markets, or those expected to have strongly emerging markets. Relative market sizes are indicated. Special emphasis is given to those radioisotopes that are best matched to production in high flux reactors such as the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory or the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory. A general bibliography of medical and industrial radioisotope applications, trends, and historical notes is included.

  14. Vitrified chemically bonded phosphate ceramics for immobilization of radioisotopes

    Science.gov (United States)

    Wagh, Arun S.

    2016-04-05

    A method of immobilizing a radioisotope and vitrified chemically bonded phosphate ceramic (CBPC) articles formed by the method are described. The method comprises combining a radioisotope-containing material, MgO, a source of phosphate, and optionally, a reducing agent, in water at a temperature of less than 100.degree. C. to form a slurry; curing the slurry to form a solid intermediate CBPC article comprising the radioisotope therefrom; comminuting the intermediate CBPC article, mixing the comminuted material with glass frits, and heating the mixture at a temperature in the range of about 900 to about 1500.degree. C. to form a vitrified CBPC article comprising the radioisotope immobilized therein.

  15. Radioisotopes production for applications on the health; Produccion de radioisotopos para aplicaciones en la salud

    Energy Technology Data Exchange (ETDEWEB)

    Monroy G, F.; Alanis M, J., E-mail: fabiola.monroy@inin.gob.m [ININ, Departamento de Materiales Radiactivos, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In the Radioactive Materials Department of the Instituto Nacional de Investigaciones Nucleares (ININ) processes have been studied and developed for the radioisotopes production of interest in the medicine, research, industry and agriculture. In particular five new processes have been developed in the last 10 years by the group of the Radioactive Materials Research Laboratory to produce: {sup 99}Mo/{sup 99m}Tc and {sup 188}W/{sup 188}Re generators, the radio lanthanides: {sup 151}Pm, {sup 147}Pm, {sup 161}Tb, {sup 166}Ho, {sup 177}Lu, {sup 131}I and the {sup 32}P. All these radioisotopes are artificial and they can be produced in nuclear reactors and some of them in particle accelerators. The radioisotope generators are of particular interest, as those of {sup 99}Mo/{sup 99m}Tc and {sup 188}W/{sup 188}Re presented in this work, because they are systems that allow to produce an artificial radioisotope of interest continually, in these cases the {sup 99m}Tc and the {sup 188}Re, without the necessity of having a nuclear reactor or an particle accelerator. They are compact systems armored and sure perfectly of manipulating that, once the radioactive material has decayed, they do not present radiological risk some for the environment and the population. These systems are therefore of supreme utility in places where it is not had nuclear reactors or with a continuous radioisotope supply, due to their time of decaying, for its cost or for logistical problems in their supply, like it is the case of many hospital centers, of research or industries in our country. (Author)

  16. Development of radioisotope preparation and application technology

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyon Soo; Park, K. B.; Bang, H. S. [and others

    2000-04-01

    The purpose of this project is to develop RI production technology utility 'HANARO' and to construct a sound infra-structure for mass production and supply to domestic users. The developed contents and results are as follows: two types of rig for irradiation in reactor core were designed and manufactured. The safety of OR rig during irradiation was identified through various test and it is used for RI production. The prepared IR rig will be used to performance tests for safety. We prepared two welders and welding jigs for production of sealed sources, and equipments for quality control of the welded materials. Production processes and apparatus Cr-51, P-32, I-125 and Sr-89, were developed. Developed results would be used for routine production and supply of radioisotopes. The automatic Tc-99m extraction apparatus was supplied to Libya under IAEA support. For approval on special form radioactive material of the developed Ir-192 source assembly and projector documents were prepared and submitted to MOST. The high dose rate Ir-192 source(diameter 1.1 mm, length 5.2 mm) for RALS and the laser welding system for its fabrication were developed. Production technologies of Ir-192 sources for destructive test and medical therapy were transferred to private company for commercial supply. The chemical immobilization method based on the self-assemble monolayer of {omega}-functionalized thiol and the sensing scheme based on the beta-emitter labeling method were developed for the fabrication radioimmuno-sensors. Results of this study will be applied to mass production of radioisotopes 'HANARO' and are to contribute the advance of domestic medicine and industry related to radioisotopes.

  17. Medical Radioisotope Data Survey: 2002 Preliminary Results

    Energy Technology Data Exchange (ETDEWEB)

    Siciliano, Edward R.

    2004-06-23

    A limited, but accurate amount of detailed information about the radioactive isotopes used in the U.S. for medical procedures was collected from a local hospital and from a recent report on the U.S. Radiopharmaceutical Markets. These data included the total number of procedures, the specific types of procedures, the specific radioisotopes used in these procedures, and the dosage administered per procedure. The information from these sources was compiled, assessed, pruned, and then merged into a single, comprehensive and consistent set of results presented in this report. (PIET-43471-TM-197)

  18. Analysis of a Radioisotope Thermal Rocket Engine

    Science.gov (United States)

    Machado-Rodriguez, Jonathan P.; Landis, Geoffrey A.

    2017-01-01

    The Triton Hopper is a concept for a vehicle to explore the surface of Neptunes moon Triton, which uses a radioisotope heated rocket engine and in-situ propellant acquisition. The initial Triton Hopper conceptual design stores pressurized Nitrogen in a spherical tank to be used as the propellant. The aim of the research was to investigate the benefits of storing propellant at ambient temperature and heating it through a thermal block during engine operation, as opposed to storing gas at a high temperature.

  19. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    Science.gov (United States)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP was designed for the Advanced Stirling Radioisotope Generator, with a 850 °C heater head temperature. The VCHP turns on with a ΔT of 30 °C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 °C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator ΔT was roughly 70 °C, due to distillation of the NaK in the evaporator.

  20. Advanced Stirling Convertor Development for NASA Radioisotope Power Systems

    Science.gov (United States)

    Wong, Wayne A.; Wilson, Scott D.; Collins, Josh

    2015-01-01

    Sunpower Inc.'s Advanced Stirling Convertor (ASC) initiated development under contract to the NASA Glenn Research Center and after a series of successful demonstrations, the ASC began transitioning from a technology development project to a flight development project. The ASC has very high power conversion efficiency making it attractive for future Radioisotope Power Systems (RPS) in order to make best use of the low plutonium-238 fuel inventory in the United States. In recent years, the ASC became part of the NASA and Department of Energy (DOE) Advanced Stirling Radioisotope Generator (ASRG) Integrated Project. Sunpower held two parallel contracts to produce ASCs, one with the DOE and Lockheed Martin to produce the ASC-F flight convertors, and one with NASA Glenn for the production of ASC-E3 engineering units, the initial units of which served as production pathfinders. The integrated ASC technical team successfully overcame various technical challenges that led to the completion and delivery of the first two pairs of flightlike ASC-E3 by 2013. However, in late fall 2013, the DOE initiated termination of the Lockheed Martin ASRG flight development contract driven primarily by budget constraints. NASA continues to recognize the importance of high-efficiency ASC power conversion for RPS and continues investment in the technology including the continuation of ASC-E3 production at Sunpower and the assembly of the ASRG Engineering Unit #2. This paper provides a summary of ASC technical accomplishments, overview of tests at Glenn, plans for continued ASC production at Sunpower, and status of Stirling technology development.

  1. Performance of Silicon Betavoltaic Device by using a Ni-63 Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. K.; Lee, N. H.; Lee, J. S.; Cheong, Y. M. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    Semiconductor betavoltaic converters use energy from radioisotope sources to generate electricity for remote applications requiring a long life power. Radioisotopes emitting {beta} radiation such as Ni-63 and tritium (H-3) have been used as fuel for low power batteries. Significant advantages of a high energy density, the insensitivity to climates and a longer life than chemical batteries make them attractive candidates for nano-power sources. The betavoltaic effect is the generation of a potential due to a net positive charge flow of an electron-induced electron-hole production (EHP). Because the resulting current is from an n-type to a p-type semiconductor, the net power can be extracted. Hence, the objective of this study is to provide the feasibility of nuclear beta sources for supplying a power to realistic MEMS devices.

  2. Integro-differential equation analysis and radioisotope imaging systems. Research proposal. [Testing of radioisotope imaging system in phantoms

    Energy Technology Data Exchange (ETDEWEB)

    Hart, H.

    1976-03-09

    Design modifications of a five-probe focusing collimator coincidence radioisotope scanning system are described. Clinical applications of the system were tested in phantoms using radioisotopes with short biological half-lives, including /sup 75/Se, /sup 192/Ir, /sup 43/K, /sup 130/I, and /sup 82/Br. Data processing methods are also described. (CH)

  3. U.S. Space Radioisotope Power Systems and Applications: Past, Present and Future

    Science.gov (United States)

    Cataldo, Robert L.; Bennett, Gary L.

    2011-01-01

    Radioisotope power systems (RPS) have been essential to the U.S. exploration of outer space. RPS have two primary uses: electrical power and thermal power. To provide electrical power, the RPS uses the heat produced by the natural decay of a radioisotope (e.g., plutonium-238 in U.S. RPS) to drive a converter (e.g., thermoelectric elements or Stirling linear alternator). As a thermal power source the heat is conducted to whatever component on the spacecraft needs to be kept warm; this heat can be produced by a radioisotope heater unit (RHU) or by using the excess heat of a radioisotope thermoelectric generator (RTG). As of 2010, the U.S. has launched 41 RTGs on 26 space systems. These space systems have ranged from navigational satellites to challenging outer planet missions such as Pioneer 10/11, Voyager 1/2, Galileo, Ulysses, Cassini and the New Horizons mission to Pluto. In the fall of 2011, NASA plans to launch the Mars Science Laboratory (MSL) that will employ the new Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) as the principal power source. Hundreds of radioisotope heater units (RHUs) have been launched to provide warmth to Apollo 11, used to provide heating of critical components in a seismic experiment package, Pioneer 10/11, Voyager 1/2, Galileo, Cassini, Mars Pathfinder, MER rovers, etc. to provide temperature control to critical spacecraft electronics and other mechanical devices such as propulsion system propellant valves. A radioisotope (electrical) power source or system (RPS) consists of three basic elements: (1) the radioisotope heat source that provides the thermal power, (2) the converter that transforms the thermal power into electrical power and (3) the heat rejection radiator. Figure 1 illustrates the basic features of an RPS. The idea of a radioisotope power source follows closely after the early investigations of radioactivity by researchers such as Henri Becquerel (1852-1908), Marie Curie (1867-1935), Pierre Curie (1859

  4. The development of a milliwatt-level radioisotope power source

    Science.gov (United States)

    Bugby, David C.; McBirney, Thomas R.

    1998-01-01

    Future NASA spacecraft for unmanned planetary exploration will be much smaller and require much less power than the large systems used in prior missions. The ``Powerstick'', a miniaturized isotopic electrical power generator, uses a flight-qualified, DoE-manufactured, 1.1 W Radioisotope Heater Unit (RHU) to generate the high temperature sink for a thermoelectric converter (TEC). The TEC generates sufficient electrical power (~40 mW) to trickle-charge an external rechargeable battery pack, which can then be used in low duty cycle, low power applications. The original Powerstick concept (proposed by JPL) was refined at Swales Aerospace (SA), which has: repackaged it, constructed a prototype, and performed limited testing. The prototype Powerstick is 63.5 mm (2.500'') in diameter, 76.2 mm (3.000'') long, and weighs about 0.3 kg (0.66 lb). Structural analysis indicates the Powerstick can easily survive typical launch loads. Thermal analysis indicates that over 70% of the RHU energy enters the TEC. This paper will describe the design and analysis of the Powerstick prototype and present the key test results.

  5. Radioisotope scanning in inflammatory muscle disease

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.B.; Swift, T.R.; Spies, S.M.

    1976-06-01

    Fourteen whole-body rectilinear bone scans using technetium 99m-polyphosphate were done in nine patients with well-documented inflammatory myopathy (either polymyositis or dermatomyositis). In all nine patients the scans showed evidence of increased muscle labeling. Muscle uptake was markedly increased in one patient, moderately increased in two patients, and minimally increased in six patients. The degree of muscle labeling correlated with the severity of the muscle weakness at the time the scan was done. In four patients, who received high-dose corticosteroid treatment, muscle uptake was decreased following therapy. These findings suggest that radioisotope scanning may be useful in the diagnosis and management of patients with inflammatory muscle diseases.

  6. Development of leakage monitoring system using radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. C.; Lee, D. S. [Seoil College, Seoul (Korea); Cho, Y. S. [Konyang University, Nonsan (Korea); Shin, S. K. [Sungkyunkwan Univ., Seoul (Korea)

    2000-04-01

    This study is to development the potable neutron back-scattering gauge for leakage and detecting liquid interface of an oil and liquid tank, using a radioisotopes. For this purpose, small sized, light weight potable gauge is to be designed as to develope neutron shielding mechanism, low power supply circuit, high voltage circuit, measurement circuit, and operating handle etc. The user will be able to set the duration of the time interval, the scale, the high voltage, the threshold, the channel window, the selection whether the data storage or not, the selection whether the scale, high voltage, threshold and window fix or not at any time. The counted pulse will be displayed with the numerical value and the line bar. The gauge will be able to connect to an IBM compatible PC via a serial port, power will be supplied by internal battery. 9 refs., 28 figs., 10 tabs. (Author)

  7. Recent progress in development of radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Byung Mok [HANARO Center, Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-10-01

    The Korea multipurpose research reactor, HANARO(Hi-flux Advanced Neutron Application Reactor) is designed and constructed to obtain high density neutron flux (max. 5x10{sup 14} n/cm{sup 2}{center_dot}sec) with relatively low thermal output (30 MW) in order to utilize for various studies such as fuel and material test, radioisotope production, neutron activation analysis, neutron beam experiment, neutron transmutation doping, etc. HANARO has 32 vertical channels (3 in-core, 4 out-core, 25 reflector) and 7 horizontal channels. KAERI has constructed 4 concrete hot cells for production of Co-60, Ir-192, etc. and 6 lead hot cells for production of medical RIs(I-131, Mo-99, etc.). Other 11 lead hot cells will be completed by Feb. 1998 for production of Sm-153, Dy-165, Ho-166, etc. Clean room facilities were installed for production of radiopharmaceuticals. (author)

  8. Radioisotope thermal photovoltaic application of the GaSb solar cell

    Science.gov (United States)

    Morgan, M. D.; Horne, W. E.; Day, A. C.

    1991-01-01

    An examination of a RTVP (radioisotopic thermophotovoltaic) conceptual design has shown a high potential for power densities well above those achievable with radioisotopic thermoelectric generator (RTG) systems. An efficiency of 14.4 percent and system specific power of 9.25 watts/kg were predicted for a system with sixteen GPHS (general purpose heat source) sources operating at 1100 C. The models also showed a 500 watt system power by the strontium-90 isotope at 1200 C at an efficiency of 17.0 percent and a system specific power of 11.8 watts/kg. The key to this level of performance is a high-quality photovoltaic cell with narrow bandgap and a reflective rear contact. Recent work at Boeing on GaSb cells and transparent back GaAs cells indicate that such a cell is well within reach.

  9. Recovery of radioisotopes from nuclear waste for radio-scintillator-luminescence energy applications

    CERN Document Server

    Bennun, Alfred

    2012-01-01

    Extraction of the light weight radioisotopes (LWR) 89Sr/90Sr, from the expended nuclear bars in the Fukushima reactor, should have decreased the extent of contamination during the course of the accident. 89Sr applications could pay for the extraction of 89Sr/90Sr from nuclear residues. Added value could be obtained by using 89Sr for cancer treatments. Known technologies could be used to relate into innovative ways LWR, to obtain nuclear energy at battery scale. LWR interact by contact with scintillators converting \\beta-radiation into light-energy. This would lead to manufacturing scintillator lamps which operate independently of other source of energy. These lamps could be used to generate photoelectric energy. Engineering of radioisotopes scintillator photovoltaic cells, would lead to devices without moving parts.

  10. Radioisotope thermophotovoltaic system design and its application to an illustrative space mission

    Science.gov (United States)

    Schock, A.; Kumar, V.

    1995-01-01

    The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the author. Instead of conducting a generic study, it was decided to focus the design effort by directing it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a post-encounter cruise lasting up to one year. Because of Pluto's long distance from the sun (30-50 A.U.) and the mission's large energy demand, JPL has baselined the use of a radioisotope power system for the PFF spacecraft. TRGs have been tentatively selected, because they have been successfully flown on many space missions, and have demonstrated exceptional reliability and durability. The only reason for exploring the applicability of the far less mature RTPV systems is their potential for much higher conversion efficiencies, which would greatly reduce the mass and cost of the required radioisotope heat source. Those attributes are particularly important for the PFF mission, which—like all NASA missions under current consideration—is severely mass- and cost-limited. The paper describes the design of the radioisotope heat source, the thermophotovoltaic converter, and the heat rejection system; and depicts its integration with the PFF spacecraft. A companion paper presented at this conference presents the results of the thermal, electrical, and structural analysis and the design optimization of the integrated RTPV system. It also discusses the programmatic implications of the analytical results, which

  11. Life atomic a history of radioisotopes in science and medicine

    CERN Document Server

    Creager, Angela N H

    2013-01-01

    After World War II, the US Atomic Energy Commission (AEC) began mass-producing radioisotopes, sending out nearly 64,000 shipments of radioactive materials to scientists and physicians by 1955. Even as the atomic bomb became the focus of Cold War anxiety, radioisotopes represented the government's efforts to harness the power of the atom for peace-advancing medicine, domestic energy, and foreign relations.             In Life Atomic, Angela N. H. Creager tells the story of how these radioisotopes, which were simultaneously scientific tools and political icons, transformed biomedicine and ecolog

  12. Safety analysis report for medical radioisotope transport cask

    Energy Technology Data Exchange (ETDEWEB)

    Seo, K. S.; Ku, J. H.; Lee, J. C. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-10-01

    KAERI has been producing radioisotopes for medical and industrial use and supplying them to radioisotope-using hospitals and industries. RI transport cask of A type package has been developed to transport medical radioisotopes from the HANARO to the hospitals. The safety analyses were performed under normal transport conditions in accordance with standards of transport regulations. As a results, it should be verified that the cask maintains the shielding and structural integrities under prescribed condition by the regulations. 8 refs., 20 figs., 7 tabs. (Author)

  13. Modular Radioisotope Thermoelectric Generator (RTG) Program. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    Section 2.0 of this report summarizes the MOD-RTG reference flight design, and Section 3.0 discusses the Ground Demonstration System design. Multicouple technology development is discussed in Section 4.0, and Section 5.0 lists all published technical papers prepared during the course of the contract.

  14. Exploratory Research on Radioisotope Thermoelectric Generators for Deep Space Missions

    Directory of Open Access Journals (Sweden)

    Freis D.

    2017-01-01

    The new exploratory research project will be introduced together with an overview on the available facilities and capabilities of JRC in this domain. Alternative americium forms with potential improved stability versus the oxides are discussed and innovative thermoelectric materials based on actinides are introduced.

  15. A historical perspective on radioisotopic tracers in metabolism and biochemistry.

    Science.gov (United States)

    Lappin, Graham

    2015-01-01

    Radioisotopes are used routinely in the modern laboratory to trace and quantify a myriad of biochemical processes. The technique has a captivating history peppered with groundbreaking science and with more than its share of Nobel Prizes. The discovery of radioactivity at the end of the 19th century paved the way to understanding atomic structure and quickly led to the use of radioisotopes to trace the fate of molecules as they flowed through complex organic life. The 1940s saw the first radiotracer studies using homemade instrumentation and analytical techniques such as paper chromatography. This article follows the history of radioisotopic tracers from meager beginnings, through to the most recent applications. The author hopes that those researchers involved in radioisotopic tracer studies today will pause to remember the origins of the technique and those who pioneered this fascinating science.

  16. Advanced Radiative Emitters for Radioisotope Thermophotovoltaic Power Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radioisotope Power Systems (RPS) are critical for future flagship exploration missions in space and on planetary surfaces. Small improvements in the RPS performance,...

  17. Variable Conductance Heat Pipes for Radioisotope Stirling Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall program objective is to develop a high temperature variable conductance heat pipe (VCHP) backup radiator, and integrate it into a Stirling radioisotope...

  18. Efficiency of Pm-147 direct charge radioisotope battery

    Energy Technology Data Exchange (ETDEWEB)

    Kavetskiy, A.; Yakubova, G.; Yousaf, S.M. [TRACE Photonics Inc, 1680 West Polk Avenue, Charleston, IL 61920 (United States); Bower, K., E-mail: kbower@tracephotonics.co [TRACE Photonics Inc, 1680 West Polk Avenue, Charleston, IL 61920 (United States); Robertson, J.D.; Garnov, A. [Department of Chemistry and University of Missouri Research Reactor, 1513 Research Park Drive, Columbia, MO 65211 (United States)

    2011-05-15

    A theoretical analysis is presented here of the efficiency of direct charge radioisotope batteries based on the efficiency of the radioactive source, the system geometry, electrostatic repulsion of beta particles from the collector, the secondary electron emission, and backscattered beta particles from the collector. Efficiency of various design batteries using Pm-147 sources was experimentally measured and found to be in good agreement with calculations. The present approach can be used for predicting the efficiency for different designs of direct charge radioisotope batteries.

  19. Analysis, optimization, and assessment of radioisotope thermophotovoltaic system design for an illustrative space mission

    Science.gov (United States)

    Schock, A.; Mukunda, M.; Or, C.; Summers, G.

    1995-01-01

    A companion paper presented at this conference described the design of a Radioisotope Thermophotovoltaic (RTPV) Generator for an illustrative space mission (Pluto Fast Flyby). It presented a detailed design of an integrated system consisting of a radioisotope heat source, a thermophotovoltaic converter, and an optimized heat rejection system. The present paper describes the thermal, electrical, and structural analyses which led to that optimized design, and compares the computed RTPV performance to that of a Radioisotope Thermoelectric Generator (RTG) designed for the same mission. RTPVs are of course much less mature than RTGs, but our results indicate that—when fully developed—they could result in a 60% reduction of the heat source's mass, cost, and fuel loading, a 50% reduction of generator mass, a tripling of the power system's specific power, and a quadrupling of its efficiency. The paper concludes by briefly summarizing the RTPV's current technology status and assessing its potential applicability for the PFF mission. For other power systems (e.g., RTGs), demonstrating their flight readiness for a long mission is a very time-consuming process to determine the long-term effect of temperature-induced degradation mechanisms. But for the case of the described RTPV design, the paper lists a number of factors, primarily its cold (0 to 10 °C) converter temperature, that may greatly reduce the need for long-term tests to demonstrate generator lifetime. In any event, our analytical results suggest that the RTPV generator, when developed by DOE and/or NASA, would be quite valuable not only for the Pluto mission but also for other future missions requiring small, long-lived, low-mass generators.

  20. Radioisotope Power Sources for MEMS Devices,

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, J.P.

    2001-06-17

    Microelectromechanical systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors in airbags to more recent optical applications. Depending on the application, these devices often require an on-board power source for remote operation, especially in cases requiring operation for an extended period of time. Previously suggested power sources include fossil fuels and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the viability of using radioisotopes to power realistic MEMS devices. A junction-type battery was constructed using silicon and a {sup 63}Ni liquid source. A source volume containing 64 {micro}Ci provided a power of {approx}0.07 nW. A more novel application of nuclear sources for MEMS applications involves the creation of a resonator that is driven by charge collection in a cantilever beam. Preliminary results have established the feasibility of this concept, and future work will optimize the design for various applications.

  1. Spectrochemical studies with {beta}-emitting radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chesta, Miguel A.; Plivelic, Tomas S.; Mainardi, Raul T. [Cordoba Univ. Nacional (Argentina). Facultad de Matematica, Atronomia y Fisica

    1997-12-01

    Electrons emitted by {sup 90} Sr radioactive source and positrons from a {sup 22} Na source were used to produce ionizations in the constituents of a sample. The sources have similar energy spectra and this allowed us to compare the characteristic radiation emission efficiencies. The new proposed experimental set up for radioisotope excited x-ray fluorescence analysis (XRFA) is of a transparent source type and provides at least a ten times increase in the intensity of characteristic x-rays emitted by the sample as compared with a standard set up in XRFA. It is shown that this fact, together with the relatively high energy of the beta particles, make it possible to carry out a mirror elemental analysis in a few minutes using low intensity radioactive sources (no special handling license). Preliminary experimental results are shown using both electrons and positrons impinging on pure and composed samples and simple analytical expressions are provided for the characteristic radiation intensity as detected by an HPGe detector. (author). 7 refs., 4 figs.

  2. Cascaded Thermoelectric Converters for Advanced Radioisotope Power Systems

    Science.gov (United States)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2004-02-01

    Three Cascaded Thermoelectric Converters (CTCs) are optimized for potential use in Multi-Mission Advanced Radioisotope Power Systems (MM-ARPS) for electrical powers up to 1 kWe, or even higher, in support of 7-10 year missions. The peak efficiencies of these CTCs of 9.43% to 14.32% are 40% to 110% higher than that of SiGe in State-of-the-Art (SOA) Radioisotope Thermoelectric Generators (RTGs). Such high efficiencies would significantly reduce the amount of 238PuO2 fuel and the total system mass for a lower mission cost. Each CTC is comprised of a SiGe top unicouple that is thermally, but not electrically, coupled to a bottom unicouple with one of the following three choices of thermoelectric materials: (a) p-leg of TAGS-85 and n-leg of 2N-PbTe (b) p-leg of CeFe3.5Co0.5Sb12 and n-leg of CoSb3; and (c) segmented p-leg of CeFe3.5Co0.5Sb12 and Zn4Sb3 and n-leg of CoSb3. The length of the top and bottom unicouples is 10 mm, but the cross-sectional areas of the n- and p-legs of the unicouples are optimized for maximum efficiency operation. They vary with the thermal power inputs of 1, 2, and 3 Wth per SiGe unicouple, and the heat rejection temperature of 375 K, 475 K, and 575 K, from the bottom unicouple. Such geometrical optimization is at nominal hot shoe temperature of 1273 K for the SiGe unicouple and cold shoe temperature of either 780 K or 980 K, depending on the materials of the bottom unicouples. The hot shoe temperature of the bottom unicouples is 20 K lower than the cold shoe of the top SiGe unicouple, but the rate of heat input is the same as the rate of heat rejection from the top unicouple. The present results are conservative as they assume a contact resistance of 150 μΩ-cm2 per leg for the top and the bottom unicouples in the CTCs; however, decreasing this resistance to 50 μΩ-cm2 per leg could increase the current efficiency estimates by an additional 1 - 2 percentage points.

  3. Assessment of dynamic energy conversion systems for radioisotope heat sources

    Energy Technology Data Exchange (ETDEWEB)

    Thayer, G.R.; Mangeng, C.A.

    1985-06-01

    The use of dynamic conversion systems to convert the heat generated in a 7500 W(t) 90 Sr radioisotopic heat source to electricity is examined. The systems studies were Stirling; Brayton Cycle; three organic Rankines (ORCs) (Barber-Nichols/ORMAT, Sundstrand, and TRW); and an organic Rankine plus thermoelectrics. The systems were ranked for a North Warning System mission using a Los Alamos Multiattribute Decision Theory code. Three different heat source designs were used: case I with a beginning of life (BOL) source temperature of 640 C, case II with a BOL source temperature of 745/sup 0/C, and case III with a BOL source temperature of 945/sup 0/C. The Stirling engine system was the top-ranked system of cases I and II, closely followed by the ORC systems in case I and ORC plus thermoelectrics in case II. The Brayton cycle system was top-ranked for case III, with the Stirling engine system a close second. The use of /sup 238/Pu in heat source sizes of 7500 W(t) was examined and found to be questionable because of cost and material availability and because of additional requirements for analysis of safeguards and critical mass.

  4. Coated particle fuel for radioisotope power systems (RPSs) and radioisotope heater units (RHUs)

    Science.gov (United States)

    Sholtis, Joseph A.; Lipinski, Ronald J.; El-Genk, Mohamed S.

    1999-01-01

    Coated particle fuel offers great promise for advanced radioisotope power systems (RPSs) and radioisotope heater units (RHUs) being pursued for future U.S. solar system exploration missions. Potential benefits of this fuel include improved design flexibility and materials compatibility, enhanced safety and performance, and reduced specific mass and volume. This paper describes and discusses coated particle fuel, with emphasis on its applicability, attributes, and potential benefits to future RPSs and RHUs. Additionally, this paper identifies further analyses and verification testing that should be conducted before a commitment is made to fully develop this fuel. Efforts to date indicate there is every reason to believe that the potential benefits of coated particle fuel to future RPSs and RHUs can be demonstrated with a modest, phased analytical and verification test effort. Thus, developmental risk appears minimal, while the potential benefits are substantial. If coated particle fuel is pursued and ultimately developed successfully, it could revolutionize the design and space use of future RPSs and RHUs.

  5. The Texas A&M Radioisotope Production and Radiochemistry Program

    Energy Technology Data Exchange (ETDEWEB)

    Akabani, Gamal [Texas A & M Univ., College Station, TX (United States)

    2016-08-31

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostic and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoretical projects and two experimental target systems. These were for At-211 production and for Zn- 62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using (a) a subcritical aqueous target system and (b) production of Tc-99m from accelerator-generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011; due to the lack of a radiochemistry laboratory, it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.

  6. The Texas A&M Radioisotope Production and Radiochemistry Program

    Energy Technology Data Exchange (ETDEWEB)

    Akabani, Gamal [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering. Dept. of Veterinary Integrative Biosciences

    2016-10-28

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostics and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015, allowing us to work in earnest in our project objectives. Experiments began immediately after licensing, and we started the assembly and testing of our target systems. There were four analytical/theoretical projects and two experimental target systems. These were for At-211 production and for Zn-62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using a) a subcritical aqueous target system and b) production of Tc-99m from accelerator generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011 and due to the lack of a radiochemistry laboratory it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.

  7. The Texas A&M Radioisotope Production and Radiochemistry Program

    Energy Technology Data Exchange (ETDEWEB)

    Akabani, Gamal [Texas A & M Univ., College Station, TX (United States)

    2016-08-31

    The main motivation of the project at Texas A&M University was to carry out the production of critically needed radioisotopes used in medicine for diagnostic and therapy, and to establish an academic program in radionuclide production and separation methods. After a lengthy battle with the Texas A&M University Radiation Safety Office, the Texas Department of State Health Services granted us a license for the production of radionuclides in July 2015 allowing us to work in earnest in our project objectives. Experiments began immediately after licensing and we started the assembly and testing of our target systems. There were four analytical/theoretical projects and two experimental target systems. These were for At-211 production and for Zn- 62/Cu-62 production. The theoretical projects were related to the production of Mo-99/Tc-99m using a) a subcritical aqueous target system and b) production of Tc-99m from accelerator generated Mo-99 utilizing a photon-neutron interaction with enriched Mo-100 targets. The two experimental projects were the development of targetry systems and production of At-211 and Zn-62/Cu-62 generator. The targetry system for At-211 has been tested and production of At-211 is chronic depending of availability of beam time at the cyclotron. The installation and testing of the targetry system for the production of Zn-62/Cu-62 has not been finalized. A description of the systems is described. The academic program in radionuclide production and separation methods was initiated in the fall of 2011 and due to the lack of a radiochemistry laboratory it was suspended. We expect to re-start the academic program at the Texas A&M Institute for Preclinical Studies under the Molecular Imaging Program.

  8. Studies on the production and application of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hyon Soo; Park, K. B.; Kim, J. R.; Yoon, B. M.; Bang, H. S.; Shin, B. C.; Cho, W. K.; Park, U. J.; Park, C. D.; Lee, Y. G.; Suh, C. H.; Shin, H. Y.; Kim, D. S.; Hong, S. B.; Jun, S. S.; Min, E. S.; Jang, K. D.; Kim, J. K.; Kim, S. J.; Yang, S. Y.; Yang, S. H.; Chun, K. J.; Kang, H. Y.; Suh, K. S.; Goo, J. H.; Chung, S. H.; Lee, J. C.; Choi, J. L.; Lee, H. Y.; Bang, K. S.

    1997-09-01

    To produce radioisotopes utilizing the research reactor `HANARO`, development of RI production process, target fabrication, preparation of devices and tools for RI process, preparation of production facility for radiopharmaceuticals, test production for the established process, etc. have been carried out, respectively. Production processes for various kinds of radionuclides were developed and the settled methods were applied to test production using `HANARO`. The results of developed process are as follows: (1) I-131 dry distillation method. (2) Large scale production of Ir-192 sources (3) P-32 production process by distillation under reduced pressure (4) Cr-51 production process using enriched target. To irradiate the target for RI production in `HANARO`, target for neutron irradiation, loading/unloading devices, working table in service pool, remote handling tools, shield cask for irradiated target transfer, etc. were designed and fabricated. The function test of prepared targets and the safety analysis of shielding casks were carried out. License for practical use of the prepared casks were obtained from Ministry of Science and Technology. For production of medical radioisotopes, their production facilities were designed in detail and were installed in RIPF (Radioisotope Production Facility), with full reflection of the basic concept of the good manufacturing practice for radiopharmaceuticals. The constructed GMP facilities have started to be operated after authorization since Jun., 1997. Results of this study will be applied to mass production of radioisotopes in `HANARO` and are to contribute the advance of domestic medicine and industry related to radioisotopes. (author). 7 refs., 7 tabs., 4 figs.

  9. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    Energy Technology Data Exchange (ETDEWEB)

    J. C. Giglio; A. A. Jackson

    2012-03-01

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  10. ENHANCED THERMAL VACUUM TEST CAPABILITY FOR RADIOISOTOPE POWER SYSTEMS AT THE IDAHO NATIONAL LABORATORY BETTER SIMULATES ENVIRONMENTAL CONDITIONS OF SPACE

    Energy Technology Data Exchange (ETDEWEB)

    J. C. Giglio; A. A. Jackson

    2012-03-01

    The Idaho National Laboratory (INL) is preparing to fuel and test the Advanced Stirling Radioisotope Generator (ASRG), the next generation space power generator. The INL identified the thermal vacuum test chamber used to test past generators as inadequate. A second vacuum chamber was upgraded with a thermal shroud to process the unique needs and to test the full power capability of the new generator. The thermal vacuum test chamber is the first of its kind capable of testing a fueled power system to temperature that accurately simulate space. This paper outlines the new test and set up capabilities at the INL.

  11. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2006 Through September 30, 2007

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2008-04-01

    The Office of Radioisotope Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Radioisotope Power Systems for fiscal year (FY) 2007. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  12. NASA's Radioisotope Power Systems Program Overview - A Focus on RPS Users

    Science.gov (United States)

    Hamley, John A.; McCallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2016-01-01

    The goal of NASA's Radioisotope Power Systems (RPS) Program is to make RPS ready and available to support the exploration of the solar system in environments where the use of conventional solar or chemical power generation is impractical or impossible to meet potential future mission needs. To meet this goal, the RPS Program manages investments in RPS technologies and RPS system development, working closely with the Department of Energy. This paper provides an overview of the RPS Program content and status, its collaborations with potential RPS users, and the approach employed to maintain the readiness of RPS to support future NASA mission concepts.

  13. Nuclear and Radioisotope Propulsion and Power in the Atmosphere of Titan

    Science.gov (United States)

    Widdicombe, T.

    A brief history of the use of nuclear fuelled powerplant in space is given along with some working principles of the technology, and recent proposals for spacecraft for the exploration of Titan utilising radioisotope generators are surveyed. Nuclear reaction engines are studied with specific consideration given to their use in Titan's atmosphere, and speculative modifications to one particular spacecraft concept originally conceived of for the exploration of Mars are proposed. A hybrid device producing mechanical power from nuclear decay heat is also suggested for future investigation.

  14. Hair radioactivity as a measure of exposure to radioisotopes

    Science.gov (United States)

    Strain, W. H.; Pories, W. J.; Fratianne, R. B.; Flynn, A.

    1972-01-01

    Since many radioisotopes accumulate in hair, this tropism was investigated by comparing the radioactivity of shaved with plucked hair collected from rats at various time intervals up to 24 hrs after intravenous injection of the ecologically important radioisotopes, iodine-131, manganese-54, strontium-85, and zinc-65. The plucked hair includes the hair follicles where biochemical transformations are taking place. The data indicate a slight surge of each radioisotpe into the hair immediately after injection, a variation of content of each radionuclide in the hair, and a greater accumulation of radioactivity in plucked than in shaved hair. These results have application not only to hair as a measure of exposure to radioisotopes, but also to tissue damage and repair at the hair follicle.

  15. Results with radioisotope techniques in veterinary science in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Pethes, G. (Allatorvostudomanyi Egyetem, Budapest (Hungary))

    1983-09-01

    Radioisotopes have been applied to veterinary science in Hungary since the fifties. A short chronologic review on the development of isotope technology is given emphasizing the possibilities offered by the application of closed and open radiation sources, of instrumental neutron activation analysis and atomic absorption spectroscopy, and in vitro nuclear procedures which include competitive protein-binding analysis and radioimmunoassay. The progesterone test, applicable to diagnose the pregnancy of cattles, is carried out generally by RIA. Radioisotopic methods are applied also to determine the thyroid function of cattles, swines and domestic fowls.

  16. KAERI charged particle cross section library for radioisotope production

    CERN Document Server

    Chang, J H; Kim, D H; Lee, Y O; Zhuang, Y X

    2001-01-01

    This report summarized information and figures describing the 'KAERI Charged Particle Cross Section Library for Radioisotope production' The library contains proton-, deutron-, He-3-, and alpha-induced monitor cross sections, and gamma- and positron-emitter production cross sections. Experimental data and evaluation methods are described, and the evaluated cross sections are compared with those of the IAEA, MENDL, and LA150. The library has cross sections and emission spectra suitable for the transport analysis in the design of radioisotope production system, and are available at http://atom.kaeri.re.kr/ in ENDF-6 format.

  17. Synthesis and characterization of radioisotope nanospheres containing two gamma emitters.

    Science.gov (United States)

    Jung, Jin-Hyuck; Jung, Sung-Hee; Kim, Sang-Ho; Choi, Seong-Ho

    2012-12-01

    Silica-coated gold-silver alloy nanospheres prepared by Stöber's method were irradiated in a nuclear reactor to prepare radioisotope nanospheres for use as radiotracers. The radioisotope nanospheres included two gamma nuclides: (i) Au-198, emitting major photons with 0.412 MeV and (ii) Ag-108, emitting photons with 0.434 and 0.633 MeV. The nanospheres shell and core diameters were 100-112 nm and 20-50 nm, respectively, depending on their preparation. The gamma-emitting nanospheres could be used as tracers in high-temperature petrochemical and refinery processes in which conventional organic radioactive labels will decompose.

  18. Ablation response testing of simulated radioisotope power supplies

    Science.gov (United States)

    Lutz, Steven A.; Chan, Chris C.

    1994-05-01

    Results of an experimental program to assess the aerothermal ablation response of simulated radioisotope power supplies are presented. Full-scale general purpose heat source, graphite impact shell, and lightweight radioisotope heater unit test articles are all tested without nuclear fuel in simulated reentry environments. Convective stagnation heating, stagnation pressure, stagnation surface temperature, surface recession profile, and weight loss measurements are obtained for diffusion-limited and sublimation ablation conditions. The recession profile and weight loss measurements show an effect of surface features on the stagnation face. The surface features alter the local heating which in turn affects the local ablation.

  19. Use of copper radioisotopes in investigating disorders of copper metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Rusden Campus, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    Full text: Copper is an essential trace element for life as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Our studies have focused on Menkes disease in humans which is an inherited and usually lethal copper deficiency. Using copper radioisotopes {sup 64}Cu (t 1/2 = 12.8 hr) and {sup 67}Cu (t 1/2 = 61 hr) we have studied the protein which is mutated in Menkes disease. This is a transmembrane copper pump which is responsible for absorption of copper into the body and also functions to pump out excess Cu from cells when Cu is elevated. It is therefore a vital component of normal Cu homeostasis. We have provided the first biochemical evidence that the Menkes protein functions as a P-type ATPase Cu pump (Voskoboinik et al., FEBS Letters, in press) and these data will be discussed. The assay involved pumping of radiocopper into purified membrane vesicles. Furthermore we have transfected normal and mutant Menkes genes into cells and are carrying out structure-function studies. We are also studying the role of amyloid precursor protein (APP) as a Cu transport protein in order to determine how Cu regulates this protein and its cleavage products. These studies will provide vital information on the relationship between Cu and APP and processes which lead to Alzheimers disease

  20. Studies of copper transport in mammalian cells using copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Camakaris, J.; Voskoboinik, I.; Brooks, H.; Greenough, M. [University of Melbourne, Parkville, VIC (Australia). Department of Genetics; Smith, S. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia). Radiopharmaceuticals Division; Mercer, J. [Deakin University, Clayton, VIC (Australia). Centre of Cellular and Molecular Biology

    1998-12-31

    The trace element copper poses a major problem for all organisms. It is essential as a number of vital enzymes require it. Copper deficiency can lead to neurological disorders, osteoporosis and weakening of arteries. However Cu is also highly toxic and homeostatic mechanisms have evolved to maintain Cu at levels which satisfy requirements but do not cause toxicity. Toxicity is mediated by the oxidative capacity of Cu and its ability to generate toxic free radicals. There are several acquired and inherited diseases due to either Cu toxicity or Cu deficiency. The study of these diseases facilitates identification of genes and proteins involved in copper homeostasis, and this in turn will provide rational therapeutic approaches. Using the copper radioisotopes {sup 64}Cu (t1/2 = 12.8 hr) and {sup 67}Cu (t1/2 = 61 hr) we have developed a number of systems for studying copper transport in mammalian cells. These include investigation of copper uptake, copper efflux and ligand blot assays for Cu-binding proteins. Our studies have focused on Menkes disease which is an inherited and usually lethal copper deficiency disorder in humans. We have demonstrated that the Menkes protein is directly involved as a copper efflux pump in mammalian cells. Using cells overexpressing the Menkes protein we have provided the first biochemical evidence that this functions as a Cu translocating (across the membrane) P-type ATPase (Voskoboinik et al., FEBS Letters, in press). These studies were carried out using purified plasma membrane vesicles. We are now carrying out structure- function studies on this protein using targeted mutations and assaying using the radiocopper vesicle assay. Recently we have commenced studies on the role of amyloid precursor protein (APP) in copper transport and relationship of this to Alzheimers disease

  1. 78 FR 1848 - Plutonium-238 Production for Radioisotope Power Systems for National Aeronautics and Space...

    Science.gov (United States)

    2013-01-09

    ... Plutonium-238 Production for Radioisotope Power Systems for National Aeronautics and Space Administration...-238 (Pu-238) for radioisotope power systems (RPSs) to support the National Aeronautics and Space... Radioisotope Power Systems (Draft Consolidation EIS) in 2005 to consolidate the nuclear operations related...

  2. Current status of the production and research of radioisotopes in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hidetake [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sekine, Toshiaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2000-10-01

    Status of the radioisotope production and application in Japan is described, emphasizing that of reactor-produced radioisotopes for medicine. Some new application of reactor-produced radioisotopes to therapy are discussed together with those of positron emitters for medicine and plant physiology. (author)

  3. Future Supply of Medical Radioisotopes for the UK Report 2014

    CERN Document Server

    Neilly, Brian; Ballinger, Jim; Buscombe, John; Clarke, Rob; Ellis, Beverley; Flux, Glenn; Fraser, Louise; Hall, Adrian; Owen, Hywel; Paterson, Audrey; Perkins, Alan; Scarsbrook, Andrew

    2015-01-01

    The UK has no research nuclear reactors and relies on the importation of 99Mo and other medical radioisotopes (e.g. Iodine-131) from overseas (excluding PET radioisotopes). The UK is therefore vulnerable not only to global shortages, but to problems with shipping and importation of the products. In this context Professor Erika Denton UK national Clinical Director for Diagnostics requested that the British Nuclear Medicine Society lead a working group with stakeholders including representatives from the Science & Technology Facilities Council (STFC) to prepare a report. The group had a first meeting on 10 April 2013 followed by a working group meeting with presentations on 9th September 2013 where the scope of the work required to produce a report was agreed. The objectives of the report are: to describe the status of the use of medical radioisotopes in the UK; to anticipate the potential impact of shortages for the UK; to assess potential alternative avenues of medical radioisotope production for the UK m...

  4. High radio-isotope uptakes in patients with hypothyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Wing, J.; Kalk, W.J.; Ganda, C. (University of the Witwatersrand, Johannesburg (South Africa). Dept. of Medicine)

    1982-12-04

    Hypothyroidism is usually associated with a low radio-isotope uptake by the thyriod gland. We report 8 cases of Hashimoto's thyroiditis with clinical and biochemical hypothyroidism and with borderline high or overtly increased technetium-99m pertechnetate and/or iodine-131 uptakes.

  5. Radioisotope Production Plan and Strategy of Kijang Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kye Hong; Lee, Jun Sig [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    This reactor will be located at Kijang, Busan, Korea and be dedicated to produce mainly medical radioisotopes. Tc-99m is very important isotope for diagnosis and more than 80% of radiation diagnostic procedures in nuclear medicine depend on this isotope. There were, however, several times of insecure production of Mo-99 due to the shutdown of major production reactors worldwide. OECD/NEA is leading member countries to resolve the shortage of this isotope and trying to secure the international market of Mo-99. The radioisotope plan and strategy of Kijang Research Reactor (KJRR) should be carefully established to fit not only the domestic but also international demand on Mo-99. The implementation strategy of 6 principles of HLG-MR should be established that is appropriate to national environments. Ministry of Science, ICT and Future Planning and Ministry of Health and welfare should cooperate well to organize the national radioisotope supply structure, to set up the reasonable and competitive pricing of radioisotopes, and to cope with the international supply strategy.

  6. Radioisotope study of Eustachian tube. A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    De Rossi, G.; Campioni, P.; Vaccaro, A.

    1988-08-01

    Radioisotope studies of Eustachian tube are suggested in the preoperative phase of tympanoplasty, in order to assess tubal drainage and secretion. The use of gamma camera fitted to a computer allowed the AA, to calculate some semi-quantitative parameters for an exact assessment of the radioactivity transit from the tympanic cass up to the pharyngeal cavity, throughout the Eustachian tube.

