WorldWideScience

Sample records for generator tube materials

  1. Evaluation on mechanical and corrosion properties of steam generator tubing materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Sup; Lee, Byong Whi; Lee, Sang Kyu; Lee, Young Ho; Kim, Jun Whan; Lee, Ju Seok; Kwon, Hyuk Sang; Kim, Su Jung [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-06-15

    Steam generator is one of the major components of nuclear reactor pressure boundary. It's main function os transferring heat which generated in the reactor to turbine generator through steam generator tube. In these days, steam generator tubing materials of operating plant are used Inconel 600 alloys. But according to the operation time, there are many degradation phenomena which included mechanical damage due to flow induced vibration and corrosion damage due to PWSCC, IGA/SCC and pitting etc. Recently Inconel 690 alloys are selected as new and replacement steam generator tubes for domestic nuclear power plant. But there are few study about mechanical and corrosion properties of Inconel 600 and 690. The objectives of this study is to evaluate and compare mechanical and corrosion propertied of steam generator tube materials.

  2. Steam generator tube integrity program

    Energy Technology Data Exchange (ETDEWEB)

    Dierks, D.R.; Shack, W.J. [Argonne National Laboratory, IL (United States); Muscara, J.

    1996-03-01

    A new research program on steam generator tubing degradation is being sponsored by the U.S. Nuclear Regulatory Commission (NRC) at Argonne National Laboratory. This program is intended to support a performance-based steam generator tube integrity rule. Critical areas addressed by the program include evaluation of the processes used for the in-service inspection of steam generator tubes and recommendations for improving the reliability and accuracy of inspections; validation and improvement of correlations for evaluating integrity and leakage of degraded steam generator tubes, and validation and improvement of correlations and models for predicting degradation in steam generator tubes as aging occurs. The studies will focus on mill-annealed Alloy 600 tubing, however, tests will also be performed on replacement materials such as thermally-treated Alloy 600 or 690. An overview of the technical work planned for the program is given.

  3. Steam generator tube failures

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  4. Wear behavior of 2-1/4 Cr-1 Mo tubing against alloy 718 tube-support material in sodium-cooled steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, W L

    1983-05-01

    A series of prototypic steam generator 2-{1/4} Cr-1 Mo tube/alloy 718 tube support plate wear tests were conducted in direct support of the Westinghouse Nuclear Components Division -- Breeder Reactor Components Project Large Scale steam Generator design. The initial objective was to verify the acceptable wear behavior of softer, over-aged'' alloy 718 support plate material. For all interfaces under all test conditions, resultant wear damage was adhesive in nature with varying amounts of 2-{1/4} Cr-1 Mo tube material being adhesively transferred to the alloy 718 tube supports. Maximum tube wear depths exceeded the initially established design allowable limit of 127 {mu}m (.005 in.) at 17 of the 18 interfaces tested. A decrease in contact stresses produced acceptable tube wear depths below a readjusted maximum design allowable value of 381 {mu}m (.015 in.). Additional conservatisms associated with the simulation of a 40-year lifetime of rubbing in a one-week laboratory test provided further confidence that the 381 {mu}m maximum tube wear allowance would not be exceeded in service. Softer, over-aged'' alloy 718 material was found to produce slightly less wear damage on 2-{1/4} Cr-1 Mo tubing than fully age hardened material. Also, air formed oxide films on the alloy 718 reduced initial tube wear and delayed the onset of adhesive surface damage. However, at high surface stress levels, these films were not sufficiently stable to provide adequate long term protection from adhesive wear. The results of the present work and those of previous test programs suggest that the successful in-sodium tribological performance of 2-{1/4} Cr-1 Mo/alloy 718 rubbing couples is dependent upon the presence of lubricative surface films, such as oxides and/or surface reaction or deposition products. 11 refs., 13 figs., 4 tabs.

  5. Corrosion behaviour of a stream generator tube material in simulated steam generator feedwater containing chlorides and sulphates

    Energy Technology Data Exchange (ETDEWEB)

    Bojinov, M.; Kinnunen, P.; Laitinen, T.; Maekelae, K.; Saario, T.; Sirkiae, P.; Yliniemi, K. [VTT Manufacturing Technology, Espoo (Finland); Buddas, T.; Halin, M.; Tompuri, K. [Fortum Power and Heat Oy, Loviisa Power Plant (Finland)

    2002-07-01

    The goal of the present work has been to assess the effect of relatively high concentrations of anionic impurities (Cl{sup -}, SO{sub 4}{sup 2-}) on the corrosion behaviour of Ti-stabilised stainless steel SG tubes in simulated steam generator feed-water. The main observations of this work can be summarised as follows: Sulphate ions seem to be more aggressive than chloride ions towards the primary passive film on 08X18H10T stainless steel. The results may indicate that it is more important to have a low concentration of sulphate ions than of chloride ions in secondary side water when the effects of chemical conditions on tube degradation are considered. The presence of chloride ions seems to weaken the detrimental effect of sulphate ions on the stability of oxide films growing on 08X18H10T stainless steel. No localised corrosion features of 08X18H10T stainless steel were detected in the voltammetric and impedance measurements in solutions containing up to 5000 ppb sulphates, chlorides or both of the anions. (authors)

  6. Reliability of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Kadokami, E. [Mitsubishi Heavy Industries Ltd., Hyogo-ku (Japan)

    1997-02-01

    The author presents results on studies made of the reliability of steam generator (SG) tubing. The basis for this work is that in Japan the issue of defects in SG tubing is addressed by the approach that any detected defect should be repaired, either by plugging the tube or sleeving it. However, this leaves open the issue that there is a detection limit in practice, and what is the effect of nondetectable cracks on the performance of tubing. These studies were commissioned to look at the safety issues involved in degraded SG tubing. The program has looked at a number of different issues. First was an assessment of the penetration and opening behavior of tube flaws due to internal pressure in the tubing. They have studied: penetration behavior of the tube flaws; primary water leakage from through-wall flaws; opening behavior of through-wall flaws. In addition they have looked at the question of the reliability of tubing with flaws during normal plant operation. Also there have been studies done on the consequences of tube rupture accidents on the integrity of neighboring tubes.

  7. A tube-in-tube thermophotovoltaic generator

    Energy Technology Data Exchange (ETDEWEB)

    Ashcroft, J.; Campbell, B.; Depoy, D.

    1996-12-31

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  8. Tube Formation in Nanoscale Materials

    Directory of Open Access Journals (Sweden)

    Yan Chenglin

    2008-01-01

    Full Text Available Abstract The formation of tubular nanostructures normally requires layered, anisotropic, or pseudo-layered crystal structures, while inorganic compounds typically do not possess such structures, inorganic nanotubes thus have been a hot topic in the past decade. In this article, we review recent research activities on nanotubes fabrication and focus on three novel synthetic strategies for generating nanotubes from inorganic materials that do not have a layered structure. Specifically, thermal oxidation method based on gas–solid reaction to porous CuO nanotubes has been successfully established, semiconductor ZnS and Nb2O5nanotubes have been prepared by employing sacrificial template strategy based on liquid–solid reaction, and an in situ template method has been developed for the preparation of ZnO taper tubes through a chemical etching reaction. We have described the nanotube formation processes and illustrated the detailed key factors during their growth. The proposed mechanisms are presented for nanotube fabrication and the important pioneering studies are discussed on the rational design and fabrication of functional materials with tubular structures. It is the intention of this contribution to provide a brief account of these research activities.

  9. Alternate tube plugging criteria for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cueto-Felgueroso, C.; Aparicio, C.B. [Tecnatom, S.A., Madrid (Spain)

    1997-02-01

    The tubing of the Steam Generators constitutes more than half of the reactor coolant pressure boundary. Specific requirements governing the maintenance of steam generator tubes integrity are set in Plant Technical Specifications and in Section XI of the ASME Boiler and Pressure Vessel Code. The operating experience of Steam Generator tubes of PWR plants has shown the existence of some types of degradatory processes. Every one of these has an specific cause and affects one or more zones of the tubes. In the case of Spanish Power Plants, and depending on the particular Plant considered, they should be mentioned the Primary Water Stress Corrosion Cracking (PWSCC) at the roll transition zone (RTZ), the Outside Diameter Stress Corrosion Cracking (ODSCC) at the Tube Support Plate (TSP) intersections and the fretting with the Anti-Vibration Bars (AVBs) or with the Support Plates in the preheater zone. The In-Service Inspections by Eddy Currents constitutes the standard method for assuring the SG tubes integrity and they permit the monitoring of the defects during the service life of the plant. When the degradation reaches a determined limit, called the plugging limit, the SG tube must be either repaired or retired from service by plugging. Customarily, the plugging limit is related to the depth of the defect. Such depth is typically 40% of the wall thickness of the tube and is applicable to any type of defect in the tube. In its origin, that limit was established for tubes thinned by wastage, which was the predominant degradation in the seventies. The application of this criterion for axial crack-like defects, as, for instance, those due to PWSCC in the roll transition zone, has lead to an excessive and unnecessary number of tubes being plugged. This has lead to the development of defect specific plugging criteria. Examples of the application of such criteria are discussed in the article.

  10. Steam generator tubing NDE performance

    Energy Technology Data Exchange (ETDEWEB)

    Henry, G. [Electric Power Research Institute, Charlotte, NC (United States); Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)

    1997-02-01

    Steam generator (SG) non-destructive examination (NDE) is a fundamental element in the broader SG in-service inspection (ISI) process, a cornerstone in the management of PWR steam generators. Based on objective performance measures (tube leak forced outages and SG-related capacity factor loss), ISI performance has shown a continually improving trend over the years. Performance of the NDE element is a function of the fundamental capability of the technique, and the ability of the analysis portion of the process in field implementation of the technique. The technology continues to improve in several areas, e.g. system sensitivity, data collection rates, probe/coil design, and data analysis software. With these improvements comes the attendant requirement for qualification of the technique on the damage form(s) to which it will be applied, and for training and qualification of the data analysis element of the ISI process on the field implementation of the technique. The introduction of data transfer via fiber optic line allows for remote data acquisition and analysis, thus improving the efficiency of analysis for a limited pool of data analysts. This paper provides an overview of the current status of SG NDE, and identifies several important issues to be addressed.

  11. Failure analysis of retired steam generator tubings

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo; Kim, J. S.; Hwang, S. S. and others

    2005-04-15

    Degradation of steam generator leads to forced outage and extension of outage, which causes increase in repair cost, cost of purchasing replacement power and radiation exposure of workers. Steam generator tube rupture incident occurred in Uljin 4 in 2002, which made public sensitive to nuclear power plant. To keep nuclear energy as a main energy source, integrity of steam generator should be demonstrated. Quantitative relationship between ECT(eddy current test) signal and crack size is needed in assesment of integrity of steam generator in pressurized water reactor. However, it is not fully established for application in industry. Retired steam generator of Kori 1 has many kinds of crack such as circumferential and axial primary water stress corrosion crack and outer diameter stress corrosion crack(ODSCC). So, it can be used in qualifying and improving ECT technology and in condition monitoring assesment for crack detected in ISI(in service inspection). In addition, examination of pulled tube of Kori 1 retired steam generator will give information about effectiveness of non welded sleeving technology which was employed to repair defect tubes and remedial action which was applied to mitigate ODSCC. In this project, hardware such as semi hot lab. for pulled tube examination and modification transportation cask for pulled tube and software such as procedure of transportation of radioactive steam generator tube and non-destructive and destructive examination of pulled tube were established. Non-destructive and destructive examination of pulled tubes from Kori 1 retired steam generator were performed in semi hot lab. Remedial actions applied to Kori 1 retired steam generator, PWSCC trend and bulk water chemistry and crevice chemistry in Kori 1 were evaluated. Electrochemical decontamination technology for pulled tube was developed to reduce radiation exposure and enhance effectiveness of pulled tube examination. Multiparameter algorithm developed at ANL, USA was

  12. Supplementary examination of alternative materials in a model steam generator: Volume 3, tube characterization by metallography and transmission electron microscopy: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Krupowicz, J.J.; Stubbins, J.F.; Mehler, M.

    1988-10-01

    The microstructural characteristics of current and candidate alloys for steam generator heat transfer tubing were determined utilizing a variety of techniques. Mill annealed heats of Alloys 690 and 800NG were examined as well as heats of Alloy 600 in the mill annealed, process stabilized, sensitized and thermally treated conditions. Characterization included optical microscopy, transmission electron microscopy and scanning transmission electron microscopy of these materials in their pre- and post-test conditions (i.e., archive and exposure for 11,328 hours to 621/degree/F primary temperature). The results were utilized to elicit comparisons of these materials to stress corrosion cracking resistance in sulfate faulted secondary environments. 83 figs., 8 tabs.

  13. Research of laser cleaning technology for steam generator tubing

    Science.gov (United States)

    Hou, Suixa; Luo, Jijun; Xu, Jun; Yuan, Bo

    2010-10-01

    Surface cleaning based on the laser-induced breakdown of gas and subsequent shock wave generation can remove small particles from solid surfaces. Accordingly, several studies in steam generator tubes of nuclear power plants were performed to expand the cleaning capability of the process. In this work, experimental apparatus of laser cleaning was designed in order to clean heat tubes in steam generator. The laser cleaning process is monitored by analyzing acoustic emission signal experimentally. Experiments demonstrate that laser cleaning can remove smaller particles from the surface of steam generator tubes better than other cleaning process. It has advantages in saving on much manpower and material resource, and it is a good cleaning method for heat tubes, which can be real-time monitoring in laser cleaning process of heat tubes by AE signal. As a green cleaning process, laser cleaning technology in equipment maintenance will be a good prospect.

  14. A Flue Gas Tube for Thermoelectric Generator

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a flue gas tube (FGT) (1) for generation of thermoelectric power having thermoelectric elements (8) that are integrated in the tube. The FTG may be used in combined heat and power (CHP) system (13) to produce directly electricity from waste heat from, e.g. a biomass boiler...

  15. Repair technology for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Jung, Hyun Kyu; Jung, Seung Ho; Kim, Chang Hoi; Jung, Young Moo; Seo, Yong Chil; Kim, Jung Su; Seo, Moo Hong

    2001-02-01

    The most commonly used sleeving materials are thermally treated Alloy 600 and thermally treated Alloy 690 Alloy. Currently, thermally treated Alloy 690 and Alloy 800 are being offered although Alloy 800 has not been licensed in the US. To install sleeve, joint strength, leak tightness, PWSCC resistance, evaluation on process parameter range and the effect of equipments and procedures on repair plan and radiation damage have to be investigated before sleeving. ABB CE provides three type of leak tight Alloy 690 TIG welded and PLUSS sleeve. Currently, Direct Tube Repair technique using Nd:YAG laser has been developed by ABB CE and Westinghouse. FTI has brazed and kinetic sleeve designs for recirculating steam generator and hydraulic and rolled sleeve designs for one-through steam generators. Westinghouse provides HEJ, brazed and laser welded sleeve design. When sleeve is installed in order to repair the damaged S/G tubes, it is certain that defects can be occurred due to the plastic induced stress and thermal stress. Therefore it is important to minimize the residual stress. FTI provides the electrosleeve technique as a future repair candidate using electroplating.

  16. Power Generation Capabilities of Tie Tube Assemblies

    Science.gov (United States)

    Gunn, Stanley V.; Hedstrom, James; Hundal, Rolv

    1994-07-01

    Second generation nuclear thermal rocket engine designs, employing solid core reactors and expander engine cycles, generally rely on some form of nuclear-driven heater to supply the major portion of thermal energy required to preheat the turbine-drive gases. If adequate heat transfer occurs, not only will efficiency-enhancing turbine-inlet temperatures be realized, but sufficient energy will be available to enable engine operation at chamber pressures ranging to at least 2,000 psia. For the case of reactor cores employing prismatic fuel elements, the utilization of tie tube assemblies, as first employed in the core-support subsystem of the Phoebus II reactor, can provide the basis of an array of propellant (hydrogen) preheaters that offer an ample supply of energy and temperature to enable candidate expander engine cycles over a wide range of operating parameters, without reducing the total enthalpy of the core-exit gas and its attendant effect on specific impulse. By modifying the tie tube design concept set forth in LASL's Nuclear Rocket Engine definition study, a powerful, weight and packaging-effective, preheater assembly can be realized. The design features of these tie tube assemblies reflect their functional objectives, core criticality considerations, and space constraints. Since the core pressure and inertial mass loads are carried by these assemblies, the structural tubular element(s) also provide coolant passage(s) for the hydrogen. The transfer of heat to the coolant surfaces is controlled by the effective thermal conductivity of the filler structure and ``insulating sleeves,'' which surround the tubular elements and are in controlled thermal contact with the surrounding core fuel elements. An option exists to further increase the transported heat to the coolant walls by the selective loading of the filler structure, ``insulating sleeves,'' and the moderator annular element with fissionable material.

  17. Data analysis for steam generator tubing samples

    Energy Technology Data Exchange (ETDEWEB)

    Dodd, C.V.

    1996-07-01

    The objective of the Improved Eddy-Current ISI for Steam Generators program is to upgrade and validate eddy-current inspections, including probes, instrumentation, and data processing techniques for inservice inspection of new, used, and repaired steam generator tubes; to improve defect detection, classification and characterization as affected by diameter and thickness variations, denting, probe wobble, tube sheet, tube supports, copper and sludge deposits, even when defect types and other variables occur in combination; to transfer this advanced technology to NRC`s mobile NDE laboratory and staff. This report provides a description of the application of advanced eddy-current neural network analysis methods for the detection and evaluation of common steam generator tubing flaws including axial and circumferential outer-diameter stress-corrosion cracking and intergranular attack. The report describes the training of the neural networks on tubing samples with known defects and the subsequent evaluation results for unknown samples. Evaluations were done in the presence of artifacts. Computer programs are given in the appendix.

  18. Flow induced pulsations generated in corrugated tubes

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Swindell, R.; Tummers, R.

    2008-01-01

    Corrugated tubes can produce a tonal noise when used for gas transport, for instance in the case of flexible risers. The whistling sound is generated by shear layer instability due to the boundary layer separation at each corrugation. This whistling is examined by investigating the frequency, amplit

  19. French steam generator tubes: an overview of degradations

    Energy Technology Data Exchange (ETDEWEB)

    Buisine, D.; Bouvier, O. de; Rupa, N.; Thebault, Y.; Barbe, V. [EDF-CEIDRE Nuclear Engineering Division (France); Pitner, P. [EDF-UNIE Generation Nuclear Operation Division (France)

    2011-07-01

    The various damages (corrosion, fatigue cracks, wear, ...) observed on steam generator (SG) tubes are presented here as well as the techniques used to characterize these damages. The SG are equipped with tubes of 3 materials: 600 MA, 600 TT and 690 TT. Concerning PWSCC of 600 MA and 600 TT tubes, beyond the damages usually observed (corrosion in expansion transition zone and in 600 MA tubes small radius U-bend zone), a new event is to be noted: the phenomenon of denting (presumably induced by the deposit of sludge on the tubesheet) has induced circumferential cracking of the tube expansion transition zone. Concerning ODSCC of 600 MA tubes, beyond the classically observed damages (IGA and IGSCC in expansion transition zone and in TSP crevice), a new event is to be noted: the occurrence of circumferential cracks in tube- TSP crevice. Concerning fatigue cracking, two events have to be noted at upper TSP level in Cruas 1 and Cruas 4 units and in Fessenheim 2 unit. The first (Cruas) was due to the blockage in the broached hole tube support plate which can create critical velocity ratios for some tubes and the second (Fessenheim) to high-cycle fatigue. Concerning wear damage, beyond what is usually observed in the U-bend zone facing the anti-vibration bars (AVB), a new event is to be noted: a wear at TSP level is observed on SG equipped with an economizer, the wear indications being located at TSP 7 and 8 level, on outer tubes close to the central lane. The number of tubes plugged for ODSCC has declined due to the progressive replacement of SG with Alloy 600 MA tubing. Starting in 2004, the increasing plugging of 690 tubing is mainly due to AVB wear. Since 2006, extensive preventive plugging campaigns for tubes at risk of high-cycle fatigue at the upper support plate are performed. Risk of high-cycle fatigue has consequently become the dominant mechanism inducing plugging. PWSCC is the second dominant mechanism which affects 600 MA and 600 TT tube bundles: extensive

  20. Steam generator tube inspection in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Shigetaka [Japan Power Engineering and Inspection Corp., Tokyo (Japan)

    1997-02-01

    Steam generator tube inspection was first carried out in 1971 at Mihama Unit-1 that is first PWR plant in Japan, when the plant was brought into the first annual inspection. At that time, inspection was made on sampling basis, and only bobbin coil probe was used. After experiencing various kinds of tube degradations, inspection method was changed from sampling to all number of tubes, and various kinds of probes were used to get higher detectability of flaw. At present, it is required that all the tubes shall be inspected in their full length at each annual inspection using standard bobbin coil probe, and some special probes for certain plants that have susceptibility of occurrence of flaw. Sleeve repaired portion is included in this inspection. As a result of analyses of eddy current testing data, all indications that have been evaluated to be 20% wall thickness or deeper shall be repaired by either plugging or sleeving, where flaw morphology is to be a wastage or wear. Other types of flaw such as IGA/SCC are not allowed to be left inservice when those indications are detected. These inspections are performed according to inspection procedures that are approved by regulatory authority. Actual inspections are witnessed by the Japan Power engineering and inspection corporation (JAPEIC)`s inspectors during data acquisition and analysis, and they issue inspection report to authority for review and approval. It is achieved high safety performance of steam generator through this method of inspections, however. some tube leakage problems were experienced in the past. To prevent recurrence of such events, government is conducting development and verification test program for new eddy current testing technology.

  1. Steam generator tube integrity flaw acceptance criteria

    Energy Technology Data Exchange (ETDEWEB)

    Cochet, B. [FRAMATOME, Paris la Defense (France)

    1997-02-01

    The author discusses the establishment of a flaw acceptance criteria with respect to flaws in steam generator tubing. The problem is complicated because different countries take different approaches to the problem. The objectives in general are grouped in three broad areas: to avoid the unscheduled shutdown of the reactor during normal operation; to avoid tube bursts; to avoid excessive leak rates in the event of an accidental overpressure event. For each degradation mechanism in the tubes it is necessary to know answers to an array of questions, including: how well does NDT testing perform against this problem; how rapidly does such degradation develop; how well is this degradation mechanism understood. Based on the above information it is then possible to come up with a policy to look at flaw acceptance. Part of this criteria is a schedule for the frequency of in-service inspection and also a policy for when to plug flawed tubes. The author goes into a broad discussion of each of these points in his paper.

  2. Automated Diagnosis and Classification of Steam Generator Tube Defects

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Gabe V. Garcia

    2004-10-01

    A major cause of failure in nuclear steam generators is tube degradation. Tube defects are divided into seven categories, one of which is intergranular attack/stress corrosion cracking (IGA/SCC). Defects of this type usually begin on the outer surface of the tubes and propagate both inward and laterally. In many cases these defects occur at or near the tube support plates. Several different methods exist for the nondestructive evaluation of nuclear steam generator tubes for defect characterization.

  3. Recent integrity program for WWER steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wilam, M.; Papp, L.

    1994-12-31

    Considerable effort was given to NPP steam generator (SG) tubes integrity investigations during last years. These evaluations were focused on vertical SG tubing, i.e. on INCONEL tubes with geometry typical for this type of SG. The Steam Generator Tubes Integrity Program was conducted in VITKOVICE, R and D using WWER SG tubes. These tubes are made of 08Ch18N10T type stainless steel that corresponds to AISI 321 grade. The outer diameter of WWER tubes is 16 mm and the wall thickness is 1.5 mm.

  4. Advanced Eddy current NDE steam generator tubing.

    Energy Technology Data Exchange (ETDEWEB)

    Bakhtiari, S.

    1999-03-29

    As part of a multifaceted project on steam generator integrity funded by the U.S. Nuclear Regulatory Commission, Argonne National Laboratory is carrying out research on the reliability of nondestructive evaluation (NDE). A particular area of interest is the impact of advanced eddy current (EC) NDE technology. This paper presents an overview of work that supports this effort in the areas of numerical electromagnetic (EM) modeling, data analysis, signal processing, and visualization of EC inspection results. Finite-element modeling has been utilized to study conventional and emerging EC probe designs. This research is aimed at determining probe responses to flaw morphologies of current interest. Application of signal processing and automated data analysis algorithms has also been addressed. Efforts have focused on assessment of frequency and spatial domain filters and implementation of more effective data analysis and display methods. Data analysis studies have dealt with implementation of linear and nonlinear multivariate models to relate EC inspection parameters to steam generator tubing defect size and structural integrity. Various signal enhancement and visualization schemes are also being evaluated and will serve as integral parts of computer-aided data analysis algorithms. Results from this research will ultimately be substantiated through testing on laboratory-grown and in-service-degraded tubes.

  5. SG (steam generator) tube repair by explosive welding

    Energy Technology Data Exchange (ETDEWEB)

    Helmley, J.M. (Babcock and Wilcox Co., Lynchburg, VA (United States))

    1993-03-01

    Traditional joining techniques have limitations for bonding the ends of repair sleeves inside PWR cracked steam generator tubes. Explosive (kinetic) welding has been used as a successful alternative in over 5000 defective tubes. (author).

  6. Process Technology Development of Ni Electroplating in Steam Generator Tube

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joung Soo; Kim, H. P.; Lim, Y. S.; Kim, S. S.; Hwang, S. S.; Yi, Y. S.; Kim, D. J.; Jeong, M. K.

    2009-11-15

    Operating nuclear power steam generator tubing material, Alloy 600, having superior resistance to corrosion has many experiences of damage by various corrosion mechanisms during long term operation period. In this research project, a new Ni electroplating technology to be applied to repair the damaged steam generator tubes has been developed. In this technology development, the optimum conditions for variables affecting the Ni electroplating process, optimum process conditions for maximum adhesion forces at interface between were established. The various mechanical properties (RT and HT tensile, fatigue, creep, burst, etc.) and corrosion properties (general corrosion, pitting, crevice corrosion, stress corrosion cracking, boric acid corrosion, doped steam) of the Ni plated layers made at the established optimum conditions have been evaluated and confirmed to satisfy the specifications. In addition, a new ECT probe developed at KAERI enable to detect defects from magnetic materials was confirmed to be used for Ni electroplated Alloy 600 tubes at the field. For the application of this developed technology to operating plants, a mock-up electroplating system has been designed and manufactured, and set up at Doosan Heavy Industry Co. and also its performance test has been done. At same time, the anode probe has been modified and improved to be used with the established mock-up system without any problem

  7. Anatomy education for the YouTube generation.

    Science.gov (United States)

    Barry, Denis S; Marzouk, Fadi; Chulak-Oglu, Kyrylo; Bennett, Deirdre; Tierney, Paul; O'Keeffe, Gerard W

    2016-01-01

    Anatomy remains a cornerstone of medical education despite challenges that have seen a significant reduction in contact hours over recent decades; however, the rise of the "YouTube Generation" or "Generation Connected" (Gen C), offers new possibilities for anatomy education. Gen C, which consists of 80% Millennials, actively interact with social media and integrate it into their education experience. Most are willing to merge their online presence with their degree programs by engaging with course materials and sharing their knowledge freely using these platforms. This integration of social media into undergraduate learning, and the attitudes and mindset of Gen C, who routinely creates and publishes blogs, podcasts, and videos online, has changed traditional learning approaches and the student/teacher relationship. To gauge this, second year undergraduate medical and radiation therapy students (n = 73) were surveyed regarding their use of online social media in relation to anatomy learning. The vast majority of students had employed web-based platforms to source information with 78% using YouTube as their primary source of anatomy-related video clips. These findings suggest that the academic anatomy community may find value in the integration of social media into blended learning approaches in anatomy programs. This will ensure continued connection with the YouTube generation of students while also allowing for academic and ethical oversight regarding the use of online video clips whose provenance may not otherwise be known.

  8. Status of steam generator tubing integrity at Jaslovske Bohunice NPP

    Energy Technology Data Exchange (ETDEWEB)

    Cepcek, S. [Nuclear Regulatory Authority of the Slovak Republic, Trnava (Slovakia)

    1997-02-01

    Steam generator represents one of the most important component of nuclear power plants. Especially, loss of tubing integrity of steam generators can lead to the primary coolant leak to secondary circuit and in worse cases to the unit shut down or to the PTS events occurrence. Therefore, to ensure the steam generator tubing integrity and the current knowledge about tube degradation propagation and development is of the highest importance. In this paper the present status of steam generator tubing integrity in operated NPP in Slovak Republic is presented.

  9. Material modeling for multistage tube hydroforming process simulation

    Science.gov (United States)

    Saboori, Mehdi

    The Aerospace industries of the 21st century demand the use of cutting edge materials and manufacturing technology. New manufacturing methods such as hydroforming are relatively new and are being used to produce commercial vehicles. This process allows for part consolidation and reducing the number of parts in an assembly compared to conventional methods such as stamping, press forming and welding of multiple components. Hydroforming in particular, provides an endless opportunity to achieve multiple crosssectional shapes in a single tube. A single tube can be pre-bent and subsequently hydroformed to create an entire component assembly instead of welding many smaller sheet metal sections together. The knowledge of tube hydroforming for aerospace materials is not well developed yet, thus new methods are required to predict and study the formability, and the critical forming limits for aerospace materials. In order to have a better understanding of the formability and the mechanical properties of aerospace materials, a novel online measurement approach based on free expansion test is developed using a 3D automated deformation measurement system (AramisRTM) to extract the coordinates of the bulge profile during the test. These coordinates are used to calculate the circumferential and longitudinal curvatures, which are utilized to determine the effective stresses and effective strains at different stages of the tube hydroforming process. In the second step, two different methods, a weighted average method and a new hardening function are utilized to define accurately the true stress-strain curve for post-necking regime of different aerospace alloys, such as inconel 718 (IN 718), stainless steel 321 (SS 321) and titanium (Ti6Al4V). The flow curves are employed in the simulation of the dome height test, which is utilized for generating the forming limit diagrams (FLDs). Then, the effect of stress triaxiality, the stress concentration factor and the effective plastic

  10. Development of safety evaluation technique of steam generator tubes for the next generation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk Sang; Kim, I. S.; Ann, Se Jin; Lee, S. J.; Seo, M. S.; Lee, Y. H.; Kim, J. H.; Hong, J. G. [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    2000-02-15

    Subject 1 - a technique for predicting the SCC susceptibility of steam generator tube material based on the repassivation kinetics was developed and the effects of Pb in the repassivation rate and SCC susceptibility rate of tube material was investigated with this technique. An alloy with a higher slope value of log i(t) vs. q(t) plot based on the current transient curve obtained by scratch test and a lower slope value log i(t) vs. l/q(t) plot (cBV) is repassivated faster with a more protective passive film and it can be predicted that it will show higher resistance to SCC. With PbO addition in all solution studied (pH 4, pH 10, Cl- containing pH 4), alloy 690TT showed decreased repassivation rate. So it can be predict that PbO addition lower the resistance of SCC of steam generator tune material. Subject 2 - SG wear testing of tube and support materials has been conducted at various load and sliding amplitude in air environment. The results showed effect of normal load and sliding amplitude on SG tube wear damage. It was also shown that, for predominantly sliding motion, the SG wear coefficient of work-rate model is lower for Inconel 690TT compared with inconel 600MA. SG tube wear data show that, for work-rates ranging from 4 to 25mW, average tube wear coefficient of 43.76{approx}54.05 X 10{sup 15} Pa{sup -1} for Inconel 600MA and 26.88{approx}33.94 X 10{sup -15} Pa{sup 1} for Inconel 690TT against 405 and 409 stainless steels.

  11. Characteristics of U-tube assembly design for CANDU 6 type steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jun Su; Jeong, Seung Ha [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    Since the first operation of nuclear steam generator early 1960s, its performance requirements have been met but the steam generator problems have been met but the steam generator problems have been major cause of reducing the operational reliability, plant safety and availability. U-tube assembly of steam generator forms the primary system pressure boundary of the plant and have experienced several types of tube degradation problems. Tube failure and leakage resulting from the degradation will cause radioactive contamination of secondary system by the primary coolant, and this may lead to unplanned plant outages and costly repair operations such as tube plugging or steam generator replacement. For the case of steam generators for heavy water reactors, e.g. Wolsong 2, 3, and 4 NPP, a high cost of heavy water will be imposed additionally. During the plant operation, steam generator tubes can potentially be subject to adverse environmental conditions which will cause damages to U-tube assembly. Types of the damage depend upon the combined effects of design factors, materials and chemical environment of steam generator, and they are the pure water stress corrosion cracking, intergranular attack, pitting, wastage, denting, fretting and fatigue, etc. In this report, a comprehensive review of major design factors of recirculating steam generators has been performed against the potential tube damages. Then the design characteristics of CANDU-type Wolsong steam generator were investigated in detail, including tube material, thermalhydraulic aspects, tube-to-tubesheet joint, tube supports, water chemistry and sludge management. 9 tabs., 18 figs., 38 refs. (Author) .new.

  12. Magnetic flux tubes as sources of wave generation

    Science.gov (United States)

    Musielak, Z. E.; Rosner, R.; Ulmschneider, P.

    1987-01-01

    The structure of solar, and very likely stellar, surface magnetic fields is highly inhomogeneous: at the photospheric level, the fields are locally strong, and show concentration into a flux tube structure. In this case, the wave energy generated in stellar convection zones may be largely carried away by flux tube waves, which can then become important sources for the heating of the outer atmospheric layers. Such flux tube wave generation may help to explain the UV and X-ray fluxes observed by the IUE and Einstein observatories. The generation of longitudinal tube waves in magnetic flux tubes embedded in an otherwise magnetic field-free, turbulent, and stratified medium was considered. It is shown that compressible tube waves are generated by dipole emission and that the generation efficiency is a strong function of the magnetic field strength. Energy flux calculations are presented for different magnetic flux tubes, and show how the results depend on the magnetic field strength and the characteristics of the convective turbulence.

  13. Estimating probable flaw distributions in PWR steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Gorman, J.A.; Turner, A.P.L. [Dominion Engineering, Inc., McLean, VA (United States)

    1997-02-01

    This paper describes methods for estimating the number and size distributions of flaws of various types in PWR steam generator tubes. These estimates are needed when calculating the probable primary to secondary leakage through steam generator tubes under postulated accidents such as severe core accidents and steam line breaks. The paper describes methods for two types of predictions: (1) the numbers of tubes with detectable flaws of various types as a function of time, and (2) the distributions in size of these flaws. Results are provided for hypothetical severely affected, moderately affected and lightly affected units. Discussion is provided regarding uncertainties and assumptions in the data and analyses.

  14. Health and safety impact of steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Marston T. [PLG, Inc., Newport Beach, CA (United States)

    1997-02-01

    In this paper the author addresses the problems inherent in evaluating the safety of steam generators with respect to tube rupture as part of a probabilistic safety analysis (PSA) of a reactor plant. He reviews the history of PSA as applied to reactors, and then looks at tube rupture histories as a start toward establishing event frequencies. He considers tube ruptures from the aspect of being an initiating event to being a conditional event to some other event, and then the question of performance of the steam generator in the face of a severe accident in the reactor.

  15. Evaluation of steam generator WWER 440 tube integrity criteria

    Energy Technology Data Exchange (ETDEWEB)

    Splichal, K.; Otruba, J.; Burda, J. [Nuclear Research Institute Rez plc. (Czechoslovakia)

    1997-02-01

    The main corrosion damage in WWER steam generators under operating conditions has been observed on the outer surface of these tubes. An essential operational requirement is to assure a low probability of radioactive primary water leakage, unstable defect development and rupture of tubes. In the case of WWER 440 steam generators the above requirements led to the development of permissible limits for data evaluation of the primary-to-secondary leak measurements and determination of acceptable values for plugging of heat exchange tubes based on eddy current test (ECT) inspections.

  16. Current Status on the Development of a Double Wall Tube Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Ho Yun; Choi, Byoung Hae; Kim, Jong Man; Kim, Byung Ho

    2007-12-15

    A fast reactor, which uses sodium as a coolant, has a lot of merits as a next generation nuclear reactor. However, the possibility of a sodium-water reaction occurrence hinders the commercialization of this reactor. As one way to improve the reliability of a steam generator, a double-wall tube steam generator is being developed in GEN-4 program. In this report, the current state of the technical developments for a double-wall tube steam generator are reviewed and a future plan for the development of a double-wall tube steam generator is established. The current focuses of this research are an improvement of the heat transfer capability for a double-wall tube and the development of a proper leak detection method for the failure of a double-wall tube during a reactor operation. The ideal goal is an on-line leak detection of a double wall tube to prevent the sodium-water reaction. However, such a method is not developed as yet. An alternative method is being used to improve the reliability of a steam generator by performing a non-destructive test of a double wall tube during the refueling period of a reactor. In this method a straight double wall tube is employed to perform this test easily, but has a difficulty regarding an absorption of a thermal expansion of the used materials. If an on-line leak detection method is developed, the demerits of a straight double-wall tube are avoided by using a helical type double-wall tube, and the probability of a sodium-water reaction can be reduced to a level less than the design-based accident.

  17. Direct solar steam generation inside evacuated tube absorber

    Directory of Open Access Journals (Sweden)

    Khaled M. Bataineh

    2016-12-01

    Full Text Available Direct steam generation by solar radiation falling on absorber tube is studied in this paper. A system of single pipe covered by glass material in which the subcooled undergoes heating and evaporation process is analyzed. Mathematical equations are derived based on energy, momentum and mass balances for system components. A Matlab code is built to simulate the flow of water inside the absorber tube and determine properties of water along the pipe. Widely accepted empirical correlations and mathematical models of turbulent flow, pressure drop for single and multiphase flow, and heat transfer are used in the simulation. The influences of major parameters on the system performance are investigated. The pressure profiles obtained by present numerical solution for each operation condition (3 and 10 MPa matches very well experimental data from the DISS system of Plataforma Solar de Almería. Furthermore, results obtained by simulation model for pressure profiles are closer to the experimental data than those predicted by already existed other numerical model.

  18. Testing and analysis of tube voltage and tube current in the radiation generator for mammography

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Hong Ryang; Hong, Dong Hee [Dept. of Health Care, Hanseo University, Seosan (Korea, Republic of); Han, Beom Hui [Dept. of Radiological Science, Seonam University, Namwon (Korea, Republic of)

    2014-03-15

    Breast shooting performance management and quality control of the generator is applied to the amount of current IEC(International Electrotechnical Commission) 60601-2-45 tube voltage and tube current are based on standards that were proposed in the analysis of the test results were as follows. Tube voltage according to the value of the standard deviation by year of manufacture from 2001 to 2010 as a 42-3.15 showed the most significant, according to the year of manufacture by tube amperage value of the standard deviation to 6.38 in the pre-2000 showed the most significant , manufactured after 2011 the standard deviation of the devices, the PAE(Percent Average Error) was relatively low. This latest generation device was manufactured in the breast of the tube voltage and tube diagnosed shooting the correct amount of current to maintain the performance that can be seen. The results of this study as the basis for radiography diagnosed breast caused by using the device's performance and maintain quality control, so the current Food and Drug Administration 'about the safety of diagnostic radiation generator rule' specified in the test cycle during three years of self-inspection radiation on a radiation generating device ensure safety and performance of the device using a coherent X-ray(constancy) by two ultimately able to keep the radiation dose to the public to reduce the expected effect is expected.

  19. A second-generation constrained reaction volume shock tube.

    Science.gov (United States)

    Campbell, M F; Tulgestke, A M; Davidson, D F; Hanson, R K

    2014-05-01

    We have developed a shock tube that features a sliding gate valve in order to mechanically constrain the reactive test gas mixture to an area close to the shock tube endwall, separating it from a specially formulated non-reactive buffer gas mixture. This second-generation Constrained Reaction Volume (CRV) strategy enables near-constant-pressure shock tube test conditions for reactive experiments behind reflected shocks, thereby enabling improved modeling of the reactive flow field. Here we provide details of the design and operation of the new shock tube. In addition, we detail special buffer gas tailoring procedures, analyze the buffer/test gas interactions that occur on gate valve opening, and outline the size range of fuels that can be studied using the CRV technique in this facility. Finally, we present example low-temperature ignition delay time data to illustrate the CRV shock tube's performance.

  20. A second-generation constrained reaction volume shock tube

    Science.gov (United States)

    Campbell, M. F.; Tulgestke, A. M.; Davidson, D. F.; Hanson, R. K.

    2014-05-01

    We have developed a shock tube that features a sliding gate valve in order to mechanically constrain the reactive test gas mixture to an area close to the shock tube endwall, separating it from a specially formulated non-reactive buffer gas mixture. This second-generation Constrained Reaction Volume (CRV) strategy enables near-constant-pressure shock tube test conditions for reactive experiments behind reflected shocks, thereby enabling improved modeling of the reactive flow field. Here we provide details of the design and operation of the new shock tube. In addition, we detail special buffer gas tailoring procedures, analyze the buffer/test gas interactions that occur on gate valve opening, and outline the size range of fuels that can be studied using the CRV technique in this facility. Finally, we present example low-temperature ignition delay time data to illustrate the CRV shock tube's performance.

  1. Rupture pressure of wear degraded alloy 600 steam generator tubings

    Science.gov (United States)

    Hwang, Seong Sik; Namgung, Chan; Jung, Man Kyo; Kim, Hong Pyo; Kim, Joung Soo

    2008-02-01

    Fretting/wear degradation at the tube support in the U-bend region of a steam generator (SG) of a pressurized water reactor (PWR) has been reported. Simulated fretted flaws were machined on SG tubes of 195 mm in length. A pressure test was carried out with the tubes at room temperature by using a high pressure test facility which consisted of a water pressurizing pump, a test specimen section and a control unit. Water leak rates just after a ligament rupture or a burst were measured. Tubes degraded by up to 70% of the tube wall thickness (TW) showed a high safety margin in terms of the burst pressure during normal operating conditions. Tubes degraded by up to 50% of the TW did not show burst. Burst pressure depended on the defect depths rather than on the wrap angles. The tube with a wrap angle of 0° showed a fish mouth fracture, whereas the tube with a 45° wrap angle showed a three way fracture.

  2. Structural and leakage integrity assessment of WWER steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Splichal, K.; Otruba, J. [Nuclear Research Inst., Rez (Switzerland)

    1997-12-31

    The integrity of heat exchange tubes may influence the life-time of WWER steam generators and appears to be an important criterion for the evaluation of their safety and operational reliability. The basic requirement is to assure a very low probability of radioactive water leakage, preventing unstable crack growth and sudden tube rupture. These requirements led to development of permissible limits for primary to secondary leak evolution and heat exchange tubes plugging based on eddy current test inspection. The stress corrosion cracking and pitting are the main corrosion damage of WWER heat exchange tubes and are initiated from the outer surface. They are influenced by water chemistry, temperature and tube wall stress level. They take place under crevice corrosion condition and are indicated especially (1) under the tube support plates, where up to 90-95 % of defects detected by the ECT method occur, and (2) on free spans under tube deposit layers. Both the initiation and crack growth cause thinning of the tube wall and lead to part thickness cracks and through-wall cracks, oriented above all in the axial direction. 10 refs.

  3. Anatomy Education for the YouTube Generation

    Science.gov (United States)

    Barry, Denis S.; Marzouk, Fadi; Chulak-Oglu, Kyrylo; Bennett, Deirdre; Tierney, Paul; O'Keeffe, Gerard W.

    2016-01-01

    Anatomy remains a cornerstone of medical education despite challenges that have seen a significant reduction in contact hours over recent decades; however, the rise of the "YouTube Generation" or "Generation Connected" (Gen C), offers new possibilities for anatomy education. Gen C, which consists of 80% Millennials, actively…

  4. Subcooled choked flow through steam generator tube cracks

    Science.gov (United States)

    Wolf, Brian J.