  7. Sourceless formation evaluation. An LWD solution providing density and neutron measurements without the use of radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, R.; Reichel, N. [Schlumberger, Sungai Buloh (Malaysia)

    2013-08-01

    For many years the industry has been searching for a way to eliminate the logistical difficulties and risk associated with deployment of radioisotopes for formation evaluation. The traditional gamma-gamma density (GGD) measurement uses the scattering of 662-keV gamma rays from a 137Cs radioisotopic source, with a 30.17-year half-life, to determine formation density. The traditional neutron measurement uses an Am-Be source emitting neutrons with an energy around 4 MeV, with a half-life of 432 years. Both these radioisotopic sources pose health, security, and environmental risks. Pulsed-neutron generators have been used in the industry for several decades in wireline tools and more recently in logging-while-drilling tools. These generators produce 14-MeV neutrons, many of which interact with the nuclei in the formation. Elastic collisions allow a neutron porosity measurement to be derived, which has been available to the industry since 2005. Inelastic interactions are typically followed by the emission of a variety of high-energy gamma rays. Similar to the case of the GGD measurement, the transport and attenuation of these gamma rays is a strong function of the formation density. However, the gamma-ray source is now distributed over a volume within the formation, where gamma rays have been induced by neutron interactions and the source can no longer be considered to be a point as in the case of a radioisotopic source. In addition, the extent of the induced source region depends on the transport of the fast neutrons from the source to the point of gamma-ray production. Even though the physics is more complex, it is possible to measure the formation density if the fast neutron transport is taken into account when deriving the density answer. This paper briefly reviews the physics underlying the sourceless neutron porosity and recently introduced neutron-gamma density (SNGD) measurement, demonstrates how they can be used in traditional workflows and illustrates their

  8. Applications of radioisotopes in industry and healthcare in Vietnam

    Energy Technology Data Exchange (ETDEWEB)

    Dien, N.N.; Quang, N.H. [Nucealr Research Institute, Dalat, (Viet Nam)

    1997-10-01

    Nowadays, in Vietnam radioisotopes have been used very widely in various socio-economic branches, especially in industry and healthcare. Applications of radioisotopes have significant meaning in economic development, people health protection, as well as in scientific research. In this paper, the present status and main applications of radiation and radioactive isotopes in industry and healthcare in Vietnam are reported. In order to control and monitor industrial processes, nucleonic control systems and radioactive tracer techniques have been utilized. Actually, sealed source applications are popular in Vietnam industry. A number of nuclear control devices and gauges have been used in the various industrial factories, such as liquid level gauges in steel industry, cement and beverage factories; density and moisture gauges in paper industry, etc. Tracer technique and sealed source applications have also been utilized in industrial production plants and in trouble-shooting in the petroleum industry. For medicine purposes, two departments of nuclear medicine were primarily established at the beginning of the 1970s. At the present time, a number of nuclear medicine departments have been set up and they have been equipped with advanced equipment. Main activities are focused on thyroid function studies, nuclear cardiology, brain scans, gastrointestinal studies, bone scans, etc. Since march 1984 Dalat nuclear research reactor of nominal power of 500 kW has been reconstructed and put into operation. This reactor is unique in Vietnam and has become an important scientific tool for development of nuclear techniques and radioisotope applications for socio-economic progress. Thanks to this important scientific tool, a variety of radioisotopes for medicine and industry applications as well as for scientific research has been produced. Utilization of the Dalat research reactor for radioisotope production is also summarized in this paper

  9. New Opportunities for Outer Solar System Science using Radioisotope Electric Propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J.; /SLAC; Amini, Rashied; Beauchamp, Patricia M.; /Caltech, JPL; Bennett, Gary L.; /Metaspace Enterprises; Brophy, John R.; Buratti, Bonnie J.; Ervin, Joan; /Caltech, JPL; Fernandez, Yan R.; /Central Florida U.; Grundy, Will; /Lowell Observ.; Khan, Mohammed Omair; /Caltech, JPL; King, David Q.; /Aerojet; Lang, Jared; /Caltech, JPL; Meech, Karen J.; /Hawaii U.; Newhouse, Alan; Oleson, Steven R.; Schmidt, George R.; /GRC; Spilker, Thomas; West, John L.; /Caltech, JPL

    2010-05-26

    Today, our questions and hypotheses about the Solar System's origin have surpassed our ability to deliver scientific instruments to deep space. The moons of the outer planets, the Trojan and Centaur minor planets, the trans-Neptunian objects (TNO), and distant Kuiper Belt objects (KBO) hold a wealth of information about the primordial conditions that led to the formation of our Solar System. Robotic missions to these objects are needed to make the discoveries, but the lack of deep-space propulsion is impeding this science. Radioisotope electric propulsion (REP) will revolutionize the way we do deep-space planetary science with robotic vehicles, giving them unprecedented mobility. Radioisotope electric generators and lightweight ion thrusters are being developed today which will make possible REP systems with specific power in the range of 5 to 10 W/kg. Studies have shown that this specific power range is sufficient to perform fast rendezvous missions from Earth to the outer Solar System and fast sample return missions. This whitepaper discusses how mobility provided by REP opens up entirely new science opportunities for robotic missions to distant primitive bodies. We also give an overview of REP technology developments and the required next steps to realize REP.

  10. AMTEC radioisotope power system design and analysis for Pluto Express Fly-By

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, T.J.; Huang, C.; Sievers, R.K. [Advanced Modular Power Systems, Inc., Ann Arbor, MI (United States)

    1997-12-31

    The Pluto Express Fly-By program requires a Radioisotope Power System (RPS) to supply spacecraft power for various internal functions and mission instruments and experiments. AMTEC (Alkali-Metal Thermal-Electric Conversion) power conversion is the DOE-selected technology for an advanced, high-efficiency RPS to power the Pluto Express Fly-By spacecraft. An AMTEC-based RPS using the General Purpose Heat Source (GPHS) has been conceptually designed to satisfy the Pluto Express power requirements. Integrated AMTEC cell and system thermal/electrical design analyses, structural design analyses, and mass analyses were performed to define an optimum system design. Using fresh radioisotope fuel at beginning of mission, the RPS produces 102 watts of power, has a mass of 8.35 kg (specific power density = 12.2 watts/kg), with a system conversion efficiency of 20.3%. Mass/power scale-up estimates have also been generated, indicating that a 150-watt version of this RPS would weigh approximately 11.3 kg. This paper presents and discusses the key features of this RPS design, the design and analysis methodology, and the numerous system and AMTEC cell tradeoff studies establishing the optimum AMTEC-based RPS.

  11. Potential Applications for Radioisotope Power Systems in Support of Human Exploration Missions

    Science.gov (United States)

    Cataldo, Robert L.; Colozza, Anthony J.; Schmitz, Paul C.

    2013-01-01

    Radioisotope power systems (RPS) for space applications have powered over 27 U.S. space systems, starting with Transit 4A and 4B in 1961, and more recently with the successful landing of the Mars Science Laboratory rover Curiosity in August 2012. RPS enable missions with destinations far from the Sun with faint solar flux, on planetary surfaces with dense or dusty atmospheres, and at places with long eclipse periods where solar array sizes and energy storage mass become impractical. RPS could also provide an enabling capability in support of human exploration activities. It is envisioned that with the higher power needs of most human mission concepts, a high efficiency thermal-to-electric technology would be required such as the Advanced Stirling Radioisotope generator (ASRG). The ASRG should be capable of a four-fold improvement in efficiency over traditional thermoelectric RPS. While it may be impractical to use RPS as a main power source, many other applications could be considered, such as crewed pressurized rovers, in-situ resource production of propellants, back-up habitat power, drilling, any mobile or remote activity from the main base habitat, etc. This paper will identify potential applications and provide concepts that could be a practical extension of the current ASRG design in providing for robust and flexible use of RPS on human exploration missions.

  12. Detectors for medical radioisotope imaging: demands and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M.I. E-mail: isabel@lipc.fis.uc.pt; Chepel, V

    2004-11-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  13. Detectors for medical radioisotope imaging: demands and perspectives

    Science.gov (United States)

    Lopes, M. I.; Chepel, V.

    2004-10-01

    Radioisotope imaging is used to obtain information on biochemical processes in living organisms, being a tool of increasing importance for medical diagnosis. The improvement and expansion of these techniques depend on the progress attained in several areas, such as radionuclide production, radiopharmaceuticals, radiation detectors and image reconstruction algorithms. This review paper will be concerned only with the detector technology. We will review in general terms the present status of medical radioisotope imaging instrumentation with the emphasis put on the developments of high-resolution gamma cameras and PET detector systems for scinti-mammography and animal imaging. The present trend to combine two or more modalities in a single machine in order to obtain complementary information will also be considered.

  14. A radioisotope-powered surface acoustic wave transponder

    Science.gov (United States)

    Tin, S.; Lal, A.

    2009-09-01

    We demonstrate a 63Ni radioisotope-powered pulse transponder that has a SAW (surface acoustic wave) device as the frequency transmission frequency selector. Because the frequency is determined by a SAW device, narrowband detection with an identical SAW device enables the possibility for a long-distance RF-link. The SAW transponders can be buried deep into structural constructs such as steel and concrete, where changing batteries or harvesting vibration or EM energy is not a reliable option. RF-released power to radioisotope- released power amplification is 108, even when regulatory safe amounts of 63Ni are used. Here we have achieved an 800 µW pulse (315 MHz, 10 µs pause) across a 50 Ω load every 3 min, using a 1.5 milli-Ci 63Ni source.

  15. Process for radioisotope recovery and system for implementing same

    Science.gov (United States)

    Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip

    2007-01-02

    A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.

  16. Solid state radioisotopic energy converter for space nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.M. (IsoGen Radioisotopic Research Laboratory, 315 S. McLoughlin Blvd., Oregon City, Oregon 97045 (United States))

    1993-01-10

    Recent developments in materials technology now make it possible to fabricate nonthermal thin-film radioisotopic energy converters (REC) with a specific power of 24 W/kg and a 10 year working life at 5 to 10 watts. This creates applications never before possible, such as placing the power supply directly on integrated circuit chips. The efficiency of the REC is about 25% which is two to three times greater than the 6 to 8% capabilities of current thermoelectric systems. Radioisotopic energy converters have the potential to meet many future space power requirements for a wide variety of applications with less mass, better efficiency, and less total area than other power conversion options. These benefits result in significant dollar savings over the projected mission lifetime.

  17. Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging.

    Science.gov (United States)

    Volotskova, Olga; Sun, Conroy; Stafford, Jason H; Koh, Ai Leen; Ma, Xiaowei; Cheng, Zhen; Cui, Bianxiao; Pratx, Guillem; Xing, Lei

    2015-08-26

    Beta-emitting isotopes Fluorine-18 and Yttrium-90 are tested for their potential to stimulate gold nanoclusters conjugated with blood serum proteins (AuNCs). AuNCs excited by either medical radioisotope are found to be highly effective ionizing radiation energy transfer mediators, suitable for in vivo optical imaging. AuNCs synthesized with protein templates convert beta-decaying radioisotope energy into tissue-penetrating optical signals between 620 and 800 nm. Optical signals are not detected from AuNCs incubated with Technetium-99m, a pure gamma emitter that is used as a control. Optical emission from AuNCs is not proportional to Cerenkov radiation, indicating that the energy transfer between the radionuclide and AuNC is only partially mediated by Cerenkov photons. A direct Coulombic interaction is proposed as a novel and significant mechanism of energy transfer between decaying radionuclides and AuNCs.

  18. Plastic Gamma Sensors: An Application in Detection of Radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    S. Mukhopadhyay

    2003-06-01

    A brief survey of plastic scintillators for various radiation measurement applications is presented here. The utility of plastic scintillators for practical applications such as gamma radiation monitoring, real-time radioisotope detection and screening is evaluated in laboratory and field measurements. This study also reports results of Monte Carlo-type predictive responses of common plastic scintillators in gamma and neutron radiation fields. Small-size plastic detectors are evaluated for static and dynamic gamma-ray detection sensitivity of selected radiation sources.

  19. Joint Radioisotope Electric Propulsion Studies - Neptune System Explorer

    Science.gov (United States)

    Khan, M. Omair; Amini, Rashied; Ervin, Joan; Lang, Jared; Landau, Damon; Oleson, Steven; Spilker, Thomas; Strange, Nathan

    2011-01-01

    The Neptune System Explorer (NSE) mission concept study assessed opportunities to conduct Cassini-like science at Neptune with a radioisotope electric propulsion (REP) based spacecraft. REP is based on powering an electric propulsion (EP) engine with a radioisotope power source (RPS). The NSE study was commissioned under the Joint Radioisotope Electric Propulsion Studies (JREPS) project, which sought to determine the technical feasibility of flagship class REP applications. Within JREPS, special emphasis was given toward identifying tall technology tent poles, as well as recommending any new RPS technology developments that would be required for complicated REP missions. Based on the goals of JREPS, multiple RPS (e.g. thermoelectric and Stirling based RPS) and EP (e.g. Hall and ion engines) technology combinations were traded during the NSE study to determine the most favorable REP design architecture. Among the findings from the study was the need for >400We RPS systems, which was driven by EP operating powers and the requirement for a long-lived mission in the deep solar system. Additionally multiple development and implementation risks were identified for the NSE concept, as well as REP missions in general. Among the strengths of the NSE mission would be the benefits associated with RPS and EP use, such as long-term power (approx. 2-3kW) at Neptune and flexible trajectory options for achieving orbit or tours of the Neptune system. Although there are still multiple issues to mitigate, the NSE concept demonstrated distinct advantages associated with using REP for deep space flagship-class missions.

  20. ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION

    Energy Technology Data Exchange (ETDEWEB)

    R. C. O' Brien; S. D. Howe; J. E. Werner

    2010-09-01

    The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

  1. Lightweight Radioisotope Heater Unit (LWRHU) production for the Cassini mission

    Energy Technology Data Exchange (ETDEWEB)

    Rinehart, G.H.

    1996-06-01

    The Lightweight Radioisotope Heater Unit (LWRHU) is a {sup 238}PuO{sub 2} fueled heat source designed to provide a thermal watt of power for space missions. The LWRHU will be used to maintain the temperature of various components on the spacecraft at the required level. The heat source consists of a {sup 238}PuO{sub 2} fuel pellet, a Pt-30Rh capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos has fabricated 180 heater units, which will be used on the Cassini mission. This report summarizes the specifications, fabrication processes, and production data for the heat sources fabricated at Los Alamos.

  2. A new access control system by fingerprint for radioisotope facilities

    Energy Technology Data Exchange (ETDEWEB)

    Kawamura, Hiroko; Hirata, Yasuki [Kyushu Univ., Fukuoka (Japan). Radioisotope Center; Kondo, Takahiro; Takatsuki, Katsuhiro

    1998-04-01

    We applied a new fingerprint checker for complete access control to the radiation controlled area and to the radioisotope storage room, and prepared softwares for the best use of this checker. This system consists of a personal computer, access controllers, a fingerprint register, fingerprint checkers, a tenkey and mat sensors, permits ten thousand users to register their fingerprints and its hard disk to keep more than a million records of user`s access. Only 1% of users could not register their fingerprints worn-out, registered four numbers for a fingerprint. The softwares automatically provide varieties of reports, caused a large reduction in manual works. (author)

  3. REVISS / MAYAK: A new partnership in radioisotope supply

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, N. [REVISS Services Limited, Chesham (United Kingdom); Chikshov, A.I.; Malykh, Y.A. [MAYAK Production Association, Ozyorsk (Russian Federation)

    1997-10-01

    REVISS Services (UK) Limited, the joint venture company formed between Amersham International plc, Production Association MAYAK and Techsnabexport brings together the scientific, manufacturing, marketing and distribution skills and facilities which enable REVISS to be not just a major supplier of radioisotopes and other associated products and services, but the supplier with the largest product range. The paper describes the history and the development of MAYAK and reviews its manufacturing facilities and capabilities and also how MAYAK has moved from being a secret military organisation to become a major and successful commercial organisation

  4. RTD program development for RTD analysis using radioisotope tracer

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Kwon; Kim, Jong Bum; Jung, Sung Hee; Jin, Joon Ha

    2003-02-01

    The CFD(Computational Fluid Dynamics) and the RTD(Residence Time Distribution) models have been investigated to analysis the flow behavior in the reactor. The RTD analysis can be done by the parameters of RTD model which represent the flow behavior and the mixing characteristics of a reactor and the parameters of RTD model can be obtained by fitting the RTD model response to the RTD response obtained from the radioisotope tracer experiment. The numerical approach allows the implementation of time domain-based parameter estimation for the evaluation of RTD model parameters. This project used the Levenberg-Marquardt algorithm which was a good convergence and stability in order to determine the parameters of RTD model and this project developed the RTD program to analysis the flow behavior and mixing characteristics by comparing the theoretical MRT(Mean Residence Time). The developed RTD program can utilize the perfect mixer in series model, the perfect mixer in parallel model, and the perfect mixer with dead volume model which are used frequently in the industrial fields. The developed RTD program was made by Visual Basic 6.0 and can be operated in Windows 95/98/me. This developed program enable users to use it easily and analysis precisely by correcting the background radiation and the spontaneous decay of the radioisotope.

  5. Radioisotope Electric Propulsion for Deep Space Sample Return

    Energy Technology Data Exchange (ETDEWEB)

    Noble, Robert J.; /SLAC

    2009-07-14

    The need to answer basic questions regarding the origin of the Solar System will motivate robotic sample return missions to destinations like Pluto, its satellite Charon, and objects in the Kuiper belt. To keep the mission duration short enough to be of interest, sample return from objects farther out in the Solar System requires increasingly higher return velocities. A sample return mission involves several complicated steps to reach an object and obtain a sample, but only the interplanetary return phase of the mission is addressed in this paper. Radioisotope electric propulsion is explored in this parametric study as a means to propel small, dedicated return vehicles for transferring kilogram-size samples from deep space to Earth. Return times for both Earth orbital rendezvous and faster, direct atmospheric re-entry trajectories are calculated for objects as far away as 100 AU. Chemical retro-rocket braking at Earth is compared to radioisotope electric propulsion but the limited deceleration capability of chemical rockets forces the return trajectories to be much slower.

  6. The radioisotope osteogram: Kinetic studies of skeletal disorders in humans

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, N.S.

    1959-10-16

    Radioactive strontium can serve as a tracer to gain information concerning calcium metabolism in human subjects. Gamma-emitting Sr{sup 85} is used rather than the much more hazardous, beta-emitting Sr{sup 89} and Sr{sup 90}. (ca{sup 47} -- the ideal tracer for normal calcium -- is quite expensive and difficult to procure.) Very significant information may be obtained merely by measuring and recording the changes in radioactivity in various body areas during the first hour after intravenous injection of the bone-seeking radioisotope. This is accomplished by placing a lead-shielded gamma-scintillation detector in contact with the skin over the sites of interest and recording the activities on a scaler or ratemeter. The activity versus time curves so obtained are called radioisotope osteograms. Data were presented which indicated that Sr{sup 85} osteograms for patients afflicted with osteoporosis, Paget`s disease, tumor metastases to bone, and possibly multiple myeloma, differ significantly from those obtained from subjects with no skeletal abnormalities. Some interpretations of these deviations were discussed. The value of conducting double-tracer tests (e.g. -- Sr{sup 85} plus radio-iodinated serum albumin) was demonstrated, and correlations with excretion data were made. With further refinements the technique may ultimately become useful for certain diagnostic problems in the clinic and.for evaluating the efficacy of treatment of these disorders.

  7. On-Site Inspection RadioIsotopic Spectroscopy (Osiris) System Development

    Energy Technology Data Exchange (ETDEWEB)

    Caffrey, Gus J. [Idaho National Laboratory, Idaho Falls, ID (United States); Egger, Ann E. [Idaho National Laboratory, Idaho Falls, ID (United States); Krebs, Kenneth M. [Idaho National Laboratory, Idaho Falls, ID (United States); Milbrath, B. D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Jordan, D. V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Warren, G. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilmer, N. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-01

    We have designed and tested hardware and software for the acquisition and analysis of high-resolution gamma-ray spectra during on-site inspections under the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The On-Site Inspection RadioIsotopic Spectroscopy—Osiris—software filters the spectral data to display only radioisotopic information relevant to CTBT on-site inspections, e.g.,132I. A set of over 100 fission-product spectra was employed for Osiris testing. These spectra were measured, where possible, or generated by modeling. The synthetic test spectral compositions include non-nuclear-explosion scenarios, e.g., a severe nuclear reactor accident, and nuclear-explosion scenarios such as a vented underground nuclear test. Comparing its computer-based analyses to expert visual analyses of the test spectra, Osiris correctly identifies CTBT-relevant fission product isotopes at the 95% level or better.The Osiris gamma-ray spectrometer is a mechanically-cooled, battery-powered ORTEC Transpec-100, chosen to avoid the need for liquid nitrogen during on-site inspections. The spectrometer was used successfully during the recent 2014 CTBT Integrated Field Exercise in Jordan. The spectrometer is controlled and the spectral data analyzed by a Panasonic Toughbook notebook computer. To date, software development has been the main focus of the Osiris project. In FY2016-17, we plan to modify the Osiris hardware, integrate the Osiris software and hardware, and conduct rigorous field tests to ensure that the Osiris system will function correctly during CTBT on-site inspections. The planned development will raise Osiris to technology readiness level TRL-8; transfer the Osiris technology to a commercial manufacturer, and demonstrate Osiris to potential CTBT on-site inspectors.

  8. Power characteristics of a Stirling radioisotope power system over the life of the mission

    Science.gov (United States)

    Schreiber, Jeffrey G.

    2001-02-01

    Stirling radioisotope power systems are presently being considered for use on long life deep space missions. Some applications that Stirling technology has been developed for in the past could control the heat input to the engine, as was the case in the Automotive Stirling Engine (ASE) program. The combustion system could change the rate at which fuel was burned in response to the Stirling heater head temperature and the desired set point. In other cases, heat input was not controlled. An example is the solar terrestrial Advanced Stirling Conversion System (ASCS), where the heat input was a function of solar intensity and the performance of the solar concentrator and receiver. The control system for this application would measure the Stirling heater head temperature and throttle the Stirling convertor to once again, maintain the Stirling heater head temperature at the desired set point. In both of these examples, the design was driven to be cost effective. In the Stirling radioisotope power system, the heat generated by the decay in plutonium is reduced with the half-life of the isotope, and the control system must be as simple as possible and still meet the mission requirements. The most simple control system would be one that allows the Stirling power convertor to autonomously change its operating conditions in direct response to the reduced heat input, with no intervention from the control system, merely seeking a new equilibrium point as the isotope decays. This paper presents an analysis of power system performance with this simple control system, which has no feedback and does not actively alter the operating point as the isotope decays. .

  9. First collinear laser spectroscopy measurements of radioisotopes from an IGISOL ion source

    NARCIS (Netherlands)

    Billowes, J; Campbell, P; Cochrane, ECA; Cooke, JL; Dendooven, P; Evans, DE; Grant, IS; Griffith, JAR; Honkanen, A; Huhta, M; Levins, JMG; Liukkonen, E; Oinonen, M; Pearson, MR; Penttila, H; Persson, B.L.; Richardson, DS; Tungate, G; Wheeler, P; Zybert, L; Aysto, J

    1997-01-01

    The standard Doppler-free technique of collinear laser spectroscopy has been successfully applied to radioisotopes from the ion-guide isotope separator (IGISOL) at the Universiry of Jyvaskyla. The laser resonance fluorescence signals for the Ba-140.142,Ba-144 radioisotopes show that the ion beam ene

  10. 77 FR 21592 - Guidelines for Preparing and Reviewing Licensing Applications for the Production of Radioisotopes

    Science.gov (United States)

    2012-04-10

    ... Chapters 7-18 of Draft Interim Staff Guidance (ISG) NPR-ISG-2011-002, augmenting NUREG-1537, Part 1... Content,'' for the production of radioisotopes and NUREG-1537, Part 2, ``Guidelines for Preparing and...,'' for the production of radioisotopes. The ISG augmenting NUREG-1537, Parts 1 & 2, Chapters 1-6...

  11. Advanced Stirling Convertor Control Unit Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Kussmaul, Michael; Casciani, Michael; Brown, Gregory; Wiser, Joel

    2017-01-01

    Future NASA missions could include establishing Lunar or Martian base camps, exploring Jupiters moons and travelling beyond where generating power from sunlight may be limited. Radioisotope Power Systems (RPS) provide a dependable power source for missions where inadequate sunlight or operational requirements make other power systems impractical. Over the past decade, NASA Glenn Research Center (GRC) has been supporting the development of RPSs. The Advanced Stirling Radioisotope Generator (ASRG) utilized a pair of Advanced Stirling Convertors (ASC). While flight development of the ASRG has been cancelled, much of the technology and hardware continued development and testing to guide future activities. Specifically, a controller for the convertor(s) is an integral part of a Stirling-based RPS. For the ASRG design, the controller maintains stable operation of the convertors, regulates the alternating current produced by the linear alternator of the convertor, provides a specified direct current output voltage for the spacecraft, synchronizes the piston motion of the two convertors in order to minimize vibration as well as manage and maintain operation with a stable piston amplitude and hot end temperature. It not only provides power to the spacecraft but also must regulate convertor operation to avoid damage to internal components and maintain safe thermal conditions after fueling. Lockheed Martin Coherent Technologies has designed, developed and tested an Engineering Development Unit (EDU) Advanced Stirling Convertor Control Unit (ACU) to support this effort. GRC used the ACU EDU as part of its non-nuclear representation of a RPS which also consists of a pair of Dual Advanced Stirling Convertor Simulator (DASCS), and associated support equipment to perform a test in the Radioisotope Power Systems System Integration Laboratory (RSIL). The RSIL was designed and built to evaluate hardware utilizing RPS technology. The RSIL provides insight into the electrical

  12. Offer/demand of the radioisotope {sup 99}MO in Brazil: a social necessity; Oferta/demanda do radioisotopo {sup 99}MO no Brasil: uma necessidade social

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Bruno Luiz da Cruz Barbosa de; Pereira, Marcelo O., E-mail: brunosouza.ep@gmail.com, E-mail: marcelocefetrj@gmail.com [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET), Nova Iguacu, RJ (Brazil). Dept. de Engenharia de Producao

    2013-07-01

    The construction of a nuclear reactor, project under way in Brazil, always generates controversy surrounding the real needs of a society to the risks of accidents. This paper proposes, using statistical data on the supply / demand of the {sup 99}Mo radioisotope, show the need to build a nuclear research reactor in the country, showing the various applications in Nuclear Medicine and needs of this input for the country.

  13. High purity materials as targets for radioisotope production: Needs and challenges

    Indian Academy of Sciences (India)

    V Shivarudrappa; K V Vimalnath

    2005-07-01

    Radionuclides have become powerful and indispensable tools in many endeavours of human activities, most importantly in medicine, industry, biology and agriculture, apart from R&D activities. Ready availability of radionuclides in suitable radiochemical form, its facile detection and elegant tracer concepts are responsible for their unprecedented use. Application of radioisotopes in medicine has given birth to a new branch, viz. nuclear medicine, wherein radioisotopes are used extensively in the diagnosis and treatment of variety of diseases including cancer. Artificial transmutation of an element employing thermal neutrons in a reactor or high energy particle accelerators (cyclotrons) are the routes of radioisotope production world over. Availability of high purity target materials, natural or enriched, are crucial for any successful radioisotope programme. Selection of stable nuclides in suitable chemical form as targets with desired isotopic and chemical purity are among the important considerations in radioisotope production. Mostly the oxide, carbonate or the metal itself are the preferred target forms for neutron activation in a research reactor. Chemical impurities, particularly from the elements of the same group, put a limitation on the purity of the final radioisotope product. Whereas the isotopic impurities result in the production of undesirable radionuclidic impurities, which affect their effective utilization. Isotope Group, BARC, is in the forefront of radioisotope production and supply in the country, meeting demands for gamut of radioisotope applications indigenously for over four decades now. Radioisotopes such as 131I, 99Mo, 32P, 51Cr, 153Sm, 82Br, 203Hg, 198Au etc are produced in TBq quantities every month and supplied to several users and to Board of Radiation and Isotope Technology (BRIT). Such a large production programme puts a huge demand on the reliable sources of availability of high purity target materials which are at present mostly met

  14. Active Radiation Level Measurement on New Laboratory Instrument for Evaluating the Antibacterial Activity of Radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Eunha; Park, Jang Guen [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    A disc method has been widely used to measure the antibacterial effect of chemical agents. However, it is difficult to measure the antibacterial effect of radioisotopes using a disc method. A disc method is a method for diffusing a drug by placing the drug containing disc on the medium. In this method, radioisotopes are diffused on the medium and it is difficult to measure the exact effect by radiation. Thus, new laboratory equipment needs to evaluate the antibacterial activity by the radioisotopes. In this study, we measured the radiation level of radioisotopes on a new laboratory instrument using a MCNP. A disc method has been widely used to measure the antibacterial effect of chemical agents. This method uses a drug diffusion system for the measurement of anti-bacterial antibiotics. To measure the antimicrobial activity of a radioisotope, a new type of laboratory instrument is necessary to prevent the drug from spreading. The radioisotopes are used to diagnose and treat cancer. However, studies for anti-biotical use have not progressed. The radiation of radioisotopes has the effect of killing bacteria. Before this study proceeds further, it is necessary to be able to measure the antimicrobial activity of the radioisotope easily in the laboratory. However, in this study, it was possible to measure the antimicrobial activity of the radioisotope in the laboratory using a new laboratory instrument. We intend to start evaluation studies of the antibacterial activity of specific radioisotopes. In addition, it will be possible to develop research to overcome diseases caused by bacteria in the future.

  15. Generations.

    Science.gov (United States)

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession.

  16. A comparison of PET imaging characteristics of various copper radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Heather Ann [North Western Medical Physics, Christie Hospital NHS Trust, Manchester (United Kingdom); University of Manchester Institute of Science and Technology, Department of Instrumentation and Analytical Science, Manchester (United Kingdom); Robinson, Simon; Julyan, Peter; Hastings, David [North Western Medical Physics, Christie Hospital NHS Trust, Manchester (United Kingdom); Zweit, Jamal [University of Manchester Institute of Science and Technology, Department of Instrumentation and Analytical Science, Manchester (United Kingdom); Paterson Institute for Cancer Research, Radiochemical Targeting and Imaging, Manchester (United Kingdom)

    2005-12-01

    PET radiotracers which incorporate longer-lived radionuclides enable biological processes to be studied over many hours, at centres remote from a cyclotron. This paper examines the radioisotope characteristics, imaging performance, radiation dosimetry and production modes of the four copper radioisotopes, {sup 60}Cu,{sup 61}Cu,{sup 62}Cu and{sup 64}Cu, to assess their merits for different PET imaging applications. Spatial resolution, sensitivity, scatter fraction and noise-equivalent count rate (NEC) are predicted for{sup 60}Cu,{sup 61}Cu,{sup 62}Cu and{sup 64}Cu using a model incorporating radionuclide decay properties and scanner parameters for the GE Advance scanner. Dosimetry for{sup 60}Cu,{sup 61}Cu and{sup 64}Cu is performed using the MIRD model and published biodistribution data for copper(II) pyruvaldehyde bis(N{sup 4}-methyl)thiosemicarbazone (Cu-PTSM). {sup 60}Cu and{sup 62}Cu are characterised by shorter half-lives and higher sensitivity and NEC, making them more suitable for studying the faster kinetics of small molecules, such as Cu-PTSM.{sup 61}Cu and{sup 64}Cu have longer half-lives, enabling studies of the slower kinetics of cells and peptides and prolonged imaging to compensate for lower sensitivity, together with better spatial resolution, which partially compensates for loss of image contrast.{sup 61}Cu-PTSM and{sup 64}Cu-PTSM are associated with radiation doses similar to [{sup 18}F]-fluorodeoxyglucose, whilst the doses for{sup 60}Cu-PTSM and{sup 62}Cu-PTSM are lower and more comparable with H{sub 2}{sup 15}O. The physical and radiochemical characteristics of the four copper isotopes make each more suited to some imaging tasks than others. The results presented here assist in selecting the preferred radioisotope for a given imaging application, and illustrate a strategy which can be extended to the majority of novel PET tracers. (orig.)

  17. Cascaded Thermoelectric Conversion-Advanced Radioisotope Power Systems (CTC-ARPSs)

    Science.gov (United States)

    El-Genk, Mohamed S.; Saber, Hamed H.

    2004-02-01

    Conceptual designs of Advanced Radioisotope Power System (ARPS) with Cascaded Thermoelectric Converters (CTCs) are developed and optimized for maximum efficiency operation for End-Of Mission (EOM) electrical power of at least 100 We. These power systems each employs four General Purpose Heat Source (GPHS) bricks generating 1000 Wth at Beginning-of-Life (BOL) and 32 Cascaded Thermoelectric Modules (CTMs). Each CTM consists of a top and a bottom array of thermoelectric unicouples, which are thermally, but not electrically, coupled. The top and bottom arrays of the CTMs are connected electrically in series in two parallel strings with the same nominal voltage of > 28 VDC. The SiGe unicouples in the top array of the CTMs are optimized for nominal hot shoe temperature of 1273 K and constant cold shoe temperature of either 780 K or 980 K, depending on the thermoelectric materials of the unicouples in the bottom array. For a SiGe cold junction temperature of 780 K, the unicouples in the bottom array have p-legs of TAGS-85 and n-legs of 2N-PbTe and operate at constant hot junction temperature of 765 K and nominal cold junction temperature of 476.4 K. When the SiGe cold junction temperature is 980 K, the unicouples in the bottom arrays of CTMs have p-legs of CeFe3.5Co0.5Sb12 or CeFe3.5Co0.5Sb12 and Zn4Sb3, segments and n-legs of CoSb3 and operate at constant hot junction temperature of 965 K and nominal cold junction temperatures of 446.5 K or 493.5 K, respectively. The CTC-ARPSs have a nominal efficiency of 10.82% - 10.85% and generate BOL power of 108 We. This system efficiency is ~ 80% higher than that of State-of-the-Art (SOA) Radioisotope Thermoelectric Generators (RTGs), requiring 7 GHPS bricks and generating 105 We at BOL. The CTC-ARPSs have specific powers of 8.2 We/kg to 8.8 We/kg, which are 71% to 83% higher, respectively, than that of the SOA-RTGs, and use ~ 43% less 238PuO2 fuel.

  18. Studies of radioisotope production with an AVF cyclotron in TIARA

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Toshiaki [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1997-03-01

    The production of radioisotopes to be used mainly for nuclear medicine and biology is studied with an AVF cyclotron in TIARA. A production method of no-carrier-added {sup 186}Re with the {sup 186}W(p,n){sup 186}Re reaction has been developed; this product may be used as a therapeutic agent in radioimmunotherapy due to the adequate nuclear and chemical properties. For the study of the function of plants using a positron-emitter two-dimensional imaging system, a simple method of producing the positron emitter {sup 18}F in water was developed by taking advantage of a highly-energetic {alpha} beam from the AVF cyclotron. (author)

  19. Development of stable isotope separation technology for radioisotope production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Kim, Cheol Jung; Park, Kyung Bae [and others

    2003-05-01

    The ultimate goal of this project is to construct the domestic production system of stable isotopes O-18 and Tl-203 used as target materials in accelerator for the production of medical radioisotopes F-18 and Tl-201, respectively. In order to achieve this goal, diode laser spectroscopic analytical system was constructed and automatic measurement computer software for the direct analysis of H{sub 2}{sup 16}O/H{sub 2}{sup 18}O ratio were developed. Distillation process, laser process, and membrane diffusion process were analyzed for the evaluation of O-18 production. And electromagnetic process, plasma process, and laser process were analyzed for the evaluation of Tl-203 production. UV laser system, IR laser system, and detailed system Tl-203 production were designed. Finally, current and future worldwide demand/supply of stable isotopes O-18 and Tl-203 were estimated.

  20. AMTEC radioisotope power system for the Pluto Express mission

    Energy Technology Data Exchange (ETDEWEB)

    Ivanenok, J.F. III; Sievers, R.K. [Advanced Modular Power Systems, Inc., Ann Arbor, MI (United States)

    1995-12-31

    The Alkali Metal Thermal to Electric Converter (AMTEC) technology has made substantial advances in the last 3 years through design improvements and technical innovations. In 1993 programs began to produce an AMTEC cell specifically for the NASA Pluto Express Mission. A set of efficiency goals was established for this series of cells to be developed. According to this plan, cell {number_sign}8 would be 17% efficient but was actually 18% efficient. Achieving this goal, as well as design advances that allow the cell to be compact, has resulted in pushing the cell from an unexciting 2 W/kg and 2% efficiency to very attractive 40 W/kg and 18% measured efficiency. This paper will describe the design and predict the performance of a radioisotope powered AMTEC system for the Pluto Express mission.

  1. Analysis of a case of internal contamination with cobalt radioisotopes.

    Science.gov (United States)

    Vrba, T; Malatova, I; Jurochova, B

    2007-01-01

    Internal contamination by compounds of cobalt radioisotopes occurs time to time at nuclear power plants. Intakes and committed effective doses are estimated by biokinetic models described in ICRP publications. The paper deals with a case of internal contamination of a worker engaged in a maintenance task at NPP Dukovany. In this case significant discrepancy was observed between intakes based on various datasets (whole body counting, analysis of urine and faeces) when default model setting was used. The reason of this phenomenon was searched for. Three different least square methods of fits were used to find out possible effect of a fitting method. The measured data were fitted by set of biokinetic functions, which covered all intake ways (ingestion and inhalation) and types (M, S, different AMADs and different f1) of the contaminant. The biokinetic model of cobalt needs further improvements as to find better agreement between data fit from direct measurements and bioassay.

  2. Current status of radioisotope production in the year of 2003

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Duk; Bang, H. S.; Shin, B. C

    2004-02-01

    The RIPF(Radio Isotope Production Facility) is the unique facility in Korea which has been used for the isotope production. Through the survey on the radioisotope quantities of production and consumption in the domestic industry, we were trying to show the trend of isotope production. The quantities of Tc-99m, Mo-99, Cr-51, I-131 solution and I-131 capsule produced in the hot cell and clean room of RIPF were compared with the quantities at the previous year. Also the output of the labeling compound such as Hippuran, MIBG, RIHSA, Phytate, MDP, DISIDA, DTPA, etc was compared with the previous year by the radioactivity and the vial. We treated the sum of selling amount of industrial isotopes and tracer isotopes and the status of technical supports also.

  3. A new adrenal computer imaging technique using dual-radioisotopes.

    Directory of Open Access Journals (Sweden)

    Ohashi,Teruhisa

    1981-06-01

    Full Text Available Computer processed adrenal imaging using dual-radioisotopes, 6 beta-iodomethyl-19-nor-cholest-5(10-en-3 beta-ol-131I and 99mTc-phytate was performed in 12 patients with primary aldosteronism and 4 with Cushing's syndrome due to adrenocortical tumor. Adreno-photoscanning and hepato-photoscanning were performed in the same position 2-4 days following intravenous administration of radiocholesterol. The scintigraphic information was stored on cassettes and scan subtraction and a digital-computer method for data smoothing were performed on an oscilloscope. The tumor site could be determined in all cases until day 4 by this computer processed image.

  4. Use of radioisotope scan in evaluation of intrascrotal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Riley, T.W.; Mosbaugh, P.G.; Coles, J.L.; Newman, D.M.; Van Hove, E.D.; Heck, L.L.

    1976-10-01

    There were 98 patients with a variety of intrascrotal lesions studied with a radioisotope 99mtechnetium-pertechnetate scanning technique. Retrospective analysis in 50 patients subjected to an operation revealed a 94 percent accuracy of the scan in the differential diagnosis of testicular torsion and epididymitis as compared to a clinical accuracy of 48 percent. In 7 patients with a scan diagnosis of epididymo-orchitis with abscess the diagnosis was confirmed during the operation or by followup examination. While the scan has been a simple, safe, rapid and reliable technique to differentiate acute and subacute lesions, it has proved to be of limited diagnostic significance in cases of chronic intrascrotal lesions and carcinoma.

  5. CALIBRATION OF DENSITOMETRY IN RADIO-ISOTOPIC IN SITU HYBRIDIZATION

    Directory of Open Access Journals (Sweden)

    Jan M Ruijter

    2011-05-01

    Full Text Available Densitometry on autoradiographs of sections processed for in situ hybridization provides a direct measure for the in situ quantification of mRNA. Gelatin spots, containing different concentrations of the radioisotope, and processed in parallel with the tissue sections, can be used as a sensitive model to calibrate the densitometric measurements. The shape of the gelatin spots was shown to be circular with a parabolic crosssectional profile. This simple shape allows the subdivision of the spot into a series of concentric rings, which enables an unbiased measurement of the optical density - radioactivity relation. This spot measurement is also applicable to DNA arrays spotted on glass or membranes. A new model, explaining the optical density of autoradiographs, was derived and fitted to the calibration points. The use of this calibration method is crucial for the correct interpretation of autoradiographs

  6. Fabrication of light weight radioisotope heater unit hardware components

    Science.gov (United States)

    McNeil, Dennis C.

    1996-03-01

    The Light Weight Radioisotope Heater Unit (LWRHU) is planned to be used on the National Aeronautics and Space Administration (NASA) Cassini Mission, to provide localized thermal energy as strategic locations on the spacecraft. These one watt heater units will support the operation of many on-board instruments that require a specific temperature range to function properly. The system incorporates a fuel pellet encapsulated in a vented metallic clad fabricated from platinum-30% rhodium (Pt-30%Rh) tubing, sheet and foil materials. To complete the package, the clad assemblies are placed inside a combination of graphite components. This report describes the techniques employed by Mound related to the fabrication and sub assembly processes of the LWRHU clad hardware components. Included are details concerning configuration control systems, material procurement and certification, hardware fabrication specifics, and special processes that are utilized.

  7. Pathway of radioisotopes from land surface to sewage sludge

    Science.gov (United States)

    Fischer, Helmut W.; Yokoo, Yoshiyuki

    2014-05-01

    Radioactive surface contaminations will only partially remain at the original location - a fraction of the inventory will take part in (mainly terrestrial and aquatic) environmental transport processes. The probably best known and most important process comprises the food chain. Besides, the translocation of dissolved and particle-bound radioisotopes with surface waters plays an important role. These processes can have the effect of displacing large radioisotope amounts over considerable distances and of creating new sinks and hot spots, as it is already known for sewage sludge. We are reporting on a combined modeling and experimental project concerning the transport of I-131 and Cs-134/Cs-137 FDNPP 2011 depositions in the Fukushima Prefecture. Well-documented experimental data sets are available for surface deposition and sewage sludge concentrations. The goal is to model the pathway in between, involving surface runoff, transport in the sewer system and processes in the sewage treatment plant. Watershed runoff and sewer transport will be treated with models developed recently by us in other projects. For sewage treatment processes a new model is currently being constructed. For comparison and further validation, historical data from Chernobyl depositions and tracer data from natural and artificial, e.g. medical, isotopes will be used. First results for 2011 data from Fukushima Prefecture will be presented. The benefits of the study are expected to be two-fold: on one hand, the abundant recent and historical data will help to develop and improve environmental transport models; on the other hand, both data and models will help in identifying the most critical points in the envisaged transport pathways in terms of radiation protection and waste management.

  8. INTRACORPOREAL HEAT DISSIPATION FROM A RADIOISOTOPE-POWERED ARTIFICIAL HEART.

    Science.gov (United States)

    Huffman, Fred N.; Hagen, Kenneth G.; Whalen, Robert L.; Fuqua, John M.; Norman, John C.

    1974-01-01

    The feasibility of radioisotope-fueled circulatory support systems depends on the ability of the body to dissipate the reject heat from the power source driving the blood pump as well as to tolerate chronic intracorporeal radiation. Our studies have focused on the use of the circulating blood as a heat sink. Initial in vivo heat transfer studies utilized straight tube heat exchangers (electrically and radioisotope energized) to replace a segment of the descending aorta. More recent studies have used a left ventricular assist pump as a blood-cooled heat exchanger. This approach minimizes trauma, does not increase the area of prosthetic interface with the blood, and minimizes system volume. Heat rejected from the thermal engine (vapor or gas cycle) is transported from the nuclear power source in the abdomen to the pump in the thoracic cavity via hydraulic lines. Adjacent tissue is protected from the fuel capsule temperature (900 to 1200 degrees F) by vacuum foil insulation and polyurethane foam. The in vivo thermal management problems have been studied using a simulated thermal system (STS) which approximates the heat rejection and thermal transport mechanisms of the nuclear circulatory support systems under development by NHLI. Electric heaters simulate the reject heat from the thermal engines. These studies have been essential in establishing the location, suspension, surgical procedures, and postoperative care for implanting prototype nuclear heart assist systems in calves. The pump has a thermal impedance of 0.12 degrees C/watt. Analysis of the STS data in terms of an electrical analog model implies a heat transfer coefficient of 4.7 x 10(-3) watt/cm(2) degrees C in the abdomen compared to a value of 14.9 x 10(-3) watt/cm(2) degrees C from the heat exchanger plenum into the diaphragm.

  9. Preliminary studies of Brazilian wood using different radioisotopic sources

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, Gilberto; Silva, Leonardo Gondim de Andrade e, E-mail: gcarval@ipen.br, E-mail: ftgasilva@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Due to availability and particular features, wood was one of the first materials used by mankind with a wide variety of applications. It can be used as raw material for paper and cellulose manufacturing; in industries such as chemical, naval, furniture, sports goods, toys, and musical instrument; in building construction and in the distribution of electric energy. Wood has been widely researched; therefore, wood researchers know that several aspects such as temperature, latitude, longitude, altitude, sunlight, soil, and rainfall index interfere with the growth of trees. This behavior explains why average physical-chemical properties are important when wood is studied. The majority of researchers consider density to be the most important wood property because of its straight relationship with the physical and mechanical properties of wood. There are three types of wood density: basic, apparent and green. The apparent density was used here at 12% of moisture content. In this study, four different types of wood were used: 'freijo', 'jequetiba', 'muiracatiara' and 'ipe'. For wood density determination by non-conventional method, Am-241, Ba-133 and Cs-137 radioisotopic sources; a NaI scintillation detector and a counter were used. The results demonstrated this technique to be quick and accurate. By considering the nuclear parameters obtained as half value layers and linear absorption coefficients, Cs-137 radioisotopic source demonstrated to be the best option to be used for inspection of the physical integrity of electric wooden poles and live trees for future works. (author)

  10. Advanced Stirling Convertor Dual Convertor Controller Testing at NASA Glenn Research Center in the Radioisotope Power Systems System Integration Laboratory

    Science.gov (United States)

    Dugala, Gina M.; Taylor, Linda M.; Bell, Mark E.; Dolce, James L.; Fraeman, Martin; Frankford, David P.

    2015-01-01

    NASA Glenn Research Center developed a nonnuclear representation of a Radioisotope Power System (RPS) consisting of a pair of Advanced Stirling Convertors (ASCs), Dual Convertor Controller (DCC) EMs (engineering models) 2 and 3, and associated support equipment, which were tested in the Radioisotope Power Systems System Integration Laboratory (RSIL). The DCC was designed by the Johns Hopkins University Applied Physics Laboratory (JHU/APL) to actively control a pair of ASCs. The first phase of testing included a Dual Advanced Stirling Convertor Simulator (DASCS), which was developed by JHU/APL and simulates the operation and electrical behavior of a pair of ASCs in real time via a combination of hardware and software. RSIL provides insight into the electrical interactions between a representative radioisotope power generator, its associated control schemes, and realistic electric system loads. The first phase of integration testing included the following spacecraft bus configurations: capacitive, battery, and super-capacitor. A load profile, created based on data from several missions, tested the RPS's and RSIL's ability to maintain operation during load demands above and below the power provided by the RPS. The integration testing also confirmed the DCC's ability to disconnect from the spacecraft when the bus voltage dipped below 22 volts or exceeded 36 volts. Once operation was verified with the DASCS, the tests were repeated with actual operating ASCs. The goal of this integration testing was to verify operation of the DCC when connected to a spacecraft and to verify the functionality of the newly designed RSIL. The results of these tests are presented in this paper.

  11. Coated Particles Fuel Compact-General Purpose Heat Source for Advanced Radioisotope Power Systems

    Science.gov (United States)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2003-01-01

    Coated Particles Fuel Compacts (CPFC) have recently been shown to offer performance advantage for use in Radioisotope Heater Units (RHUs) and design flexibility for integrating at high thermal efficiency with Stirling Engine converters, currently being considered for 100 We. Advanced Radioisotope Power Systems (ARPS). The particles in the compact consist of 238PuO2 fuel kernels with 5-μm thick PyC inner coating and a strong ZrC outer coating, whose thickness depends on the maximum fuel temperature during reentry, the fuel kernel diameter, and the fraction of helium gas released from the kernels and fully contained by the ZrC coating. In addition to containing the helium generated by radioactive decay of 238Pu for up to 10 years before launch and 10-15 years mission lifetime, the kernels are intentionally sized (>= 300 μm in diameter) to prevent any adverse radiological effects on reentry. This paper investigates the advantage of replacing the four iridium-clad 238PuO2 fuel pellets, the two floating graphite membranes, and the two graphite impact shells in current State-Of-The-Art (SOA) General Purpose Heat Source (GPHS) with CPFC. The total mass, thermal power, and specific power of the CPFC-GPHS are calculated as functions of the helium release fraction from the fuel kernels and maximum fuel temperature during reentry from 1500 K to 2400 K. For the same total mass and volume as SOA GPHS, the generated thermal power by single-size particles CPFC-GPHS is 260 W at Beginning-Of-Mission (BOM), versus 231 W for the GPHS. For an additional 10% increase in total mass, the CPFC-GPHS could generate 340 W BOM; 48% higher than SOA GPHS. The corresponding specific thermal power is 214 W/kg, versus 160 W/kg for SOA GPHS; a 34% increase. Therefore, for the same thermal power, the CPFC-GPHS is lighter than SOA GPHS, while it uses the same amount of 238PuO2 fuel and same aeroshell. For the same helium release fraction and fuel temperature, binary-size particles CPFC-GPHS could

  12. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technical Program Tasks for October 1, 2005 through September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    None

    2007-04-02

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  13. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEM MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2005 THROUGH SEPTEMBER 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2007-04-01

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  14. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Programs Tasks for October 1, 2005, through September 30, 2006

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-09-30

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2006. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  15. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEM MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2004, THROUGH SEPTEMBER 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-09-30

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  16. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2004 through September 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    None listed

    2006-08-03

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  17. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2004 Through September 30, 2005

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2006-06-01

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2005. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  18. ANNUAL TECHNICAL PROGRESS REPORT OF RADIOISOTOPE POWER SYSTEMS MATERIALS PRODUCTION AND TECHNOLOGY PROGRAM TASKS FOR OCTOBER 1, 2010 THROUGH SEPTEMBER 30, 2011

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2012-05-01

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, the Oak Ridge National Laboratory (ORNL) produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. These components were also produced for the Pluto New Horizons and Mars Science Lab missions launched in January 2006 and November 2011respectively. The ORNL has been involved in developing materials and technology and producing components for the DOE for nearly four decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2011. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS. Work has also been initiated to establish fabrication capabilities for the Light Weight Radioisotope Heater Units.