    The work presented here describes an experimental investigation into the choked flow of initially subcooled water through simulated steam generator tube cracks at pressures up to 6.9 MPa. The study of such flow is relevant to the prediction of leak flow rates from a nuclear reactor primary side to secondary side through cracks in steam generator tubes. An experimental approach to measuring such flow is de- scribed. Experimental results from data found in literature as well as the data collected in this work are compared with predictions from presented models as well as predictions from the thermal-hydraulic system code RELAP5. It is found that the homogeneous equilibrium model underpredicts choked flow rates of subcooled water through slits and artificial steam generator tube cracks. Additional modeling of thermal non-equilibrium improves the predictibility of choking mass flux for homogeneous models, however they fail to account for the characteristics of the two-phase pressure drop. An integral modeling approach is enhanced using a correlation developed from the data herein. Also, an assessment of the thermal-hydraulics code RELAP5 is performed and it’s applicability to predict choking flow rates through steam generator tube cracks is addressed. This assessment determined that the Henry & Fauske model, as coded in RELAP5, is best suited for modeling choked flow through steam generator tube cracks. Finally, an approach to applying choked flow data that is not at the same thermo-dynamic conditions as a prototype is developed.

  5. In-vessel ITER tubing failure rates for selected materials and coolants

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, T.D. [Rensselaer Polytechnic Institute, Troy, NY (United States); Cadwallader, L.C. [EG& G Idaho Inc., Idaho Falls, ID (United States)

    1994-03-01

    Several materials have been suggested for fabrication of ITER in-vessel coolant tubing: beryllium, copper, Inconel, niobium, stainless steel, titanium, and vanadium. This report generates failure rates for the materials to identify the best performer from an operational safety and availability perspective. Coolant types considered in this report are helium gas, liquid lithium, liquid sodium, and water. Failure rates for the materials are generated by including the influence of ITER`s operating environment and anticipated tubing failure mechanisms with industrial operating experience failure rates. The analyses define tubing failure mechanisms for ITER as: intergranular attack, flow erosion, helium induced swelling, hydrogen damage, neutron irradiation embrittlement, cyclic fatigue, and thermal cycling. K-factors, multipliers, are developed to model each failure mechanism and are applied to industrial operating experience failure rates to generate tubing failure rates for ITER. The generated failure rates identify the best performer by its expected reliability. With an average leakage failure rate of 3.1e-10(m-hr){sup {minus}1}and an average rupture failure rate of 3.1e-11(m-hr){sup {minus}1}, titanium proved to be the best performer of the tubing materials. The failure rates generated in this report are intended to serve as comparison references for design safety and optimization studies. Actual material testing and analyses are required to validate the failure rates.

  6. On the generation of flux tube waves in stellar convection zones. I - Longitudinal tube waves driven by external turbulence

    Science.gov (United States)

    Musielak, Z. E.; Rosner, R.; Ulmschneider, P.

    1989-01-01

    The source functions and the energy fluxes for wave generation in magnetic flux tubes embedded in an otherwise magnetic field-free, turbulent, and compressible fluid are derived. The calculations presented here assume that the tube interior is not itself turbulent, e.g., that motions within the flux tube are due simply to external excitation. Specific results for the generation of longitudinal tube waves are presented.

  7. Third-Generation Biomedical Materials

    National Research Council Canada - National Science Library

    Larry L. Hench; Julia M. Polak

    2002-01-01

    Whereas second-generation biomaterials were designed to be either resorbable or bioactive, the next generation of biomaterials is combining these two properties, with the aim of developing materials...

  8. Cladding material, tube including such cladding material and methods of forming the same

    Science.gov (United States)

    Garnier, John E.; Griffith, George W.

    2016-03-01

    A multi-layered cladding material including a ceramic matrix composite and a metallic material, and a tube formed from the cladding material. The metallic material forms an inner liner of the tube and enables hermetic sealing of thereof. The metallic material at ends of the tube may be exposed and have an increased thickness enabling end cap welding. The metallic material may, optionally, be formed to infiltrate voids in the ceramic matrix composite, the ceramic matrix composite encapsulated by the metallic material. The ceramic matrix composite includes a fiber reinforcement and provides increased mechanical strength, stiffness, thermal shock resistance and high temperature load capacity to the metallic material of the inner liner. The tube may be used as a containment vessel for nuclear fuel used in a nuclear power plant or other reactor. Methods for forming the tube comprising the ceramic matrix composite and the metallic material are also disclosed.

  9. On the influence of manufacturing practices on the SCC behavior of Alloy 690 steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, P.E.; Doyle, D.M. [Babcock and Wilcox International Div., Cambridge, Ontario (Canada); Sarver, J.M.; Miglin, B.P. [Babcock and Wilcox Research Div., Alliance, OH (United States)

    1996-12-31

    Thermally treated (TT) Alloy 690 is the tubing materials of choice for replacement steam generators (RSGs) throughout the world. It is manufactured using a variety of processing methods with regards to melt practice and thermomechanical forming. Studies assessing the IGSCC resistance of Alloy 690 TT SG tubing have identified a variability in the corrosion performance of nominally identical alloys. While tubing of comparable bulk chemistry may exhibit variations in microchemistry as a result of different melt practice, the correlation between melt practice and SCC resistance is difficult to assess due to other contributing factors. The other contributing factors are identified in this investigation as microstructural features whose generation is dependent on features of particular strain-anneal forming methods by which SG tubes are fabricated. In this study the microstructural characteristics which appear to affect inservice corrosion performance of Alloy 690 TT SG tubes were evaluated. The studies included extensive microstructural examinations in addition to CERT tests performed on actual Alloy 690 TT nuclear SG tubing. The CERT test results indicate that Alloy 690 TT tubing processed at higher mill anneal temperatures display the highest degree of stress corrosion cracking (SCC) resistance. This observation is discussed with reference to carbide distributions, textural aspects and grain boundary orientation character.

  10. Second-generation aerosol shock tube: an improved design

    Science.gov (United States)

    Haylett, D. R.; Davidson, D. F.; Hanson, R. K.

    2012-11-01

    An improved, second-generation aerosol shock tube (AST II) has been developed for the study of the chemical kinetics of low-vapor-pressure fuels. These improvements enable a wider range of fuel concentrations and enhanced spatial uniformity relative to our initial aerosol shock tube (AST I). In addition, the design of AST II limits the aerosol loading zone in the shock tube to a fixed region (1.2 m in length adjacent to the shock tube endwall). AST II achieves these improvements using a separate holding tank to prepare the aerosol mixture and a slightly under-pressure dump tank to carefully pull the aerosol mixture into the tube in a plug-flow. This filling method is capable of producing room temperature test gas mixtures of n-dodecane with equivalence ratios of up to 3.0 in 21 % O2, three times the loading achievable in the earlier AST I that used a flow-through strategy. Improvements in aerosol uniformity were quantified by measuring the liquid volume concentration at multiple locations in the shock tube. The measurements made over a length of 1.1 m of shock tube indicate that the AST II method of filling produces non-uniformities in liquid volume concentration of less than 2 %, whereas in the AST I method of filling the non-uniformities reached 16 %. The improved uniformity can also be seen in measurement of gas-phase fuel concentration behind the incident shock wave after the liquid droplets have evaporated. Significant reduction in the scatter of ignition delay times measured using AST II have also been achieved, confirming the importance of uniform loading of the aerosol in making high-quality combustion measurements.

  11. Analysis of the State of Steam Generator Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Bergunker, Olga [JSC OKB ' Gidropress' , 142103 Podolsk (Russian Federation)

    2008-07-01

    The problem of safe operation of SG heat exchanging tubes, of both economical and effective control of their state is still important these days. Issues connected with peculiarities of methods of SG tubes inspection, automated analysis of the inspection results, tubes state analysis and development of algorithms of forecasting their state are considered in this report. The need for effective use of extensive data arrays on SG operation has led to the necessity of creating software tools for collection, storage and analysis of these data. The data-analytical system 'NPP Steam Generators' meant for data systematization and visualization as well as various types of analyses of data on eddy current inspection of WWER-440 and WWER-1000 SG tubes is presented in this report. The main possibilities of the data-analytical system (DAS), the code current state and prospects of its development are shown. The main fields of DAS application are considered and some results of its practical use are mentioned, namely, in the field of forecasting SG tubes state. (authors)

  12. Lessons learned from tubes pulled from French steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Berge, Ph.; Boursier, J.M.; Dallery, D.; De Keroulas, F.; Rouillon, Y. [Electricite de France, Generating and Transmission Div. (France)

    1998-07-01

    Since 1981, the Chinon Hot Laboratory has completed more than 380 metallurgical examinations of pulled French steam generator tubes. Electricite de France decided to perform such investigations from the very outset of the French nuclear program, in order to contribute to nuclear power plant safety. The main reasons for withdrawing tubes are to evaluate the degradation, to validate non destructive examination (NDE) techniques, to gain a better understanding of cracking phenomena, and to ensure that the criteria on which plugging operations are based remain conservative. Considerable experience has been accumulated in the field of primary water stress corrosion cracking (PWSCC), OD (secondary) side corrosion, leak and burst tests, and various tube plugging techniques. This paper focuses on the PWSCC phenomenon and on the secondary side corrosion process, and in particular, attempts to correlate French data from pulled tubes with the results of fundamental R and D studies. Finally, within the framework of the Nuclear Power Plant Safety and Maintenance Policy, all these results are discussed in terms of optimization of the field inspection of tube bundles and plugging criteria. (author)

  13. Experimental residual stress evaluation of hydraulic expansion transitions in Alloy 690 steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, R.; Doherty, P. [Babcock and Wilcox International, Cambridge, Ontario (Canada); Hornbach, D. [Lambda Research Inc., Cincinnati, OH (United States); Abdelsalam, U. [McMaster Univ., Hamilton, Ontario (Canada)

    1995-12-31

    Nuclear Steam Generator (SG) service reliability and longevity have been seriously affected worldwide by corrosion at the tube-to-tubesheet joint expansion. Current SG designs for new facilities and replacement projects enhance corrosion resistance through the use of advanced tubing materials and improved joint design and fabrication techniques. Here, transition zones of hydraulic expansions have undergone detailed experimental evaluation to define residual stress and cold-work distribution on and below the secondary-side surface. Using X-ray diffraction techniques, with supporting finite element analysis, variations are compared in tubing metallurgical condition, tube/pitch geometry, expansion pressure, and tube-to-hole clearance. Initial measurements to characterize the unexpanded tube reveal compressive stresses associated with a thin work-hardened layer on the outer surface of the tube. The gradient of cold-work was measured as 3% to 0% within .001 inch of the surface. The levels and character of residual stresses following hydraulic expansion are primarily dependent on this work-hardened surface layer and initial stress state that is unique to each tube fabrication process. Tensile stresses following expansion are less than 25% of the local yield stress and are found on the transition in a narrow circumferential band at the immediate tube surface (< .0002 inch/0.005 mm depth). The measurements otherwise indicate a predominance of compressive stresses on and below the secondary-side surface of the transition zone. Excellent resistance to SWSCC initiation is offered by the low levels of tensile stress and cold-work. Propagation of any possible cracking would be deterred by the compressive stress field that surrounds this small volume of tensile material.

  14. Steam Generator tube integrity -- US Nuclear Regulatory Commission perspective

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, E.L.; Sullivan, E.J.

    1997-02-01

    In the US, the current regulatory framework was developed in the 1970s when general wall thinning was the dominant degradation mechanism; and, as a result of changes in the forms of degradation being observed and improvements in inspection and tube repair technology, the regulatory framework needs to be updated. Operating experience indicates that the current U.S. requirements should be more stringent in some areas, while in other areas they are overly conservative. To date, this situation has been dealt with on a plant-specific basis in the US. However, the NRC staff is now developing a proposed steam generator rule as a generic framework for ensuring that the steam generator tubes are capable of performing their intended safety functions. This paper discusses the current U.S. regulatory framework for assuring steam generator (SG) tube integrity, the need to update this regulatory framework, the objectives of the new proposed rule, the US Nuclear Regulatory Commission (NRC) regulatory guide (RG) that will accompany the rule, how risk considerations affect the development of the new rule, and some outstanding issues relating to the rule that the NRC is still dealing with.

  15. Nano surface generation of grinding process using carbon nano tubes

    Indian Academy of Sciences (India)

    S Prabhu; B K Vinayagam

    2010-12-01

    Nano surface finish has become an important parameter in the semiconductor, optical, electrical and mechanical industries. The materials used in these industries are classified as difficult to machine materials such as ceramics, glasses and silicon wafers. Machining of these materials up to nano accuracy is a great challenge in the manufacturing industry. Finishing of micro components such as micro-moulds, micro-lenses and micro-holes need different processing techniques. Conventional finishing methods used so far become almost impossible or cumbersome. In this paper, a nano material especially multi wall carbon nano tube is used in the machining process like grinding to improve the surface characteristics from micro to nano level.

  16. Laser cleaning of steam generator tubing based on acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Su-xia; Luo, Ji-jun; Shen, Tao; Li, Ru-song [Xi' an Hi-Tech Institute, Xi' an (China)

    2015-12-15

    As a physical method, laser cleaning technology in equipment maintenance will be a good prospect. The experimental apparatus for laser cleaning of heat tubes in the steam generator was designed according to the results of theoretical analysis. There are two conclusions; one is that laser cleaning technology is attached importance to traditional methods. Which has advantages in saving on much manpower and material resource and it is a good cleaning method for heat tubes. The other is that the acoustic emission signal includes lots of information on the laser cleaning process, which can be used as real-time monitoring in laser cleaning processes. When the laser acts for 350 s, 100 % contaminants of heat tubes is cleaned off, and the sensor only receives weak AE signal at that time.

  17. Overview of steam generator tube-inspection technology

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.; Renaud, J.; Lakhan, R., E-mail: obrutskl@aecl.ca, E-mail: renaudj@aecl.ca, E-mail: lakhanr@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2014-03-15

    Degradation of steam generator (SG) tubing due to both mechanical and corrosion modes has resulted in extensive repairs and replacement of SGs around the world. The variety of degradation modes challenges the integrity of SG tubing and, therefore, the stations' reliability. Inspection and monitoring aimed at timely detection and characterization of the degradation is a key element for ensuring tube integrity. Up to the early-70's, the in-service inspection of SG tubing was carried out using single-frequency eddy current testing (ET) bobbin coils, which were adequate for the detection of volumetric degradation. By the mid-80's, additional modes of degradation such as pitting, intergranular attack, and axial and circumferential inside or outside diameter stress corrosion cracking had to be addressed. The need for timely, fast detection and characterization of these diverse modes of degradation motivated the development in the 90's of inspection systems based on advanced probe technology coupled with versatile instruments operated by fast computers and remote communication systems. SG inspection systems have progressed in the new millennium to a much higher level of automation, efficiency and reliability. Also, the role of Non Destructive Evaluation (NDE) has evolved from simple detection tools to diagnostic tools that provide input into integrity assessment decisions, fitness-far-service and operational assessments. This new role was motivated by tighter regulatory requirements to assure the safety of the public and the environment, better SG life management strategies and often self-imposed regulations. It led to the development of advanced probe technologies, more reliable and versatile instruments and robotics, better training and qualification of personnel and better data management and analysis systems. This paper provides a brief historical perspective regarding the evolution of SG inspections and analyzes the motivations behind that

  18. New Media: Engaging and Educating the YouTube Generation

    Directory of Open Access Journals (Sweden)

    Anu Vedantham

    2011-12-01

    Full Text Available Today's undergraduates are clearly comfortable as consumers of technology and new media—purchasing ring tones for their cell phones and tunes for their iPods, text-messaging from handheld devices, scanning and tinkering with photos, keeping up with their Facebook friends and watching viral YouTube videos, sometimes all simultaneously. We share examples of classroom assignments integrated with library support services that engage today's undergraduates with academic materials in a variety of course contexts. We discuss how specific arrangements of library learning spaces and the alignment of space and staffing can help undergraduate students succeed with new media projects for class assignments.

  19. Biomimetics for next generation materials.

    Science.gov (United States)

    Barthelat, Francois

    2007-12-15

    Billions of years of evolution have produced extremely efficient natural materials, which are increasingly becoming a source of inspiration for engineers. Biomimetics-the science of imitating nature-is a growing multidisciplinary field which is now leading to the fabrication of novel materials with remarkable mechanical properties. This article discusses the mechanics of hard biological materials, and more specifically of nacre and bone. These high-performance natural composites are made up of relatively weak components (brittle minerals and soft proteins) arranged in intricate ways to achieve specific combinations of stiffness, strength and toughness (resistance to cracking). Determining which features control the performance of these materials is the first step in biomimetics. These 'key features' can then be implemented into artificial bio-inspired synthetic materials, using innovative techniques such as layer-by-layer assembly or ice-templated crystallization. The most promising approaches, however, are self-assembly and biomineralization because they will enable tight control of structures at the nanoscale. In this 'bottom-up' fabrication, also inspired from nature, molecular structures and crystals are assembled with a little or no external intervention. The resulting materials will offer new combinations of low weight, stiffness and toughness, with added functionalities such as self-healing. Only tight collaborations between engineers, chemists, materials scientists and biologists will make these 'next-generation' materials a reality.

  20. Analysis of pulsed eddy current data using regression models for steam generator tube support structure inspection

    Science.gov (United States)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2016-02-01

    Nuclear steam generators (SGs) are a critical component for ensuring safe and efficient operation of a reactor. Life management strategies are implemented in which SG tubes are regularly inspected by conventional eddy current testing (ECT) and ultrasonic testing (UT) technologies to size flaws, and safe operating life of SGs is predicted based on growth models. ECT, the more commonly used technique, due to the rapidity with which full SG tube wall inspection can be performed, is challenged when inspecting ferromagnetic support structure materials in the presence of magnetite sludge and multiple overlapping degradation modes. In this work, an emerging inspection method, pulsed eddy current (PEC), is being investigated to address some of these particular inspection conditions. Time-domain signals were collected by an 8 coil array PEC probe in which ferromagnetic drilled support hole diameter, depth of rectangular tube frets and 2D tube off-centering were varied. Data sets were analyzed with a modified principal components analysis (MPCA) to extract dominant signal features. Multiple linear regression models were applied to MPCA scores to size hole diameter as well as size rectangular outer diameter tube frets. Models were improved through exploratory factor analysis, which was applied to MPCA scores to refine selection for regression models inputs by removing nonessential information.

  1. Optimization of cavitation venturi tube design for pico and nano bubbles generation

    Institute of Scientific and Technical Information of China (English)

    Xiong Yu; Peng Felicia⇑

    2015-01-01

    Hydrodynamic cavitaion venturi tube technique is used for pico and nano bubble generations in coal column flotation. In order to determine the optimal design of hydrodynamic cavitation venture tube for pico and nano bubble generation, a four-factor three-level Central Composite Design of Experimental was conducted for investigating four important design parameters of cavitation venturi tube governing the median size and the volume of pico and nano bubbles. The test results showed that maximum volume of pico and nano bubbles, 65–75%, and minimum mean pico and nano bubble size, 150–240 nm, were achieved at the medium ratio of the diameter of outlet of the venturi-tube and diam-eter of throat (3–4), medium outlet angle (11–13?), high inlet angle (26–27?) and high ratio of the length of the throat and the diameter of throat (2.3–3). Study the effects of the producing pico and nano bubbles on fine coal flotation was performed in a 5 cm diameter 260 cm height flotation column. The optimal percentage of pico and nano bubbles was about 70%, which produced maximum combustible material recovery of 86%with clean coal ash content of 11.7%.

  2. Inspection of ferromagnetic support structures from within alloy 800 steam generator tubes using pulsed eddy current

    Science.gov (United States)

    Buck, Jeremy Andrew

    Nondestructive testing is a critical aspect of component lifetime management. Nuclear steam generator (SG) tubes are the thinnest barrier between irradiated primary heat transport system and the secondary heat transport system, whose components are not rated for large radiation fields. Conventional eddy current testing (ECT) and ultrasonic testing are currently employed for inspecting SG tubes, with the former doing most inspections due to speed and reliability based on an understanding of how flaws affect coil impedance parameters when conductors are subjected to harmonically induced currents. However, when multiple degradation modes are present simultaneously near ferromagnetic materials, such as tube fretting, support structure corrosion, and magnetite fouling, ECT reliability decreases. Pulsed eddy current (PEC), which induces transient eddy currents via square wave excitation, has been considered in this thesis to simultaneously examine SG tube and support structure conditions. An array probe consisting of a central driver, coaxial with the tube, and an array of 8 sensing coils, was used in this thesis to perform laboratory measurements. The probe was delivered from the inner diameter (ID) of the SG tube, where support hole diameter, tube frets, and 2D off-centering were varied. When considering two variables simultaneously, scores obtained from a modified principal components analysis (MPCA) were sufficient for parameter extraction. In the case of hole ID variation with two dimensional tube off-centering (three parameters), multiple linear regression (MLR) of the MPCA scores provided good estimates of parameters. However, once a fourth variable, outer diameter tube frets, was introduced, MLR proved insufficient. Artificial neural networks (ANNs) were investigated in order to perform pattern recognition on the MPCA scores to simultaneously extract the four measurement parameters from the data. All models throughout this thesis were created and validated using

  3. New Regenerator Materials for use in pulse tube coolers

    Energy Technology Data Exchange (ETDEWEB)

    A. Kashani; B.P.M. Helvensteijn; P. Kittel; K.A. Gschneidner,jr; V.K. Pecharsky; A.O. Pecharsky

    2004-09-30

    A two-stage pulse tube cooler driven by a linear compressor is being developed to provide cooling at 20 K. The first stage of the cooler will have the conventional stainless steel screen regenerator matrix. The matrix for the second stage regenerator (<60 K) will be made from a new class of Er based alloys which was recently developed at Ames Laboratory, in Ames, Iowa. These alloys exhibit heat capacities that exceed that of all other materials, including lead, over a Wide range in temperature (15 K < T C 85 K). The performance of one such alloy was shown to be better than lead when tested in a single-stage pulse tube cooler driven by a G-M compressor and operating at 2 Hz. An effort is underway to establish their suitability at frequencies above 40 IIZ. An approach to testing these alloys at low temperatures while using a low-power linear compressor is presented.

  4. Producing of Impedance Tube for Measurement of Acoustic Absorption Coefficient of Some Sound Absorber Materials

    Directory of Open Access Journals (Sweden)

    R. Golmohammadi

    2008-04-01

    Full Text Available Introduction & Objective: Noise is one of the most important harmful agents in work environment. In spit of industrial improvements, exposure with over permissible limit of noise is counted as one of the health complication of workers. In Iran, do not exact information of the absorption coefficient of acoustic materials. Iranian manufacturer have not laboratory for measured of sound absorbance of their products, therefore using of sound absorber is limited for noise control in industrial and non industrial constructions. The goal of this study was to design an impedance tube based on pressure method for measurement of the sound absorption coefficient of acoustic materials.Materials & Methods: In this study designing of measuring system and method of calculation of sound absorption based on a available equipment and relatively easy for measurement of the sound absorption coefficient related to ISO10534-1 was performed. Measuring system consist of heavy asbestos tube, a pure tone sound generator, calibrated sound level meter for measuring of some commonly of sound absorber materials was used. Results: In this study sound absorption coefficient of 23 types of available acoustic material in Iran was tested. Reliability of results by three repeat of measurement was tested. Results showed that the standard deviation of sound absorption coefficient of study materials was smaller than .Conclusion: The present study performed a necessary technology of designing and producing of impedance tube for determining of acoustical materials absorption coefficient in Iran.

  5. Harmonic Generation in a Traveling-Wave Tube

    Science.gov (United States)

    Wong, Patrick; Zhang, Peng; Lau, Y. Y.; Greening, Geoffrey; Gilgenbach, Ronald; Chernin, David; Simon, David; Hoff, Brad

    2016-10-01

    Crowding of electron orbits in a traveling-wave tube (TWT) may lead to significant harmonic contents in the beam current, even in the linear regime. Here, we consider a wideband TWT that exhibits gain at the second harmonic. We analytically formulate equations governing the evolution of the generation of second harmonic, including axial variations of the Pierce parameters. The second harmonic output is phase-controlled by the input signal which consists only of a fundamental frequency. Several test cases are performed and compared with simulation using the CHRISTINE code. Reasonable agreement between theory and simulation is found. Work supported by AFOSR FA9550-15-1-0097, ONR N00014-16-1-2353, and L-3 Communications Electron Device Division.

  6. YouTube Fridays: Engaging the Net Generation in 5 Minutes a Week

    Science.gov (United States)

    Liberatore, Matthew W.

    2010-01-01

    YouTube Fridays is a teaching tool that devotes the first five minutes of class each Friday to a YouTube video related to the course. Students select the videos, which expand the class's educational content in courses such as thermodynamics and material and energy balances. From assessments of two pilot studies using YouTube Fridays in Chemical…

  7. Mechanical Properties of Heat Exchanger Tube Materials at Elevated Temperatures

    Science.gov (United States)

    Kahl, Sören; Zajac, Jozefa; Ekström, Hans-Erik

    Since automotive heat exchangers are operated at elevated temperatures and under varying pressures, both static and dynamic mechanical properties should be known at the relevant temperatures. We have collected elevated-temperature tensile test data, elevated-temperature stress amplitude-fatigue life data, and creep-rupture data in a systematic fashion over the past years. For thin, soft, and braze-simulated heat exchanger tube materials tested inside closed furnaces, none of the well-established methods for crack detection and observation can be applied. In our contribution, we present a simple statistical method to estimate the time required for crack initiation.

  8. Eddy Current Signature Classification of Steam Generator Tube Defects Using A Learning Vector Quantization Neural Network

    Energy Technology Data Exchange (ETDEWEB)

    Gabe V. Garcia

    2005-01-03

    A major cause of failure in nuclear steam generators is degradation of their tubes. Although seven primary defect categories exist, one of the principal causes of tube failure is intergranular attack/stress corrosion cracking (IGA/SCC). This type of defect usually begins on the secondary side surface of the tubes and propagates both inwards and laterally. In many cases this defect is found at or near the tube support plates.

  9. Numerical and Experimental Study on a Model Draft Tube with Vortex Generators

    Directory of Open Access Journals (Sweden)

    Tian Xiaoqing

    2013-01-01

    Full Text Available A model water turbine draft tube containing vortex generators (VG was studied. Numerical simulations were performed to investigate 55 design variations of the vortex generators in a draft tube. After analyzing the shapes of streamlines and velocity distributions in the tube and comparing static pressure recovery coefficients (SPRC in different design variations, an optimum vortex generator layout, which can raise SPRC of the draft tube by 4.8 percent, was found. To verify the effectiveness of the vortex generator application, a series of experiments were carried out. The results show that by choosing optimal vortex generator parameters, such as the installation type, installation position, blade-to-blade distance, and blade inclination angle, the draft tube equipped vortex generators can effectively raise their SPRC andworking stability.

  10. Prognostics for Steam Generator Tube Rupture using Markov Chain model

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Gibeom; Heo, Gyunyoung [Kyung Hee University, Yongin (Korea, Republic of); Kim, Hyeonmin [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper will describe the prognostics method for evaluating and forecasting the ageing effect and demonstrate the procedure of prognostics for the Steam Generator Tube Rupture (SGTR) accident. Authors will propose the data-driven method so called MCMC (Markov Chain Monte Carlo) which is preferred to the physical-model method in terms of flexibility and availability. Degradation data is represented as growth of burst probability over time. Markov chain model is performed based on transition probability of state. And the state must be discrete variable. Therefore, burst probability that is continuous variable have to be changed into discrete variable to apply Markov chain model to the degradation data. The Markov chain model which is one of prognostics methods was described and the pilot demonstration for a SGTR accident was performed as a case study. The Markov chain model is strong since it is possible to be performed without physical models as long as enough data are available. However, in the case of the discrete Markov chain used in this study, there must be loss of information while the given data is discretized and assigned to the finite number of states. In this process, original information might not be reflected on prediction sufficiently. This should be noted as the limitation of discrete models. Now we will be studying on other prognostics methods such as GPM (General Path Model) which is also data-driven method as well as the particle filer which belongs to physical-model method and conducting comparison analysis.

  11. Towards Improved Thermoelectric Generator Materials

    Science.gov (United States)

    Julian Goldsmid, H.

    2017-05-01

    Over recent years, new thermoelectric materials have been developed with values for the dimensionless figure of merit, zT, substantially greater than unity. This has opened up the possibility of many new applications, particularly those involving the utilisation of waste heat. However, further improvements are necessary if thermoelectric generation is to have a significant impact on the world's energy problems. It is well known that zT for a single energy band can be related to the Fermi energy and a parameter ( μ/λ L) ( m*/m)3/2, where μ is the carrier mobility, m*/m is the ratio of the carrier effective mass to the mass of a free electron and λ L is the lattice thermal conductivity. However, even when this parameter tends towards infinity, zT does not become much greater than 1 unless the Fermi level lies within the energy gap, far from the appropriate band edge. Thus, the magnitude of the energy gap is becoming of increasing importance. The two-fold requirements of a high value of ( μ/λ L) ( m*/m)3/2 and a sufficiently large energy gap are discussed. It is also shown that the likelihood of the required conditions being met at elevated temperatures can be predicted from low-temperature observations. It is, of course, much more difficult to make accurate determinations of the thermoelectric properties at higher temperatures.

  12. Associated-particle sealed-tube neutron probe: Detection of explosives, contraband, and nuclear materials

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, E.; Dickerman, C.E.

    1996-05-01

    Continued research and development of the APSTNG shows the potential for practical field use of this technology for detection of explosives, contraband, and nuclear materials. The APSTNG (associated-particle sealed-tube generator) inspects the item to be examined using penetrating 14-MeV neutrons generated by the deuterium-tritium reaction inside a compact accelerator tube. An alpha detector built into the sealed tube detects the alpha-particle associated with each neutron emitted in a cone encompassing the volume to be inspected. Penetrating high-energy gamma-rays from the resulting neutron reactions identify specific nuclides inside the volume. Flight-times determined from the detection times of gamma-rays and alpha-particles separate the prompt and delayed gamma-ray spectra and allow a coarse 3-D image to be obtained of nuclides identified in the prompt spectrum. The generator and detectors can be on the same side of the inspected object, on opposite sides, or with intermediate orientations. Thus, spaces behind walls and other confined regions can be inspected. Signals from container walls can be discriminated against using the flight-time technique. No collimators or shielding are required, the neutron generator is relatively small, and commercial-grade electronics are employed. The use of 14-MeV neutrons yields a much higher cross-section for detecting nitrogen than that for systems based on thermal-neutron reactions alone, and the broad range of elements with significant 14-MeV neutron cross-sections extends explosives detection to other elements including low-nitrogen compounds, and allows detection of many other substances. Proof-of-concept experiments have been successfully performed for conventional explosives, chemical warfare agents, cocaine, and fissionable materials.

  13. Considerations for Metallographic Observation of Intergranular Attack in Steam Generator Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Do Haeng; Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho [Korea Atomic Enery Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The extent and direction of the crazing depend on the type and direction of the applied stress to the corroded tube. In addition, it has been reported that IGA/IGP cannot be observed without proper etching techniques. This paper provides the metallographic characteristics of IGA in Alloy 600 steam generator tubes. The effect of applied stress on the morphology change of IGA area is discussed. In some cases, an IGA of steam generator tubes cannot be identified through etching techniques. It was found that an IGA tube was crazed along the grain boundaries into various types and directions through a deformation from applied stress. The direction and extent of the crazing depended on those of the applied stress. It was clearly shown that an IGA cannot be observed or misevaluated as an SCC. Therefore, special cautions should be paid during the destructive evaluation of the pulled-out tubes from operating steam generators.

  14. Design of water shock tube for testing shell materials

    OpenAIRE

    Ji, Hongjuan; Mustafa, Mohamad; Khawaja, Hassan Abbas; Ewan, Bruce C.; Moatamedi, Mojtaba

    2014-01-01

    This paper presents design considerations for a shock tube experimental rig used to investigate the dynamic failure mechanisms of shell geometries subjected to water shock impact loading. In such setup, it is desirable that the drive pressure used within the tube can provide a wide range of impulsive loads on the test structures and some flexibility can be achieved on the applied pulse durations. With this aim a review of various existing shock tube experimental setup is presented and choi...

  15. Corrosion-resistant tube materials for extended life of openings in recovery boilers

    Energy Technology Data Exchange (ETDEWEB)

    Paul, L.D.; Danielson, M.J.; Harper, S.L. (Babcock and Wilcox Co., Alliance, OH (United States). Research and Development Div.); Barna, J.L. (Babcock and Wilcox Co., Barberton, OH (United States). Fossil Power Div.)

    1993-08-01

    The corrosive conditions causing rapid corrosion of Type 304L stainless steel in tube openings have been duplicated in the laboratory. Alternate materials also have been tested, and some show improved corrosion resistance over Type 304L. Alloy 825 and Alloy 625 composite tubing and Alloy 600 and Alloy 625 weld overlay materials all show promise as a replacement for Type 304L in tube openings. All recovery boilers designed or operated at 8.375 MPa (1,200 psi) and above should consider using these replacement materials for tube openings.

  16. Miniature, low-power X-ray tube using a microchannel electron generator electron source

    Science.gov (United States)

    Elam, Wm. Timothy (Inventor); Kelliher, Warren C. (Inventor); Hershyn, William (Inventor); DeLong, David P. (Inventor)

    2011-01-01

    Embodiments of the invention provide a novel, low-power X-ray tube and X-ray generating system. Embodiments of the invention use a multichannel electron generator as the electron source, thereby increasing reliability and decreasing power consumption of the X-ray tube. Unlike tubes using a conventional filament that must be heated by a current power source, embodiments of the invention require only a voltage power source, use very little current, and have no cooling requirements. The microchannel electron generator comprises one or more microchannel plates (MCPs), Each MCP comprises a honeycomb assembly of a plurality of annular components, which may be stacked to increase electron intensity. The multichannel electron generator used enables directional control of electron flow. In addition, the multichannel electron generator used is more robust than conventional filaments, making the resulting X-ray tube very shock and vibration resistant.

  17. J-resistance curves for Inconel 690 and Incoloy 800 nuclear steam generators tubes at room temperature and at 300 °C

    Science.gov (United States)

    Bergant, Marcos A.; Yawny, Alejandro A.; Perez Ipiña, Juan E.

    2017-04-01

    The structural integrity of steam generator tubes is a relevant issue concerning nuclear plant safety. In the present work, J-resistance curves of Inconel 690 and Incoloy 800 nuclear steam generator tubes with circumferential and longitudinal through wall cracks were obtained at room temperature and 300 °C using recently developed non-standard specimens' geometries. It was found that Incoloy 800 tubes exhibited higher J-resistance curves than Inconel 690 for both crack orientations. For both materials, circumferential cracks resulted into higher fracture resistance than longitudinal cracks, indicating a certain degree of texture anisotropy introduced by the tube fabrication process. From a practical point of view, temperature effects have found to be negligible in all cases. The results obtained in the present work provide a general framework for further application to structural integrity assessments of cracked tubes in a variety of nuclear steam generator designs.

  18. Leak rate and burst test data for McGuire Unit 1 steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Sherburne, P.A. [B& W Nuclear Service Co., Lynchburg, VA (United States); Frye, C.R. [Babcock & Wilcox Co., Lynchburg, VA (United States); Mayes, D.B. [Duke Power Co., Charlotte, NC (United States)

    1992-12-31

    To support the development of tube plugging criteria that would allow tubes with through-wall cracks to remain in service, sections of 12 tubes were removed from the McGuire Unit-1 steam generators. These tubes were sent to B&W Nuclear Service Company for metallographic examination and for determination of burst pressure and leak rate at both operating and faulted conditions. Primary water stress corrosion cracking (PWSCC) had degraded these tubes in the tube-to-tubesheet roll transitions. To measure primary-to-secondary leakage at pressures and temperatures equivalent to those in the McGuire Unit-1 steam generators, an autoclave-based test loop was designed and installed at the Babcock & Wilcox Lynchburg Research Center. Sections of the tube containing the roll transitions were then installed in the autoclave and actual primary- to-secondary leakage was measured at 288{degrees}C (550{degrees}F) and at 9 and 18.3 MPa (1300 and 2650 psi) pressure differentials. Following the leak test, the tubes were pressurized internally until the tube wall ruptured. Leak rate, burst pressure, and eddy-current information were then correlated with the through-wall crack lengths as determined by metallographic examination. Results confirm the ability to measure the crack length with eddy-current techniques. Results also support analytical and empirical models developed by the nuclear industry in calculating critical crack lengths in roll transitions.

  19. Crack resistance curves determination of tube cladding material

    Science.gov (United States)

    Bertsch, J.; Hoffelner, W.

    2006-06-01

    Zirconium based alloys have been in use as fuel cladding material in light water reactors since many years. As claddings change their mechanical properties during service, it is essential for the assessment of mechanical integrity to provide parameters for potential rupture behaviour. Usually, fracture mechanics parameters like the fracture toughness KIC or, for high plastic strains, the J-integral based elastic-plastic fracture toughness JIC are employed. In claddings with a very small wall thickness the determination of toughness needs the extension of the J-concept beyond limits of standards. In the paper a new method based on the traditional J approach is presented. Crack resistance curves (J-R curves) were created for unirradiated thin walled Zircaloy-4 and aluminium cladding tube pieces at room temperature using the single sample method. The procedure of creating sharp fatigue starter cracks with respect to optical recording was optimized. It is shown that the chosen test method is appropriate for the determination of complete J-R curves including the values J0.2 (J at 0.2 mm crack length), Jm (J corresponding to the maximum load) and the slope of the curve.

  20. Packaging material and flexible medical tubing containing thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor)

    2011-01-01

    A packaging material or flexible medical tubing containing a modified graphite oxide material, which is a thermally exfoliated graphite oxide with a surface area of from about 300 m.sup.2/g to 2600 m.sup.2/g.

  1. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  2. Steam generator tubes integrity: In-service-inspection

    Energy Technology Data Exchange (ETDEWEB)

    Comby, R.J. [EDF/GDL, Saint Denis (France)

    1997-02-01

    The author`s approach to tube integrity is in terms of looking for flaws in tubes. The basis for this approach is that no simple rules can be fixed to adopt a universal inspection methodology because of various concepts related to experience, leak acceptance, leak before break approach, etc. Flaw specific management is probably the most reliable approach as a compromise between safety, availability and economic issues. In that case, NDE capabilities have to be in accordance with information required by structural integrity demonstration. The author discusses the types of probes which can be used to search for flaws in addition to the types of flaws which are being sought, with examples of specific analysis experiences. The author also discusses the issue of a reporting level as it relates to avoiding false calls, classifying faults, and allowing for automation in analysis.

  3. Studies of the steam generator degraded tubes behavior on BRUTUS test loop

    Energy Technology Data Exchange (ETDEWEB)

    Chedeau, C.; Rassineux, B. [EDF/DER/MTC, Moret Sur Loing (France); Flesch, B. [EDF/EPN/DMAINT, Paris (France)] [and others

    1997-04-01

    Studies for the evaluation of steam generator tube bundle cracks in PWR power plants are described. Global tests of crack leak rates and numerical calculations of crack opening area are discussed in some detail. A brief overview of thermohydraulic studies and the development of a mechanical probabilistic design code is also given. The COMPROMIS computer code was used in the studies to quantify the influence of in-service inspections and maintenance work on the risk of a steam generator tube rupture.

  4. The relative impact of sizing errors on steam generator tube failure probability

    Energy Technology Data Exchange (ETDEWEB)

    Cizelj, L.; Dvorsek, T. [Jozef Stefan Inst., Ljubljana (Slovenia)

    1998-07-01

    The Outside Diameter Stress Corrosion Cracking (ODSCC) at tube support plates is currently the major degradation mechanism affecting the steam generator tubes made of Inconel 600. This caused development and licensing of degradation specific maintenance approaches, which addressed two main failure modes of the degraded piping: tube rupture; and excessive leakage through degraded tubes. A methodology aiming at assessing the efficiency of a given set of possible maintenance approaches has already been proposed by the authors. It pointed out better performance of the degradation specific over generic approaches in (1) lower probability of single and multiple steam generator tube rupture (SGTR), (2) lower estimated accidental leak rates and (3) less tubes plugged. A sensitivity analysis was also performed pointing out the relative contributions of uncertain input parameters to the tube rupture probabilities. The dominant contribution was assigned to the uncertainties inherent to the regression models used to correlate the defect size and tube burst pressure. The uncertainties, which can be estimated from the in-service inspections, are further analysed in this paper. The defect growth was found to have significant and to some extent unrealistic impact on the probability of single tube rupture. Since the defect growth estimates were based on the past inspection records they strongly depend on the sizing errors. Therefore, an attempt was made to filter out the sizing errors and to arrive at more realistic estimates of the defect growth. The impact of different assumptions regarding sizing errors on the tube rupture probability was studied using a realistic numerical example. The data used is obtained from a series of inspection results from Krsko NPP with 2 Westinghouse D-4 steam generators. The results obtained are considered useful in safety assessment and maintenance of affected steam generators. (author)

  5. The influence of manufacturing processes on the microstructure, grain boundary characteristics and SCC behavior of Alloy 690 steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Sarver, J.M. [Babcock and Wilcox, Alliance, OH (United States). Research and Development Division; Doherty, P.E.; Doyle, D.M. [Babcock and Wilcox International Division, Cambridge, Ontario (Canada); Palumbo, G. [Ontario Hydro Technologies, Toronto, Ontario (Canada)

    1995-12-31

    Thermally treated Alloy 690 is the tubing material of choice for replacement steam generators in the United States. Throughout the world, it is manufactured using different melting and thermomechanical processing methods. The influence of different processing steps on the intergranular stress corrosion cracking (IGSCC) behavior of Alloy 690 has not been thoroughly evaluated. Evaluations were performed on Alloy 690 steam generator tubing produced using several different melting practices and thermomechanical processing procedures. The evaluations included extensive microstructural examinations as well as constant extension rate (CERT) tests. The CERT test results indicated that the thermally treated Alloy 690 tubing which was subjected to higher annealing temperatures displayed the highest degree of resistance to stress corrosion cracking (SCC). Examination of the microstructures indicated that the microstructural changes which are produced by increased annealing temperatures are subtle. In an attempt to further elucidate and quantify the effect of manufacturing processes on corrosion behavior, grain boundary character distribution (GBCD) measurements were performed on the same materials which were CERT tested. Analysis of GBCDs of the samples used in this study indicate that Alloy 690 exhibits a significantly larger fraction of special boundaries as compared to Alloy 600 and Alloy 800, regardless of the processing history of the tubing. Preliminary results indicate that a correlation may exist between processing method, GBCD`s and degree of IGSCC exhibited by the thermally treated samples examined in this study.

  6. Anodic Materials for Electrocatalytic Ozone Generation

    Directory of Open Access Journals (Sweden)

    Yun-Hai Wang

    2013-01-01

    Full Text Available Ozone has wide applications in various fields. Electrocatalytic ozone generation technology as an alternative method to produce ozone is attractive. Anodic materials have significant effect on the ozone generation efficiency. The research progress on anodic materials for electrocatalytic ozone generation including the cell configuration and mechanism is addressed in this review. The lead dioxide and nickel-antimony-doped tin dioxide anode materials are introduced in detail, including their structure, property, and preparation. Advantages and disadvantages of different anode materials are also discussed.