  19. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Tasks for October 1, 2003 through September 30, 2004

    Energy Technology Data Exchange (ETDEWEB)

    None listed

    2005-06-01

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2004. Production and production maintenance activities for flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new radioisotope power systems.

  20. Characterization of front-end electronics for CZT based handheld radioisotope identifier

    Science.gov (United States)

    Lombigit, L.; Rahman, Nur Aira Abd; Mohamad, Glam Hadzir Patai; Ibrahim, Maslina Mohd; Yussup, Nolida; Yazid, Khairiah; Jaafar, Zainudin

    2016-01-01

    A radioisotope identifier device based on large volume Co-planar grid CZT detector is current under development at Malaysian Nuclear Agency. This device is planned to be used for in-situ identification of radioisotopes based on their unique energies. This work reports on electronics testing performed on the front-end electronics (FEE) analog section comprising charge sensitive preamplifier-pulse shaping amplifier chain. This test involves measurement of charge sensitivity, pulse parameters and electronics noise. This report also present some preliminary results on the spectral measurement obtained from gamma emitting radioisotopes.

  1. Characterization of front-end electronics for CZT based handheld radioisotope identifier

    Energy Technology Data Exchange (ETDEWEB)

    Lombigit, L., E-mail: lojius@nm.gov.my [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Rahman, Nur Aira Abd; Mohamad, Glam Hadzir Patai; Ibrahim, Maslina Mohd; Yussup, Nolida; Yazid, Khairiah; Jaafar, Zainudin

    2016-01-22

    A radioisotope identifier device based on large volume Co-planar grid CZT detector is current under development at Malaysian Nuclear Agency. This device is planned to be used for in-situ identification of radioisotopes based on their unique energies. This work reports on electronics testing performed on the front-end electronics (FEE) analog section comprising charge sensitive preamplifier-pulse shaping amplifier chain. This test involves measurement of charge sensitivity, pulse parameters and electronics noise. This report also present some preliminary results on the spectral measurement obtained from gamma emitting radioisotopes.

  2. Status of an advanced radioisotope space power system using free-piston Stirling technology

    Energy Technology Data Exchange (ETDEWEB)

    White, M.A,; Qiu, S.; Erbeznik, R.M.; Olan, R.W.; Welty, S.C.

    1998-07-01

    This paper describes a free-piston Stirling engine technology project to demonstrate a high efficiency power system capable of being further developed for deep space missions using a radioisotope (RI) heat source. The key objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for 10 years or longer on deep space missions. Primary issues being addressed for Stirling space power systems are weight and the vibration associated with reciprocating pistons. Similar weight and vibration issues have been successfully addressed with Stirling cryocoolers, which are the accepted standard for cryogenic cooling in space. Integrated long-life Stirling engine-generator (or convertor) operation has been demonstrated by the terrestrial Radioisotope Stirling Generator (RSG) and other Stirling Technology Company (STC) programs. Extensive RSG endurance testing includes more than 40,000 maintenance-free, degradation-free hours for the complete convertor, in addition to several critical component and subsystem endurance tests. The Stirling space power convertor project is being conducted by STC under DOE Contract, and NASA SBIR Phase II contracts. The DOE contract objective is to demonstrate a two-convertor module that represents half of a nominal 150-W(e) power system. Each convertor is referred to as a Technology Demonstration Convertor (TDC). The ultimate Stirling power system would be fueled by three general purpose heat source (GPHS) modules, and is projected to produce substantially more electric power than the 150-watt target. The system is capable of full power output with one failed convertor. One NASA contract, nearing completion, uses existing 350-W(e) RG-350 convertors to evaluate interactivity of two back-to-back balanced convertors with various degrees of electrical and mechanical interaction. This effort has recently provided the first successful synchronization of two convertors by means of parallel

  3. Evaluation of Storage for Transportation Equipment, Unfueled Convertors, and Fueled Convertors at the INL for the Radioisotope Power Systems Program

    Energy Technology Data Exchange (ETDEWEB)

    S. G. Johnson; K. L. Lively

    2010-05-01

    This report contains an evaluation of the storage conditions required for several key components and/or systems of the Radioisotope Power Systems (RPS) Program at the Idaho National Laboratory (INL). These components/systems (transportation equipment, i.e., type ‘B’ shipping casks and the radioisotope thermo-electric generator transportation systems (RTGTS), the unfueled convertors, i.e., multi-hundred watt (MHW) and general purpose heat source (GPHS) RTGs, and fueled convertors of several types) are currently stored in several facilities at the Materials and Fuels Complex (MFC) site. For various reasons related to competing missions, inherent growth of the RPS mission at the INL and enhanced efficiency, it is necessary to evaluate their current storage situation and recommend the approach that should be pursued going forward for storage of these vital RPS components and systems. The reasons that drive this evaluation include, but are not limited to the following: 1) conflict with other missions at the INL of higher priority, 2) increasing demands from the INL RPS Program that exceed the physical capacity of the current storage areas and 3) the ability to enhance our current capability to care for our equipment, decrease maintenance costs and increase the readiness posture of the systems.

  4. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for April 2000 through June 2000

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.P.

    2000-10-23

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at ORNL.

  5. Quarterly Technical Progress Report of Radioisotope Power System Materials Production and Technology Program tasks for January 2000 through March 2000

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.P.

    2000-08-18

    The Office of Space and Defense Power Systems (OSDPS) of the Department of Energy (DOE) provides radioisotope Power Systems (BPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of .I 997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVSs) and weld shields (WSs). This quarterly report has been divided into three sections to reflect program guidance from OSDPS for fiscal year (FY) 2000. The first section deals primarily with maintenance of the capability to produce flight quality carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, clad vent sets (CVSs), and weld shields (WSs). In all three cases, production maintenance is assured by the manufacture of limited quantities of flight quality (FQ) components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for two new RPS. The last section is dedicated to studies of the potential for the production of 238Pu at OBNL.

  6. Preliminary test results from a free-piston Stirling engine technology demonstration program to support advanced radioisotope space power applications

    Science.gov (United States)

    White, Maurice A.; Qiu, Songgang; Augenblick, Jack E.

    2000-01-01

    Free-piston Stirling engines offer a relatively mature, proven, long-life technology that is well-suited for advanced, high-efficiency radioisotope space power systems. Contracts from DOE and NASA are being conducted by Stirling Technology Company (STC) for the purpose of demonstrating the Stirling technology in a configuration and power level that is representative of an eventual space power system. The long-term objective is to develop a power system with an efficiency exceeding 20% that can function with a high degree of reliability for up to 15 years on deep space missions. The current technology demonstration convertors (TDC's) are completing shakedown testing and have recently demonstrated performance levels that are virtually identical to projections made during the preliminary design phase. This paper describes preliminary test results for power output, efficiency, and vibration levels. These early results demonstrate the ability of the free-piston Stirling technology to exceed objectives by approximately quadrupling the efficiency of conventional radioisotope thermoelectric generators (RTG's). .

  7. Long Life 600W Hall Thruster System for Radioisotope Electric Propulsion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Radioisotope Electric Propulsion (REP) offers the prospect for a variety of new science missions by enabling use of Hall Effect propulsion in the outer solar system,...

  8. Kuiper Belt Object Orbiter Using Advanced Radioisotope Power Sources and Electric Propulsion

    Science.gov (United States)

    Oleson, Steven R.; McGuire, Melissa L.; Dankanich, John; Colozza, Anthony; Schmitz, Paul; Khan, Omair; Drexler, Jon; Fittje, James

    2011-01-01

    A joint NASA GRC/JPL design study was performed for the NASA Radioisotope Power Systems Office to explore the use of radioisotope electric propulsion for flagship class missions. The Kuiper Belt Object Orbiter is a flagship class mission concept projected for launch in the 2030 timeframe. Due to the large size of a flagship class science mission larger radioisotope power system building blocks were conceptualized to provide the roughly 4 kW of power needed by the NEXT ion propulsion system and the spacecraft. Using REP the spacecraft is able to rendezvous with and orbit a Kuiper Belt object in 16 years using either eleven (no spare) 420 W advanced RTGs or nine (with a spare) 550 W advanced Stirling Radioisotope systems. The design study evaluated integrating either system and estimated impacts on cost as well as required General Purpose Heat Source requirements.

  9. Development of Kabila rocket: A radioisotope heated thermionic plasma rocket engine

    OpenAIRE

    2015-01-01

    A new type of plasma rocket engine, the Kabila rocket, using a radioisotope heated thermionic heating chamber instead of a conventional combustion chamber or catalyst bed is introduced and it achieves specific impulses similar to the ones of conventional solid and bipropellant rockets. Curium-244 is chosen as a radioisotope heat source and a thermal reductive layer is also used to obtain precise thermionic emissions. The self-sufficiency principle is applied by simultaneously heating up the e...

  10. ARAS: an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes

    OpenAIRE

    2016-01-01

    Background Automated protocols for measuring and dispensing solutions containing radioisotopes are essential not only for providing a safe environment for radiation workers but also to ensure accuracy of dispensed radioactivity and an efficient workflow. For this purpose, we have designed ARAS, an automated radioactivity aliquoting system for dispensing solutions containing positron-emitting radioisotopes with particular focus on fluorine-18 (18F). Methods The key to the system is the combina...

  11. Personal reflections on the highlights and changes in radiation and radioisotope measurement applications

    Science.gov (United States)

    Gardner, Robin P.; Lee, Kyoung O.

    2015-11-01

    This paper describes the recent changes that the authors have perceived in the use of radiation and radioisotope measurement applications. The first change is that due to the increased use of Monte Carlo simulation which has occurred from a normal evolutionary process. This is due in large part to the increased accuracy that is being obtained by the use of detector response functions (DRFs) and the simultaneous increased computational efficiency that has become available with these DRFs, the availability of a greatly improved weight windows variance reduction method, and the availability of inexpensive computer clusters. This first change is a happy one. The other change that is occurring is in response to recent terrorist activities. That change is the replacement or major change in the use of long-lived radioisotopes in radioisotope measurement and other radioisotope source applications. In general this can be done by improving the security of these radioisotope sources or by replacing them altogether by using machine sources of radiation. In either case one would like to preclude altogether or at least minimize the possibility of terrorists being able to obtain radioisotopes and use them for clandestine purposes.

  12. Radioisotope tracer study in a sludge hygienization research irradiator (SHRI).

    Science.gov (United States)

    Pant, H J; Thýn, J; Zitný, R; Bhatt, B C

    2001-01-01

    A radioisotope tracer study has been carried out in a batch type sludge hygienization research irradiator with flow from top to bottom, the objective being to measure flow rate, circulation and mixing times and to investigate the hydrodynamic behaviour of the irradiator for identifying the cause(s) of malfunction. A stimulus-response technique with NH4(82)Br as a tracer was used to measure the above parameters. Experiments were carried out at three different flow rates, i.e 1.0, 0.64 and 0.33 m3/min. Three combined models based on a set of differential equations are proposed and used to simulate the measured tracer concentration curves. The obtained parameters were used to estimate dead volume and analyse hydrodynamic behaviour of the irradiator. The nonlinear regression problem of model parameter estimation was solved using the Marquardt-Levenberg method. The measured flow rate was found to be in good agreement with the values shown by the flow meter. The circulation times were found to be half of the mixing times. A simple approach for estimation of dose based on a known vertical dose-rate profile inside the irradiator is presented. About one-fourth of the volume of the irradiator was found to be dead at lower flow rates and this decreased with increase in flow rate. At higher flow rates, a semi stagnant volume was found with slow exchange of flow between the active and dead volumes.

  13. Radioisotope tracer study in a sludge hygienization research irradiator (SHRI)

    Energy Technology Data Exchange (ETDEWEB)

    Pant, H.J. E-mail: hjpant@aspsara.barc.ernet.in; Thyn, J.; Zitny, R.; Bhatt, B.C

    2001-01-15

    A radioisotope tracer study has been carried out in a batch type sludge hygienization research irradiator with flow from top to bottom, the objective being to measure flow rate, circulation and mixing times and to investigate the hydrodynamic behaviour of the irradiator for identifying the cause(s) of malfunction. A stimulus-response technique with NH{sup 82}{sub 4}Br as a tracer was used to measure the above parameters. Experiments were carried out at three different flow rates, i.e 1.0, 0.64 and 0.33 m{sup 3}/min. Three combined models based on a set of differential equations are proposed and used to simulate the measured tracer concentration curves. The obtained parameters were used to estimate dead volume and analyse hydrodynamic behaviour of the irradiator. The nonlinear regression problem of model parameter estimation was solved using the Marquardt-Levenberg method. The measured flow rate was found to be in good agreement with the values shown by the flow meter. The circulation times were found to be half of the mixing times. A simple approach for estimation of dose based on a known vertical dose-rate profile inside the irradiator is presented. About one-fourth of the volume of the irradiator was found to be dead at lower flow rates and this decreased with increase in flow rate. At higher flow rates, a semi stagnant volume was found with slow exchange of flow between the active and dead volumes.

  14. Variable Conductance Heat Pipes for Radioisotope Stirling Systems

    Science.gov (United States)

    Anderson, William G.; Tarau, Calin

    2008-01-01

    In a Stirling radioisotope system, heat must continually be removed from the GPHS modules, to maintain the GPHS modules and surrounding insulation at acceptable temperatures. Normally, the Stirling convertor provides this cooling. If the Stirling engine stops in the current system, the insulation is designed to spoil, preventing damage to the GPHS, but also ending the mission. An alkali-metal Variable Conductance Heat Pipe (VCHP) was designed to allow multiple stops and restarts of the Stirling engine. A VCHP turns on with a delta T of 30 C, which is high enough to not risk standard ASRG operation but low enough to save most heater head life. This VCHP has a low mass, and low thermal losses for normal operation. In addition to the design, a proof-of-concept NaK VCHP was fabricated and tested. While NaK is normally not used in heat pipes, it has an advantage in that it is liquid at the reservoir operating temperature, while Na or K alone would freeze. The VCHP had two condensers, one simulating the heater head, and the other simulating the radiator. The experiments successfully demonstrated operation with the simulated heater head condenser off and on, while allowing the reservoir temperature to vary over 40 to 120 C, the maximum range expected. In agreement with previous NaK heat pipe tests, the evaporator delta T was roughly 70 C, due to distillation of the NaK in the evaporator.

  15. Novel production techniques of radioisotopes using electron accelerators

    Science.gov (United States)

    Lowe, Daniel Robert

    Non-traditional radioisotope production techniques using a compact, high power linear electron accelerator have been demonstrated and characterized for the production of 18F, 47Sc, 147 Pm, and 99mTc from a variety of target candidates. These isotopes are used extensively in the medical field as diagnostic and therapy radioisotopes, as well as the space industry as RTG's. Primary focus was placed on 99mTc as it constitutes approximately 80% of all diagnostic procedures in the medical community that use radioactive tracers. It was also the prime focus due to recent events at the Chalk River nuclear reactor, which caused global shortages of this isotope a few years ago. A Varian K15 LINAC was first used to show proof of principle in Las Vegas. Various samples were then taken to the Idaho Accelerator Center where they were activated using an electron LINAC capable of electron energies from 4 to 25 MeV at a beam power of approximately 1 kW. Production rates, cross sections, and viability studies were then performed and conducted to assess the effectiveness of the candidate target and the maximum production rate for each radioisotope. Production rates for 18F from lithium fluoride salts were shown to be ideal at 21MeV, namely 1.7 Ci per kg of LiF salt, per kW of beam current, per 10 hour irradiation time. As the typical hospital consumption of 18F is around 500 mCi per day, it is clear that a large amount of 18F can be made from a small (300 gram) sample of LiF salt. However, since there is no current separation process for 18F from 19F, the viability of this technique is limited until a separations technique is developed. Furthermore, the calculated cross section for this reaction is in good agreement with literature, which supports the techniques for the isotopes mentioned below. Production rates for 47Sc from vanadium oxide targets were shown to be a maximum at 25 MeV with a production rate of 2 mCi per day, assuming a 2 kW beam and a 10 kg target. While this

  16. Toward high performance radioisotope thermophotovoltaic systems using spectral control

    Science.gov (United States)

    Wang, Xiawa; Chan, Walker; Stelmakh, Veronika; Celanovic, Ivan; Fisher, Peter

    2016-12-01

    This work describes RTPV-PhC-1, an initial prototype for a radioisotope thermophotovoltaic (RTPV) system using a two-dimensional photonic crystal emitter and low bandgap thermophotovoltaic (TPV) cell to realize spectral control. We validated a system simulation using the measurements of RTPV-PhC-1 and its comparison setup RTPV-FlatTa-1 with the same configuration except a polished tantalum emitter. The emitter of RTPV-PhC-1 powered by an electric heater providing energy equivalent to one plutonia fuel pellet reached 950 °C with 52 W of thermal input power and produced 208 mW output power from 1 cm2 TPV cell. We compared the system performance using a photonic crystal emitter to a polished flat tantalum emitter and found that spectral control with the photonic crystal was four times more efficient. Based on the simulation, with more cell areas, better TPV cells, and improved insulation design, the system powered by a fuel pellet equivalent heat source is expected to reach an efficiency of 7.8%.

  17. Predictive efficacy of radioisotope voiding cystography for renal outcome

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seok Ki; Lee, Dong Soo; Kim, Kwang Myeung; Choi, Whang; Chung, June Key; Lee, Myung Chul [Seoul National Univ. College of Medicine, Seoul (Korea, Republic of)

    2000-04-01

    As vesicoureteral reflux (VUR) could lead to renal functional deterioration when combined with urinary tract infection, we need to decide whether operative anti-reflux treatment should be performed at the time of diagnosis of VUR. Predictive value of radioisotope voiding cystography (RIVCG) for renal outcome was tested. In 35 children (18 males, 17 females), radiologic voiding cystoure-thrography (VCU), RIVCG and DMSA scan were performed. Change in renal function was evaluated using the follow-up DMSA scan, ultrasonography, and clinical information. Discriminant analysis was performed using individual or integrated variables such as reflux amount and extent at each phase of voiding on RIVCG, in addition to age, gender and cortical defect on DMSA scan at the time of diagnosis. Discriminant function was composed and its performance was examined. Reflux extent at the filling phase and reflux amount and extent at postvoiding phase had a significant prognostic value. Total reflux amount was a composite variable to predict prognosis. Discriminant function composed of reflux extent at the filling phase and reflux amount and extent at postvoiding phase showed better positive predictive value and specificity than conventional reflux grading. RIVCG could predict renal outcome by disclosing characteristic reflux pattern during various voiding phases.

  18. Development of radioisotope tracer technology and nucleonic control system

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Joon Ha; Lee, Myun Joo; Jung, Sung Hee and others

    1999-04-01

    The purpose of this study is to develop the radioisotope tracer technology, which can be used in solving industrial and environmental problems and basic technology of nuclear control systems that are widely used for automation of industrial plants, and to build a strong tracer group to support the local industries. In relation to the tracer technology, the data acquisition system, the column scanning equipment and the detection pig for a leakage test have been developed. In order to use in analyzing data of tracer experiments, a computer program for the analysis of residence time distribution has been created as well. These results were utilized in developing the tracer technologies, such as the column scanning, the flow measurement using the dilution method, the simultaneous monitoring rotational movement of piston rings and the optimization of a waste water treatment facility, and the technologies were successfully demonstrated in the local industrial. The stripper of RFCC reactor has been examined to find an unwanted structure in it by imminent request from the industry. Related to the development of nucleonic control system, the state of art report on the technology has been written and an equipment for the analysis of asphalt content has been developed. (author)

  19. An Advanced Turbo-Brayton Converter for Radioisotope Power Systems

    Science.gov (United States)

    Zagarola, Mark V.; Izenson, Michael G.; Breedlove, Jeffrey J.; O'Connor, George M.; Ketchum, Andrew C.; Jetley, Richard L.; Simons, James K.

    2005-02-01

    Past work has shown that Brayton power converters are an attractive option for high power, long-duration space missions. More recently, Creare has shown that Brayton technology could be scaled with high efficiency and specific power to lower power levels suitable for radioisotope power conversion systems. Creare is currently leading the development of an advanced turbo-Brayton converter under NASA's Prometheus Program. The converter design is based on space-proven cryocooler technologies that have been shown to be safe; to provide long, maintenance-free lifetimes; and to have high reliability, negligible vibration emittance, and low EMI/EMC. The predicted performance of a converter at the beginning of life is greater than 20% (including electronic inefficiencies and overhead) with a converter specific power of greater than 8 We/kg for a test unit and greater than 15 We/kg for a flight unit. The degradation in performance over a 14-year mission lifetime is predicted to be negligible, and the primary life limiting factor is not expected to be an issue for greater than twice the mission duration. Work during the last year focused on the material and fabrication issues associated with a high temperature turbine and a lightweight recuperator, and the performance issues associated with the high-temperature insulation and power conversion electronics. The development of the converter is on schedule. Thermal vacuum testing to demonstrate a technology readiness level of 5 is currently planned for 2006.

  20. Radioisotope studies of mucociliary system function in otorhinolaryngology

    Energy Technology Data Exchange (ETDEWEB)

    De Rossi, G. [Istituto di Medicina Nucleare, Rome (Italy)

    1992-12-31

    An `excursus` on the Nuclear Medicine methods at present available for the study of mucociliary system function in otorhinolaryngology is reported. To this end, ostoscintigraphy and rhinosctinigraphy prove to be exquisitely sensitive techniques. Otoscintigraphy is useful for pre-operative studies in the patients who are planned to undergo tympanoplasty for dry tympanic perforations. Rhinoscintigraphy is regarded as the most affordable and sound method to evaluate mucociliary system function in rhinopathies. It is also suggested for the pre- and post-operative assessment of polypectomy. Hence, otorhinolaryngology radioisotope methods deserve to be extensively dealt with in Nuclear Medicine treatises. (orig.) [Deutsch] Der Autor gibt einen Ueberblick ueber nuklear-medizinische Verfahren, die heutzutage fuer funktionelle Untersuchungen des mukoziliaren Systems in der HNO-Heilkunde zur Verfuegung stehen. Die Otoszintigraphie sowie die Rhinoszintigraphie erweisen sich in diesem Zusammenhang als Methoden mit einer ueberaus hohen Empfindlichkeit. Bei Patienten, die wegen einer Trommelfellperforation zur Trommelfellplastik vorgesehen sind, bewaehrt sich die Otoszintigraphie fuer praeoperative Untersuchungen. Die Rhinoszintigraphie wird bei den unterschiedlichsten Nasenerkrankungen als die rationellste und wirksamste Methode zur funktionellen Beurteilung des mukoziliaren Systems angesehen. Darueber hinaus wird sie fuer die praeoperative und postoperative Untersuchung bei Polypenexstirpationen empfohlen. Deshalb sollte den Methoden der Radioisotopenuntersuchungen in der HNO-Heilkunde ein hoeherer Stellenwert eingeraeumt werden. (orig.)

  1. Radioisotope Power Systems Reference Book for Mission Designers and Planners

    Science.gov (United States)

    Lee, Young; Bairstow, Brian

    2015-01-01

    The RPS Program's Program Planning and Assessment (PPA) Office commissioned the Mission Analysis team to develop the Radioisotope Power Systems (RPS) Reference Book for Mission Planners and Designers to define a baseline of RPS technology capabilities with specific emphasis on performance parameters and technology readiness. The main objective of this book is to provide RPS technology information that could be utilized by future mission concept studies and concurrent engineering practices. A progress summary from the major branches of RPS technology research provides mission analysis teams with a vital tool for assessing the RPS trade space, and provides concurrent engineering centers with a consistent set of guidelines for RPS performance characteristics. This book will be iterated when substantial new information becomes available to ensure continued relevance, serving as one of the cornerstone products of the RPS PPA Office. This book updates the original 2011 internal document, using data from the relevant publicly released RPS technology references and consultations with RPS technologists. Each performance parameter and RPS product subsection has been reviewed and cleared by at least one subject matter representative. A virtual workshop was held to reach consensus on the scope and contents of the book, and the definitions and assumptions that should be used. The subject matter experts then reviewed and updated the appropriate sections of the book. The RPS Mission Analysis Team then performed further updates and crosschecked the book for consistency. Finally, a second virtual workshop was held to ensure all subject matter experts and stakeholders concurred on the contents.

  2. Light-weight radioisotope heater unit (LWRHU) impact tests

    Science.gov (United States)

    Reimus, M. A. H.; Rinehart, G. H.; Herrera, A.; Lopez, B.; Lynch, C.; Moniz, P.

    1998-01-01

    The light-weight radioisotope heater unit (LWRHU) is a 238PuO2-fueled heat source designed to provide one thermal watt in each of various locations on a spacecraft. Los Alamos National Laboratory designed, fabricated, and safety tested the LWRHU. The heat source consists of a hot-pressed 238PuO2 fuel pellet, a Pt-30Rh vented capsule, a pyrolytic graphite insulator, and a fineweave-pierced fabric graphite aeroshell assembly. To compare the performance of the LWRHUs fabricated for the Cassini mission with the performance of those fabricated for the Galileo mission, and to determine a failure threshold, two types of impact tests were conducted. A post-reentry impact test was performed on one of 180 flight-quality units produced for the Cassini mission and a series of sequential impact tests using simulant-fueled LWRHU capsules were conducted respectively. The results showed that deformation and fuel containment of the impacted Cassini LWRHU was similar to that of a previously tested Galileo LWRHU. Both units sustained minimal deformation of the aeroshell and fueled capsule; the fuel was entirely contained by the platinum capsule. Sequential impacting, in both end-on and side-on orientations, resulted in increased damage with each subsequent impact. Sequential impacting of the LWRHU appears to result in slightly greater damage than a single impact at the final impact velocity of 50 m/s.

  3. Semi-Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for April 1, 2002 Through September 20, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.P.

    2002-12-03

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2002. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

  4. Annual Technical Progress Report of Radioisotope Power System Materials Production and Technology Program Tasks for October 1, 2002 Through September 30, 2003

    Energy Technology Data Exchange (ETDEWEB)

    King, J.F.

    2004-05-18

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2003. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, and CVS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials, or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

  5. Semi-Annual Technical Progress Report of the Radioisotope Power System Materials Production and Technology Program Tasks for September 2000 through March 2001

    Energy Technology Data Exchange (ETDEWEB)

    Moore, J.P.

    2001-05-22

    The Office of Space and Defense Power Systems of the Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. For the Cassini Mission, for example, ORNL was involved in the production of carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) and weld shields (WS). This report has been divided into three sections to reflect program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2001. The first section deals primarily with maintenance of the capability to produce flight quality (FQ) CBCF insulator sets, iridium alloy blanks and foil, CVS, and WS. In all three cases, production maintenance is assured by the manufacture of limited quantities of FQ components. The second section deals with several technology activities to improve the manufacturing processes, characterize materials. or to develop technologies for new radioisotope power systems. The last section is dedicated to studies related to the production of {sup 238}Pu.

  6. Radioisotope Stirling Engine Powered Airship for Atmospheric and Surface Exploration of Titan

    Science.gov (United States)

    Colozza, Anthony J.; Cataldo, Robert L.

    2014-01-01

    The feasibility of an advanced Stirling radioisotope generator (ASRG) powered airship for the near surface exploration of Titan was evaluated. The analysis did not consider the complete mission only the operation of the airship within the atmosphere of Titan. The baseline airship utilized two ASRG systems with a total of four general-purpose heat source (GPHS) blocks. Hydrogen gas was used to provide lift. The ASRG systems, airship electronics and controls and the science payload were contained in a payload enclosure. This enclosure was separated into two sections, one for the ASRG systems and the other for the electronics and payload. Each section operated at atmospheric pressure but at different temperatures. The propulsion system consisted of an electric motor driving a propeller. An analysis was set up to size the airship that could operate near the surface of Titan based on the available power from the ASRGs. The atmospheric conditions on Titan were modeled and used in the analysis. The analysis was an iterative process between sizing the airship to carry a specified payload and the power required to operate the electronics, payload and cooling system as well as provide power to the propulsion system to overcome the drag on the airship. A baseline configuration was determined that could meet the power requirements and operate near the Titan surface. From this baseline design additional trades were made to see how other factors affected the design such as the flight altitude and payload mass and volume.

  7. Production and Clinical Applications of Radiopharmaceuticals and Medical Radioisotopes in Iran.

    Science.gov (United States)

    Jalilian, Amir Reza; Beiki, Davood; Hassanzadeh-Rad, Arman; Eftekhari, Arash; Geramifar, Parham; Eftekhari, Mohammad

    2016-07-01

    During past 3 decades, nuclear medicine has flourished as vibrant and independent medical specialty in Iran. Since that time, more than 200 nuclear physicians have been trained and now practicing in nearly 158 centers throughout the country. In the same period, Tc-99m generators and variety of cold kits for conventional nuclear medicine were locally produced for the first time. Local production has continued to mature in robust manner while fulfilling international standards. To meet the ever-growing demand at the national level and with international achievements in mind, work for production of other Tc-99m-based peptides such as ubiquicidin, bombesin, octreotide, and more recently a kit formulation for Tc-99m TRODAT-1 for clinical use was introduced. Other than the Tehran Research Reactor, the oldest facility active in production of medical radioisotopes, there is one commercial and three hospital-based cyclotrons currently operational in the country. I-131 has been one of the oldest radioisotope produced in Iran and traditionally used for treatment of thyrotoxicosis and differentiated thyroid carcinoma. Since 2009, (131)I-meta-iodobenzylguanidine has been locally available for diagnostic applications. Gallium-67 citrate, thallium-201 thallous chloride, and Indium-111 in the form of DTPA and Oxine are among the early cyclotron-produced tracers available in Iran for about 2 decades. Rb-81/Kr-81m generator has been available for pulmonary ventilation studies since 1996. Experimental production of PET radiopharmaceuticals began in 1998. This work has culminated with development and optimization of the high-scale production line of (18)F-FDG shortly after installation of PET/CT scanner in 2012. In the field of therapy, other than the use of old timers such as I-131 and different forms of P-32, there has been quite a significant advancement in production and application of therapeutic radiopharmaceuticals in recent years. Application of (131)I

  8. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    Science.gov (United States)

    Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.

    1994-01-04

    A generator system has been invented for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form. 1 figure.

  9. Current status of production and research of radioisotopes and radiopharmaceuticals in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Soenarjo, Sunarhadijoso; Tamat, Swasono R. [Center for Development of Radioisotopes and Radiopharmaceuticals, National Nuclear Energy Agency (BATAN), Kawasan Puspiptek, Serpong, Tangerang (Indonesia)

    2000-10-01

    The use of radioactive preparation in Indonesia has sharply increased during the past years, indicated by increase of the number of companies utilizing radioisotopes during 1985 to 1999. It has been clearly stressed in the BATAN's Strategic Plan for 1994-2014 that the production of radioisotopes and radiopharmaceuticals is one of five main industrial fields within the platform of the Indonesian nuclear industry. Research programs supporting the production of radioisotopes and radiopharmaceuticals as well as development of production technology are undertaken by the Research Center for Nuclear Techniques (RCNT) in Bandung and by the Radioisotope Production Center (RPC) in Serpong, involving cooperation with other research center within BATAN, universities and hospitals as well as overseas nuclear research institution. The presented paper describes production and research status of radioisotopes and radiopharmaceuticals in Indonesia after the establishment of P.T. Batan Teknologi in 1996, a government company assigned for activities related to the commercial application of nuclear technology. The reviewed status is divided into two short periods, i.e. before and after the Chairman Decree No. 73/KA/IV/1999 declaring new BATAN organizational structure. Subsequent to the Decree, all commercial requests for radioisotopes and radiopharmaceuticals are fulfilled by P.T. Batan Teknologi, while demands on novel radioactive preparations or new processing technology, as well as research and development activities should be fulfilled by the Center for the Development of Radioisotopes and Radiopharmaceuticals (CDRR) through non-commercial arrangement. The near-future strategic research programs to response to dynamic public demand are also discussed. The status of research cooperation with JAERI (Japan) is also reported. (author)

  10. Using a non-radioisotopic, quantitative TRAP-based me thod detecting telomerase activities in human hepatoma cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A non-radioisotopic, quantitative TRAP-based telom erase activity assay was established mainly by using SYBR Green-I staining instead of radioisotope. Comparing with conventional radioisotope based method, it was better in reproducibility and accuracy. Using this method, we found telomerase activities were absent in normal human liver cells, while detected in all of four human hepatoma cell lines (BEL-7404, SMMC-7721, QGY-7903 and HCCM) without significant differences.

  11. Radioisotope Productions for Medical Use with Accelerator Neutrons

    Science.gov (United States)

    Minato, Futoshi; Nagai, Yasuki; Iwamoto, Nobuyuki; Iwamoto, Osamu

    2014-09-01

    Various kinds of radioactive isotopes (RIs) are widely used in nuclear medicine for diagnostics and therapy. Since the RIs are not usually present in the nature, they must be produced by nuclear reactors and accelerators. For instance, 99mTc, which is the most common RI used in diagnosis, is mainly produced by fission of highly enriched 235U (HEU) in nuclear reactors. However, use of the HEU is unfavorable in terms of nuclear security. Therefore, many methods without 235U have been studied in order to produce RIs for medical use; for example, thermal neutron capture, gamma disintegration, and proton induced reactions. We also have proposed an alternative method using accelerator neutrons besides the above methods. Technique producing high intense accelerator neutron beam as much as 1015 n/s is being developed and RI productions with the accelerator neutron have been done recently. The major advantages of the use of accelerator neutron are followings. 1) A wide variety of carrier-added and carrier-free radioisotopes can be produced using the neutrons, because a charge exchange reaction of a sample nucleus has a sizable cross section of 50 to 500 mb. 2) High transparency of neutron allows us to use a large amount of sample to co-produce other RIs by putting other samples behind the main sample in the beam direction. In this talk, we will show the features of RI productions with accelerator neutron which we have ever investigated and found, along with numerical results of RI yields calculated with Japanese Evaluated Nuclear Data Library (JENDL-4.0).

  12. Small Radioisotope Power System Testing at NASA Glenn Research Center

    Science.gov (United States)

    Dugala, Gina; Bell, Mark; Oriti, Salvatore; Fraeman, Martin; Frankford, David; Duven, Dennis

    2013-01-01

    In April 2009, NASA Glenn Research Center (GRC) formed an integrated product team (IPT) to develop a Small Radioisotope Power System (SRPS) utilizing a single Advanced Stirling Convertor (ASC) with passive balancer. A single ASC produces approximately 80 We making this system advantageous for small distributed lunar science stations. The IPT consists of Sunpower, Inc., to provide the single ASC with a passive balancer, The Johns Hopkins University Applied Physics Laboratory (JHUAPL) to design an engineering model Single Convertor Controller (SCC) for an ASC with a passive balancer, and NASA GRC to provide technical support to these tasks and to develop a simulated lunar lander test stand. The single ASC with a passive balancer, simulated lunar lander test stand, and SCC were delivered to GRC and were tested as a system. The testing sequence at GRC included SCC fault tolerance, integration, electromagnetic interference (EMI), vibration, and extended operation testing. The SCC fault tolerance test characterized the SCCs ability to handle various fault conditions, including high or low bus power consumption, total open load or short circuit, and replacing a failed SCC card while the backup maintains control of the ASC. The integrated test characterized the behavior of the system across a range of operating conditions, including variations in cold-end temperature and piston amplitude, including the emitted vibration to both the sensors on the lunar lander and the lunar surface. The EMI test characterized the AC and DC magnetic and electric fields emitted by the SCC and single ASC. The vibration test confirms the SCCs ability to control the single ASC during launch. The extended operation test allows data to be collected over a period of thousands of hours to obtain long term performance data of the ASC with a passive balancer and the SCC. This paper will discuss the results of each of these tests.

  13. High efficiency 4H-SiC betavoltaic power sources using tritium radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Christopher; Portnoff, Samuel [Widetronix Corp., Ithaca, New York 14850 (United States); Spencer, M. G. [Department of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)

    2016-01-04

    Realization of an 18.6% efficient 4H-silicon carbide (4H-SiC) large area betavoltaic power source using the radioisotope tritium is reported. A 200 nm 4H-SiC P{sup +}N junction is used to collect high-energy electrons. The electron source is a titanium tritide (TiH{sup 3}{sub x}) foil, or an integrated titanium tritide region formed by the diffusion of tritium into titanium. The specific activity of the source is directly measured. Dark current measured under short circuit conditions was less than 6.1 pA/cm{sup 2}. Samples measured with an external tritium foil produced an open circuit voltage of 2.09 V, short circuit current of 75.47 nA/cm{sup 2}, fill factor of 0.86, and power efficiency of 18.6%. Samples measured with an integrated source produced power efficiencies of 12%. Simulations were done to determine the beta spectrum (modified by self absorption) exiting the source and the electron hole pair generation function in the 4H-SiC. The electron-hole pair generation function in 4H-SiC was modeled as a Gaussian distribution, and a closed form solution of the continuity equation was used to analyze the cell performance. The effective surface recombination velocity in our samples was found to be 10{sup 5}–10{sup 6 }cm/s. Our analysis demonstrated that the surface recombination dominates the performance of a tritium betavoltaic device but that using a thin P{sup +}N junction structure can mitigate some of the negative effects.

  14. Reflections on the juridical implications of the medical use of radiations and radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Ana Celia P.P. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Faculdade de Direito]. E-mails: anaceu2000@yahoo.com.br; Cuperschmid, Ethel Mizrahy [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Centro de Memoria da Medicina - CEMMOR]. E-mail: ethel.mizrahy@yahoo.com; Campos, Tarcisio P. Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-graduacao em Ciencias e Tecnicas Nucleares]. E-mail: campos@nuclear.ufmg.br

    2007-07-01

    The pacific use of radiation and radioisotopes for the society presents radiological risks, due its capacity to produce damage to environmental and human being, contrasting with its high economic and social benefits. In the face of the risk, juridical system leans over to reach the required regulations that implies in the balance between human and environmental security and the expected improvements of the medical nuclear techniques. The Brazilian Constitution of 1988 tries to provide the normalization for the application of the nuclear energy and its radioisotopes. However, target as a strategically technology and due to its expansion, its regulations still deserves analyses and reflections. The present paper starts from the Constitution presenting the references about the theme and analyzing it. It is addressed the principle of the objective civil responsibility making analyses on the use of radiations and radioisotope on the medicine. It addresses the role of federal autonomy related to the 'MCT - Ministerio de Ciencia e Tecnologia' with its accumulative functions in society, such as scientific and technologic development, education, and its own focalization. The recent opening of the monopoly for the production of radioisotopes for very short half-lives is also discussed. It makes a comparison between juridical aspects of Brazil with international system. The present article contributes to open same topics of discussions on the Brazilian juridical aspects involving radiations and radioisotopes application on medicine. (author)

  15. Feasibility Study of a Three-Stage Radioisotope-Powered Mars Ascent Vehicle

    Science.gov (United States)

    Chalpek, T. M.; Allen, R. E.; Guan, J. Y.; Rao, S. S.; Howe, S. D.

    Recent advancements in methods of housing radioisotopes at the Center for Space Nuclear Research have led to the concept of a radioisotope thermal rocket--a rocket powered by the accumulated heat of radioisotope decay. Heat energy from the decay can be accumulated over long periods of time in a material of high heat capacity to create a thermal capacitor. The capacitor can then be discharged at such a rate as to provide high power for short periods of time; in this case, the heat is transferred to a gas propellant. This paper explores the feasibility of using a radioisotope thermal rocket with in-situ atmospheric CO2 propellant to deliver a 10 kg payload from the Martian surface to a 200 km circular orbit about Mars. Models of heat transfer, gas dynamics, and ascent mechanics are constructed to test performance of different core materials and geometries. Of the configurations tested, the best simulation results fail to meet the altitude and velocity requirements by 12 km and 50 m/s respectively. The proximity to success indicates that the given models are capable of reaching orbital parameters if optimization algorithms and closed-loop guidance methods are employed. It is believed, however, that the current models underestimate expansion losses to the degree that if more realistic and computationally-intensive models are incorporated, the effect will definitively disprove the concept with currently available technology. Based on this preliminary research, radioisotope thermal rockets utilizing current technology are not capable of serving as Mars ascent vehicles.

  16. Planning For Multiple NASA Missions With Use Of Enabling Radioisotope Power

    Energy Technology Data Exchange (ETDEWEB)

    S.G. Johnson; K.L. Lively; C.C. Dwight

    2013-02-01

    Since the early 1960’s the Department of Energy (DOE) and its predecessor agencies have provided radioisotope power systems (RPS) to NASA as an enabling technology for deep space and various planetary missions. They provide reliable power in situations where solar and/or battery power sources are either untenable or would place an undue mass burden on the mission. In the modern era of the past twenty years there has been no time that multiple missions have been considered for launching from Kennedy Space Center (KSC) during the same year. The closest proximity of missions that involved radioisotope power systems would be that of Galileo (October 1989) and Ulysses (October 1990). The closest that involved radioisotope heater units would be the small rovers Spirit and Opportunity (May and July 2003) used in the Mars Exploration Rovers (MER) mission. It can be argued that the rovers sent to Mars in 2003 were essentially a special case since they staged in the same facility and used a pair of small launch vehicles (Delta II). This paper examines constraints on the frequency of use of radioisotope power systems with regard to launching them from Kennedy Space Center using currently available launch vehicles. This knowledge may be useful as NASA plans for its future deep space or planetary missions where radioisotope power systems are used as an enabling technology. Previous descriptions have focused on single mission chronologies and not analyzed the timelines with an emphasis on multiple missions.

  17. Are radioisotope shortages a thing of the past?

    Energy Technology Data Exchange (ETDEWEB)

    Peykov, Pavel; Cameron, Ron [OECD Nuclear Energy Agency, Issy-les-Moulineaux (France)

    2014-10-15

    Since June 2009, the NEA and its High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) have examined the causes of {sup 99}Mo/{sup 99m}Tc supply shortages and developed a policy approach, including principles and supporting recommendations to address those causes. The NEA has also reviewed the global {sup 99}Mo/{sup 99m}Tc supply situation periodically, using the most up-to-date data from supply chain participants, to highlight periods of reduced supply and underscore the case for implementing the HLG-MR policy approach in a timely and globally-consistent manner. In 2012, the NEA released a {sup 99}Mo supply and demand update for the period up to 2030 (A Supply and Demand Update of the Molybdenum-99 Market, OECD/NEA, 2012), identifying periods of low supply relative to demand. This paper presents the preliminary results from an updated {sup 99}Mo supply and demand forecast, focusing on the potentially critical 2015-2020 period, when two major {sup 99}Mo producers (the NRU reactor in Canada and the OSIRIS reactor in France) are scheduled to cease {sup 99}Mo irradiations. On the demand side, the NEA had previously released a study with the results from a global survey of future demand for {sup 99}Mo/{sup 99m}Tc (OECD-NEA, 2011), devising a scenario based on a data assessment by an expert advisory group. In the current analysis, the expected demand growth rate and total demand have been modified, based on the latest information from supply chain participants. On the supply side, the NEA has updated the list of current and planned new {sup 99}Mo/{sup 99m}Tc irradiation and processing projects. The modelling results incorporate revisions to production start/end dates, potential additional projects, and impacts of converting to the use of low-enriched uranium (LEU) targets on {sup 99}Mo/{sup 99m}Tc capacity and production. The supply forecast horizon (2015 to 2020) has been chosen to reflect upcoming, important changes in global production capacity

  18. Nanocluster metal films as thermoelectric material for radioisotope mini battery unit

    Science.gov (United States)

    Borisyuk, P. V.; Krasavin, A. V.; Tkalya, E. V.; Lebedinskii, Yu. Yu.; Vasiliev, O. S.; Yakovlev, V. P.; Kozlova, T. I.; Fetisov, V. V.

    2016-10-01

    The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters' tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.

  19. First measurement of radioisotopes by collinear laser spectroscopy at an ion-guide separator

    Energy Technology Data Exchange (ETDEWEB)

    Cooke, J.L.; Cochrane, E.C.A.; Evans, D.E.; Griffith, J.A.R.; Persson, J.R.; Richardson, D.S.; Tungate, G.; Zybert, L. [School of Physics and Space Research, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Billowes, J.; Campbell, P.; Cooper, T.G.; Grant, I.S.; Levins, J.M.G.; Pearson, M.R.; Wheeler, P.D. [Schuster Laboratory, University of Manchester, Manchester M13 9PL (United Kingdom); Dendooven, P.; Honkanen, A.; Huhta, M.; Oinonen, M.; Penttilae, H.; Aeystoe, J. [Accelerator Laboratory, University of Jyvaeskylae, PL 35, Jyvaeskylae SF - 403 51 (Finland)

    1997-11-01

    The first successful application of an ion-guide separator (IGISOL) for collinear laser spectroscopy of radioisotopes has achieved an efficiency comparable with the best obtained with catcher-ionizer facilities. The ion beam energy spread was determined to be less than 6 eV, allowing laser fluorescence resonance signals for the {sup 140,142,144}Ba radioisotopes to be detected with high resolution and sensitivity. Applications of this technique to measuring nuclear properties of refractory elements and short lived isomers promises to be particularly advantageous. (author). Letter-to-the-editor.

  20. Contributions and future of radioisotopes in medical, industrial and space applications

    Energy Technology Data Exchange (ETDEWEB)

    Tingey, G.L.; Dix, G.P.; Wahlquist, E.J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine,industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production. 12 refs., 1 tab. (BM)

  1. Solid targets for production of radioisotopes with cyclotron; Blancos solidos para produccion de radioisotopos con ciclotron

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.; Balcazar G, M. [Instituto Nacional de Investigaciones Nucleares, Direccion de Investigacion Tecnologica, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    The design of targets for production of radioisotopes and radiopharmaceuticals of cyclotron to medical applications requires a detailed analysis of several variables such as: cyclotron operation conditions, choice of used materials as target and their physicochemical characteristics, activity calculation, the yielding of each radioisotope by irradiation, the competition of nuclear reactions in function of the projectiles energy and the collision processes amongst others. The objective of this work is to determine the equations for the calculation for yielding of solid targets at the end of the proton irradiation. (Author)

  2. Contributions and Future of Radioisotopes in Medical, Industrial and Space Applications

    Science.gov (United States)

    Tingey, G. L.; Dix, G. P.; Wahlquist, E. J.

    1990-11-01

    There are 333 isotopes that have a half-life between 1 day and 100,000 years that have a wide variety of applications including public health, medicine,industrial technology, food technology and packaging, agriculture, energy supply, and national security. This paper provides an overview of some of the most extensive applications of radioisotopes including some observations of future uses. Examples are discussed that indicate that the use of radioisotopes is almost unlimited and will continue to grow. There is a growing need for future applications development and production. 12 refs., 1 tab. (BM)

  3. Actual and future situations of the use of radioisotopes; Situacion actual y futura del empleo de radioisotopos

    Energy Technology Data Exchange (ETDEWEB)

    Paredes G, L.C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-07-01

    It is anticipated to medium term, an increase in the demand of the radioisotopes for medicine, industry and research, as well as the application of new radioisotopes derived from the development of new radiopharmaceuticals products for diagnosis and therapy applications. The personal and clinical dosimetry will have to be prepared for the new challenges. (Author)

  4. Performance analysis of coated 238PuO2 fuel particles compact for radioisotope heater units

    Science.gov (United States)

    Tournier, Jean-Michel; El-Genk, Mohamed S.