  7. Trapping Dirac fermions in tubes generated by two scalar fields

    CERN Document Server

    Casana, R; Martins, G V; Simas, F C

    2013-01-01

    In this work we consider $(1,1)-$dimensional resonant Dirac fermionic states on tube-like topological defects. The defects are formed by rings in $(2,1)$ dimensions, constructed with two scalar field $\\phi$ and $\\chi$, and embedded in the $(3,1)-$dimensional Minkowski spacetime. The tube-like defects are attained from a lagrangian density explicitly dependent with the radial distance $r$ relative to the ring axis and the radius and thickness of the its cross-section are related to the energy density. For our purposes we analyze a general Yukawa-like coupling between the topological defect and the fermionic field $\\eta F(\\phi,\\chi)\\bar\\psi\\psi$. With a convenient decomposition of the fermionic fields in left- and right- chiralities, we establish a coupled set of first order differential equations for the amplitudes of the left- and right- components of the Dirac field. After decoupling and decomposing the amplitudes in polar coordinates, the radial modes satisfy Schr\\"odinger-like equations whose eigenvalues a...

  8. Electron beam generation and structure of defects in carbon and boron nitride nano-tubes

    Energy Technology Data Exchange (ETDEWEB)

    Zobelli, A

    2007-10-15

    The nature and role of defects is of primary importance to understand the physical properties of C and BN (boron nitride) single walled nano-tubes (SWNTs). Transmission electron microscopy (TEM) is a well known powerful tool to study the structure of defects in materials. However, in the case of SWNTs, the electron irradiation of the TEM may knock out atoms. This effect may alter the native structure of the tube, and has also been proposed as a potential tool for nano-engineering of nano-tubular structures. Here we develop a theoretical description of the irradiation mechanism. First, the anisotropy of the emission energy threshold is obtained via density functional based calculations. Then, we numerically derive the total Mott cross section for different emission sites of carbon and boron nitride nano-tubes with different chiralities. Using a dedicated STEM (Scanning Transmission Electron Microscope) microscope with experimental conditions optimised on the basis of derived cross-sections, we are able to control the generation of defects in nano-tubular systems. Either point or line defects can be obtained with a spatial resolution of a few nanometers. The structure, energetics and electronics of point and line defects in BN systems have been investigated. Stability of mono- and di- vacancy defects in hexagonal boron nitride layers is investigated, and their activation energies and reaction paths for diffusion have been derived using the nudged elastic band method (NEB) combined with density functional based techniques. We demonstrate that the appearance of extended linear defects under electron irradiation is more favorable than a random distribution of point defects and this is due to the existence of preferential sites for atom emission in the presence of pre-existing defects, rather than thermal vacancy nucleation and migration. (author)

  9. French Regulatory practice and experience feedback on steam generator tube integrity

    Energy Technology Data Exchange (ETDEWEB)

    Sandon, G.

    1997-02-01

    This paper summarizes the way the French Safety Authority applies regulatory rules and practices to the problem of steam generator tube cracking in French PWR reactors. There are 54 reactors providing 80% of French electrical consumption. The Safety Authority closely monitors the performance of tubes in steam generators, and requires application of a program which deals with problems prior to the actual development of leakage. The actual rules regarding such performance are flexible, responding to the overall performance of operating steam generators. In addition there is an inservice inspection service to examine tubes during shutdown, and to monitor steam generators for leakage during operation, with guidelines for when generators must be pulled off line.

  10. Measurement of Work Generation and Improvement in Performance of a Pulse Tube Engine

    Science.gov (United States)

    Hamaguchi, Kazuhiro; Futagi, Hiroaki; Yazaki, Taichi; Hiratsuka, Yoshikatsu

    Apart from double acting type engines, Stirling engines have either 2 pistons in 2 cylinders or 2 pistons in a single cylinder. Typically, the heater, regenerator and cooler are installed between the 2 pistons. The pulse tube engine, on the other hand, consists of a single piston in a single cylinder, a pulse tube, a heater, a regenerator, a cooler and a second cooler. For this paper, a simple prototype engine that uses air at normal atmospheric pressure as the working gas was fabricated. The oscillating velocity of the working gas in the pulse tube was measured using LDV, and the work flow emitting out of the pulse tube was observed. In addition, the effect of inserting heat storage material in the pulse tube on shaft power and indicated power was examined experimentally. A dramatic increase in the shaft power was achieved.

  11. Correlation between General Corrosion Behavior and Eddy Current Noise of Alloy 690 Steam Generator Tube

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Do Haeng; Choi, Myung Sik; Lee, Deok Hyun; Shim, Hee-Sang [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Nickel and its oxides are released from the surface of steam generator tubes into the primary water. Released nickel and cobalt is activated to Co-58 and Co-60 in the reactor core by a neutron flux, respectively. These activated corrosion products are the main source of high radiation fields and occupational radiation exposure. In addition, some of the corrosion products redeposit on the fuel cladding, hinder the heat transfer, increase the corrosion rate of the fuel cladding, and finally induce an axial offset anomaly. This phenomenon can decrease core shutdown margin, and thus lead to a down-rating of a plant. Recently, many researchers have reported that the surface states of Alloy 690 tubes affect the corrosion product formation and its release in simulated primary water environments. Meanwhile, the surface states of steam generator tubes affect the noise level of eddy current testing. Noise signals arising from the tubes degrade the probability of detection and sizing accuracy of the defects. The corrosion behavior was closely correlated to the tube noise measured using a rotating probe, while it was not related to the noise measured using a bobbin probe. It is suggested that the tube noise value measured using a rotating pancake coil probe can be a decisive measure to estimate the corrosion behavior of tubing.

  12. Multi-element eddy current probe. For inspecting steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Savin, E.; Sartre, B. [FRAMATOME, 92 - Paris-La-Defense (France); Placko, D.; Premel, D. [Ecole Nationale Superieure de Cachan, 94 (France)

    2000-10-01

    Framatome and the Ecole Normale Superieure de Cachan are developing a multi-element eddy current probe for inspecting steam generator tubes of 900 MWe PWR reactors. The device is intended to replace much slower rotating probes. Using its measurements, the conductivity image of any point in the tube can be reconstructed, thanks to a numerical, thanks to a numerical model, thus allowing diagnosis. The first trial results on mockups seem already competitive with those obtained using a rotary probe. (authors)

  13. Spanish approach to research and development applied to steam generator tubes structural integrity and life management

    Energy Technology Data Exchange (ETDEWEB)

    Lozano, J. [Associacion Nuclear Asco AIE, Barcelona (Spain); Bollini, G.J.

    1997-02-01

    The operating experience acquired from certain Spanish Nuclear Power Plant steam generators shows that the tubes, which constitute the second barrier to release of fission products, are susceptible to mechanical damage and corrosion as a result of a variety of mechanisms, among them wastage, pitting, intergranular attack (IGA), stress-corrosion cracking (SCC), fatigue-induced cracking, fretting, erosion/corrosion, support plate denting, etc. These problems, which are common in many plants throughout the world, have required numerous investments by the plants (water treatment plants, replacement of secondary side materials such as condensers and heaters, etc.), have meant costs (operation, inspection and maintenance) and have led to the unavailability of the affected units. In identifying and implementing all these preventive and corrective measures, the Spanish utilities have moved through three successive stages: in the initial stage, the main source of information and of proposals for solutions was the Plant Vendor, whose participation in this respect was based on his own Research and Development programs; subsequently, the Spanish utilities participated jointly in the EPRI Steam Generator Owners Group, collaborating in financing; finally, the Spanish utilities set up their own Steam Generator Research and Development program, while maintaining relations with EPRI programs and those of other countries through information interchange.

  14. Determination of thermal characteristics of combustion products of fire-tube heat generator with flow turbulator

    Directory of Open Access Journals (Sweden)

    Lukjanov Alexander V.

    2014-12-01

    Full Text Available Boiler construction is one of the major industries of any state. The aim is to determine the effect of the turbulator on the intensity of heat transfer in the convective part of the fire-tube heat generator of domestic production. The improvement of convective heating surfaces is one of the ways to increase the energy efficiency of the fire-tube heat generator. Since model of the process of heat transfer of gas flow in the convective tubes is multifactorial and does not have clear analytical solution at present, the study of process above is carried out using the experimental method. The results of applying the flow turbulator as a broken tape in the fire-tube heat generator of KV-GM type are presented. On their basis it can be concluded about increasing of heat transfer in convective part of the unit. The use of efficient, reliable, easy to manufacture, relatively inexpensive turbulator in domestic fire-tube heat generators will allow to increase their energy conversion efficiency and reduce fuel consumption, which will have a positive economic effect.

  15. Entropy Generation in Flow of Highly Concentrated Non-Newtonian Emulsions in Smooth Tubes

    Directory of Open Access Journals (Sweden)

    Rajinder Pal

    2014-10-01

    Full Text Available Entropy generation in adiabatic flow of highly concentrated non-Newtonian emulsions in smooth tubes of five different diameters (7.15–26.54 mm was investigated experimentally. The emulsions were of oil-in-water type with dispersed-phase concentration (Φ ranging from 59.61–72.21% vol. The emulsions exhibited shear-thinning behavior in that the viscosity decreased with the increase in shear rate. The shear-stress (τ versus shear rate (˙γ data of emulsions could be described well by the power-law model: τ=K˙γn. The flow behavior index n was less than 1 and it decreased sharply with the increase in Φ whereas the consistency index K increased rapidly with the increase in Φ . For a given emulsion and tube diameter, the entropy generation rate per unit tube length increased linearly with the increase in the generalized Reynolds number ( Re_n on a log-log scale. For emulsions with Φ ≤65.15 % vol., the entropy generation rate decreased with the increase in tube diameter. A reverse trend in diameter-dependence was observed for the emulsion with Φ of 72.21% vol. New models are developed for the prediction of entropy generation rate in flow of power-law emulsions in smooth tubes. The experimental data shows good agreement with the proposed models.

  16. Status of the steam generator tube circumferential ODSCC degradation experienced at the Doel 4 plant

    Energy Technology Data Exchange (ETDEWEB)

    Roussel, G. [AIB-Vincotte Nuclear, Brussels (Belgium)

    1997-02-01

    Since the 1991 outage, the Doel Unit 4 nuclear power plant is known to be affected by circumferential outside diameter intergranular stress corrosion cracking at the hot leg tube expansion transition. Extensive non destructive examination inspections have shown the number of tubes affected by this problem as well as the size of the cracks to have been increasing for the three cycles up to 1993. As a result of the high percentage of tubes found non acceptable for continued service after the 1993 in-service inspection, about 1,700 mechanical sleeves were installed in the steam generators. During the 1994 outage, all the tubes sleeved during the 1993 outage were considered as potentially cracked to some extent at the upper hydraulic transition and were therefore not acceptable for continued service. They were subsequently repaired by laser welding. Furthermore all the tubes not sleeved during the 1993 outage were considered as not acceptable for continued service and were repaired by installing laser welded sleeves. During the 1995 outage, some unexpected degradation phenomena were evidenced in the sleeved tubes. This paper summarizes the status of the circumferential ODSCC experienced in the SG tubes of the Doel 4 plant as well as the other connected degradation phenomena.

  17. Transmit-receive eddy current probes for defect detection and sizing in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Obrutsky, L.S.; Cecco, V.S.; Sullivan, S.P. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    1997-02-01

    Inspection of steam generator tubes in aging Nuclear Generating Stations is increasingly important. Defect detection and sizing, especially in defect prone areas such as the tubesheet, support plates and U-bend regions, are required to assess the fitness-for-service of the steam generators. Information about defect morphology is required to address operational integrity issues, i.e., risk of tube rupture, number of tubes at risk, consequential leakage. A major challenge continues to be the detection and sizing of circumferential cracks. Utilities around the world have experienced this type of tube failure. Conventional in-service inspection, performed with eddy current bobbin probes, is ineffectual in detecting circumferential cracks in tubing. It has been demonstrated in CANDU steam generators, with deformation, magnetite and copper deposits that multi-channel probes with transmit-receive eddy current coils are superior to those using surface impedance coils. Transmit-receive probes have strong directional properties, permitting probe optimization according to crack orientation. They are less sensitive to lift-off noise and magnetite deposits and possess good discrimination to internal defects. A single pass C3 array transmit-receive probe developed by AECL can detect and size circumferential stress corrosion cracks as shallow as 40% through-wall. Since its first trial in 1992, it has been used routinely for steam generator in-service inspection of four CANDU plants, preventing unscheduled shutdowns due to leaking steam generator tubes. More recently, a need has surfaced for simultaneous detection of both circumferential and axial cracks. The C5 probe was designed to address this concern. It combines transmit-receive array probe technology for equal sensitivity to axial and circumferential cracks with a bobbin probe for historical reference. This paper will discuss the operating principles of transmit-receive probes, along with inspection results.

  18. Generation of Cold Argon Plasma Jet at the End of Flexible Plastic Tube

    CERN Document Server

    Kostov, Konstantin G; Prysiazhnyi, Vadym

    2014-01-01

    This brief communication reports a new method for generation of cold atmospheric pressure plasma jet at the downstream end of a flexible plastic tube. The device consists of a small chamber where dielectric barrier discharge (DBD) is ignited in Argon. The discharge is driven by a conventional low frequency AC power supply. The exit of DBD reactor is connected to a commercial flexible plastic tube (up to 4 meters long) with a thin floating Cu wire inside. Under certain conditions an Ar plasma jet can be extracted from the downstream tube end and there is no discharge inside the plastic tube. The jet obtained by this method is cold enough to be put in direct contact with human skin without electric shock and can be used for medical treatment and decontamination.

  19. Studies on an improved indigenous pressure wave generator and its testing with a pulse tube cooler

    Science.gov (United States)

    Jacob, S.; Karunanithi, R.; Narsimham, G. S. V. L.; Kranthi, J. Kumar; Damu, C.; Praveen, T.; Samir, M.; Mallappa, A.

    2014-01-01

    Earlier version of an indigenously developed Pressure Wave Generator (PWG) could not develop the necessary pressure ratio to satisfactorily operate a pulse tube cooler, largely due to high blow by losses in the piston cylinder seal gap and due to a few design deficiencies. Effect of different parameters like seal gap, piston diameter, piston stroke, moving mass and the piston back volume on the performance is studied analytically. Modifications were done to the PWG based on analysis and the performance is experimentally measured. A significant improvement in PWG performance is seen as a result of the modifications. The improved PWG is tested with the same pulse tube cooler but with different inertance tube configurations. A no load temperature of 130 K is achieved with an inertance tube configuration designed using Sage software. The delivered PV power is estimated to be 28.4 W which can produce a refrigeration of about 1 W at 80 K.

  20. Loss of feed flow, steam generator tube rupture and steam line break thermohydraulic experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mendler, O J; Takeuchi, K; Young, M Y

    1986-10-01

    The Westinghouse Model Boiler No. 2 (MB-2) steam generator test model at the Engineering Test Facility in Tampa, Florida, was reinstrumented and modified for performing a series of tests simulating steam generator accident transients. The transients simulated were: loss of feed flow, steam generator tube rupture, and steam line break events. This document presents a description of (1) the model boiler and the associated test facility, (2) the tests performed, and (3) the analyses of the test results.

  1. Investigation into the sorption of nitroglycerin and diazepam into PVC tubes and alternative tube materials during application.

    Science.gov (United States)

    Treleano, Anna; Wolz, Gerd; Brandsch, Rainer; Welle, Frank

    2009-03-18

    Plastic bags and tubes are increasingly used for the storage and application of pharmaceutical formulations. The most common polymer material for drug application sets is plasticized poly(vinylchloride) (PVC). During application of pharmaceutical drug solution through PVC tubes, the polymer and the contact media interact which leads to leaching out of polymer additives or sorption of ingredients of the drug solution. Whereas the discussion of leaching of plasticizers is focussed on the toxicological properties of a drug packaging system, the sorption of drug formulation compounds has an influence on the dosage of the active pharmaceutical ingredient resulting in a reduced drug delivery to the patient. Therefore sorption has an influence on the effectiveness and success of the therapy. Within the study, the concentration profiles of nitroglycerin and diazepam solutions were determined after pumping the solutions through infusion administration sets. The study includes plasticized PVC tubes with different plasticizers (DEHP, DEHA, DEHT, TEHTM, DINCH, poly adipate), PVC (DEHP) tubes with different shore hardness as well as alternative polymer materials like EVA, TPE, PUR, silicone, LDPE and PP. From the experimental concentration curves it could be shown, that in the first minutes of the application of the drug solution the sorption of the active compound is at its maximum, resulting in the lowest concentration in the applied pharmaceutical solution. For a PVC tube with DEHP as plasticizer and a shore hardness of 80 only about 57% of the initial nitroglycerin concentration in the solution is applied to the patient in the first minutes of the application. For PVC tube (DEHP, shore 80) the experimental data were simulated using mathematical diffusion models. The concentration profiles during application could be well simulated using the partition coefficient K=50 (nitroglycerin) and K=300 (diazepam), respectively. However, the experimental results indicate, that the

  2. Considerations for metallographic observation of intergranular attack in alloy 600 steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Hur, Do Haeng; Choi, Myung Sik; Lee, Deok Hyun; Han, Jung Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-12-15

    This technical note provides some considerations for the metallographic observation of intergranular attack (IGA) in Alloy 600 steam generator tubes. The IGA region was crazed along the grain boundaries through a deformation by an applied stress. The direction and extent of the crazing depended on those of the applied stress. It was found that an IGA defect can be misevaluated as a stress corrosion crack. Therefore, special caution should be taken during the destructive examination of the pulled-out tubes from operating steam generators.

  3. Associated-particle sealed-tube neutron probe for characterization of materials

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, E.; Dickerman, C.E. [Argonne National Lab., IL (United States); Peters, C.W. [5235 N. Whispering Hills Lane, Tucson, AZ (United States)

    1993-10-01

    A neutron diagnostic probe system has been developed that can identify and image most elements having a larger atomic number than boron. It can satisfy van-mobile and fixed-portal requirements for nondestructive detection of contraband drugs, explosives, and nuclear and chemical warfare weapon materials, and for treaty verification of sealed munitions and remediation of radioactive waste. The probe is based on a nonpulsed associated-particle sealed-tube neutron generator (APSTNG) that interrogates the object with a 14-MeV neutrons and detects alpha-particle associated with each neutron. Gamma-ray spectra of resulting neutron reactions (primarily inelastic scattering) identify nuclides associated with drugs, explosives, and other contraband. Flight times determined from detection times of gamma-rays and alpha-particles yield a separate coarse tomographic image of each identified nuclide. Chemical substances are identified and imaged by comparing relative spectra fine intensities with ratios of elements in reference compounds. The High-energy neutrons in gamma-rays will penetrate large objects and dense materials. The source and emission detection systems can be on the same side, allowing measurements with access to one side only. A high signal-to-background ratio is obtained and maximum information is extracted from each detected gamma-ray, yet high-bandwidth data acquisition is not required. The APSTNG also forms the basis for a compact fast-neutron transmission imaging system. No collimators are required, and only minimal shielding is needed. The small and relatively inexpensive neutron generator tube exhibits high reliability and can be quickly replaced. The detector arrays and associated electronics can be made reliable with low maintenance cost.

  4. Critical heat flux prediction for water boiling in vertical tubes of a steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Payan-Rodriguez, L.A.; Gallegos-Munoz [Departmet of Mechanical Engineering, University of Guanajuato, Av. Tampico No. 912 Salamanca (Mexico); Porras-Loaiza, G.L. [Institute for Electrical Researches, Av. Reforma No. 113, Temixco (Mexico); Picon-Nunez [Institute for Scientific Research, University of Guanajuato, Lascurain de Retana No. 5, Guanajuato (Mexico)

    2005-02-01

    This paper presents a methodology for the prediction of the critical heat flux (CHF) for the boiling of water in vertical tubes operating under typical conditions found in steam generators. At the furnace, the water flows through long vertical tubes under an axially non-uniform heat flux and with relatively low mass fluxes. This fact causes that the recent theories and correlations, which have been developed for conditions typically found in nuclear reactors, cannot be directly applied for the prediction of the CHF in the furnace tubes. In this context, the mechanistic theories focused into the CHF prediction have proved their usefulness to predict CHF avoiding the use of correlations and experimental constants. Hence, in order to assist the CHF problem in steam generators, the sublayer dryout theory, initially formulated for CHF in vertical tubes uniformly heated, is extended by combining it with the shape factor method (F-factor), to account for the effects of the axially non-uniform heat flux distribution. The critical wall temperature (CWT) of the tubes is calculated from CHF data. The reliability of the modified theory for the CHF prediction is tested by comparing CWT results against measured data from a steam generator of a power plant. Good consistency and approximation is found between predicted and measured data. (authors)

  5. Generation of droplets via oscillations of a tapered capillary tube filled with low-viscosity liquids

    Science.gov (United States)

    Mao, Xinyu; Zhang, Lei; Zhao, Zhenhao; Lin, Feng

    2017-06-01

    Droplet formation via the oscillations of a tapered capillary tube is experimentally and numerically investigated using incompressible, low-viscosity Newtonian liquids. As in many other common methods of droplet generation, this technique features a transient flow that is directed out of a nozzle. However, due to the interactions of the oscillations, the tube, and the fluids, the flow rate upstream of the nozzle cannot be directly obtained. In this study, the motion of the tube is measured under the activation of a specific waveform, and the flow inside the tube and drop formation are further numerically studied using a non-inertial reference system in which the tube is stationary. The mechanism of ejection is quantitatively explained by analyzing the temporal variation in the velocity and pressure distributions inside the tube. The dynamics of drop formation, the drop velocity, and the drop radius are studied as functions of the dimensionless groups that govern the problem, including the Ohnesorge number Oh, the Weber number We, the gravitational Bond number G, and various length scale ratios. The results show that droplets are generated due to the inertia of the liquid and velocity amplification in the tapered section. By influencing the balance between the viscous effect and inertial effect of the liquid along the entire tube, the length scale ratios affect the evolution of the transient flow at the nozzle and eventually influence the drop radius and velocity. For liquids with viscosities close to that of pure water, the critical Reynolds number, at which a drop can be generated, linearly depends on the Z number (the reciprocal of Oh) at the nozzle.

  6. Prediction of structural integrity of steam generator tubes under severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S. [Argonne National Lab., IL (United States)

    1999-11-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating and design-basis accident conditions are reviewed. These rate-independent flow stress models are inadequate for predicting failure of steam generator tubes under severe accident conditions because the temperature of the tubes during such accidents can reach as high as 800 C where creep effects become important. Therefore, a creep rupture model for predicting failure was developed and validated by tests on unflawed and flawed specimens containing axial and circumferential flaws and loaded by constant as well as ramped temperature and pressure loadings. Finally, tests were conducted using pressure and temperature histories that are calculated to occur during postulated severe accidents. In all cases, the creep rupture model predicted the failure temperature and time more accurately than the flow stress models. (orig.)

  7. Photoconductive terahertz generation from textured semiconductor materials.

    Science.gov (United States)

    Collier, Christopher M; Stirling, Trevor J; Hristovski, Ilija R; Krupa, Jeffrey D A; Holzman, Jonathan F

    2016-01-01

    Photoconductive (PC) terahertz (THz) emitters are often limited by ohmic loss and Joule heating-as these effects can lead to thermal runaway and premature device breakdown. To address this, the proposed work introduces PC THz emitters based on textured InP materials. The enhanced surface recombination and decreased charge-carrier lifetimes of the textured InP materials reduce residual photocurrents, following the picosecond THz waveform generation, and this diminishes Joule heating in the emitters. A non-textured InP material is used as a baseline for studies of fine- and coarse-textured InP materials. Ultrafast pump-probe and THz setups are used to measure the charge-carrier lifetimes and THz response/photocurrent consumption of the respective materials and emitters. It is found that similar temporal and spectral characteristics can be achieved with the THz emitters, but the level of photocurrent consumption (yielding Joule heating) is greatly reduced in the textured materials.

  8. Uncertainty analysis for probabilistic steam generators tube rupture in LBB applications

    Energy Technology Data Exchange (ETDEWEB)

    Durbec, V.; Pitner, P.; Pages, D. [Electricite de France, 78 - Chatou (France). Research and Development Div.; Riffard, T. [Electricite de France, 69 - Villeurbanne (France). Engineering and Construction Div.; Flesch, B. [Electricite de France, 92 - Paris la Defense (France). Generation and Transmission Div.

    1997-10-01

    Steam Generators (SG) of Pressurized Water Reactors have experienced world wide various types of tube degradations, mainly from stress corrosion cracking; because of this damage, primary-secondary leakage or tube rupture can occur. Safety against the risk of tube rupture is achieved through a combination of periodic in-service inspections (eddy current testing), surveillance of leaks during operation (leak before break concept) and tube plugging. In order to optimize the tube bundle SG maintenance, Electricite de France has developed a specific software named COMPROMIS. The model, based on probabilistic fracture mechanics makes it possible to quantify the influence of in service inspections and maintenance work on the risk of a SG Tube Rupture (SGTR), taking all significant parameters into account as random variables (initial defect size distribution, reliability of non-destructive examinations, crack initiation and propagation, critical sizes, leak before risk of break, etc...). This paper focuses on the leak rate calculation module and presents a sensitivity study of the influence of the leak before break on the conditional failure probability. (author) 8 refs.

  9. Advanced Thermoelectric Materials for Radioisotope Thermoelectric Generators

    Science.gov (United States)

    Caillat, Thierry; Hunag, C.-K.; Cheng, S.; Chi, S. C.; Gogna, P.; Paik, J.; Ravi, V.; Firdosy, S.; Ewell, R.

    2008-01-01

    This slide presentation reviews the progress and processes involved in creating new and advanced thermoelectric materials to be used in the design of new radioiootope thermoelectric generators (RTGs). In a program with Department of Energy, NASA is working to develop the next generation of RTGs, that will provide significant benefits for deep space missions that NASA will perform. These RTG's are planned to be capable of delivering up to 17% system efficiency and over 12 W/kg specific power. The thermoelectric materials being developed are an important step in this process.

  10. Study of thermal influence on tubes due to sodium-water reactions in LMFBR steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, H.; Kurihara, A.; Nishimura, M. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2004-07-01

    A study of thermal influence on heat-transfer tubes in sodium-water reactions is carried out to evaluate the tube rupture due to overheating in the water leak accident of an LMFBR steam generator (SG). By assuming the sodium-water reaction jet to be a two-phase flow that consists of sodium and hydrogen, the heat-transfer characteristics are examined and a simple model of effective heat-transfer coefficient (HTC) is proposed for the safety evaluation of the SG. Comparison of the model with experimental data leads to the following conclusions: An upper limit exists in the HTC between reaction jet and tube wall, and it is equivalent in approximation to the HTC of single-phase sodium flow. The HTC can be written in simple form as functions of the HTC of single-phase sodium flow, void fraction and temperatures of sodium, hydrogen and tube wall. Hydrogen provides negligible heating effect, so that the apparent HTC would decrease with increase of the hydrogen temperature that can readily surpass that of sodium. The outer-surface temperature of tube wall would not rise so high beyond the temperature of sodium that is excellent in heat-transfer characteristics, even if tube wall is exposed to the high-temperature hydrogen. The transient heat conduction analysis with the mean value of the data can appropriately evaluate the outer-surface temperature of tube wall by the metallographic observation, while the analysis with the maximum value can conservatively evaluate the tube wall temperature. (authors)

  11. Evaluation of machine learning tools for inspection of steam generator tube structures using pulsed eddy current

    Science.gov (United States)

    Buck, J. A.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2017-02-01

    Degradation of nuclear steam generator (SG) tubes and support structures can result in a loss of reactor efficiency. Regular in-service inspection, by conventional eddy current testing (ECT), permits detection of cracks, measurement of wall loss, and identification of other SG tube degradation modes. However, ECT is challenged by overlapping degradation modes such as might occur for SG tube fretting accompanied by tube off-set within a corroding ferromagnetic support structure. Pulsed eddy current (PEC) is an emerging technology examined here for inspection of Alloy-800 SG tubes and associated carbon steel drilled support structures. Support structure hole size was varied to simulate uniform corrosion, while SG tube was off-set relative to hole axis. PEC measurements were performed using a single driver with an 8 pick-up coil configuration in the presence of flat-bottom rectangular frets as an overlapping degradation mode. A modified principal component analysis (MPCA) was performed on the time-voltage data in order to reduce data dimensionality. The MPCA scores were then used to train a support vector machine (SVM) that simultaneously targeted four independent parameters associated with; support structure hole size, tube off-centering in two dimensions and fret depth. The support vector machine was trained, tested, and validated on experimental data. Results were compared with a previously developed artificial neural network (ANN) trained on the same data. Estimates of tube position showed comparable results between the two machine learning tools. However, the ANN produced better estimates of hole inner diameter and fret depth. The better results from ANN analysis was attributed to challenges associated with the SVM when non-constant variance is present in the data.

  12. Autonomous generation of a thermoacoustic solitary wave in an air-filled tube

    Science.gov (United States)

    Shimizu, Dai; Sugimoto, Nobumasa

    2016-10-01

    Experiments are performed to demonstrate the autonomous generation of an acoustic solitary wave in an air-filled, looped tube with an array of Helmholtz resonators. The solitary wave is generated spontaneously due to thermoacoustic instability by a pair of stacks installed in the tube and subject to a temperature gradient axially. No external drivers are used to create initial disturbances. Once the solitary wave is generated, it keeps on propagating to circulate along the loop endlessly. The stacks, which are made of ceramics and of many pores of square cross section, are placed in the tube diametrically on exactly the opposite side of the loop, and they are sandwiched by hot and cold (ambient) heat exchangers. When the temperature gradient along both stacks is appropriate, pulses of smooth profiles are generated and propagated in both directions of the tube. From good agreements of not only the pressure profile measured but also the propagation speed with the theory, the pulse is identified as the acoustic solitary wave, and it can be called thermoacoustic solitary wave or thermoacoustic soliton corresponding to the soliton solution of the K-dV equation in one limit.

  13. Principal-Generated YouTube Video as a Method of Improving Parental Involvement

    Science.gov (United States)

    Richards, Joey

    2013-01-01

    The purpose of this study was to evaluate the involvement level of parents and reveal whether principal-generated YouTube videos for regular communication would enhance levels of parental involvement at one North Texas Christian Middle School (pseudonym). The following questions guided this study: 1. What is the beginning level of parental…

  14. Susceptibility of steam generator tubes in secondary conditions: Effects of lead and sulphate

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Briceno, D.; Garcia, M.S.; Castano, M.L.; Lancha, A.M. [CIEMAT, Madrid (Spain)

    1997-02-01

    IGA/SCC on the secondary side of steam generators is increasing every year, and represents the cause of some steam generator replacements. Until recently, caustic and acidic environments have been accepted as causes of IGA/SCC, particulary in certain environments: in sludge pile on the tube sheet; at support crevices; in free span. Lead and sulfur have been identified as significant impurities. Present thoughts are that some IGA/SCC at support crevices may have occurred in nearly neutral or mildly alkaline environments. Here the authors present experimental work aimed at studying the influence of lead and sulfur on the behaviour of steam generator tube alloys in different water environments typical of steam generators. Most test results ran for at least 2000 hours, and involved visual and detailed surface analysis during and following the test procedures.

  15. Influence of sodium deposits in steam generator tubes on remote field eddy current signals

    Energy Technology Data Exchange (ETDEWEB)

    Thirunavukkarasu, S. [EMSI Section, NDE Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Rao, B.P.C. [EMSI Section, NDE Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)], E-mail: bpcrao@igcar.gov.in; Vaidyanathan, S.; Jayakumar, T.; Raj, Baldev [EMSI Section, NDE Division, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2008-04-15

    The presence of sodium deposits in defective regions of steam generator (SG) tubes of fast-breeder reactors is expected to influence the remote field eddy current (RFEC) signals. By exposing five SG tubes having uniform wall loss grooves to a sodium environment in a specially designed test vessel, changes in the shape of RFEC signals were observed and it was possible to approximate the volume of sodium deposited in defects. An invariant signal parameter was determined for quantitative characterization of defects despite the presence of sodium in the defects.

  16. Simple evaluations of fluid-induced vibrations for steam generator tube arrays in advanced marine reactors (MRX, DRX)

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kazuo [Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo (Japan); Ishida, Toshihisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-06-01

    Advanced Marine Reactor (MRX) and Deep Sea Research Reactor (DRX) are the integral-type PWR, and the steam generators are installed in the reactor vessels. Steam generators are of the once-through, helical-coil tube types. Heat transfer tubes surround inner shroud in annular space of the reactor vessel. Flow-induced vibrations are calculated by simple methods, and the arrangement of tube support structures are evaluated. (author)

  17. Selection of statistical distributions for prediction of steam generator tube degradation

    Energy Technology Data Exchange (ETDEWEB)

    Stavropoulos, K.D.; Gorman, J.A. [Dominion Engr., Inc., McLean, VA (United States); Staehle, R.W. [Univ. of Minnesota, Minneapolis, MN (United States); Welty, C.S. Jr. [Electric Power Research Institute, Palo Alto, CA (United States)

    1992-12-31

    This paper presents the first part of a project directed at developing methods for characterizing and predicting the progression of degradation of PWR steam generator tubes. This first part covers the evaluation of statistical distributions for use in such analyses. The data used in the evaluation of statistical distributions included data for primary water stress corrosion cracking (PWSCC) at roll transitions and U-bends, and intergranular attack/stress corrosion cracking (IGA/SCC) at tube sheet and tube support plate crevices. Laboratory data for PWSCC of reverse U-bends were also used. The review of statistical distributions indicated that the Weibull distribution provides an easy to use and effective method. Another statistical function, the log-normal, was found to provide essentially equivalent results. Two parameter fits, without an initiation time, were found to provide the most reliable predictions.

  18. Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

    2002-08-01

    A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

  19. Steam generator tube degradation at the Doel 4 plant influence on plant operation and safety

    Energy Technology Data Exchange (ETDEWEB)

    Scheveneels, G. [AIB-Vincotte Nuclear, Brussels (Belgium)

    1997-02-01

    The steam generator tubes of Doel 4 are affected by a multitude of corrosion phenomena. Some of them have been very difficult to manage because of their extremely fast evolution, non linear evolution behavior or difficult detectability and/or measurability. The exceptional corrosion behavior of the steam generator tubes has had its drawbacks on plant operation and safety. Extensive inspection and repair campaigns have been necessary and have largely increased outage times and radiation exposure to personnel. Although considerable effort was invested by the utility to control corrosion problems, non anticipated phenomena and/or evolution have jeopardized plant safety. The extensive plugging and repairs performed on the steam generators have necessitated continual review of the design basis safety studies and the adaptation of the protection system setpoints. The large asymmetric plugging has further complicated these reviews. During the years many preventive and recently also defence measures have been implemented by the utility to manage corrosion and to decrease the probability and consequences of single or multiple tube rupture. The present state of the Doel 4 steam generators remains troublesome and further examinations are performed to evaluate if continued operation until June `96, when the steam generators will be replaced, is justified.

  20. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    Energy Technology Data Exchange (ETDEWEB)

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P. (New Mexico State University, Las Cruces, NM); Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  1. Traveling wave tube measurements for low-frequency properties of underwater acoustic materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A traveling wave tube measurement technique for measuring acoustic properties of underwater acoustic materials was developed. Water temperature and pressure environments of the ocean can be simulated in a water-filled tube, and the acoustic parameters of samples of underwater acoustic materials are measured in the range of low-frequency. A tested sample is located at central position of the tube. A pair of projectors is separately located at both ends of the tube. Using an active anechoic technique, the sound wave transmitting the tested sample is hardly reflected by the surface of secondary transducer. So the traveling sound field is built up in the tube. By separately calculating the transfer functions of every pair of double hydrophones in the sound fields from the both sides of the sample, its reflection coefficients and transmission coefficients are obtained. In the measurement system, the inside diameter of the tube is Φ208 mm, the working frequency range is from 100 to 4000 Hz, the maximum pressure is 5 MPa. The reflection coefficients and transmission coefficients of a water layer and a stainless steel layer samples are measured actually and calculated theoretically. The results show that the measured values are in good agreement with the values calculated, and the measurement uncertainty is not greater than 1.5 dB.

  2. Development of suitable potting material for dispenser cathodes of a high power microwave tube

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Kalyan S.; Ghosh, Sumana; Dandapat, Nandadulal [Bio-Ceramics and Coating Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, West Bengal (India); Datta, Someswar, E-mail: sdatta@cgcri.res.in [Bio-Ceramics and Coating Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, West Bengal (India); Basu, Debabrata [Bio-Ceramics and Coating Division, CSIR - Central Glass and Ceramic Research Institute, 196, Raja S.C. Mullick Road, Kolkata 700 032, West Bengal (India); Raju, R.S. [Microwave Tubes Division, CSIR - Central Electronics Engineering Research Institute, Pilani 333031, Rajasthan (India)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Potting material. Black-Right-Pointing-Pointer Doped alumina. Black-Right-Pointing-Pointer Non-shrinkable. Black-Right-Pointing-Pointer Dispenser cathode. Black-Right-Pointing-Pointer Microwave tube. - Abstract: The present study aims to develop suitable advanced potting material for modern high performance dispenser cathodes for high power microwave tube through refinement of the alumina microstructure by using suitable dopant. Calcium oxide was selected as a dopant material and the resultant materials were characterized by X-ray diffraction studies and the microstructure monitored by SEM study and EDX analysis. The shrinkage, thermal and electrical properties of the resultant material was evaluated to establish its suitability to function as an advanced potting material.

  3. Properties of the chalcogenide–carbon nano tubes and graphene composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhay Kumar, E-mail: abhaysngh@rediffmail.com [Department of Physics, Indian Institute of Science, Bangalore 560012 (India); Department of Electronics Engineering, Incheon National University, Incheon 406-772 (Korea, Republic of); Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); Kim, JunHo [Department of Physics, Incheon National University, Incheon 406-772 (Korea, Republic of); Park, Jong Tae [Department of Electronics Engineering, Incheon National University, Incheon 406-772 (Korea, Republic of); Sangunni, K.S. [Department of Physics, Indian Institute of Science, Bangalore 560012 (India)

    2015-04-05

    Highlights: • Chalcogenides. • Melt quenched. • Composite materials. • Multi walled carbon nano tubes. • Bilayer graphene. - Abstract: Composite can deliver more than the individual elemental property of the material. Specifically chalcogenide- multi walled carbon nano tubes and chalcogenide- bilayer graphene composite materials could be interesting for the investigation, which have been less covered by the investigators. We describe micro structural properties of Se{sub 55}Te{sub 25}Ge{sub 20,} Se{sub 55}Te{sub 25}Ge{sub 20} + 0.025% multi walled carbon nano tubes and Se{sub 55}Te{sub 25}Ge{sub 20} + 0.025% bilayer graphene materials. This gives realization of the alloying constituents inclusion/or diffusion inside the multi walled carbon nano tubes and bilayer graphene under the homogeneous parent alloy configuration. Raman spectroscopy, X-ray photoelectron spectroscopy, UV/Visible spectroscopy and Fourier transmission infrared spectroscopy have also been carried out under the discussion. A considerable core energy levels peak shifts have been noticed for the composite materials by the X-ray photoelectron spectroscopy. The optical energy band gaps are measured to be varied in between 1.2 and 1.3 eV. In comparison to parent (Se{sub 55}Te{sub 25}Ge{sub 20}) alloy a higher infrared transmission has been observed for the composite materials. Subsequently, variation in physical properties has been explained on the basis of bond formation in solids.

  4. Effect of Ovality on Maximum External Pressure of Helically Coiled Steam Generator Tubes with a Rectangular Wear

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Dong In; Lim, Eun Mo; Huh, Nam Su [Seoul National Univ. of Science and Technology, Seoul (Korea, Republic of); Choi, Shin Beom; Yu, Je Yong; Kim, Ji Ho; Choi, Suhn [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    A structural integrity of steam generator tubes of nuclear power plants is one of crucial parameters for safe operation of nuclear power plants. Thus, many studies have been made to provide engineering methods to assess integrity of defective tubes of commercial nuclear power plants considering its operating environments and defect characteristics. As described above, the geometric and operating conditions of steam generator tubes in integral reactor are significantly different from those of commercial reactor. Therefore, the structural integrity assessment of defective tubes of integral reactor taking into account its own operating conditions and geometric characteristics, i. e., external pressure and helically coiled shape, should be made to demonstrate compliance with the current design criteria. Also, ovality is very specific characteristics of the helically coiled tube because it is occurred during the coiling processes. The wear, occurring from FIV (Flow Induced Vibration) and so on, is main degradation of steam generator tube. In the present study, maximum external pressure of helically coiled steam generator tube with wear is predicted based on the detailed 3-dimensional finite element analysis. As for shape of wear defect, the rectangular shape is considered. In particular, the effect of ovality on the maximum external pressure of helically coiled tubes with rectangular shaped wear is investigated. In the present work, the maximum external pressure of helically coiled steam generator tube with rectangular shaped wear is investigated via detailed 3-D FE analyses. In order to cover a practical range of geometries for defective tube, the variables affecting the maximum external pressure were systematically varied. In particular, the effect of tube ovality on the maximum external pressure is evaluated. It is expected that the present results can be used as a technical backgrounds for establishing a practical structural integrity assessment guideline of

  5. Fluid-Structure Interaction Effects Modeling for the Modal Analysis of a Steam Generator Tube Bundle

    Energy Technology Data Exchange (ETDEWEB)

    Sigrist, J.F. [DCNS Prop, Serv Tech et Sci, F-44620 La Montagne, (France); Broc, D. [CEA Saclay, Serv Etud Mecan et Sism, F-91191 Gif Sur Yvette, (France)

    2009-07-01

    Seismic analysis of steam generator is of paramount importance in the safety assessment of nuclear installations. These analyses require, in particular, the calculation of frequency, mode shape, and effective modal mass of the system Eigenmodes. As fluid-structure interaction effects can significantly affect the dynamic behavior of immersed structures, the numerical modeling of the steam generator has to take into account FSI. A complete modeling of heat exchangers (including pressure vessel, tubes, and fluid) is not accessible to the engineer for industrial design studies. In the past decades, homogenization methods have been studied and developed in order to model tubes and fluid through an equivalent continuous media, thus avoiding the tedious task to mesh all structure and fluid sub-domains within the tube bundle. Few of these methods have nonetheless been implemented in industrial finite element codes. In a previous paper (Sigrist, 2007, 'Fluid-Structure Interaction Effects Modeling for the Modal Analysis of a Nuclear Pressure Vessel', J. Pressure Vessel Technol., 123, p. 1-6), a homogenization method has been applied to an industrial case for the modal analysis of a nuclear rector with internal structures and coupling effects modeling. The present paper aims at investigating the extension of the proposed method for the dynamic analysis of tube bundles with fluid-structure interaction modeling. The homogenization method is compared with the classical coupled method in terms of eigenfrequencies, Eigenmodes, and effective modal masses. (authors)

  6. Risk assessment of severe accident-induced steam generator tube rupture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report describes the basis, results, and related risk implications of an analysis performed by an ad hoc working group of the U.S. Nuclear Regulatory Commission (NRC) to assess the containment bypass potential attributable to steam generator tube rupture (SGTR) induced by severe accident conditions. The SGTR Severe Accident Working Group, comprised of staff members from the NRC`s Offices of Nuclear Reactor Regulation (NRR) and Nuclear Regulatory Research (RES), undertook the analysis beginning in December 1995 to support a proposed steam generator integrity rule. The work drew upon previous risk and thermal-hydraulic analyses of core damage sequences, with a focus on the Surry plant as a representative example. This analysis yielded new results, however, derived by predicting thermal-hydraulic conditions of selected severe accident scenarios using the SCDAP/RELAP5 computer code, flawed tube failure modeling, and tube failure probability estimates. These results, in terms of containment bypass probability, form the basis for the findings presented in this report. The representative calculation using Surry plant data indicates that some existing plants could be vulnerable to containment bypass resulting from tube failure during severe accidents. To specifically identify the population of plants that may pose a significant bypass risk would require more definitive analysis considering uncertainties in some assumptions and plant- and design-specific variables. 46 refs., 62 figs., 37 tabs.