    2000-01-01

    A fuel form consisting of coated plutonia fuel particles dispersed in a graphite matrix is being investigated for use in Radioisotope Heater Units (RHUs). The fuel particles consist of a 238PuO2 kernel (300-1200 μm in diameter), a 5-μm PyC inner coating and a ZrC outer coating (>=10 μm). The latter, an extremely strong material at high temperatures, serves as a pressure vessel for maintaining the integrity of the fuel particle and containing the helium generated by radioactive decay. Parametric analyses compared the thermal powers of the coated particle fuel compact (CPFC) RHU and LWRHU. Both utilize Fine-Weave Pierced Fabric (FWPF) aeroshell and PyC insulation sleeves. During normal operation, the fuel temperature is ~800 K, but could reach as much as 1723 K during an accidental re-entry heating. Assuming full helium release, a single-size particle (500 μm) fuel compact would maintain its integrity at a temperature of 1723 K, after 10 years storage time before launch. When replacing the LWRHU fuel pellet, Pt-alloy clad and inner PyC insulation sleeve with CPFC, the calculated thermal power of the CPFC-RHU is 1.5, 2.3 and 2.4 times that of LWRHU, for 100%, 10%, and 5% helium release, respectively, with little change in total mass. A fuel compact using binary-size particles (300 and 1200 μm diameters) would deliver 15% more thermal power. A one-dimensional, transient thermal analysis of the CPFC-RHU showed that during accidental re-entry the maximum fuel temperature in the CPFC would be 1734 K. .

  5. Brachytherapy on restenosis. {sup 32}P radioisotope in animal model

    Energy Technology Data Exchange (ETDEWEB)

    Bergoc, R.; Rivera, E.; Cocca, C.; Martin, G.; Cricco, G. [Buenos Aires Univ. (Argentina). School of Pharmacy and Biochemistry; Croci, M.; Guzman, L.

    2000-05-01

    Despite a notorious decline in age-adjusted death rates for cardiovascular pathologies, coronary artery disease still remains as the main cause of mortality above the age of 40 in men and 60 in women. More than 25% of death in persons over the age of 35 are due to coronary disease. In about 50% of men and 30% of women, the first manifestation of the disease is an acute myocardial infarction and 10% a sudden cardiac death. In Argentina it is estimated that in 1998 about 100.000-115.000 people suffered as first manifestation of coronary illness a myocardial acute infarct. Angioplasty has an important and well established site in the treatment of the coronary illness and restenosis represents the principal complication of this method for myocardial re-vascularization. About a 35-40% of treated arteries present restenosis within the first six month the intervention with the concomitant need of re-interventions, re-hospitalizations, by-pass surgery, work discontinuity and the high cost for the health system. A number of drugs were tested as anti-restenosis: anticoagulants, aspirin, antispasmodics and lipid-lowering agents but none was clearly efficient; also, experimental studies in which intravascular irradiation with different source types and energies, radiation doses and doses rate to prevent restenosis was utilized; however, there is no consensus in many aspects of this intravascular brachytherapy. The first step in this work was to induce the experimental model in rabbits. Afterwards, by means of the balloon methodology and stent implantation, brachytherapy experiments were carried out to evaluate the biological effect on different layers of arteries, with different Doses using a beta particle emitting radioisotope ({sup 32}P). The arteriosclerotic lesions were induced in New Zealand rabbits through the administration of a diet with high cholesterol content. Angioplastic interventions on femoral arteries were done with balloon methodology and controlled by

  6. Methods of Fabricating Scintillators with Radioisotopes for Beta Battery Applications

    Science.gov (United States)

    Rensing, Noa M.; Squillante, Michael R.; Tieman, Timothy C.; Higgins, William; Shiriwadkar, Urmila

    2013-01-01

    to low-energy photons to electric current). The geometric advantage partially offsets this as well, since the absorption depth of high-energy beta radiation is much larger than the depth of a p-n junction. Thus, in a p-n junction device, much of the radiation is absorbed far away from the junction, and the electron- hole pairs are not all effectively collected. In contrast, with a transparent scintillator the radiation can be converted to light in a larger volume, and all of the light can be collected in the active region of the photodiode. Finally, the new device is more practical because it can be used at much higher power levels without unduly shortening its lifetime. While the crystal structure of scintillators is also subject to radiation damage, their performance is far more tolerant of defects than that of semiconductor junctions. This allows the scintillator- based approach to use both higher energy isotopes and larger quantities of the isotopes. It is projected that this technology has the potential to produce a radioisotope battery with up to twice the efficiency of presently used systems.

  7. ELUCIDATION OF HYDRODESULFURIZATION AND HYDROGENATION MECHANISMS USING RADIOISOTOPE TRACER METHODS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To meet the specification of sulfur and aromatic contents in diesel fuel, it is necessary for refiners to develop a new catalyst with high activity of hydrodesulfurization and hydrogenation. In the present study, the properties of noble metal catalysts for hydrodesulfurization and hydrogenation in the presence of sulfur compounds have been investigated. The hydrogenation activity of phenanthrene (PHE) on single noble metal and double noble metal catalysts—Pt/Al2O3, Pd/Al2O3 and Pd-Pt/Al2O3 in the presence of dibenzothiophene (DBT) was perforrned in a fixed bed flow reactor. The Pt based catalysts revealed the similar HDS activities and higher HYD activity compared with convertional Mo based ca-talysts. The maximum activity was obtained around 320 ℃ for both catalyst types. The Pt based catalysts produced perhydrophenanthrene as a major product at the maximum activity in the hydrogenation of PHE while the Mo based catalysts produced octahydrophenanthrene.   A  35S radioisotope pulse tracer method (35S RPTM) was used to estimate the behavior of sulfur on the working catalysts and to clarity the differences between Pt and Mo based catalysts. Very little amount of labile sulfur was accumulated on the Pt and Pd catalysts in the HDS of [35S]DBT (PtS0.25 or PdS0.25). This indicates that the mechanism of DBT HDS on noble metal catalysts is significantly different from that on conventional Mo based catalysts where Mo is present as MoS2 less than 60% of which can be labile in the case of Co-Mo/Al2O3.   Another Ru-Cs/Al2O3 catalysts were also prepared and the behavior of sulfur on the working catalyst was compared with those of Mo based catalysts and Pt and Pd catalysts. The values of labile sulfur in the HDS reaction for Ru-Cs catalysts approximately correspond to RuS0.5-0.74. These amounts of labile sulfur are much higher than those for Pt and Pd catalysts. The result suggests that the oxidation state of Ru species is present between the oxidation states

  8. Cost Comparison in 2015 Dollars for Radioisotope Power Systems -- Cassini and Mars Science Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Werner, James Elmer [Idaho National Lab. (INL), Idaho Falls, ID (United States); Johnson, Stephen Guy [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dwight, Carla Chelan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lively, Kelly Lynn [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-07-01

    Radioisotope power systems (RPSs) have enabled missions requiring reliable, long-lasting power in remote, harsh environments such as space since the early 1960s. Costs for RPSs are high, but are often misrepresented due to the complexity of space missions and inconsistent charging practices among the many and changing participant organizations over the years. This paper examines historical documentation associated with two past successful flight missions, each with a different RPS design, to provide a realistic cost basis for RPS production and deployment. The missions and their respective RPSs are Cassini, launched in 1997, that uses the general purpose heat source (GPHS) radioisotope thermoelectric generator (RTG), and Mars Science Laboratory (MSL), launched in 2011, that uses the multi-mission RTG (MMRTG). Actual costs in their respective years are discussed for each of the two RTG designs and the missions they enabled, and then present day values to 2015 are computed to compare the costs. Costs for this analysis were categorized into two areas: development of the specific RTG technology, and production and deployment of an RTG. This latter category includes material costs for the flight components (including Pu-238 and fine weave pierced fabric (FWPF)); manufacturing of flight components; assembly, testing, and transport of the flight RTG(s); ground operations involving the RTG(s) through launch; nuclear safety analyses for the launch and for the facilities housing the RTG(s) during all phases of ground operations; DOE’s support for NEPA analyses; and radiological contingency planning. This analysis results in a fairly similar 2015 normalized cost for the production and deployment of an RTG—approximately $118M for the GPHS-RTG and $109M for the MMRTG. In addition to these two successful flight missions, the costs for development of the MMRTG are included to serve as a future reference. Note that development costs included herein for the MMRTG do not include

  9. Analysis of the inadvertent reentry of the Cassini Spacecraft{close_quote}s Radioisotope Thermoelectric Generators

    Energy Technology Data Exchange (ETDEWEB)

    Tobery, E.W. [Lockheed Martin Astronautics, King of Prussia, Pennsylvania 19406 (United States); Bhutta, B.A. [AeroTechnologies, Inc, Yorktown, Virginia 23692 (United States)] [Analysis of the inadvertent reentry of the Cassini Spacecrafts Radioisotope Thermoelectric Generators

    1999-01-01

    A rigorous multi-discipline approach has been developed to compute the aero/thermal/structural response of the Cassini Spacecraft{close_quote}s G{underscore}eneral P{underscore}urpose H{underscore}eat S{underscore}ource (GPHS) modules in the unlikely event of accidental reentry of the spacecraft during its Earth gravity-assist maneuver. A new r{underscore}eacting, a{underscore}blating, c{underscore}hemical e{underscore}quilibrium/nonequilibrium with r{underscore}adiation (RACER) full Navier-Stokes code is applied, along with an in-depth, transient-heating code, a nonlinear structural analysis code, and a six-degree-of-freedom flight-dynamics code. Attention is focused on the GPHS modules that would breakaway from the R{underscore}adioisotope T{underscore}hermoelectric G{underscore}enerators (RTGs) at high altitude. In addition, detailed analyses are performed to determine the survival/failure of the Graphite Impact Shells that would be released if the GPHS fails. The reentry velocity of the GPHS module (20 km/sec) is higher than any previously analyzed Earth reentry trajectory. {copyright} {ital 1999 American Institute of Physics.}

  10. Radioisotope space power generator annual report for the period October 1, 1976-September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N.B.; Chin, J.; Staley, H.G.; Bass, J.C.; Steeger, E.J.; Gantzel, P.K.; Neill, J.M.

    1980-01-01

    Techniques for fabricating P-type (Cu,Ag)/sub 2/Se with mesh-type bonds have been developed and are being evaluated for long-term use. In addition, methods for reducing vapor suppression by the use of coatings and/or baffling continue to show gains. The N-type alloy Gd/sub 2/Se/sub 3/ has been shown to be thermally unstable. It undergoes a sluggish cubic-to-orthorhombic phase change below 1000/sup 0/C, with an accompanying degradation in mechanical and thermoelectric properties. Fabrication studies conducted with the (Bi,Sb)/sub 2/(Se,Te)/sub 3/ alloys showed these materials to be sensitive to oxygen contamination if reproducible properties are to be obtained. Preparation of powdered material by explosive techniques was investigated. This technique appears to be useful in preparing homogeneous -325 mesh material, but it does not yield a useful amount of submicron-size powder.

  11. Feasibility Study and System Architecture of Radioisotope Thermoelectric Generation Power Systems for USMC Forward Operating Bases

    Science.gov (United States)

    2013-06-01

    unit capability gaps, and easing the burden of a deployed lifestyle . Needs for expeditionary units are related to the physical composition and...stakeholder input. Additional physical possibilities should be researched and described to ensure that prospects are not disregarded prematurely

  12. Radioisotope thermoelectric generator transportation system safety analysis report for packaging. Volumes 1 and 2

    Energy Technology Data Exchange (ETDEWEB)

    Ferrell, P.C.

    1996-04-18

    This SARP describes the RTG Transportation System Package, a Type B(U) packaging system that is used to transport an RTG or similar payload. The payload, which is included in this SARP, is a generic, enveloping payload that specifically encompasses the General Purpose Heat Source (GPHS) RTG payload. The package consists of two independent containment systems mounted on a shock isolation transport skid and transported within an exclusive-use trailer.

  13. First measurement of radioisotopes by collinear laser spectroscopy at an ion-guide separator

    NARCIS (Netherlands)

    Cooke, JL; Billowes, J; Campbell, P; Cochrane, ECA; Cooper, TG; Dendooven, P; Evans, DE; Griffith, JAR; Grant, IS; Honkanen, A; Huhta, M; Levins, JMG; Oinonen, M; Pearson, MR; Penttila, H; Persson, B.L.; Richardson, DS; Tungate, G; Wheeler, PD; Zybert, L; Aysto, J

    1997-01-01

    The first successful application of an ion-guide separator (IGISOL) for collinear laser spectroscopy of radioisotopes has achieved an efficiency comparable with the best obtained with catcher-ionizer facilities. The ion beam energy spread was determined to be less than 6 eV, allowing laser fluoresce

  14. Summary, the 20th quality control survey for radioisotopes in vitro tests in Japan, 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    For advancement of radioisotope in vitro tests such as radioimmunoassay and immunoradiometric assay, the Subcommittee for Radioisotope in vitro Test in Medical and Pharmaceutical Committee of Japan Radioisotope Association has conducted the yearly quality control survey for the test facilities in Japan since 1978. This is the summary of the 20th survey in 1998 where non-radioisotope tests like enzyme-immunoassay were involved as well. The survey was done for 143 facilities: 20 national and public university hospitals, 18 private university hospitals, 8 national hospitals, 13 public hospitals, 21 private hospitals, 41 hygienic laboratories and 22 manufacturers of reagents. Facilities examined intra- and between day-reproducibility, freeze-thaw effect and time change of the measured values on the same samples. Assays were for: growth hormone (h), somatomedin C, follicle stimulating h, luteinizing h, prolactin, thyroid stimulating h, triiodothyronines, thyroxines, thyroxine binding protein, calcitonin, insulin, C-peptide, glucagons, gastrin, testosterones, estradiol, progesterone, gonadotropin, 17{alpha}-hydroxyprogesterone, aldosterone, cortisol, dehydroepiandorosterone sulfate, renin, IgE, digoxin, {alpha}-fetoprotein, carcinoembryonic antigen, tissue polypeptide antigen, CA (125, 19-9 and 15-3), prostatic acid phosphatase, prostate specific antigen, {beta}2-microglobulin, ferritin, and neuron specific enolase. There was no great difference between this and last survey results although tendency of improvement was recognized. There were problems to be solved from the standpoint of clinical practice. (K.H.)

  15. The study on the adaptation for regulation - the permission of a radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Il; Choi, Won Seok; Jung, Yong Moon [Gallup Korea, Seoul (Korea, Republic of)

    2003-08-15

    The restriction -the permission of a radioisotope keeps satisfaction with almost parts for example, awareness, observance and so on. Moreover two concepts are considered fully -too strict about certain specific control rules and needed more discriminated application standards to each organization related to KINS, it's preserved and controlled properly even if the penalties are downsized.

  16. The radioisotope complex project “RIC-80” at the Petersburg Nuclear Physics Institute

    Energy Technology Data Exchange (ETDEWEB)

    Panteleev, V. N., E-mail: vnp@pnpi.spb.ru; Barzakh, A. E.; Batist, L. Kh.; Fedorov, D. V.; Ivanov, V. S.; Moroz, F. V.; Molkanov, P. L.; Orlov, S. Yu.; Volkov, Yu. M. [NRC “Kurchatov Institute” PNPI, 188300 Gatchina (Russian Federation)

    2015-12-15

    The high current cyclotron C-80 capable of producing 40-80 MeV proton beams with a current of up to 200 μA has been constructed at Petersburg Nuclear Physics Institute. One of the main goals of the C-80 is the production of a wide spectrum of medical radionuclides for diagnostics and therapy. The project development of the radioisotope complex RIC-80 (radioisotopes at the cyclotron C-80) at the beam of C-80 has been completed. The RIC-80 complex is briefly discussed in this paper. The combination of the mass-separator with the target-ion source device, available at one of the new target stations for on-line or semi on-line production of a high purity separated radioisotopes, is explored in greater detail. The results of target and ion source tests for a mass-separator method for the production of high purity radioisotopes {sup 82}Sr and {sup 223,224}Ra are also presented.

  17. Radioisotopic methods for the study of bone sarcoma and soft tissue neoplasms

    Energy Technology Data Exchange (ETDEWEB)

    Gongora, R.

    1988-01-01

    Radioisotopic methods are widely applied to investigations of bone sarcoma and soft tissue neoplasms. We have at our disposal molecules with osseous, tumoral or vascular tropism. Their use, as single agents or combination, is helpful in positive and differential diagnosis and provides nosological informations. They are also useful in treatment monitoring and in long-term follow-up.

  18. Application of radioisotopes Au -198 to radiometrical field investigation of spraying machine

    Energy Technology Data Exchange (ETDEWEB)

    Goraczko, W.; Kocorowska, E. [Technical Univeristy, Poznan (Poland). Radio and Photo-Chemistry Department

    1997-10-01

    The poster shows application of radioisotope {sup 198}Au to radiometrical field testing of spraying machine. In the research was tested the Polish suspensioned tractor OZS400 type spraying machine. The machine worked in two different variants: without and with the beam stabilisation (oscillatory stabilisation)

  19. 78 FR 15009 - Consideration of Withdrawal From Commercial Production and Distribution of the Radioisotope...

    Science.gov (United States)

    2013-03-08

    ... Consideration of Withdrawal From Commercial Production and Distribution of the Radioisotope Germanium-68 AGENCY... comment and information from the public to assist in its consideration of DOE withdrawal from the... summary, DOE's evaluation will include consideration of: a demonstrable private capability to produce...

  20. The use of radioisotopes in medicine and medical research, Australia 1947-73

    Energy Technology Data Exchange (ETDEWEB)

    Korszniak, N

    1994-12-01

    On March 31, 1994, an article appeared in the Melbourne Age claiming that after the Second World War `hundreds of people were injected with radioactive materials in medical experiments that continued in Australian hospitals until the 1960s. Similar reports subsequently appeared in other newspapers and on the television and radio news. The archival records held at the Australian Radiation Laboratory (ARL) pertaining to the medical uses of radioisotopes during the period 1947-1973 have been examined to ascertain the nature of radioisotope use, and in the case of experimental procedures, any ethical considerations. The material examined indicates that the distribution and medical use of radioactive isotopes was stringently controlled by the Radio-isotope Standing Committee (established by the National Health and Medical Research Council (NHMRC) in 1947 to oversee this area) until its disbandment in 1973, when the responsibility for regulation of the use of radioactive isotopes for medical purposes in Australia passed to the Therapeutic Goods Administration. A database, showing details of over 500 radioisotope use in Australia between 1947-1973 is given in Appendix III . (author) refs., tabs.

  1. Annual Technical Progress Report of Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2007 Through September 30,2008

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2009-04-01

    The Office of Radioisotope Power Systems (RPS) of the Department of Energy (DOE) provides RPS for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, ORNL produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. The Oak Ridge National Laboratory (ORNL) has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of RPS for fiscal year (FY) 2008. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

  2. Annual Technical Progress Report of the Radioisotope Power Systems Materials Production and Technology Program Tasks for October 1, 2008 through September 30, 2009

    Energy Technology Data Exchange (ETDEWEB)

    King, James F [ORNL

    2010-05-01

    The Office of Space and Defense Power Systems of the U. S. Department of Energy (DOE) provides Radioisotope Power Systems (RPS) for applications where conventional power systems are not feasible. For example, radioisotope thermoelectric generators (RTG) were supplied by the DOE to the National Aeronautics and Space Administration (NASA) for deep space missions including the Cassini Mission launched in October of 1997 to study the planet Saturn. For the Cassini Mission, the Oak Ridge National Laboratory (ORNL) produced carbon-bonded carbon fiber (CBCF) insulator sets, iridium alloy blanks and foil, and clad vent sets (CVS) used in the generators. ORNL has been involved in developing materials and technology and producing components for the DOE for more than three decades. This report reflects program guidance from the Office of Space and Defense Power Systems for fiscal year (FY) 2009. Production activities for prime quality (prime) CBCF insulator sets, iridium alloy blanks and foil, and CVS are summarized in this report. Technology activities are also reported that were conducted to improve the manufacturing processes, characterize materials, or to develop information for new RPS.

  3. A multi-functional electronic program for the management of radioisotopes.

    Science.gov (United States)

    Ritchot, Nathalie; Santary, William

    2008-05-01

    Everyone will agree that specialized computer programs have done away with the many tedious tasks associated with manually keeping track of radioisotopes. Enhanced electronic programs have virtually cut the time of managing radioisotopes. Agriculture and Agri-Food, Canada's (AAFC) program for the management of radioisotopes, is somewhat different from most electronic programs. It is divided into three levels of management that are dependent on the roles that a user might have when applying the application. These roles include the Departmental Radiation Safety Officer (DRSO), Radiation Safety Officer (RSO), and authorized user, which meets the requirements of the Canadian Nuclear Safety Commission. The DRSO and authorized AAFC Radiation Safety Committee members have access to the first level of management. This is the highest level of control, and only the DRSO has permission to add a nuclear substance to the system with the approval of the Canadian Nuclear Safety Commission (CNSC). This level of management is also responsible for adding authorized users, locations, and managing the Internal Use Permits. The second level of management is for site-specific RSOs. They have access to all information regarding their center of activity, but they cannot change Internal Use Permit data. The RSOs can reset passwords, authorize new users, control the maximum activity limit, etc., but are limited to viewing only the information that relates to their internal use permit. However, they retain significant control within the permit. The third and last level of management is for authorized users who can access the radioisotope order-distribution-disposal section, waste or storage containers creation file, and leak/wipe test procedures. As in the case of the DRSO and RSO, they also have access to all reports and inventories for their center of activity but they cannot change Internal Use Permit or inventories data. This program has proven to be a valuable tool for scientific staff

  4. The development of new radionuclide generator systems for nuclear medicine applications

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Callahan, A.P.; Mirzadeh, S. (Oak Ridge National Lab., TN (USA)); Brihaye, C.; Guillaume, M. (Liege Univ. (Belgium). Cyclotron Research Center)

    1991-01-01

    Radioisotope generator systems have traditionally played a central role in nuclear medicine in providing radioisotopes for both research and clinical applications. In this paper, the development of several tungsten-188/rhenium-188 prototype generators which provide rhenium-188 for radioimmunotherapy (RAIT) is discussed. The authors have recently demonstrated that carrier-free iridium-194 can be obtained from the activated carbon system from decay of reactor-produced osmium-194 for potential RAIT applications. Instrumentation advances such as the new generation of high-count-rate (fast) gamma camera systems for first-pass technology require the availability of generator-produced ultra short-lived radioisotopes for radionuclide angiography (RNA). The activated carbon generator is an efficient system to obtain ultra short-lived iridium-191 m from osmium-191 for RNA. In addition, the growing number of PET centers has stimulated research in generators which provide positron-emitting radioisotopes. Copper-62, obtained from the zinc-62 generator, is currently used for PET evaluation of organ perfusion. The availability of the parent radioisotopes, the fabrication and use of these generators, and the practical factors for use of these systems in the radiopharmacy are discussed. 74 refs., 6 figs., 5 tabs.

  5. Novel decapeptides that bind avidly and deliver radioisotope to colon cancer cells.

    Directory of Open Access Journals (Sweden)

    John M Abraham

    Full Text Available The rapidly growing field of targeted tumor therapy often utilizes an antibody, sometimes tagged with a tumor-ablating material such as radioisotope, directed against a specific molecule.This report describes the discovery of nine novel decapeptides which can be radioactively labeled, bind to, and deliver (32P to colon cancer cells. The decapeptides vary from one another by one to three amino acids and demonstrate vastly different binding abilities. The most avidly binding decapeptide can permanently deliver very high levels of radioisotope to the adenocarcinoma cancer cell lines at an efficiency 35 to 150 times greater than to a variety of other cell types, including cell lines derived from other types of cancer or from normal tissue.This experimental approach represents a new example of a strategy, termed peptide binding therapy, for the potential treatment of colorectal and other adenocarcinomas.

  6. Modelling study on production cross sections of {sup 111}In radioisotopes used in nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Kara, Ayhan; Korkut, Turgay [Sinop Univ. (Turkey). Faculty of Engineering; Yigit, Mustafa [Aksaray Univ. (Turkey). Faculty of Science and Arts; Tel, Eyyup [Osmaniye Korkut Ata Univ. (Turkey). Faculty of Science and Arts

    2015-07-15

    Radiopharmaceuticals are radioactive drugs used for diagnosis or treatment in a tracer quantity with no pharmacological action. The production of radiopharmaceuticals is carried out in the special research centers generally using by the cyclotron systems. Indium-111 is one of the most useful radioisotopes used in nuclear medicine. In this paper, we calculated the production cross sections of {sup 111}In radioisotope via {sup 111-114}Cd(p,xn) nuclear reactions up to 60 MeV energy. In the model calculations, ALICE/ASH, TALYS 1.6 and EMPIRE 3.2 Malta nuclear reaction code systems were used. The model calculation results were compared to the experimental literature data and TENDL-2014 (TALYS-based) data.

  7. Effect of amplified spontaneous emission on selectivity of laser photoionisation of the 177Lu radioisotope

    Science.gov (United States)

    D'yachkov, A. B.; Gorkunov, A. A.; Labozin, A. V.; Mironov, S. M.; Panchenko, V. Ya; Firsov, V. A.; Tsvetkov, G. O.

    2016-06-01

    A significant deselecting effect of amplified spontaneous emission has been observed in the experiments on selective laser photoionisation of the 177Lu radioisotope according to the scheme 5d6s2 2D3/2 → 5d6s6p 4Fo5/2 (18505 cm-1) → 5d6s7s 4D3/2(37194 cm-1) → autoionisation state (53375 cm-1). The effect is conditioned by involvement of non-target isotopes from the lower metastable level 5d6s2 2D5/2(1994 cm-1) into the ionisation process. Spectral filtering of spontaneous emission has allowed us to significantly increase the selectivity of the photoionisation process of the radioisotope and to attain a selectivity value of 105 when using saturating light intensities.

  8. Safety analysis for the Galileo light-weight radioisotope heater unit

    Science.gov (United States)

    Johnson, Ernest W.

    The Light-Weight Radioisotope Heater Unit (LWRHU) will be used on the NASA Galileo Mission to provide thermal energy to the various systems on the orbiter and probe that are adversely affected by the low temperature a spacecraft encounters during a long interplanetary mission. Using these plutonia-fueled sources in 1-W increments permits employment of a single design and provides the spacecraft user the option of how many to use and where to position them to satisfy the proper thermal environment for components requiring such consideration. The use of the radioisotope Pu 238 in these devices necessitates the assessment of postulated radiological risks which might be experienced in case of accidents or malfunctions of the space shuttle or the spacecraft during phases of the mission in the vicinity of the earth. Included are data for the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events.

  9. Recent research activities and future subjects on stable- and radio-isotopes of chlorine in environment

    Energy Technology Data Exchange (ETDEWEB)

    Kushita, Kouhei [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-12-01

    This report reviews the recent studies on the stable- and radio-isotopes of chlorine from a viewpoint of environmental science, partly including historic references on this element. First, general properties, occurrence, and utilization of chlorine are described. Secondly, current status and research works on chlorine-compounds, which attract special attention in recent years as environmentally hazardous materials, are reported. Thirdly, research works on stable chlorine isotopes, {sup 35}Cl and {sup 37}Cl, are described with a focus laid on the newly-developed techniques; isotopic ratio mass spectrometry (IRMS) and thermal ionization mass spectrometry (TIMS). Fourthly, recent research works on chlorine radioisotopes, {sup 36}Cl etc., are described, focusing on the development of accelerator mass spectrometry (AMS) and its application to geochemistry and others. Finally, taking account of the above-mentioned recent works on Cl isotopes, possible future research subjects are discussed. (author)

  10. submitter Development of a Superconducting Magnet for a Compact Cyclotron for Radioisotope Production

    CERN Document Server

    Garcia-Tabares, Luis; Calero, Jesus; Gutierrez, Jose L; Munilla, Javier; Obradors, Diego; Perez, Jose M; Toral, Fernando; Iturbe, Rafael; Minguez, Leire; Gomez, Jose; Rodilla, Elena; Bajko, Marta; Michels, Matthias; Berkowitz, Daniel; Haug, Friedrich

    2016-01-01

    The present paper describes the development process of a low critical temperature superconducting magnet to be installed in a compact cyclotron producing single-dose radioisotopes for clinical and preclinical applications. After a brief description of the accelerator, the magnet development process is described, starting from the magnetic, mechanical, quench, and thermal calculations, continuing with the designing process, particularly the support structure of the magnet and the cryogenic supply system, to finish with the fabrication and the first tests than have been performed.

  11. Theoretical cross section calculations of medical 13N and 18F radioisotope using alpha induced reaction

    Science.gov (United States)

    Kılınç, F.; Karpuz, N.; ćetin, B.

    2017-02-01

    In medical physics, radionuclides are needed to diagnose functional disorders of organs and to diagnose and treat many diseases. Nuclear reactions are significant for the productions of radionuclides. It is important to analyze the cross sections for much different energy. In this study, reactional cross sections calculations on 13N, 18F radioisotopes are with TALYS 1.6 nuclear reaction simulation code. Cross sections calculated and experimental data taken from EXFOR library were compared

  12. Thermal-hydraulics Analysis of a Radioisotope-powered Mars Hopper Propulsion System

    Energy Technology Data Exchange (ETDEWEB)

    Robert C. O' Brien; Andrew C. Klein; William T. Taitano; Justice Gibson; Brian Myers; Steven D. Howe

    2011-02-01

    Thermal-hydraulics analyses results produced using a combined suite of computational design and analysis codes are presented for the preliminary design of a concept Radioisotope Thermal Rocket (RTR) propulsion system. Modeling of the transient heating and steady state temperatures of the system is presented. Simulation results for propellant blow down during impulsive operation are also presented. The results from this study validate the feasibility of a practical thermally capacitive RTR propulsion system.

  13. Glue-sniffing as a cause of a positive radio-isotope brain scan

    Energy Technology Data Exchange (ETDEWEB)

    Lamont, C.M.; Adams, F.G.

    1982-08-01

    Convulsions are a known complication of the acute intoxicant effects of solvent abuse. A radio-isotope brain scan done 9 months following status epilepticus secondary to toluene inhalation, in a previously normal school-boy, demonstrated several wedge-shaped areas of increased uptake, in both cerebral hemispheres, consistent with infarcts. It is worth remembering that a positive brain scan in a young person, with recent onset of epilepsy, may be due to glue-sniffing.

  14. An INVAP perspective on the production of medical radioisotopes: past and present

    Energy Technology Data Exchange (ETDEWEB)

    Salvatore, M. [INVAP, Nuclear, Bariloche, Rio Negro (Argentina)

    2009-07-01

    This presentation gives a perspective on medical radionuclide production methods from INVAP, Argentina. INVAP is a company headquartered in Argentina and is involved amongst other activities in nuclear, medical and scientific equipment. It describes INVAP's involvement in research reactor projects in a number of countries around the world. The paper describes a number of turn-key facilities for the production of radioisotopes for medicine, industry and research activities.

  15. Radioisotope identification method for poorly resolved gamma-ray spectrum of nuclear security concern

    Energy Technology Data Exchange (ETDEWEB)

    Ninh, Giang Nguyen; Phongphaeth, Pengvanich, E-mail: phongphaeth.p@chula.ac.th; Nares, Chankow [Nuclear Engineering Department, Faculty of Engineering, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok 10330 (Thailand); Hao, Quang Nguyen [Vietnam Atomic Energy Institute, Ministry of Science and Technology, Hanoi (Viet Nam)

    2016-01-22

    Gamma-ray signal can be used as a fingerprint for radioisotope identification. In the context of radioactive and nuclear materials security at the border control point, the detection task can present a significant challenge due to various constraints such as the limited measurement time, the shielding conditions, and the noise interference. This study proposes a novel method to identify the signal of one or several radioisotopes from a poorly resolved gamma-ray spectrum. In this method, the noise component in the raw spectrum is reduced by the wavelet decomposition approach, and the removal of the continuum background is performed using the baseline determination algorithm. Finally, the identification of radioisotope is completed using the matrix linear regression method. The proposed method has been verified by experiments using the poorly resolved gamma-ray signals from various scenarios including single source, mixing of natural uranium with five of the most common industrial radioactive sources (57Co, 60Co, 133Ba, 137Cs, and 241Am). The preliminary results show that the proposed algorithm is comparable with the commercial method.

  16. Radioisotope identification method for poorly resolved gamma-ray spectrum of nuclear security concern

    Science.gov (United States)

    Ninh, Giang Nguyen; Phongphaeth, Pengvanich; Nares, Chankow; Hao, Quang Nguyen

    2016-01-01

    Gamma-ray signal can be used as a fingerprint for radioisotope identification. In the context of radioactive and nuclear materials security at the border control point, the detection task can present a significant challenge due to various constraints such as the limited measurement time, the shielding conditions, and the noise interference. This study proposes a novel method to identify the signal of one or several radioisotopes from a poorly resolved gamma-ray spectrum. In this method, the noise component in the raw spectrum is reduced by the wavelet decomposition approach, and the removal of the continuum background is performed using the baseline determination algorithm. Finally, the identification of radioisotope is completed using the matrix linear regression method. The proposed method has been verified by experiments using the poorly resolved gamma-ray signals from various scenarios including single source, mixing of natural uranium with five of the most common industrial radioactive sources (57Co, 60Co, 133Ba, 137Cs, and 241Am). The preliminary results show that the proposed algorithm is comparable with the commercial method.

  17. A compact and high current FFAG for the production of radioisotopes for medical application

    CERN Document Server

    Bruton, David; Edgecock, Rob; Seviour, Rebecca; Johnstone, Carol

    2017-01-01

    A low energy Fixed Field Alternating Gradient(FFAG)accelerator has been designed for the production of radioisotopes. Tracking studies have been conducted using the OPAL code, including the effects of space charge. Radioisotopes have a wide range of uses in medicine, and recent disruption to the supply chain has seen a renewed effort to find alternative isotopes and production methods. The design features separate sector magnets with non-scaling, non-linear field gradients but without the counter bends commonly found in FFAG’s. The machine is isochronous at the level of 0.3% up to at least 28MeV and hence able to operate in Continuous Wave (CW) mode. Both protons and helium ions can be used with this design and it has been demonstrated that proton beams with currents of up to 20 mA can be accelerated. An interesting option for the production of radioisotopes is the use of a thin internal target. We have shown that this design has large acceptance, ideal for allowing the beam to be recirculated through t...

  18. Steps of radioisotope separation in Japan; Nihon ni okeru doitai bunri no ayumi

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Ryohei [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Kitamoto, Asashi; Shimizu, Masami [eds.

    1998-03-01

    The Extraordinary Specialist Committee on Radioisotope Separation of the Atomic Energy Society of Japan has supported various actions on foundation, application and industrialization of the radioisotope separation over past 30 years to continue wide range of actions at a standpoint of specialist, since established in Showa 44 (1969). On June 1993 (Heisei 5), a memorial lecture meeting, as the 100th committee was held at the Institute of Physical and Chemical Research (RIKEN) of Wako-city in Saitama prefecture. At that time, a planning to publish an impressive memorial issue, to prepare orbits and episodes of actions, painful stories and fault examples of developments, and so forth like novels and to use for a future foundation, was determined. For its writing principle, it was settled to the base not to use mathematical equation as possible, to collect the essence like a tale, to collect actual and historical reports, and so on. And, for its writing content, it was determined to report on actual, painful and fault experiences in research and development, on data, topics and human relation, and on what to be remained for references. This book can be used not only for data collected on traces from fundamental to applied studies, technical development for industrialization, and so forth on radioisotope concentration, but also for a knowledge bag to give some hints to a man aiming to overcome a new problem. (G.K.)

  19. The Copper Radioisotopes: A Systematic Review with Special Interest to 64Cu

    Directory of Open Access Journals (Sweden)

    Artor Niccoli Asabella

    2014-01-01

    Full Text Available Copper (Cu is an important trace element in humans; it plays a role as a cofactor for numerous enzymes and other proteins crucial for respiration, iron transport, metabolism, cell growth, and hemostasis. Natural copper comprises two stable isotopes, 63Cu and 65Cu, and 5 principal radioisotopes for molecular imaging applications (60Cu, 61Cu, 62Cu, and 64Cu and in vivo targeted radiation therapy (64Cu and 67Cu. The two potential ways to produce Cu radioisotopes concern the use of the cyclotron or the reactor. A noncopper target is used to produce noncarrier-added Cu thanks to a chemical separation from the target material using ion exchange chromatography achieving a high amount of radioactivity with the lowest possible amount of nonradioactive isotopes. In recent years, Cu isotopes have been linked to antibodies, proteins, peptides, and nanoparticles for preclinical and clinical research; pathological conditions that influence Cu metabolism such as Menkes syndrome, Wilson disease, inflammation, tumor growth, metastasis, angiogenesis, and drug resistance have been studied. We aim to discuss all Cu radioisotopes application focusing on 64Cu and in particular its form 64CuCl2 that seems to be the most promising for its half-life, radiation emissions, and stability with chelators, allowing several applications in oncological and nononcological fields.

  20. Medical Radioisotope Production in a Power-Flattened ADS Fuelled with Uranium and Plutonium Dioxides

    Directory of Open Access Journals (Sweden)

    Gizem Bakır

    2016-01-01

    Full Text Available This study presents the medical radioisotope production performance of a conceptual accelerator driven system (ADS. Lead-bismuth eutectic (LBE is selected as target material. The subcritical fuel core is conceptually divided into ten equidistant subzones. The ceramic (natural U, PuO2 fuel mixture and the materials used for radioisotope production (copper, gold, cobalt, holmium, rhenium, thulium, mercury, palladium, thallium, molybdenum, and yttrium are separately prepared as cylindrical rods cladded with carbon/carbon composite (C/C and these rods are located in the subzones. In order to obtain the flattened power density, percentages of PuO2 in the mixture of UO2 and PuO2 in the subzones are adjusted in radial direction of the fuel zone. Time-dependent calculations are performed at 1000 MW thermal fission power (Pth for one hour using the BURN card. The neutronic results show that the investigated ADS has a high neutronic capability, in terms of medical radioisotope productions, spent fuel transmutation and energy multiplication. Moreover, a good quasiuniform power density is achieved in each material case. The peak-to-average fission power density ratio is in the range of 1.02–1.28.

  1. Cerium neodymium oxide solid solution synthesis as a potential analogue for substoichiometric AmO2 for radioisotope power systems

    Science.gov (United States)

    Watkinson, E. J.; Ambrosi, R. M.; Williams, H. R.; Sarsfield, M. J.; Stephenson, K.; Weston, D. P.; Marsh, N.; Haidon, C.

    2017-04-01

    The European Space Agency (ESA) is sponsoring a research programme on the development of americium oxides for radioisotope generators and heater units. Cubic AmO2-(x/2) with an O/Am ratio between 1.65 and 1.75 is a potentially suitable compound for pellet sintering. C-type (Ia-3) Ce1-xNdxO2-(x/2) oxides with 0.5 < x < 0.7 could be used as a surrogate for some Ia-3 AmO2-(x/2). A new Ce1-xNdxO2-(x/2) production process has been investigated where a nominally selected x value of 0.6 was targeted: Ce and Nd nitrates and oxalic acid were added drop-wise into a vessel, where they continuously reacted to create oxalate precipitates. The effect of temperature (25 °C, 60 °C) of the reactants (mixed at 250 revolutions per minute) on oxalate particle shape and size were investigated. Oxalates were calcined at 900 °C to produce oxide particles. Oxalate particle properties were characterised as these are expected to influence oxides particle properties and fuel pellet sintering.

  2. Estimates of helium gas release in 238PuO 2 fuel particles for radioisotope heat sources and heater units

    Science.gov (United States)

    El-Genk, Mohamed S.; Tournier, Jean-Michel

    2000-06-01

    Release data of noble gases (Xe and Kr) from small-grain (7-40 μm), large-grain (⩾300 μm), and monocrystal UO 2 fuel particles, during isothermal irradiation up to 6.4 at.% and 2030 K are reviewed and their applicability to estimate helium release from 238PuO 2 fuel particles (⩾300 μm in diameter) is examined. Coated 238PuO 2 particles have recently been proposed for use in radioisotope power systems and heater units employed in planetary exploration missions. These fuel particles are intentionally sized and designed to prevent any adverse radiological effect and retain the helium gas generated by the radioactive decay of 238Pu, a desired feature for some planetary missions. Results suggest that helium release from large-grain (⩾300 μm) particles of K could be 80% but less than 7% at 1042 K, which is in general agreement with the experiments conducted at Los Alamos National Laboratory more than two decades ago. In these experiments, the helium gas release from small-grain (7-40 μm) 238PuO 2 fuel pellets has been measured during steady-state heating at temperatures up to 1886 K and ramp heating to 1723 K.

  3. Comparative analysis of 11 different radioisotopes for palliative treatment of bone metastases by computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Guerra Liberal, Francisco D. C., E-mail: meb12020@fe.up.pt, E-mail: adriana-tavares@msn.com; Tavares, Adriana Alexandre S., E-mail: meb12020@fe.up.pt, E-mail: adriana-tavares@msn.com; Tavares, João Manuel R. S., E-mail: tavares@fe.up.pt [Instituto de Engenharia Mecânica e Gestão Industrial, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, Porto 4200-465 (Portugal)

    2014-11-01

    Purpose: Throughout the years, the palliative treatment of bone metastases using bone seeking radiotracers has been part of the therapeutic resources used in oncology, but the choice of which bone seeking agent to use is not consensual across sites and limited data are available comparing the characteristics of each radioisotope. Computational simulation is a simple and practical method to study and to compare a variety of radioisotopes for different medical applications, including the palliative treatment of bone metastases. This study aims to evaluate and compare 11 different radioisotopes currently in use or under research for the palliative treatment of bone metastases using computational methods. Methods: Computational models were used to estimate the percentage of deoxyribonucleic acid (DNA) damage (fast Monte Carlo damage algorithm), the probability of correct DNA repair (Monte Carlo excision repair algorithm), and the radiation-induced cellular effects (virtual cell radiobiology algorithm) post-irradiation with selected particles emitted by phosphorus-32 ({sup 32}P), strontium-89 ({sup 89}Sr), yttrium-90 ({sup 90}Y ), tin-117 ({sup 117m}Sn), samarium-153 ({sup 153}Sm), holmium-166 ({sup 166}Ho), thulium-170 ({sup 170}Tm), lutetium-177 ({sup 177}Lu), rhenium-186 ({sup 186}Re), rhenium-188 ({sup 188}Re), and radium-223 ({sup 223}Ra). Results: {sup 223}Ra alpha particles, {sup 177}Lu beta minus particles, and {sup 170}Tm beta minus particles induced the highest cell death of all investigated particles and radioisotopes. The cell survival fraction measured post-irradiation with beta minus particles emitted by {sup 89}Sr and {sup 153}Sm, two of the most frequently used radionuclides in the palliative treatment of bone metastases in clinical routine practice, was higher than {sup 177}Lu beta minus particles and {sup 223}Ra alpha particles. Conclusions: {sup 223}Ra and {sup 177}Lu hold the highest potential for palliative treatment of bone metastases of all

  4. Radiant{trademark} Liquid Radioisotope Intravascular Radiation Therapy System

    Energy Technology Data Exchange (ETDEWEB)

    Eigler, N.; Whiting, J.; Chernomorsky, A.; Jackson, J.; Knapp, F.F., Jr.; Litvack, F.

    1998-01-16

    RADIANT{trademark} is manufactured by United States Surgical Corporation, Vascular Therapies Division, (formerly Progressive Angioplasty Systems). The system comprises a liquid {beta}-radiation source, a shielded isolation/transfer device (ISAT), modified over-the-wire or rapid exchange delivery balloons, and accessory kits. The liquid {beta}-source is Rhenium-188 in the form of sodium perrhenate (NaReO{sub 4}), Rhenium-188 is primarily a {beta}-emitter with a physical half-life of 17.0 hours. The maximum energy of the {beta}-particles is 2.1 MeV. The source is produced daily in the nuclear pharmacy hot lab by eluting a Tungsten-188/Rhenium-188 generator manufactured by Oak Ridge National Laboratory (ORNL). Using anion exchange columns and Millipore filters the effluent is concentrated to approximately 100 mCi/ml, calibrated, and loaded into the (ISAT) which is subsequently transported to the cardiac catheterization laboratory. The delivery catheters are modified Champion{trademark} over-the-wire, and TNT{trademark} rapid exchange stent delivery balloons. These balloons have thickened polyethylene walls to augment puncture resistance; dual radio-opaque markers and specially configured connectors.

  5. Betavoltaic Prediction using Ni-63 beta radioisotope and Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H. K.; Lee, N. H.; Joo, Y. S.; Cheong, Y. M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    Micro-electromechanical Systems (MEMS) comprise a rapidly expanding research field with potential applications varying from sensors to more recent optical applications. Depending on the application, these devices often require an onboard power source for remote operation, especially in medical cases requiring operation for an extended period of time. Suggested power sources include fuel cells and solar energy, but nuclear power sources may provide significant advantages for certain applications. Hence, the objective of this study is to establish the feasibility of nuclear sources (beta and alpha particles) for supplying a power to realistic MEMS devices. The betavoltaic effect is the generation of potential due to net positive charge flow of the electron-induced electron-hole production (EHP). When EHPs diffuse into the depletion region of the semiconductor pn-junction, the electrical field of the depletion region sweeps them across the depletion region. Because the resulting current is from n-type to p-type semiconductor, net power can be extracted.

  6. A small low energy cyclotron for radioisotope measurements

    Energy Technology Data Exchange (ETDEWEB)

    Bertsche, K.J.

    1989-11-01

    Direct detection of {sup 14}C by accelerator mass spectrometry has proved to be a much more sensitive method for radiocarbon dating than the decay counting method invented earlier by Libby. A small cyclotron (the cyclotrino'') was proposed for direct detection of radiocarbon in 1980. This combined the suppression of background through the use of negative ions, which had been used effectively in tandem accelerators, with the high intrinsic mass resolution of a cyclotron. Development of a small electrostatically-focused cyclotron for use as a mass spectrometer was previously reported but the sensitivity needed for detection of {sup 14}C at natural abundance was not achieved. The major contributions of this work are the integration of a high current external ion source with a small flat-field, electrostatically-focused cyclotron to comprise a system capable of measuring {sup 14}C at natural levels, and the analysis of ion motion in such a cyclotron, including a detailed analysis of phase bunching and its effect on mass resolution. A high current cesium sputter negative ion source generates a beam of carbon ions which is pre-separated with a Wien filter and is transported to the cyclotron via a series of electrostatic lenses. Beam is injected radially into the cyclotron using electrostatic deflectors and an electrostatic mirror. Axial focusing is entirely electrostatic. A microchannel plate detector is used with a phase-grated output. In its present form the system is capable of improving the sensitivity of detecting {sup 14}C in some biomedical experiments by a factor of 10{sup 4}. Modifications are discussed which could bring about an additional factor of 100 in sensitivity, which is important for archaeological and geological applications. Possibilities for measurements of other isotopes, such as {sup 3}H, and {sup 10}Be, and {sup 26}Al, are discussed. 70 refs.

  7. The effects of nuclear power generators upon electronic instrumentation

    Science.gov (United States)

    Miller, C. G.; Truscello, V. C.

    1970-01-01

    Radiation sensitivity of electronic instruments susceptible to neutron and gamma radiation is evaluated by means of a radioisotope thermoelectric generator /RTG/. The gamma field of the RTG affects instrument operation and requires shielding, the neutron field does not affect operation via secondary capture-gamma production.

  8. A roadmap for the development and validation of coated particle fuel for future space radioisotope heater units (RHUs) and radioisotope power systems (RPSs)

    Science.gov (United States)

    Sholtis, Joseph A.

    2001-02-01

    In early 1999, coated particle fuel was identified as offering promising advancements in design flexibility, performance, specific mass and volume, as well as safety for future space radioisotope heater units (RHUs) and radioisotope power systems (RPSs). Subsequent study, conducted during Fiscal Year 1999, provided confidence that these potential benefits were substantial and demonstrable if a modest follow-on investigative test effort was pursued. This paper lays out a roadmap for both immediate and near-term decision making, as well as any full-scale development and validation of coated particle fuel undertaken for future space RHUs, and RPSs. In an effort to obtain adequate and timely information at a reasonable cost for immediate and near-term decision making, as well as any subsequent development, production, and application decisions, a four-phased regimen of testing is identified. The four phases of testing are: (1) Pre-Decisional Testing: (2) Pre-Production Analytical Verification Testing: (3) Production Quality Assurance Testing: and (4) Post-Production Safety Verification Testing. Although all four of these phases of testing are considered essential, the first two phases are especially important for immediate and near-term decisions to advance and pursue coated particle fuel for space RHUs and RPSs. The third and fourth phases of testing are primarily identified and included for completeness at this early stage. It is concluded that there is every reason to believe that the potential benefits of coated particle fuel can be readily demonstrated through a modest investigative test effort. If such an effort is pursued and proves successful, coated particle fuel could then be developed with assurance that its ultimate benefits would revolutionize the design and space use of future RHUs and RPSs. It is hoped that this paper will serve as a starting point for further discussions and more specific planning activities aimed at advancing coated particle fuel for

  9. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  10. Conceptual designs of near surface disposal facility for radioactive waste arising from the facilities using radioisotopes and research facilities for nuclear energy development and utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Akihiro; Yoshimori, Michiro; Okoshi, Minoru; Yamamoto, Tadatoshi; Abe, Masayoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    Various kinds of radioactive waste is generating from the utilization of radioisotopes in the field of science, technology, etc. and the utilization and development of nuclear energy. In order to promote the utilization of radionuclides and the research activities, it is necessary to treat and dispose of radioactive waste safely and economically. Japan Nuclear Cycle Development Institute (JNC), Japan Radioisotope Association (JRIA) and Japan Atomic Energy Research Institute (JAERI), which are the major waste generators in Japan in these fields, are promoting the technical investigations for treatment and disposal of the radioactive waste co-operately. Conceptual design of disposal facility is necessary to demonstrate the feasibility of waste disposal business and to determine the some conditions such as the area size of the disposal facility. Three institutes share the works to design disposal facility. Based on our research activities and experiences of waste disposal, JAERI implemented the designing of near surface disposal facilities, namely, simple earthen trench and concrete vaults. The designing was performed based on the following three assumed site conditions to cover the future site conditions: (1) Case 1 - Inland area with low groundwater level, (2) Case 2 - Inland area with high groundwater level, (3) Case 3 - Coastal area. The estimation of construction costs and the safety analysis were also performed based on the designing of facilities. The safety assessment results show that the safety for concrete vault type repository is ensured by adding low permeability soil layer, i.e. mixture of soil and bentonite, surrounding the vaults not depending on the site conditions. The safety assessment results for simple earthen trench also show that their safety is ensured not depending on the site conditions, if they are constructed above groundwater levels. The construction costs largely depend on the depth for excavation to build the repositories. (author)

  11. The intense neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, W.B

    1966-07-01

    The presentation discusses both the economic and research contexts that would be served by producing neutrons in gram quantities at high intensities by electrical means without uranium-235. The revenue from producing radioisotopes is attractive. The array of techniques introduced by the multipurpose 65 megawatt Intense Neutron Generator project includes liquid metal cooling, superconducting magnets for beam bending and focussing, super-conductors for low-loss high-power radiofrequency systems, efficient devices for producing radiofrequency power, plasma physics developments for producing and accelerating hydrogen, ions at high intensity that are still far out from established practice, a multimegawatt high voltage D.C. generating machine that could have several applications. The research fields served relate principally to materials science through neutron-phonon and other quantum interactions as well as through neutron diffraction. Nuclear physics is served through {mu}-, {pi}- and K-meson production. Isotope production enters many fields of applied research. (author)

  12. Recoil-Implantation Of Multiple Radioisotopes Towards Wear Rate Measurements And Particle Tracing In Prosthetic Joints

    Science.gov (United States)

    Warner, Jacob A.; Smith, Paul N.; Scarvell, Jennifer M.; Gladkis, Laura; Timmers, Heiko

    2011-06-01

    This study demonstrates a new method of radioisotope labeling of ultra-high molecular weight polyethylene inserts in prosthetic joints for wear studies. The radioisotopes 97Ru, 100Pd, 100Rh, and 101mRh are produced in fusion evaporation reactions induced by 12C ions in a 92Zr target foil. The fusion products recoil-implant into ultra-high molecular weight polyethylene plugs, machined to fit into the surface of the inserts. During laboratory simulations of the joint motion, a wear rate of the labeled polyethylene may be measured and the pathways of wear debris particles can be traced by detecting characteristic gamma-rays. The concentration profiles of the radioisotopes extend effectively uniformly from the polyethylene surface to a depth of about 4 μm. The multiplicity of labeling and the use of several gamma-ray lines aids with avoiding systematic measurement uncertainties. Two polyethylene plugs were labeled and one was fitted into the surface of the tibial insert of a knee prosthesis, which had been worn in. Actuation over close to 100,000 cycles with a 900 N axial load and a 24° flexion angle removed (14±1)% of the gamma-ray activity from the plug. Most of this activity dispersed into the serum lubricant identifying this as the important debris pathway. Less than 1% activity was transferred to the femoral component of the prosthesis and the measured activity on the tibial tray was insignificant. Assuming uniform wear across the superior surface of the insert, a wear rate of (12±3) mm3/Megacycle was determined. This is consistent with wear rate measurements under similar conditions using other techniques.

  13. Conceptual design of a new homogeneous reactor for medical radioisotope Mo-99/Tc-99m production

    Energy Technology Data Exchange (ETDEWEB)

    Liem, Peng Hong [Nippon Advanced Information Service (NAIS Co., Inc.) Scientific Computational Division, 416 Muramatsu, Tokaimura, Ibaraki (Japan); Tran, Hoai Nam [Chalmers University of Technology, Dept. of Applied Physics, Div. of Nuclear Engineering, SE-412 96 Gothenburg (Sweden); Sembiring, Tagor Malem [National Nuclear Energy Agency (BATAN), Center for Reactor Technology and Nuclear Safety, Kawasan Puspiptek, Serpong, Tangerang Selatan, Banten (Indonesia); Arbie, Bakri [PT MOTAB Technology, Kedoya Elok Plaza Blok DA 12, Jl. Panjang, Kebun Jeruk, Jakarta Barat (Indonesia)

    2014-09-30

    To partly solve the global and regional shortages of Mo-99 supply, a conceptual design of a nitrate-fuel-solution based homogeneous reactor dedicated for Mo-99/Tc-99m medical radioisotope production is proposed. The modified LEU Cintichem process for Mo-99 extraction which has been licensed and demonstrated commercially for decades by BATAN is taken into account as a key design consideration. The design characteristics and main parameters are identified and the advantageous aspects are shown by comparing with the BATAN's existing Mo-99 supply chain which uses a heterogeneous reactor (RSG GAS multipurpose reactor)

  14. Phosphate and arsenate removal efficiency by thermostable ferritin enzyme from Pyrococcus furiosus using radioisotopes

    KAUST Repository

    Sevcenco, Ana-Maria

    2015-03-13

    Oxo-anion binding properties of the thermostable enzyme ferritin from Pyrococcus furiosus were characterized with radiography. Radioisotopes 32P and 76As present as oxoanions were used to measure the extent and the rate of their absorption by the ferritin. Thermostable ferritin proved to be an excellent system for rapid phosphate and arsenate removal from aqueous solutions down to residual concentrations at the picomolar level. These very low concentrations make thermostable ferritin a potential tool to considerably mitigate industrial biofouling by phosphate limitation or to remove arsenate from drinking water.

  15. Methods for producing Cu-67 radioisotope with use of a ceramic capsule for medical applications

    Science.gov (United States)

    Ehst, David A.; Willit, James L.

    2016-04-12

    The present invention provides a method for producing Cu67 radioisotope suitable for use in medical applications. The method comprises irradiating a metallic zinc-68 (Zn68) target within a sealed ceramic capsule with a high energy gamma ray beam. After irradiation, the Cu67 is isolated from the Zn68 by any suitable method (e.g. chemical and or physical separation). In a preferred embodiment, the Cu67 is isolated by sublimation of the zinc in a ceramic sublimation tube to afford a copper residue containing Cu67. The Cu67 can be further purified by chemical means.

  16. Cosmogenic and primordial radioisotopes in copper bricks shortly exposed to cosmic rays

    Science.gov (United States)

    Coarasa, I.; Amaré, J.; Cebrián, S.; Cuestá, C.; García, E.; Martínez, M.; Oliván, M. A.; Ortigoza, Y.; Ortíz de Solórzano, A.; Puimedón, J.; Sarsa, M. L.; Villar, J. A.; Villar, P.

    2016-05-01

    Cosmogenic activation is the most common source of radioactivity in copper, being 60 Co the most significant because of its long half-life (5.27 y) and saturation activity at sea level of 1 mBq/kg. Copper bricks, which had been exposed to cosmic rays for 41 days after their casting, were used to replace the internal 10 cm of the lead shielding of a HPGe detector placed at the Canfranc Underground Laboratory. We describe the outcome of the new shielding and the cosmogenic and primordial radioisotopes observed.

  17. Inorganic, Radioisotopic, and Organic Analysis of 241-AP-101 Tank Waste

    Energy Technology Data Exchange (ETDEWEB)

    Fiskum, S.K.; Bredt, P.R.; Campbell, J.A.; Farmer, O.T.; Greenwood, L.R.; Hoppe, E.W.; Hoopes, F.V.; Lumetta, G.J.; Mong, G.M.; Ratner, R.T.; Soderquist, C.Z.; Steele, M.J.; Swoboda, R.G.; Urie, M.W.; Wagner, J.J.

    2000-10-17

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids.

  18. Clinical study of radioisotope clearance from the cerebrospinal fluid space using single photon emission computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Kuchiwaki, H.; Nagasaka, M.; Takada, S.; Ishiguri, H.; Kameyama, H.; Aoyama, Y.

    1989-07-01

    Radioisotope cisternography with statistical analysis was evaluated in 18 patients with suspected hydrocephalus shown by conventional CT, and 4 control patients. Regions of interest were located at cisterna magna, basal cistern, lateral cistern Silvii, interhemispheric cistern, and lateral ventricle using three dimensional SPECT images. A value for constant K was determined for each exponential radioactivity decay curve. On the basis of SPECT-derived K values our patients were grouped into hydrocephalus, nonhydrocephalus, and control patients. Twelve of 14 hydrocephalus patients were treated by shunt operation. Our less-invasive method showed reliable criteria for assessing the cerebrospinal fluid circulation. (orig.).

  19. Light Weight Radioisotope Heater Unit (LWRHU) production for the Galileo mission

    Science.gov (United States)

    Rinehart, Gary H.

    The Light Weight Radioisotope Heater Unit (LWRHU) is a (Pu-238)O2-fueled heat source designed to provide a thermal watt of power for space missions. The LWRHU will be used to maintain the temperature of various components on the spacecraft at the required level. The heat source consists of a (Pu-238)O2-fuel pellet, a Pt-30 pct Rh capsule, a pyrolytic graphite insulator, and a woven graphite aeroshell assembly. Los Alamos National Laboratory has fabricated 134 heater units which will be used on the Galileo mission.

  20. Enabling Future Low-Cost Small Spacecraft Mission Concepts Using Small Radioisotope Power Systems

    Science.gov (United States)

    Lee, Young H.; Bairstow, Brian; Amini, Rashied; Zakrajsek, June; Oleson, Steven R.; Cataldo, Robert L.

    2014-01-01

    For more than five decades, Radioisotope Power Systems (RPS) have played a critical role in the exploration of space, enabling missions of scientific discovery to destinations across the solar system by providing electrical power to explore remote and challenging environments - some of the hardest to reach, darkest, and coldest locations in the solar system. In particular, RPS has met the demand of many long-duration mission concepts for continuous power to conduct science investigations independent of change in sunlight or variations in surface conditions like shadows, thick clouds, or dust.

  1. Electronic structure of polycrystalline Cd metal using {sup 241}Am radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Dhaka, M. S., E-mail: msdhaka75@yahoo.co.in [Department of Physics, University College of Science, M. L. S. University, Udaipur-313001 (India); Sharma, G. [Department of Pure and Applied Physics, University of Kota, Kota-324005 (India); Mishra, M. C. [Department of Physics, R. R. M. Government College, Jhunjhunu-333001 (India); Sharma, B. K. [Department of Physics, University of Rajasthan, Jaipur-302004 (India)

    2014-04-24

    Electronic structure study of the polycrystalline cadmium metal is reported. The experimental measurement is undertaken on a polycrystalline sheet sample using 59.54 keV radioisotope of {sup 241}Am. These results are compared with the ab initio calculations. The theoretical calculations are performed using linear combination of atomic orbitals (LCAO) method employing the density functional theories (DFT) and Hartree-Fock (HF) and augmented plane wave (APW) methods. The spherically averaged APW and LCAO based theoretical Compton profiles are in good agreement with the experimental measurement however the APW based theoretical calculations show best agreement.

  2. Radioisotope tracer studies in the NASA Skylab ethothermic brazing experiment M-552

    Science.gov (United States)

    Braski, D. N.; Adair, H. L.; Kobisk, E. H.

    1974-01-01

    The first use of radioisotope tracer for mapping flow patterns during brazing of metal components in a space environment (near-zero gravity) proved successful. A nickel ferrule was brazed to a nickel tube with Lithobraze BT (71.8% Ag, 28% Cu, 0.2% Li) which contained a trace amount of radioactive Ag-110. Mapping of the flow of the braze alloy in the annulus formed between the tube and the concentric ferrule was determined by counting the radiation intensity as a function of position in the braze joint. Significant information concerning the thermal history of the braze was determined.

  3. Peace propaganda and biomedical experimentation: influential uses of radioisotopes in endocrinology and molecular genetics in Spain (1947-1971).

    Science.gov (United States)

    Santesmases, María Jesús

    2006-01-01

    A political discourse of peace marked the distribution and use of radioisotopes in biomedical research and in medical diagnosis and therapy in the post-World War II period. This occurred during the era of expansion and strengthening of the United States' influence on the promotion of sciences and technologies in Europe as a collaborative effort, initially encouraged by the policies and budgetary distribution of the Marshall Plan. This article follows the importation of radioisotopes by two Spanish research groups, one in experimental endocrinology and one in molecular biology. For both groups foreign funds were instrumental in the early establishment of their laboratories. The combination of funding and access to previously scarce radioisotopes helped position these groups at the forefront of research in Spain.

  4. Progress in the Use of Isotopes: The Atomic Triad - Reactors, Radioisotopes and Radiation

    Science.gov (United States)

    Libby, W. F.

    1958-08-04

    Recent years have seen a substantial growth in the use of isotopes in medicine, agriculture, and industry: up to the minute information on the production and use of isotopes in the U.S. is presented. The application of radioisotopes to industrial processes and manufacturing operations has expanded more rapidly than any one except its most ardent advocates expected. New uses and new users are numerous. The adoption by industry of low level counting techniques which make possible the use of carbon-14 and tritium in the control of industrial processes and in certain exploratory and research problems is perhaps most promising of current developments. The latest information on savings to industry will be presented. The medical application of isotopes has continued to develop at a rapid pace. The current trend appears to be in the direction of improvements in technique and the substitution of more effective isotopes for those presently in use. Potential and actual benefits accruing from the use of isotopes in agriculture are reviewed. The various methods of production of radioisotopes are discussed. Not only the present methods but also interesting new possibilities are covered. Although isotopes are but one of the many peaceful uses of the atom, it is the first to pay its way. (auth)

  5. InfuShield: a shielded enclosure for administering therapeutic radioisotope treatments using standard syringe pumps.

    Science.gov (United States)

    Rushforth, Dominic P; Pratt, Brenda E; Chittenden, Sarah J; Murray, Iain S; Causer, Louise; Grey, Matthew J; Gear, Jonathan I; Du, Yong; Flux, Glenn D

    2017-03-01

    The administration of radionuclide therapies presents significant radiation protection challenges. The aim of this work was to develop a delivery system for intravenous radioisotope therapies to substantially moderate radiation exposures to staff and operators. A novel device (InfuShield) was designed and tested before being used clinically. The device consists of a shielded enclosure which contains the therapeutic activity and, through the hydraulic action of back-to-back syringes, allows the activity to be administered using a syringe pump external to the enclosure. This enables full access to the pump controls while simultaneously reducing dose to the operator. The system is suitable for use with all commercially available syringe pumps and does not require specific consumables, maximising both the flexibility and economy of the system. Dose rate measurements showed that at key stages in an I mIBG treatment procedure, InfuShield can reduce dose to operators by several orders of magnitude. Tests using typical syringes and infusion speeds show no significant alteration in administered flow rates (maximum of 1.2%). The InfuShield system provides a simple, safe and low cost method of radioisotope administration.

  6. Summary. The 19th quality control survey for radioisotope in vitro tests in Japan, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Shishiba, Yoshimasa; Shimizu, Taeko [Toranomon Hospital, Tokyo (Japan); Ichihara, Kiyoshi; Kousaka, Tadako; Kobayashi, Hisae; Tsushima, Toshio; Hoshino, Minoru; Mori, Mikio

    1998-11-01

    This summary concerns results of the survey in the title performed by the Subcommittee for Radioisotope in vitro Test in the Medical and Pharmaceutical Committee, Japan Radioisotope Association. The survey was conducted in 161 facilities in Japan including public and private hospitals, health institutes and reagent manufacturers. Samples were sent to the facilities and subjected to examinations of intra- and inter-day reproducibility, freeze-thawing effects and periodical changes of the measured values. Methods employed were RIA, IRMA, EIA, ELISA, LPIA, PAMIA, FIA, FPIA, NIA, LAT, CLIA and ECLIA. Results were analyzed by variation coefficients in the kit and between the kits. Samples were for: growth hormone, somatomedin C, follicle stimulating hormone, luteinizing hormone, prolactin, thyroid stimulating hormone, triiodothyronine, thyroxine, thyroxine binding globulin, calcitonin, insulin, C-peptide, glucagon, gastrin, testosterone, estradiol, progesterone, {beta}human chorionic gonadotropin, 17{alpha}-hydroxyprogesterone, aldosterone, cortisol, dehydroepiandrosterone, renin, immunogloblin E, digoxin, {alpha}-fetoprotein, carcinoembryonic antigen, tissue polypeptide antigen, CA125, CA19-9, CA15-3, prostatic acid phosphatase, prostate specific antigen, {beta}{sub 2}-microgloblin and ferritin. Results were found rather unsatistactory for some products in the clinical practice, necessary for improvement of detection for some tests and needed for some kits for solving the problems of difference between kits and of matrix effect. (K.H)

  7. Radioisotope Heater Unit-Based Stirling Power Convertor Development at NASA Glenn Research Center

    Science.gov (United States)

    Wilson, Scott D.; Geng, Steven M.; Penswick, Lawrence; Schmitz, Paul C.

    2017-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A variety of mission concepts have been studied by NASA and the U. S. Department of Energy that would utilize RPS for landers, probes, and rovers and only require milliwatts to tens of watts of power. These missions would contain science measuring instruments that could be distributed across planetary surfaces or near objects of interest in space solar flux insufficient for using solar cells. A low power Stirling convertor is being developed to provide an RPS option for future low power applications. Initial concepts convert heat available from several Radioisotope Heater Units to electrical power for spacecraft instruments and communication. Initial development activity includes defining and evaluating a variety of Stirling configurations and selecting one for detailed design, research of advanced manufacturing methods that could simplify fabrication, evaluating thermal interfaces, characterizing components and subassemblies to validate design codes, and preparing for an upcoming demonstration of proof of concept in a laboratory environment.

  8. Radioisotope radiotherapy research and achievements at the University of Missouri Research Reactor

    Science.gov (United States)

    Ehrhardt, G. J.; Ketring, A. R.; Cutler, C. S.

    2003-01-01

    The University of Missouri Research Reactor (MURR) in collaboration with faculty in other departments at the University of Missouri has been involved in developing new means of internal radioisotopic therapy for cancer for many years. These efforts have centered on methods of targeting radioisotopes such as brachytherapy, embolisation of liver tumors with radioactive microspheres, small-molecule-labelled chelates for the treatment of bone cancer, and various means of radioimmunotherapy or labelled receptor agent targeting. This work has produced two radioactive agents, Sm-153 Quadramet™ and Y-90 TheraSphere™, which have U.S. Food and Drug Administration approval for the palliation of bone cancer pain and treatment of inoperable liver cancer, respectively. MURR has also pioneered development of other beta-emitting isotopes for internal radiotherapy such as Re-186, Re-188, Rh-105, Ho-166, Lu-177, and Pm-149, many of which are in research and clinical trials throughout the U.S. and the world. This important work has been made possible by the very high neutron flux available at MURR combined with MURR's outstanding reliability of operation and flexibility in meeting the needs of researchers and the radiopharmaceutical industry.

  9. Radioisotope-excited x-ray fluorescence analysis and its application to geochemical exploration in Greenland

    Energy Technology Data Exchange (ETDEWEB)

    Kunzendorf, H.

    1973-05-01

    The principles of x-ray fluorescence are briefly described. In particular, two methods of radioisotope x-ray fluorescence analysis are discussed: (a) radioisotope x-ray fluorescence analysis by means of portble apparatus incorporating scintillation or proportional counters and balanced differential x-ray filters, and (b) radioisotope x-ray fluorescence spectrometry by means of Si(Li) or Ge(Li) semiconductor detectors. For a portable radioisotope x-ray fluorescence analyzer calibration curves were established for Cr, Ni, Cu, Zn, Zr, Nb, Mo, La + Ce, and Pb in rock powders, Ti, Zr, and Nb in plane cut rock surfaces, and Zr, Nb, and La + Ce in rock outcrops. Detection limits found from calibration data were 0.3% Cr, 0.06% Ni, 0.14% Cu, 0.14% Zn, 0.04% Zr, 0.07% Nb, 0.03% Mo, 0.02% La + Ce, and 0.1% Pb in rock powders, 0.07% Ti, 0.4% Zr, and 0.1% Nb in cut rock surfaces, and 0.14% Zr, 0.15% Nb, and 0.16% La + Ce in rock outcrops. Values for the accuracy and the precision of these analyses are given. Special investigations include the dependence of the analytical result on the grain size of the sample material and experiments regarding the critical sample weight, Si(Li) and Ge(Li) x-ray spectrometers for the analysis of rock samples were described. Two methods of x-ray spectrum reduction carried out by means of a 32K computer were investigated: simple channel-by-channel integration and leastsquares fitting. Calibration data on rock powders yielded for the Si(Li) x-ray spectrometer (1 mCi/sup 109/Cd for excitation of characteristic x-rays) 25 ppm Rb, 110 ppm Sr, 69 ppm Zr, 206 ppm Nb, and 172 ppm Mo as detection limits for the analysis of rock powders. For plane cut rock surfaces and the Ge(Li) x-ray spectrometer (10 mCi/sup 241/Am for excitation purposel detection limits of 400 ppm Ce and 180 ppm Nb were obtained. The influence of interferences on the analytical result such as overlapping of x- ray peaks, absorption of x-rays in the sample and grain-size effects are

  10. The development and use of radionuclide generators in nuclear medicine -- recent advances and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.

    1998-03-01

    Although the trend in radionuclide generator research has declined, radionuclide generator systems continue to play an important role in nuclear medicine. Technetium-99m obtained from the molybdenum-99/technetium-99m generator system is used in over 80% of all diagnostic clinical studies and there is increasing interest and use of therapeutic radioisotopes obtained from generator systems. This paper focuses on a discussion of the major current areas of radionuclide generator research, and the expected areas of future research and applications.

  11. GEANT4 simulation of cyclotron radioisotope production in a solid target.

    Science.gov (United States)

    Poignant, F; Penfold, S; Asp, J; Takhar, P; Jackson, P

    2016-05-01

    The use of radioisotopes in nuclear medicine is essential for diagnosing and treating cancer. The optimization of their production is a key factor in maximizing the production yield and minimizing the associated costs. An efficient approach to this problem is the use of Monte Carlo simulations prior to experimentation. By predicting isotopes yields, one can study the isotope of interest expected activity for different energy ranges. One can also study the target contamination with other radioisotopes, especially undesired radioisotopes of the wanted chemical element which are difficult to separate from the irradiated target and might result in increasing the dose when delivering the radiopharmaceutical product to the patient. The aim of this work is to build and validate a Monte Carlo simulation platform using the GEANT4 toolkit to model the solid target system of the South Australian Health and Medical Research Institute (SAHMRI) GE Healthcare PETtrace cyclotron. It includes a GEANT4 Graphical User Interface (GUI) where the user can modify simulation parameters such as the energy, shape and current of the proton beam, the target geometry and material, the foil geometry and material and the time of irradiation. The paper describes the simulation and presents a comparison of simulated and experimental/theoretical yields for various nuclear reactions on an enriched nickel 64 target using the GEANT4 physics model QGSP_BIC_AllHP, a model recently developed to evaluate with high precision the interaction of protons with energies below 200MeV available in Geant4 version 10.1. The simulation yield of the (64)Ni(p,n)(64)Cu reaction was found to be 7.67±0.074 mCi·μA(-1) for a target energy range of 9-12MeV. Szelecsenyi et al. (1993) gives a theoretical yield of 6.71mCi·μA(-1) and an experimental yield of 6.38mCi·μA(-1). The (64)Ni(p,n)(64)Cu cross section obtained with the simulation was also verified against the yield predicted from the nuclear database TENDL and

  12. Titanium tritide radioisotope heat source development : palladium-coated titanium hydriding kinetics and tritium loading tests.

    Energy Technology Data Exchange (ETDEWEB)

    Van Blarigan, Peter; Shugard, Andrew D.; Walters, R. Tom (Savannah River National Labs, Aiken, SC)

    2012-01-01

    We have found that a 180 nm palladium coating enables titanium to be loaded with hydrogen isotopes without the typical 400-500 C vacuum activation step. The hydriding kinetics of Pd coated Ti can be described by the Mintz-Bloch adherent film model, where the rate of hydrogen absorption is controlled by diffusion through an adherent metal-hydride layer. Hydriding rate constants of Pd coated and vacuum activated Ti were found to be very similar. In addition, deuterium/tritium loading experiments were done on stacks of Pd coated Ti foil in a representative-size radioisotope heat source vessel. The experiments demonstrated that such a vessel could be loaded completely, at temperatures below 300 C, in less than 10 hours, using existing department-of-energy tritium handling infrastructure.

  13. Recent Joint Studies Related to the Development of Space Radioisotope Power Systems

    Directory of Open Access Journals (Sweden)

    Kramer Daniel P.

    2017-01-01

    Full Text Available Over the last several years there has been a mutually beneficial ongoing technical interchange between the U.K and the U.S. related to various aspects of space radioisotope power systems (RPS. While this interchange has been primarily focused on materials based activities, it has also included some aspects related to safety, environmental, and lessons learned during the application of RPSs by the U.S. during the last fifty years. Recent joint technical RPS endeavors have centered on the development of a possible “cold” ceramic surrogate for 238PuO2 and 241AmOx and the irradiation of thermoelectrics and other materials at expected RPS related neutron fluences. As the U.S. continues to deploy and Europe develops RPS capability, on-going joint RPS technical interfaces will continue to enhance each entities’ endeavors in this nuclear based power technology critical for deep space exploration.

  14. Isolated working heart: description of models relevant to radioisotopic and pharmacological assessments

    Energy Technology Data Exchange (ETDEWEB)

    Depre, Christophe E-mail: cdepre@heart.med.uth.tmc.edu

    1998-11-01

    Isolated heart preparations are used to study physiological and metabolic parameters of the heart independently of its environment. Several preparations of isolated perfused heart are currently used, mainly the retrograde perfusion system and the working heart model. Both models allow investigations of the metabolic regulation of the heart in various physiological conditions (changes in workload, hormonal influences, substrate competition). These systems may also reproduce different pathological conditions, such as ischemia, reperfusion and hypoxia. Quantitation of metabolic activity can be performed with specific radioactive tracers. Finally, the effects of various drugs on cardiac performance and resistance to ischemia can be studied as well. Heart perfusion also revealed efficient methods to determine the tracer/tracee relation for radioisotopic analogues used with Positron Emission Tomography.

  15. Augmenting real data with synthetic data: an application in assessing radio-isotope identification algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Burr, Tom L [Los Alamos National Laboratory; Hamada, Michael [Los Alamos National Laboratory; Graves, Todd [Los Alamos National Laboratory; Myers, Steve [Los Alamos National Laboratory

    2008-01-01

    The performance of Radio-Isotope Identification (RIID) algorithms using gamma spectroscopy is increasingly important. For example, sensors at locations that screen for illicit nuclear material rely on isotope identification to resolve innocent nuisance alarms arising from naturally occurring radioactive material. Recent data collections for RIID testing consist of repeat measurements for each of several scenarios to test RIID algorithms. Efficient allocation of measurement resources requires an appropriate number of repeats for each scenario. To help allocate measurement resources in such data collections for RIID algorithm testing, we consider using only a few real repeats per scenario. In order to reduce uncertainty in the estimated RIID algorithm performance for each scenario, the potential merit of augmenting these real repeats with realistic synthetic repeats is also considered. Our results suggest that for the scenarios and algorithms considered, approximately 10 real repeats augmented with simulated repeats will result in an estimate having comparable uncertainty to the estimate based on using 60 real repeats.

  16. A study on the enhancement of nuclear cooperation with African countries including utilization of radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Maeng Ho; Oh, K. B; Lee, H. M. and others

    2005-05-15

    In this study, potential countries for nuclear cooperation in African region and possible cooperation areas were investigated between Korea and African countries including radioisotopes and more fields were also analysed in depth in order to suggest the recommendations for future cooperation to be considered as follows; First, current status and perspectives of demand and supply of energy and electricity in the African countries, use and development of nuclear energy and international nuclear cooperation were analyzed. Second, current status of nuclear cooperation between Korea and African countries were investigated as well as analysis of future cooperation potential and countries having potential for nuclear cooperation and possible cooperative activities were suggested considering potential of nuclear market in mid- and long term base and step by step. Third, desirable strategies and directions for the establishment and promotion of nuclear cooperation relations between Korea and African developing countries were suggested in order to develope cooperative relations in efficient and effective manners with African developing countries.

  17. A state of the art on coastal environmental protection using radioisotope tracer technology

    CERN Document Server

    Jung, S H; Jin, J H; Kim, J B

    2002-01-01

    Construction of artificial structures has caused a sediment process change due to the variation of hydraulic condition in Korea. Subsequently we have a serious problem of shoaling for shoreline deformation, siltation of the harbor and shipping channel. To protect those abnormal environmental changes, a large estimate has been spent for additional construction such as outer wall facilities, littoral nourishment and dredging. Systematic long-term studies should be carried out to understand the causes of environmental change. In addition, comprehensive plan is required for its monitoring and prevention. The radioisotope application studies for coastal environmental protection have not been actively performed only in the developed countries like France, Canada, and Australia etc., but also in many developing countries like Poland, India. Since KAERI has performed two experiments in costal area of Korea in 1960s, no more study has been reported. Recently the studies of radiotracer application technology is getting...

  18. Non-radioisotopic method for the in vitro measurement of EGF receptor tyrosine kinase

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A non-radioisotopic method was developed for the assay ofepidermal growth factor receptor (EGFR). A peptide with twenty amino acid residues around Tyr 1173, the major phosphorylation site of EGFR, was cloned as a GST fusion protein and used as substrate. Anti-phosphotyrosine monoclonal antibody PY99 was used for the determination of the extent of phosphorylation. Both the specificity and the sensitivity were substantially higher than that of the existing method. Km value of the fusion protein is much lower (10 (mol/L) than that of the synthetic peptide (110 (mol/L). The method can be applied to the measurement of the tyrosine kinase activity of c-erb B2 (Neu/HER2).

  19. Organic Materials Ionizing Radiation Susceptibility for the Outer Planet/Solar Probe Radioisotope Power Source

    Science.gov (United States)

    Golliher, Eric L.; Pepper, Stephen V.

    2001-01-01

    The Department of Energy is considering the current Stirling Technology Corporation 55 We Stirling Technology Demonstration Convertor as a baseline option for an advanced radioisotope power source for the Outer Planets/Solar Probe project of Jet Propulsion Laboratory and other missions. However, since the Technology Demonstration Convertor contains organic materials chosen without any special consideration of flight readiness, and without any consideration of the extremely high radiation environment of Europa, a preliminary investigation was performed to address the radiation susceptibility of the current organic materials used in the Technology Demonstration Convertor. This report documents the results of the investigation. The results of the investigation show that candidate replacement materials have been identified to be acceptable in the harsh Europa radiation environment.

  20. Induced radioisotopes inside the treatment hall with a Linac for radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    De Leon M, H. A. [Instituto Tecnologico de Aguascalientes, Av. Adolfo Lopez Mateos 1801 Ote., Fracc. Bona Gens, 20255 Aguascalientes (Mexico); Rivera P, E.; Vega C, H. R. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas (Mexico); Gallego, E.; Lorente, A., E-mail: asa_15@hotmail.com [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, C. Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2014-08-15

    When Linacs operate above 8 MV an undesirable neutron field is produced whose spectrum has three main components: the direct spectrum due to those neutrons leaking out from the Linac head, the scattered spectrum due to neutrons produced in the head that collides with the nuclei in the head losing energy and the third spectrum due to room-return effect; this last are mainly epithermal and thermal neutrons being constant at any location in the treatment hall. These neutrons induce activation mainly in the concrete walls and the Linac components. Here the induced radioisotopes have been identified in concrete samples located in the hall and in one of the wedges. The identification has been carried out using a gamma-ray spectrometer. (Author)

  1. Determination of Radioisotope Content by Measurement of Waste Package Dose Rates - 13394

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Daiane Cristini B.; Gimenes Tessaro, Ana Paula; Vicente, Roberto [Nuclear and Energy Research Institute Brazil, Radioactive Waste Management Department IPEN/GRR, Sao Paulo. SP. (Brazil)

    2013-07-01

    The objective of this communication is to report the observed correlation between the calculated air kerma rates produced by radioactive waste drums containing untreated ion-exchange resin and activated charcoal slurries with the measured radiation field of each package. Air kerma rates at different distances from the drum surface were calculated with the activity concentrations previously determined by gamma spectrometry of waste samples and the estimated mass, volume and geometry of solid and liquid phases of each waste package. The water content of each waste drum varies widely between different packages. Results will allow determining the total activity of wastes and are intended to complete the previous steps taken to characterize the radioisotope content of wastes packages. (authors)

  2. Cyclotron-produced radioisotopes and their clinical use at the Austin PET Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J. [Centre for PET, Melbourne, VIC (Australia). Austin and Repatriation Medical Centre

    1997-12-31

    A Centre for Positron Emission Tomography (PET) has been established within the Department of Nuclear Medicine at the Austin and Repatriation Medical Centre in Melbourne. PET is a non-invasive technique based on the use of biologically relevant compounds labelled with short-lived positron-emitting radionuclides such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18. The basic equipment consists of a medical cyclotron (10 MeV proton and 5 MeV deuteron), six lead-shielded hot cells with associated radiochemistry facilities and a whole body PET scanner. During its first five years of operation, the Melbourne PET Centre, has pursued a strong radiolabelling development program, leading to an ambitious clinical program in neurology, oncology and cardiology. This presentation will describe the basic principles of the PET technique and review the cyclotron-produced radioisotopes and radiopharmaceuticals. Radiolabelling development programs and clinical applications are also addressed. 30 refs., 1 tab., 1 fig.

  3. Coated particle fuel for radioisotope power systems and heater units: status and future research needs

    Science.gov (United States)

    El-Genk, Mohamed S.; Tournier, Jean-Michel; Sholtis, Joseph A.; Lipinski, Ronald J.

    2000-01-01

    Coated particle fuel has been proposed recently for use in Radioisotope Power Systems (RPSs) and Radioisotope Heater Units (RHUs) for a variety of space missions requiring power levels from mWs to 10's or even hundreds of Watts. It can be made into different shapes and sizes of solid compacts, heating tapes, or paints. Using a conservative design approach, this fuel form could increase by 2.3-2.4 times the thermal power output of a LWRHU, while offering promise of enhanced safety. These performance figures are based on using single-size (500 μm) compacts of ZrC coated 238PuO2 kernels and assuming 10% and 5% He release, respectively, at 1723 K, following 10 years of storage. Using binary-size (300 and 1200 μm) fuel kernels in the compact increases the thermal power output by an additional 15%. 238PuO2 fuel kernels are intentionally sized (>=300 μm in diameter) to prevent any adverse radiological effects. They are non-respirable and non-inhalable and, if ingested, would simply be excreted with no radiological effects. The 238PuO2 fuel kernels are contained within a strong ZrC coating, which is designed to fully retain the fuel and the helium gas. Helium retention in large grain (>=300 μm) granular and polycrystalline fuel kernels is possible even at high temperatures (>1700 K). The former could be fabricated using binderless agglomeration or similar processes, while the latter could be fabricated using Sol-Gel or thermal plasma processes, with potentially less radioactive waste and fabrication contamination. In addition to summarizing the results of a recent effort investigating the performance of coated fuel particle compact (CPFC) and helium gas release, this paper identifies and discusses future research and testing needs. .

  4. Too Much of a Good Thing ? Radioisotope Power Conversion Technology and `Waste' Heat in the Titan Environment

    Science.gov (United States)

    Lorenz, Ralph

    Unlike most solar system surface environments, Titan has an atmosphere that is both cold and dense. This means heat transfer to and from a vehicle is determined by convection, rather than by radiation which dominates on Earth and Mars. With surface temperatures near 94K, batteries and systems require heating to operate. Solar power is impractical, so a spacecraft intended to operate for longer than a few hours on Titan must have a radioisotope power source (RPS). Such sources convert heat from Plutonium decay into electricity, with an efficiency that varies from about 5% for thermoelectric systems to 20% for engine cycles such as Stirling. For vehicles with 100-200W electrical power, the 500-4000 W ‘waste’ heat in the Titan environment can be valuable in that it can be exploited to maintain thermal conditions inside the vehicle. The generally benign Titan environment, and the outstanding scientific and popular interest in its exploration, has attracted a number of mission concepts including a lander for Titan’s equatorial dunefields, light gas and hot air (‘Montgolfière’) balloons, airplanes, and capsules that float on its polar seas (e.g. the proposed Titan Mare Explorer.) However, the choice of conversion technology is key to the success of these different platforms. Waste heat can perturb meteorological measurements in several ways. First by creating a warm air plume (an effect observed on Viking and Curiosity.) Second, rain or seaspray falling onto hot radiator surfaces can evaporate causing a local enhancement of methane humidity. Third, sufficiently strong heating could perturb local winds. Similar effects, and the potential generation of effervescence or even fog, may result for capsules floating in liquid hydrocarbons. For landers and drifting buoys, these perturbations may significantly degrade environmental measurements, or at least demand tall meteorology masts, for the higher waste heat output of thermoelectric systems, and a Stirling system

  5. Radio-isotope production scale-up at the University of Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Nickles, Robert Jerome [Univ of Wisconsin

    2014-06-19

    Our intent has been to scale up our production capacity for a subset of the NSAC-I list of radioisotopes in jeopardy, so as to make a significant impact on the projected national needs for Cu-64, Zr-89, Y-86, Ga-66, Br-76, I-124 and other radioisotopes that offer promise as PET synthons. The work-flow and milestones in this project have been compressed into a single year (Aug 1, 2012- July 31, 2013). The grant budget was virtually dominated by the purchase of a pair of dual-mini-cells that have made the scale-up possible, now permitting the Curie-level processing of Cu-64 and Zr-89 with greatly reduced radiation exposure. Mile stones: 1. We doubled our production of Cu-64 and Zr-89 during the grant period, both for local use and out-bound distribution to ≈ 30 labs nationwide. This involved the dove-tailing of beam schedules of both our PETtrace and legacy RDS cyclotron. 2. Implemented improved chemical separation of Zr-89, Ga-66, Y-86 and Sc-44, with remote, semi-automated dissolution, trap-and-release separation under LabView control in the two dual-mini-cells provided by this DOE grant. A key advance was to fit the chemical stream with miniature radiation detectors to confirm the transfer operations. 3. Implemented improved shipping of radioisotopes (Cu-64, Zr-89, Tc-95m, and Ho-163) with approved DOT 7A boxes, with a much-improved FedEx shipping success compared to our previous steel drums. 4. Implemented broad range quantitative trace metal analysis, employing a new microwave plasma atomic emission spectrometer (Agilent 4200) capable of ppb sensitivity across the periodic table. This new instrument will prove essential in bringing our radiometals into FDA compliance needing CoA’s for translational research in clinical trials. 5. Expanded our capabilities in target fabrication, with the purchase of a programmable 1600 oC inert gas tube furnace for the smelting of binary alloy target materials. A similar effort makes use of our RF induction furnace, allowing

  6. Inorganic, radioisotopic and organic analysis of 241-AP-101 tank waste

    Energy Technology Data Exchange (ETDEWEB)

    SK Fiskum; PR Bredt; JA Campbell; LR Greenwood; OT Farmer; GJ Lumetta; GM Mong; RT Ratner; CZ Soderquist; RG Swoboda; MW Urie; JJ Wagner

    2000-06-28

    Battelle received five samples from Hanford waste tank 241-AP-101, taken at five different depths within the tank. No visible solids or organic layer were observed in the individual samples. Individual sample densities were measured, then the five samples were mixed together to provide a single composite. The composite was homogenized and representative sub-samples taken for inorganic, radioisotopic, and organic analysis. All analyses were performed on triplicate sub-samples of the composite material. The sample composite did not contain visible solids or an organic layer. A subsample held at 10 C for seven days formed no visible solids. The characterization of the 241-AP-101 composite samples included: (1) Inductively-coupled plasma spectrometry for Ag, Al, Ba, Bi, Ca, Cd, Cr, Cu, Fe, K, La, Mg, Mn, Na, Nd, Ni, P, Pb, Pd, Ru, Rh, Si, Sr, Ti, U, Zn, and Zr (Note: Although not specified in the test plan, As, B, Be, Co, Li, Mo, Sb, Se, Sn, Tl, V, W, and Y were also measured and reported for information only) (2) Radioisotopic analyses for total alpha and total beta activities, {sup 3}H, {sup 14}C, {sup 60}Co, {sup 79}Se, {sup 90}Sr, {sup 99}Tc as pertechnetate, {sup 106}Ru/Rh, {sup 125}Sb, {sup 134}Cs, {sup 137}Cs, {sup 152}Eu, {sup 154}Eu, {sup 155}Eu, {sup 238}Pu, {sup 239+240}Pu, {sup 241}Am, {sup 242}Cm, and {sup 243+244}Cm; (3) Inductively-coupled plasma mass spectrometry for {sup 237}Np, {sup 239}Pu, {sup 240}Pu, {sup 99}Tc, {sup 126}Sn, {sup 129}I, {sup 231}Pa, {sup 233}U, {sup 234}U, {sup 235}U, {sup 236}U, {sup 238}U, {sup 241}AMU, {sup 242}AMU, {sup 243}AMU, As, B, Be, Ce, Co, Cs, Eu, I, Li, Mo, Pr, Rb, Sb, Se, Ta, Te, Th, Tl, V, and W; (4) total U by kinetic phosphorescence analysis; (5) Ion chromatography for Cl, F, NO{sub 2}, NO{sub 3}, PO{sub 4}, SO{sub 4}, acetate, formate, oxalate, and citrate; (6) Density, inorganic carbon and organic carbon by two different methods, mercury, free hydroxide, ammonia, and cyanide. The 241-AP-101 composite met all

  7. Diffuse damage to central nervous system in progressive rheumatoid arthritis complicated by cerebral hermorrhage after radioisotope cisternography

    Energy Technology Data Exchange (ETDEWEB)

    Tarnowska-Dziduszko, E.; Lazarowicz, J. (Instytut Psychoneurologiczny, Warsaw (Poland))

    1980-01-01

    Presented case reveals unusual reaction of central nervous system in the course of progressive rheumatoid arthritis and cerebral hemorrhage as a rare complication after radioisotope investigation of cerebro-spinal fluid spaces. Female, 58 years old which was treated for 22 years for progressive rheumatoid arthritis developed during last 3 years of life a psychoorganic syndrome with temporal epilepsy and slight left sided hemiparesis. After radioisotope cisternography appeared decerebration followed by death. On autopsy the hemorrhagic foci were found in left cerebral hemisphere and in the brain stem. Histological finding was generalized severe damage to interstitial vessels diagnosed as fibrinotic, necrotizing degeneration of capillary and arteriolar wall, significant proliferation of microglia in the white matter and brain stem. Chronic inflammatory infiltrates were present in leptomeninges. Pathogenesis of findings in connection with progressive rheumatoid arthritis and complications due to cisternography is discussed.

  8. Provenance studies of archaeological ceramics from Mar-Takla (Ain-Minin, Syria) using radioisotope X-ray fluorescence method

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The radioisotope X-ray fluorescence method was applied to studies of the provenance of the ceramics fragments originated from the Mar-Takla site in Syria. The samples were irradiated 1000s by a 109Cd radioisotope source and 13 elements (Ca, Ti, Mn, Fe, Zn, Ga, As, Rb, Sr, Y, Zr, Nb, and Pb) were determined in 35 samples. The data were subjected to two multivariate statistical methods, cluster and principal components analysis (PCA). It was shown from the combination of the statistical techniques and the determination of elemental composition of the samples that 94% of the ceramic samples analyzed can be considered to be manufactured using two sources of raw materials.

  9. An evaluation of the shielding effectiveness of lead aprons used in clinics for protection against ionising radiation from novel radioisotopes.

    Science.gov (United States)

    Deb, Pradip; Jamison, Robert; Mong, Lisa; U, Paul

    2015-07-01

    The purpose of this study is to evaluate the effectiveness of personal radiation shields currently worn in hospital and other diagnostic environments. This study was performed with four different radioisotopes; (18)F, (99m)Tc, (124)I and (131)I. (18)F results showed a decrease in dose with 0.5-mm Pb shielding but the reduction provided does not warrant its use clinically. (124)I testing demonstrated that dose enhancement can occur in greater shield thicknesses. PET isotope (124)I can be adequately shielded using 0.25-mm Pb equivalent aprons but any higher thickness increase the wearer's dose. As a result more shielding does not always equal more protection. The (131)I test showed that no dose reduction occurred, even when tested with up to 1.25-mm Pb equivalent shielding. Novel radioisotopes being used in the laboratory and clinic should be individually tested as each requires specific shielding testing.

  10. A Study on Clinical Activity of Myositis by the Use of Radioisotope Bone Scan in the Patients with Dermatomyositis - polymyositis

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sung Jae; Koh, Chang Soon [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1982-03-15

    To evaluate the diagnostic usefulness of radioisotope bone scan and clinical activity of myositis, bone scan using {sup 99m}Tc-Methylene diphosphonate was serially done before and after treatment with prednisolone in 10 patients with well- documented dermatomyositis-polymyositis. The observed results were as follows. 1. In all 10 patients before treatment with prednisolone, the bone scans showed evidence of increased muscle uptake. Muscle uptake was markedly increased in 4 patients, moderately increased in 3 patients and minimally increased in 3 patients. 2. The site of increased muscle uptake was consistent with the site of clinically involved muscle which was weak and tender. 3. The degree of muscle uptake correlated with the severity of the muscle weakness and tenderness at the scan was done. In all 10 patients treated with high dose prednisolone, muscle uptake was decreased following therapy. Above results suggest the radioisotope bone scanning may be useful in the diagnosis and treatment of patient with dermatomyositis-polymyositis.

  11. Potential health risks from postulated accidents involving the Pu-238 RTG (radioisotope thermoelectric generator) on the Ulysses solar exploration mission

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, M. (California Univ., Davis, CA (USA)); Nelson, R.C. (EG and G Idaho, Inc., Idaho Falls, ID (USA)); Bollinger, L. (Air Force Inspection and Safety Center, Kirtland AFB, NM (USA)); Hoover, M.D. (Lovelace Biomedical and Environmental Research Inst., Albuquerque, NM (USA). Inhalation Toxicology Research Inst.); Templeton, W. (Pacific Northwest Lab., Richland, WA (USA)); Anspaugh, L. (Lawren

    1990-11-02

    Potential radiation impacts from launch of the Ulysses solar exploration experiment were evaluated using eight postulated accident scenarios. Lifetime individual dose estimates rarely exceeded 1 mrem. Most of the potential health effects would come from inhalation exposures immediately after an accident, rather than from ingestion of contaminated food or water, or from inhalation of resuspended plutonium from contaminated ground. For local Florida accidents (that is, during the first minute after launch), an average source term accident was estimated to cause a total added cancer risk of up to 0.2 deaths. For accidents at later times after launch, a worldwide cancer risk of up to three cases was calculated (with a four in a million probability). Upper bound estimates were calculated to be about 10 times higher. 83 refs.

  12. Buckling Analysis for the Shape of the Thin-tube Support of Radioisotope Thermoelectric Generator to investigate structure integrity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Han; Son, Kwang Jae; Hong, Jintae; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Radiation detection using scintillator light produced in materials is one of the oldest and most useful techniques for the detection of a variety of radiations. A detector using plastic scintillators is well known to have an easy operation because it consists of a chemically stable material. In general, a plastic scintillator using a polymer such as polymethylmethacrylate (PMMA), polyvinyltoluene (PVT) or polystyrene (PS) is added to an organic scintillator. As an organic scintillator, the first solute is p-terphenyl or 2.5-diphenyloxazole (PPO), and the second solute is 1,4-bis [5-phenyl-2-oxazol] benzene (POPOP). A method for preparing a plastic scintillator is a mixture of a polymer and organic scintillators used for thermal polymerization. In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However, there were the difficulties in evaluating characteristics of the large-area plastic scintillator. The cross-sectional area of the large-area plastic scintillator is significantly different to PMT.