  7. Risk assessment of severe accident-induced steam generator tube rupture

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report describes the basis, results, and related risk implications of an analysis performed by an ad hoc working group of the U.S. Nuclear Regulatory Commission (NRC) to assess the containment bypass potential attributable to steam generator tube rupture (SGTR) induced by severe accident conditions. The SGTR Severe Accident Working Group, comprised of staff members from the NRC`s Offices of Nuclear Reactor Regulation (NRR) and Nuclear Regulatory Research (RES), undertook the analysis beginning in December 1995 to support a proposed steam generator integrity rule. The work drew upon previous risk and thermal-hydraulic analyses of core damage sequences, with a focus on the Surry plant as a representative example. This analysis yielded new results, however, derived by predicting thermal-hydraulic conditions of selected severe accident scenarios using the SCDAP/RELAP5 computer code, flawed tube failure modeling, and tube failure probability estimates. These results, in terms of containment bypass probability, form the basis for the findings presented in this report. The representative calculation using Surry plant data indicates that some existing plants could be vulnerable to containment bypass resulting from tube failure during severe accidents. To specifically identify the population of plants that may pose a significant bypass risk would require more definitive analysis considering uncertainties in some assumptions and plant- and design-specific variables. 46 refs., 62 figs., 37 tabs.

  8. Ultrasonic inspection of steam-generator tube axial cracking using Lamb wave

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jae Seok

    2007-02-15

    In this study, the interaction of Lamb wave propagating thin tube structure with finite vertical discontinuity was studied using both modal decomposition method (MDM) and experimental method. For MDM, a global matrix formulation and orthogonality of Lamb mode was employed to describe the boundary condition of finite vertical discontinuity of the tube and the mode conversion phenomenon respectively. The final form of governing equation by MDM was a linear matrix equation which could be solved using a simple matrix identity. The calculation result showed that, below the cut-off frequency, reflection amplitudes of both A0 and S0 Lamb mode increase as the depth of discontinuity increased beyond the threshold value. An experimental investigation was performed using a Hertzian-contact transducer and steam-generator tubes to verify the calculation results by MDM. A0 Lamb mode was selected as a test signal considering the characteristics of the transducer and previous studies. The experiment for mode identification using half-sectioned tube verified that the Hertzian-contact transducer effectively generated A0 Lamb mode. Tests performed using steam-generator tubes with EDM (electric discharge machined) axial notches showed that the deeper notches produced the higher reflection echo. A0 Lamb mode interacted with the notch having a depth larger than 1/40 of wave length, or corresponding to 30% of the wall thickness. This finding was in good agreement with previous studies and the prediction by MDM. The experiment using real crack specimens to estimate the deviation of reflection amplitude showed that the reflection cross-section of real crack was very similar with that of EDM notch. Therefore, specimens with EDM notches can be used as reference blocks for Lamb wave UT calibration.

  9. Experience of steam generator tube examination in the hot laboratory of EDF: analysis of recent events concerning the secondary side

    Energy Technology Data Exchange (ETDEWEB)

    Thebault, Y.; Bouvier, O. de; Boccanfuso, M.; Coquio, N.; Barbe, V.; Molinie, E. [EDF-DIN-CEIDRE (France)

    2011-07-01

    Until 2010, more than 60 steam generator (SG) tubes have been removed and analysed in the EDF hot laboratory of CEIDRE/Chinon. This article is particularly related to three recent events that lead to the extraction of several tubes dedicated to laboratory destructive examinations. The first event that constitutes a first occurrence on the EDF Park, concerns the detection of a circumferential crack on the external surface of a tube located at tube support plate elevation. After this observation, several tubes have been extracted from Bugey 3 and Fessenheim 2 nuclear power plants with steam generators equipped with 600 MA bundle. The other two events concern the consequences of chemical cleaning of the tube bundle steam generators. The examples chosen are from Cruas 4 et Chinon B2 units whose tubes were extracted following non destructive testing performed immediately after or at the completion of cycle following the chemical cleaning. In the case of Cruas 4, Eddy Current Testing (ET) were performed for requalification of steam Generators after chemical cleaning. They allowed the detection of an indication located at the bottom of tube for a large number of tubes; the ET signal was similar to that corresponding to 'deposit' corrosion. Moreover, inspections of Chinon-B2 SGs at the end of the operation cycle following the chemical cleaning, showed the presence of conductor deposits at the bottom of some tubes. The first part of this document presents the major results of laboratory examinations of the pulled tubes of Bugey 3 and Fessenheim 2 and their analysis. Hypothesis concerning damage mechanisms of the tubes are also proposed. The second part of the paper relates the results of the laboratory examinations of the pulled tubes of Cruas 4 and Chinon B 2 after chemical cleaning and their analysis. (authors)

  10. Phase Change Material Thermal Power Generator

    Science.gov (United States)

    Jones, Jack A.

    2013-01-01

    An innovative modification has been made to a previously patented design for the Phase Change Material (PCM) Thermal Generator, which works in water where ocean temperature alternatively melts wax in canisters, or allows the wax to re-solidify, causing high-pressure oil to flow through a hydraulic generator, thus creating electricity to charge a battery that powers the vehicle. In this modification, a similar thermal PCM device has been created that is heated and cooled by the air and solar radiation instead of using ocean temperature differences to change the PCM from solid to liquid. This innovation allows the device to use thermal energy to generate electricity on land, instead of just in the ocean.

  11. Measurement with corrugated tubes of early-age autogenous shrinkage of cement-based material

    DEFF Research Database (Denmark)

    Tian, Qian; Jensen, Ole Mejlhede

    2009-01-01

    The use of a special corrugated mould enables transformation of volume strain into horizontal, linear strain measurement in the fluid stage. This allows continuous measurement of the autogenous shrinkage of cement-based materials since casting, and also effectively eliminates unwanted influence...... on the measuring results from gravity, temperature variation and mould restraint. In this paper the principle of the corrugated tube measurement is described. A systematic study was carried out on the influence on the measuring results of the material properties, size effects and encapsulated air in the corrugated...... tube. The experimental results show that there is a minor influence on the measuring results of the stiffness and size of the plastic tube as well as of the encapsulated air. However, the influence decreases with the hardening process and becomes negligible a few hours after final set....

  12. Design of a mobile neutron radiography installation based on a compact sealed tube neutron generator

    Institute of Scientific and Technical Information of China (English)

    MaWei-Chao; YaoAn-Ju; 等

    1997-01-01

    A series of optimum conditions are taken into account in the construction of neutron radiography(NR) installation based on a sealed tube neutron generator capable of gnerating 1010 n/s with 14MeV.The characteristics of NNU screens,a kind of self-made 6LiF.ZnS(Ag)scintillation intensifying screen are presented.Finally,some neutron radiographies taken by this NR installation and NNU screens are given.

  13. Study of Scaling Development on Tube Surfaces of Water Steam Loop in Steam Generator of CEFR

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Lu; LIU; Fu-chen; LUO; De-kang; WU; Qiang; ZHANG; Huan-qi

    2012-01-01

    <正>The steam generator worked as pressure boundary of Na-H2O loop in China Experimental FastReactor (CEFR), which was quite important for nuclear reactor safety. Once the tubes separating the water from steam leak because of corrosion by scaling, Na-H2O reaction would lead to severe accident. So it’s critically important to study how the scaling develops on the water-steam sides.

  14. Structural integrity assessments of steam generator tubes using the FAD methodology

    Energy Technology Data Exchange (ETDEWEB)

    Bergant, Marcos A., E-mail: marcos.bergant@cab.cnea.gov.ar [Gerencia CAREM, Centro Atómico Bariloche (CNEA), Av. Bustillo 9500, San Carlos de Bariloche 8400 (Argentina); Yawny, Alejandro A., E-mail: yawny@cab.cnea.gov.ar [División Física de Metales, Centro Atómico Bariloche (CNEA)/CONICET, Av. Bustillo 9500, San Carlos de Bariloche 8400 (Argentina); Perez Ipiña, Juan E., E-mail: juan.perezipina@fain.uncoma.edu.ar [Grupo Mecánica de Fractura, Universidad Nacional del Comahue/CONICET, Buenos Aires 1400, Neuquén 8300 (Argentina)

    2015-12-15

    Highlights: • The Failure Assessment Diagram (FAD) is used to assess cracked steam generator tubes. • Typical loading conditions and reported tensile and fracture properties are used. • The FAD is capable to predict the failure mode for different cracks and loads. • The FAD can be used to reduce the conservatism of the current plugging criteria. • Appropriate tensile and fracture properties at operating conditions are required. - Abstract: Steam generator tubes (SGTs) represents up to 60% of the total primary pressure retaining boundary area of a nuclear power plant. They have been found susceptible to diverse degradation mechanisms during service. Due to the significance of a SGT failure on the plant safe operation, nuclear regulatory authorities have established tube plugging or repairing criteria which are based on the defect depth. The widespreadly used “40% criterion” proposed in the 70s is an example whose use is still recommended in the last editions of the ASME Boiler and Pressure Vessel Code. In the present work, an alternative, more realistic and less conservative methodology for SGT integrity evaluation is proposed. It is based on the Failure Assessment Diagram (FAD) and takes advantage of the recent developments in non-destructive techniques which allow a more comprehensive characterization of tube defects, i.e., depth, length, orientation and type. The proposed approach has been applied to: the study of the influence of primary and secondary stresses on tube integrity; the prediction of failure mode (i.e., ductile fracture or plastic collapse) of defective SGTs for varied crack geometries and loading conditions; the analysis of the sensibility of tensile and fracture properties with temperature. The potentiality of the FAD as a comprehensive methodology for predicting the failure loads and failure modes of flawed SGTs is highlighted.

  15. Impurities incorporation into magnetite scale formed on simulated steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, K.; Yamaguchi, K.; Koike, M. [Kyushu Electric Power Co., Inc. (Japan); Kawamura, H.; Hirano, H. [Central Research Inst. of Electric Power Industry (Japan); Yamada, Y.; Nakamura, T. [The Kansai Electric Power Co., Inc. (Japan)

    2002-07-01

    From a viewpoint of ensuring the integrity of steam generators (SGs) tubing in PWR plants, the research was made into how impurities in the secondary coolant are incorporated into magnetite (Fe{sub 3}O{sub 4}) scale formed on the tube in a laboratory test. We experimented with a method to form Fe{sub 3}O{sub 4} scale on a tube under a boiling heat transfer condition in the laboratory test, simulating the conditions of SG in the actual PWR plants. Based on the scale formation method, we investigated the incorporation of sulfur (S) into the scale. S is known as the most common impurity solved in the secondary coolant and a dominant factor in making heat transfer crevice environment acidic. The effects of sodium (Na) and silicon (Si), solved in test solution with S, on the S incorporation into scale were also investigated. The test resulted in a double-layered scale being formed on the tube surface, with the outer scale being porous and the inner scale dense. It was revealed that the S incorporation into scales was affected by the S concentration in the solution and existence of other impurities, such as Na and Si. (authors)

  16. Heat transfer enhancement of finned oval tubes with staggered punched longitudinal vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.; Fiebig, M.; Mitra, N.K. [Ruhr-Universitaet Bochum (Germany). Inst. fuer Thermo- und Fluiddynamik

    2000-02-01

    Punched longitudinal vortex generators in form of winglets in staggered arrangements were employed to enhance heat transfers in high performance finned oval tube heat exchanger elements. Three-dimensional hydrodynamically and thermally developing laminar flow (Re = 300) and conjugate heat transfer in finned oval tubes were calculated by solving the Navier-Stokes and energy equations with a finite-volume method in curvilinear grids. Velocity field, pressure distribution, vortex formation, temperature fields, local heat transfer distributions and global results for finned oval tubes with two to four staggered winglets ({beta}= 30{sup o}, {lambda} = 2, h =H) were presented and compared. Winglets in staggered arrangement bring larger heat transfer enhancement than in in-line arrangement since the longitudinal vortices from the former arrangement influence a larger area and intensify the fluid motion normal to the flow direction. For Re = 300 and Fi = 500, the ratios of heat transfer enhancement to flow loss penalty (j/j{sub 0})/( f/f{sub 0}) were 1.151 and 1.097 for a finned oval tube with two and four staggered winglets, respectively. (author)

  17. Development Study of Cartridge/Crucible Tube Materials

    Science.gov (United States)

    McKechnie, Timothy N.; ODell, Scott J.

    1998-01-01

    The limitations of traditional alloys and the desire for improved performance for components is driving the increased utilization of refractory metals in tile space industry. From advanced propulsion systems to high temperature furnace components for microgravity processing, refractory metals are being used for their high melting temperatures and inherent chemical stability. Techniques have been developed to produce near net shape refractory metal components utilizing vacuum plasma spraying. Material utilization is very high, and laborious machining can be avoided. As-spray formed components have been tested and found to perform adequately. However, increased mechanical and thermal properties are needed. To improve these properties, post processing thermal treatments such as hydrogen sintering and vacuum annealing have been performed. Components formed from alloys of tungsten, rhenium, tantalum, niobium, and molybdenum are discussed and a metallurgical analyses detailing the results are presented. A qualitative comparison of mechanical properties is also included.

  18. A prediction method for the general corrosion behavior of Alloy 690 steam generator tube using eddy current testing

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Hee-Sang; Choi, Myung Sik; Lee, Deok Hyun; Hur, Do Haeng, E-mail: dhhur@kaeri.re.kr

    2016-02-15

    Highlights: • A corrosion test for the tubes with different levels of eddy current noise was conducted. • A relationship between the corrosion rate and the eddy current noise of tubes was explored. • Corrosion rate was closely correlated to the tube noise of a rotating pancake probe. • Corrosion rate was not related to the tube noise measured using a bobbin probe. - Abstract: The purpose of this work is to develop an eddy current testing method to predict the general corrosion behavior of Alloy 690 steam generator tubes. A corrosion test was conducted for tubes with different levels of eddy current noise in simulated primary water at 330 °C, and their corrosion behavior was correlated with the tube noise measured using bobbin and rotating probes. The corrosion behavior was closely correlated with the tube noise measured using a rotating probe. However, there was no correlation between the corrosion behavior and the tube noise measured using a bobbin probe. The tube noise value measured using a rotating pancake coil probe is suggested to be a significant parameter in estimating the general corrosion behavior of tubes.

  19. Gas Generation from Actinide Oxide Materials

    Energy Technology Data Exchange (ETDEWEB)

    George Bailey; Elizabeth Bluhm; John Lyman; Richard Mason; Mark Paffett; Gary Polansky; G. D. Roberson; Martin Sherman; Kirk Veirs; Laura Worl

    2000-12-01

    This document captures relevant work performed in support of stabilization, packaging, and long term storage of plutonium metals and oxides. It concentrates on the issue of gas generation with specific emphasis on gas pressure and composition. Even more specifically, it summarizes the basis for asserting that materials loaded into a 3013 container according to the requirements of the 3013 Standard (DOE-STD-3013-2000) cannot exceed the container design pressure within the time frames or environmental conditions of either storage or transportation. Presently, materials stabilized and packaged according to the 3013 Standard are to be transported in certified packages (the certification process for the 9975 and the SAFKEG has yet to be completed) that do not rely on the containment capabilities of the 3013 container. Even though no reliance is placed on that container, this document shows that it is highly likely that the containment function will be maintained not only in storage but also during transportation, including hypothetical accident conditions. Further, this document, by summarizing materials-related data on gas generation, can point those involved in preparing Safety Analysis Reports for Packages (SARPs) to additional information needed to assess the ability of the primary containment vessel to contain the contents and any reaction products that might reasonably be produced by the contents.

  20. A Fundamental study of remedial technology development to prevent stress corrosion cracking of steam generator tubing

    Energy Technology Data Exchange (ETDEWEB)

    Park, In Gyu; Lee, Chang Soon [Sunmoon University, Asan (Korea)

    1998-04-01

    Most of the PWR Steam generators with tubes in Alloy 600 alloy are affected by Stress Corrosion Cracking, such as PWSCC(Primary Water Stress Corrosion Cracking) and ODSCC(Outside Diameter Stress Corrosion Cracking). This study was undertaken to establish the background for remedial technology development to prevent SCC. in the report are included the following topics: (1) General: (i) water chemistry related factors, (ii) Pourbaix(Potential-pH) Diagram, (iii) polarization plot, (iv) corrosion mode of Alloy 600, 690, and 800, (v) IGA/SCC growth rate, (vi) material suspetibility of IGA/SCC, (vii) carbon solubility of Alloy 600 (2) Microstructures of Alloy 600 MA, Alloy 600 TT, Alloy 600 SEN Alloy 690 TT(Optical, SEM, and TEM) (3) Influencing factors for PWSCC initiation rate of Alloy 600: (i) microstructure, (ii) water chemistry(B, Li), (iii) temperature, (iv) plastic deformation, (v) stress relief annealing (4) Influencing factors for PWSCC growth rate of Alloy 600: (i) water chemistry(B, Li), (ii) Scott Model, (iii) intergranular carbide, (iv) temperature, (v) hold time (5) Laboratory conditions for ODSCC initiation rate: 1% NaOH, 316 deg C; 1% NaOH, 343 deg C; 50% NaOH, 288 deg C; 10% NaOH, 302 deg C; 10% NaOH, 316 deg C; 50% NaOH, 343 deg C (6) Sludge effects for ODSCC initiation rate: CuO, Cr{sub 2}O{sub 3}, Fe{sub 3}O{sub 4} (7) Influencing factors for PWSCC growth rate of Alloy 600: (i) Caustic concentration effect, (ii) carbonate addition effect (8) Sulfate corrosion: (i) sulfate ratio and pH effect, (ii) wastage rate of Alloy 600 and Alloy 690 (9) Crevice corrosion: (i) experimental setup for crevice corrosion, (ii) organic effect, (iii) (Na{sub 2}SO{sub 4} + NaOH) effect (10) Remedial measures for SCC: (i) Inhibitors, (ii) ZnO effect. (author). 30 refs., 174 figs., 51 tabs.

  1. An Expert System Using A Neural Network For Steam Generator Tube Inspection

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kilyoo; Huh, Younghwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Woo, Heegon; Choi, Sungsoo [Korea Electric Power Corporation, Daejeon (Korea, Republic of)

    1991-04-15

    An expert system using neural network is built to automatically evaluate eddy current (EC) signals generated during steam generator (S/G) tubes inspection. The system consists of three subsystem, i.e., syntactic pattern recognition subsystem, neural network subsystem and rule based production subsystem. The syntactic pattern recognition subsystem makes it easy to process the vast EC signal data, screens EC signals and detects event signals such as defect signals and structural signals. The neural network subsystem is useful to classify the event signals which often contain noise signals. The expert system implemented on HP 9000/370 workstation also supplies a good EC test data management function.

  2. Feasibility of leak-detection instrumentation for duplex-tube steam generator. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Berkey, E.; Witkowski, R.E.

    1974-01-01

    A literature search has been carried out to determine if current state-of-the-art for sodium vapor and water vapor detectors are feasible as leak detection instrumentation for the Westinghouse duplex-tube steam generator. A commercially available probe-type water vapor detector has been identified and a thermal ionization type sodium vapor detector, currently being developed by Westinghouse, has been selected as the reference sodium-vapor leak detector. Recommendations are made concerning the experimental studies required to adapt the selected instrumentation to steam-generator plant applications. Proposed future instrumentation development programs are also identified.

  3. Numerical simulation on heat transfer performance of vertical U-tube with different borehole fill materials

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Heat exchange performance of vertical U-tube heat exchanger was studiedwith two different borehole fill materials and CFD software. Borehole surface temperature and water temperature distribution were simulated on the condition of continuous operation for 8 h in winter with inlet water temperature being 10 ℃. The results show that there is no obvious difference on heat exchanger performance between the two different borehole fill materials.

  4. Improving formability of tube bending for a copper material using finite element simulation

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Duc Toan; Nnuyen, Dinh Thanh [Hungyen University of Technology and Education, Hungyen (Viet Nam); Kim, Young Suk [Kyungpook National University, Daegu (Korea, Republic of)

    2015-10-15

    Bending tubes are key products in many industries. The geometric parameters of the bending process are considered according to Taguchi's orthogonal array and then coupled with finite element simulation to predict and improve the formability of the tube bending process for copper JIS25A material. Three parameters, namely, mandrel diameter, distance between mandrel rings, and distance from the tip of the mandrel bar to the center of the base die, are selected to study their effects on the quality of the bending process. The variance analysis shows that the effect distribution of each parameter to bending quality is determined, and optimal conditions are adopted to conduct experiments.

  5. Predictions of structural integrity of steam generator tubes under normal operating, accident, an severe accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S. [Argonne National Lab., IL (United States)

    1997-02-01

    Available models for predicting failure of flawed and unflawed steam generator tubes under normal operating, accident, and severe accident conditions are reviewed. Tests conducted in the past, though limited, tended to show that the earlier flow-stress model for part-through-wall axial cracks overestimated the damaging influence of deep cracks. This observation was confirmed by further tests at high temperatures, as well as by finite-element analysis. A modified correlation for deep cracks can correct this shortcoming of the model. Recent tests have shown that lateral restraint can significantly increase the failure pressure of tubes with unsymmetrical circumferential cracks. This observation was confirmed by finite-element analysis. The rate-independent flow stress models that are successful at low temperatures cannot predict the rate-sensitive failure behavior of steam generator tubes at high temperatures. Therefore, a creep rupture model for predicting failure was developed and validated by tests under various temperature and pressure loadings that can occur during postulated severe accidents.

  6. Study on the regulatory approach of KNGR multiple steam generator tube rupture events

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Keun Sun; Kweon, Y. C.; Lee, S. J.; Lee, Y. S.; Cheong, D. Y.; Park, T. J.; Lee, M. G.; Cheon, Y. H. [Sunmoon Univ., Asan (Korea, Republic of); Cheong, J. H. [Baekseok College of Cultural Studies, Cheonan (Korea, Republic of)

    2001-10-15

    The scope and contents performed in this project are as follows : firstly, reviews of the structure and contents of local and foreign regulatory requirements as well as analysis of design features related to safety improvement and containment bypass during multiple steam generator tube failure of advanced reactors of domestic and foreign countries. Secondly, analyses of the state-of-the-art of the development of local and foreign regulatory requirements, research trends, design features and safety goals of advanced reactors, especially for technical issues related to the containment bypass during MSGTR event. Thirdly, analyses of the event of MSGTR for the KNGR using MAS 1.4 which is the best-estimate system code developed by Korea Atomic Energy Research Institute. Errors in input-decks established last year have been corrected during this analysis. Fourthly, assessment of the effects of several parameters on the consequences following a MSGTR event. Tube rupture location, selection of affected steam generator, tube modeling method, discharge coefficient (C{sub D}) are examined. Fifthly, establishment of regulatory direction of technical issues related to the containment bypass during MSGTR event.

  7. Simulation of the fluid-structure-interaction of steam generator tubes and bluff bodies

    Energy Technology Data Exchange (ETDEWEB)

    Kuehlert, Karl [ANSYS, Inc. (United States)], E-mail: kue@fluent.com; Webb, Stephen [Sandia National Laboratories (United States); Schowalter, David; Holmes, William; Chilka, Amarvir; Reuss, Steve [ANSYS, Inc. (United States)

    2008-08-15

    The accuracy of computational fluid dynamics in simulating the cross-flow around a steam generator and the feasibility of a full scale coupled CFD/FEA fluid-structure-interaction (FSI) analysis is examined through successive validations. The study begins with a comparison between experiment and computation of flow within a stationary tube bank. Results from the simulation of an individual tube experiencing two-degree-of-freedom flow-induced vibration (at a Reynolds number of 3800) are then shown to compare favorably to experimental results. Finally, free vibration of a single cantilevered hydrofoil is simulated with comparison of mean square acceleration at resonant and non-resonant velocities, respectively. The magnitudes and frequencies of vibration are shown to be accurately captured.

  8. The optimum fin spacing of circular tube bank fin heat exchanger with vortex generators

    Science.gov (United States)

    Hu, Wanling; Su, Mei; Wang, Liangcheng; Zhang, Qiang; Chang, Limin; Liu, Song; Wang, Liangbi

    2013-09-01

    In real application, once the pattern of fin is determined, fin spacing of tube bank fin heat exchanger can be adjusted in a small region, and air flow velocity in the front of the heat exchanger is not all the same. Therefore, the effects of fin spacing on heat transfer performance of such heat exchanger are needed. This paper numerically studied the optimal fin spacing regarding the different front flow velocities of a circular tube bank fin heat exchanger with vortex generators. To screen the optimal fin spacing, an appropriate evaluation criterion JF was used. The results show that when front velocity is 1.75 m/s, the optimal fin spacing is 2.25 mm, when front velocity is 2.5 m/s, the optimal fin spacing is 2 mm, and when front velocity is higher than 2.5 m/s, the optimal fin spacing is 1.75 mm.

  9. Steam generator tube support plate degradation in French plants: maintenance strategy

    Energy Technology Data Exchange (ETDEWEB)

    Gauchet, J.-P. [EDF, NPP Operations/Maintenance Dept. (France); Gillet, N. [FRAMATOME, Steam Generator Dept. (France); Stindel, M. [EDF, Central Labs. (France)

    1998-07-01

    This paper reports on the degradations of Steam Generator (SG) Tube Support Plates (TSPs) observed in French plants and the maintenance strategy adopted to continue operating the plant without any decrease of the required safety level. Only drilled carbon steel TSPs of early SGs are affected. Except the particular damage of the TSP8 of FESSENHEIM 2 caused by chemical cleaning procedures implemented in 1992, two main problems were observed almost exclusively on the upper TSP: Ligaments ruptured near the aseismic block located at 215 degrees. This degradation is perfectly detectable by bobbin coil inspection. It occurs very early in the life of the SG as can be seen from the records of previous inspections and no evolution of the signals was observed. This damage can be detected for 51M model SGs on several sites; Wastage of the ligaments resulting in enlargement of flow holes with in some cases complete consumption of a ligament. This damage was only observed for SGs of at GRAVELINES. This damage evolved cycle after cycle. Detailed studies were performed to analyze tubing behavior when a tube is not supported by the upper TSP because of missing ligaments. These studies evaluated the risk of vibratory instability, the behavior of both the TSP and the tubing in case of a seismic event or a LOCA and finally the behavior of the TSP in case of a Steam Line Break. Concerning vibratory instability it was possible to define zones where stability could not be demonstrated. Dampine, cables and sentinel plugs were then used when necessary to eliminate the risk of Steam Generator Tube Rupture (SGTR). For accidental conditions, it could be shown that no unacceptable damage occurs and that the core cooling function of the SG is always maintained if some tubes are plugged. From this analysis, It was possible to define the inspection programs for the different plants taking into account the specific situation of each plant regarding the damages detected. These programs include

  10. The Use of Nanoscaled Fibers or Tubes to Improve Biocompatibility and Bioactivity of Biomedical Materials

    Directory of Open Access Journals (Sweden)

    Xiaoming Li

    2013-01-01

    Full Text Available Nanofibers and nanotubes have recently gained substantial interest for potential applications in tissue engineering due to their large ratio of surface area to volume and unique microstructure. It has been well proved that the mechanical property of matrix could be largely enhanced by the addition of nanoscaled fibers or tubes. At present, more and more researches have shown that the biocompatibility and bioactivity of biomedical materials could be improved by the addition of nanofibers or nanotubes. In this review, the efforts using nanofibers and nanotubes to improve biocompatibility and bioactivity of biomedical materials, including polymeric nanofibers/nanotubes, metallic nanofibers/nanotubes, and inorganic nanofibers/nanotubes, as well as their researches related, are demonstrated in sequence. Furthermore, the possible mechanism of improving biocompatibility and bioactivity of biomedical materials by nanofibers or nanotubes has been speculated to be that the specific protein absorption on the nanoscaled fibers or tubes plays important roles.

  11. Global optimisation methods for poroelastic material characterisation using a clamped sample in a Kundt tube setup

    Science.gov (United States)

    Vanhuyse, Johan; Deckers, Elke; Jonckheere, Stijn; Pluymers, Bert; Desmet, Wim

    2016-02-01

    The Biot theory is commonly used for the simulation of the vibro-acoustic behaviour of poroelastic materials. However, it relies on a number of material parameters. These can be hard to characterize and require dedicated measurement setups, yielding a time-consuming and costly characterisation. This paper presents a characterisation method which is able to identify all material parameters using only an impedance tube. The method relies on the assumption that the sample is clamped within the tube, that the shear wave is excited and that the acoustic field is no longer one-dimensional. This paper numerically shows the potential of the developed method. It therefore performs a sensitivity analysis of the quantification parameters, i.e. reflection coefficients and relative pressures, and a parameter estimation using global optimisation methods. A 3-step procedure is developed and validated. It is shown that even in the presence of numerically simulated noise this procedure leads to a robust parameter estimation.

  12. Studies on flow instability of helical tube steam generator with Nyquist criterion

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Fenglei, E-mail: niufenglei@ncepu.edu.cn [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China); Tian, Li; Yu, Yu [State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206 (China); Li, Rizhu [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Norman, Timothy L. [Westinghouse Electric Company, Madison, PA 15663 (United States)

    2014-01-15

    Highlights: • Density-wave oscillation in helical-tube steam generators was studied. • The multi-variable frequency domain method was used for the modeling. • The flow stability was evaluated by the Nyquist stability criterion. • The calculated results are consistent with the experimental results. -- Abstract: The steam generator of the 10 MW High Temperature Gas-Cooled Reactor (HTR-10) in China consists of a series of helical tubes where water/steam flows inside and helium flows outside. It operates under middle pressure, which tends to cause the flow instability. Density-wave oscillation is the most common type of two-phase flow instability in the steam generators. This paper presents the research on flow instability for the HTR-10 steam generator. The drift flux model was used for two-phase flow analysis. The transfer matrix was obtained by using linearized perturbation and Laplace transformation on the conservation equations. The flow stability was evaluated by the Nyquist stability criterion. The results obtained from frequency domain method were compared and discussed with the results from the time domain method and the experimental results.

  13. CFD evaluation on the thermohydraulic characteristics of tube support plates in steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, B.; Zhang, H.; Han, B.; Yang, B.W. [Xi' an Jiaotong Univ. (China). School of Nuclear Science and Technology; Mo, S.J.; Ren, H.B.; Qin, J.M.; Zuo, C.P. [China Nuclear Power Design Co. Ltd., ShenZhen (China)

    2016-07-15

    The integrity and thermal hydraulic characteristics of steam generator are of great concern in the nuclear industry. The tube support plates (TSP), one of the most important components of the steam generator, not only support the heat transfer tubes, but also affect the flow dynamic and thermal hydraulic characteristics of the secondary-side flow inside the steam generator. Different working conditions, ranging from single-phase adiabatic condition to two-phase high-void boiling condition, are simulated and analyzed. Calculated void fraction, under simple geometry, agrees well with the experiment data whilst the simulated heat transfer coefficient is tremendously close to the empirical correlation. Temperature, void fraction, and velocity distributions in different locations show reasonable distribution. The simulation results indicate that TSP can enhance the heat transfer in the secondary side of the steam generator. On the top of TSP, with the increase in cross-section flow area, the back-flow phenomenon occurs, which might lead to the contamination of precipitation.

  14. Simulation analysis of static and dynamic characteristics of once-through steam generator in concentric annuli tube

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; BIAN Xin-qian; XIA Guo-qing

    2006-01-01

    The once-through steam generator (OTSG) in concentric annuli tube is a new type of steam generator which applies double side to transfer heat. The heat flux between the water of centric tube, outside annuli tube and that of annulus channel is assumed to be equal, and then the steam generator's model is built by lumped parameters with moving boundary. In the basis of the built model, static and dynamic characteristics are analyzed.The static characteristics are proved by experiment results in a 19-tube once-through steam generator of Babcock & Wilcox. The characteristics that the lengths of three regions (subcooled region, nucleate boiling region, superheat region) change with power can be explained by theory analysis. The dynamic characteristics accord with the heat and hydraulics and the results of analysis according to the mechanism.

  15. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  16. The development of an inspection/maintence robot for steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Ho; Kim, Chang Hoi; Seo, Yong Chil [and others

    2003-05-01

    We developed the tele-robotic systems for inspection/maintenance of steam generator tubes. For easy handling and installation, it consists of three separable parts: the entering/leaving device, the base posture adjusting device, the manipulator. The inspection and repair tools, such as brushing, plugging, and sleeving tools, were developed. We also developed software programs for the eddy current test signal acquisition and evaluation. The semiconductor type dosimeter and the directional radiation mapping module were developed for measuring the accumulated radioactivity and for finding the radioactivity source location. The research for radiation shield and decontamination were carried out. The developed robotic system has been tested in the Ulchin NPP type steam generator mockup in our laboratory, and after evaluation and some modification the final functional test was carried out at the Kori NPP type steam generator mockup in the Kori training center.

  17. Probabilistic integrity assessment of CANDU pressure tube for the consideration of flaw generation time

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Sang Log; Kim, Young Jin [Sungkyunkwan Univ., Seoul (Korea, Republic of); Lee, Joon Seong [Kyonggi Univ., Seoul (Korea, Republic of); Park, Youn Won [KINS, Taejon (Korea, Republic of)

    2001-07-01

    This paper describes a Probabilistic Fracture Mechanics (PFM) analysis based on Monte Carlo (MC) simulation. In the analysis of CANDU pressure tube, it is necessary to perform the PFM analyses based on statistical consideration of flaw generation time. A depth and an aspect ratio of initial semi-elliptical surface crack, a fracture toughness value, Delayed Hydride Cracking (DHC) velocity, and flaw generation time are assumed to be probabilistic variables. In all the analyses, degradation of fracture toughness due to neutron irradiation is considered. Also, the failure criteria considered are plastic collapse, unstable fracture and crack penetration. For the crack growth by DHC, the failure probability was evaluated in due consideration of flaw generation time.

  18. On the probability of exceeding allowable leak rates through degraded steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Cizelj, L.; Sorsek, I. [Jozef Stefan Institute, Ljubljana (Slovenia); Riesch-Oppermann, H. [Forschungszentrum Karlsruhe (Germany)

    1997-02-01

    This paper discusses some possible ways of predicting the behavior of the total leak rate through the damaged steam generator tubes. This failure mode is of special concern in cases where most through-wall defects may remain In operation. A particular example is the application of alternate (bobbin coil voltage) plugging criterion to Outside Diameter Stress Corrosion Cracking at the tube support plate intersections. It is the authors aim to discuss some possible modeling options that could be applied to solve the problem formulated as: Estimate the probability that the sum of all individual leak rates through degraded tubes exceeds the predefined acceptable value. The probabilistic approach is of course aiming at reliable and computationaly bearable estimate of the failure probability. A closed form solution is given for a special case of exponentially distributed individual leak rates. Also, some possibilities for the use of computationaly efficient First and Second Order Reliability Methods (FORM and SORM) are discussed. The first numerical example compares the results of approximate methods with closed form results. SORM in particular shows acceptable agreement. The second numerical example considers a realistic case of NPP in Krsko, Slovenia.

  19. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R. [Department of Physics, Royal Military College of Canada, Kingston, ON (Canada)

    2014-02-18

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  20. A pulsed eddy current probe for inspection of support plates from within Alloy-800 steam generator tubes

    Science.gov (United States)

    Krause, T. W.; Babbar, V. K.; Underhill, P. R.

    2014-02-01

    Support plate degradation and fouling in nuclear steam generators (SGs) can lead to SG tube corrosion and loss of efficiency. Inspection and monitoring of these conditions can be integrated with preventive maintenance programs, thereby advancing station-life management processes. A prototype pulsed eddy current (PEC) probe, targeting inspection issues associated with SG tubes in SS410 tube support plate structures, has been developed using commercial finite element (FE) software. FE modeling was used to identify appropriate driver and pickup coil configurations for optimum sensitivity to changes in gap and offset for Alloy-800 SG tubes passing through 25 mm thick SS410 support plates. Experimental measurements using a probe that was manufactured based on the modeled configuration, were used to confirm the sensitivity of differential PEC signals to changes in relative position of the tube within the tube support plate holes. Models investigated the effect of shift and tilt of tube with respect to hole centers. Near hole centers and for small shifts, modeled signal amplitudes from the differentially connected coil pairs were observed to change linearly with tube shift. This was in agreement with experimentally measured TEC coil response. The work paves the way for development of a system targeting the inspection and evaluation of support plate structures in steam generators.

  1. Development of a 3D Electromagnetic Model for Eddy Current Tubing Inspection: Application to Steam Generator Tubing

    Science.gov (United States)

    Pichenot, G.; Prémel, D.; Sollier, T.; Maillot, V.

    2004-02-01

    In nuclear plants, the inspection of heat exchanger tubes is usually carried out by using eddy current nondestructive testing. A numerical model, based on a volume integral approach using the Green's dyadic formalism, has been developed, with support from the French Institute for Radiological Protection and Nuclear Safety, to predict the response of an eddy current bobbin coil to 3D flaws located in the tube's wall. With an aim of integrating this model into the NDE multi techniques platform CIVA, it has been validated with experimental data for 2D and 3D flaws.

  2. Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003

    Energy Technology Data Exchange (ETDEWEB)

    Gary E. Rochau and Thurlow W.H. Caffey, Sandia National Laboratories, Albuquerque, NM 87185-0740; Bahram Nassersharif and Gabe V. Garcia, Department of Mechanical Engineering, New Mexico State University, Las Cruces, NM 88003-8001; Russell P. Jedlicka, Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM 88003-8001

    2003-05-01

    OAK B204 Continuous-Wave Radar to Detect Defects Within Heat Exchangers and Steam Generator Tubes ; Revised September 3, 2003. A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The technique is 100% volumetric, and may find smaller defects, more rapidly, and less expensively than present methods. The project described in this report was a joint development effort between Sandia National Laboratories (SNL) and New Mexico State University (NMSU) funded by the US Department of Energy. The goal of the project was to research, design, and develop a new concept utilizing a continuous wave radar to detect defects inside metallic tubes and in particular nuclear plant steam generator tubing. The project was divided into four parallel tracks: computational modeling, experimental prototyping, thermo-mechanical design, and signal detection and analysis.

  3. Heat transfer enhancement by a multilobe vortex generator in internally finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Y.Y.; Leu, S.W. [National Chiao Tung Univ., Hsinchu (Taiwan, Province of China). Dept. of Mechanical Engineering

    1999-04-01

    A three-dimensional computational method is employed to study the flow and heat transfer in internally finned tubes with a multilobe vortex generator inserted. Governing equations are discretized using the finite volume method. The irregular lobe geometry is treated using curvilinear nonstaggered grids. The linear interpolation method is adopted to calculate face velocities. The results show that secondary flows induced by the lobes are transformed to become axial vortices downstream of the vortex generator. As a consequence of the transport by the vortex flow, the core flow is moved to the fins and the tube wall, while the wall flow moves to the core. In this way, both heat transfer and flow mixing are enhanced. When the fin height is increased, the axial vortex is more restricted in the centerline region, and the strength of the vortex flow, represented by circulation, is decreased. In turn, the total pressure loss is also decreased. However, the heat transfer increases with fin height. Consequently, efficiency is greatly promoted.

  4. Impulse Generation Mechanisms in a Laser-Driven In-Tube Accelerator

    Science.gov (United States)

    Choi, Jeong-Yeol; Kang, Ki-Ha; Sasoh, Akihiro; Jeung, In-Seuck; Urabe, Naohide; Kleine, Harald

    To enhance laser-propulsion thrust performance, a unique Laser-driven In-Tube Accelerator (LITA) has been developed. This paper numerically analyzes the impulse generation mechanisms in LITA. For this purpose, a LITA performance experiment was conducted in atmospheric air with a projectile installed on a ballistic pendulum to calibrate the numerical approximations. We conducted experimental flow visualization by framing shadowgraph and computational fluid dynamics solving the axi-symmetric Euler equation applied to an ideal gas. The results show that a laser-driven blast wave is generated by a spherical hot gas core where the supplied laser energy is absorbed first. The effect of confinement by the tube or shroud wall is confirmed. The impulse production is established not only from the interaction between the incident blast wave and projectile, but also from the following repetitive pressure waves. Assuming that about 30% of the input laser energy is absorbed by the working air, both the impulse and peak pressure agrees quantitatively between the experiment and numerical simulation.

  5. The optimization of fin-tube heat exchanger with longitudinal vortex generators using response surface approximation and genetic algorithm

    Science.gov (United States)

    Wu, Xuehong; Liu, DanDan; Zhao, Min; Lu, YanLi; Song, Xiaoyong

    2016-09-01

    Delta winglet works better than other vortex generators in improving the performance of fin-tube heat exchangers. In this paper, Response Surface Approximation is used to study the effects of the fin pitch, the ratio of the longitudinal tube pitch to transverse tube pitch, the ratio of both sides V 1 , V h of delta winglets and the attack angle of delta winglets on the performance of fin-tube heat exchanger. Firstly, Twenty-nine numerical group experiments including five times repeated experiments at the central point are conducted. Then, the analyses of variable (ANOVA) and regression are performed to verify the accuracy of the polynomial coefficients. Finally, the optimization of the fin-tube heat exchanger using the Genetic Algorithm is conducted and the best performance of j/f (1/3) is found to be 0.07945, which is consistent with the numerical result.

  6. Finite element modeling of wall-loss sizing in a steam generator tube using a pulsed eddy current probe

    Science.gov (United States)

    Babbar, V. K.; Lepine, B.; Buck, J.; Underhill, P. R.; Morelli, J.; Krause, T. W.

    2015-03-01

    Inspection of steam generator (SG) tubes by conventional eddy current may, in general, involve analysis of indications from volumetric wall loss, cracks, fouling and support-plate degradation; however, it may be difficult to size or quantify effects from support-to-tube gap and tube tilt, especially in the presence of support plates. Pulsed eddy current (PEC) technology is being developed to investigate such complex tube and flaw geometries. The present work employs finite element modeling to investigate the effectiveness of PEC in identifying and sizing the outer diameter wall-loss in SG tubes. The signals analyzed using a modified principal components analysis (PCA) method reveal the potential success of a PEC-PCA combination to produce scores that can be used to size the wall-loss in the presence of support plates. The modeling results are in good agreement with experimental observations.

  7. Melting of Nanoprticle-Enhanced Phase Change Material inside Shell and Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Seiyed Mohammad Javad Hosseini

    2013-01-01

    Full Text Available This paper presents a numerical study of melting of Nanoprticle-Enhanced phase change material (NEPCM inside a shell and tube heat exchanger using RT50 and copper particles as base material and nanoparticle, respectively. In this study, the effects of nanoparticles dispersion (, 0.03, and 0.05 on melting time, liquid fraction, and penetration length are investigated. The results show that the melting time decreases to 14.6% and the penetration length increases to 146% with increasing volume fraction of nanoparticle up to .