  13. Radioisotope space power generator. Annual report, July 1, 1975--September 30, 1976. [TPM-217 P-type selenides

    Energy Technology Data Exchange (ETDEWEB)

    Elsner, N.B.; Chin, J.; Staley, H.G.; Steeger, E.J.; Gantzel, P.K.

    1977-09-01

    TPM-217 P-type selenide usefulness in thermoelectric converters depends on its dimensional, electrical and thermal stability at high temperature and its compatibility with other converter component materials in a low pressure environment. Experimental efforts have been directed at determining: the vaporization behavior at 900/sup 0/C, the partial pressures of vaporizing species versus temperature, vapor suppression coatings, thermal expansion, dimensional stability, and the high temperature compatibility of TPM-217 with proposed end cap materials.

  14. Excitation Function and Thick Target Yield of 186W(p,n)186Reg Reaction for Production of Therapeutic Radioisotope 186Reg

    Institute of Scientific and Technical Information of China (English)

    KANG; Meng-xiao; HUANG; Xiao-long; LIU; Li-le

    2015-01-01

    In recent years,radioactive therapy has become one of the most important methods for cancer therapy with the increasing number of the cancer patient.Now more and more attention is paid to the radionuclide used in radioactive therapy such as 67Cu,103Pd and 186Reg.186Reg is an important medically radioisotope and is regarded as the best radioisotopes used for

  15. Operations of a Radioisotope-based Propulsion System Enabling CubeSat Exploration of the Outer Planets

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Steven Howe; Nathan Jerred; Troy Howe; Adarsh Rajguru

    2014-05-01

    Exploration to the outer planets is an ongoing endeavor but in the current economical environment, cost reduction is the forefront of all concern. The success of small satellites such as CubeSats launched to Near-Earth Orbit has lead to examine their potential use to achieve cheaper science for deep space applications. However, to achieve lower cost missions; hardware, launch and operations costs must be minimized. Additionally, as we push towards smaller exploration beds with relative limited power sources, allowing for adequate communication back to Earth is imperative. Researchers at the Center for Space Nuclear Research are developing the potential of utilizing an advanced, radioisotope-based system. This system will be capable of providing both the propulsion power needed to reach the destination and the additional requirements needed to maintain communication while at location. Presented here are a basic trajectory analysis, communication link budget and concept of operations of a dual-mode (thermal and electric) radioisotope-based propulsion system, for a proposed mission to Enceladus (Saturnian icy moon) using a 6U CubeSat payload. The radioisotope system being proposed will be the integration of three sub-systems working together to achieve the overall mission. At the core of the system, stored thermal energy from radioisotope decay is transferred to a passing propellant to achieve high thrust – useful for quick orbital maneuvering. An auxiliary closed-loop Brayton cycle can be operated in parallel to the thrusting mode to provide short bursts of high power for high data-rate communications back to Earth. Additionally, a thermal photovoltaic (TPV) energy conversion system will use radiation heat losses from the core. This in turn can provide the electrical energy needed to utilize the efficiency of ion propulsion to achieve quick interplanetary transit times. The intelligent operation to handle all functions of this system under optimized conditions adds

  16. Optimization Design and Simulation of a Multi-Source Energy Harvester Based on Solar and Radioisotope Energy Sources

    Directory of Open Access Journals (Sweden)

    Hao Li

    2016-12-01

    Full Text Available A novel multi-source energy harvester based on solar and radioisotope energy sources is designed and simulated in this work. We established the calculation formulas for the short-circuit current and open-circuit voltage, and then studied and analyzed the optimization thickness of the semiconductor, doping concentration, and junction depth with simulation of the transport process of β particles in a semiconductor material using the Monte Carlo simulation program MCNP (version 5, Radiation Safety Information Computational Center, Oak Ridge, TN, USA. In order to improve the efficiency of converting solar light energy into electric power, we adopted PC1D (version 5.9, University of New South Wales, Sydney, Australia to optimize the parameters, and selected the best parameters for converting both the radioisotope energy and solar energy into electricity. The results concluded that the best parameters for the multi-source energy harvester are as follows: Na is 1 × 1019 cm−3, Nd is 3.8 × 1016 cm−3, a PN junction depth of 0.5 μm (using the 147Pm radioisotope source, and so on. Under these parameters, the proposed harvester can achieve a conversion efficiency of 5.05% for the 147Pm radioisotope source (with the activity of 9.25 × 108 Bq and 20.8% for solar light radiation (AM1.5. Such a design and parameters are valuable for some unique micro-power fields, such as applications in space, isolated terrestrial applications, and smart dust in battlefields.

  17. Technical description of candidate fluorescence compounds and radioisotopes for a nuclear smuggling deterrence tag (IL500E)

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, S.D.; Aryaeinejad, R.

    1996-03-01

    This report summarizes the efforts completed in identifying candidate fluorescence compounds and radioisotopes for a developing tagging system. The tagging system is being developed as a deterrent to nuclear smuggling, by providing a means of: (1) tracing materials and pilferers to the facility of origin for any recovered special nuclear materials; (2) inventory control of long-term stored items containing special nuclear materials; and (3) tracking materials transferred between facilities. The tagging system uses four types of tagging materials to cover a range of applications intended to prevent the pilfering of special nuclear materials. One material, fluorescent compounds which are invisible without ultraviolet or near-infrared detection systems, is marked on controlled items with a tracking pattern that corresponds to a specified item in a specified location in the data control system. The tagging system uses an invisible, fluorescent dusting powder to mark equipment and personnel who inappropriately handle the tagged material. The tagging system also uses unique combinations of radionuclides to identify the facility of origin for any special nuclear material. Currently, 18 long-lived radioisotopes, 38 short-live radioisotopes and 10 fluorescent compounds have been selected as candidate materials for the tagging system.

  18. Modular Isotopic Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1981-04-03

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

  19. Detection and tracing of the medical radioisotope 131I in the Canberra environment

    Directory of Open Access Journals (Sweden)

    Gilfillan Nathan R.

    2012-10-01

    Full Text Available The transport and radioecology of the therapeutical radioisotope 131I has been studied in Canberra, Australia. The isotope has been detected in water samples and its activity quantified via characteristic J-ray photo peaks. A comparison of measurements on samples from upstream and downstream of the Canberra waste water treatment plant shows that 131I is discharged from the plant outflow into the local Molonglo river. This is consistent with observations in other urban environments. A time-correlation between the measured activities in the outflow and the therapeutical treatment cycle at the hospital identifies the medical treatment as the source of the isotope. Enhanced activity levels of 131I have been measured for fish samples. This may permit conclusions on 131I uptake by the biosphere. Due to the well-defined and intermittent input of 131I into the sewage, the Canberra situation is ideally suited for radioecological studies. Furthermore, the 131I activity may be applied in tracer studies of sewage transport to and through the treatment plant and as an indicator of outflow dilution following discharge to the environment.

  20. Preliminary evaluation of a fluorescence and radioisotope nuclear smuggling deterrence tag - final report (IL500E)

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, S.D.; Aryaeinejad, R.; Delmastro, J.R. [and others

    1997-04-01

    This report summarizes the efforts completed in identifying candidate fluorescence compounds and radioisotopes for a developing tagging system. The tagging system is being developed as a deterrent to nuclear smuggling, by providing a means of: (1) tracing materials and pilferers to the facility of origin for any recovered special nuclear materials, (2) inventory control of long-term stored items containing special nuclear materials, and (3) tracking materials transferred between facilities. The system uses three types of materials to cover a range of applications intended to prevent the pilfering of special nuclear materials. One material, fluorescent compounds which are invisible without ultraviolet or near-infrared detection systems, is marked on controlled items with a tracking pattern that corresponds to a specified item in a specified location in the data control system. The tagging system uses an invisible, fluorescent dusting powder to mark equipment and personnel who inappropriately handle the tagged material. The tagging system also uses unique combinations of radionuclides to identify the facility of origin for any special nuclear material. This report also summarizes the efforts completed in identifying hardware that will be used for the tagging system. This hardware includes the devices for applying the tagging materials, the commercially available fluorescence detection systems, and gamma ray detection systems assembled from existing, commercially available technologies.

  1. A radioisotope based methodology for plant-fungal interactions in the rhizosphere

    Energy Technology Data Exchange (ETDEWEB)

    Weisenberger, A. G.; Bonito, G.; Lee, S.; McKisson, J. E.; Gryganskyi, A.; Reid, C. D.; Smith, M. F.; Vaidyanathan, G.; Welch, B.

    2013-10-01

    In plant ecophysiology research there is interest in studying the biology of the rhizosphere because of its importance in plant nutrient-interactions. The rhizosphere is the zone of soil surrounding a plant's root system where microbes (such as fungi) are influenced by the root and the roots by the microbes. We are investigating a methodology for imaging the distribution of molecular compounds of interest in the rhizosphere without disturbing the root or soil habitat. Our intention is to develop a single photon emission computed tomography (SPECT) system (PhytoSPECT) to image the bio-distribution of fungi in association with a host plant's roots. The technique we are exploring makes use of radioactive isotopes as tracers to label molecules that bind to fungal-specific compounds of interest and to image the fungi distribution in the plant and/or soil. We report on initial experiments designed to test the ability of fungal-specific compounds labeled with an iodine radioisotope that binds to chitin monomers (N-acetylglucosamine). Chitin is a compound not found in roots but in fungal cell walls. We will test the ability to label the compound with radioactive isotopes of iodine ({sup 125}I, and {sup 123}I).

  2. A state of the art on coastal environmental protection using radioisotope tracer technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Hee; Jin, Joon Ha; Kim, Jong Bum; Choi, Byung Jong

    2002-04-01

    Construction of artificial structures has caused a sediment process change due to the variation of hydraulic condition in Korea. Subsequently we have a serious problem of shoaling for shoreline deformation, siltation of the harbor and shipping channel. To protect those abnormal environmental changes, a large estimate has been spent for additional construction such as outer wall facilities, littoral nourishment and dredging. Systematic long-term studies should be carried out to understand the causes of environmental change. In addition, comprehensive plan is required for its monitoring and prevention. The radioisotope application studies for coastal environmental protection have not been actively performed only in the developed countries like France, Canada, and Australia etc., but also in many developing countries like Poland, India. Since KAERI has performed two experiments in costal area of Korea in 1960s, no more study has been reported. Recently the studies of radiotracer application technology is getting more interested in terms of on-line data acquisition and analysis for the validation of the numerical simulation models. The experiment using radiotracer becomes an important part of the method to solve the problems happening in coastal environment, as it supplies data with high confidence in the field. On the basis of the experience obtained from the researches for industrial application of radiotracer technology, KAERI is going to make its first step to the development of the radiotracer technology for costal environmental studies.

  3. Preliminary evaluation of a fluorescence and radioisotope nuclear smuggling deterrence tag - final report (IL500E)

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, S.D.; Aryaeinejad, R.; Delmastro, J.R. [and others

    1997-04-01

    This report summarizes the efforts completed in identifying candidate fluorescence compounds and radioisotopes for a developing tagging system. The tagging system is being developed as a deterrent to nuclear smuggling, by providing a means of: (1) tracing materials and pilferers to the facility of origin for any recovered special nuclear materials, (2) inventory control of long-term stored items containing special nuclear materials, and (3) tracking materials transferred between facilities. The system uses three types of materials to cover a range of applications intended to prevent the pilfering of special nuclear materials. One material, fluorescent compounds which are invisible without ultraviolet or near-infrared detection systems, is marked on controlled items with a tracking pattern that corresponds to a specified item in a specified location in the data control system. The tagging system uses an invisible, fluorescent dusting powder to mark equipment and personnel who inappropriately handle the tagged material. The tagging system also uses unique combinations of radionuclides to identify the facility of origin for any special nuclear material. This report also summarizes the efforts completed in identifying hardware that will be used for the tagging system. This hardware includes the devices for applying the tagging materials, the commercially available fluorescence detection systems, and gamma ray detection systems assembled from existing, commercially available technologies.

  4. Charged-particle cross section database for medical radioisotope production: chapter 3. theoretical evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, M

    1999-06-24

    Creation of a Reference Charged Particle Cross Section Database for Medical Radioisotope Production requires the evaluation of both experimental and modeled cross sections for beam monitor reactions and for radionuclide (positron and gamma emitters) production reactions. It was recognized at the first meeting of this CRP in Vienna in 1995 that modeling will play an important role in predicting cross sections where measurements are either not available or have large discrepancies. Because of the volume of work involving about forty-five reactions in the CRP, it was decided to use modeling as a guide rather than for full evaluation. (Although in some cases the CRP used the modeled cross sections as the recommended values). Thus the modeling was done using global input parameters. In this chapter we describe the modeling by four different groups: Livermore, Obninsk, Beijing and Islamabad. First we give a general overview of nuclear reaction models that may be used in modeling cross sections below 100 MeV. This will be followed by a short description of the codes and calculations actually used by the four groups. (We note that the codes have similar basic reaction physics, but they differ in details and in actual applications.) In the final section we give a discussion of the modeling with its successes and failures in reproducing experimental data using global input parameters.

  5. Persistence and decontamination of surrogate radioisotopes in a model drinking water distribution system.

    Science.gov (United States)

    Szabo, Jeffrey G; Impellitteri, Christopher A; Govindaswamy, Shekar; Hall, John S

    2009-12-01

    Contamination of a model drinking water system with surrogate radioisotopes was examined with respect to persistence on and decontamination of infrastructure surfaces. Cesium and cobalt chloride salts were used as surrogates for cesium-137 and cobalt-60. Studies were conducted in biofilm annular reactors containing heavily corroded iron surfaces formed under shear and constantly submerged in drinking water. Cesium was not detected on the corroded iron surface after equilibration with 10 and 100mgL(-1) solutions of cesium chloride, but cobalt was detected on corroded iron coupons at both initial concentrations. The amount of adhered cobalt decreased over the next six weeks, but was still present when monitoring stopped. X-ray absorption near-edge spectroscopy (XANES) showed that adhered cobalt was in the III oxidation state. The adsorbed cobalt was strongly resistant to decontamination by various physicochemical methods. Simulated flushing, use of free chlorine and dilute ammonia were found to be ineffective whereas use of aggressive methods like 14.5M ammonia and 0.36M sulfuric acid removed 37 and 92% of the sorbed cobalt, respectively.

  6. Characteristic X-rays induced by electrons and positrons from {beta}-emitting radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Chesta, M.A.; Mainardi, R.T. [Facultad de Matematica, Astronomia y Fisica, Universidad Nacional de Cordoba, Ciudad Universitaria, 5010 Cordoba (Argentina); Plivelic, T.S. [Consejo de Investigaciones Cientificas y Tecnicas (CONICET), 1033 Buenos Aires (Argentina)

    1998-11-01

    We have investigated the use of energetic electrons and positrons from low intensity {sup 90}Sr and {sup 22}Na radioactive sources respectively to produce characteristic radiation and compare the emission efficiencies of each kind of particle. A new proposed experimental set-up for radioisotope-excited X-ray fluorescence analysis is of the transparent source type and provides at least a ten-time increase in the intensity of characteristic X-rays emitted by the sample as compared to a standard radioactive source arrangement. Theoretically derived expressions for {beta}-particle penetration, transport and emission processes in a sample are presented, and experimental results of absolute characteristic X-ray yields induced by electrons and positrons from 31 pure chemical elements, from titanium to lead, have been included. The advantages of energetic {beta}-particles in comparison with other radiation sources are also discussed, in fact, a remarkable feature observed being that radiation yield changes by less than an order of magnitude across the whole range of the target atomic numbers herein considered. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  7. The 11th quality control survey for radioisotopes in vitro tests in Japan, 1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    This report presents the results of the 11th quality control nationwide survey. Of 730 facilities performing radioisotopes in vitro tests in November 1989, 422 facilities (60.5%) participated in the present survey. The following 23 items were examined: adrenocorticotropic hormone (ACTH), albumin, carbohydrate antigen 125 (CA 125), carbohydrate antigen 19-9 (CA 19-9), carcinoembryonic antigen (CEA), calcitonin, cortisol, estradiol, ferritin, free thyroxine (FT{sub 4}), follicle stimulating hormone (FSH), gastrine, cholylglycine, glucagon, insulin, anti-DNA antibody, luteinizing hormone (LH), neuron specific enolase (NSE), parathyroid hormone (PTH), squamous cell carcinoma associated antigen (SCC), thyroxine (T{sub 4}), thyroxine binding globulin (TBG), and antithyroid stimulating hormone (TSH) receptor antibody. 'Within kit variation' between facilities showed large coefficient of variation for ACTH, CA125, CEA, estradiol, ferritin, FSH, glucagon, anti-DNA antibody, LH, PTH, and TSH receptor antibody. Both 'within kit variation' and 'between kit variation' showed small coefficient of variation for cortisol, free T{sub 4}, NSE, SCC, T{sub 4}, and TBG. The present survey was characterized by using immunoradiometric assay (IRMA) and non-isotope techniques, as well as radioimmunoassay. Kits for IRMA greatly varied from facility to facility. (N.K.).

  8. Soil to plant transfer of radionuclides: predicting the fate of multiple radioisotopes in plants.

    Science.gov (United States)

    Willey, Neil J

    2014-07-01

    Predicting soil-to-plant transfer of radionuclides is restricted by the range of species for which concentration ratios (CRs) have been measured. Here the radioecological utility of meta-analyses of phylogenetic effects on alkali earth metals will be explored for applications such as 'gap-filling' of CRs, the identification of sentinel biomonitor plants and the selection of taxa for phytoremediation of radionuclide contaminated soils. REML modelling of extensive CR/concentration datasets shows that the concentrations in plants of Ca, Mg and Sr are significantly influenced by phylogeny. Phylogenetic effects of these elements are shown here to be similar. Ratios of Ca/Mg and Ca/Sr are known to be quite stable in plants so, assuming that Sr/Ra ratios are stable, phylogenetic effects and estimated mean CRs are used to predict Ra CRs for groups of plants with few measured data. Overall, there are well quantified plant variables that could contribute significantly to improving predictions of the fate radioisotopes in the soil-plant system.

  9. Cadmium-109 Radioisotope Adsorption onto Polypyrrole Coated Sawdust of Dryobalanops aromatic: Kinetics and Adsorption Isotherms Modelling

    Science.gov (United States)

    Olatunji, Michael Adekunle; Khandaker, Mayeen Uddin; Amin, Yusoff Mohd; Mahmud, Habibun Nabi Muhammad Ekramul

    2016-01-01

    A radiotracer study was conducted to investigate the removal characteristics of cadmium (109Cd) from aqueous solution by polypyrrole/ sawdust composite. Several factors such as solution pH, sorbent dosage, initial concentration, contact time, temperature and interfering metal ions were found to have influence on the adsorption process. The kinetics of adsorption was relatively fast, reaching equilibrium within 3 hours. A lowering of the solution pH reduced the removal efficiency from 99.3 to ~ 46.7% and an ambient temperature of 25°C was found to be optimum for maximum adsorption. The presence of sodium and potassium ions inhibited 109Cd removal from its aqueous solution. The experimental data for 109Cd adsorption showed a very good agreement with the Langmuir isotherm and a pseudo-first order kinetic model. The surface condition of the adsorbent before and after cadmium loading was investigated using BET, FESEM and FTIR. Considering the low cost of the precursor’s materials and the toxicity of 109Cd radioactive metal, polypyrrole synthesized on the sawdust of Dryobalanops aromatic could be used as an efficient adsorbent for the removal of 109Cd radioisotope from radionuclide-containing effluents. PMID:27706232

  10. Radioisotopic assays of CoASH and carnitine and their acetylated forms in human skeletal muscle

    Energy Technology Data Exchange (ETDEWEB)

    Cederblad, G.; Carlin, J.I.; Constantin-Teodosiu, D.; Harper, P.; Hultman, E. (Karolinska Institute, Huddinge Hospital (Sweden))

    1990-03-01

    Radioisotopic assays for the determination of acetyl-CoA, CoASH, and acetylcarnitine have been modified for application to the amount of human muscle tissue that can be obtained by needle biopsy. In the last step common to all three methods, acetyl-CoA is condensed with (14C)oxaloacetate by citrate synthase to give (14C)-citrate. For determination of CoASH, CoASH is reacted with acetylphosphate in a reaction catalyzed by phosphotransacetylase to yield acetyl-CoA. In the assay for acetylcarnitine, acetylcarnitine is reacted with CoASH in a reaction catalyzed by carnitine acetyltransferase to form acetyl-CoA. Inclusion of new simple steps in the acetylcarnitine assay and conditions affecting the reliability of all three methods are also described. Acetylcarnitine and free carnitine levels in human rectus abdominis muscle were 3.0 +/- 1.5 (SD) and 13.5 +/- 4.0 mumol/g dry wt, respectively. Values for acetyl-CoA and CoASH were about 500-fold lower, 6.7 +/- 1.8 and 21 +/- 8.9 nmol/g dry wt, respectively. A strong correlation between acetylcarnitine (y) and short-chain acylcarnitine (x), determined as the difference between total and free carnitine, was found in biopsies from the vastus lateralis muscle obtained during intense muscular effort, y = 1.0x + 0.5; r = 0.976.

  11. Emergency control room design of a nuclear reactor used to produce radioisotope

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Isaac J.A.L. dos; Farias, Larissa P. de; Ponte, Luana T.L.; Goncalves, Gabriel L.; Castro, Heraclito M.; Farias, Marcos S.; Carvalho, Paulo V.R. de; Vianna Filho, Alfredo M.V., E-mail: luquetti@ien.gov.br [Instituto Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Departamento Engenharia Nuclear

    2015-07-01

    A control room is defined as a functional entity with an associated physical structure, where the operators carry out the centralized control, monitoring and administrative responsibilities. Emergency control room acts as an alternative control room for the purpose of shutting down or maintaining the facility in a safe shutdown state when the main control room is uninhabitable. The mission of emergency control room is to provide the resources to bring the plant to a safe shutdown condition after an evacuation of the main control room. An evacuation of the main control room is assumed when there is no possibility to accomplish tasks involved in the shutdown except reactor trip. The purpose of this paper is to present a specific approach for the design of the emergency control room of a nuclear reactor used to produce radioisotope. The approach is based on human factors standards and the participation of a multidisciplinary team in the development phase of the design. Using the information gathered from standards and from the multidisciplinary team a 3D Sketch and a 3D printing of the emergency control room were created. (author)

  12. Assessment of the radiological control at the IPEN radioisotope production facility

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, J.C.G.G.; Sanches, M.P.; Rodrigues, D.L.; Campos, D.; Nogueira, P.R.; Damatto, S.R.; Pecequilo, B.R.S. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The main objective of this work is to evaluate the 2013 annual radiological control results in the radiopharmaceuticals areas of the Nuclear and Energy Research Institute, IPEN/SP, Brazil and the environmental radiological impact, resulting from the practices there performed. The current evaluation was performed through the analysis of the results obtained from occupational and environmental monitoring with air samplers and TL dosimeters. All monitoring results were compared with the limits established by national standards. The radionuclides detected by air sampling (in activated carbon cartridges and filter paper) at the workplace during radioisotope production were {sup 131}I, {sup 99m}Tc and {sup 99}Mo, with activities concentrations values below the annual limits values. For the radioactive gaseous releases (Bq/m{sup 3} ), the activities concentrations also remained below the maximum admissible values, excepting to {sup 125}I release due to an unusual event occurred in a researcher laboratory, but the radiological impact to environmental was no significant. The occupational monitoring assessment was confirmed by the Environmental Radiological Monitoring Program results with air samplers and TL dosimeters. The mean annual background radiation at IPEN in 2013, according to the Environmental Radiological Monitoring Program results was 1.06 mSv. y{sup -1} , below the ICRP 103 recommended limit of 20 mSv.y{sup -1} for workers. (author)

  13. Assessment of the radiological control at the IPEN radioisotope production facility

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Janete C.G.G.; Sanches, Matias P.; Rodrigues, Demerval L.; Campos, Daniela; Nogueira, Paulo R.; Damato, Sandra R.; Pecequilo, Brigitte R., E-mail: janetegc@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2014-07-01

    The main objective of this work is to evaluate the 2013 annual radiological control results in the radiopharmaceuticals areas of the Instituto de Pesquisas Energeticas e Nucleares, IPEN/SP, and the environmental radiological impact, resulting from the practices there performed. The current evaluation was performed through the analysis of the results obtained from occupational and environmental monitoring with air samplers and TL dosimeters. All monitoring results were compared with the limits established by national standards. The radionuclides detected by air sampling (in charcoal and paper filters) at the workplace during radioisotope production were {sup 131}I, {sup 99m}Tc and {sup 99}Mo, with activities concentrations values below the annual limits values. For the radioactive gaseous releases (Bq/m{sup 3}), the activities concentrations also remained below the maximum permissible values, excepting to {sup 125}I release due to an unusual event occurred in a researcher laboratory, but the radiological impact to environmental was no significant. The occupational monitoring assessment was confirmed by the Environmental Radiological Monitoring Program results with air samplers and TL dosimeters. The mean annual background radiation at IPEN in 2013, according to the Environmental Radiological Monitoring Program results was 1.06 mSv. y{sup -1}, below the ICRP 103 recommended limit of 20 mSv.y{sup -1} for workers. (author)

  14. Present status of research on Re-186 radiopharmaceuticals at Radioisotope Production Center

    Energy Technology Data Exchange (ETDEWEB)

    Mutalib, A. [Radioisotope Production Center, National Atomic Energy Agency Kawasan PUSPIPTEK, Serpong (Indonesia)

    1998-10-01

    Rhenium shows a close chemical similarity to technetium and is suitable for radiotherapy because the {beta}-emitting radionuclides {sup 186}Re (t{sub 1/2} 90 h, E{sub {beta}} = 1.1 MeV, E{sub {gamma}} = 137 keV) and {sup 188}Re (t{sub 1/2} = 17 h, E{sub {beta}} = 2.1 MeV). The {gamma}-emission associated with decay of {sup 186}Re is also useful in scintigraphy. The research on {sup 186}Re radiopharmaceuticals at Radioisotope Production Center has been carried out since April 1997. Interest in radioimmunotherapy (RIT) led us to the development of labeling antibodies with rhenium isotopes. Although there are several methods for coupling radiometal to antibody, we prefer an indirect labeling method in which a bifunctional chelating agent is used for coupling of {sup 186}Re to monoclonal antibodies. In this report we outline the study on the preparation of {sup 186}Re DMSA-TFP as precursor for labeling with monoclonal antibody. (author)

  15. AlGaAs 55Fe X-ray radioisotope microbattery

    Science.gov (United States)

    Butera, S.; Whitaker, M. D. C.; Lioliou, G.; Barnett, A. M.

    2016-12-01

    This paper describes the performance of a fabricated prototype Al0.2Ga0.8As 55Fe radioisotope microbattery photovoltaic cells over the temperature range -20 °C to 50 °C. Two 400 μm diameter p+-i-n+ (3 μm i-layer) Al0.2Ga0.8As mesa photodiodes were used as conversion devices in a novel X-ray microbattery prototype. The changes of the key microbattery parameters were analysed in response to temperature: the open circuit voltage, the maximum output power and the internal conversion efficiency decreased when the temperature was increased. At -20 °C, an open circuit voltage and a maximum output power of 0.2 V and 0.04 pW, respectively, were measured per photodiode. The best internal conversion efficiency achieved for the fabricated prototype was only 0.95% at -20 °C.

  16. Maturing Technologies for Stirling Space Power Generation

    Science.gov (United States)

    Wilson, Scott D.; Nowlin, Brentley C.; Dobbs, Michael W.; Schmitz, Paul C.; Huth, James

    2016-01-01

    Stirling Radioisotope Power Systems (RPS) are being developed as an option to provide power on future space science missions where robotic spacecraft will orbit, flyby, land or rove. A Stirling Radioisotope Generator (SRG) could offer space missions a more efficient power system that uses one fourth of the nuclear fuel and decreases the thermal footprint of the current state of the art. The RPS Program Office, working in collaboration with the U.S. Department of Energy (DOE), manages projects to develop thermoelectric and dynamic power systems, including Stirling Radioisotope Generators (SRGs). The Stirling Cycle Technology Development (SCTD) Project, located at Glenn Research Center (GRC), is developing Stirling-based subsystems, including convertors and controllers. The SCTD Project also performs research that focuses on a wide variety of objectives, including increasing convertor temperature capability to enable new environments, improving system reliability or fault tolerance, reducing mass or size, and developing advanced concepts that are mission enabling. Research activity includes maturing subsystems, assemblies, and components to prepare them for infusion into future convertor and generator designs. The status of several technology development efforts are described here. As part of the maturation process, technologies are assessed for readiness in higher-level subsystems. To assess the readiness level of the Dual Convertor Controller (DCC), a Technology Readiness Assessment (TRA) was performed and the process and results are shown. Stirling technology research is being performed by the SCTD Project for NASA's RPS Program Office, where tasks focus on maturation of Stirling-based systems and subsystems for future space science missions.

  17. A NEW ALGORITHM FOR RADIOISOTOPE IDENTIFICATION OF SHIELDED AND MASKED SNM/RDD MATERIALS

    Energy Technology Data Exchange (ETDEWEB)

    Jeffcoat, R.

    2012-06-05

    Detection and identification of shielded and masked nuclear materials is crucial to national security, but vast borders and high volumes of traffic impose stringent requirements for practical detection systems. Such tools must be be mobile, and hence low power, provide a low false alarm rate, and be sufficiently robust to be operable by non-technical personnel. Currently fielded systems have not achieved all of these requirements simultaneously. Transport modeling such as that done in GADRAS is able to predict observed spectra to a high degree of fidelity; our research is focusing on a radionuclide identification algorithm that inverts this modeling within the constraints imposed by a handheld device. Key components of this work include incorporation of uncertainty as a function of both the background radiation estimate and the hypothesized sources, dimensionality reduction, and nonnegative matrix factorization. We have partially evaluated performance of our algorithm on a third-party data collection made with two different sodium iodide detection devices. Initial results indicate, with caveats, that our algorithm performs as good as or better than the on-board identification algorithms. The system developed was based on a probabilistic approach with an improved approach to variance modeling relative to past work. This system was chosen based on technical innovation and system performance over algorithms developed at two competing research institutions. One key outcome of this probabilistic approach was the development of an intuitive measure of confidence which was indeed useful enough that a classification algorithm was developed based around alarming on high confidence targets. This paper will present and discuss results of this novel approach to accurately identifying shielded or masked radioisotopes with radiation detection systems.

  18. Development and characterization of carbon-bonded carbon fiber insulation for radioisotope space power systems

    Energy Technology Data Exchange (ETDEWEB)

    Wei, G.C.; Robbins, J.M.

    1985-06-01

    The General-Purpose Heat Source (GPHS), an improved radioisotope heat source, employs a unique thermal insulation material, carbon-bonded carbon fiber (CBCF), to protect the fuel capsule and to help achieve the highest possible specific power. The CBCF insulation is made from chopped rayon fiber about 10 ..mu..m in diameter and 250 ..mu..m long, which is carbonized and bonded with phenolic resin particles. The CBCF shapes, both tubes and plates, are formed in a multiple molding facility by vacuum molding a water slurry of the carbonized chopped-rayon fiber (54 wt %) and phenolic resin (46 wt %). The molded shapes are subsequently dried and cured. Final carbonization of the resin is at 1600/sup 0/C. Machining to close tolerances (+-0.08 mm) is accomplished by conventional tooling and fixturing. The resulting material is an excellent lightweight insulation with a nominal density of 0.2 Mg/m/sup 3/ and a thermal conductivity of 0.24 W(m.K) in vacuum at 2000/sup 0/C. Several attributes that make CBCF superior to other known high-temperature insulation materials for the GPHS application have been identified. It has the excellent attributes of light weight, low thermal conductivity, chemical compatibility, and high-temperature capabilities. The mechanical strength of CBCF insulation is satisfactory for the GPHS application; it has passed vibration tests simulating launch conditions. The basic fabrication technique was refined to eliminate undesirable large pores and cracks often present in materials fabricated by earlier techniques. Also, processing was scaled up to incease the fabrication rate by a factor of 10. The specific properties of the CBCF were tailored by adjusting material and processing variables to obtain the desired results. We report here how work on CBCF characterization and development conducted at ORNL from 1978 through 1980 has contributed to the GPHS program to meet the requirements of both the Galileo and Ulysees Missions.

  19. Dose calibrator linearity test: 99mTc versus 18F radioisotopes

    Directory of Open Access Journals (Sweden)

    José Willegaignon

    2015-02-01

    Full Text Available Objective: The present study was aimed at evaluating the viability of replacing 18F with 99mTc in dose calibrator linearity testing. Materials and Methods: The test was performed with sources of 99mTc (62 GBq and 18F (12 GBq whose activities were measured up to values lower than 1 MBq. Ratios and deviations between experimental and theoretical 99mTc and 18F sources activities were calculated and subsequently compared. Results: Mean deviations between experimental and theoretical 99mTc and 18F sources activities were 0.56 (± 1.79% and 0.92 (± 1.19%, respectively. The mean ratio between activities indicated by the device for the 99mTc source as measured with the equipment pre-calibrated to measure 99mTc and 18F was 3.42 (± 0.06, and for the 18F source this ratio was 3.39 (± 0.05, values considered constant over the measurement time. Conclusion: The results of the linearity test using 99mTc were compatible with those obtained with the 18F source, indicating the viability of utilizing both radioisotopes in dose calibrator linearity testing. Such information in association with the high potential of radiation exposure and costs involved in 18F acquisition suggest 99mTc as the element of choice to perform dose calibrator linearity tests in centers that use 18F, without any detriment to the procedure as well as to the quality of the nuclear medicine service.

  20. Status update of a free-piston Stirling convertor for radioisotope space power systems

    Science.gov (United States)

    White, Maurice; Qiu, Songgang; Augenblick, Jack; Peterson, Allen; Faultersack, Frank

    2001-02-01

    Free-piston Stirling engines offer a relatively mature technology that is well-suited for advanced, high-efficiency radioisotope space power systems. This paper updates results from a combination of DOE and NASA contracts with Stirling Technology Company (STC). These contracts have demonstrated STC's Stirling convertor technology in a configuration and power level representative of a space power system. Based on demonstrated performance, long-life maintenance-free technology heritage, and success with aggressively imposed vibration testing. DOE has awarded system integration contracts to Boeing, Lockheed Martin and Teledyne Energy Systems. The objectives of these competitive Phase I contracts are to develop complete spacecraft power system conceptual designs based on the STC Stirling convertor, and to plan subsequent phases for two launches. Performance results for the DOE 55-W(e) Technology Demonstration Convertors (TDC's) have met original projections. Although the TDC's were intended only for technology demonstration, they have achieved very aggressive efficiency goals, demonstrated convertor-induced vibration levels below the Jet Propulsion Laboratory (JPL) specifications, passed a simulated launch load vibration test at 0.2 g2/Hz (12.3 g rms), and met EMI/EMC goals for most contemplated missions. No consideration for EMI reduction was included in the TDC design. Minor changes are underway to reduce EMI levels, with a goal of meeting specifications for missions such as Solar Probe with highly sensitive instrumentation. The long-term objective for DOE is to develop a power system with a system efficiency exceeding 20% that can function with a high degree of reliability for 10 years and longer on deep space missions. .

  1. Dose calibrator linearity test: {sup 99m}Tc versus {sup 18}F radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Willegaignon, Jose; Coura-Filho, George Barberio; Garcez, Alexandre Teles, E-mail: willegaignon@hotmail.com [Instituto do Cancer do Estado de Sao Paulo Octavio Frias de Oliveira (ICESP), Sao Paulo, SP (Brazil); Sapienza, Marcelo Tatit; Buchpiguel, Carlos Alberto [Universidade de Sao Paulo (FM/USP), Sao Paulo, SP (Brazil). Fac. de Medicina; Alves, Carlos Eduardo Gonzalez Ribeiro; Cardona, Marissa Anabel Rivera; Gutterres, Ricardo Fraga [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2015-01-15

    Objective: the present study was aimed at evaluating the viability of replacing {sup 18}F with {sup 99m}Tc in dose calibrator linearity testing. Materials and methods: the test was performed with sources of {sup 99m}Tc (62 GBq) and {sup 18}F (12 GBq) whose activities were measured up to values lower than 1 MBq. Ratios and deviations between experimental and theoretical {sup 99m}Tc and {sup 18}F sources activities were calculated and subsequently compared. Results: mean deviations between experimental and theoretical {sup 99m}Tc and {sup 18}F sources activities were 0.56 (± 1.79)% and 0.92 (± 1.19)%, respectively. The mean ratio between activities indicated by the device for the {sup 99m}Tc source as measured with the equipment precalibrated to measure {sup 99m}Tc and {sup 18}F was 3.42 (± 0.06), and for the {sup 18}F source this ratio was 3.39 (± 0.05), values considered constant over the measurement time. Conclusion: the results of the linearity test using {sup 99m}Tc were compatible with those obtained with the {sup 18}F source, indicating the viability of utilizing both radioisotopes in dose calibrator linearity testing. Such information in association with the high potential of radiation exposure and costs involved in {sup 18}F acquisition suggest {sup 99m}Tc as the element of choice to perform dose calibrator linearity tests in centers that use {sup 18}F, without any detriment to the procedure as well as to the quality of the nuclear medicine service. (author)

  2. Assessment of the environmental fate of cycloxaprid in flooded and anaerobic soils by radioisotopic tracing

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xuanqi; Xu, Xiaoyong; Li, Chao [Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai 200237 (China); Zhang, Hanxue; Fu, Qiuguo [Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Shao, Xusheng [Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai 200237 (China); Ye, Qingfu, E-mail: qfye@zju.edu.cn [Institute of Nuclear Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Li, Zhong, E-mail: lizhong@ecust.edu.cn [Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China, University of Science and Technology, Shanghai 200237 (China)

    2016-02-01

    Cycloxaprid (CYC) is a novel broad-spectrum neonicotinoid insecticide that has been developed for agricultural pest control. The fate of the {sup 14}C-labeled racemic and enantio-pure CYC isomers in flooded and anaerobic soil was investigated using radioisotope tracing techniques. After 100 d of incubation, only a minor portion (< 1%) of the applied CYC isomers is mineralized by each of the four tested soil types. The fraction of initially applied radioactive CYC dissipated into the bound or non-extractable residues (BR) increases with increase in the length of the incubation period, reaching up to 53.0–81.6%. The dissipation of the CYC through mineralization or formation of BR is strongly influenced by soil properties, such as humic content, pH value, and retained microbial activity. Amongst the soils studied, the fluvio-marine yellow loamy soil displayed the highest tendency to mineralize CYC while the coastal saline soil exhibited the strongest tendency to form BR. The observation that the water phase retained the large portion(> 60%) of the radioactivity attributed to the total extractable residue suggested that under the experimental condition, the initially applied {sup 14}C-labeled CYC residues were readily available for leaching or offsite transport. Additionally, no enantiomer-specific behaviors are observed. The results from this study provide a framework for assessing the environmental impact resulting from the use of this pesticide. - Highlights: • Only a minor portion (<1%) of the applied CYC was mineralized. • The bound residue increased over time, reaching up to 53.0-81.6%. • CYC residues were readily available for leaching. • No enantiomer-specific behaviors were observed.

  3. Radioisotope scanning of brain, liver, lung and bone with a note on tumour localizing agents

    Science.gov (United States)

    Lavender, J. P.

    1973-01-01

    Radioisotopic scanning of brain, liver, lungs and the skeleton is briefly reviewed with a survey of recent developments of clinical significance. In brain scanning neoplasm detection rates of greater than 90% are claimed. The true figure is probably 70-80%. Autopsy data shows a number of false negatives, particularly with vascular lesions. Attempts to make scanning more specific in differentiating neoplasm from vascular lesions by rapid sequence blood flow studies are reviewed. In liver scanning by means of colloids again high success rate is claimed but small metastases are frequently missed and the false negative scan rate is probably quite high. Lung scanning still has its main place in investigating pulmonary embolic disease. Ventilation studies using Xenon 133 are useful, particularly combined with perfusion studies. The various radiopharmaceuticals for use in bone scanning are reviewed. The appearance of technetium labelled phosphate compounds will probably allow much wider use of total skeletal scanning. Research into tumour localizing agents continues, the most recent and interesting being Gallium citrate and labelled bleomycin. Neither agent is predictable however although Gallium may have a place in Hodgkins disease and bronchogenic neoplasm and both may have a place in the detection of cerebral tumours. ImagesFig. 1Fig. 2Fig. 3p452-bFig. 3bFig. 4Fig. 5Fig. 5bFig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 12c & 12dFig. 13Fig. 13 b,c,dFig. 14Fig. 14bFig. 15Fig. 15bFig. 16Fig. 17Fig. 18 PMID:4602127

  4. Dose calibrator linearity test: 99mTc versus 18F radioisotopes*

    Science.gov (United States)

    Willegaignon, José; Sapienza, Marcelo Tatit; Coura-Filho, George Barberio; Garcez, Alexandre Teles; Alves, Carlos Eduardo Gonzalez Ribeiro; Cardona, Marissa Anabel Rivera; Gutterres, Ricardo Fraga; Buchpiguel, Carlos Alberto

    2015-01-01

    Objective The present study was aimed at evaluating the viability of replacing 18F with 99mTc in dose calibrator linearity testing. Materials and Methods The test was performed with sources of 99mTc (62 GBq) and 18F (12 GBq) whose activities were measured up to values lower than 1 MBq. Ratios and deviations between experimental and theoretical 99mTc and 18F sources activities were calculated and subsequently compared. Results Mean deviations between experimental and theoretical 99mTc and 18F sources activities were 0.56 (± 1.79)% and 0.92 (± 1.19)%, respectively. The mean ratio between activities indicated by the device for the 99mTc source as measured with the equipment pre-calibrated to measure 99mTc and 18F was 3.42 (± 0.06), and for the 18F source this ratio was 3.39 (± 0.05), values considered constant over the measurement time. Conclusion The results of the linearity test using 99mTc were compatible with those obtained with the 18F source, indicating the viability of utilizing both radioisotopes in dose calibrator linearity testing. Such information in association with the high potential of radiation exposure and costs involved in 18F acquisition suggest 99mTc as the element of choice to perform dose calibrator linearity tests in centers that use 18F, without any detriment to the procedure as well as to the quality of the nuclear medicine service. PMID:25798005

  5. Production of Medical Radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for Cancer Treatment and Arterial Restenosis Therapy after PTCA

    Science.gov (United States)

    Knapp, F. F. Jr.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  6. Production of medical radioisotopes in the ORNL High Flux Isotope Reactor (HFIR) for cancer treatment and arterial restenosis therapy after PTCA

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, F.F. Jr.; Beets, A.L.; Mirzadeh, S.; Alexander, C.W.; Hobbs, R.L.

    1998-06-01

    The High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube (HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions (PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  7. Method of radioisotope heat source measurement%同位素热源量热方法研究

    Institute of Scientific and Technical Information of China (English)

    侯旭峰; 张红生; 刘海港

    2012-01-01

    为了解决放射性同位素核源的热功率测试需要,进行了同位素核源量热方法的研究,通过搭建热功率测试试验装置,对各种影响量热精度的因素进行了分项试验、计算分析.试验结果表明,基于Gardon型热流传感器原理的量热方法,对于基本测量对象,用厚度为1.0 mm的康铜片作为敏感部件,可以实现在120~ 130W热功率范围内测试误差不大于1%,由试验研究分析表明测量原理可行,满足对同位素热源的量热精度要求.%A testing method of radioisotope heat power was researched for the radioisotope heat source. A experiment equipment for thermal testing was assembled to calculate and analyze the effect factor of thermal testing precision. The results Indicate that taking constantan sheet metal with thickness of 1.0 mm as the sensitive parts, the thermal testing technique based on Gardon type thermal flowage sensor, for the elementary measure objects, the testing error Is less than 1% between 120 W and 130 W, and the experimental research indicate that the Gardon type thermal testing theory is feasible and satisfied with the precision need of radioisotope thermal testing.

  8. Simultaneous detection and removal of radioisotopes with modified alginate beads containing an azo-based probe using RGB coordinates

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Ara; Jang, Geunseok; Namgung, Ho; Kim, Choongho; Kim, Daigeun; Kim, Yujun; Kim, Jongho; Lee, Taek Seung, E-mail: tslee@cnu.ac.kr

    2015-12-30

    Highlights: • Modified alginate with azo-based probe (ABO) was synthesized by a reaction between sodium alginate and azo-based probe (BO2). • BO2 was found to be a good probe molecule for radioisotopes using colorimetric analysis. • Detection of Co{sup 2+} and Sr{sup 2+} was mainly carried out via interaction between BO2 and metal ions. • Simultaneous removal of radioisotopes was assessed by the ion-exchange of carboxylate groups in sodium alginate. • The alginate beads with dual functions of detection and removal of metal ions are successfully accomplished. - Abstract: We prepared alginate beads that were modified with an azo-based probe molecule to monitor simultaneously the removal (by alginate) and probing (by the azo-probe molecule) of radioisotopes such as cobalt, strontium, and cesium ions. As an azo-probe molecule, Basic Orange 2 (BO2) was immobilized to the alginate bead. The BO2 in aqueous solution exhibited a slight red shift in absorption with a change in color from orange to dark orange upon addition of cobalt and strontium ions. In contrast, the color of BO2 did not change upon exposure to cesium ions. Thus, the covalently embedded BO2 in alginate beads could adsorb cobalt and strontium ions resulting in recognizable color change of the beads, which was induced by the formation of a complex between BO2 and metal ions. The color changes of the beads in the presence of metal ions were determined quantitatively using RGB color coordinate values. In addition to effectively removing metal ions, the colorimetric coordinate method provides a convenient and simple sensing technique for naked-eye metal ion detection.

  9. The Mars Hopper: a radioisotope powered, impulse driven, long-range, long-lived mobile platform for exploration of Mars

    Energy Technology Data Exchange (ETDEWEB)

    Steven D. Howe; Robert C. O' Brien; William Taitano; Doug Crawford; Nathan Jerred; Spencer Cooley; John Crapeau; Steve Hansen; Andrew Klein; James Werner

    2011-02-01

    Planetary exploration mission requirements are becoming more demanding. Due to the increasing cost, the missions that provide mobile platforms that can acquire data at multiple locations are becoming more attractive. Wheeled vehicles such as the MER rovers have proven extremely capable but have very limited range and cannot traverse rugged terrain. Flying vehicles such as balloons and airplanes have been proposed but are problematic due to the very thin atmospheric pressure and the strong, dusty winds present on Mars. The Center for Space Nuclear Research has designed an instrumented platform that can acquire detailed data at hundreds of locations during its lifetime - a Mars Hopper. The Mars Hopper concept utilizes energy from radioisotopic decay in a manner different from any existing radioisotopic power sources—as a thermal capacitor. By accumulating the heat from radioisotopic decay for long periods, the power of the source can be dramatically increased for short periods. The platform will be able to "hop" from one location to the next every 5-7 days with a separation of 5-10 km per hop. Preliminary designs show a platform that weighs around 52 kgs unfueled which is the condition at deployment. Consequently, several platforms may be deployed on a single launch from Earth. With sufficient lifetime, the entire surface of Mars can be mapped in detail by a couple dozen platforms. In addition, Hoppers can collect samples from all over the planet, including gorges, mountains and crevasses, and deliver them to a central location for eventual pick-up by a Mars Sample Return mission. The status of the Mars Hopper development project at the CSNR is discussed.

  10. A {sup 99m}Tc Generator using PZC for (n,{gamma}) {sup 99}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Adang, H.G.; Mutalib, A.; Suparman, I.; Hamid; Purwadi, B.; Pancoko, M.; Setiowati, S.; Yulianti, V.; Robertus, D.H. [Radioisotope Production Center, National Atomic Energy Agency Kawasan PUSPIPTEK, Serpong (Indonesia)

    1998-10-01

    The high performance adsorbent Poly Zirconium Compound (PZC) was produced by Department of Radioisotope, Japan Atomic Energy Research Institute. This compound was developed as an adsorbent for natural Mo (n,{gamma}) {sup 99}Mo-{sup 99m}Tc Generator. In the present paper, we report the performance of the PZC for a {sup 99m}Tc Generator which was focused on the yield, on elution profile and {sup 99}Mo breakthrough. (author)

  11. Radioisotopes in sedimentary study of the Black Sea and Caspian Sea

    Science.gov (United States)

    Laptev, Gennady; Voitsekhovych, Oleg V.