  8. Long term testing of materials for tube shielding, stage 2; Laangtidsprovning av tubskyddsmaterial, etapp 2

    Energy Technology Data Exchange (ETDEWEB)

    Norling, Rikard; Hjoernhede, Anders; Mattsson, Mattias

    2012-02-15

    Circulating Fluidized Bed (CFB) boilers are commonly used for combustion of biomass and are used to some extent for Waste-to-Energy (WtE) plants as well. The superheaters of the latter are for obvious reasons more prone to suffer from high temperature corrosion caused by the corrosive species in the fuel, mainly chlorides. Frequently the final (hottest) superheater is positioned in the loop seal, where the circulating bed material is returned to the furnace after being separated from the flue gas by a cyclone. The environment in the loop seal is relatively free of chlorides, since these primarily follow the flue gas into the convection pass. Hence, higher steam temperature can be allowed without excessive damage to the final superheater. On the other hand the superheaters, which are located in the convection pass, are more exposed to the corrosive species of the flue gas. Further, they are eroded by particles entrained in the gas flow. Particles and condensing gaseous species are to a large extent deposited on the superheaters, which limits the heat transfer and promotes corrosion. The deposits are regularly removed e.g. by soot blowers. The pressurized steam from soot blowers causes additional erosion damage to that caused by entrained particles. It shall be noted that the actual damage is caused by a combined mechanism of erosion and corrosion denoted erosion-corrosion, which usually results in dramatically accelerated wear. To avoid excessive erosion damage on the superheater tubes the first tube row of each bundle is protected by tube shielding. In its simplest form the shields are made from a steel sheet that has been bent into a semi-circular half-cylinder shell. These shields are attached onto the wind-side of the tubes by hangers. A typical material for tube shielding is the austenitic high temperature resistant stainless steel 253MA. Life of tube shielding depends on numerous factors such as boiler design, superheater location, fuel and operating

  9. Bifunctional thermoelectric tube made of tilted multilayer material as an alternative to standard heat exchangers.

    Science.gov (United States)

    Takahashi, Kouhei; Kanno, Tsutomu; Sakai, Akihiro; Tamaki, Hiromasa; Kusada, Hideo; Yamada, Yuka

    2013-01-01

    Enormously large amount of heat produced by human activities is now mostly wasted into the environment without use. To realize a sustainable society, it is important to develop practical solutions for waste heat recovery. Here, we demonstrate that a tubular thermoelectric device made of tilted multilayer of Bi(0.5)Sb(1.5)Te3/Ni provides a promising solution. The Bi(0.5)Sb(1.5)Te3/Ni tube allows tightly sealed fluid flow inside itself, and operates in analogy with the standard shell and tube heat exchanger. We show that it achieves perfect balance between efficient heat exchange and high-power generation with a heat transfer coefficient of 4.0 kW/m(2)K and a volume power density of 10 kW/m(3) using low-grade heat sources below 100°C. The Bi(0.5)Sb(1.5)Te3/Ni tube thus serves as a power generator and a heat exchanger within a single unit, which is advantageous for developing new cogeneration systems in factories, vessels, and automobiles where cooling of excess heat is routinely carried out.

  10. Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture

    Science.gov (United States)

    Janardhanraj, S.; Jagadeesh, G.

    2016-08-01

    A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.

  11. Estimation of a tube diameter in a ‘church window’ condenser based on entropy generation minimization

    Directory of Open Access Journals (Sweden)

    Laskowski Rafał

    2015-09-01

    Full Text Available The internal diameter of a tube in a ‘church window’ condenser was estimated using an entropy generation minimization approach. The adopted model took into account the entropy generation due to heat transfer and flow resistance from the cooling-water side. Calculations were performed considering two equations for the flow resistance coefficient for four different roughness values of a condenser tube. Following the analysis, the internal diameter of the tube was obtained in the range of 17.5 mm to 20 mm (the current internal diameter of the condenser tube is 22 mm. The calculated diameter depends on and is positively related to the roughness assumed in the model.

  12. Inducement of IGA/SCC in Inconel 600 steam generator tubing during unit outages

    Energy Technology Data Exchange (ETDEWEB)

    Durance, D.; Sedman, K. [Bruce Power, Tiverton, Ontario (Canada); Roberts, J. [CANTECH Associates Ltd., Burlington, Ontario (Canada); King, P. [Babcock and Wilcox Canada, Cambridge, Ontario (Canada); Gorman, J. [Dominion Engineering, Reston, VA (United States); Allen, R. [Kinectrics, Inc., Toronto, Ontario (Canada)

    2008-07-01

    The degradation of Unit 4 SG tubing by IGA/SCC has limited both the operating period and end of life predictions for Unit 4 since restart in late 2003. The circumferential IGA/SCC has been most significant in SG4 with substantial increases in both initiation and growth rates from 2005 through the spring of 2007. A detailed review of the occurrence of circumferential OD IGA/SCC at the RTZ in the HL TTS region of Bruce 4 steam generator tubes has led a conclusion that it is probable that the IGA/SCC has been the result of attack by partially reduced sulfur species such as tetrathionates and thiosulfates during periods of low temperature exposure. It is believed that attack of this type has mostly likely occurred during startup evolutions following outages as the result the development of aggressive reduced sulfur species in the TTS region during periods when the boilers were fully drained for maintenance activities. The modification of outage practices to limit secondary side oxygen ingress in the spring of 2007 has apparently arrested the degradation and has had significant affects on the allowable operating interval and end of life predictions for the entire unit. (author)

  13. Next Generation TRD for CREAM Using Gas Straw Tubes and Foam Radiators

    Science.gov (United States)

    Malinin, A.; Ahn, H.S.; Fedin, O.; Ganel, O.; Han, J.H.; Kim, C.H.; Kim, K.C.; Lee, M.H.; Lutz, L.; Seo, E.S.; Walpole, P.; Wu, J.; Yoo, J.H.; Yoon, Y.S.; Zinn, S.Y.

    The Cosmic Ray Energetics And Mass (CREAM) experiment is designed to investigate the source, propagation and acceleration mechanism of high energy cosmic-ray nuclei, by directly measuring their energy and charge. Incorporating a transition radiation detector (TRD) provides an energy measurement complementary to the calorimeter, as well as additional track reconstruction capability. The next generation CREAM TRD is designed with 4 mm straw tubes to greatly improve tracking over the previous 20 mm tube design, thereby enhancing charge identification in the silicon charge detector (SCD). Plastic foam provides a weight-efficient radiator that doubles as a mechanical support for the straw layers. This design provides a compact, robust, reliable, low density detector to measure incident nucleus energy for 3 < Z < 30 nuclei in the Lorentz gamma factor range of 102-105. This paper discusses the new TRD design and the low power front end electronics used to achieve the large dynamic range required. Beam test results of a prototype TRD are also reported.

  14. YouTube as a crowd-generated water level archive.

    Science.gov (United States)

    Michelsen, N; Dirks, H; Schulz, S; Kempe, S; Al-Saud, M; Schüth, C

    2016-10-15

    In view of the substantial costs associated with classic monitoring networks, participatory data collection methods can be deemed a promising option to obtain complementary data. An emerging trend in this field is social media mining, i.e., harvesting of pre-existing, crowd-generated data from social media. Although this approach is participatory in a broader sense, the users are mostly not aware of their participation in research. Inspired by this novel development, we demonstrate in this study that it is possible to derive a water level time series from the analysis of multiple YouTube videos. As an example, we studied the recent water level rise in Dahl Hith, a Saudi Arabian cave. To do so, we screened 16 YouTube videos of the cave for suitable reference points (e.g., cave graffiti). Then, we visually estimated the distances between these points and the water level and traced their changes over time. To bridge YouTube hiatuses, we considered own photos taken during two site visits. For the time period 2013-2014, we estimate a rise of 9.5m. The fact that this rise occurred at a somewhat constant rate of roughly 0.4m per month points towards a new and permanent water source, possibly two nearby lakes formed from treated sewage effluent. An anomaly in the rising rate is noted for autumn 2013 (1.3m per month). As this increased pace coincides with a cluster of rain events, we deem rapid groundwater recharge along preferential flow paths a likely cause. Despite the sacrifice in precision, we believe that YouTube harvesting may represent a viable option to gather historical water levels in data-scarce settings and that it could be adapted to other environments (e.g., flood extents). In certain areas, it might provide an additional tool for the monitoring toolbox, thereby possibly delivering hydrological data for water resources management. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Evaluation of a sodium-water reaction event caused by steam generator tubes break in the prototype generation IV sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Ha, Kwi Seok; Chang, Won Pyo; Kang, Seok Hun; Lee, Kwi Lim; Choi, Chi Woong; Lee, Seung Won; Yoo, Jin; Jeong, Jae Ho; Jeong, Tae Kyeong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    The prototype generation IV sodium-cooled fast reactor (PGSFR) has been developed by the Korea Atomic Energy Research Institute. This reactor uses sodium as a reactor coolant to transfer the core heat energy to the turbine. Sodium has chemical characteristics that allow it to violently react with materials such as a water or steam. When a sodium–water reaction (SWR) occurs due to leakage or breakage of steam generator tubes, high-pressure waves and corrosive reaction products are produced, which threaten the structural integrity of the components of the intermediate heat-transfer system (IHTS) and the safety of the primary heat-transfer system (PHTS). In the PGSFR, SWR events are included in the design-basis event. This event should be analyzed from the viewpoint of the integrities of the IHTS and fuel rods. To evaluate the integrity of the IHTS based on the consequences of the SWR, the behaviors of the generated high-pressure waves are analyzed at the major positions of a failed IHTS loop using a sodium–water advanced analysis method-II code. The integrity of the fuel rods must be consistently maintained below the safety acceptance criteria to avoid the consequences of the SWR. The integrity of the PHTS is evaluated using the multidimensional analysis of reactor safety-liquid metal reactor code to model the whole plant.

  16. Probability of detection model for the non-destructive inspection of steam generator tubes of PWRs

    Science.gov (United States)

    Yusa, N.

    2017-06-01

    This study proposes a probability of detection (POD) model to discuss the capability of non-destructive testing methods for the detection of stress corrosion cracks appearing in the steam generator tubes of pressurized water reactors. Three-dimensional finite element simulations were conducted to evaluate eddy current signals due to stress corrosion cracks. The simulations consider an absolute type pancake probe and model a stress corrosion crack as a region with a certain electrical conductivity inside to account for eddy currents flowing across a flaw. The probabilistic nature of a non-destructive test is simulated by varying the electrical conductivity of the modelled stress corrosion cracking. A two-dimensional POD model, which provides the POD as a function of the depth and length of a flaw, is presented together with a conventional POD model characterizing a flaw using a single parameter. The effect of the number of the samples on the PODs is also discussed.

  17. Improvements in the simulation of a main steam line break with steam generator tube rupture

    Science.gov (United States)

    Gallardo, Sergio; Querol, Andrea; Verdú, Gumersindo

    2014-06-01

    The result of simultaneous Main Steam Line Break (MSLB) and a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR) is a depressurization in the secondary and primary system because both systems are connected through the SGTR. The OECD/NEA ROSA-2 Test 5 performed in the Large Scale Test Facility (LSTF) reproduces these simultaneous breaks in a Pressurized Water Reactor (PWR). A simulation of this Test 5 was made with the thermal-hydraulic code TRACE5. Some discrepancies found, such as an underestimation of SG-A secondary pressure during the depressurization and overestimation of the primary pressure drop after the first Power Operated Relief Valve (PORV) opening can be improved increasing the nodalization of the Upper Head in the pressure vessel and meeting the actual fluid conditions of Upper Head during the transient.

  18. A quality assessment of respiratory auscultation material on YouTube.

    Science.gov (United States)

    Sunderland, Nicholas; Camm, Christian F; Glover, Katie; Watts, Anna; Warwick, Geoffrey

    2014-08-01

    YouTube contains a large volume of medical educational material. This study assessed the quality of respiratory auscultation videos contained in YouTube. Videos were searched for using the terms 'breath sounds', 'respiratory sounds', 'respiratory auscultation' and/or 'lung sounds'. In total, 6,022 videos were located, 36 of which were considered suitable for scoring for video accuracy, comprehensiveness and quality. The average score was 3.32/6 (55.3% ± 1.30). Video score correlated with time-adjusted YouTube metadata: hits per day (0.496, p=0.002) and likes per day (0.534, p=0.001). Video score also correlated with the first search page on which the video was located in the 'breath sounds' and 'lung sounds' searches (-0.571, p=0.001; -0.445, p=0.014, respectively). The quality of videos was variable. Correlation between video score and some metadata values suggests that there is value for their use in judging video quality. However, the large number of videos found and inability to filter these results quickly makes locating educational content difficult.

  19. Impulsively Generated Sausage Waves in Coronal Tubes with Transversally Continuous Structuring

    Science.gov (United States)

    Yu, Hui; Li, Bo; Chen, Shao-Xia; Xiong, Ming; Guo, Ming-Zhe

    2016-12-01

    The frequency dependence of the longitudinal group speeds of trapped sausage waves plays an important role in determining impulsively generated wave trains, which have often been invoked to account for quasi-periodic signals in coronal loops. We examine how the group speeds ({v}{gr}) depend on angular frequency (ω) for sausage modes in pressureless coronal tubes with continuous transverse density distributions by solving the dispersion relation pertinent to the case where the density inhomogeneity of arbitrary form occurs in a transition layer of arbitrary thickness. We find that in addition to the transverse lengthscale l and density contrast {ρ }{{i}}/{ρ }{{e}}, the group speed behavior also depends on the detailed form of the density inhomogeneity. For parabolic profiles, {v}{gr} always decreases with ω first before increasing again, as happens for the much studied top-hat profiles. For linear profiles, however, the behavior of the ω -{v}{gr} curves is more complex. When {ρ }{{i}}/{ρ }{{e}}≲ 6, the curves become monotonical for large values of l. On the other hand, for higher density contrasts, a local maximum {v}{gr}\\max exists in addition to a local minimum {v}{gr}\\min when coronal tubes are diffuse. With time-dependent computations, we show that the different behavior of group speed curves, the characteristic speeds {v}{gr}\\min and {v}{gr}\\max in particular, is reflected in the temporal evolution and Morlet spectra of impulsively generated wave trains. We conclude that the observed quasi-periodic wave trains not only can be employed to probe such key parameters as density contrasts and profile steepness, but also have the potential to discriminate between the unknown forms of the transverse density distribution.

  20. Heat transfer and flow characteristics of fin-tube bundles with and without winglet-type vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, K.M.; Torii, K.; Nishino, K. [Department of Mechanical Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501 (Japan)

    2002-11-01

    The objective of this research is to investigate the effect of longitudinal vortices that can be applied to the heat transfer enhancement for fin-tube heat exchangers such as air-cooled condensers. A multichannel test core was designed and fabricated for the determination of overall heat transfer and pressure loss with circular tubes and winglet vortex generators. Heat transfer results were obtained using a transient method referred to as the modified single-blow method. For a three-row tube bundle in an in-line arrangement without winglets, the heat transfer and the pressure loss were 72% and 210% higher, respectively, than for a multichannel test core without any built-in tube or winglet. These increases were caused by vortices around the tube banks. The corresponding increases for a staggered tube bundle are 95% and 310%, respectively. The triangular winglets recommended by the previous studies in a fin-tube bundle in an in-line arrangement increase the overall heat transfer 10-25% and the pressure loss 20-35% for the Reynolds numbers ranging from 300 to 2700. (orig.)

  1. ON THE SUPPORT OF SOLAR PROMINENCE MATERIAL BY THE DIPS OF A CORONAL FLUX TUBE

    Energy Technology Data Exchange (ETDEWEB)

    Hillier, Andrew [Kwasan and Hida Observatories, Kyoto University, Kyoto (Japan); Van Ballegooijen, Adriaan [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-04-01

    The dense prominence material is believed to be supported against gravity through the magnetic tension of dipped coronal magnetic field. For quiescent prominences, which exhibit many gravity-driven flows, hydrodynamic forces are likely to play an important role in the determination of both the large- and small-scale magnetic field distributions. In this study, we present the first steps toward creating a three-dimensional magneto-hydrostatic prominence model where the prominence is formed in the dips of a coronal flux tube. Here 2.5D equilibria are created by adding mass to an initially force-free magnetic field, then performing a secondary magnetohydrodynamic relaxation. Two inverse polarity magnetic field configurations are studied in detail, a simple o-point configuration with a ratio of the horizontal field (B{sub x} ) to the axial field (B{sub y} ) of 1:2 and a more complex model that also has an x-point with a ratio of 1:11. The models show that support against gravity is either by total pressure or tension, with only tension support resembling observed quiescent prominences. The o-point of the coronal flux tube was pulled down by the prominence material, leading to compression of the magnetic field at the base of the prominence. Therefore, tension support comes from the small curvature of the compressed magnetic field at the bottom and the larger curvature of the stretched magnetic field at the top of the prominence. It was found that this method does not guarantee convergence to a prominence-like equilibrium in the case where an x-point exists below the prominence flux tube. The results imply that a plasma {beta} of {approx}0.1 is necessary to support prominences through magnetic tension.

  2. APSTNG: Associated particle sealed-tube neutron generator studies for arms control. Final report on NN-20 Project ST220

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, E.; Dickerman, C.E.; Brunner, T.; Hess, A.; Tylinski, S.

    1994-12-01

    Argonne National Laboratory has performed research and development on the use of Associated Particle Sealed-Tube Neutron Generator (APSTNG) technology for treaty verification and non-proliferation applications, under funding from the DOE Office of Nonproliferation and National Security. Results indicate that this technology has significant potential for nondestructively detecting elemental compositions inside inspected objects or volumes. The final phase of this project was placement of an order for commercial procurement of an advanced sealed tube, with its high-voltage supply and control systems. Procurement specifications reflected lessons learned during the study. The APSTNG interrogates a volume with a continuous 14-MeV neutron flux. Each neutron is emitted coincident with an {open_quotes}associated{close_quotes} alpha-particle emitted in the opposite direction. Thus detection of an alpha-particle marks the emission of a neutron in a cone opposite to that defined by the alpha detector. Detection of a gamma ray coincident with the alpha indicates that the gamma was emitted from a neutron-induced reaction inside the neutron cone: the gamma spectra can be used to identify fissionable materials and many isotopes having an atomic number larger than that of boron. The differences in gamma-ray and alpha-particle detection times yield a coarse measurement of the distance along the cone axis from the APSTNG emitter to each region containing the identified nuclide. A position-sensitive alpha detector would permit construction of coarse three-dimensional images. The source and emission-detection systems can be located on the same side of the interrogated volume. The neutrons and gamma rays are highly penetrating. A relatively high signal-to-background ratio allows the use of a relatively small neutron source and conventional electronics.

  3. GENERATION OF MAGNETOHYDRODYNAMIC WAVES IN LOW SOLAR ATMOSPHERIC FLUX TUBES BY PHOTOSPHERIC MOTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mumford, S. J.; Fedun, V.; Erdélyi, R., E-mail: s.mumford@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), School of Mathematics and Statistics, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH UK (United Kingdom)

    2015-01-20

    Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.

  4. Development of a Robust Model-Based Water Level Controller for U-Tube Steam Generator

    Energy Technology Data Exchange (ETDEWEB)

    Basher, A.M.H.

    2001-09-04

    Poor control of steam generator water level of a nuclear power plant may lead to frequent nuclear reactor shutdowns. These shutdowns are more common at low power where the plant exhibits strong non-minimum phase characteristics and flow measurements at low power are unreliable in many instances. There is need to investigate this problem and systematically design a controller for water level regulation. This work is concerned with the study and the design of a suitable controller for a U-Tube Steam Generator (UTSG) of a Pressurized Water Reactor (PWR) which has time varying dynamics. The controller should be suitable for the water level control of UTSG without manual operation from start-up to full load transient condition. Some preliminary simulation results are presented that demonstrate the effectiveness of the proposed controller. The development of the complete control algorithm includes components such as robust output tracking, and adaptively estimating both the system parameters and state variables simultaneously. At the present time all these components are not completed due to time constraints. A robust tracking component of the controller for water level control is developed and its effectiveness on the parameter variations is demonstrated in this study. The results appear encouraging and they are only preliminary. Additional work is warranted to resolve other issues such as robust adaptive estimation.

  5. Simulation of a main steam line break with steam generator tube rupture using trace

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, S.; Querol, A.; Verdu, G. [Departamento de Ingenieria Quimica Y Nuclear, Universitat Politecnica de Valencia, Camino de Vera s/n, 46022, Valencia (Spain)

    2012-07-01

    A simulation of the OECD/NEA ROSA-2 Project Test 5 was made with the thermal-hydraulic code TRACE5. Test 5 performed in the Large Scale Test Facility (LSTF) reproduced a Main Steam Line Break (MSLB) with a Steam Generator Tube Rupture (SGTR) in a Pressurized Water Reactor (PWR). The result of these simultaneous breaks is a depressurization in the secondary and primary system in loop B because both systems are connected through the SGTR. Good approximation was obtained between TRACE5 results and experimental data. TRACE5 reproduces qualitatively the phenomena that occur in this transient: primary pressure falls after the break, stagnation of the pressure after the opening of the relief valve of the intact steam generator, the pressure falls after the two openings of the PORV and the recovery of the liquid level in the pressurizer after each closure of the PORV. Furthermore, a sensitivity analysis has been performed to know the effect of varying the High Pressure Injection (HPI) flow rate in both loops on the system pressures evolution. (authors)

  6. Matching the laser generated p bunch into a crossbar-H drift tube linac

    Science.gov (United States)

    Almomani, A.; Droba, M.; Ratzinger, U.; Hofmann, I.

    2012-05-01

    Proton bunches with energies up to 30 MeV have been measured at the PHELIX laser. Because of the laser-plasma interactions at a power density of about 4×1019W/cm2, a total yield of 1.5×1013protons was produced. For the reference energy of 10 MeV, the yield within ±0.5MeV was exceeding 1010protons. The important topic for a further acceleration of the laser generated bunch is the matching into the acceptance of an rf accelerator stage. With respect to the high space charge forces and the transit energy range, only drift tube linacs seem adequate for this purpose. A crossbar H-type (CH) cavity was chosen as the linac structure. Optimum emittance values for the linac injection are compared with the available laser generated beam parameters. Options for beam matching into a CH structure by a pulsed magnetic solenoid and by using the simulation codes LASIN and LORASR are presented.

  7. Evaluation of the acoustic and non-acoustic properties of sound absorbing materials using a three-microphone impedance tube

    CERN Document Server

    Doutres, Olivier; Atalla, Noureddine; Panneton, Raymond; 10.1016/j.apacoust.2010.01.007

    2010-01-01

    This paper presents a straightforward application of an indirect method based on a three-microphone impedance tube setup to determine the non-acoustic properties of a sound absorbing porous material. First, a three-microphone impedance tube technique is used to measure some acoustic properties of the material (i.e., sound absorption coefficient, sound transmission loss, effective density and effective bulk modulus) regarded here as an equivalent fluid. Second, an indirect characterization allows one to extract its non-acoustic properties (i.e., static airflow resistivity, tortuosity, viscous and thermal characteristic lengths) from the measured effective properties and the material open porosity. The procedure is applied to four different sound absorbing materials and results of the characterization are compared with existing direct and inverse methods. Predictions of the acoustic behavior using an equivalent fluid model and the found non-acoustic properties are in good agreement with impedance tube measureme...

  8. Video Captions for Online Courses: Do YouTube's Auto-Generated Captions Meet Deaf Students' Needs?

    Science.gov (United States)

    Parton, Becky Sue

    2016-01-01

    Providing captions for videos used in online courses is an area of interest for institutions of higher education. There are legal and ethical ramifications as well as time constraints to consider. Captioning tools are available, but some universities rely on the auto-generated YouTube captions. This study looked at a particular type of video--the…

  9. Creating a YouTube-Like Collaborative Environment in Mathematics: Integrating Animated Geogebra Constructions and Student-Generated Screencast Videos

    Science.gov (United States)

    Lazarus, Jill; Roulet, Geoffrey

    2013-01-01

    This article discusses the integration of student-generated GeoGebra applets and Jing screencast videos to create a YouTube-like medium for sharing in mathematics. The value of combining dynamic mathematics software and screencast videos for facilitating communication and representations in a digital era is demonstrated herein. We share our…

  10. A comprehensive flow-induced vibration model to predict crack growth and leakage potential in steam generator tubes

    Energy Technology Data Exchange (ETDEWEB)

    El Bouzidi, Salim [School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Hassan, Marwan, E-mail: mahassan@uoguelph.ca [School of Engineering, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Riznic, Jovica [Operational Engineering Assessment Division, Canadian Nuclear Safety Commission, Ottawa, Ontario K1P 5S9 (Canada)

    2015-10-15

    Highlights: • Comprehensive flow induced vibrations time domain model was developed. • Simulations of fluidelastic instability and turbulence were conducted. • Nonlinear effect due to the clearances at the supports was studied. • Prediction of stresses due to fluid excitation was obtained. • Deterministic and stochastic analyses for crack and leakage rate were conducted. - Abstract: Flow-induced vibrations (FIVs) are a major threat to the operation of nuclear steam generators. Turbulence and fluidelastic instability are the two main excitation mechanisms leading to tube vibrations. The consequences to the operation of steam generators are premature wear of the tubes, as well as development of cracks that may leak hazardous fluids. This paper investigates the effect of tube support clearance on the integrity of tube bundles within steam generators. Special emphasis will be placed on crack propagation and leakage rates. A crack growth model is used to simulate the growth of surface flaws and through-wall cracks of various initial sizes due to a wide range of support clearances. Leakage rates are predicted using a two-phase flow leakage model. Nonlinear finite element analysis is used to simulate a full U-bend subjected to fluidelastic and turbulence forces. Monte Carlo simulations are then used to conduct a probabilistic assessment of steam generator life due to crack development.

  11. One-Tube-Only Standardized Site-Directed Mutagenesis: An Alternative Approach to Generate Amino Acid Substitution Collections

    NARCIS (Netherlands)

    Mingo, J.; Erramuzpe, A.; Luna, S.; Aurtenetxe, O.; Amo, L.; Diez, I.; Schepens, J.T.G.; Hendriks, W.J.A.J.; Cortes, J.M.; Pulido, R.

    2016-01-01

    Site-directed mutagenesis (SDM) is a powerful tool to create defined collections of protein variants for experimental and clinical purposes, but effectiveness is compromised when a large number of mutations is required. We present here a one-tube-only standardized SDM approach that generates compreh

  12. Assessment of the leak tightness integrity of the steam generator tubes affected by ODSCC at the tube support plates

    Energy Technology Data Exchange (ETDEWEB)

    Cuvelliez, Ch.; Roussel, G. [AIB-Vincotte Nuclear, Brussels (Belgium)

    1997-02-01

    An EPRI report gives a method for predicting a conservative value of the total primary-to-secondary leak rate which may occur during, a postulated steam generator depressurization accident such as a Main Steam Line Break (MSLB) in a steam generator with axial through-wall ODSCC at the TSP intersections. The Belgian utility defined an alternative method deviating somewhat from the EPRI method. When reviewing this proposed method, the Belgian safety authorities performed some calculations to investigate its conservatism. This led them to recommend some modifications to the EPRI method which should reduce its undue conservatism while maintaining the objective of conservatism in the offsite dose calculations.

  13. Materials Development for Next Generation Optical Fiber

    Science.gov (United States)

    Ballato, John; Dragic, Peter

    2014-01-01

    Optical fibers, the enablers of the Internet, are being used in an ever more diverse array of applications. Many of the rapidly growing deployments of fibers are in high-power and, particularly, high power-per-unit-bandwidth systems where well-known optical nonlinearities have historically not been especially consequential in limiting overall performance. Today, however, nominally weak effects, most notably stimulated Brillouin scattering (SBS) and stimulated Raman scattering (SRS) are among the principal phenomena restricting continued scaling to higher optical power levels. In order to address these limitations, the optical fiber community has focused dominantly on geometry-related solutions such as large mode area (LMA) designs. Since such scattering, and all other linear and nonlinear optical phenomena including higher order mode instability (HOMI), are fundamentally materials-based in origin, this paper unapologetically advocates material solutions to present and future performance limitations. As such, this paper represents a ‘call to arms’ for material scientists and engineers to engage in this opportunity to drive the future development of optical fibers that address many of the grand engineering challenges of our day. PMID:28788683

  14. Entropy generation in tube and fin radiating systems; Geracao de entropia em sistemas radiantes de tubos aletados

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcio Bueno dos; Saboya, Sergio Mourao [Instituto Nacional de Pesquisas Espaciais (INPE), S Jose dos Campos, SP (Brazil). Lab. de Integracao e Testes]. E-mail: bueno@lit.inpe.br; saboya@mec.ita.cta.br

    1997-07-01

    The entropy generation minimization method is applied to tube and fin radiative systems. The mathematical modeling of the systems lead to a non-linear integro-differential systems of equations, which is solved numerically. The entropy generation in the fin is computed. This is obtained as result of the thermal analysis of the system which gives the fin temperature distributions and the radiative heat transfer rates. Examples of optimized design are considered and discussed. (author)

  15. Impulsively generated sausage waves in coronal tubes with transversally continuous structuring

    CERN Document Server

    Yu, Hui; Chen, Shao-Xia; Xiong, Ming; Guo, Ming-Zhe

    2016-01-01

    The frequency dependence of the longitudinal group speeds of trapped sausage waves plays an important role in determining impulsively generated wave trains, which have often been invoked to account for quasi-periodic signals in coronal loops. We examine how the group speeds ($v_{\\rm gr}$) depend on angular frequency ($\\omega$) for sausage modes in pressureless coronal tubes with continuous transverse density distributions by solving the dispersion relation pertinent to the case where the density inhomogeneity of arbitrary form takes place in a transition layer of arbitrary thickness. We find that in addition to the transverse lengthscale $l$ and density contrast $\\rho_{\\rm i}/\\rho_{\\rm e}$, the group speed behavior depends also on the detailed form of the density inhomogeneity. For parabolic profiles, $v_{\\rm gr}$ always decreases with $\\omega$ first before increasing again, as happens for the much studied top-hat profiles. For linear profiles, however, the behavior of the $\\omega-v_{\\rm gr}$ curves is more c...

  16. ANALISIS KEJADIAN STEAM GENERATOR TUBE RUPTURE (SGTR BERDASARKAN SKENARIO MIHAMA UNIT 2

    Directory of Open Access Journals (Sweden)

    Andi Sofrany Ekariansyah

    2015-03-01

    Full Text Available Pada tanggal 9 Februari 1991, terjadi kecelakaan putusnya pipa pemanas pembangkit uap (Steam Generator Tube Rupture/SGTR pada PLTN Mihama Unit 2. Dari kejadian tersebut, diperoleh catatan sekuensi kecelakaan berupa aktuasi sistem proteksi dan fitur keselamatan terekayasa dalam memitigasi kebocoran dari sistem primer ke sistem sekunder. Urutan sekuensi tersebut kemudian diterapkan pada PWR standar Jepang untuk disimulasikan menggunakan program perhitungan RELAP5/SCDAP/Mod3.2. Tujuannya untuk mengevaluasi konsekuensi yang terjadi bila kecelakaan tersebut terjadi pada PWR standar Jepang. Parameter yang dibandingkan adalah laju alir kebocoran, perubahan tekanan primer dan sekunder dan perubahan level di dalam pressurizer. Hasil simulasi menunjukkan perbedaan lama waktu kejadian SGTR hingga berhentinya kebocoran yang berlangsung lebih pendek pada PWR standar Jepang. Selain itu jumlah pendingin primer yang bocor dan jumlah uap yang terlepas dari MSRV tercatat lebih besar daripada PWR Mihama unit 2. Karakter aliran kebocoran, fluktuasi tekanan primer, dan level pressurizer sedikit berbeda pada tahap-tahap awal kejadian, namun relatif sama pada tahap akhir ketika aliran kebocoran dapat dihentikan. Hasil simulasi juga menunjukkan perlunya tindakan operator secara manual yang ditunjukkan dari isolasi sistem air umpan bantu (AFW pada pembangkit uap yang bocor, aktuasi katup pelepas uap (MSRV pada pembangkit uap yang utuh dan aktuasi auxiliary spray dan power operated relief valve (PORV pada pressurizer untuk mengantisipasi kejadian sebagai bagian dari prosedur operasi darurat. Kata kunci: SGTR, PWR Mihama Unit 2, PWR standar Jepang   On February 9,1991, a Steam Generator Tube Rupture (SGTR took place at the Mihama Unit No. 2. From that event, the accident sequence representing the actuation of protection system and engineered safety feature to mitigate the leak from primary system to secondary system is recorded. That sequence is then applied on the

  17. Development of a TenTorTube for blade tip mechanisms. Pt. 1: feasibility and material tests

    Energy Technology Data Exchange (ETDEWEB)

    Joosse, P.A. [Stork Product Engineering, Amsterdam (Netherlands); Berg, R.M. van der [Rotorline Blade Company, Heerhugowaard (Netherlands)

    1996-12-31

    For variable speed wind turbines it is possible to perform both a power control and a safety function using passive tips. A conventional tip mechanism, consisting of a metal screw cylinder and spring is heavy, expensive and maintenance critical. These problems can be solved with a TenTorTube: a long, slender tube made of composite material in which the anistropic behaviour of fibre reinforced material is used. The feasibility of such a tube made out of fibre reinforced plastic has been shown. To verify the assumptions and obtain reliable material design data static material properties have been measured of epoxy tubes, with different fibre reinforcements. Based on static test values an aramid-epoxy tube showed the highest potential. Following the static tests a torsion creep tests and fatigue tests are carried out with the aim of investigating how this behaviour would influence the feasibility. Present results indicate that an improvement of reliability and reduction of mass and costs of the mechanism is to be expected. (author)

  18. New generation perovskite thermal barrier coating materials

    Energy Technology Data Exchange (ETDEWEB)

    Ma, W.; Jarligo, M.O.; Mack, D.E.; Pitzer, D.; Malzbender, J.; Vassen, R.; Stoever, D. [Forschungszentrum Juelich GmbH, Juelich (Germany)

    2008-07-01

    Advanced ceramic materials of perovskite structure have been developed for potential application in thermal barrier coating systems, in an effort to improve the properties of the pre-existing ones like yttria stabilized zirconia. Yb{sub 2}O{sub 3} and Gd{sub 2}O{sub 3} doped strontium zirconate (SrZrO{sub 3}) and barium magnesium tantalate (Ba(Mg{sub 1/3}Ta{sub 2/3})O{sub 3}) of the ABO{sub 3} and complex A(B'{sub 1/3}B''{sub 2/3})O{sub 3} systems respectively, have been synthesized using ball milling prior to solid state sintering. Thermal and mechanical investigations show desirable properties for high temperature coating applications. On atmospheric plasma spraying, the newly developed TBCs reveal promising thermal cycle lifetime above 1300 C. (orig.)

  19. New Generation Perovskite Thermal Barrier Coating Materials

    Science.gov (United States)

    Ma, W.; Jarligo, M. O.; Mack, D. E.; Pitzer, D.; Malzbender, J.; Vaßen, R.; Stöver, D.

    2008-12-01

    Advanced ceramic materials of perovskite structure have been developed for potential application in thermal barrier coating systems, in an effort to improve the properties of the pre-existing ones like yttria-stabilized zirconia. Yb2O3 and Gd2O3 doped strontium zirconate (SrZrO3) and barium magnesium tantalate (Ba(Mg1/3Ta2/3)O3) of the ABO3 and complex A(B'1/3B''2/3)O3 systems, respectively, have been synthesized using ball milling prior to solid state sintering. Thermal and mechanical investigations show desirable properties for high-temperature coating applications. On atmospheric plasma spraying, the newly developed thermal barrier coatings reveal promising thermal cycle lifetime up to 1350 °C.

  20. A study on integrity of LMFBR secondary cooling system to hypothetical tube failure propagation in the steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihisa Shindo; Kazuo Haga [Japan Nuclear Energy Safety Organization (JNES) Kamiya-cho MT Bldg., 4-3-20 Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2005-07-01

    Full text of publication follows: A fundamental safety issue of liquid-metal-cooled fast breeder reactor (LMFBR) is to maintain the integrity of the secondary cooling system components against violent chemical sodium-water reaction caused by the water leak from the heat transfer tube of steam generators (SG). The produced sodium-water reaction jet would attack more severely surrounding tubes and would cause other tube failures (tube failure propagation), if it was assumed that the water leak was not detected by function-less detectors and proper operating actions to mitigate the tube failure propagation, such as isolations of the SG from the secondary cooling system and turbine water/steam system, and blowing water and steam inside tubes in the SG, were not taken. This study has been made focusing on the affection of large-scale water leak enlarged due to SG tube failure propagation to the structural integrity of the secondary cooling system because the generated pressure pulse caused by a large-scale sodium-water reaction might break heat transfer tubes of the intermediate heat exchanger (IHX). The present work has been made as one part of the study of probabilistic safety assessment (PSA) of LMFBR, because if the heat-transfer tubes of IHX were failed, the reactor core may be affected by the pressure pulse and/or by the sodium-water reaction products transported through the primary cooling system. As tools for PSA of the water leak incident of SG, we have developed QUARK-LP Version 4 code that mainly analyzes the high temperature rupture phenomena and estimates the number of failed tubes during the middle-scale water leak. The pressure pulse behavior generated by sodium-water reaction in the failure SG and the pressure propagation in the secondary cooling system are calculated by using the SWAAM-2 code developed by ANL. Furthermore, the quasi-steady state high pressure and temperature of the secondary cooling system in a long term is estimated by using the SWAAM

  1. Localization of defects in steam generator tubes using a multi-coil eddy current probe dedicated to high speed inspection

    Energy Technology Data Exchange (ETDEWEB)

    Joubert, P.-Y.; Le Bihan, Y.; Placko, D. [Ecole Normale Superieure de Cachan (France). Laboratoire d' Electricite Signaux et Robotique

    2002-07-01

    Steam generator (SG) tubing of pressurized water reactor in nuclear plants must be rapidly and accurately checked in order to detect defects in their early stages. In this paper, the authors present a multi-coil eddy current (EC) probe allowing both high speed inspection and circumferential localization of defects in the tube wall. A method of multi-coil EC signal processing, based on a continuous wavelet transform combined with a maximum likelihood diagnosis, is elaborated in order to enhance the detection performances and to provide automatic localization of defects. The inspection of SG tube samples shows good localization performances for defects as small as 10% deep, 15 mm long and 100 {mu}m wide outer diameter notches, of both circumferential and axial orientations. (author)

  2. Heat transfer enhancement accompanying pressure-loss reduction with winglet-type vortex generators for fin-tube heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Torii, K.; Kwak, K.M.; Nishino, K. [Yokohama National Univ. (Japan). Dept. of Mechanical Engineering

    2002-08-01

    This paper proposes a novel technique that can augment heat transfer but nevertheless can reduce pressure-loss in a fin-tube heat exchanger with circular tubes in a relatively low Reynolds number flow, by deploying delta winglet-type vortex generators. The winglets are placed with a heretofore-unused orientation for the purpose of augmentation of heat transfer. This orientation is known as ''common flow up'' configuration. The proposed configuration causes significant separation delay, reduces form drag, and removes the zone of poor heat transfer from the near-wake of the tubes. This enhancement strategy has been successfully verified by experiments in the proposed configuration. In case of staggered tube banks, the heat transfer was augmented by 30% to 10%, and yet the pressure loss was reduced by 55% to 34% for the Reynolds number (based on two times channel height) ranging from 350 to 2100, when the present winglets were added. In case of in-line tube banks, these were found to be 20% to 10% augmentation, and 15% to 8% reduction, respectively. (author)

  3. Structural materials for the next generation of technologies

    CERN Document Server

    Van de Voorde, Marcel Hubert

    1996-01-01

    1. Overview of advanced technologies; i.e. aerospace-aeronautics; automobile; energy technology; accelerator engineering etc. and the need for new structural materials. 2. Familiarisation with polymers, metals and alloys, structural ceramics, composites and surface engineering. The study of modern materials processing, generation of a materials data base, engineering properties includind NDE, radiation damage etc. 3. Development of new materials for the next generation of technologies; including the spin-off of materials developed for space and military purposes to industrial applications. 4. Materials selection for modern accelerator engineering. 5. Materials research in Europe, USA and Japan. Material R & D programmes sponsored by the European Union and the collaboration of CERN in EU sponsored programmes.

  4. Effect of bending on useful properties of heat exchange tubes of steam generators for WWER type power plants

    Energy Technology Data Exchange (ETDEWEB)

    Jelen, L. (Vitkovicke Zelezarny Klementa Gottwalda, Ostrava (Czechoslovakia). Vyzkumny Ustav Materialu)

    1984-05-01

    For austenitic stainless steel 08Ch18N10T determinations were made of two material constants, the coefficients of strength and of deformation hardening, and of hardening curves which represent the dependence of the natural deformation resistance on the size of deformation. Tests of tube bending by overpressure showed that the weakening of the outer wall caused by bending is sufficiently offset by material hardening. The effect of cold deformation on material resistance to intergranular corrosion was studied. The effect of small deformations (3 to 10%) was not proved. Intergranular corrosion is limited by the quality of the surface of heat exchange tubes. The level was assessed of internal stress near bends with the following parameters: R=65 mm, ..cap alpha..=180deg. The presence of residual stress which would have unfavourable effect on the state of bending stress under operating load, was not observed.

  5. Integrity evaluation for steam generator tube of system integrated modular advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J. S.; Jin, T. E. [KOPEC, Taejon (Korea, Republic of); Jeong, M. J.; Choi, Y. H.; Jeo, J. C. [KINS, Taejon (Korea, Republic of)

    2003-10-01

    In this study, the structural integrity for SG tube of system integrated modular advanced reactor, which is subjected to dominant external pressure as well as helical type, is evaluated using the commercial finite element package ABAQUS and the American petrochemical industry code API 579 Appendix B. First of all, the crack behavior under the assumption of local heating is assessed using ABAQUS. And, the buckling behavior of tube with 40% wall thinning is assessed using API 579 Appendix B. As a result, it is found that the crack closure phenomenon occurs under external pressure and the buckling doesn't occur even if 40% wall thinning exists in tube.

  6. Radiation fields from neutron generators shielded with different materials

    Science.gov (United States)

    Chichester, D. L.; Blackburn, B. W.

    2007-08-01

    As a general guide for assessing radiological conditions around a DT neutron generator numerical modeling has been performed to assess neutron and photon dose profiles for a variety of shield materials ranging from 1 to 100 cm thick. In agreement with accepted radiation safety practices high-Z materials such as bismuth and lead have been found to be ineffective biological shield materials, owing in part to the existence of (n,2n) reaction channels available with 14.1 MeV DT neutrons, while low-Z materials serve as effective shields for these sources. Composite materials such as a mixture of polyethylene and bismuth, or regular concrete, are ideal shield materials for neutron generator radiation because of their ability to attenuate internally generated photon radiation resulting from neutron scattering and capture within the shields themselves.

  7. Materials for next-generation molecularly selective synthetic membranes

    Science.gov (United States)

    Koros, William J.; Zhang, Chen

    2017-01-01

    Materials research is key to enable synthetic membranes for large-scale, energy-efficient molecular separations. Materials with rigid, engineered pore structures add an additional degree of freedom to create advanced membranes by providing entropically moderated selectivities. Scalability -- the capability to efficiently and economically pack membranes into practical modules -- is a critical yet often neglected factor to take into account for membrane materials screening. In this Progress Article, we highlight continuing developments and identify future opportunities in scalable membrane materials based on these rigid features, for both gas and liquid phase applications. These advanced materials open the door to a new generation of membrane processes beyond existing materials and approaches.

  8. Integration of an advanced sealed-tube neutron generator into a mobile neutron radiology system and resulting performance

    Science.gov (United States)

    Dance, William E.; Cluzeau, Serge; Mast, Hans-Ulrich

    1991-05-01

    The first DIANE ∗ neutron radiology system is being prepared for operation in the IABG laboratories in Ottobrunn (Germany). It utilizes a new D-T generator, designated GENIE 46, developed by SODERN (France) for this application. The generator is being integrated into an upgraded LTV-produced mobile neutron radiology system suitable for practical nonreactor inspection of components and structures. The maximum output of the present version of the GENIE 46 is 5 × 10 11 n s -1 (14 MeV) with less than 10 mA ion beam current at 225 kV. Tube lifetime at maximum output is approximately 500 h, while at 10 11 n s -1 the tube is designed for a lifetime of 1500 h. The geometry of the neutron tube, VHV connectors, ion source power supply, and cooling tubes comprises a cannister designed to be compatible with the 10-in. diameter opening in the LTV moderator/collimator assembly. 3-D Monte Carlo neutron/photon transport simulations of the new integrated radiology system operation have been performed by IABG. The calculations predict a thermal neutron flux at the collimator exit ( {L}/{D} = 13) of φth(0 ≤ En ≤ 0.3 eV) = 1.2 × 10 5 n cm -2 s -1. Comparisons of this value and other Monte Carlo results with actual performance will be made in the near future with the accrual of operational data.

  9. An alpha particle detector for a portable neutron generator for the Nuclear Materials Identification System (NMIS)

    Science.gov (United States)

    Hausladen, P. A.; Neal, J. S.; Mihalczo, J. T.

    2005-12-01

    A recoil alpha particle detector has been developed for use in a portable neutron generator. The associated particle sealed tube neutron generator (APSTNG) will be used as an interrogation source for the Nuclear Materials Identification System (NMIS). With the coincident emission of 14.1 MeV neutrons and 3.5 MeV alpha particles produced by the D-T reaction, alpha detection determines the time and direction of the neutrons of interest for subsequent use as an active nuclear materials interrogation source. The alpha particle detector uses a ZnO(Ga) scintillator coating applied to a fiber optic face plate. Gallium-doped zinc oxide is a fast (inorganic scintillator with a high melting point (1975 °C). One detector has been installed in an APSTNG and is currently being tested. Initial results include a measured efficiency for 3.5 MeV alphas of 90%.

  10. A REVIEW ON THE ODSCC OF STEAM GENERATOR TUBES IN KOREAN NPPS

    Directory of Open Access Journals (Sweden)

    HANSUB CHUNG

    2013-08-01

    Full Text Available The ODSCC detected in the TSP position of Ulchin 3&4 SGs are typical ODSCC of Alloy 600MA tubes. The causative chemical environment is formed by concentration of impurities inside the occluded region formed by the tube surface, egg crate strips, and sludge deposit there. Most cracks are detected at or near the line contacts between the tube surface and the egg crate strips. The region of dense crack population, as defined as between 4th and 9th TSPs, and near the center of hot leg hemisphere plane, coincided well with the region of preferential sludge deposition as defined by thermal hydraulics calculation using SGAP computer code. The cracks developed homogeneously in a wide range of SGs, so that the number of cracks detected each outage increased very rapidly since the first detection in the 8th refueling outage. The root cause assessment focused on investigation of the difference in microstructure and manufacturing residual stress in order to reveal the cause of different susceptibilities to ODSCC among identical six units. The manufacturing residual stress as measured by XRD on OD surface and by split tube method indicated that the high residual stress of Alloy 600MA tube played a critical role in developing ODSCC. The level of residual stress showed substantial variations among the six units depending on details of straightening and OD grinding processes. Youngwang 3&4 tubes are less susceptible to ODSCC than U3 and U4 tubes because semi-continuous coarse chromium carbides are formed along the grain boundary of Y3&4 tubes, while there are finer less continuous chromium carbides in U3 and U4. The different carbide morphology is caused by the difference in cooling rate after mill anneal. There is a possibility that high chromium content in the Y3&4 tubes, still within the allowable range of Alloy 600, has made some contribution to the improved resistance to ODSCC. It is anticipated that ODSCC in Y5&6 SGs will be retarded more considerably

  11. Removal of lead from cathode ray tube funnel glass by generating the sodium silicate.

    Science.gov (United States)

    Hu, Biao; Zhao, Shuangshuang; Zhang, Shuhao

    2015-01-01

    In the disposal of electronic waste, cathode ray tube (CRT) funnel glass is an environmental problem of old television sets. Removal of the lead from CRT funnel glass can prevent its release into the environment and allow its reuse. In this research, we reference the dry progress productive technology of sodium silicate, the waste CRT glass was dealt with sodium silicate frit melted and sodium silicate frit dissolved. Adding a certain amount of Na ₂CO₃to the waste CRT glass bases on the material composition and content of it, then the specific modulus of sodium silicate frit is obtained by melting progress. The silicon, potassium and sodium compounds of the sodium silicate frit are dissolved under the conditions of high temperature and pressure by using water as solvent, which shows the tendency that different temperature, pressure, liquid-solid ratio and dissolving time have effect on the result of dissolving. At 175°C(0.75MPa), liquid-solid ratio is 1.5:1, the dissolving time is 1h, the dissolution rate of sodium silicate frit is 44.725%. By using sodium sulfide to separate hydrolysis solution and to collect lead compounds in the solution, the recovery rate of lead in dissolving reached 100% and we can get clean sodium silicate and high purity of lead compounds. The method presented in this research can recycle not only the lead but also the sodium, potassium and other inorganic minerals in CRT glass and can obtain the comprehensive utilization of leaded glass.

  12. Exergy destruction analysis of a vortices generator in a gas liquid finned tube heat exchanger: an experimental study

    Science.gov (United States)

    Ghazikhani, M.; Khazaee, I.; Monazzam, S. M. S.; Takdehghan, H.

    2016-11-01

    In the present work, the effect of using different shapes of vortices generator (VG) on a gas liquid finned heat exchanger is investigated experimentally with irreversibility analysis. In this project the ambient air with mass flow rates of 0.047-0.072 kg/s is forced across the finned tube heat exchanger. Hot water with constant flow rate of 240 L/h is circulated inside heat exchanger tubes with inlet temperature range of 45-73 °C. The tests are carried out on the flat finned heat exchanger and then repeated on the VG finned heat exchanger. The results show that using the vortex generator can decrease the ratio of air side irreversibility to heat transfer (ASIHR) of the heat exchanger. Also the results show that the IASIHR is >1.05 for all air mass flow rates, which means that ASIHR for the initial heat exchanger is higher than 5 % greater than that of improved heat exchanger.

  13. Material challenges for the next generation of fission reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Buckthorpe, Derek [AMEC, Knutsford, Cheshire (United Kingdom)

    2010-07-01

    The new generation of fission reactor systems wil require the deployment and construction of a series of advanced water cooled reactors as part of a package of measures to meet UK and European energy needs and to provide a near term non-fossil fuel power solution that addresses CO{sub 2} emission limits. In addition new longer term Generation IV reactor tye systems are being developed and evaluated to enhance safety, reliability, sustainability economics and proliferation resistance requirements and to meet alternative energy applications (outside of electricity generation) such as process heat and large scale hydrogen generation. New fission systems will impose significant challenges on materials supply and development. In the near term, because of the need to 'gear up' to large scale construction after decades of industrial hibernation/contraction and, in the longer term, because of the need for materials to operate under more challenging environments requiring the deployment and development of new alternative materials not yet established to an industrial stage. This paper investigates the materials challenges imposed by the new Generation III+ and Generation IV systems. These include supply and fabrication issues, development of new high temperature alloys and non-metallic materials, the use of new methods of manufacture and the best use of currently available resources and minerals. Recommendations are made as to how these materials challenges might be met and how governments, industry, manufacturers and researchers can all play their part. (orig.)

  14. Thermographic Imaging of Material Loss in Boiler Water-Wall Tubing by Application of Scanning Line Source

    Science.gov (United States)

    Cramer, K. Elliott; Winfree, William P.

    2000-01-01

    Localized wall thinning due to corrosion in utility boiler water-wall tubing is a significant inspection concern for boiler operators. Historically, conventional ultrasonics has been used for inspection of these tubes. This technique has proven to be very manpower and time intensive. This has resulted in a spot check approach to inspections, documenting thickness measurements over a relatively small percentage of the total boiler wall area. NASA Langley Research Center has developed a thermal NDE technique designed to image and quantitatively characterize the amount of material thinning present in steel tubing. The technique involves the movement of a thermal line source across the outer surface of the tubing followed by an infrared imager at a fixed distance behind the line source. Quantitative images of the material loss due to corrosion are reconstructed from measurements of the induced surface temperature variations. This paper will present a discussion of the development of the thermal imaging system as well as the techniques used to reconstruct images of flaws. The application of the thermal line source coupled with the analysis technique represents a significant improvement in the inspection speed for large structures such as boiler water-walls. A theoretical basis for the technique will be presented which explains the quantitative nature of the technique. Further, a dynamic calibration system will be presented for the technique that allows the extraction of thickness information from the temperature data. Additionally, the results of applying this technology to actual water-wall tubing samples and in situ inspections will be presented.

  15. NEW APPROACH TO ADDRESSING GAS GENERATION IN RADIOACTIVE MATERIAL PACKAGING

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, R; Leduc, D; Askew, N

    2009-06-25

    Safety Analysis Reports for Packaging (SARP) document why the transportation of radioactive material is safe in Type A(F) and Type B shipping containers. The content evaluation of certain actinide materials require that the gas generation characteristics be addressed. Most packages used to transport actinides impose extremely restrictive limits on moisture content and oxide stabilization to control or prevent flammable gas generation. These requirements prevent some users from using a shipping container even though the material to be shipped is fully compliant with the remaining content envelope including isotopic distribution. To avoid these restrictions, gas generation issues have to be addressed on a case by case basis rather than a one size fits all approach. In addition, SARP applicants and review groups may not have the knowledge and experience with actinide chemistry and other factors affecting gas generation, which facility experts in actinide material processing have obtained in the last sixty years. This paper will address a proposal to create a Gas Generation Evaluation Committee to evaluate gas generation issues associated with Safety Analysis Reports for Packaging material contents. The committee charter could include reviews of both SARP approved contents and new contents not previously evaluated in a SARP.

  16. Thermomechanical Model and Bursting Tests to Evaluate the Risk of Swelling and Bursting of Modified 9Cr-1Mo Steel Steam Generator Tubes during a Sodium-Water Reaction Accident

    Directory of Open Access Journals (Sweden)

    C. Bertrand

    2014-01-01

    Full Text Available The MECTUB code was developed to evaluate the risk of swelling and bursting of Steam Generator (SG tubes. This code deals with the physic of intermediate steam-water leaks into sodium which induce a Sodium-Water Reaction (SWR. It is based on a one-dimensional calculation to describe the thermomechanical behavior of tubes under a high internal pressure and a fast external overheating. The mechanical model of MECTUB is strongly correlated with the kind of the material of the SG tubes. It has been developed and validated by using experiments performed on the alloy 800. A change to tubes made of Modified 9Cr-1Mo steel requires more knowledge of Modified 9Cr-1Mo steel behavior which influences the bursting time at high temperatures (up to 1200°C. Studies have been initiated to adapt the mechanical model and to qualify it for this material. The first part of this paper focuses on the mechanical law modelling (elasticity, plasticity, and creep for Modified 9Cr-1Mo steel and on overheating thermal data. In a second part, the results of bursting tests performed on Modified 9Cr-1Mo tubes in the SQUAT facility of CEA are used to validate the mechanical model of MECTUB for the Modified 9Cr-1Mo material.

  17. Experimental Investigation on Regenerator Materials of Stirling-type Pulse-tube Refrigerator Working at 20 K

    Science.gov (United States)

    Zhou, Qiang; Chen, Liubiao; Pan, Changzhao; Zhou, Yuan; Wang, Junjie

    This paper will introduce our recent experimental results of cryogenic regenerator materials employed in Stirling-type one-stage pulse-tube refrigerator for the use at liquid hydrogen temperature. Thermal diffusion coefficient, according to which we choose the suitable regenerator materials, will prove to be a useful reference. We will also discuss the impact of resistance of sphere regenerator materials on the performance of the refrigerator and the method to improve it. Take an overall consideration, suitable-size Er3Ni will be applied as the regenerator materials at the cold head and we achieve a remarkable 14.7 K no-load temperature.

  18. Design study of compact Laser-Electron X-ray Generator for material and life science applications

    CERN Document Server

    Bessonov, E G; Kostrukov, P V; Maslova, Yu Ya; Tunkin, V G; Postnov, A A; Mikhailichenko, A A; Shvedunov, V I; Ishkhanov, B S; Vinogradov, A V

    2016-01-01

    X-Ray generations utilizing Thomson scattering fill in the gap that exists between conventional and synchrotron-based X-ray sources. They are expected to be more intense than X-ray tubes and more compact, accessible and less expensive than synchrotron. In this work, two operation modes of Thomson X-ray source are documented: quasi CW(QCW) and a pulsed one are considered for material sciences and medical applications being implemented currently at Synchrotron Radiation (SR) facilities.

  19. Viability of use of PVC tubes in solar collectors: an analysis of materials

    Directory of Open Access Journals (Sweden)

    Luiz Guillherme Meira de Souza

    2003-06-01

    Full Text Available This paper presents a study of the inherent degradations of PVC tubes due to the thermal effect and ultraviolet solar radiation. The approach relates its causes and its effect of use of the PVC tubes as elements to absorption, forming a coil, in solar collectors for water heating. It is demonstrated that such degradations can be burst through the use of an outflow and an appropriate regimen of work, as well as of a protective layer for the tubes, in this case black ink used to magnify its absorption. The results of the properties of tubes that had been exposed to the degradation effect for up to five years are presented. The viability of use of this type of collector is demonstrated through comparative analysis of tubes exposed and not exposed to the sun, concluding for the low cost, easy assembly and maintenance of the system.

  20. YouTube as a Qualitative Research Asset: Reviewing User Generated Videos as Learning Resources

    Science.gov (United States)

    Chenail, Ronald J.

    2011-01-01

    YouTube, the video hosting service, offers students, teachers, and practitioners of qualitative researchers a unique reservoir of video clips introducing basic qualitative research concepts, sharing qualitative data from interviews and field observations, and presenting completed research studies. This web-based site also affords qualitative…

  1. On the entropy generation in the Ranque-Hilsch tube; Zur Entropieproduktion im Ranque-Hilsch-Rohr

    Energy Technology Data Exchange (ETDEWEB)

    Mischner, J. [Fachhochschule Erfurt (Germany). Fachbereich Versorgungstechnik, Lehrgebiet Gas - und Abgastechnik; Bespalov, V.I. [Staatliche Bauuniversitaet Rostow am Don (Russian Federation). Lehrstuhl fuer Umweltingenieurwesen

    2002-05-01

    Starting from the entropy generation in vortex tubes, this paper presents a new approach for simulating the Ranque-Hilsch effect. It can be stated that the systematic description of energy separation in the vortex tube (process simulation on the basis of the ''separation approach'') describes all essential phenomenological characteristics of the Ranque-Hilsch effect (typical temperature variation, dependencies of the separation effect on the input parameters and others) correctly with respect to quantity and quality. Moreover, the hydrodynamic process variables are related to the geometrical characteristics of the vortex tube via the ROSSBY number. In the authors opinion, this is the first proposal for calculating vortex tubes to represent the physical findings in a self-consistent way without elementary empirical assumptions, deriving the gas dynamic and thermodynamic process variables as well as basic geometrical parameters of the vortex tube apparatus one by one in their interrelationship. The ideal-gas model presented can be applied to real gases. (orig.) [German] Im vorliegenden Beitrag wird ausgehend von der Entropieproduktion in Wirbelrohren ein neuer Ansatz zur Modellierung des Ranque- Hilsch-Effektes vorgestellt. Die entwickelte Beschreibung des Separationseffektes im Wirbelrohr (Prozessmodell auf der Basis des ''Separationsansatzes'') beschreibt alle wesentlichen phaenomenologischen Merkmale des Ranque- Hilsch-Effektes (typische Temperaturverlaeufe, Abhaengigkeiten des Separationseffektes von den Eingangsparametern usw.) quantitativ und qualitativ korrekt. Die hydrodynamischen Prozessgroessen sind ueber die Rossby-Zahl mit den geometrischen Charakteristika des Wirbelrohres verknuepft. Nach Ansicht der Verfasser liegt hiermit der erste Vorschlag zur Berechnung von Wirbelrohren vor, der ohne fundamentale empirische Annahmen die physikalischen Befunde in sich konsistent abbildet, die gas- und thermodynamischen

  2. Materials research in support of nuclear power generation

    Energy Technology Data Exchange (ETDEWEB)

    Jackman, J. [Natural Resources Canada, Ottawa, Ontario (Canada)

    2011-07-01

    This presentation outlines the activities of CANMET-MTL in materials research in support of nuclear power generation. CANMET-MTL is a Government of Canada research laboratory specializing in materials (metals and metal-based materials). Its mandate is to improve the competitive, social and environmental performance of Canadian industries in the area of metals. These include the economic benefits from value-added processing and manufacturing, materials for clean energy production and improved energy efficiency in processing and product end-use.

  3. Fabrication of Advanced Thermoelectric Materials by Hierarchical Nanovoid Generation

    Science.gov (United States)

    Choi, Sang Hyouk (Inventor); Park, Yeonjoon (Inventor); Chu, Sang-Hyon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Kim, Jae-Woo (Inventor); Lillehei, Peter T. (Inventor); Stoakley, Diane M. (Inventor)

    2011-01-01

    A novel method to prepare an advanced thermoelectric material has hierarchical structures embedded with nanometer-sized voids which are key to enhancement of the thermoelectric performance. Solution-based thin film deposition technique enables preparation of stable film of thermoelectric material and void generator (voigen). A subsequent thermal process creates hierarchical nanovoid structure inside the thermoelectric material. Potential application areas of this advanced thermoelectric material with nanovoid structure are commercial applications (electronics cooling), medical and scientific applications (biological analysis device, medical imaging systems), telecommunications, and defense and military applications (night vision equipments).

  4. Materials-based process tolerances for neutron generator encapsulation.

    Energy Technology Data Exchange (ETDEWEB)

    Berry, Ryan S.; Adolf, Douglas Brian; Stavig, Mark Edwin

    2007-10-01

    Variations in the neutron generator encapsulation process can affect functionality. However, instead of following the historical path in which the effects of process variations are assessed directly through functional tests, this study examines how material properties key to generator functionality correlate with process variations. The results of this type of investigation will be applicable to all generators and can provide insight on the most profitable paths to process and material improvements. Surprisingly, the results at this point imply that the process is quite robust, and many of the current process tolerances are perhaps overly restrictive. The good news lies in the fact that our current process ensures reproducible material properties. The bad new lies in the fact that it would be difficult to solve functional problems by changes in the process.

  5. ''Risk safety of high frequency fatigue rupture for the vapor generators tubes''; ''Prevention du risque de rupture par fatigue vibratoire des tubes de generateurs de vapeur''

    Energy Technology Data Exchange (ETDEWEB)

    Solgadi, E.; Le Duff, J.A. [FRAMATOME, 92 - Paris-La-Defense (France); Bussy, B. [Electricite de France, 75 - Paris (France). Service Etudes et Projets Thermiques et Nucleaires

    2001-07-01

    Among the different rupture ways identified since 1975 for the steam generators tubes, the fatigue damage occurred on four cases. Two of them are analyzed in this paper: the NORTH ANNA 1 and the MIHAMA 2. From these analysis, it appears that the fatigue crack happens with aggravating factors as the tube embedding, the anti-vibration bars or fretting corrosion. As a preventive, the number of anti-vibration bars has been increase for the vapor generators 1300 and a new system of damper has been developed and implemented on the vapor generator 900. (A.L.B.)

  6. Tube failures due to cooling process problem and foreign materials in power plants

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, J. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200 (Malaysia); Purbolaksono, J., E-mail: judha@uniten.edu.m [Department of Mechanical Engineering, Universiti Tenaga Nasional, Km 7 Jalan Kajang-Puchong, Kajang 43009, Selangor (Malaysia); Beng, L.C. [Kapar Energy Ventures Sdn Bhd, Jalan Tok Muda, Kapar 42200 (Malaysia)

    2010-07-15

    Cooling process which uses water for heat transfer is an essential factor in coal-fired and nuclear plants. Loss of cooling upset can force the plants to shut down. In particular, this paper reports visual inspections and metallurgical examinations on the failed SA210-A1 right-hand side (RHS) water wall tube of a coal-fired plant. The water wall tube showed the abnormal outer surface colour and has failed with wide-open ductile rupture and thin edges indicating typical signs of short-term overheating. Metallurgical examinations confirmed the failed tube experiencing higher temperature operation. Water flow starvation due to restriction inside the upstream tube is identified as the main root cause of failure. The findings are important to take failure mitigation actions in the future operation. Discussion on the typical problems related to the cooling process in nuclear power plants is also presented.

  7. Improved Performance of an Indigenous Stirling Type Pulse Tube Cooler and Pressure Wave Generator

    Science.gov (United States)

    Kumar, J. Kranthi; Jacob, S.; Karunanithi, R.; Narasimham, G. S. V. L.; Damu, C.; Praveen, T.; Samir, M.

    Sustained efforts have been made in our laboratory to improve the performance of an indigenously developed pressure wave gen- erator by reducing the mechanical losses and the required input power. An acoustically matching pulse tube cooler, with a design target of 0.5 W at 80 K, was designed using Sage and experience gained from previous studies. The pulse tube cooler was fabri- cated and tested. The effect of regenerator stacking pattern on the cooler performance was studied by filling the regenerator with mesh of the same size #400 and with multi meshes #250, 325, 400. In present experiments, regenerator with #400 mesh at 30 bar filling pressure performed better with more energy efficiency. A no load temperature of 74 K was achieved with input power of 59 W corresponding to a cooling power of 0.22 W at 80 K. Parasitic heat load to the cooler was measured be 0.68 W. This heat load is primarily by heat conduction through the regenerator and pulse tube wall. By reducing the wall thickness from 0.30 mm to 0.15 mm, the parasitic loads can be reduced by 50%.

  8. Generation and Propagation of Finite-Amplitude Waves in Flexible Tubes (A)

    DEFF Research Database (Denmark)

    Jensen, Leif Bjørnø

    1972-01-01

    Highly reproducible finite-amplitude waves, generated by a modified electromagnetic plane-wave generator, characterized by a rise time......Highly reproducible finite-amplitude waves, generated by a modified electromagnetic plane-wave generator, characterized by a rise time...

  9. Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes

    Directory of Open Access Journals (Sweden)

    Bianco Vincenzo

    2011-01-01

    Full Text Available Abstract In this article, developing turbulent forced convection flow of a water-Al2O3 nanofluid in a square tube, subjected to constant and uniform wall heat flux, is numerically investigated. The mixture model is employed to simulate the nanofluid flow and the investigation is accomplished for particles size equal to 38 nm. An entropy generation analysis is also proposed in order to find the optimal working condition for the given geometry under given boundary conditions. A simple analytical procedure is proposed to evaluate the entropy generation and its results are compared with the numerical calculations, showing a very good agreement. A comparison of the resulting Nusselt numbers with experimental correlations available in literature is accomplished. To minimize entropy generation, the optimal Reynolds number is determined.

  10. Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes.

    Science.gov (United States)

    Bianco, Vincenzo; Nardini, Sergio; Manca, Oronzio

    2011-03-24

    In this article, developing turbulent forced convection flow of a water-Al2O3 nanofluid in a square tube, subjected to constant and uniform wall heat flux, is numerically investigated. The mixture model is employed to simulate the nanofluid flow and the investigation is accomplished for particles size equal to 38 nm.An entropy generation analysis is also proposed in order to find the optimal working condition for the given geometry under given boundary conditions. A simple analytical procedure is proposed to evaluate the entropy generation and its results are compared with the numerical calculations, showing a very good agreement.A comparison of the resulting Nusselt numbers with experimental correlations available in literature is accomplished. To minimize entropy generation, the optimal Reynolds number is determined.

  11. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    Science.gov (United States)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  12. Differential geometry based model for eddy current inspection of U-bend sections in steam generator tubes

    Science.gov (United States)

    Mukherjee, Saptarshi; Rosell, Anders; Udpa, Lalita; Udpa, Satish; Tamburrino, Antonello

    2017-02-01

    The modeling of U-Bend segment in steam generator tubes for predicting eddy current probe signals from cracks, wear and pitting in this region poses challenges and is non-trivial. Meshing the geometry in the cartesian coordinate system might require a large number of elements to model the U-bend region. Also, since the lift-off distance between the probe and tube wall is usually very small, a very fine mesh is required near the probe region to accurately describe the eddy current field. This paper presents a U-bend model using differential geometry principles that exploit the result that Maxwell's equations are covariant with respect to changes of coordinates and independent of metrics. The equations remain unaltered in their form, regardless of the choice of the coordinates system, provided the field quantities are represented in the proper covariant and contravariant form. The complex shapes are mapped into simple straight sections, while small lift-off is mapped to larger values, thus reducing the intrinsic dimension of the mesh and stiffness matrix. In this contribution, the numerical implementation of the above approach will be discussed with regard to field and current distributions within the U-bend tube wall. For the sake of simplicity, a two dimensional test case will be considered. The approach is evaluated in terms of efficiency and accuracy by comparing the results with that obtained using a conventional FE model in cartesian coordinates.

  13. Structural materials issues for the next generation fission reactors

    Science.gov (United States)

    Chant, I.; Murty, K. L.

    2010-09-01

    Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.

  14. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    Science.gov (United States)

    Konchada, Pavan Kumar; Pv, Vinay; Bhemuni, Varaprasad

    2016-06-01

    The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA) results show that the inlet temperature on shell side has more pronounced effect on entropy generation.

  15. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    Directory of Open Access Journals (Sweden)

    Konchada Pavan Kumar

    2016-06-01

    Full Text Available The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3 nanofluid is considered on shell side. The simulated nanofluid analysis has been carried out using single phase approach in CFD by updating the user-defined functions and expressions with thermophysical properties of the selected nanofluid. These results are thereafter compared against the results obtained for pure water as shell side fluid. Entropy generated due to heat transfer and fluid flow is calculated for the nanofluid. Analysis of entropy generation is carried out using the Taguchi technique. Analysis of variance (ANOVA results show that the inlet temperature on shell side has more pronounced effect on entropy generation.

  16. Oxide Dispersion Strengthened Fe(sub 3)Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    1999-07-01

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe3Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100C in the power generation industry. A particular 'in service application' anomaly of Fe3Al-based alloys is that the environmental resistance is maintained up to 1200C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism.

  17. Heat transfer characteristics and entropy generation for wing-shaped-tubes with longitudinal external fins in cross-flow

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Sayed Ahmed E. Sayed; Mesalhy, Osama M.; Abdelatief, Mohamed A. [Zagazig University, Zagazig (Egypt)

    2016-06-15

    A numerical study is conducted to clarify heat transfer characteristics, effectiveness and entropy generation for a bundle of wingshaped-tubes attached to Longitudinal fins (LF) at downstream side. The air-side Re{sub a} ranged from 1.8 x 10{sup 3} to 9.7 x 10{sup 3} . The fin height (h{sub f}) and fin thickness (δ) have been changed as: (2 mm <= hf <= 12 mm) and (1.5 mm <= δ <= 3.5 mm). The analysis of entropy generation is based on the principle of minimizing the rate of total entropy generation that includes the generation of entropy due to heat transfer and friction losses. The temperature field around the wing-shaped-tubes with (LF) is predicted using commercial CFD FLUENT 6.3.26 software package. Correlations of Nu{sub a}, St{sub a}, and Bejan number (Be), as well as the irreversibility distribution ratio (Φ) in terms of Re{sub a} and design parameters for the studied bundle are presented. Results indicated that, installing fins with heights from 2 to 12 mm results in an increase in Nu{sub a} from 11 to 36% comparing with that of wing-shaped tubes without fins (NOF). The highest and lowest values of effectiveness(ε) at every value of the considered Re{sub a} range are occurred at hf = 6 mm and (NOF), espectively. The wing-shaped-tubes heat exchanger with hf = 6 mm has the highest values of (ε), efficiency index (η) and area goodness factor (G{sub a}) and also the lowest values of Φ and hence the best performance comparing with other arrangements. The minimum values of Φ are occurred at hf = 6 mm. (Be) decreases with increasing Re{sub a} for all studied hf. The heat transfer irreversibility predominates for (1800 <= Re{sub a} <= 4200) while the opposite is true for (6950 < Re{sub a} <= 9700). δ has negligible effect on Nu{sub a} and heat transfer irreversibility. Comparisons between the experimental and numerical results of the present study and those, previously, obtained for similar available studies showed good agreements.

  18. Friction Induced Wear of Rapid Prototyping Generated Materials: A Review

    Directory of Open Access Journals (Sweden)

    A. Tsouknidas

    2011-01-01

    Full Text Available Additive manufacturing has been introduced in the early 80s and has gained importance as a manufacturing process ever since. Even though the inception of the implicated processes predominantly focused on prototyping purposes, during the last years rapid prototyping (RP has emerged as a key enabling technology for the fabrication of highly customized, functionally gradient materials. This paper reviews friction-related wear phenomena and the corresponding deterioration mechanisms of RP-generated components as well as the potential of improving the implicated materials' wear resistance without significantly altering the process itself. The paper briefly introduces the concept of RP technologies and the implicated materials, as a premises to the process-dependent wear progression of the generated components for various degeneration scenarios (dry sliding, fretting, etc..

  19. Bismuth Telluride and Its Alloys as Materials for Thermoelectric Generation

    Directory of Open Access Journals (Sweden)

    H. Julian Goldsmid

    2014-03-01

    Full Text Available Bismuth telluride and its alloys are widely used as materials for thermoelectric refrigeration. They are also the best materials for use in thermoelectric generators when the temperature of the heat source is moderate. The dimensionless figure of merit, ZT, usually rises with temperature, as long as there is only one type of charge carrier. Eventually, though, minority carrier conduction becomes significant and ZT decreases above a certain temperature. There is also the possibility of chemical decomposition due to the vaporization of tellurium. Here we discuss the likely temperature dependence of the thermoelectric parameters and the means by which the composition may be optimized for applications above room temperature. The results of these theoretical predictions are compared with the observed properties of bismuth telluride-based thermoelements at elevated temperatures. Compositional changes are suggested for materials that are destined for generator modules.

  20. Exact solution of unsteady flow generated by sinusoidal pressure gradient in a capillary tube

    Directory of Open Access Journals (Sweden)

    M. Abdulhameed

    2015-12-01

    Full Text Available In this paper, the mathematical modeling of unsteady second grade fluid in a capillary tube with sinusoidal pressure gradient is developed with non-homogenous boundary conditions. Exact analytical solutions for the velocity profiles have been obtained in explicit forms. These solutions are written as the sum of the steady and transient solutions for small and large times. For growing times, the starting solution reduces to the well-known periodic solution that coincides with the corresponding solution of a Newtonian fluid. Graphs representing the solutions are discussed.

  1. Material for electrodes of low temperature plasma generators

    Science.gov (United States)

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich

    2008-12-09

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  2. On the possibility for laboratory simulation of generation of Alfven disturbances in magnetic tubes in the solar atmosphere

    Science.gov (United States)

    Prokopov, Pavel; Zaharov, Yuriy; Tishchenko, Vladimir; Boyarintsev, Eduard; Melehov, Aleksandr; Ponomarenko, Arnold; Posuh, Vitaliy; Shayhislamov, Ildar

    2016-03-01

    The paper deals with generation of Alfven plasma disturbances in magnetic flux tubes through exploding laser plasma in magnetized background plasma. Processes with similar effect of excitation of torsion-type waves seem to provide energy transfer from the solar photosphere to corona. The studies were carried out at experimental stand KI-1 represented a high-vacuum chamber of 1.2 m diameter, 5 m long, external magnetic field up to 500 Gs along the chamber axis, and up to 2×10^-6 Torr pressure in operating mode. Laser plasma was produced when focusing the CO2 laser pulse on a flat polyethylene target, and then the laser plasma propagated in θ-pinch background hydrogen (or helium) plasma. As a result, the magnetic flux tube of 15-20 cm radius was experimentally simulated along the chamber axis and the external magnetic field direction. Also, the plasma density distribution in the tube was measured. Alfven wave propagation along the magnetic field was registered from disturbance of the magnetic field transverse component B_ψ and field-aligned current J_z. The disturbances propagate at near-Alfven velocity of 70-90 km/s and they are of left-hand circular polarization of the transverse component of magnetic field. Presumably, Alfven wave is generated by the magnetic laminar mechanism of collisionless interaction between laser plasma cloud and background. The right-hand polarized high-frequency whistler predictor was registered which have been propagating before Alfven wave at 300 km/s velocity. The polarization direction changed with Alfven wave coming. Features of a slow magnetosonic wave as a sudden change in background plasma concentration along with simultaneous displacement of the external magnetic field were found. The disturbance propagates at ~20-30 km/s velocity, which is close to that of ion sound at low plasma beta value. From preliminary estimates, the disturbance transfers about 10 % of the original energy of laser plasma.

  3. Multi-region fuzzy logic controller with local PID controllers for U-tube steam generator in nuclear power plant

    Directory of Open Access Journals (Sweden)

    Puchalski Bartosz

    2015-12-01

    Full Text Available In the paper, analysis of multi-region fuzzy logic controller with local PID controllers for steam generator of pressurized water reactor (PWR working in wide range of thermal power changes is presented. The U-tube steam generator has a nonlinear dynamics depending on thermal power transferred from coolant of the primary loop of the PWR plant. Control of water level in the steam generator conducted by a traditional PID controller which is designed for nominal power level of the nuclear reactor operates insufficiently well in wide range of operational conditions, especially at the low thermal power level. Thus the steam generator is often controlled manually by operators. Incorrect water level in the steam generator may lead to accidental shutdown of the nuclear reactor and consequently financial losses. In the paper a comparison of proposed multi region fuzzy logic controller and traditional PID controllers designed only for nominal condition is presented. The gains of the local PID controllers have been derived by solving appropriate optimization tasks with the cost function in a form of integrated squared error (ISE criterion. In both cases, a model of steam generator which is readily available in literature was used for control algorithms synthesis purposes. The proposed multi-region fuzzy logic controller and traditional PID controller were subjected to broad-based simulation tests in rapid prototyping software - Matlab/Simulink. These tests proved the advantage of multi-region fuzzy logic controller with local PID controllers over its traditional counterpart.

  4. Durability Challenges for Next Generation of Gas Turbine Engine Materials

    Science.gov (United States)

    Misra, Ajay K.

    2012-01-01

    Aggressive fuel burn and carbon dioxide emission reduction goals for future gas turbine engines will require higher overall pressure ratio, and a significant increase in turbine inlet temperature. These goals can be achieved by increasing temperature capability of turbine engine hot section materials and decreasing weight of fan section of the engine. NASA is currently developing several advanced hot section materials for increasing temperature capability of future gas turbine engines. The materials of interest include ceramic matrix composites with 1482 - 1648 C temperature capability, advanced disk alloys with 815 C capability, and low conductivity thermal barrier coatings with erosion resistance. The presentation will provide an overview of durability challenges with emphasis on the environmental factors affecting durability for the next generation of gas turbine engine materials. The environmental factors include gaseous atmosphere in gas turbine engines, molten salt and glass deposits from airborne contaminants, impact from foreign object damage, and erosion from ingestion of small particles.

  5. Nordic Nuclear Materials Forum for Generation IV Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anghel, C. (Studsvik Nuclear AB, Nykoeping (Sweden)); Penttilae, S. (Technical Research Centre of Finland, VTT (Finland))

    2010-03-15

    A network for material issues for Generation IV nuclear power has been initiated within the Nordic countries. The objectives of the Generation IV Nordic Nuclear Materials Forum (NOMAGE4) are to put the basis of a sustainable forum for Gen IV issues, especially focussing on fuels, cladding, structural materials and coolant interaction. Other issues include reactor physics, dynamics and diagnostics, core and fuel design. The present report summarizes the work performed during the year 2009. The efforts made include identification of organisations involved in Gen IV issues in the Nordic countries, update of the forum website, http://www.studsvik.se/GenerationIV, and investigation of capabilities for research within the area of Gen IV. Within the NOMAGE4 project a seminar on Generation IV Nuclear Energy Systems has been organized during 15-16th of October 2009. The aim of the seminar was to provide a forum for exchange of information, discussion on future research needs and networking of experts on Generation IV reactor concepts. As an outcome of the NOMAGE4, a few collaboration project proposals have been prepared/planned in 2009. The network was welcomed by the European Commission and was mentioned as an exemplary network with representatives from industries, universities, power companies and research institutes. NOMAGE4 has been invited to participate to the 'European Energy Research Alliance, EERA, workshop for nuclear structural materials' http://www.eera-set.eu/index.php?index=41 as external observers. Future plans include a new Nordic application for continuation of NOMAGE4 network. (author)

  6. Rechargeable Biofilm-Controlling Tubing Materials for Use in Dental Unit Water Lines

    OpenAIRE

    Luo, Jie; Porteous, Nuala; Sun, Yuyu

    2011-01-01

    A simple and practical surface grafting approach was developed to introduce rechargeable N-halamine-based antimicrobial functionality onto the inner surfaces of continuous small-bore polyurethane (PU) dental unit waterline (DUWL) tubing. In this approach, tetrahydrofuran (THF) solution of a free-radical initiator, dicumyl peroxide (DCP), flowed through the PU tubing (inner diameter of 1/16 inch, or 1.6 mm) to diffuse DCP into the tube’s inner walls, which was used as initiator in the subseque...

  7. Oxide Dispersion Strengthened Fe3Al-Based Alloy Tubes: Application Specific Development for the Power Generation Industry

    Energy Technology Data Exchange (ETDEWEB)

    Kad, B.K.

    2002-02-08

    A detailed and comprehensive research and development methodology is being prescribed to produce Oxide Dispersion Strengthened (ODS)-Fe{sub 3}Al thin walled tubes, using powder extrusion methodologies, for eventual use at operating temperatures of up to 1100% in the power generation industry. A particular ''in service application'' anomaly of Fe{sub 3}Al-based alloys is that the environmental resistance is maintained up to 1200 C, well beyond where such alloys retain sufficient mechanical strength. Grain boundary creep processes at such high temperatures are anticipated to be the dominant failure mechanism. Thus, the challenges of this program are manifold: (1) to produce thin walled ODS-Fe{sub 3}Al tubes, employing powder extrusion methodologies, with (2) adequate increased strength for service at operating temperatures, and (3) to mitigate creep failures by enhancing the as-processed grain size in ODS-Fe{sub 3}Al tubes. Our research progress till date has resulted in the successful batch production of typically 8 Ft. lengths of 1-3/8 inch diameter, 1/8 inch wall thickness, ODS-Fe{sub 3}Al tubes via a proprietary single step extrusion consolidation process. The process parameters for such consolidation methodologies have been prescribed and evaluated as being routinely reproducible. Such processing parameters (i.e., extrusion ratios, temperature, can design etc.) were particularly guided by the need to effect post-extrusion recrystallization and grain growth at a sufficiently low temperature, while still meeting the creep requirement at service temperatures. Static recrystallization studies show that elongated grains (with their long axis parallel to the extrusion axis), typically 200-2000 {micro}m in diameter, and several millimeters long can be obtained routinely, at 1200 C. The growth kinetics are affected by the interstitial impurity content in the powder batches. For example complete recrystallization, across the tube wall thickness, is

  8. Titanium: A New Generation Material for Architectural Applications

    Directory of Open Access Journals (Sweden)

    Anjali Acharya

    2015-02-01

    Full Text Available Advanced Materials are defined as unique combinations of materials, process technologies, that together, help create and capture value by addressing large, global unmet wants and needs of building industry. There is a wide range of innovation enabled by technologies for processing materials and integrating currently available materials for creation of new generation buildings “Titaniun” is one of them. It is an incredibly durable and stunning material known for its wide-range of color, high-tensile strength. Titanium can be processed to achieve a variety of surface textures, from a soft matte to a near gleaming reflectivity suitable for architectural application. Titanium's corrosion immunity, strength and physical properties combine to allow reduced wall thickness, lowering its installed unit cost which is favourable as far as its application in densely populated urban areas is concerned. Many countries like United Sates of America, China, and Spain etc have also stared its use however its use in developing country like India is still limited. The paper attempts to analyze the chemical properties of Titanium as a futuristic building material. It also observes the variant of the material as option to make self-cleaning buildings in the future, reducing the amount of harmful cleansers used currently.

  9. Effects of extrusion-billet preheating on the microstructure and properties of Zr-2.5Nb pressure tube materials

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, R.; Cann, C.D. [Atomic Energy of Canada Limited, Pinawa, Manitoba (Canada). Whiteshell Labs.; Aldridge, S.A. [Nu-Tech Precision Metals, Inc., Arnprior, Ontario (Canada); Theaker, J.R.; Coleman, C.E. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada). Chalk River Labs.

    1996-12-31

    The effects of extrusion temperature and pre-heat soak time for billets on the mechanical properties of Zr-2.5Nb pressure tubes for CANDU reactors have been examined. The {beta}-quenched billets from a quadruple-melted ingot containing approximately 1,200 ppm of oxygen were extruded at 780, 815, and 850 C with pre-heat soak times of 15 to 300 min. The extruded hollows were finished by cold drawing (with a 28% reduction in area) and then stress relieving at 400 C. The {alpha}-phase grain structure, tensile strength, and fracture toughness properties were found to vary with the pre-heat temperature and soak time. All the materials were tough because embrittling impurities were absent. The tubes with 780 C preheat had a very fine and uniform {alpha}-grain structure, giving high strength and toughness at all soak times. The opposite was true for the 850 C soaks; the grain structure was coarse and inhomogeneous and the materials tended to be less strong and less touch. The tubes with the 815 C soaks showed intermediate values of strength and toughness. These variations in mechanical properties are discussed in terms of {alpha}-grain refinement and oxygen enrichment.

  10. Investigation of material specifications changes during laser tube bending and its influence on the modification and optimization of analytical modeling

    Science.gov (United States)

    Imhan, Khalil Ibraheem; Baharudin, B. T. H. T.; Zakaria, Azmi; Ismail, Mohd Idris Shah B.; Alsabti, Nasseer Mahdi Hadi; Ahmad, Ahmad Kamal

    2017-10-01

    Nowadays, laser tube bending process has become commonly used in laser material processing and fabrication fields because of its ability to produce such forms and shapes that cannot be achieved by normal mechanical bending tools. The process can avoid and overcome most of bending defects like wall thinning, wrinkling, spring back and ovalization. This investigation focused on the experimental, analytical modeling, and numerical simulation to give more understanding of the process. In this work a high power pulsed Nd-Yag laser of maximum average power laser 300 (W) emitting at 1064 nm and fiber coupled has been used to irradiate stainless steel 304 tubes of diameter 12.7 mm, 0.6 mm thickness and 60 mm in length. An analytical model has been used to determine the bending angle by using Matlab program software. The changes of material specification during the laser tube bending process due to the temperature rise has been studied and the analytical model has been modified and enhanced. Particle Swarm Optimization (PSO) was used to optimize the analytical and experimental results and reduce the mean absolute error.

  11. Investigation of the effect of a bend in a transfer line that separates a pulse tube cold head and a pressure wave generator

    Science.gov (United States)

    Dev, A. A.; Atrey, M. D.; Vanapalli, S.

    2017-02-01

    A transfer line between a pulse tube cold head and a pressure wave generator is usually required to isolate the cold head from the vibrations of the compressor. Although it is a common practice to use a thin and narrow straight tube, a bent tube would allow design flexibility and easy mounting of the cold head, such as in a split Stirling type pulse tube cryocooler. In this paper, we report a preliminary investigation on the effect of the bending of the tube on the flow transfer characteristics. A numerical study using commercial computational fluid dynamics model is performed to gain insight into the flow characteristics in the bent tube. Oscillating flow experiments are performed with a straight and a bent tube at a filling pressure of 15 bar and an operating frequency of 40, 50 and 60 Hz. The data and the corresponding numerical simulations point to the hypothesis that the secondary flow in the bent tube causes a decrease in flow at a fixed pressure amplitude.

  12. Assessing computer waste generation in Chile using material flow analysis.

    Science.gov (United States)

    Steubing, Bernhard; Böni, Heinz; Schluep, Mathias; Silva, Uca; Ludwig, Christian

    2010-03-01

    The quantities of e-waste are expected to increase sharply in Chile. The purpose of this paper is to provide a quantitative data basis on generated e-waste quantities. A material flow analysis was carried out assessing the generation of e-waste from computer equipment (desktop and laptop PCs as well as CRT and LCD-monitors). Import and sales data were collected from the Chilean Customs database as well as from publications by the International Data Corporation. A survey was conducted to determine consumers' choices with respect to storage, re-use and disposal of computer equipment. The generation of e-waste was assessed in a baseline as well as upper and lower scenarios until 2020. The results for the baseline scenario show that about 10,000 and 20,000 tons of computer waste may be generated in the years 2010 and 2020, respectively. The cumulative e-waste generation will be four to five times higher in the upcoming decade (2010-2019) than during the current decade (2000-2009). By 2020, the shares of LCD-monitors and laptops will increase more rapidly replacing other e-waste including the CRT-monitors. The model also shows the principal flows of computer equipment from production and sale to recycling and disposal. The re-use of computer equipment plays an important role in Chile. An appropriate recycling scheme will have to be introduced to provide adequate solutions for the growing rate of e-waste generation.