    2013-04-01

    Natural archives, such as lake or marine sediment, are widely used in erosion/sedimentation, water quality, climate change and eutrophication study alongside with the retrospective reanalysis of contaminants fluxes (trace metals, organic pollutants or radionuclides). In order to "read" information stored in sediment sequences a chronostatigraphic method have been developed and used since 1950s which is based upon variation of activity of 210Pb over the sediment profile, natural radioisotope of Uranium decay series with half-life 22 years, and hence valid for the last 100-150 years of recent sedimentation history. The 210Pb chronology is prone to be validated by other time-markers, such as artificial radionuclides globally dispersed after the nuclear weapons tests of 1960s or major accidents on NPP (the Chernobyl accident of 1986 or latest on the Fukushima Daiichi in 2011). In the last decade an intensive study using sediment cores collected from shelf and deep-sea areas in the Black Sea and the Caspian Sea have been undertaken within the framework of a number of international research projects organized by IAEA and UNOPS-GEF and devoted to environmental problems of this enclosed, and therefore sensitive to environmental impact, marine systems. Elaborative analysis of the experimental data and sediment age calculation have been done by application of CRS and CIC dating models to unsupported 210Pb activity over the sediment profile. Measured in sediment 137Cs and 241Am clearly showed well resolved Bomb test and Chernobyl fallout peaks and were used as markers in order to corroborate radiometrically determined age of sediment. Geochronological reconstruction of the fallout radionuclides inventory, fluxes and accumulation rate in the sediment of the Black Sea and Caspian Sea by application of combined radiometric dating technique proved to be very consistent with the historical data of atmospheric fallout observations of that artificial radionuclides recorded worldwide

  12. Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis

    DEFF Research Database (Denmark)

    Luo, Gang; Fotidis, Ioannis; Angelidaki, Irini

    2016-01-01

    analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature......, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. Results...... The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics...

  13. Hf-182-W-182 age dating of a Al-26-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System

    DEFF Research Database (Denmark)

    Holst, Jesper Christian; Olsen, Mia Bjørg Stolberg; Paton, Chad

    2013-01-01

    Refractory inclusions [calcium–aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., 26Al, 41Ca, and 182Hf) synthesized...... in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed...... provide a unique window into the earliest Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the 182Hf–182W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with 26Al/27Al...

  14. Production of medical radioisotopes in the ORNL high flux isotope reactor (HFIR) for cancer treatment and arterial restenosis therapy after PICA

    Science.gov (United States)

    Knapp, F. F.; Beets, A. L.; Mirzadeh, S.; Alexander, C. W.; Hobbs, R. L.

    1999-01-01

    The High Flux Isotope Reactor ( HFIR) at the Oak Ridge National Laboratory ( ORNL) represents an important resource for the production of a wide variety of medical radioisotopes. First beginning operation in 1965, the high thermal neutron flux (2.5×1015 neutrons/cm2/sec at 85 MW) and versatile target irradiation and handling facilities provide the opportunity for production of a wide variety of neutron-rich medical radioisotopes of current interest for therapy. In addition to serving as a key production site for californium-252 and other transuranic elements, important examples of therapeutic radioisotopes which are currently routinely produced in the HFIR for distribution include dysprosium-166 (parent of holmium-166), rhenium-186, tin-117 m and tungsten-188 (parent of rhenium-188). The nine hydraulic tube ( HT) positions in the central high flux region permit the insertion and removal of targets at any time during the operating cycle (22-24 days) and have traditionally represented a major site for production of medical radioisotopes. To increase the irradiation capabilities of the HFIR, special target holders have recently been designed and fabricated which will be installed in the six Peripheral Target Positions ( PTP), which are also located in the high flux region. These positions are only accessible during reactor refueling and will be used for long-term irradiations, such as required for the production of tin-117 m and tungsten-188. Each of the PTP tubes will be capable of housing a maximum of eight HT targets, thus increasing the total maximum number of HT targets from the current nine, to a total of 57. In this paper the therapeutic use of reactor-produced radioisotopes for bone pain palliation and vascular brachytherapy and the therapeutic medical radioisotope production capabilities of the ORNL HFIR are briefly discussed.

  15. Efficient method for iodine radioisotope labeling of cyclooctyne-containing molecules using strain-promoted copper-free click reaction.

    Science.gov (United States)

    Jeon, Jongho; Kang, Jung Ae; Shim, Ha Eun; Nam, You Ree; Yoon, Seonhye; Kim, Hye Rim; Lee, Dong Eun; Park, Sang Hyun

    2015-07-01

    Herein we report an efficient method for iodine radioisotope labeling of cyclooctyne-containing molecules using copper-free click reaction. For this study, radioiodination using the tin precursor 2 was carried out at room temperature to give (125)I-labeled azide ([(125)I]1) with high radiochemical yield (85%) and excellent radiochemical purity. Dibenzocyclooctyne (DBCO) containing cRGD peptide and gold nanoparticle were labeled with [(125)I]1 at 37°C for 30min to give triazoles with good radiochemical yields (67-95%). We next carried out tissue biodistribution study of [(125)I]1 in normal ICR mice to investigate the level of organ accumulation which needs to be considered for pre-targeted in vivo imaging. Large amount of [(125)I]1 distributed rapidly in liver and kidney from bloodstream and underwent rapid renal and hepatobiliary clearance. Moreover [(125)I]1 was found to be highly stable (>92%) in mouse serum for 24h. Therefore [(125)I]1 could be used as a potentially useful radiotracer for pre-targeted imaging. Those results clearly indicated that the present radiolabeling method using copper free click reaction would be quite useful for both in vitro and in vivo labeling of DBCO group containing molecules with iodine radioisotopes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Development of a neutron generator facility at Simon Fraser University

    OpenAIRE

    2015-01-01

    A new neutron generator facility at Simon Fraser University (SFU) utilizes a commercial deuterium-tritium neutron generator (Thermo Scientific P 385) to produce 14.2 MeV neutrons at a nominal rate of 3E8 neutrons/s. The facility will be used to produce radioisotopes to support a research program including nuclear structure studies and neutron activation analysis. As a prerequisite for regular operation of the facility and as a personnel safety consideration, dose rate predictions for the fa...

  17. Comparative analysis of taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors by metagenomic sequencing and radioisotopic analysis.

    Science.gov (United States)

    Luo, Gang; Fotidis, Ioannis A; Angelidaki, Irini

    2016-01-01

    Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors. The discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.

  18. Theoretical, experimental and field studies concerning molecular diffusion of radioisotopes in sediments and suspended solid particles of the sea Part A: Theories and mathematical calculations

    NARCIS (Netherlands)

    Duursma, E.K.; Hoede, C.

    1967-01-01

    The best way to describe the kinetics of the uptake of radioisotopes from sea water by bottom sediments and suspended solid matter is by molecular diffusion. The basic diffusion laws can be applied for finding the important parameter of the diffusion, the diffusion coefficient, which will characteri

  19. Carrying away and redistribution of radioisotopes on the Peyne catchment basin. Preliminary report; Entrainement et redistribution des radionucleides sur le bassin versant de la Peyne. Rapport preliminaire

    Energy Technology Data Exchange (ETDEWEB)

    Duffa, C.; Danic, F

    2006-07-01

    The transfers of radioisotopes present in soils and sediments are essentially conditioned by the mobilities of the physical vectors which constitute their supports. The water is the main vector of natural transfer, radioisotopes being associated with it under dissolved or particulate shape. The rainout and the hydrous erosion are responsible in particular for the carrying away and for the redistribution of contaminants following an atmospheric deposit on a catchment basin. However their effect is not the same in any point of the catchment basin. The work begun here aims at elaborating a classification of the grounds sensitivity towards this phenomenon of radioisotopes carrying away. The different factors of sensitivity have been identified: pluviometry, slope, soils occupation and soils nature. The Peyne catchment basin, that presents an important variability of these four parameters, constitutes the experimental site for this study. On this catchment basin, we search to identify the areas the most sensitive to the carrying away of radioisotopes, by combining a theoretical predictive approach based on the cartography and a descriptive approach basing on the sampling and the analysis of soils samples. (N.C.)

  20. Chromatographic generator systems for the actinides and natural decay series elements

    Energy Technology Data Exchange (ETDEWEB)

    McAlister, D.R.; Horwitz, E.P. [PG Research Foundation, Lisle, IL (United States)

    2011-07-01

    This work describes chromatographic radionuclide generator systems for the production of actinides and natural decay series elements. The generator systems begin with alpha emitting parent radioisotopes with half-lives (T{sub 1/2}) of greater than one year and produce alpha or beta emitting radioisotopes with half-lives of hours to days. Chromatographic systems were chosen to minimize radiolytic damage to chromatographic supports, preserve the parent activity for repeated use, provide high purity daughter radionuclide tracers, and to minimize or eliminate the need for evaporation of solutions of the parent or daughter nuclides. Useful secondary separations involving the daughters of the initial parent radionuclide are also described. Separation systems for {sup 210}Bi, {sup 210}Po, {sup 211}Pb, {sup 212}Pb, {sup 223}Ra, {sup 224}Ra, {sup 225}Ra, {sup 225}Ac, {sup 227}Th, {sup 228}Th, {sup 231}Th, {sup 234}Th, and {sup 239}Np are outlined in detail. (orig.)

  1. A unique radioisotopic label as a new concept for safeguarding and tagging of long-term stored items and waste

    CERN Document Server

    Chernikova, Dina

    2013-01-01

    The present paper discuss a novel method of tagging and labeling of waste casks, copper canisters, spent fuel containers, mercury containers, waste pack- ages and other items. In particular, it is related to the development of new long-term security identification tags/labels that can be applied to articles for carrying information about the content, inventory tracking, prevention of falsifi- cation and theft etc. It is suggested to use a unique combination of radioisotopes with different predictable length of life, as a label of the items. The possibil- ity to realize a multidimensional bar code symbology is proposed as an option for a new labeling method. The results of the first tests and evaluations of this are shown and discussed in the paper. The invention is suitable for use in items assigned to long-term (hundreds of years) storing or for final repositories. Alternative field of use includes fresh nuclear fuel handling and shipment of goods.

  2. Masters Thesis- Criticality Alarm System Design Guide with Accompanying Alarm System Development for the Radioisotope Production Laboratory in Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Greenfield, Bryce A. [Univ. of New Mexico, Albuquerque, NM (United States)

    2009-12-01

    A detailed instructional manual was created to guide criticality safety engineers through the process of designing a criticality alarm system (CAS) for Department of Energy (DOE) hazard class 1 and 2 facilities. Regulatory and technical requirements were both addressed. A list of design tasks and technical subtasks are thoroughly analyzed to provide concise direction for how to complete the analysis. An example of the application of the design methodology, the Criticality Alarm System developed for the Radioisotope Production Laboratory (RPL) of Richland, Washington is also included. The analysis for RPL utilizes the Monte Carlo code MCNP5 for establishing detector coverage in the facility. Significant improvements to the existing CAS were made that increase the reliability, transparency, and coverage of the system.

  3. Thermal drilling in planetary ices: an analytic solution with application to planetary protection problems of radioisotope power sources.

    Science.gov (United States)

    Lorenz, Ralph D

    2012-08-01

    Thermal drilling has been applied to studies of glaciers on Earth and proposed for study of the martian ice caps and the crust of Europa. Additionally, inadvertent thermal drilling by radioisotope sources released from the breakup of a space vehicle is of astrobiological concern in that this process may form a downward-propagating "warm little pond" that could convey terrestrial biota to a habitable environment. A simple analytic solution to the asymptotic slow-speed case of thermal drilling is noted and used to show that the high thermal conductivity of the low-temperature ice on Europa and Titan makes thermal drilling qualitatively more difficult than at Mars. It is shown that an isolated General Purpose Heat Source (GPHS) "brick" can drill effectively on Earth or Mars, whereas on Titan or Europa with ice at 100 K, the source would stall and become stuck in the ice with a surface temperature of <200 K.

  4. Radioisotope techniques used in breast cancer%核子医学在乳癌的应用

    Institute of Scientific and Technical Information of China (English)

    欧阳定勤

    2001-01-01

    乳癌是女性最常见的癌症.正确的诊断对医治的方法和结果有很大的影响.本文探讨几种用在乳癌病人上的核医学技术的临床价值,包括乳腺造影、淋巴腺采集和正电子断层扫描.%Breast cancer is one of the commonest cancer in women. Treatment and prognosis of breast cancer depend very much on accurate diagnosis, staging and follow-up of patients. Recently, there are several radioisotope techniques developed and have great impact on management of breast cancer. These include scintimammography, sentinel lymph node detection and positron emission tomography. This article is to review these important techniques.

  5. Development of measuring method for platelet monoaminergic system for information transfer using radio-isotope and its clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Kijiro; Nakahara, Tatsuo; Hirano, Makoto; Matsumoto, Takashi; Hondo, Hisao; Tsutsumi, Tetsuyuki; Nakamura, Kaoru; Uchimura, Hideyuki [National Sanatorium Hizen Hospital, Higashiseburi, Saga (Japan)

    1997-02-01

    Aiming to develop a measuring method for various receptors such as {sigma}, NMDA(N-methyl-D-aspartic acid) on human platelet using radioisotope (RI), quantitative determination method using RT-PCR for serotonin reuptake protein into human platelets was developed in the previous year. And quantitative determination for {sigma}{sub 1} receptor was succeeded by amplifying the base sequence which recognizes the receptor using RT-PCR method. There kinds of primer, P1 P2 and P3 were constructed based on the base sequence obtained from Gen Bank and P2 was selected as the primer which allows most efficient expression. Neither of the three primers could detect the specific band for RNA extracted from rat platelet. There remains a possibility that since the base sequence for {sigma}{sub 1} receptor is less homologous between the rat and human, its detection was unable by the primers used. (M.N.)

  6. A reanalysis of radioisotope measurements of the $^9$Be$(\\gamma,n)^8$Be cross-section

    CERN Document Server

    Robinson, Alan E

    2016-01-01

    The $^9$Be$(\\gamma,n)^8$Be reaction is enhanced by a near threshold $1/2^+$ state. Contradictions between existing measurements of this reaction cross-section affect calculations of astrophysical r-process yields, dark matter detector calibrations, and the theory of the nuclear structure of $^9$Be. Select well-documented radioisotope $^9$Be$(\\gamma,n)$ source yield measurements have been reanalyzed, providing a set of high-accuracy independently measured cross sections. A Breit-Wigner fit of these corrected measurements yields $E_R=1738.8^{+5.0}_{-4.2}$~keV, $\\Gamma_\\gamma=0.771^{+0.055}_{-0.044}$~eV, and $\\Gamma_n=268^{+40}_{-33}$~keV for the $1/2^+$ state. The fit favors a resonant $1/2^+$ state, but a virtual state is not excluded.

  7. Renal radioisotope clearance in an unselected group of diabetics - a tool for the early recognition of diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Doschek, D.; Wulf, R.; Krause, F.J.

    1980-12-01

    Our study in unselected patients with diabetes was undertaken to determine the relation between glomerular filtration rate (GFR) and renal plasma flow (RPF) according to the patient's age. The diagnostic work-up was done with patients in unselected disease states because a classification of all systemic manifestations of the diabetes was not possible. The lack of selection may therefore reduce the value of our statistical results. From age 55 onwards, there was a reduction in GFR and, to a lesser extent, in PFR exceeding that which was age-dependent. It is, therefore, recommended to check the clearance in all patients with diabetes older than 55 years. The clearance with radioisotopically labeled substances, being a very sensitive method for the evaluation of restricted renal function, may permit an early recognition of diabetic nephropathy.

  8. Renal radioisotope clearance in an unselected group of diabetics - a tool for the early recognition of diabetic nephropathy

    Energy Technology Data Exchange (ETDEWEB)

    Doschek, D.; Wulf, R.; Krause, F.J.

    1980-12-01

    Our study in unselected patients with diabetes was undertaken to determine the relation between glomerular filtration rate (GFR) and renal plasma flow (RPF) according to the patient's age. The diagnostic work-up was done with patients in unselected disease states because a classification of all systemic manifestations of the diabetes was not possible. The lack of selection may therefore reduce the value of our statistical results. From age 55 onwards, there was a reduction in GFR and, to a lesser extent, in RPF exceeding that which was age-dependent. It is, therefore, recommended to check the clearance in all patients with diabetes older than 55 years. The clearance with radioisotopically labeled substances, being a very sensitive method for the evaluation of restricted renal function, may permit an early recognition of diabetic nephropathy.

  9. High efficiency direct thermal to electric energy conversion from radioisotope decay using selective emitters and spectrally tuned solar cells

    Science.gov (United States)

    Chubb, Donald L.; Flood, Dennis J.; Lowe, Roland A.

    1993-01-01

    Thermophotovoltaic (TPV) systems are attractive possibilities for direct thermal-to-electric energy conversion, but have typically required the use of black body radiators operating at high temperatures. Recent advances in both the understanding and performance of solid rare-earth oxide selective emitters make possible the use of TPV at temperatures as low as 1200K. Both selective emitter and filter system TPV systems are feasible. However, requirements on the filter system are severe in order to attain high efficiency. A thin-film of a rare-earth oxide is one method for producing an efficient, rugged selective emitter. An efficiency of 0.14 and power density of 9.2 W/KG at 1200K is calculated for a hypothetical thin-film neodymia (Nd2O3) selective emitter TPV system that uses radioisotope decay as the thermal energy source.

  10. Radiopharmaceuticals in positron emission tomography: Radioisotope productions and radiolabelling procedures at the Austin and Repatriation Medical Centre

    Energy Technology Data Exchange (ETDEWEB)

    Tochon-Danguy, H.J.; Sachinidis, J.I.; Chan, J.G.; Cook, M. [Austin and Repatriation Medical Centre, Melbourne, VIC (Australia). Centre for Positron Emission Tomography

    1997-10-01

    Positron Emission Tomography (PET) is a technique that utilizes positron-emitting radiopharmaceuticals to map the physiology, biochemistry and pharmacology of the human body. Positron-emitting radioisotopes produced in a medical cyclotron are incorporated into compounds that are biologically active in the body. A scanner measures radioactivity emitted from a patient`s body and provides cross-sectional images of the distribution of these radiolabelled compounds in the body. It is the purpose of this paper to review the variety of PET radiopharmaceuticals currently produced at the Austin and Repatriation Medical Centre in Melbourne. Radioisotope production, radiolabelling of molecules and quality control of radiopharmaceuticals will be discussed. A few examples of their clinical applications will be shown as well. During the last five years we achieved a reliable routine production of various radiopharmaceuticals labelled with the four most important positron-emitters: oxygen-15 (t,{sub 1/2}=2min), nitrogen-13 (t{sub 1/2}= 10 min), carbon-11 (t{sub 1/2}=20 min) and fluorine-18 (t{sub 1/2}= 110 min). These radiopharmaceuticals include [{sup 15}O]oxygen, [{sup 15}O]carbon monoxide, [{sup 15}O]carbon dioxide, [{sup 15}O]water, [{sup 13}N]ammonia, [{sup 11}C]flumazenil, [{sup 11}C]SCH23390, [{sup 18}F]fluoromisonidazole and [{sup 18}F]fluoro-deoxy-glucose ([{sup 18}F]FDG). In addition, since the half life of [{sup 18}F] is almost two hours, regional distribution can be done, and the Austin and Repatriation Medical Centre is currently supplying [{sup 18}F]FDG in routine to other hospitals. Future new radiopharmaceuticals development include a [{sup 18}F]thymidine analog to measure cell proliferation and a [{sup 11}C]pyrroloisoquinoline to visualize serotonergic neuron abnormalities. (authors) 23 refs., 2 tabs.

  11. Numerical simulation of radioisotope's dependency on containment performance for large dry PWR containment under severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Mehboob, Khurram, E-mail: khurramhrbeu@gmail.com [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Xinrong, Cao [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Ahmed, Raheel [College of Automation, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China); Ali, Majid [College of Nuclear Science and Technology, Harbin Engineering University, 145-31 Nantong Street, Nangang District, Harbin, Heilongjiang 150001 (China)

    2013-09-15

    Highlights: • Calculation and comparison of activity of BURN-UP code with ORIGEN2 code. • Development of SASTC computer code. • Radioisotopes dependency on containment ESFs. • Mitigation in atmospheric release with ESFs operation. • Variation in radioisotopes source term with spray flow and pH value. -- Abstract: During the core melt accidents large amount of fission products can be released into the containment building. These fission products escape into the environment to contribute in accident source term. The mitigation in environmental release is demanded for such radiological consequences. Thus, countermeasures to source term, mitigations of release of radioactivity have been studied for 1000 MWe PWR reactor. The procedure of study is divided into five steps: (1) calculation and verification of core inventory, evaluated by BURN-UP code, (2) containment modeling based on radioactivity removal factors, (3) selection of potential accidents initiates the severe accident, (4) calculation of release of radioactivity, (5) study the dependency of release of radioactivity on containment engineering safety features (ESFs) inducing mitigation. Loss of coolant accident (LOCA), small break LOCA and flow blockage accidents (FBA) are selected as initiating accidents. The mitigation effect of ESFs on source term has been studied against ESFs performance. Parametric study of release of radioactivity has been carried out by modeling and simulating the containment parameters in MATLAB, which takes BURN-UP outcomes as input along with the probabilistic data. The dependency of iodine and aerosol source term on boric and caustic acid spray has been determined. The variation in source term mitigation with the variation of containment spray flow rate and pH values have been studied. The variation in containment retention factor (CRF) has also been studied with the ESF performance. A rapid decrease in source term is observed with the increase in pH value.

  12. High-Efficiency, Nanowire Based Thermoelectric Devices for Radioisotope Power Conversion Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I proposal responds to topic S3.03 of the 2010 NASA SBIR solicitation, for Power Generation and Conversion. Thermoelectric devices offer a simple and...

  13. Computer predictions of ground storage effects on performance of Galileo and ISPM generators

    Science.gov (United States)

    Chmielewski, A.

    1983-01-01

    Radioisotope Thermoelectric Generators (RTG) that will supply electrical power to the Galileo and International Solar Polar Mission (ISPM) spacecraft are exposed to several degradation mechanisms during the prolonged ground storage before launch. To assess the effect of storage on the RTG flight performance, a computer code has been developed which simulates all known degradation mechanisms that occur in an RTG during storage and flight. The modeling of these mechanisms and their impact on the RTG performance are discussed.

  14. Zircon Geochronology (U-Pb, Petrography, Geochemistry and Radioisotopes of Bornaward Metarhyolites (Central Taknar Zone-Northwest of Bardaskan

    Directory of Open Access Journals (Sweden)

    Reza Monazzami Bagherzadeh

    2016-07-01

    Full Text Available Introduction The Bornaward area is located in the Northeastern Iran (in the Khorasan Razavi province 28 km northwest of the city of Bardaskan at 57˚ 46΄ to 57˚ 52΄ N latitude and 35˚ 21΄ to 35˚ 24΄E longitude. The Taknar structural zone, situated in the North central Iranian micro continent, is part of the Lut block (Forster, 1978. The Taknar zone is an allochthonous block bounded by the Darouneh and Taknar major faults. Much of this zone consists of metarhyolite-rhyodacite volcanic rocks, and rhyolitic tuff with interlayers of sandstone and dolomite (Taknar Formation. Analytical Results ICP-MS analysis of REE and minor elements of samples of the Bornaward metarhyolites was carried out at the ACME Laboratory in Vancouver, Canada. U-Pb dating of the metarhyolites was performed on isolated zircons in Crohn's Laser Lab, in Arizona (Gehrels et al., 2008. Measurement of Rb, Sr, Sm and Nd isotopes and (143Nd/144Ndi and (87Sr/86Sri ratios took place in the radioisotope laboratory of the University of Aveiro in Portugal. Petrography The volcanic rocks are porphyritic, commonly containing phenocrysts of orthoclase and rarely sanidine, quartz and intermediate plagioclase in a groundmass of fine-grained quartz and feldspar. An alteration has produced oriented needles of sericite and clay minerals, clusters of fine-grained green biotite and clots of epidote and chlorite. Geochemistry The compositions of the volcanic rocks are calc alkaline and high K- calc alkaline. The obtained Shand index (Al2O3/( CaO+Na2O+K2O is above 1.1, in the peraluminous S-type granite field (Chappell and White, 2001. Plotted on the TAS diagram (Middlemost, 1994, all the metarhyolite-rhyodacite samples are located in the sub-alkaline field and the majority fall into the rhyolite group. The metarhyolite-rhyodacites show enrichment of LREE with a moderately ascending pattern ((La/YbN=2.51-10.11 and La=46.45-145.48. Europium shows a negative anomaly (Eu/Eu*=0.23-0.71. U

  15. Milliwatt thermoelectric generator for space applications

    Science.gov (United States)

    Allen, Daniel T.; Bass, John C.; Elsner, Norbert B.; Ghamaty, Saeid; Morris, Charles C.

    2000-01-01

    A small thermoelectric generator is being developed for general use in space, and in particular for any of several proposed Mars atmospheric probes and surface landers that may be launched in the 2003 to 2006 time period. The design is based on using an existing 1 watt radioisotope heater unit as the generator heat source. That is the Light-Weight Radioisotope Heater Unit (RHU) which has already been used to provide heating alone on numerous spacecraft, including the 1997 Pathfinder/Sojourner Mars lander. Important technical issues that need to be addressed in the detailed design are the mechanical integrity of the overall power supply in consideration of the impact of landing on Mars and the subsequent performance of the thermal insulation around the heat source, which is critical to delivering the output power. The power supply is intended to meet a 20-year operational lifetime. Hi-Z is developing milliwatt modules that make use of micro fabrication techniques. For this generator modules are being fabricated that produce approximately 40 milliwatts at a T-hot of 250 °C and a T-cold of 25 °C. The module is composed of an 18×18 array of 0.38 mm (0.015'') square×22.9 mm(0.900'') long N and P elements. The modules use bismuth-telluride based alloys that are fine grain metallurgy prepared materials that can endure the demanding fabrication techniques. The paper describes the design status to date, and it presents the analytical approach, the testing program plan and a manufacturing schedule that is needed to meet the launch dates being considered. Electrical performance and life test data for the modules is also presented. .

  16. Constraining Water Fluxes Through the Streambed of a Semi-arid Losing Stream Using Natural Tracers: Heat and Radioisotopes

    Science.gov (United States)

    Andersen, M. S.; Rau, G. C.; McCallum, A. M.; Meredith, K.; Acworth, I.

    2011-12-01

    Natural physical and chemical tracers of flow have different advantages and shortfalls based on their properties and the uncertainty related to variability in their source concentration. Each tracer integrates over a characteristic spatial-temporal scale depending on its decay or production rate and the flow velocity of the system. For instance heat tracing using diurnal temperature fluctuations will, at best, provide information about flow in the upper 1-2 m of the streambed before the signal is dampened below measurement resolution (Constantz et al. 2003). Conversely, radioisotopes used as tracers will integrate over increasing spatio-temporal scales for decreasing decay constants. Radioisotopes with comparatively slow decay rates will be less sensitive for resolving flow conditions on short spatio-temporal scales. Therefore, it is difficult to use these tracers in the streambed of losing systems because the radioactive decay is not discernible against the variability. Consequently, employing a combination of different tracers provides information on different parts of a given flow system. Comparing flow velocities derived from tracers integrating over different scales allows for separating the local hyporheic exchange from the regional groundwater recharge. A field experiment was carried out in a perennial section of the mostly ephemeral Maules Creek in NSW, Australia. Streambed temperature profiles were monitored at three sites along a 400 m stretch of the perennial reach. Streambed temperatures were recorded at 4 depths within one meter below the streambed. Water samples were collected from surface water, streambed and groundwater and analysed for stable water isotopes (18O and 2H) and radioisotopes (222Rn and 3H). The streambed heat profiles provided time series of surface water/groundwater exchange. Using this method it was found that the conditions were losing at all three sites with recharge rates varying between 0 and 0.4 m/d. 222Rn measurements in the

  17. The Mars Hopper: Development, Simulation and Experimental Validation of a Radioisotope Exploration Probe for the Martian Surface

    Energy Technology Data Exchange (ETDEWEB)

    Nathan D. Jerred; Spencer Cooley; Robert C. O' Brien; Steven D. Howe; James E. O' Brien

    2012-09-01

    An advanced exploration probe has been proposed by the Center for Space Nuclear Research (CSNR) to acquire detailed data from the Martian surface and subsurface, ‘hop’ large distances to multiple sites in short periods of time and perform this task repeatedly. Although several similar flying vehicles have been proposed utilizing various power sources and complex designs, e.g. solar-electric and chemical-based, the CSNR’s Mars Hopper is based on a radioisotope thermal rocket (RTR) concept. The Mars Hopper’s design relies on the high specific energies [J/kg] of radioisotopes and enhances their low specific power [W/kg] through the use of a thermal capacitance material to store thermal energy over time. During operation, the RTR transfers the stored thermal energy to a flowing gas, which is then expanded through a converging-diverging nozzle, producing thrust. Between flights, the platform will have ample time to perform in-depth science at each location while the propellant tanks and thermal capacitor recharge. Recharging the propellant tanks is accomplished by sublimation freezing of the ambient CO2 atmosphere with a cryocooler, followed by heating and pressurization to yield a liquid storage state. The proposed Mars Hopper will undergo a ballistic flight, consuming the propellant in both ascent and descent, and by using multiple hopper platforms, information can be gathered on a global scale, enabling better resource resolution and providing valuable information for a possible Mars sample-return mission. The CSNR, collaborating with the Idaho National Laboratory (INL) and three universities (University of Idaho, Utah State University and Oregon State University), has identified key components and sub-systems necessary for the proposed hopper. Current project activities include the development of a lab-scale prototypic Mars Hopper and test facility, along with computational fluid dynamics (CFD)/thermal-hydraulic models to yield a better understanding of the

  18. NONDESTRUCTIVE IDENTIFICATION OF CHEMICAL WARFARE AGENTS AND EXPLOSIVES BY NEUTRON GENERATOR-DRIVEN PGNAA

    Energy Technology Data Exchange (ETDEWEB)

    T. R. Twomey; A. J. Caffrey; D. L. Chichester

    2007-02-01

    Prompt gamma-ray neutron activation analysis (PGNAA) is now a proven method for the identification of chemical warfare agents and explosives in military projectiles and storage containers. Idaho National Laboratory is developing a next-generation PGNAA instrument based on the new Ortec Detective mechanically-cooled HPGe detector and a neutron generator. In this paper we review PGNAA analysis of suspect chemical warfare munitions, and we discuss the advantages and disadvantages of replacing the californium-252 radioisotopic neutron source with a compact accelerator neutron generator.

  19. Evaluation of high step-up power electronics stages in thermoelectric generator systems

    DEFF Research Database (Denmark)

    Sun, Kai; Ni, Longxian; Chen, Min

    2013-01-01

    to the required high level. Furthermore, maximum power point tracking control for TEG modules needs to be implemented into the power electronics stages. In this paper, the temperature-dependent electrical characteristics of a thermoelectric generator are analyzed in depth. Three typical high step-up power......To develop practical thermoelectric generator (TEG) systems, especially radioisotope thermoelectric power supplies for deep-space exploration, a power conditioning stage with high step-up gain is indispensable. This stage is used to step up the low output voltage of thermoelectric generators...

  20. Research with radiation and radioisotopes to better understand plant physiology and agricultural consequences of radioactive contamination from the Fukushima Daiichi nuclear accident.

    Science.gov (United States)

    Nakanishi, Tomoko M

    2017-01-01

    Research carried out by me and my group over the last almost four decades are summarized here. The main emphasis of my work was and continues to be on plant physiology using radiation and radioisotopes. Plants live on water and inorganic elements. In the case of water, we developed neutron imaging methods and produced (15)O-labeled water (half-life 2 min) and applied them to understand water circulation pattern in the plant. In the case of elements, we developed neutron activation analysis methods to analyze a large number of plant tissues to follow element specific distribution. Then, we developed real-time imaging system using conventional radioisotopes for the macroscopic and microscopic observation of element movement. After the accident in Fukushima Daiichi nuclear power plant, we, the academic staff of Graduate School, have been studying agricultural effects of radioactive fallout; the main results are summarized in two books published by Springer.

  1. 188W/188Re Generator System and Its Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    A. Boschi

    2014-01-01

    Full Text Available The 188Re radioisotope represents a useful radioisotope for the preparation of radiopharmaceuticals for therapeutic applications, particularly because of its favorable nuclear properties. The nuclide decay pattern is through the emission of a principle beta particle having 2.12 MeV maximum energy, which is enough to penetrate and destroy abnormal tissues, and principle gamma rays (Eγ=155 keV, which can efficiently be used for imaging and calculations of radiation dose. 188Re may be conveniently produced by 188W/188Re generator systems. The challenges related to the double neutron capture reaction route to provide only modest yield of the parent 188W radionuclide indeed have been one of the major issues about the use of 188Re in nuclear medicine. Since the specific activity of 188W used in the generator is relatively low (<185 GBq/g, the eluted Re188O4- can have a low radioactive concentration, often ineffective for radiopharmaceutical preparation. However, several efficient postelution concentration techniques have been developed, which yield clinically useful Re188O4- solutions. This review summarizes the technologies developed for the preparation of 188W/188Re generators, postelution concentration of the 188Re perrhenate eluate, and a brief discussion of new chemical strategies available for the very high yield preparation of 188Re radiopharmaceuticals.

  2. The Link Between the Local Bubble and Radioisotopic Signatures on Earth

    CERN Document Server

    Feige, Jenny; Wallner, Anton; Schulreich, Michael M; Kinoshita, Norikazu; Paul, Michael; Dettbarn, Christian; Fifield, L Keith; Golser, Robin; Honda, Maki; Linnemann, Ulf; Matsuzaki, Hiroyuki; Merchel, Silke; Rugel, Georg; Steier, Peter; Tims, Stephen G; Winkler, Stephan R; Yamagata, Takeyasu

    2016-01-01

    Traces of 2-3 Myr old 60Fe were recently discovered in a manganese crust and in lunar samples. We have found that this signal is extended in time and is present in globally distributed deep-sea archives. A second 6.5-8.7 Myr old signature was revealed in a manganese crust. The existence of the Local Bubble hints to a recent nearby supernova-activity starting 13 Myr ago. With analytical and numerical models generating the Local Bubble, we explain the younger 60Fe-signature and thus link the evolution of the solar neighborhood to terrestrial anomalies.

  3. Successes and problems in the development of medical radioisotope production in Russia

    Science.gov (United States)

    Zhuikov, B. L.

    2016-05-01

    There are many challenges that face radionuclide production and application for medical diagnostics and therapy in Russia. In this article, the development of novel production methods for medical radionuclides (82Sr, 82Sr/82Rb-generator, 117mSn, 225Ac, etc.) at the Institute for Nuclear Research, RAS is described, providing an example of how supporting basic nuclear facilities, backing fundamental research, granting scientists and medical specialists freedom in choosing a research area, and effective international collaboration involving developed countries combine to enable progress in the field.

  4. Tailoring medium energy proton beam to induce low energy nuclear reactions in ⁸⁶SrCl₂ for production of PET radioisotope ⁸⁶Y.

    Science.gov (United States)

    Medvedev, Dmitri G; Mausner, Leonard F; Pile, Philip

    2015-07-01

    This paper reports results of experiments at Brookhaven Linac Isotope Producer (BLIP) aiming to investigate effective production of positron emitting radioisotope (86)Y by the low energy (86)Sr(p,n) reaction. BLIP is a facility at Brookhaven National Laboratory designed for the proton irradiation of the targets for isotope production at high and intermediate proton energies. The proton beam is delivered by the Linear Accelerator (LINAC) whose incident energy is tunable from 200 to 66 MeV in approximately 21 MeV increments. The array was designed to ensure energy degradation from 66 MeV down to less than 20 MeV. Aluminum slabs were used to degrade the proton energy down to the required range. The production yield of (86)Y (1.2+/-0.1 mCi (44.4+/-3.7) MBq/μAh) and ratio of radioisotopic impurities was determined by assaying an aliquot of the irradiated (86)SrCl2 solution by gamma spectroscopy. The analysis of energy dependence of the (86)Y production yield and the ratios of radioisotopic impurities has been used to adjust degrader thickness. Experimental data showed substantial discrepancies in actual energy propagation compared to energy loss calculations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Development of an accelerator driven neutron activator for medical radioisotope production

    Science.gov (United States)

    Abbas, K.; Buono, S.; Burgio, N.; Cotogno, G.; Gibson, N.; Maciocco, L.; Mercurio, G.; Santagata, A.; Simonelli, F.; Tagziria, H.

    2009-04-01

    A compact, accelerator driven, neutron activator based on a modified version of the Adiabatic Resonance Crossing (ARC) concept has been developed, with the aim of efficiently utilising ion-beam generated neutrons for the production of radioactive nanoparticles for brachytherapy. Extensive Monte Carlo simulations have been carried out to optimise the design of the activator, which is based on a hybrid approach, coupling a lead buffer and a graphite reflector. Computational Fluid Dynamic methods have been used for the thermal-hydraulic design of the neutron-generating beryllium target to ensure efficient water cooling under high proton beam currents. The facility has been tested under various experimental configurations, and the activation yields of different materials, measured with γ-spectrometry techniques, have been compared with theoretical predictions. In this paper the main elements of the activator are described, and calculated and measured results for pure Au, Mo, Ho, and Re foils as well as for Re and Ho nanoparticle samples are presented. A satisfactory agreement between experiment and theory was found, confirming that the improved ARC activator developed in this work is suitable for isotope production for certain applications such as brachytherapy.

  6. Spatial distribution of radioisotopes in the coast of Suez Gulf, southwestern Sinai and the impact of hot springs.

    Science.gov (United States)

    Ramadan, Kh A; Seddeek, M K; Elnimr, T; Sharshar, T; Badran, H M

    2011-06-01

    This work describes the concentrations of radioisotopes in soil, sediment, wild plants and groundwater in southwestern Sinai. The study area extends from Suez to Abu Rudies along the eastern part of the Suez Gulf. It included two hot springs: Ayun Musa and Hammam Faraoun. No dependence of ¹³⁷Cs concentrations on any of the measured sand characteristics was found, including calcium carbonate. The enrichment of ²²⁶Ra in Hammam Faraoun hot spring was the most prominent feature. The ²²⁶Ra concentration in hot springs of Ayun Musa and Hammam Faraoun were 68 and 2377 Bq kg⁻¹ for sediments, 3.5 and 54.0 Bq kg⁻¹ for wild plants and 205 and 1945 mBq l⁻¹ for the groundwater, respectively. In addition, ²²⁶Ra activity concentration in local sand in the area of Hammam Faraoun was ∼14 times that of Ayun Musa. On the other hand, the ²³²Th concentrations were comparable in the two hot springs, while ¹³⁷Cs concentrations were relatively higher in Ayun Musa. The characteristics and radioelements studies support possible suggestions that the waters in the two hot springs have different contributions of sea and groundwaters crossing different geological layers where the water-rock interaction takes place.

  7. Determination of Lactic Acid Bacteria Viability in the Small Intestine of Catfish (Pangasius djambal by Using the 32P Radioisotope

    Directory of Open Access Journals (Sweden)

    I. Sugoro

    2015-04-01

    Full Text Available The viability of probiotics is important to be determined, as is its probiotic potency in the small instestine of fish. The result can be used as a basis to determine the feeding frequency of the probiotics to the fish.The aim of this study is to gain information about the viability of lactic acid bacteria (LAB in the small intestine of fish by using the 32P isotope technique. Catfish (Pangasius djambal was used as a test fish, and the LAB with the code of P2.1 PTB was the subject of the experiment. Before its viability was tested, the LAB had been labelled with radioisotope 32P, then mixed into catfish feed. Its viability could be determined by counting the activity of 32P. The results showed that the percentage of LAB viability in the small intestine of catfish declined until day 7. The percentage of LAB viability was decreased at an amount of 30% at day 3. Based on this result, the feeding frequency of LAB P2.1 PTB is every 3 days.

  8. Reentry response of the light weight radioisotope heater unit resulting from a Venus-Earth-Earth Gravity Assist maneuver accident

    Energy Technology Data Exchange (ETDEWEB)

    Hagan, J.C.

    1988-10-01

    Reentry analyses consisting of ablation response, thermal response and thermal stress response have been conducted on the Light Weight Radioisotope Heater Unit for Galileo/VEEGA reentry conditions. Sequential ablation analyses of the LWRHU aeroshell, the fuel clad, and the fuel pellet have been conducted in reentry regimes where the aeroshell has been deemed to fail. The failure criterion for ablation is assumed to be recession corresponding to 50% of the wall thickness (the design criterion recommended in the DOE Overall Safety Manual). Although the analyses have been carried far beyond this limit (as presented and discussed herein), JHU/APL endorses the position that failure may occur at the time that this recession is achieved or at lower altitudes within the heat pulse considering the uncertainties in the aerodynamic, thermodynamic, and thermo-structural analyses and modeling. These uncertainties result mainly because of the high energies involved in the VEEGA reentries compared to orbital decay reentries. Risk evaluations should consider the fact that for shallow flight paths the unit may disassemble at high-altitude as a result of ablation or may remain intact until it impacts with a clad that had been molten. 80 refs., 46 figs., 16 tabs.

  9. Determination of Lactic Acid Bacteria Viability in the Small Intestine of Catfish (Pangasius djambal by Using the 32P Radioisotope

    Directory of Open Access Journals (Sweden)

    I. Sugoro

    2015-10-01

    Full Text Available The viability of probiotics is important to be determined, as is its probiotic potency in the small instestine of fish. The result can be used as a basis to determine the feeding frequency of the probiotics to the fish.The aim of this study is to gain information about the viability of lactic acid bacteria (LAB in the small intestine of fish by using the 32P isotope technique. Catfish (Pangasius djambal was used as a test fish, and the LAB with the code of P2.1 PTB was the subject of the experiment. Before its viability was tested, the LAB had been labelled with radioisotope 32P, then mixed into catfish feed. Its viability could be determined by counting the activity of 32P. The results showed that the percentage of LAB viability in the small intestine of catfish declined until day 7. The percentage of LAB viability was decreased at an amount of 30% at day 3. Based on this result, the feeding frequency of LAB P2.1 PTB is every 3 days. Received: 04 October 2014 Revised: 26 March 2015; Accepted: 05 April 2015

  10. Nondestructive determination of lead, cadmium, tin, antimony, and barium in ceramic glazes by radioisotope X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.L.; Cunningham, W.C. [Food and Drug Administration, Washington, DC (United States)

    1996-09-01

    Quantitation capabilities of radioisotope X-ray fluorescence spectrometry (RXRFS) for determining lead, cadmium, tin, antimony, and barium in ceramic glazes were investigated. Twenty-one air-dried glazes and 85 fired glazes on test tiles were analyzed by using {sup 109}Cd and {sup 57}Co excitation sources. Accurate Pb determinations, with limits of detection (LODs) of about 0.3 mg/cm{sup 2} for 5 min counting times, were achieved by using the 75 keV {Kappa}{sub {alpha}}{sub 1} X-ray photopeak and a Pb foil calibration procedure. Cd, Sn, Sb, and Ba concentrations were determined with LODs from about 0.5 to 1.5 mg/cm{sup 2}. For Pb and Ba, results obtained by using absorption corrections based only on element concentrations determined by RXRFS and an iterative approach led to analytical biases of {le}4% relative to results obtained by using corrections based on known total element compositions. Biases were more severe for Cd, Sn, and Sb because lower X-ray energies were involved and sensitivities varied as a function of matrix Pb content. Pb concentrations were above LODs (1.3-40 mg/cm{sup 2}) in 39 of 47 fired {open_quotes}food-safe{close_quotes} glazes and in 33 of the other 38 fired glazes (0.4-39 mg/cm{sup 2}). 15 refs., 9 figs., 9 tabs.

  11. /sup 203/Hg and other gamma-emitting radio-isotopes as labels for Dirofilaria immitis microfilariae

    Energy Technology Data Exchange (ETDEWEB)

    Lengemann, F.W.; Grieve, R.B.; Chmielewicz, M.; Georgi, J.R.

    1986-04-01

    The in vitro uptake of gamma-emitting radionuclides by microfilariae of Dirofilaria immitis was investigated. Radionuclides tested were /sup 133/Ba, /sup 207/Bi, /sup 82/Br, /sup 109/Cd, /sup 51/Cr, /sup 60/Co, /sup 59/Fe, /sup 203/Hg, /sup 125/I, /sup 54/Mn, /sup 32/P, /sup 125/Sb, /sup 46/Sc, /sup 75/Se and /sup 65/Zn. Only /sup 207/Bi, /sup 59/Fe, /sup 203/Hg, /sup 54/Mn and /sup 46/Sc showed more than 2% of the available radioactivity to bind to the microfilariae. When tested for retention in vitro only /sup 203/Hg showed retention levels approaching 90%. Moreover, when dimethyl-sulphoxide was incorporated into the medium at levels of 1% (v/v) the uptake of /sup 203/Hg could be increased by 3-5 times; no other radio-isotope tested responded in this manner. The uptake of /sup 203/Hg was directly related to temperature and time of incubation. Mercury, as mercuric chloride, was toxic to the microfilariae and represents an impediment to the incorporation of high levels of /sup 203/Hg in microfilariae.

  12. Production of Medical Radioisotopes with High Specific Activity in Photonuclear Reactions with $\\gamma$ Beams of High Intensity and Large Brilliance

    CERN Document Server

    Habs, D

    2010-01-01

    We study the production of radioisotopes for nuclear medicine in $(\\gamma,x{\\rm n}+y{\\rm p})$ photonuclear reactions or ($\\gamma,\\gamma'$) photoexcitation reactions with high flux [($10^{13}-10^{15}$)$\\gamma$/s], small diameter $\\sim (100 \\, \\mu$m$)^2$ and small band width ($\\Delta E/E \\approx 10^{-3}-10^{-4}$) $\\gamma$ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion,$x$n$ + y$p) reactions with (ion=p,d,$\\alpha$) from particle accelerators like cyclotrons and (n,$\\gamma$) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow $\\gamma$ beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). $(\\gamma,\\gamma')$ isomer production via specially selected $\\gamma$ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground st...

  13. Comprehensive quantitative and qualitative liquid chromatography-radioisotope-mass spectrometry analysis for safety testing of tolbutamide metabolites without standard samples.

    Science.gov (United States)

    Tozuka, Zenzaburo; Aoyama, Shinsuke; Nozawa, Kohei; Akita, Shoji; Oh-Hara, Toshinari; Adachi, Yasuhisa; Ninomiya, Shin-ichi

    2011-09-01

    Liquid chromatography-radioisotope-mass spectrometry (LC-RI-MS) analysis was used to determine the structures of 12 (four previously unknown) (14) C-tolbutamide (TB) metabolites in rat biological samples (plasma, urine, bile, feces, and microsomes). The four novel metabolites are ω-carboxy TB, hydroxyl TB (HTB)-O-glucuronide, TB-ortho or meta-glutathion, and tolylsulphoaminocarbo-glutathion. In rat plasma, after oral administration of (14) C-TB at therapeutic dose (1 mg/kg) and microdose (1.67 µg/kg), the total RI and six metabolites [HTB, carboxy TB (CTB), M1: desbutyl TB, M2: ω-hydroxyl TB, M3: α-hydroxyl TB, and M4: ω-1-hydroxyl TB] were quantified by LC-RI-MS. The plasma concentrations were calculated using their response factors (MS-RI intensity ratio) without standard samples, and the area under the curve (AUC) of plasma concentration per time for evaluation of Safety Testing of Drug Metabolites (MIST) was calculated using the ratio of TB metabolites AUC/total RI AUC. The ratios were as follows: TB 94.5% and HTB 2.5% for the microdose (1.67 µg/kg) and TB 95.6%, HTB 0.96%, CTB 0.065%, M1 0.62%, M2 0.0035%, M3 0.077%, and M4 0.015% for the therapeutic dose (1 mg/kg). These values were less than 10% of the MIST criteria.

  14. Summary of Stirling Convertor Testing at NASA Glenn Research Center in Support of Stirling Radioisotope Power System Development

    Science.gov (United States)

    Schifer, Nicholas A.; Oriti, Salvatore M.