  13. Materials Advances for Next-Generation Ingestible Electronic Medical Devices.

    Science.gov (United States)

    Bettinger, Christopher J

    2015-10-01

    Electronic medical implants have collectively transformed the diagnosis and treatment of many diseases, but have many inherent limitations. Electronic implants require invasive surgeries, operate in challenging microenvironments, and are susceptible to bacterial infection and persistent inflammation. Novel materials and nonconventional device fabrication strategies may revolutionize the way electronic devices are integrated with the body. Ingestible electronic devices offer many advantages compared with implantable counterparts that may improve the diagnosis and treatment of pathologies ranging from gastrointestinal infections to diabetes. This review summarizes current technologies and highlights recent materials advances. Specific focus is dedicated to next-generation materials for packaging, circuit design, and on-board power supplies that are benign, nontoxic, and even biodegradable. Future challenges and opportunities are also highlighted.

  14. The tubular MFC with carbon tube air-cathode for power generation and N,N-dimethylacetamide treatment.

    Science.gov (United States)

    Liu, Jiadong; Liu, Lifen; Gao, Bo

    2016-01-01

    A continuous flow microbial fuel cell (MFC) was assembled with carbon tube air-cathode and carbon felt anode. The organic solvent N,N-dimethylacetamide (DMAC) was used as the only carbon source for power generation. After the adaptive phase, the cell potential was gradually increased from 0.15 to 0.45 V with 200 Ω of external resistor during 150 h of operation. The calculated power density of this MFC was 100 mW L(-1) when the cell potential was 0.45 V. The reversible redox peaks of carbon tube were obtained in cyclic voltammogram between -0.5 and -0.25 V under aerobic circumstance. The removal rate of DMAC was 15-50% after treatment with hydraulic retention time of 12 min. The results indicated that it is possible to realize the power extraction from DMAC wastewater in the form of electricity by the bioconversion process of MFC.

  15. Development boiling to sprinkled tube bundle

    Directory of Open Access Journals (Sweden)

    Kracík Petr

    2016-01-01

    Full Text Available This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes’ interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  16. Development boiling to sprinkled tube bundle

    Science.gov (United States)

    Kracík, Petr; Pospíšil, Jiří

    2016-03-01

    This paper presents results of a studied heat transfer coefficient at the surface of a sprinkled tube bundle where boiling occurs. Research in the area of sprinkled exchangers can be divided into two major parts. The first part is research on heat transfer and determination of the heat transfer coefficient at sprinkled tube bundles for various liquids, whether boiling or not. The second part is testing of sprinkle modes for various tube diameters, tube pitches and tube materials and determination of individual modes' interface. All results published so far for water as the falling film liquid apply to one to three tubes for which the mentioned relations studied are determined in rigid laboratory conditions defined strictly in advance. The sprinkled tubes were not viewed from the operational perspective where there are more tubes and various modes may occur in different parts with various heat transfer values. The article focuses on these processes. The tube is located in a low-pressure chamber where vacuum is generated using an exhauster via ejector. The tube consists of smooth copper tubes of 12 mm diameter placed horizontally one above another.

  17. Heat transfer and pressure drop characteristics of the tube bank fin heat exchanger with fin punched with flow redistributors and curved triangular vortex generators

    Science.gov (United States)

    Liu, Song; Jin, Hua; Song, KeWei; Wang, LiangChen; Wu, Xiang; Wang, LiangBi

    2017-10-01

    The heat transfer performance of the tube bank fin heat exchanger is limited by the air-side thermal resistance. Thus, enhancing the air-side heat transfer is an effective method to improve the performance of the heat exchanger. A new fin pattern with flow redistributors and curved triangular vortex generators is experimentally studied in this paper. The effects of the flow redistributors located in front of the tube stagnation point and the curved vortex generators located around the tube on the characteristics of heat transfer and pressure drop are discussed in detail. A performance comparison is also carried out between the fins with and without flow redistributors. The experimental results show that the flow redistributors stamped out from the fin in front of the tube stagnation points can decrease the friction factor at the cost of decreasing the heat transfer performance. Whether the combination of the flow redistributors and the curved vortex generators will present a better heat transfer performance depends on the size of the curved vortex generators. As for the studied two sizes of vortex generators, the heat transfer performance is promoted by the flow redistributors for the fin with larger size of vortex generators and the performance is suppressed by the flow redistributors for the fin with smaller vortex generators.

  18. Modified Powder-in-Tube Technique Based on the Consolidation Processing of Powder Materials for Fabricating Specialty Optical Fibers

    Directory of Open Access Journals (Sweden)

    Jean-Louis Auguste

    2014-08-01

    Full Text Available The objective of this paper is to demonstrate the interest of a consolidation process associated with the powder-in-tube technique in order to fabricate a long length of specialty optical fibers. This so-called Modified Powder-in-Tube (MPIT process is very flexible and paves the way to multimaterial optical fiber fabrications with different core and cladding glassy materials. Another feature of this technique lies in the sintering of the preform under reducing or oxidizing atmosphere. The fabrication of such optical fibers implies different constraints that we have to deal with, namely chemical species diffusion or mechanical stress due to the mismatches between thermal expansion coefficients and working temperatures of the fiber materials. This paper focuses on preliminary results obtained with a lanthano-aluminosilicate glass used as the core material for the fabrication of all-glass fibers or specialty Photonic Crystal Fibers (PCFs. To complete the panel of original microstructures now available by the MPIT technique, we also present several optical fibers in which metallic particles or microwires are included into a silica-based matrix.

  19. Computationally generated velocity taper for efficiency enhancement in a coupled-cavity traveling-wave tube

    Science.gov (United States)

    Wilson, Jeffrey D.

    1989-01-01

    A computational routine has been created to generate velocity tapers for efficiency enhancement in coupled-cavity TWTs. Programmed into the NASA multidimensional large-signal coupled-cavity TWT computer code, the routine generates the gradually decreasing cavity periods required to maintain a prescribed relationship between the circuit phase velocity and the electron-bunch velocity. Computational results for several computer-generated tapers are compared to those for an existing coupled-cavity TWT with a three-step taper. Guidelines are developed for prescribing the bunch-phase profile to produce a taper for efficiency. The resulting taper provides a calculated RF efficiency 45 percent higher than the step taper at center frequency and at least 37 percent higher over the bandwidth.

  20. Turbulent wind field characterization and re-generation based on pitot tube measurements mounted on a wind turbine

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard; Larsen, Torben J.; Aagaard Madsen, Helge;

    2015-01-01

    This paper describes a new method to estimate the undisturbed inflow field of a wind turbine based on measurements obtained from one or more five-hole pitot tubes mounted directly on the blades. Based on the measurements, the disturbance caused by the wind turbine is estimated using aerodymanic...... the measured wind speeds at the recording position. In the theoretical part of this study a quite good agreement is seen between load sensors on a turbine model exposed to the reference and the re-generated turbulence field. Finally the method is applied to full scale measurements and reasonable wind shear...... profiles are derived. It is expected that this method will lead to a new and effective experimental method to characterize the incoming flow field to a wind turbine and thus contribute to the understanding of wind turbine loads....

  1. Analysis of two-phase flow instability in helical tube steam generator in high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yu; Lv, Xuefeng; Wang, Shengfei; Niu, Fenglei; Tian, Li [North China Electric Power Univ., Beijing (Switzerland)

    2012-03-15

    The steam generator composed of multi-helical tubes is used in high temperature gas cooled reactors and two-phase flow instability should be avoided in design. And density-wave oscillation which is mainly due to flow, density and the relationship between the pressure drop delays and feedback effects is one of the two-phase flow instability phenomena easily to occur. Here drift-flux model is used to simulate the performance of the fluid in the secondary side and frequency domain and time domain methods are used to evaluate whether the density-wave oscillation will happen or not. Several operating conditions with nominal power from 15% to 30% are calculated in this paper. The results of the two methods are in accordance, flow instability will occur when power is less than 20% nominal power, which is also according with the result of the experiments well.

  2. Boiler tube failures in industrial drum-type steam generators. Pt. 3: Alternative cycle chemistry treatments

    Energy Technology Data Exchange (ETDEWEB)

    Bursik, A. [University of Stuttgart (Germany)

    2002-12-01

    This part (the third part of a four-part publication) discusses the applicability of amine-based plant cycle treatments which are covered neither by the VGB Guideline for Boiler Feedwater, Boiler Water, and Steam of Steam Generators with a Permissible Operating Pressure of >6.8 MPa nor by the set of EPRI Cycle Chemistry Guidelines for Fossil Plants. (orig.)

  3. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.N. Wright

    2005-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Project is envisioned to demonstrate the following: (1) A full-scale prototype VHTR by about 2021; (2) High-temperature Brayton Cycle electric power production at full scale with a focus on economic performance; (3) Nuclear-assisted production of hydrogen (with about 10% of the heat) with a focus on economic performance; and (4) By test, the exceptional safety capabilities of the advanced gas-cooled reactors. Further, the NGNP program will: (1) Obtain a Nuclear Regulatory Commission (NRC) License to construct and operate the NGNP, this process will provide a basis for future performance based, risk-informed licensing; and (2) Support the development, testing, and prototyping of hydrogen infrastructures. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. The NGNP Materials R&D Program includes the following elements: (1) Developing a specific approach, program plan and other project management tools for

  4. Accretor: Generative Materiality in the Work of Driessens and Verstappen.

    Science.gov (United States)

    Whitelaw, Mitchell

    2015-01-01

    Accretor, by the Dutch artists Erwin Driessens and Maria Verstappen, is a generative artwork that adopts and adapts artificial life techniques to produce intricate three-dimensional forms. This article introduces and analyzes Accretor, considering the enigmatic quality of the generated objects and in particular the role of materiality in this highly computational work. Accretor demonstrates a tangled continuity between digital and physical domains, where the constraints and affordances of matter inform both formal processes and aesthetic interpretations. Drawing on Arp's notion of the concrete artwork and McCormack and Dorin's notion of the computational sublime, the article finally argues that Accretor demonstrates what might be called a processual sublime, evoking expansive processes that span both computational and non-computational systems.

  5. Generation of nano roughness on fibrous materials by atmospheric plasma

    Science.gov (United States)

    Kulyk, I.; Scapinello, M.; Stefan, M.

    2012-12-01

    Atmospheric plasma technology finds novel applications in textile industry. It eliminates the usage of water and of hazard liquid chemicals, making production much more eco-friendly and economically convenient. Due to chemical effects of atmospheric plasma, it permits to optimize dyeing and laminating affinity of fabrics, as well as anti-microbial treatments. Other important applications such as increase of mechanical resistance of fiber sleeves and of yarns, anti-pilling properties of fabrics and anti-shrinking property of wool fabrics were studied in this work. These results could be attributed to the generation of nano roughness on fibers surface by atmospheric plasma. Nano roughness generation is extensively studied at different conditions. Alternative explanations for the important practical results on textile materials and discussed.

  6. Materials for next-generation desalination and water purification membranes

    Science.gov (United States)

    Werber, Jay R.; Osuji, Chinedum O.; Elimelech, Menachem

    2016-05-01

    Membrane-based separations for water purification and desalination have been increasingly applied to address the global challenges of water scarcity and the pollution of aquatic environments. However, progress in water purification membranes has been constrained by the inherent limitations of conventional membrane materials. Recent advances in methods for controlling the structure and chemical functionality in polymer films can potentially lead to new classes of membranes for water purification. In this Review, we first discuss the state of the art of existing membrane technologies for water purification and desalination, highlight their inherent limitations and establish the urgent requirements for next-generation membranes. We then describe molecular-level design approaches towards fabricating highly selective membranes, focusing on novel materials such as aquaporin, synthetic nanochannels, graphene and self-assembled block copolymers and small molecules. Finally, we highlight promising membrane surface modification approaches that minimize interfacial interactions and enhance fouling resistance.

  7. Evaluation of a main steam line break with induced, multiple tube ruptures: A comparison of NUREG 1477 (Draft) and transient methodologies Palo Verde Nuclear Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, K.R.

    1995-09-01

    This paper presents the approach taken to analyze the radiological consequences of a postulated main steam line break event, with one or more tube ruptures, for the Palo Verde Nuclear Generating Station. The analysis was required to support the restart of PVNGS Unit 2 following the steam generator tube rupture event on March 14, 1993 and to justify continued operation of Units 1 and 3. During the post-event evaluation, the NRC expressed concern that Unit 2 could have been operating with degraded tubes and that similar conditions could exist in Units 1 and 3. The NRC therefore directed that a safety assessment be performed to evaluate a worst case scenario in which a non-isolable main steam line break occurs inducing one or more tube failures in the faulted steam generator. This assessment was to use the generic approach described in NUREG 1477, Voltage-Based Interim Plugging Criteria for Steam Generator Tubes - Task Group Report. An analysis based on the NUREG approach was performed but produced unacceptable results for off-site and control room thyroid doses. The NUREG methodology, however, does not account for plant thermal-hydraulic transient effects, system performance, or operator actions which could be credited to mitigate dose consequences. To deal with these issues, a more detailed analysis methodology was developed using a modified version of the Combustion Engineering Plant Analysis Code, which examines the dose consequences for a main steam line break transient with induced tube failures for a spectrum equivalent to 1 to 4 double ended guillotine U-tube breaks. By incorporating transient plant system responses and operator actions, the analysis demonstrates that the off-site and control room does consequences for a MSLBGTR can be reduced to acceptable limits. This analysis, in combination with other corrective and recovery actions, provided sufficient justification for continued operation of PVNGS Units 1 and 3, and for the subsequent restart of Unit 2.

  8. Electron Emission And Beam Generation Using Ferroelectric Cathodes (electron Beam Generation, Lead Lanthanum Zicronate Titanate, High Power Traveling Wave Tube Amplfier)

    CERN Document Server

    Flechtner, D D

    1999-01-01

    In 1989, researchers at CERN published the discovery of significant electron emission (1– 100 A/cm2) from Lead- Lanthanum-Zirconate-Titanate (PLZT). The publication of these results led to international interest in ferroelectric cathodes studies for use in pulsed power devices. At Cornell University in 1991, experiments with Lead-Zirconate-Titanate (PZT) compositions were begun to study the feasibility of using this ferroelectric material as a cathode in the electron gun section of High Power Traveling Wave Tube Amplifier Experiments. Current-voltage characteristics were documented for diode voltages ranging from 50– 500,000 V with anode cathode gaps of.5– 6 cm. A linear current-voltage relation was found for voltages less than 50 kV. For diode voltages ≥ 200 kV, a typical Child-Langmuir V3/2 dependence was observed...

  9. Coincident steam generator tube rupture and stuck-open safety relief valve carryover tests: MB-2 steam generator transient response test program

    Energy Technology Data Exchange (ETDEWEB)

    Garbett, K; Mendler, O J; Gardner, G C; Garnsey, R; Young, M Y

    1987-03-01

    In PWR steam generator tube rupture (SGTR) faults, a direct pathway for the release of radioactive fission products can exist if there is a coincident stuck-open safety relief valve (SORV) or if the safety relief valve is cycled. In addition to the release of fission products from the bulk steam generator water by moisture carryover, there exists the possibility that some primary coolant may be released without having first mixed with the bulk water - a process called primary coolant bypassing. The MB-2 Phase II test program was designed specifically to identify the processes for droplet carryover during SGTR faults and to provide data of sufficient accuracy for use in developing physical models and computer codes to describe activity release. The test program consisted of sixteen separate tests designed to cover a range of steady-state and transient fault conditions. These included a full SGTR/SORV transient simulation, two SGTR overfill tests, ten steady-state SGTR tests at water levels ranging from very low levels in the bundle up to those when the dryer was flooded, and three moisture carryover tests without SGTR. In these tests the influence of break location and the effect of bypassing the dryer were also studied. In a final test the behavior with respect to aerosol particles in a dry steam generator, appropriate to a severe accident fault, was investigated.

  10. The electro-mechanical phase transition of Gent model dielectric elastomer tube with two material constants

    Science.gov (United States)

    Liu, Liwu; Luo, Xiaojian; Fei, Fan; Wang, Yixing; Leng, Jinsong; Liu, Yanju

    2013-04-01

    Applied to voltage, a dielectric elastomer membrane may deform into a mixture of two states under certain conditions. One of which is the flat state and the other is the wrinkled state. In the flat state, the membrane is relatively thick with a small area, while on the contrary, in the wrinkled state, the membrane is relatively thin with a large area. The coexistence of these two states may cause the electromechanical phase transition of dielectric elastomer. The phase diagram of idea dielectric elastomer membrane under unidirectional stress and voltage inspired us to think about the liquid-to-vapor phase transition of pure substance. The practical working cycle of a steam engine includes the thermodynamical process of liquid-to-vapor phase transition, the fact is that the steam engine will do the maximum work if undergoing the phase transition process. In this paper, in order to consider the influence of coexistent state of dielectric elastomer, we investigate the homogeneous deformation of the dielectric elastomer tube. The theoretical model is built and the relationship between external loads and stretch are got, we can see that the elastomer tube experiences the coexistent state before reaching the stretching limit from the diagram. We think these results can guide the design and manufacture of energy harvesting equipments.

  11. Advanced ceramic materials for next-generation nuclear applications

    Science.gov (United States)

    Marra, John

    2011-10-01

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme environments of high

  12. Advanced ceramic materials for next-generation nuclear applications

    Energy Technology Data Exchange (ETDEWEB)

    Marra, John [Savannah River National Laboratory Aiken, SC 29802 (United States)

    2011-10-29

    The nuclear industry is at the eye of a 'perfect storm' with fuel oil and natural gas prices near record highs, worldwide energy demands increasing at an alarming rate, and increased concerns about greenhouse gas (GHG) emissions that have caused many to look negatively at long-term use of fossil fuels. This convergence of factors has led to a growing interest in revitalization of the nuclear power industry within the United States and across the globe. Many are surprised to learn that nuclear power provides approximately 20% of the electrical power in the US and approximately 16% of the world-wide electric power. With the above factors in mind, world-wide over 130 new reactor projects are being considered with approximately 25 new permit applications in the US. Materials have long played a very important role in the nuclear industry with applications throughout the entire fuel cycle; from fuel fabrication to waste stabilization. As the international community begins to look at advanced reactor systems and fuel cycles that minimize waste and increase proliferation resistance, materials will play an even larger role. Many of the advanced reactor concepts being evaluated operate at high-temperature requiring the use of durable, heat-resistant materials. Advanced metallic and ceramic fuels are being investigated for a variety of Generation IV reactor concepts. These include the traditional TRISO-coated particles, advanced alloy fuels for 'deep-burn' applications, as well as advanced inert-matrix fuels. In order to minimize wastes and legacy materials, a number of fuel reprocessing operations are being investigated. Advanced materials continue to provide a vital contribution in 'closing the fuel cycle' by stabilization of associated low-level and high-level wastes in highly durable cements, ceramics, and glasses. Beyond this fission energy application, fusion energy will demand advanced materials capable of withstanding the extreme

  13. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    Science.gov (United States)

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  14. Generation and Evaluation of Lunar Dust Adhesion Mitigating Materials

    Science.gov (United States)

    Wohl, Christopher J.; Connell, John W.; Lin, Yi; Belcher, Marcus A.; Palmieri, Frank L.

    2011-01-01

    Particulate contamination is of concern in a variety of environments. This issue is especially important in confined spaces with highly controlled atmospheres such as space exploration vehicles involved in extraterrestrial surface missions. Lunar dust was a significant challenge for the Apollo astronauts and will be of greater concern for longer duration, future missions. Passive mitigation strategies, those not requiring external energy, may decrease some of these concerns, and have been investigated in this work. A myriad of approaches to modify the surface chemistry and topography of a variety of substrates was investigated. These involved generation of novel materials, photolithographic techniques, and other template approaches. Additionally, single particle and multiple particle methods to quantitatively evaluate the particle-substrate adhesion interactions were developed.

  15. Application of structural reliability to multi-circumferential cracking in steam generator tubes; Application de la fiabilite des structures a la multifissuration circonferentielle des tubes de generateur de vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Ardillon, E.; Riffard, T. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-12-31

    The COMPROMIS Code, developed by Electricite de France, is a probabilistic software tool concerned with assessment of probability of occurrence of a Steam Generator (SG) tube rupture caused by multi-circumferential cracking. It involves the calculation of low probabilities, for which Monte Carlo stratified sampling was selected. After a short description of the physical model, this paper presents the implementation of the numerical methods, some outputs of the code and sensitivity results of the rupture probability to input parameters. (author). 7 refs.

  16. GRUVAL for ET inspection of the steam generator tubes; GRUVAL para la inspeccion ET de los tubos de los Generadores de Vapor

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Bueno, A.; Francia, L.; Jimenez Garcia, J. J.; Garcia, R.; Castelinou, M.; Torrens, J.

    2013-07-01

    The steam generators of the nuclear power plants, PWR type are one of the most important components from the point of view of safety and plant availability. Thousands of tubes that form, approximately 1 mm of thickness, required to be inspected in accordance with codes and standards, to ensure the integrity of the component during the operation of the plant.

  17. User-Generated Content, YouTube and Participatory Culture on the Web: Music Learning and Teaching in Two Contrasting Online Communities

    Science.gov (United States)

    Waldron, Janice

    2013-01-01

    In this paper, I draw on seminal literature from new media researchers to frame the broader implications that user-generated content (UGC), YouTube, and participatory culture have for music learning and teaching in online communities; to illustrate, I use examples from two contrasting online music communities, the Online Academy of Irish…

  18. Indoor Solar Thermal Energy Saving Time with Phase Change Material in a Horizontal Shell and Finned-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    S. Paria

    2015-01-01

    Full Text Available An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF. The focus of this study was on the behavior of PCM for storage (charging or melting and removal (discharging or solidification, as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.

  19. Indoor solar thermal energy saving time with phase change material in a horizontal shell and finned-tube heat exchanger.

    Science.gov (United States)

    Paria, S; Sarhan, A A D; Goodarzi, M S; Baradaran, S; Rahmanian, B; Yarmand, H; Alavi, M A; Kazi, S N; Metselaar, H S C

    2015-01-01

    An experimental as well as numerical investigation was conducted on the melting/solidification processes of a stationary phase change material (PCM) in a shell around a finned-tube heat exchanger system. The PCM was stored in the horizontal annular space between a shell and finned-tube where distilled water was employed as the heat transfer fluid (HTF). The focus of this study was on the behavior of PCM for storage (charging or melting) and removal (discharging or solidification), as well as the effect of flow rate on the charged and discharged solar thermal energy. The impact of the Reynolds number was determined and the results were compared with each other to reveal the changes in amount of stored thermal energy with the variation of heat transfer fluid flow rates. The results showed that, by increasing the Reynolds number from 1000 to 2000, the total melting time decreases by 58%. The process of solidification also will speed up with increasing Reynolds number in the discharging process. The results also indicated that the fluctuation of gradient temperature decreased and became smooth with increasing Reynolds number. As a result, by increasing the Reynolds number in the charging process, the theoretical efficiency rises.

  20. Computational fluid dynamics (CFD) simulations of aerosol in a U-shaped steam generator tube

    Science.gov (United States)

    Longmire, Pamela

    scenario evaluated but ranged from 1.61 to 3.2. At the outlet, the computed AMMD (1.9 mum) had GSD between 1.12 and 2.76. Decontamination factors (DF), computed based on deposition from trajectory calculations, were just over 3.5 for the bend and 4.4 at the outlet. Computed DFs were consistent with expert elicitation cited in NUREG-1150 for aerosol retention in steam generators.

  1. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design

  2. Development and Execution of a Large-scale DDT Tube Test for IHE Material Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Parker, Gary Robert [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Broilo, Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lopez-Pulliam, Ian Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vaughan, Larry Dean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-10-24

    Insensitive High Explosive (IHE) Materials are defined in Chapter IX of the DOE Explosive Safety Standard (DOE-STD-1212-2012) as being materials that are massdetonable explosives that are so insensitive that the probability of accidental initiation or transition from burning to detonation is negligible1. There are currently a number of tests included in the standard that are required to qualify a material as IHE, however, none of the tests directly evaluate for the transition from burning to detonation (aka deflagration-to-detonation transition, DDT). Currently, there is a DOE complex-wide effort to revisit the IHE definition in DOE-STD-1212-2012 and change the qualification requirements. The proposal lays out a new approach, requiring fewer, but more appropriate tests, for IHE Material qualification. One of these new tests is the Deflagration-to-Detonation Test. According to the redefinition proposal, the purpose of the new deflagration-todetonation test is “to demonstrate that an IHE material will not undergo deflagration-to-detonation under stockpile relevant conditions of scale, confinement, and material condition. Inherent in this test design is the assumption that ignition does occur, with onset of deflagration. The test design will incorporate large margins and replicates to account for the stochastic nature of DDT events.” In short, the philosophy behind this approach is that if a material fails to undergo DDT in a significant over-test, then it is extremely unlikely to do so in realistic conditions. This effort will be valuable for the B61 LEP to satisfy their need qualify the new production lots of PBX 9502. The work described in this report is intended as a preliminary investigation to support the proposed design of an overly conservative, easily fielded DDT test for updated IHE Material Qualification standard. Specifically, we evaluated the aspects of confinement, geometry, material morphology and temperature. We also developed and tested a

  3. The accelerator tube of ions of the generator Van de Graaff of the CEA. Survey of development. First results; Le tube accelerateur d'ions du generateur van de graapp du commissariat. Etude de developpement. Premiers resultats

    Energy Technology Data Exchange (ETDEWEB)

    Bruck, H.; Prevot, F. [Commissariat a l' Energie Atomique, Saclay(France). Centre d' Etudes Nucleaires

    1953-07-01

    Rare are the Van de Graaff supplies whose tube doesn't collapse electrically to tensions and currents very lower to those that the generator can provide. We chose the general measurements: length and diameter, and put the accent on the survey of the individual element, so much to the mechanical viewpoint (installation, solidity, tightness and degassing), that to the electric viewpoint (to increase the electric rigidity of it). After modification the breakdown voltage as well as the performances of the tube have been improved greatly. (M.B.) [French] Rares sont les machines de Van de Graaff dont le tube ne s'effondre pas electriquement a des tensions et des courants bien inferieurs a ceux que le generateur peut fournir. Nous avons choisi les dimensions generales: longueur et diametre, et mis l'accent sur l'etude de l'element individuel, tant au point de vue mecanique (montage, solidite, etancheite et degazage), qu'au point de vue electrique (pour en augmenter la rigidite electrique). Apres modification la tension de claquage ainsi que les performances du tube ont ete grandement ameliorees. (M.B.)

  4. High-pressure {sup 4}He drift tubes for fissile material detection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui, E-mail: zwang@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Morris, Christopher L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Gray, F.E. [Regis University, Denver, CO 80221 (United States); Bacon, J.D.; Brockwell, M.I.; Chang, D.Y.; Chung, K.; Dai, W.G.; Greene, S.J.; Hogan, G.E.; Lisowski, P.W.; Makela, M.F.; Mariam, F.G.; McGaughey, P.L. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mendenhall, M. [California Institute of Technology, Pasadena, CA 91125 (United States); Milner, E.C.; Miyadera, H.; Murray, M.M.; Perry, J.O.; Roybal, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); and others

    2013-03-01

    A detector efficiency model based on energy extraction from neutrons is described and used to compare {sup 4}He detectors with liquid scintillators (EJ301/NE-213). Detector efficiency can be divided into three regimes: single neutron scattering, multiple neutron scattering, and a transition regime in-between. For an average fission neutron of 2 MeV, the amount of {sup 4}He needed would be about 1/4 of the amount of the mass of EJ301/NE-213 in the single-scattering regime. For about 50% neutron energy extraction (1 MeV out of 2 MeV), the two types of detectors ({sup 4}He in the transition regime, EJ301 still in the single-scattering regime) have comparable mass, but {sup 4}He detectors can be much larger depending on the number density. A six-tube 11-bar-pressure {sup 4}He detector prototype is built and tested. Individual electrical pulses from the detector are recorded using a 12-bit digitizer. Differences in pulse rise time and amplitudes, due to different energy loss of neutrons and gamma rays, are used for neutron/gamma separation. Several energy spectra are also obtained and analyzed.

  5. Development of Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric Cryocooling Devices

    Science.gov (United States)

    2015-05-12

    Distribution Unlimited Final Report: Development of Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric...Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric Cryocooling Devices Report Title The research

  6. The effect of shape of winglet vortex generator on the thermal-hydrodynamic performance of a circular tube bank fin heat exchanger

    Science.gov (United States)

    Hu, Wanling; Wang, Liangbi; Guan, Yong; Hu, Wenju

    2017-09-01

    In real application, the shape of the vortex generator has great influence on the heat transfer and flow resistance characteristics of tube bank fin heat exchanger. Therefore, the effect of the shape of the vortex generator on heat transfer performance of such heat exchanger should be considered. In this paper, the effect of three different shaped vortex generators (i.e. delta winglet, rectangular winglet and trapezoid winglet) on heat transfer intensity and secondary flow intensity of a circular tube bank fin heat exchanger was numerically studied. The results show that with increasing Re, overall average Nu and the non-dimensional secondary flow intensity Se m increase however friction factor f decreases. A corresponding relationship can be found between Nu and Se m, which indicates that the secondary flow intensity determines the heat transfer intensity in the fin-side channel of circular tube bank fin heat exchanger with different shaped vortex generators on the fin surfaces. Under the identical pumping power constrain, the optimal shape of the vortex generators is the delta winglet vortex generators for the studied cases.

  7. "People power" or "pester power"? YouTube as a forum for the generation of evidence and patient advocacy.

    Science.gov (United States)

    Mazanderani, Fadhila; O'Neill, Braden; Powell, John

    2013-12-01

    Venoplasty has been proposed, alongside the theory of chronic cerebrospinal venous insufficiency (CCSVI), as a treatment for multiple sclerosis (MS). Despite concerns about its efficacy and safety, thousands of patients have undergone the procedure. This paper analyses YouTube videos where patients have shared their treatment experiences. Content analysis on the 100 most viewed videos from over 4000 identified in a search for 'CCSVI', and qualitative thematic analysis on popular 'channels' demonstrating patients' experiences. Videos adopt an overwhelmingly positive stance towards CCSVI; many were uploaded by patients and present pre- and/or post-treatment experiences. Patients demonstrate rather than merely describe their symptoms, performing tests on themselves before and after treatment to quantify improvement. Videos combine medical terminology and tests with personal experiences of living with MS. Social media technologies provide patients with novel opportunities for advocating for particular treatments; generating alternative forms of 'evidence' built on a hybrid of personal experience and medical knowledge. Healthcare practitioners need to engage with new digital forms of content, including online social media. Instead of disregarding sources not considered 'evidence-based', practitioners should enhance their understanding of what 'experiential-evidence' is deemed significant to patients, particularly in contested areas of healthcare. Copyright © 2013 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  8. Liquid metal reactor KALIMER development - Study on the high temperature properties of the steam generator tubing for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Soo; Kim, Soon Tae; Park, Hui Sang; Kim, Soo Han [Yonsei University, Seoul (Korea); Kim, Young Sik [Andong National University, Andong (Korea)

    1999-04-01

    This work dealt with the evaluation of super stainless steels for steam generator tubing of LMFBR. The experimental alloys were designed to simulate the elimination of alloying elements, in special, C and N. Regardless of carbon contents, super stainless steels showed the excellent properties (tensile properties and corrosion resistance) than those of 9Cr-1Mo steel. Nitrogen content has affected positively the ultimate tensile strength and yield strength by TT(Thermal Treatment), but the elongation was reduced by TT in case of nitrogen free alloy and the elongation was largely increased by TT in case of nitrogen bearing alloys. In acidic chloride environment, nitrogen has influenced a little on corrosion potential and critical current density, but largely on passive current density, especially, at high potential. However, the trend of corrosion potential and critical current density by nitrogen was similar to the results in acidic solutions, but passive current density was largely affected by nitrogen content of stainless steels. 29 refs., 24 figs., 8 tabs. (Author)

  9. Application of dynamic probabilistic safety assessment approach for accident sequence precursor analysis: Case study for steam generator tube rupture

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sul; Heo, Gyun Young [Kyung Hee University, Yongin (Korea, Republic of); Kim, Tae Wan [Incheon National University, Incheon (Korea, Republic of)

    2017-03-15

    The purpose of this research is to introduce the technical standard of accident sequence precursor (ASP) analysis, and to propose a case study using the dynamic-probabilistic safety assessment (D-PSA) approach. The D-PSA approach can aid in the determination of high-risk/low-frequency accident scenarios from all potential scenarios. It can also be used to investigate the dynamic interaction between the physical state and the actions of the operator in an accident situation for risk quantification. This approach lends significant potential for safety analysis. Furthermore, the D-PSA approach provides a more realistic risk assessment by minimizing assumptions used in the conventional PSA model so-called the static-PSA model, which are relatively static in comparison. We performed risk quantification of a steam generator tube rupture (SGTR) accident using the dynamic event tree (DET) methodology, which is the most widely used methodology in D-PSA. The risk quantification results of D-PSA and S-PSA are compared and evaluated. Suggestions and recommendations for using D-PSA are described in order to provide a technical perspective.

  10. Evaluation of sampling plans for in-service inspection of steam generator tubes. Volume 2, Comprehensive analytical and Monte Carlo simulation results for several sampling plans

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, R.J.; Heasler, P.G.; Baird, D.B. [Pacific Northwest Lab., Richland, WA (United States)

    1994-02-01

    This report summarizes the results of three previous studies to evaluate and compare the effectiveness of sampling plans for steam generator tube inspections. An analytical evaluation and Monte Carlo simulation techniques were the methods used to evaluate sampling plan performance. To test the performance of candidate sampling plans under a variety of conditions, ranges of inspection system reliability were considered along with different distributions of tube degradation. Results from the eddy current reliability studies performed with the retired-from-service Surry 2A steam generator were utilized to guide the selection of appropriate probability of detection and flaw sizing models for use in the analysis. Different distributions of tube degradation were selected to span the range of conditions that might exist in operating steam generators. The principal means of evaluating sampling performance was to determine the effectiveness of the sampling plan for detecting and plugging defective tubes. A summary of key results from the eddy current reliability studies is presented. The analytical and Monte Carlo simulation analyses are discussed along with a synopsis of key results and conclusions.

  11. Current status of materials development of nuclear fuel cladding tubes for light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Zhengang, E-mail: duan_zg@imr.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Yang, Huilong [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Satoh, Yuhki [Institute for Materials Research, Tohoku University, Sendai, Miyagi 980-8577 (Japan); Murakami, Kenta; Kano, Sho; Zhao, Zishou; Shen, Jingjie [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan); Abe, Hiroaki, E-mail: abe.hiroaki@n.t.u-tokyo.ac.jp [Department of Nuclear Engineering, School of Engineering, The University of Tokyo, Nakagun, Ibaraki 319-1188 (Japan)

    2017-05-15

    Zirconium-based (Zr-based) alloys have been widely used as materials for the key components in light water reactors (LWRs), such as fuel claddings which suffer from waterside corrosion, hydrogen uptakes and strength loss at elevated temperature, especially during accident scenarios like the lost-of-coolant accident (LOCA). For the purpose of providing a safer, nuclear leakage resistant and economically viable LWRs, three general approaches have been proposed so far to develop the accident tolerant fuel (ATF) claddings: optimization of metallurgical composition and processing of Zr-based alloys, coatings on existing Zr-based alloys and replacement of current Zr-based alloys. In this manuscript, an attempt has been made to systematically present the historic development of Zr-based cladding, including the impacts of alloying elements on the material properties. Subsequently, the research investigations on coating layer on the surface of Zr-based claddings, mainly referring coating materials and fabrication methods, have been broadly reviewed. The last section of this review provides the introduction to alternative materials (Non-Zr) to Zr-based alloys for LWRs, such as advanced steels, Mo-based, and SiC-based materials.

  12. Numerical investigation for finding the appropriate design parameters of a fin-and-tube heat exchanger with delta-winglet vortex generators

    Science.gov (United States)

    Behfard, M.; Sohankar, A.

    2016-01-01

    A numerical simulation is performed to investigate the heat transfer and pressure drop characteristics of three-row inline tube bundles as a part of a heat exchanger (Re = 1000, Pr = 4.29). To enhance heat transfer, two pairs of delta winglet-type vortex generators (VGs) installed beside the first row and between the first and second rows of the tube bundles. The diameter of the second row of the tubes is chosen smaller than those of the first and third. A comprehensive study on the effects of various geometrical parameters such as transverse and longitudinal positions of VGs, length and height of VGs and angle of attack of the delta winglets is performed to augment heat transfer. Based on this study the best values of these design parameters are determined. The results showed that the best model increases the convective heat transfer ratio and thermal performance factor about 59 and 43 %, respectively, in compare with the geometry without VG.

  13. A new certified reference material for benzene measurement in air on a sorbent tube: development and proficiency testing.

    Science.gov (United States)

    Caurant, A; Lalère, B; Schbath, M-C; Stumpf, C; Sutour, C; Mace, T; Quisefit, J-P; Doussin, J-F; Vaslin-Reimann, S

    2010-11-01

    A certified matrix reference material (CRM) for the measurement of benzene in ambient air has been developed at Laboratoire National de Métrologie et d'Essais. The production of these CRMs was conducted using a gravimetric method fully traceable to the International System of Units. The CRMs were prepared by sampling an accurate mass of a gaseous primary reference material of benzene, using a high-precision laminar flowmeter and a mass flow controller, with a PerkinElmer sampler filled with Carbopack™ X sorbent. The relative standard deviations obtained for the preparation of a batch of 20 tubes loaded with 500 ng of benzene were below 0.2%. Each CRM is considered independent from the others and with its own certified value and an expanded uncertainty estimated to be within 0.5%, lower than the uncertainties of benzene CRMs already available worldwide. The stability of these materials was also established up to 12 months. These CRMs were implemented during proficiency testing, to evaluate the analytical performances of seven French laboratories involved in benzene air monitoring.

  14. Ear Tubes

    Science.gov (United States)

    ... ENTCareers Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media ... and throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through ...

  15. Computational design of materials for solar hydrogen generation

    Science.gov (United States)

    Umezawa, Naoto

    Photocatalysis has a great potential for the production of hydrogen from aquerous solution under solar light. In this talk, two different approaches toward the computational materials desing for solar hydrogen generation will be presented. Tin (Sn), which has two major oxidation states, Sn2+ and Sn4+, is abundant on the earth's crust. Recently, visible-light responsive photocatalytc H2 evolution reaction was identified over a mixed valence tin oxide Sn3O4. We have carried out crystal structure prediction for mixed valence tin oxides in different atomic compositions under ambient pressure condition using advanced computational methods based on the evolutionary crystal-structure search and density-functional theory. The predicted novel crystal structures realize the desirable band gaps and band edge positions for H2 evolution under visible light irradiation. It is concluded that multivalent tin oxides have a great potential as an abundant, cheap and environmentally-benign solar-energy conversion photofunctional materials. Transition metal doping is effective for sensitizing SrTiO3 under visible light. We have theoretically investigated the roles of the doped Cr in STO based on hybrid density-functional calculations. Cr atoms are preferably substituting for Ti under any equilibrium growth conditions. The lower oxidation state Cr3+, which is stabilized under an n-type condition of STO, is found to be advantageous for the photocatalytic performance. It is firther predicted that lanthanum is the best codopant for stabilizing the favorable oxidation state, Cr3+. The prediction was validated by our experiments that La and Cr co-doped STO shows the best performance among examined samples. This work was supported by the Japan Science and Technology Agency (JST) Precursory Research for Embryonic Science and Technology (PRESTO) and International Research Fellow program of Japan Society for the Promotion of Science (JSPS) through project P14207.

  16. On-line electrochemically controlled in-tube solid phase microextraction of inorganic selenium followed by hydride generation atomic absorption spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Asiabi, Hamid [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Yamini, Yadollah, E-mail: yyamini@modares.ac.ir [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of); Seidi, Shahram [Department of Analytical Chemistry, Faculty of Chemistry, K.N. Toosi University of Technology, Tehran (Iran, Islamic Republic of); Shamsayei, Maryam; Safari, Meysam; Rezaei, Fatemeh [Department of Chemistry, Tarbiat Modares University, P.O. Box 14115-175, Tehran (Iran, Islamic Republic of)

    2016-05-30

    In this work, for the first time, a rapid, simple and sensitive microextraction procedure is demonstrated for the matrix separation, preconcentration and determination of inorganic selenium species in water samples using an electrochemically controlled in-tube solid phase microextraction (EC-in-tube SPME) followed by hydride generation atomic absorption spectrometry (HG-AAS). In this approach, in which EC-in-tube SPME and HG-AAS system were combined, the total analysis time, was decreased and the accuracy, repeatability and sensitivity were increased. In addition, to increases extraction efficiency, a novel nanostructured composite coating consisting of polypyrrole (PPy) doped with ethyleneglycol dimethacrylate (EGDMA) was prepared on the inner surface of a stainless-steel tube by a facile electrodeposition method. To evaluate the offered setup and the new PPy-EGDMA coating, it was used to extract inorganic selenium species in water samples. Extraction of inorganic selenium species was carried out by applying a positive potential through the inner surface of coated in-tube under flow conditions. Under the optimized conditions, selenium was detected in amounts as small as 4.0 parts per trillion. The method showed good linearity in the range of 0.012–200 ng mL{sup −1}, with coefficients of determination better than 0.9996. The intra- and inter-assay precisions (RSD%, n = 5) were in the range of 2.0–2.5% and 2.7–3.2%, respectively. The validated method was successfully applied for the analysis of inorganic selenium species in some water samples and satisfactory results were obtained. - Graphical abstract: An electrochemically controlled in-tube solid phase microextraction followed by hydride generation atomic absorption spectrometry was developed for extraction and determination ultra-trace amounts of Se in aqueous solutions. - Highlights: • A nanostructured composite coating consisting of PPy doped with EGDMA was prepared. • The coating was

  17. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management

  18. Metallic Nanocomposites as Next-Generation Thermal Interface Materials: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xuhui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); King, Charles C [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-14

    nanocomposite is 11 ppm/K, which lies between the CTEs of aluminum (22 ppm/K) and silicon (3 ppm/K), which are common heat sink and heat source materials, respectively. The nanocomposite can also be deposited directly on to heat sink which will simplify the packaging processes by removing one possible element to assemble. These unique properties and ease of assembly makes the nanocomposite a promising next-generation TIM.

  19. Next Generation Nuclear Plant Steam Generator and Intermediate Heat Exchanger Materials Research and Development Plan

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2010-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  20. Flow topology, heat transfer characteristic and thermal performance in a circular tube heat exchanger inserted with punched delta winglet vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Boonloi, Amnart [College of Industrial Technology, Bangkok (Thailand); Jedsadaratanachai, Withada [Faculty of Engineering, Bangkok (Thailand)

    2016-01-15

    To improve the heat transfer rate and thermal performance, the punched delta winglet vortex generators, DWVGs, were inserted in the middle of the circular tube heat exchanger. The effects of the flow attack angles and the flow directions were investigated numerically for the Reynolds number Re = 100 – 2000. The finite volume method and the SIMPLE algorithm were used to study. The results are reported in terms of the flow structure, heat transfer behavior and thermal performance evaluation and also compared with the smooth tube with no vortex generators. As the numerical results, the use of the DWVGs in the tube can improve the heat transfer rate and thermal performance by creating the vortex flow through the tested section. The rise of the flow attack angle results in the increasing strength of the vortex flows. The flow attack angle of 25 .deg. performs the highest heat transfer rate and thermal performance, while the flow attack angle of 0 .deg. gives the reversed results. The computational results reveal that the optimum thermal enhancement factor is around 2.80 at Re = 2000, α = 25 .deg., with the winglet tip pointing downstream. The correlations on both the Nusselt number ratio and friction factor ratio for the DWVG in the tube heat exchanger are presented.