    2013-01-01

    The NASA Glenn Research Center (GRC) has been testing 100 We class, free-piston Stirling convertors for potential use in Stirling Radioisotope Power Systems (RPS) for space science and exploration missions. Free-piston Stirling convertors are capable of achieving a 38% conversion efficiency, making Stirling attractive for meeting future power system needs in light of the shrinking U.S. plutonium fuel supply. Convertors currently on test include four Stirling Technology Demonstration Convertors (TDCs), manufactured by the Stirling Technology Company (STC), and six Advanced Stirling Convertors (ASCs), manufactured by Sunpower, Inc. Total hours of operation is greater than 514,000 hours (59 years). Several tests have been initiated to demonstrate the functionality of Stirling convertors for space applications, including: in-air extended operation, thermal vacuum extended operation. Other tests have also been conducted to characterize Stirling performance in anticipated mission scenarios. Data collected during testing has been used to support life and reliability estimates, drive design changes and improve quality, and plan for expected mission scenarios. This paper will provide a summary of convertors tested at NASA GRC and discuss lessons learned through extended testing.

  15. RADIOISOTOPE-DRIVEN DUAL-MODE PROPULSION SYSTEM FOR CUBESAT-SCALE PAYLOADS TO THE OUTER PLANETS

    Energy Technology Data Exchange (ETDEWEB)

    N. D. Jerred; T. M. Howe; S. D. Howe; A. Rajguru

    2014-02-01

    It is apparent the cost of planetary exploration is rising as mission budgets declining. Currently small scientific beds geared to performing limited tasks are being developed and launched into low earth orbit (LEO) in the form of small-scale satellite units, i.e., CubeSats. These micro- and nano-satellites are gaining popularity among the university and science communities due to their relatively low cost and design flexibility. To date these small units have been limited to performing tasks in LEO utilizing solar-based power. If a reasonable propulsion system could be developed, these CubeSat platforms could perform exploration of various extra-terrestrial bodies within the solar system engaging a broader range of researchers. Additionally, being mindful of mass, smaller cheaper launch vehicles (approximately 1,000 kgs to LEO) can be targeted. Thus, in effect, allows for beneficial exploration to be conducted within limited budgets. Researchers at the Center for Space Nuclear Research (CSNR) are proposing a low mass, radioisotope-based, dual-mode propulsion system capable of extending the exploration realm of these CubeSats out of LEO.

  16. Development of growth rate measuring method for intracellular, parasitic acid-fast bacteria using radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Noboru; Fukutomi, Yasuo [National Inst. of Infectious Deseases, Tokyo (Japan)

    1998-02-01

    To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using {sup 14}C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO{sub 2} was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)

  17. Production of medical radioisotopes with high specific activity in photonuclear reactions with γ-beams of high intensity and large brilliance

    Science.gov (United States)

    Habs, D.; Köster, U.

    2011-05-01

    We study the production of radioisotopes for nuclear medicine in ( γ, xn+ yp) photonuclear reactions or ( γ, γ') photoexcitation reactions with high-flux [(1013-1015) γ/s], small diameter ˜(100 μm)2 and small bandwidth (Δ E/ E≈10-3-10-4) γ beams produced by Compton back-scattering of laser light from relativistic brilliant electron beams. We compare them to (ion, xn+ yp) reactions with (ion = p,d, α) from particle accelerators like cyclotrons and (n, γ) or (n,f) reactions from nuclear reactors. For photonuclear reactions with a narrow γ-beam the energy deposition in the target can be managed by using a stack of thin target foils or wires, hence avoiding direct stopping of the Compton and pair electrons (positrons). However, for ions with a strong atomic stopping only a fraction of less than 10-2 leads to nuclear reactions resulting in a target heating, which is at least 105 times larger per produced radioactive ion and often limits the achievable activity. In photonuclear reactions the well defined initial excitation energy of the compound nucleus leads to a small number of reaction channels and enables new combinations of target isotope and final radioisotope. The narrow bandwidth γ excitation may make use of the fine structure of the Pygmy Dipole Resonance (PDR) or fluctuations in γ-width leading to increased cross sections. Within a rather short period compared to the isotopic half-life, a target area of the order of (100 μm)2 can be highly transmuted, resulting in a very high specific activity. ( γ, γ') isomer production via specially selected γ cascades allows to produce high specific activity in multiple excitations, where no back-pumping of the isomer to the ground state occurs. We discuss in detail many specific radioisotopes for diagnostics and therapy applications. Photonuclear reactions with γ-beams allow to produce certain radioisotopes, e.g. 47Sc, 44Ti, 67Cu, 103Pd, 117 m Sn, 169Er, 195 m Pt or 225Ac, with higher specific activity

  18. Recycle of scrap plutonium-238 oxide fuel to support future radioisotope applications

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, L.D.; Espinoza, J.M.; Ramsey, K.B.; Rinehart, G.H.; Silver, G.L.; Purdy, G.M.; Jarvinen, G.D.

    1997-11-01

    The Nuclear Materials Technology (NMT) Division of Los Alamos National Laboratory has initiated a development program to recover and purify plutonium-238 oxide from impure feed sources in a glove box environment. A glove box line has been designed and a chemistry flowsheet developed to perform this recovery task at large scale. The initial demonstration effort focused on purification of {sup 238}PuO{sub 2} fuel by HNO{sub 3}/HF dissolution, followed by plutonium(III) oxalate precipitation and calcination to an oxide. Decontamination factors for most impurities of concern in the fuel were very good, producing {sup 238}PuO{sub 2} fuel significantly better in purity than specified by General Purpose Heat Source (GPHS) fuel powder specifications. The results are encouraging for recycle of relatively impure plutonium-238 oxide and scrap residue items into fuel for useful applications. A sufficient quantity of purified {sup 238}PuO{sub 2} fuel was recovered from the process to allow fabrication of a GPHS unit for testing. The high specific activity of plutonium-238 magnifies the consequences and concerns of radioactive waste generation. This work places an emphasis on development of waste minimization technologies to complement the aqueous processing operation. Results from experiments allowing more time for neutralized solutions of plutonium-238 to precipitate resulted in decontamination to about 1 millicurie/L. Combining ultrafiltration treatment with addition of a water-soluble polymer designed to coordinate Pu, allowed solutions to be decontaminated to about 1 microcurie/L. Efforts continue to develop a capability for efficient, safe, cost-effective, and environmentally acceptable methods to recover and purify {sup 238}PuO{sub 2} fuel.

  19. Generating Units

    Data.gov (United States)

    Department of Homeland Security — Generating Units are any combination of physically connected generators, reactors, boilers, combustion turbines, and other prime movers operated together to produce...

  20. Estimation of groundwater residence time using environmental radioisotopes (14C,T) in carbonate aquifers, southern Poland.

    Science.gov (United States)

    Samborska, Katarzyna; Różkowski, Andrzej; Małoszewski, Piotr

    2013-01-01

    Triassic carbonate aquifers in the Upper Silesia region, affected by intense withdrawal, have been investigated by means of isotopic analyses of (14)C, δ(13)C, δ(2)H, δ(18)O and (3)H. The isotopic examinations were carried out in the 1970s and in the early 1980s, and it was the first application of tracers to estimate age and vulnerability for the contamination of groundwater in this region. Similar isotopic analyses were conducted in 2007 and 2008 with the same Triassic carbonate formation. The isotopic examinations were performed within the confined part of the carbonate formation, wherein aquifers are covered by semi-permeable deposits. The direct recharge of the aquifer occurs in the outcrop areas, but it mainly takes place due to percolation of the water through aquitards and erosional windows. The Triassic aquifer has been intensively drained by wells and by lead-zinc mines. Nowadays, the declining water demand and closure of some mines have induced a significant increase in the water table level. The detailed analysis of the results, including the radiocarbon age corrections and the comparison of radioisotope activities, has made it possible to estimate the range of residence time within the carbonate Triassic aquifer. This range from several tens to several tens of thousands indicates that the recharge of aquifers might have occurred between modern times and the Pleistocene. The apparent age of the water estimated on the basis of (14)C activity was corrected considering the carbon isotope exchange and the diffusion between mobile water in fractures and stagnant water in micropores. The obtained corrected period of recharge corresponds to the result of investigations of noble gases, which were carried out in the 1990s. In almost half of the cases, groundwater is a mixture of young and old water. The mixing processes occur mainly in areas of heavy exploitation of the aquifer.

  1. Calculating of Dose Distribution in Tongue Brachytherapy by Different Radioisotopes using Monte Carlo Simulation and Comparing by Experimental Data

    Directory of Open Access Journals (Sweden)

    Banafsheh Zeinali Rafsanjani

    2011-06-01

    Full Text Available Introduction: Among different kinds of oral cavity cancers, the frequency of tongue cancer occurrence is more significant. Brachytherapy is the most common method to cure tongue cancers. Long sources are used in different techniques of tongue brachytherapy. The objective of this study is to asses the dose distribution around long sources, comparing different radioisotopes as brachytherapy sources, measuring the homogeneity of delivered dose to treatment volume and also comparing mandible dose and dose of tongue in the regions near the mandible with and without using shield. Material and Method: The Monte Carlo code MCNP4C was used for simulation. The accuracy of simulation was verified by comparing the results with experimental data. The sources like Ir-192, Cs-137, Ra-226, Au-198, In-111 and Ba-131 were simulated and the position of sources was determined by Paris system. Results: The percentage of mandible dose reduction with use of 2 mm Pb shield for the sources mentioned above were: 35.4%, 20.1%, 86.6%, 32.24%, 75.6%, and 36.8%. The tongue dose near the mandible with use of shied did not change significantly. The dose homogeneity from the most to least was obtained from these sources: Cs-137, Au-198, Ir-192, Ba-131, In-111 and Ra-226. Discussion and Conclusion: Ir-192 and Cs-137 were the best sources for tongue brachytherapy treatment but In-111 and Ra-226 were not suitable choices for tongue brachytherapy. The sources like Au-198 and Ba-131 had rather the same performance as Ir-192

  2. Flight times to the heliopause using a combination of solar and radioisotope electric propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Ohndorf, Andreas [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany); Dachwald, Bernd [FH Univ. of Applied Sciences, Aachen (Germany); Seboldt, Wolfgang [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Koeln (Germany); Loeb, Horst W.; Schartner, Karl-Heinz [Giessen Univ. (Germany)

    2011-07-01

    We investigate the interplanetary flight of a low-thrust space probe to the heliopause, located at a distance of about 200 AU from the Sun. Our goal was to reach this distance within the 25 years postulated by ESA for such a mission (which is less ambitious than the 15-year goal set by NASA). Contrary to solar sail concepts and combinations of ballistic and electrically propelled flight legs, we have investigated whether the set flight time limit could also be kept with a combination of solar-electric propulsion and a second, RTG-powered upper stage. The used ion engine type was the RIT-22 for the first stage and the RIT-10 for the second stage. Trajectory optimization was carried out with the low-thrust optimization program InTrance, which implements the method of Evolutionary Neurocontrol, using Artificial Neural Networks for spacecraft steering and Evolutionary Algorithms to optimize the Neural Networks' parameter set. Based on a parameter space study, in which the number of thrust units, the unit's specific impulse, and the relative size of the solar power generator were varied, we have chosen one configuration as reference. The transfer time of this reference configuration was 29.6 years and the fastest one, which is technically more challenging, still required 28.3 years. As all flight times of this parameter study were longer than 25 years, we further shortened the transfer time by applying a launcher-provided hyperbolic excess energy up to 49 km{sup 2}/s{sup 2}. The resulting minimal flight time for the reference configuration was then 27.8 years. The following, more precise optimization to a launch with the European Ariane 5 ECA rocket reduced the transfer time to 27.5 years. This is the fastest mission design of our study that is flexible enough to allow a launch every year. The inclusion of a fly-by at Jupiter finally resulted in a flight time of 23.8 years, which is below the set transfer-time limit. However, compared to the 27.5-year transfer

  3. Generational diversity.

    Science.gov (United States)

    Kramer, Linda W

    2010-01-01

    Generational diversity has proven challenges for nurse leaders, and generational values may influence ideas about work and career planning. This article discusses generational gaps, influencing factors and support, and the various generational groups present in today's workplace as well as the consequences of need addressing these issues. The article ends with a discussion of possible solutions.

  4. From 1962 the teaching of Methodology of Radioisotopes is continuous in the University of Buenos Aires of the Argentine Republic; Desde 1962 la ensenanza de Metodologia de Radioisotopos es continua en la Universidad de Buenos Aires de la Republica Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, E.; Cremaschi, G.; Martin, G.; Zubillaga, M.; Cricco, G.; Davio, C.; Genaro, A.; Bianchin, A.; Mohamad, N.; Klecha, A.; Calmanovici, G.; Goldman, G.; Salgueiro, J.; Nunez, M.; Medina, V.; Gutierrez, A.; Leonardi, N.; Bergoc, R. [Laboratorio de Radioisotopos, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Junin 956, 1113- Buenos Aires (Argentina)]. e-mail: rmbergoc@arnet.com.ar

    2006-07-01

    In the Faculty of Pharmacy and Biochemistry of the University of Buenos Aires the teaching of the radioisotopes began in 1960 and uninterruptedly continuous. The application of the radioisotopes and the radiations in different professional activities it is acceptable only in a context of radiological safety and with personal appropriately trained. Conscious of it, the training in grade, postgraduate and technicature, has more of 40% of the thematic one guided to the formation in radiological protection. The courses dictated at the moment in the Laboratory of Radioisotopes they include: Grade formation: to) Subject grade 'Methodology of Radioisotopes' in the Career of Biochemistry: it began to be dictated in 1960 and until the present, more of 6500 students they have gone by our classrooms. b) Grade subject 'Radiopharmacy' in the Career of Pharmacy: guided to the formation of a modern pharmacist, with necessary knowledge to be developed as professional in the Radiopharmaceutical area. Postgraduate formation: c) Postgraduate course of Methodology of Radioisotopes specially directed to biochemical, biologists, veterinarians, chemical. It is dictated uninterruptedly from 1962. d) Postgraduate course in Methodology of Radioisotopes for medical professionals, specially directed to professionals of the medicine that want to specialize in different branches of the Nuclear Medicine. Both courses have 220 present hours and it stops their approval the assistants they should surrender a final exam at open book that consists on the resolution of a practical exercise adapted to their professional practices. Until the present they have surrendered their exams satisfactorily approximately 2000 professionals coming from different areas of the Argentina and of several countries of Hispanic speech. e) Starting from 1992 the Course of Upgrade in Methodology of Radioisotopes directed to professionals that want to upgrade its knowledge in new radioisotopic

  5. Modeling non-steady state radioisotope transport in the vadose zone - A case study using uranium isotopes at Peña Blanca, Mexico

    Science.gov (United States)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-10-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and 234U/ 238U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and α-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Peña Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced 234U/ 238U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using 234U/ 238U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  6. Investigation on the Behaviours of TiB2 Reinforced B4C-SiC Composites Against Co-60 Gamma Radioisotope Source

    Directory of Open Access Journals (Sweden)

    Bülent Büyük

    2015-02-01

    Full Text Available In the present study, the gamma attenuation behaviours of the Titanium diboride (TiB2 reinforced boron carbide (B4C-silicon carbide (SiC composite materials were investigated against Co-60 gamma radioisotope source. In the experiments TiB2 unreinforced and 2% and 4% TiB2 (by volume reinforced B4C-SiC composite materials were used. In the composite materials B4C/SiC ratio has been realized as 6/4 by volume. The linear and mass attenuation coefficients of the samples were carried out for Co60 gamma radioisotope source which has two energy peaks (1.17 and 1.33 MeV. Then mass attenuation coefficients and half-value thicknesses (HVT of the materials were calculated. Experimental mass attenuation coefficients were compared with the theoretical values which were calculated from XCOM computer code. Furthermore HVTs of the samples were evaluated and compared each other. It has been seen that the experimental and theoretical mass attenuation coefficients are closed to each other and differences are under 10 percent. In addition, TiB2 reinforced B4C-SiC composites have smaller HVTs than unreinforced one. Moreover 4% TiB2 reinforced B4C-SiC composite has smaller HVT than the 2% reinforced sample. Reinforcing TiB2 and increasing TiB2 ratio increase the gamma attenuation property of the B4C-SiC composites against Co-60 gamma radioisotope source.

  7. Modeling non-steady state radioisotope transport in the vadose zone--A case study using uranium isotopes at Pena Blanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ku, T. L.; Luo, S.; Goldstein, S. J.; Murrell, M. T.; Chu, W. L.; Dobson, P. F.

    2009-06-01

    Current models using U- and Th-series disequilibria to study radioisotope transport in groundwater systems mostly consider a steady-state situation. These models have limited applicability to the vadose zone (UZ) where the concentration and migratory behavior of radioisotopes in fluid are often transitory. We present here, as a first attempt of its kind, a model simulating the non-steady state, intermittent fluid transport in vadose layers. It provides quantitative constraints on in-situ migration of dissolved and colloidal radioisotopes in terms of retardation factor and rock-water interaction (or water transit) time. For uranium, the simulation predicts that intermittent flushing in the UZ leads to a linear relationship between reciprocal U concentration and {sup 234}U/{sup 238}U ratio in percolating waters, with the intercept and slope bearing information on the rates of dissolution and {alpha}-recoil of U isotopes, respectively. The general validity of the model appears to be borne out by the measurement of uranium isotopes in UZ waters collected at various times over a period during 1995-2006 from a site in the Pena Blanca mining district, Mexico, where the Nopal I uranium deposit is located. Enhanced {sup 234}U/{sup 238}U ratios in vadose-zone waters resulting from lengthened non-flushing time as prescribed by the model provide an interpretative basis for using {sup 234}U/{sup 238}U in cave calcites to reconstruct the regional changes in hydrology and climate. We also provide a theoretical account of the model's potential applications using radium isotopes.

  8. 182Hf-182W age dating of a 26Al-poor inclusion and implications for the origin of short-lived radioisotopes in the early Solar System.

    Science.gov (United States)

    Holst, Jesper C; Olsen, Mia B; Paton, Chad; Nagashima, Kazuhide; Schiller, Martin; Wielandt, Daniel; Larsen, Kirsten K; Connelly, James N; Jørgensen, Jes K; Krot, Alexander N; Nordlund, Ake; Bizzarro, Martin

    2013-05-28

    Refractory inclusions [calcium-aluminum-rich inclusions, (CAIs)] represent the oldest Solar System solids and provide information regarding the formation of the Sun and its protoplanetary disk. CAIs contain evidence of now extinct short-lived radioisotopes (e.g., (26)Al, (41)Ca, and (182)Hf) synthesized in one or multiple stars and added to the protosolar molecular cloud before or during its collapse. Understanding how and when short-lived radioisotopes were added to the Solar System is necessary to assess their validity as chronometers and constrain the birthplace of the Sun. Whereas most CAIs formed with the canonical abundance of (26)Al corresponding to (26)Al/(27)Al of ∼5 × 10(-5), rare CAIs with fractionation and unidentified nuclear isotope effects (FUN CAIs) record nucleosynthetic isotopic heterogeneity and (26)Al/(27)Al of Solar System, including the origin of short-lived radioisotopes. However, their chronology is unknown. Using the (182)Hf-(182)W chronometer, we show that a FUN CAI recording a condensation origin from a solar gas formed coevally with canonical CAIs, but with (26)Al/(27)Al of ∼3 × 10(-6). The decoupling between (182)Hf and (26)Al requires distinct stellar origins: steady-state galactic stellar nucleosynthesis for (182)Hf and late-stage contamination of the protosolar molecular cloud by a massive star(s) for (26)Al. Admixing of stellar-derived (26)Al to the protoplanetary disk occurred during the epoch of CAI formation and, therefore, the (26)Al-(26)Mg systematics of CAIs cannot be used to define their formation interval. In contrast, our results support (182)Hf homogeneity and chronological significance of the (182)Hf-(182)W clock.

  9. Visualization of Uptake of Mineral Elements and the Dynamics of Photosynthates in Arabidopsis by a Newly Developed Real-Time Radioisotope Imaging System (RRIS).

    Science.gov (United States)

    Sugita, Ryohei; Kobayashi, Natsuko I; Hirose, Atsushi; Saito, Takayuki; Iwata, Ren; Tanoi, Keitaro; Nakanishi, Tomoko M

    2016-04-01

    Minerals and photosynthates are essential for many plant processes, but their imaging in live plants is difficult. We have developed a method for their live imaging in Arabidopsis using a real-time radioisotope imaging system. When each radioisotope,(22)Na,(28)Mg,(32)P-phosphate,(35)S-sulfate,(42)K,(45)Ca,(54)Mn and(137)Cs, was employed as an ion tracer, ion movement from root to shoot over 24 h was clearly observed. The movements of(22)Na,(42)K,(32)P,(35)S and(137)Cs were fast so that they spread to the tip of stems. In contrast, high accumulation of(28)Mg,(45)Ca and(54)Mn was found in the basal part of the main stem. Based on this time-course analysis, the velocity of ion movement in the main stem was calculated, and found to be fastest for S and K among the ions we tested in this study. Furthermore, application of a heat-girdling treatment allowed determination of individual ion movement via xylem flow alone, excluding phloem flow, within the main stem of 43-day-old Arabidopsis inflorescences. We also successfully developed a new system for visualizing photosynthates using labeled carbon dioxide,(14)CO2 Using this system, the switching of source/sink organs and phloem flow direction could be monitored in parts of whole shoots and over time. In roots,(14)C photosynthates accumulated intensively in the growing root tip area, 200-800 µm behind the meristem. These results show that this real-time radioisotope imaging system allows visualization of many nuclides over a long time-course and thus constitutes a powerful tool for the analysis of various physiological phenomena.

  10. Multi-Hundred Watt Radioisotope Thermoelectric Generator Program, LES 8/9 Program, MJS Program. Bi-monthly progress report, 1 September--31 October 1974

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    Significant events, activities and achievements on the MHW LES 8/9 and MJS Programs for the reporting period are reported. Topics discussed include programmatic, safety, systems, isotope heat source, converter, product assurance, acceptance testing, and converter fabrication. (TFD)

  11. Multi-hundred watt radioisotope thermoelectric generator program, LES 8/9 program, MJS program. Period from 1 September--31 October 1975

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Significant activities performed or monitored by the General Electric Company on the MHW-RTG Program during Sept. and Oct. 1975 are reported. The work included safety, design, development, integration with ERDA and associate contractors, product assurance, hardware fabrication, and acceptance testing. (TFD)

  12. Silicon Germanium (SiGe) Radioisotope Thermoelectric Generator (RTG) Program for space missions. Fifteenth technical progress report, August 1-31, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Whitmore, C. W.; Silverman, G.

    1980-01-01

    This program consists of the following three tasks: Multi-Hundred Watt RTG for the Galileo Probe Mission; Reestablishment of Silicon Germanium Unicouple Capability; and General Purpose Heat Source RTG for the International Solar Polar and Galileo Orbiter Missions. Details of program progress for each task, including a milestone schedule and a discussion of current problem areas (if any) are presented.

  13. Multi-Hundred Watt Radioisotope Thermoelectric Generator Program, LES 8/9 Program, MJS Program. Bi-monthly progress report, 1 July--31 August 1975

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Significant events, activities and achievements on the MHW LES 8/9 and MJS Programs for the reporting period are reported. Topics discussed include safety systems, isotope heat source, converter, product assurance, hardware fabrication, acceptance testing, and ground support equipment. (TFD)

  14. Multi-Hundred Watt Radioisotope Thermoelectric Generator Program, LES 8/9 Program, MJS Program. Bi-monthly progress report, 1 May--30 June 1975

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-01

    Significant events, activities and achievements on the MHW LES 8/9 and MJS Programs for the reporting period are reported. Topics discussed include programmatic, safety, systems, isotope heat source, converter, product assurance, hardware fabrication, acceptance testing, and ground support equipment. (TFD)

  15. Lead shielded cells for the spectrographic analysis of radioisotope solutions; Descripcion de un equipo, con recintos blindados, para el analisis espectrografico de soluciones de radioisotopos

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M.; Capdevila, C.; Cruz, F. de la

    1967-07-01

    Two lead shielded cells for the spectrochemical analysis of radioisotope samples are described. One of them is devoted to the evaporation of samples before excitation and the other one contains a suitable spectrographic excitation stand for the copper spark technique. A special device makes it possible the easy displacement of the excitation cell on wheels and rails for its accurate and reproducible position as well as its replacement by a glove box for plutonium analysis. In order to guarantee safety the room in which the spectrograph and the source are set up in separated from the active laboratory by a wall with a suitable window. (Author) 1 refs.

  16. A radioisotope-nondependent high-sensitivity method for measuring the activity of glioblastoma-related O(6)-methylguanine DNA methyltransferase.

    Science.gov (United States)

    Hongo, Aya; Gu, Ran; Suzuki, Miho; Nemoto, Naoto; Nishigaki, Koichi

    2015-07-01

    O(6)-Methylguanine DNA methyltransferase (MGMT) cancels the anticancer effect of temozolomide (drug for glioblastoma), which introduces methylation to DNA. Therefore, developing an MGMT inhibitor is a promising strategy for the treatment of this cancer. For this purpose, a sensitive detection method that does not depend on the conventional radioisotope (RI) method was developed. This was realized by a fluorescence-based method that measured the amount of cleavable restriction sites demethylated by the action of MGMT; this method was enhanced by introducing a polymerase chain reaction (PCR) amplification step. As an assay of enzyme activity, 20-fold higher sensitivity (subnanomolar) was attained compared with our and others' fluorescence-based approaches.

  17. Calculation of excitation functions of proton, alpha and deuteron induced reactions for production of medical radioisotopes {sup 122–125}I

    Energy Technology Data Exchange (ETDEWEB)

    Artun, Ozan, E-mail: ozanartun@yahoo.com; Aytekin, Hüseyin, E-mail: huseyinaytekin@gmail.com

    2015-02-15

    In this work, the excitation functions for production of medical radioisotopes {sup 122–125}I with proton, alpha, and deuteron induced reactions were calculated by two different level density models. For the nuclear model calculations, the Talys 1.6 code were used, which is the latest version of Talys code series. Calculations of excitation functions for production of the {sup 122–125}I isotopes were carried out by using the generalized superfluid model (GSM) and Fermi-gas model (FGM). The results have shown that generalized superfluid model is more successful than Fermi-gas model in explaining the experimental results.

  18. [L'application des radioisotopes a la chromatographie sur colonnes de celluloses substituees-IV L'analyse du mercure et du zinc dans le bismuth].

    Science.gov (United States)

    Muzzarelli, R A; Marcotrigiano, G

    1967-03-01

    The Chromatographic behaviour of nanogram amounts of bismuth has been studied by radioisotope techniques on cellobiose, cellulose and seven substituted celluloses. All celluloses in ethyl ether adsorb bismuth, provided that it is as nitrate, and that excess of nitric acid is avoided. Bismuth can be eluted with thiocyanate in ether-methanol or with hydrochloric acid in methanol, depending on the retention strength of the various functional groups of celluloses. A very simple method of separation of bismuth from mercury over a wide range of concentration is presented.

  19. Modular Isotopic Thermoelectric Generator

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1981-01-01

    Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design.

  20. Comparison of LaBr3:Ce and NaI(Tl) Scintillators for Radio-Isotope Identification Devices

    Energy Technology Data Exchange (ETDEWEB)

    Milbrath, Brian D.; Choate, Bethany J.; Fast, Jim E.; Hensley, Walter K.; Kouzes, Richard T.; Schweppe, John E.

    2006-07-31

    Lanthanum halide (LaBr3:Ce) scintillators offer significantly better resolution (<3 percent at 662 kilo-electron volt [keV]) relative to sodium iodide (NaI(Tl)) and have recently become commercially available in sizes large enough for the hand-held radio-isotope identification device (RIID) market. There are drawbacks to lanthanum halide detectors, however. These include internal radioactivity that contributes to spectral counts and a low-energy response that can cause detector resolution to be lower than that of NaI(Tl) below 100 keV. To study the potential of this new material for RIIDs, we performed a series of measurements comparing a 1.5?1.5 inch LaBr?3:Ce detector with an Exploranium GR 135 RIID, which contains a 1.5-2.2 inch NaI(Tl) detector. Measurements were taken for short time frames, as typifies RIID usage. Measurements included examples of naturally occurring radioactive material (NORM), typically found in cargo, and special nuclear materials. Some measurements were noncontact, involving short distances or cargo shielding scenarios. To facilitate direct comparison, spectra from the different detectors were analyzed with the same isotope identification software (ORTEC ScintiVision TM). In general, the LaBr3:Ce detector was able to find more peaks and find them faster than the NaI(Tl) detector. To the same level of significance, the LaBr3:Ce detector was usually two to three times faster. The notable exception was for 40K containing NORM where interfering internal contamination in the LaBr3:Ce detector exist. NaI(Tl) consistently outperformed LaBr3:Ce for this important isotope. LaBr3:Ce currently costs much more than NaI(Tl), though this cost-difference is expected to diminish (but not completely) with time. As is true of all detectors, LaBr3:Ce will need to be gain-stabilized for RIID applications. This could possibly be done using the internal contaminants themselves. It is the experience of the authors that peak finding software in RIIDs needs to be

  1. Instant Generation

    Science.gov (United States)

    Loveland, Elaina

    2017-01-01

    Generation Z students (born between 1995-2010) have replaced millennials on college campuses. Generation Z students are entrepreneurial, desire practical skills with their education, and are concerned about the cost of college. This article presents what need to be known about this new generation of students.

  2. Accelerated Decay of Radioisotopes

    Science.gov (United States)

    2013-01-01

    Designing of PFRP experiments for controlled ionic species, analyzing results of recent neutron source development experiments, calculating expected...controllable and varied to access reactions of interest (primarily (n,n’) inelastic scattering). Theory and analysis using Monte Carlo codes ( MCNPX ) is still...MlTL flow theory, circuit calculation to determine the Mercury load line, neutron yield calculations , and LSP simulations. Experimentally, the total

  3. International shipment of light weight radioisotopic heater units (LWRHU) using the USA/9516/B(U)F Mound 1 kW shipping package in support of the ``Pluto Express'' mission

    Science.gov (United States)

    Barklay, Chadwick D.; Merten, C. William

    1997-01-01

    Radioisotopes have provided heat that has been used to maintain specific operating environments within remote satellites and spacecraft. For the ``Pluto Express'' mission the 238PuO2 fueled light weight radioisotopic heater unit (LWRHU) will be used within the spacecraft. Since the current plan for the ``Pluto Express'' mission incorporates the use of a Russian launch platform for the spacecraft, the LWRHUs must be transported in an internationally certified shipping container. An internationally certified shipping package that is versatile enough to be reconfigured to transport the LWRHUs that will be required to support the ``Pluto Express'' mission is the Mound USA/9516/B(U)F.

  4. Numerical studies on the link between radioisotopic signatures on Earth and the formation of the Local Bubble. I. 60Fe transport to the solar system by turbulent mixing of ejecta from nearby supernovae into a locally homogeneous interstellar medium

    Science.gov (United States)

    Schulreich, M. M.; Breitschwerdt, D.; Feige, J.; Dettbarn, C.

    2017-08-01

    Context. The discovery of radionuclides like 60Fe with half-lives of million years in deep-sea crusts and sediments offers the unique possibility to date and locate nearby supernovae. Aims: We want to quantitatively establish that the 60Fe enhancement is the result of several supernovae which are also responsible for the formation of the Local Bubble, our Galactic habitat. Methods: We performed three-dimensional hydrodynamic adaptive mesh refinement simulations (with resolutions down to subparsec scale) of the Local Bubble and the neighbouring Loop I superbubble in different homogeneous, self-gravitating environments. For setting up the Local and Loop I superbubble, we took into account the time sequence and locations of the generating core-collapse supernova explosions, which were derived from the mass spectrum of the perished members of certain stellar moving groups. The release of 60Fe and its subsequent turbulent mixing process inside the superbubble cavities was followed via passive scalars, where the yields of the decaying radioisotope were adjusted according to recent stellar evolution calculations. Results: The models are able to reproduce both the timing and the intensity of the 60Fe excess observed with rather high precision, provided that the external density does not exceed 0.3 cm-3 on average. Thus the two best-fit models presented here were obtained with background media mimicking the classical warm ionised and warm neutral medium. We also found that 60Fe (which is condensed onto dust grains) can be delivered to Earth via two physical mechanisms: either through individual fast-paced supernova blast waves, which cross the Earth's orbit sometimes even twice as a result of reflection from the Local Bubble's outer shell, or, alternatively, through the supershell of the Local Bubble itself, injecting the 60Fe content of all previous supernovae at once, but over a longer time range.

  5. Wind Generators

    Science.gov (United States)

    1989-01-01

    When Enerpro, Inc. president, Frank J. Bourbeau, attempted to file a patent on a system for synchronizing a wind generator to the electric utility grid, he discovered Marshall Space Flight Center's Frank Nola's power factor controller. Bourbeau advanced the technology and received a NASA license and a patent for his Auto Synchronous Controller (ASC). The ASC reduces generator "inrush current," which occurs when large generators are abruptly brought on line. It controls voltage so the generator is smoothly connected to the utility grid when it reaches its synchronous speed, protecting the components from inrush current damage. Generator efficiency is also increased in light winds by applying lower than rated voltage. Wind energy is utilized to drive turbines to generate electricity for utility companies.

  6. Rainfall generation

    Science.gov (United States)

    Sharma, Ashish; Mehrotra, Raj

    This chapter presents an overview of methods for stochastic generation of rainfall at annual to subdaily time scales, at single- to multiple-point locations, and in a changing climatic regime. Stochastic rainfall generators are used to provide inputs for risk assessment of natural or engineering systems that can undergo failure under sustained (high or low) extremes. As a result, generation of rainfall has evolved to provide options that adequately represent such conditions, leading to sequences that exhibit low-frequency variability of a nature similar to the observed rainfall. The chapter consists of three key sections: the first two outlining approaches for rainfall generation using endogenous predictor variables and the third highlighting approaches for generation using exogenous predictors often simulated to represent future climatic conditions. The first section presents approaches for generation of annual and seasonal rainfall and daily rainfall, both at single-point locations and multiple sites, with an emphasis on alternatives that ensure appropriate representation of low-frequency variability in the generated rainfall sequences. The second section highlights advancements in the subdaily rainfall generation procedures including commonly used approaches for daily to subdaily rainfall generation. The final section (generation using exogenous predictors) presents a range of alternatives for stochastic downscaling of rainfall for climate change impact assessments of natural and engineering systems. We conclude the chapter by outlining some of the key challenges that remain to be addressed, especially in generation under climate change conditions, with an emphasis on the importance of incorporating uncertainty present in both measurements and models, in the rainfall sequences that are generated.

  7. Shock-Tolerant Low-Power Generator Design for Landed Missions

    Science.gov (United States)

    Gelderloos, Carl J.; Decino, Jim; Lock, Jennifer; Miller, Dan D.; Taylor, Robert

    2004-02-01

    A shock-tolerant thermal enclosure has been designed for use in distributed landed missions. Missions such as Pascal and the Mars Long-Lived Landed Network require low power sources capable of surviving an omnidirectional load at impact and delivering reliable power for several Martian years. With the use of a radioisotope heat source and a thermoelectric converter, power can be generated reliably, but the challenge of developing an insulating canister that delivers sufficient power at end of life and is shock tolerant has been elusive. We describe a manufacturable design using conventional materials that meets mission requirements and show preliminary analysis of impact load response.

  8. Generative Semantics

    Science.gov (United States)

    Bagha, Karim Nazari

    2011-01-01

    Generative semantics is (or perhaps was) a research program within linguistics, initiated by the work of George Lakoff, John R. Ross, Paul Postal and later McCawley. The approach developed out of transformational generative grammar in the mid 1960s, but stood largely in opposition to work by Noam Chomsky and his students. The nature and genesis of…

  9. Report Generator

    OpenAIRE

    2016-01-01

    Download data from HP Quality Center using of OTA Client. Implementation must be scalable to all projects under test. That is, it will be possible to generate automatically test reports at least for 2010, Modulaser and Gen2 (FW or SW). Report Generator is a software implemented in VBA that allows get data from HP Quality Center for export it (either tables, charts or text) to a document in Word format. Report Generator es un Software implementado en VBA que permite extraer datos de HP Q...

  10. Isolation and purification of an axenic diazotrophic drought-tolerant cyanobacterium, Nostoc commune, from natural cyanobacterial crusts and its utilization for field research on soils polluted with radioisotopes.

    Science.gov (United States)

    Katoh, Hiroshi; Furukawa, Jun; Tomita-Yokotani, Kaori; Nishi, Yasuaki

    2012-08-01

    Nitrogen fixation and drought tolerance confer the ability to grow on dry land, and some terrestrial cyanobacteria exhibit these properties. These cyanobacteria were isolated in an axenic form from Nostoc commune clusters and other sources by modifying the method used to isolate the nitrogen-fixing and drought-tolerant cyanobacterium Nostoc sp. HK-01. Of these cyanobacteria, N. commune, which is difficult to isolate and purify, uses polysaccharides to maintain water, nitrogen fertilizers for nitrogen fixation, and can live in extreme environments because of desiccation tolerance. In this study, we examined the use of N. commune as biosoil for space agriculture and possible absorption of radioisotopes ((134)Cs, (137)Cs). This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.

  11. Radioisotopic synovectomy using ferric hydroxide macroaggregated for chronic arthritis treatment; Sinovectomia radioisotopica atraves do macroagregado de hidroxido ferrico para tratamento da artrite cronica

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Carla Flavia; Campos, Tarcisio P.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Dept. de Ciencias e Tecnicas Nucleares] E-mail: campos@nuclear.ufmg.br

    2002-07-01

    Synovectomy radioisotopic is an arthritis treatment used in specific clinical conditions whose main goal is to sterilized the synovia. This treatment has specific and precise indications and it is considered to have an adequate response. The present work presents a modeling of an articulation (joint) based on its real geometric anatomy and chemical constitution. The internal dosimetry is evaluated by the Monte Carlo Code. The majority of the radionuclides were considered in the simulations. The syntheses of the ferric hydroxide macroaggregates with dysprosium and samarium have been prepared (Dy{sup 165}-MHF and Sm{sup 153}-MHF). Obtaining the cintilographic images of rabbits in which Dy{sup 165}-MHF is injected is in progress. Biodistribution studies in addition with the internal dosimetry will certify the dose in the membrane of the synovia. (author)

  12. Production yield of produced radioisotopes from 100 MeV proton beam on lead target for shielding analysis of large accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Oranj, Leila Mokhtari; Oh, Joo Hee; Jung, Nam Suk; Bae, O Ryun; Lee, Hee Seock [Div. of Advanced Nuclear Engineering, POSTECH, Pohang (Korea, Republic of)

    2014-11-15

    In this work, the production yield of major shielding material, a lead, was investigated using 100 MeV protons of KOMAC accelerator facility. For the analysis of the experimental data, the activity has been calculated using the FLUKA Monte Carlo code and analytical methods. The cross section data and the stopping power in the irradiated assembly were calculated by TALYS and SRIM codes in the analytical method, respectively. Consequently, the experimental production yield of produced radioisotopes was compared with the data that are based on Monte Carlo calculations and analytical studies. In this research, the {sup nat}Pb(p, x) reaction was studied using experimental measurements, Monte Carlo simulations and analytical methods. Rereading to the experimental measurements, we demonstrate that both Monte Carlo simulation and analytical methods could be useful tools for the estimation of production yield of this reaction.

  13. Phantom study to evaluate quantitative changes in myocardial radioisotope concentration for single photon emission computed tomography; Comparison between Tl-201 and Tc-99m

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Takashi; Kitabata, Yoshiki; Tanaka, Takeshi; Hasegawa, Mitsuo; Kato, Kazuzo (Cardiovascular Inst., Tokyo (Japan)); Okabe, Akifumi

    1990-01-01

    Quantitative changes in Tl-201 and Tc-99m in myocardial single photon emission computed tomography (SPECT) were evaluated using phantom studies. The absorption rate of gamma ray by the tissues surrounding the myocardium was less for Tc-99m (maximum, 61.2%) than Tl-201 (maximum, 70.8%). In studies on quantification of defects with various concentrations of the radioisotopes, Tc-99m was found superior to Tl-201. In comparing a focal defect in the anterior wall near the surface of the thorax (Defect A) with that in the posterior wall deep in the thorax (Defect B), Defect A had a better quantification than Defect B. Absorber, scattering, and background, however, precluded quantification, especially in Defect B. Although scatter subtraction may in part improve quantification, quantification seemed to be dependent on algorithm in image reconstruction, as well as spatial resolution of the equipment. (N.K.).

  14. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. III. Rotating Three Dimensional Cloud Cores

    CERN Document Server

    Boss, Alan P

    2014-01-01

    A key test of the supernova triggering and injection hypothesis for the origin of the solar system's short-lived radioisotopes is to reproduce the inferred initial abundances of these isotopes. We present here the most detailed models to date of the shock wave triggering and injection process, where shock waves with varied properties strike fully three dimensional, rotating, dense cloud cores. The models are calculated with the FLASH adaptive mesh hydrodynamics code. Three different outcomes can result: triggered collapse leading to fragmentation into a multiple protostar system; triggered collapse leading to a single protostar embedded in a protostellar disk; or failure to undergo dynamic collapse. Shock wave material is injected into the collapsing clouds through Rayleigh-Taylor fingers, resulting in initially inhomogeneous distributions in the protostars and protostellar disks. Cloud rotation about an axis aligned with the shock propagation direction does not increase the injection efficiency appreciably, ...

  15. Triggering Collapse of the Presolar Dense Cloud Core and Injecting Short-Lived Radioisotopes with a Shock Wave. IV. Effects of Rotational Axis Orientation

    CERN Document Server

    Boss, Alan P

    2015-01-01

    Both astronomical observations of the interaction of Type II supernova remnants (SNR) with dense interstellar clouds as well as cosmochemical studies of the abundances of daughter products of short-lived radioisotopes (SLRIs) formed by supernova nucleosynthesis support the hypothesis that the Solar Systems SLRIs may have been derived from a supernova. This paper continues a series devoted to examining whether such a shock wave could have triggered the dynamical collapse of a dense, presolar cloud core and simultaneously injected sufficient abundances of SLRIs to explain the cosmochemical evidence. Here we examine the effects of shock waves striking clouds whose spin axes are oriented perpendicular, rather than parallel, to the direction of propagation of the shock front. The models start with 2.2 solar mass cloud cores and shock speeds of 20 or 40 km/sec. Central protostars and protoplanetary disks form in all models, though with disk spin axes aligned somewhat randomly. The disks derive most of their angular...

  16. Light-Weight Radioisotope Heater Unit final safety analysis report (LWRHU-FSAR): Volume 1: A. Introduction and executive summary: B. Reference Design Document (RDD)

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E.W.

    1988-10-01

    The orbiter and probe portions of the National Aeronautics and Space Administration (NASA) Galileo spacecraft contain components which require auxiliary heat during the mission. To meet these needs, the Department of Energy's (DOE's) Office of Special Applications (OSA) has sponsored the design, fabrication, and testing of a one-watt encapsulated plutonium dioxide-fueled thermal heater named the Light-Weight Radioisotope Heater Unit (LWRHU). This report, prepared by Monsanto Research Corporation (MRC), addresses the radiological risks which might be encountered by people both at the launch area and worldwide should postulated mission failures or malfunctions occur, resulting in the release of the LWRHUs to the environment. Included are data from the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events. 11 refs., 44 figs., 11 tabs.

  17. Estimation of the contribution of gamma-emission of incorporated cesium radioisotopes in interpretation of the results of the public survey to assess the thyroidal iodine content following a radiation accident at the nuclear power plant

    Directory of Open Access Journals (Sweden)

    Shinkarev S.M.

    2014-12-01

    Full Text Available Aim. A detail consideration has been done to assess an importance of the contribution of gamma-emission of incorporated cesium radioisotopes to the exposure rate measured near the thyroid by the public survey for following the Chernobyl accident. Empirical ratios have been derived to take into account that contribution under interpretation of the results of survey meter monitoring of the public. Materials and methods. Model calculations for typical radionuclide intake by the residents living in contaminated territories after the Chernobyl accident have been carried out in order to assess the contribution of gamma-emission of incorporated cesium radioisotopes to the exposure rate measured near the thyroid by the survey. Under such calculations two the most important modes of intake have been considered: 1 inhalation and 2 ingestion with cow milk. Results. According to the estimates received the contribution of gamma-emission of incorporated cesium radioisotopes to the exposure rate measured near the thyroid during the first 20 days does not exceed 20% for the residents of southern areas of Gomel region and 30% for the residents of Mogil'yov region. During 60 days following the accident that contribution is estimated to be within (50-80 % for the residents of southern areas of Gomel region and (80-95 % for the residents of Mogil'yov region. Conclusion. For the period of intensive thyroid measuring in the southern areas of Gomel region (the second part of May account of the contribution of gamma-emission of incorporated cesium radioisotopes is relatively unimportant, but for Mogil'yov region (the end of May — it is important to account for. For the thyroid measurements conducted in June of 1986 it is important for all residents living in Belarus to take into account the contribution of gamma-emission of incorporated cesium radioisotopes.

  18. Nuclear medicine practices in the 1950s through the mid-1970s and occupational radiation doses to technologists from diagnostic radioisotope procedures.

    Science.gov (United States)

    Drozdovitch, Vladimir; Brill, Aaron B; Mettler, Fred A; Beckner, William M; Goldsmith, Stanley J; Gross, Milton D; Hays, Marguerite T; Kirchner, Peter T; Langan, James K; Reba, Richard C; Smith, Gary T; Bouville, André; Linet, Martha S; Melo, Dunstana R; Lee, Choonsik; Simon, Steven L

    2014-10-01

    Data on occupational radiation exposure from nuclear medicine procedures for the time period of the 1950s through the 1970s is important for retrospective health risk studies of medical personnel who conducted those activities. However, limited information is available on occupational exposure received by physicians and technologists who performed nuclear medicine procedures during those years. To better understand and characterize historical radiation exposures to technologists, the authors collected information on nuclear medicine practices in the 1950s, 1960s, and 1970s. To collect historical data needed to reconstruct doses to technologists, a focus group interview was held with experts who began using radioisotopes in medicine in the 1950s and the 1960s. Typical protocols and descriptions of clinical practices of diagnostic radioisotope procedures were defined by the focus group and were used to estimate occupational doses received by personnel, per nuclear medicine procedure, conducted in the 1950s to 1960s using radiopharmaceuticals available at that time. The radionuclide activities in the organs of the reference patient were calculated using the biokinetic models described in ICRP Publication 53. Air kerma rates as a function of distance from a reference patient were calculated by Monte Carlo radiation transport calculations using a hybrid computational phantom. Estimates of occupational doses to nuclear medicine technologists per procedure were found to vary from less than 0.01 μSv (thyroid scan with 1.85 MBq of administered I-iodide) to 0.4 μSv (brain scan with 26 MBq of Hg-chlormerodin). Occupational doses for the same diagnostic procedures starting in the mid-1960s but using Tc were also estimated. The doses estimated in this study show that the introduction of Tc resulted in an increase in occupational doses per procedure.

  19. Critical review of thermoelectrics in modern power generation applications

    Directory of Open Access Journals (Sweden)

    Saqr Khalid M.

    2009-01-01

    Full Text Available The thermoelectric complementary effects have been discovered in the nineteenth century. However, their role in engineering applications has been very limited until the first half of the twentieth century, the beginning of space exploration era. Radioisotope thermoelectric generators have been the actual motive for the research community to develop efficient, reliable and advanced thermoelectrics. The efficiency of thermoelectric materials has been doubled several times during the past three decades. Nevertheless, there are numerous challenges to be resolved in order to develop thermoelectric systems for our modern applications. This paper discusses the recent advances in thermoelectric power systems and sheds the light on the main problematic concerns which confront contemporary research efforts in that field.

  20. A new generation of medical cyclotrons for the 90`s

    Energy Technology Data Exchange (ETDEWEB)

    Milton, B.F.

    1995-08-01

    Cyclotrons continue to be efficient accelerators for use in radio-isotope production. In recent years, developments in accelerator technology have greatly increased the practical beam current in these machines while also improving the overall system reliability. These developments combined with the development of new isotopes for medicine and industry, and a retiring of older machines indicates a strong future for commercial cyclotrons. In this paper the authors will survey recent developments in the areas of cyclotron technology as they relate to the new generation of commercial cyclotrons. Existing and potential markets for these cyclotrons will be presented. They will also discuss the possibility of systems capable of extracted energies up to 150 MeV and extracted beam currents of up to 2.0 mA.