  1. High insulation foam glass material from waste cathode ray tube panel glass

    DEFF Research Database (Denmark)

    König, Jakob; Petersen, Rasmus Rosenlund; Yue, Yuanzheng

    . In general CRT consists of two types of glasses: barium/strontium containing glass (panel glass) and lead containing glass (funnel and panel glass). In this work we present the possibility to produce high performance insulation material from the recycled lead-free glass. We studied the influence of foaming...... parameters on the characteristics of foamed glass. CRT panel glass was crushed, milled and sieved below 63 m. Activated carbon used as a foaming agent and MnO2 as an ‘oxidizing’ agent were mixed with glass powders by means of a planetary ball mill. Foaming effect was observed in the temperature range...

  2. Carotid and cerebral CT angiography using low volume of iodinated contrast material and low tube voltage.

    Science.gov (United States)

    Kayan, M; Demirtas, H; Türker, Y; Kayan, F; Çetinkaya, G; Kara, M; Orhan Çelik, A; Umul, A; Yılmaz, Ö; Recep Aktaş, A

    2016-11-01

    To evaluate image quality of carotid computed tomography angiography (CTA) using a low voltage (80kV) and low amount of iodinated contrast material. A total of 101 patients referred for carotid CTA were randomly assigned to receive a specific protocol. In group A patients received intravenous administration of contrast material at a dose of 1mL/kg and CTA examinations were performed at 100kV. In group B, patients received intravenous administration of contrast material at a dose of 0.5mL/kg and CTA examinations were performed at 80kV. The same nonionic iodinated contrast material containing 370mg of iodine per mL was used in both groups. Attenuation values were measured from the center of specific arterial segments using regions of interest. Attenuation values above 300HU were accepted as significant. Institutional review board approval was obtained. A total of 50 patients were included in group A (38 men, 12 women; mean age, 63.56 years±13.18 [SD]) and 51 patients in group B (33 men, 18 women; mean age, 59.60 years±16.63 [SD]). A total of 1615 arterial segments (1515 common carotid artery-middle cerebral artery and 101 aortic arches) were analyzed. Venous contamination was not observed in either group. The mean attenuation values of all arterial segments in both groups were greater than 300HU. Mean arterial attenuation value in group B (499.22HU±97.25 [SD]) was significantly greater than in group A (374.36HU±73.79 [SD]) (P70%) was detected in 2 segments in group A and in 3 segments in group B, while grade IV stenosis (occlusion) was detected in 2 segments in group B. Distal common carotid artery dissection was detected in 1 patient and aortic dissection was detected in 1 patient in group B. Total dose-length product (DLP) value was significantly greater in group A (225.74mGy·cm±21.80 [SD]) than in group B (116.60mGy·cm±21.22 [SD]) (Pmaterial. This provides good image quality with low radiation dose. Copyright © 2016 Editions françaises de radiologie

  3. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 1. Albuterol sulfate and disodium cromoglycate.

    Science.gov (United States)

    Xu, Zhen; Mansour, Heidi M; Mulder, Tako; McLean, Richard; Langridge, John; Hickey, Anthony J

    2010-08-01

    The major objective of this study was: discriminatory assessment of dry powder aerosol performance using standardized entrainment tubes (SETs) and lactose-based formulations with two model drugs. Drug/lactose interactive physical mixtures (2%w/w) were prepared. Their properties were measured: solid-state characterization of phase behavior and molecular interactions by differential scanning calorimetry and X-ray powder diffraction; particle morphology and size by scanning electron microscopy and laser diffraction; aerosol generation by SETs and characterization by twin-stage liquid impinger and Andersen cascade impactor operated at 60 L/min. The fine particle fraction (FPF) was correlated with SET shear stress (tau(s)), using a novel powder aerosol deaggregation equation (PADE). Drug particles were <5 microm in volume diameter with narrow unimodal distribution (Span <1). The lowest shear SET (tau(s) = 0.624 N/m(2)) gave a higher emitted dose (ED approximately 84-93%) and lower FPF (FPF(6.4) approximately 7-25%). In contrast, the highest shear SET (tau(s) = 13.143 N/m(2)) gave a lower ED (ED approximately 75-89%) and higher FPF (FPF(6.4) approximately 15-46%). The performance of disodium cromoglycate was superior to albuterol sulfate at given tau(s), as was milled with respect to sieved lactose monohydrate. Excellent correlation was observed (R(2) approximately 0.9804-0.9998) when pulmonary drug particle release from the surface of lactose carriers was interpreted by PADE linear regression for dry powder formulation evaluation and performance prediction.

  4. Statistical analysis of entropy generation in longitudinally finned tube heat exchanger with shell side nanofluid by a single phase approach

    OpenAIRE

    Konchada Pavan Kumar; Pv Vinay; Bhemuni Varaprasad

    2016-01-01

    The presence of nanoparticles in heat exchangers ascertained increment in heat transfer. The present work focuses on heat transfer in a longitudinal finned tube heat exchanger. Experimentation is done on longitudinal finned tube heat exchanger with pure water as working fluid and the outcome is compared numerically using computational fluid dynamics (CFD) package based on finite volume method for different flow rates. Further 0.8% volume fraction of aluminum oxide (Al2O3) nanofluid is conside...

  5. Crack initiation at long radial hydrides in Zr-2. 5Nb pressure tube material at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Choubey, R.; Puls, M.P. (AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.)

    1994-05-01

    Crack initiation at hydrides in smooth tensile specimens of Zr-2.5Nb pressure tube material was investigated at elevated temperatures up to 300 C using an acoustic emission (AE) technique. The test specimens contained long, radial hydride platelets. These hydrides have their plate normals oriented in the applied stress direction. Below [approximately]100 C, widespread hydride cracking was initiated at stresses close to the yield stress. An estimate of the hydride's fracture strength from this data yielded a value of [approximately]520 MPa at 100 C. Metallography showed that up to this temperature, cracking occurred along the length of the hydrides. However, at higher temperatures, there was no clear evidence of lengthwise cracking of hydrides, and fewer of the total hydride population fractured during deformation, as indicated by the AE record and the metallography. Moreover, the hydrides showed significant plasticity by-being able to flow along with the matrix material and align themselves parallel to the applied stress direction without fracturing. Near the fracture surface of the specimen, transverse cracking of the flow-reoriented hydrides had occurred at various points along the lengths of the hydrides. These fractures appear to be the result of stresses produced by large plastic strains imposed by the surrounding matrix on the less ductile hydrides.

  6. Design and evaluation of synthetic silica-based monolithic materials in shrinkable tube for efficient protein extraction.

    Science.gov (United States)

    Alzahrani, Eman; Welham, Kevin

    2011-10-21

    Sample pretreatment is a required step in proteomics in order to remove interferences and preconcentrate the samples. Much research in recent years has focused on porous monolithic materials since they are highly permeable to liquid flow and show high mass transport compared with more common packed beds. These features are due to the micro-structure within the monolithic silica column which contains both macropores that reduce the back pressure, and mesopores that give good interaction with analytes. The aim of this work was to fabricate a continuous porous silica monolithic rod inside a heat shrinkable tube and to compare this with the same material whose surface has been modified with a C(18) phase, in order to use them for preconcentration/extraction of proteins. The performance of the silica-based monolithic rod was evaluated using eight proteins; insulin, cytochrome C, lysozyme, myoglobin, β-lactoglobulin, ovalbumin, hemoglobin, and bovine serum albumin at a concentration of 60 μM. The results show that recovery of the proteins was achieved by both columns with variable yields; however, the C(18) modified silica monolith gave higher recoveries (92.7 to 109.7%) than the non-modified silica monolith (25.5 to 97.9%). Both silica monoliths can be used with very low back pressure indicating a promising approach for future fabrication of the silica monolith inside a microfluidic device for the extraction of proteins from biological media.

  7. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Katoh, Yutai [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Wilson, Dane F [ORNL

    2008-08-01

    the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design

  8. Inherent Difference in Saliency for Generators with Different PM Materials

    Directory of Open Access Journals (Sweden)

    Sandra Eriksson

    2014-01-01

    Full Text Available The inherent differences between salient and nonsalient electrical machines are evaluated for two permanent magnet generators with different configurations. The neodymium based (NdFeB permanent magnets (PMs in a generator are substituted with ferrite magnets and the characteristics of the NdFeB generator and the ferrite generator are compared through FEM simulations. The NdFeB generator is a nonsalient generator, whereas the ferrite machine is a salient-pole generator, with small saliency. The two generators have almost identical properties at rated load operation. However, at overload the behaviour differs between the two generators. The salient-pole, ferrite generator has lower maximum torque than the NdFeB generator and a larger voltage drop at high current. It is concluded that, for applications where overload capability is important, saliency must be considered and the generator design adapted according to the behaviour at overload operation. Furthermore, if the maximum torque is the design criteria, additional PM mass will be required for the salient-pole machine.

  9. TRAC PF1/MOD1 calculations and data comparisons for mist feed and bleed and steam generator tube rupture experiments

    Energy Technology Data Exchange (ETDEWEB)

    Siebe, D.A.; Boyack, B.E.; Steiner, J.L.

    1988-01-01

    Los Alamos National Laboratory is a participant in the Integral System Test (IST) program initiated in June 1983 for the purpose of providing integral system test data on specific issues/phenomena relevant to post-small-break loss-of-coolant accidents, loss of feedwater and other transients in Babcock and Wilcox (BandW) plant designs. The Multi-Loop Integral System Test (MIST) facility is the largest single component in the IST program. MIST is a 2 /times/ 4 (two hot legs and steam generators (SGs), four cold legs and reactor coolant pumps) representation of lowered-loop reactor system of the BandW design. It is a full-height, full-pressure facility with 1/817 power and volume scaling. Two other integral experimental facilities are included in the IST program: test loops at the University of Maryland, College Park, and at SRI International (SRI-2). The objective of the IST tests is to generate high-quality experimental data to be used for assessing thermal-hydraulic safety computer codes. Efforts are under way at Los Alamos to assess TRAC-PF1/MOD1 against data from each of the IST facilities. Calculations and data comparisons for TRAC-PF1/MOD1 assessment are presented for two transients run in the MIST facility. These are MIST Test 330302, a feed and bleed test with delayed high-pressure injection; and Test 3404AA, an SG tube-rupture test with the affected SG isolated. Only MIST assessment results are presented in this paper. The TRAC-PF1/MOD1 calculations completed to date for MIST tests are in reasonable agreement with the data from these tests. Reasonable agreement is defined as meaning that major trends are predicted correctly, although TRAC values are frequently outside the range of data uncertainty. We believe that correct conclusions will be reached if the code is used in similar applications despite minor code/model deficiencies. 7 refs., 5 figs., 2 tabs.

  10. Generation of dried tube specimen for HIV-1 viral load proficiency test panels: a cost-effective alternative for external quality assessment programs.

    Science.gov (United States)

    Ramos, Artur; Nguyen, Shon; Garcia, Albert; Subbarao, Shambavi; Nkengasong, John N; Ellenberger, Dennis

    2013-03-01

    Participation in external quality assessment programs is critical to ensure quality clinical laboratory testing. Commercially available proficiency test panels for HIV-1 virus load testing that are used commonly in external quality assessment programs remain a financial obstacle to resource-limited countries. Maintaining cold-chain transportation largely contributes to the cost of traditional liquid proficiency test panels. Therefore, we developed and evaluated a proficiency test panel using dried tube specimens that can be shipped and stored at ambient temperature. This dried tube specimens panel consisted of 20 μl aliquots of a HIV-1 stock that were added to 2 ml tubes and left uncapped for drying, as a preservation method. The stability of dried tube specimens at concentrations ranging from 10² to 10⁶·⁵ RNA copies/ml was tested at different temperatures over time, showing no viral load reduction at 37 °C and a decrease in viral load smaller than 0.5 Log₁₀ at 45 °C for up to eight weeks when compared to initial results. Eight cycles of freezing-thawing had no effect on the stability of the dried tube specimens. Comparable viral load results were observed when dried tube specimen panels were tested on Roche CAPTAQ, Abbott m2000, and Biomerieux easyMAG viral load systems. Preliminary test results of dried proficiency test panels shipped to four African countries at ambient temperature demonstrated a low inter assay variation (SD range: 0.29-0.41 Log₁₀ RNA copies/ml). These results indicated that HIV-1 proficiency test panels generated by this methodology might be an acceptable alternative for laboratories in resource-limited countries to participate in external quality assessment programs.

  11. Characteristics of Spherical Shock Wave and Circular Pulse Jet Generated by Discharge of Propagating Shock Wave at Open End of Tube

    Institute of Scientific and Technical Information of China (English)

    Tsukasa Irie; Tsuyoshi Yasunobu; Hideo Kashimura; Toshiaki Setoguchi; Kazuyasu Matsuo

    2003-01-01

    When the shock wave propagating in the straight circular tube reaches at the open end, the impulsive wave is generated by the emission of a shock wave from an open end, and unsteady pulse jet is formed near the open end behind the impulsive wave under the specific condition. The pulse jet transits to spherical shock wave with the increase in the strength of shock wave. The strength is dependent on the Mach number of shock wave, which attenuates by propagation distance from the open end. In this study, the mechanism of generating the unsteady pulse jet, the characteristics of the pressure distribution in the flow field and the emission of shock wave from straight circular tube which has the infinite flange at open end are analyzed numerically by the TVD method. Strength of spherical shock wave, relation of shock wave Mach number, distance decay of spherical shock wave and directional characteristics are clarified.

  12. Environmentally compatible next generation green energetic materials (GEMs).

    Science.gov (United States)

    Talawar, M B; Sivabalan, R; Mukundan, T; Muthurajan, H; Sikder, A K; Gandhe, B R; Rao, A Subhananda

    2009-01-30

    This paper briefly reviews the literature work reported on the environmentally compatible green energetic materials (GEMs) for defence and space applications. Currently, great emphasis is laid in the field of high-energy materials (HEMs) to increase the environmental stewardship along with the deliverance of improved performance. This emphasis is especially strong in the areas of energetic materials, weapon development, processing, and disposal operations. Therefore, efforts are on to develop energetic materials systems under the broad concept of green energetic materials (GEMs) in different schools all over the globe. The GEMs program initiated globally by different schools addresses these challenges and establishes the framework for advances in energetic materials processing and production that promote compliance with environmental regulations. This review also briefs the principles of green chemistry pertaining to HEMs, followed by the work carried out globally on environmentally compatible green energetic materials and allied ingredients.

  13. Computation of a leakage in a stream generator heating tube with realistic initial and boundary conditions; Berechnung eines Dampferzeugerheizrohrlecks mit realistischen Anfangs- und Randbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Sarkadi, Peter; Schaffrath, Andreas [TUeV NORD SysTec GmbH und Co. KG, Hamburg (Germany)

    2009-07-01

    In the frame of a PWR reactor safety analysis the TUEV Nord Sys Tec GmbH has analyzed the plant behavior in case of a steam generator tube leakage using the thermal hydraulic code ATHLET and realistic initial and boundary conditions. The aim of the analysis was to show that the response of the emergency cooling criteria including the activation of safety injection pumps can be avoided. The Activation of the safety injection pumps could jeopardize the activity retention.

  14. Creating a YouTube-Like Collaborative Environment in Mathematics: Integrating Animated GeoGebra Constructions and Student-Generated Screencast Videos

    Directory of Open Access Journals (Sweden)

    Geoffrey ROULET

    2013-01-01

    Full Text Available This article discusses the integration of student-generated GeoGebra applets and Jing screencast videos to create a YouTube-like medium for sharing in mathematics. The value of combining dynamic mathematics software and screencast videos for facilitating communication and representations in a digital era is demonstrated herein. We share our experience with using these tools to facilitate mathematical collaboration, focusing specifically on the power of GeoGebra for student expression and creativity

  15. Automated tube voltage selection for radiation dose and contrast medium reduction at coronary CT angiography using 3{sup rd} generation dual-source CT

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, Stefanie [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany); Wichmann, Julian L. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt (Germany); Schoepf, U.J. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Poole, Zachary B.; Varga-Szemes, Akos; De Cecco, Carlo N. [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); Canstein, Christian [Siemens Medical Solutions, Malvern, PA (United States); Caruso, Damiano [Medical University of South Carolina, Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Department of Radiological Sciences, Oncology and Pathology, Rome (Italy); Bamberg, Fabian; Nikolaou, Konstantin [Eberhard-Karls University Tuebingen, Department of Diagnostic and Interventional Radiology, Tuebingen (Germany)

    2016-10-15

    To investigate the relationship between automated tube voltage selection (ATVS) and body mass index (BMI) and its effect on image quality and radiation dose of coronary CT angiography (CCTA). We evaluated 272 patients who underwent CCTA with 3{sup rd} generation dual-source CT (DSCT). Prospectively ECG-triggered spiral acquisition was performed with automated tube current selection and advanced iterative reconstruction. Tube voltages were selected by ATVS (70-120 kV). BMI, effective dose (ED), and vascular attenuation in the coronary arteries were recorded. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated. Five-point scales were used for subjective image quality analysis. Image quality was rated good to excellent in 98.9 % of examinations without significant differences for proximal and distal attenuation (all p ≥.0516), whereas image noise was rated significantly higher at 70 kV compared to ≥100 kV (all p <.0266). However, no significant differences were observed in SNR or CNR at 70-120 kV (all p ≥.0829). Mean ED at 70-120 kV was 1.5 ± 1.2 mSv, 2.4 ± 1.5 mSv, 3.6 ± 2.7 mSv, 5.9 ± 4.0 mSv, 7.9 ± 4.2 mSv, and 10.7 ± 4.1 mSv, respectively (all p ≤.0414). Correlation analysis showed a moderate association between tube voltage and BMI (r =.639). ATVS allows individual tube voltage adaptation for CCTA performed with 3{sup rd} generation DSCT, resulting in significantly decreased radiation exposure while maintaining image quality. (orig.)

  16. Phenomenological modeling of eddy current signals with a view to characterizing steam generator tube flaws; Modelisation phenomenologique des signaux courants de Foucault en vue de la caracterisation des defauts des tubes de generateurs de vapeur

    Energy Technology Data Exchange (ETDEWEB)

    La, R

    1997-12-31

    This work deals with the eddy current non-destructive test ing. Its long-term goal is to design an `inverse model` for evaluating the geometry an d the dimensions of steam generator tube flaws from eddy current signals. The approach we adopted requires the preliminary knowledge of a `forward model` that estimates the eddy current signal knowing the geometry and the dimensions of the flaws. A quasi-exhaustive study of the existing forward models showed their inadequacy to solve the inverse problem. Hence, we proposed to build a general forward model, appropriate to the inversion. Using a parametric approach, this model is phenomenological, i.e. it is based on observations made from results of a finite element code. For each position of the coil, the proposed forward model fist discretized the eddy current distribution into `tubes of current`. A parametric description of the shape of these tubes is given according the system constituted of the coil and the tubes of current as a `multi-transformer`, their current signal, can then be deduced. The model was validated in the case of an axisymmetric configuration. Comparisons with both analytical and numerical models showed very good agreements. Then, the proposed model was applied to a three-dimensional configuration. Comparisons with experimental results are sufficiently conclusive to validate the approach to the construction of the phenomenological model. However, before envisaging the inverse problem, the computation time, still too long, ought to be reduced and the parametric description needs to be generalized to other three-dimensional configurations. (author). 92 refs.

  17. Low tube voltage and low contrast material volume cerebral CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Song [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Xuzhou Medical College, School of Medical Imaging, Xuzhou, Jiangsu (China); Zhang, Long Jiang; Lu, Guang Ming [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Meinel, Felix G.; McQuiston, Andrew D. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Zhou, Chang Sheng; Qi, Li [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Schoepf, U.J. [Medical School of Nanjing University, Department of Medical Imaging, Jinling Hospital, Nanjing, Jiangsu (China); Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States)

    2014-07-15

    To evaluate the image quality, radiation dose and diagnostic accuracy of low kVp and low contrast material volume cerebral CT angiography (CTA) in intracranial aneurysm detection. One hundred twenty patients were randomly divided into three groups (n = 40 for each): Group A, 70 ml iodinated contrast agent/120 kVp; group B, 30 ml/100 kVp; group C, 30 ml/80 kVp. The CT numbers, noise, signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were measured in the internal carotid artery (ICA) and middle cerebral artery (MCA). Subjective image quality was evaluated. For patients undergoing DSA, diagnostic accuracy of CTA was calculated with DSA as reference standard and compared. CT numbers of ICA and MCA were higher in groups B and C than in group A (P < 0.01). SNR and CNR in groups A and B were higher than in group C (both P < 0.05). There was no difference in subjective image quality among the three groups (P = 0.939). Diagnostic accuracy for aneurysm detection among these groups had no statistical difference (P = 1.00). Compared with group A, the radiation dose of groups B and C was decreased by 45 % and 74 %. Cerebral CTA at 100 or 80 kVp using 30 ml contrast agent can obtain diagnostic image quality with a low radiation dose while maintaining the same diagnostic accuracy for aneurysm detection. (orig.)

  18. Organic materials for second harmonic generation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Twieg, R.J. (comp.)

    1985-03-31

    Materials were chosen by screening the Cambridge Crystallographic Index for new noncentrosymmetric crystalline compounds, by screening commercially available materials or by synthesis of unique new substances. Measurements were then made on the powder form of these materials. Langmuir-Blodgett films were deposited and studied. In addition to the above studies, a computer program was developed to calculate (hyper) polarizabilities of organic molecules and thus aid in the selection of materials for testing. The nonlinear molecules have been divided into three classes according to absorption cutoff: 400 to 500 nm, 300 to 400 nm, and 200 to 300 nm. 108 refs., 7 tabs. (WRF)

  19. Tube-Super Dielectric Materials: Electrostatic Capacitors with Energy Density Greater than 200 J·cm−3

    Directory of Open Access Journals (Sweden)

    Francisco Javier Quintero Cortes

    2015-09-01

    Full Text Available The construction and performance of a second generation of super dielectric material based electrostatic capacitors (EC, with energy density greater than 200 J·cm−3, which rival the best reported energy density of electric double layer capacitors (EDLC, also known as supercapacitors, are reported. The first generation super dielectric materials (SDM are multi-material mixtures with dielectric constants greater than 1.0 × 105, composed of a porous, electrically insulating powder filled with a polarizable, ion-containing liquid. Second-generation SDMs (TSDM, introduced here, are anodic titania nanotube arrays filled with concentrated aqueous salt solutions. Capacitors using TiO2 based TSDM were found to have dielectric constants at ~0 Hz greater than 107 in all cases, a maximum operating voltage of greater than 2 volts and remarkable energy density that surpasses the highest previously reported for EC capacitors by approximately one order of magnitude. A simple model based on the classic ponderable media model was shown to be largely consistent with data from nine EC type capacitors employing TSDM.

  20. Numerical method and model for calculating thermal storage time for an annular tube with phase change material

    Institute of Scientific and Technical Information of China (English)

    刘泛函; 徐建新; 王辉涛; 王华

    2017-01-01

    For calculating the thermal storage time tor an annular tube with phase change material(PCM),a novel method is proposed.The method is suitable for either low-temperature PCM or high-temperature PCM whose initial temperature is near the melting point.The deviation fit is smaller than 8%when the time is below 2×10~4 s.Comparison between the predictions and the reported experimental data of thermal storage time at same conditions is investigated and good agreements have been got.Based on this method,the performance of the thermal storage unit and the role of natural convection are also investigated.Results show a linear relation between the maximum amount of stored heat and thermal storage time,and their ratio increases with the height of the thermal storage unit.As the thickness of the cavity increases,natural convection plays an increasingly important role in promoting the melting behavior of paraffin.When the thickness of the cavity is small,natural convection restrains the melting behavior of paraffin.

  1. An experimental investigation of shell and tube latent heat storage for solar dryer using paraffin wax as heat storage material

    Directory of Open Access Journals (Sweden)

    Ashish Agarwal

    2016-03-01

    Full Text Available In the presented study the shell and tube type latent heat storage (LHS has been designed for solar dryer and paraffin wax is used as heat storage material. In the first part of the study, the thermal and heat transfer characteristics of the latent heat storage system have been evaluated during charging and discharging process using air as heat transfer fluid (HTF. In the last section of the study the effectiveness of the use of an LHS for drying of food product and also on the drying kinetics of a food product has been determined. A series of experiments were conducted to study the effects of flow rate and temperature of HTF on the charging and discharging process of LHS. The temperature distribution along the radial and longitudinal directions was obtained at different time during charging process to analyze the heat transfer phenomenon in the LHS. Thermal performance of the system is evaluated in terms of cumulative energy charged and discharged, during the charging and discharging process of LHS, respectively. Experimental results show that the LHS is suitable to supply the hot air for drying of food product during non-sunshine hours or when the intensity of solar energy is very low. Temperature gain of air in the range of 17 °C to 5 °C for approximately 10 hrs duration was achieved during discharging of LHS.

  2. Efficiency and entropy generation in fined tube solar collectors systems; Eficiencia e geracao de entropia em sistemas de tubos aletados coletores de energia solar

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Marcio Bueno dos [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. de Integracao e Testes; Saboya, Sergio Mourao [Instituto Tecnologico de Aeronautica, Sao Jose dos Campos, SP (Brazil). Dept. de Energia

    1998-07-01

    This paper studies the efficiency of a fined tube solar collector used in artificial satellites and the relation of this efficiency with the entropy generation in the fin. The mathematical modeling of heat transfer in the collector leads to a non-linear integrodifferential system of equations, which is solved numerically. The solution gives the efficiency, which is presented as function of geometrical and physical characteristics of the collector. It is also shown that a minimum entropy generation in the fins, in a collector, whose characteristics are subjected to constraints, corresponds to an optimum efficiency, that is, an efficiency value advantageous to collector performance. (author)

  3. Next Generation Advanced Binder Chemistries for High Performance, Environmentally DurableThermal Control Material Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative SBIR Phase II proposal will develop next generation products for Thermal Control Material Systems (TCMS) an adhesives based on the next generation...

  4. New Materials for High Temperature Thermoelectric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Kauzlarich, Susan [Univ. of California, Davis, CA (United States)

    2016-02-03

    The scope of this proposal was to develop two new high ZT materials with enhanced properties for the n- and p-leg of a thermoelectric device capable of operating at a maximum temperature of 1275 K and to demonstrate the efficiency in a working device. Nanostructured composites and new materials based on n– and p–type nanostructured Si1-xGex (ZT1273K ~ 1) and the recently discovered p–type high temperature Zintl phase material, Yb14MnSb11 (ZT1273K ~1) were developed and tested in a working device.

  5. Efficient and Safe Chemical Gas Generators with Nanocomposite Reactive Materials

    Science.gov (United States)

    2015-11-30

    ammonia borane has been developed that involves the reaction of mechanically alloyed Al·Mg powder with water as a source of heat for ammonia borane...Edward L. Dreizin, Evgeny Shafirovich. Hydrogen generation from ammonia borane and water through combustion reactions with mechanically alloyed... Synthesis , 21 - 24 October 2013, South Padre Island, TX, p. 211. Rodriguez, D., Machado, M., Shafirovich, E., and Dreizin, E.L., “Gas Generating

  6. Constitution of Drop-Tube-Generated Coal Chars from Vitrinite- and Inertinite-Rich South African Coals

    Energy Technology Data Exchange (ETDEWEB)

    Louw, Enette B.; Mitchell, Gareth D.; Wang, Juan; Winans, Randall E.; Mathews, Jonathan P.

    2016-01-21

    The structural transformations of coal and the resultant char morphologies are strongly dependent on the initial structure and degree of thermoplasticity achieved during coal-to-char transition. These are a function of petrographic composition, rank, particle size, and heating rate and strongly affect combustion behavior. This study compares the devolatilization and subsequent combustion behavior of an inertinite-rich (87.7% dmmf) and a vitrinite-rich (91.8% dmmf) South African coal, wet-screened to a narrow particle size distribution of 200 x 400 mesh. Pyrolysis chars were generated under rapid-heating conditions (104-105 °C/s) in a drop-tube reactor to closely resemble chars generated in pulverized combustion conditions. The inertinite-rich coal took ~ 400 ms to devolatilize in the drop-tube, compared to only ~ 240 ms for the vitrinite-rich sample. The chemical and physical structure (the constitution) of the chars were investigated through a range of chemical, physical, and optical characteristics including the maceral differences, and high ash yields. To evaluate the combustion reactivity non-isothermal burn-out profiles were obtained through thermogravimetrical analyses (TGA) in air. The vitrinite-rich char had on average 20% higher reaction rates than the inertinite-rich char under the various combustion conditions. The char samples were de-ashed with HCl and HF acid which resulted in an increase in combustion reactivity. The maximum reaction rate of the high-ash (36% ash yield) inertinite-rich char increased with 80% after de-ashing. While the vitrinite-rich char with an ash yield of 15%, had a 20% increase in reactivity after de-ashing. The ash acted as a barrier, and the removal of ash most likely increased the access to reactive surface area. The chemical and physical structures of the chars were characterized through a range of different analytical techniques to quantify the factors contributing to reactivity differences. The morphologies of the chars

  7. Strategies and actions for the mitigation of the phenomenon DENTING in the tube sheet (TTS Denting) steam generators of the NPP Asco Denting at the top of the SG tube sheet (TTS tube denting) has recently been experienced in new and replacement SGs at several plants; Estrategias y acciones para la mitigacion del fenomeno DENTING en la placa tubular de generadores de vapor (TTS DENTING) de la Central Nuclear de Asco

    Energy Technology Data Exchange (ETDEWEB)

    Espanol Villar, J.

    2013-07-01

    It is highly likely that the accumulation of sludge (deposits) on the tube sheet is clearly associated with the denting occurrence. More specifically, it is commonly believed that an aggressive crevice environment formed within the deposits or in the shallow tight tube sheet to tube crevice below the deposits is at the origin of the denting (tube deformation), and, when present, the consequent stress corrosion cracking (SCC). There are described a set of strategies that have been followed since the emergence of the TTS denting phenomenon on Steam Generator of the Nuclear Power Plants Asco I and II, influenced by the presence of hard sludge in the tube plate of Steam Generators, their results and the evolution of the phenomenon in relation to the various measures taken.

  8. Discussion on Selection of Crude Distillation Unit Hot Overhead Condenser Tube Bundle Material%浅谈常顶热交换器管束选材

    Institute of Scientific and Technical Information of China (English)

    刘洋; 高威

    2016-01-01

    炼油企业常减压装置中的常顶热交换器管束腐独问题一直比较突出,对常减压装置安稳长周期运行构成了严重威胁。通过查找近年来多套常减压装置常顶热交换器管束选材及使用情况,总结归纳了常用的3种常顶热交换器管束材质09Cr2AlMoRE、双相钢2205、钛在对应使用工况下的注意事项,经过对多套常减压装置常顶热交换器管束腐蚀情况的分析,列出了每种常减压装置常顶热交换器管束材质的腐蚀机理以及改进措施,对今后常减压装置常顶热交换器管束选材具有一定的参考意义。%The corrosion problem of crude distillation unit (CDU ) hot overhead condenser tube has been more prominent for many years ,this problem is a serious threat for long‐term operation constitutes of CDU .For finding CDU hot overhead condenser tubes material selection in several sets of CDU ,and using of CDU hot overhead condenser tube in each refinery after production op‐erations ,this article summarizes the notes of CDU hot overhead condenser tubes commonly used three types of material (09Cr2AlMoRE ,dual‐phase steel 2205 ,TA) under the corresponding use condition .By analysis of the corrosion of CDU hot overhead condenser tube in several sets of CDU ,CDU hot overhead condenser tubes corrosion mechanism and improvement measures of each type material were list in this text which has a certain reference significance in future for the CDU hot overhead condenser tube material selection in CDU .

  9. photomultiplier tube

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  10. photomultiplier tubes

    CERN Multimedia

    photomultiplier tubes. A device to convert light into an electric signal (the name is often abbreviated to PM). Photomultipliers are used in all detectors based on scintillating material (i.e. based on large numbers of fibres which produce scintillation light at the passage of a charged particle). A photomultiplier consists of 3 main parts: firstly, a photocathode where photons are converted into electrons by the photoelectric effect; secondly, a multiplier chain consisting of a serie of dynodes which multiply the number of electron; finally, an anode, which collects the resulting current.

  11. Phosphate Nd:glass materials for femtosecond pulse generation

    Science.gov (United States)

    Agnesi, Antonio; Carrà, Luca; Reali, Giancarlo

    2008-08-01

    Two different phosphate Nd-doped glasses have been investigated in a diode-pumped femtosecond laser. To our knowledge, only Schott's phosphate glasses were previously used in femtosecond oscillators. A slightly different behaviour was observed in our experiments, with respect to earlier reports: clean sech 2-pulses with duration <400 fs were routinely generated with wavelength corresponding to the fluorescence peak ≈1054 nm, whereas shorter pulses occurred at red-shifted wavelengths near 1067 nm. With a single 1-W pump diode (broad area emitter), cw slope efficiency as high as 32% and 139-fs pulse generation were demonstrated.

  12. 2nd Generation RLV Airframe Structures and Materials

    Science.gov (United States)

    Johnson, Theodore F.

    2000-01-01

    The goals and objectives of the project summarized in this viewgraph presentation are the following: (1) Develop and demonstrate verified airframe and cryotank structural design and analysis technologies, including damage tolerance, safety, reliability, and residual strength technologies, robust nonlinear shell and cryotank analysis technologies, high-fidelity analysis and design technologies for local structural detail features and joints, and high-fidelity analysis technologies for sandwich structures; (2) Demonstrate low cost, robust materials and processing, including polymeric matrix composite (PMC) and metallic materials and processing, and refractory composite and metallic hot structures materials and processing; (3) Develop and demonstrate robust airframe structures and validated integrated airframe structural concepts, including low cost fabrication and joining, operations efficient designs and inspection techniques (non-destructive evaluation), scale-up and integrated thermal structure tests, and airframe structures IVHM; (4) Demonstrate low cost, robust repair techniques; and (5) Develop verified integrated airframe structural concepts, including integrated structural concepts.

  13. Working session 1: Tubing degradation

    Energy Technology Data Exchange (ETDEWEB)

    Kharshafdjian, G. [Atomic Energy of Canada, Mississauga, Ontario (Canada); Turluer, G. [IPSN, Fontenay-aux-Roses (France)

    1997-02-01

    A general introductory overview of the purpose of the group and the general subject area of SG tubing degradation was given by the facilitator. The purpose of the session was described as to {open_quotes}develop conclusions and proposals on regulatory and technical needs required to deal with the issues of SG tubing degradation.{close_quotes} Types, locations and characteristics of tubing degradation in steam generators were briefly reviewed. The well-known synergistic effects of materials, environment, and stress and strain/strain rate, subsequently referred to by the acronym {open_quotes}MESS{close_quotes} by some of the group members, were noted. The element of time (i.e., evolution of these variables with time) was emphasized. It was also suggested that the group might want to consider the related topics of inspection capabilities, operational variables, degradation remedies, and validity of test data, and some background information in these areas was provided. The presentation given by Peter Millet during the Plenary Session was reviewed; Specifically, the chemical aspects and the degradation from the secondary side of the steam generator were noted. The main issues discussed during the October 1995 EPRI meeting on secondary side corrosion were reported, and a listing of the potential SG tube degradations was provided and discussed.

  14. Demonstration for the Applicability of the EPRI ETSS on the SG Tube Wear Defects Formed at the Tube Support Structure

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ki Seok; Cheon, Keun Young; Nam, Min Woo [Korea Hydro and Nuclear Power Co. Ltd, Daejeon (Korea, Republic of); Min, Kyong Mahn [Universal Monitoring and Inspection Inc., Daejeon (Korea, Republic of)

    2013-10-15

    In this paper, the authorized EPRI ETSS 27906.2 applied to the detection of tapered wear volumetric indications and depth sizing within the free span area, loose part not present was reviewed and applied to the site SG tubes for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation. The experiment to demonstrate the applicability of EPRI ETSS was performed by the employment of the newly prepared STD tube and resulted in ensuring the effectiveness and equivalency of the EPRI ETSS as well. The authorized EPRI ETSS 27906.2 for getting the actual value of the wear depth and providing structural integrity interpretation based on engineering evaluation was reviewed and applied to the site SG tubes. The testing results were reviewed with the influences of SG tube material and the support structure. The impact of the tube materials was insignificant and that of the tube support structure showed somewhat conservative results. The testing resulted in successful demonstration of applicability of the EPRI ETSS on the SG tube wear defects at the tube support. One of the major flaw mechanisms detected in the currently operating domestic OPR-1000 pressurized water reactors(PWR's) steam generator(SG) tubes is wear defect. In general, wear defect has been constantly detected in the upper tube bundle imposed to the flow induced vibration interaction between tube and its support structure, and the quantity of the affected tubes has also shown the tendency to increase as plant operation life is added. In order to take appropriate measures and maintain the structural integrity for the SG tubes, wear defect is currently categorized as active damage mechanism and the tubes containing 40% or greater wear depth of the nominal tube wall thickness shall be plugged per SGMP(SG Management Program) Recently, a fairly large amplitude of wear defects on the Batwing(BW), one of the upper tube support structures in the SG

  15. Techniques for Thermal Damping in Tube Bundles

    Directory of Open Access Journals (Sweden)

    QAMAR IQBAL

    2010-10-01

    Full Text Available Flow-induced vibration in heat exchangers has been a source of concern in the process, power generation and nuclear industry for several decades. Damping has a major influence on the flow induced vibrations and is dependant on a variety of factors such as mechanical properties of the tube material, geometry of intermediate supports, the physical properties of shell-side fluid, type of tube motion, number of supports, tube frequency, shell-side temperature etc. Various damping mechanisms have been identified and quantified. Generally the effects of the higher operating temperatures on the various damping mechanisms are neglected in the general design procedure. This paper focuses on the thermal aspects of damping mechanisms subjected to single phase cross-flow in shell and tube heat exchanger and a comparison is carried out safer design based on experimental and empirical formulations.

  16. Advanced Material Intelligent Processing Center: Next Generation Scalable Lean Manufacturing

    Science.gov (United States)

    2012-09-04

    modular for multiple projects and adaptable as new materials and processing techniques emerge. The system was designed with Dassault Systemes CATIA ...and cable harness design was carried out with CATIA to maximize robot turn and extension. The workstation was designed to allow access to a flat tool

  17. Next Generation Engineered Materials for Ultra Supercritical Steam Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Douglas Arrell

    2006-05-31

    To reduce the effect of global warming on our climate, the levels of CO{sub 2} emissions should be reduced. One way to do this is to increase the efficiency of electricity production from fossil fuels. This will in turn reduce the amount of CO{sub 2} emissions for a given power output. Using US practice for efficiency calculations, then a move from a typical US plant running at 37% efficiency to a 760 C /38.5 MPa (1400 F/5580 psi) plant running at 48% efficiency would reduce CO2 emissions by 170kg/MW.hr or 25%. This report presents a literature review and roadmap for the materials development required to produce a 760 C (1400 F) / 38.5MPa (5580 psi) steam turbine without use of cooling steam to reduce the material temperature. The report reviews the materials solutions available for operation in components exposed to temperatures in the range of 600 to 760 C, i.e. above the current range of operating conditions for today's turbines. A roadmap of the timescale and approximate cost for carrying out the required development is also included. The nano-structured austenitic alloy CF8C+ was investigated during the program, and the mechanical behavior of this alloy is presented and discussed as an illustration of the potential benefits available from nano-control of the material structure.

  18. Advanced Low Temperature Thermoelectric Materials for Cryogenic Power Generation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this work we will: 1) develop novel TE materials  with a factor of 2x or more improvement in the dimensionless TE figure of merit (ZT) over state-of-the-art...

  19. Transient analysis with high percentages steam generator tube plugging of Angra 1 nuclear power plant; Analise de transientes com altos percentuais de tamponamento dos tubos dos geradores de vapor de Angra 1

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Marcio Poubel; Martins Junior, Laercio Lucena; Vanni, Enio Antonio; Machado, Marcio Dornellas; Moreira, Francisco Jose [ELETRONUCLEAR, Rio de Janeiro, RJ (Brazil); Alvim, Antonio Carlos M. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    1999-11-01

    The present work is part of several analyses under development in ELETRONUCLEAR/ COPPE-UFRJ to evaluate impacts on licensing bases and operating conditions of an increase in steam generator tube plugging for Angra 1 NPP. Total loss of reactor coolant flow uncontrolled boron dilution transients were initially analysed. The final results indicated that were no impacts on FSAR established margins, in case of 24% steam generator tube plugging. (author) 3 refs., 4 figs., 4 tabs.

  20. New generation of pattern materials for investment casting

    Directory of Open Access Journals (Sweden)

    A. Karwiński

    2011-01-01

    Full Text Available Pattern mixtures (so-called soft mixtures currently used in investment casting are composed of paraffin, stearin, and - to a lesser extent –of ceresin, polyethylene wax and other natural and synthetic waxes. During studies, several types of soft pattern mixtures were developedby modifying the already existing compositions with appropriate additives. Based on the studies of physico-chemical and performanceproperties, the composition of pattern material was optimised.

  1. Performance-Enhancing Materials for Future Generation Explosives and Propellants

    Science.gov (United States)

    2012-05-25

    or sulfamic acid catalysts in alcohol with heat. An intermediate imine adduct characterized by x-ray crystallography was obtained as shown in Scheme...new energetic material that may find use as a propellant ingredient for minimum-smoke applications . Propellant manufacturers have expressed an... Application No. 2008/0045722 Al, Publication Date February 2008. II Paratosh, D.R., Duddu, R.G., Damavarapu, R., Gelber, N., Yang, K., Surapaneni, R

  2. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Israel D.; Melo, Lidervan P. [Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Jardim, Isabel C.S.F. [Instituto de Química, Universidade Estadual de Campinas, Campinas, SP (Brazil); Monteiro, Juliana C.S.; Nakano, Ana Marcia S. [Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil); Queiroz, Maria Eugênia C., E-mail: mariaeqn@ffclrp.usp.br [Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP (Brazil)

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL{sup −1} (LLOQ) to 400 ng mL{sup −1} with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from −1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective. - Highlights: • Molecularly imprinted polymer modified with a hydrophilic external layer (RAM-MIP) was synthesized in a silica capillary. • RAM-MIP capillary, used as sorbent for in-tube SPME, established specific interaction with parabens present in milk samples. • The matrix components that interacted only with the hydrophilic external layer (non-adsorptive network) were excluded.

  3. Applicable methods for NDT of tubes

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Lipponen, A.; Kauppinen, P. [VTT Industrial Systems Espoo (Finland)

    2004-05-01

    For inside inspection of tubes, eddy current testing (ET) and internal rotating ultrasonic inspection (IRIS) are mainly used at the moment. Special eddy current method, remote field technique (RFEC) is being used to some extent, but normally only for ferritic tubes. This paper presents a review of techniques that can be used for internal inspections of tubes in boilers, heat exchangers and steam generators. Material affects the choice of the method, considering given defect type and detectability with the selected technique. In general ET methods are used for inspection of non- ferromagnetic tubes and IRIS and RFEC methods for inspection of ferromagnetic tubes. New techniques have been introduced, to determine the tube condition accurately. One of the developed techniques is for instance inspection of the internal surface by combination of dye penetrant and optical laser inspection. New applications of ultrasonic techniques include defect detection and characterisation by tip diffraction echoes, defect analysis by echo dynamics and the TOFD-technique for defect sizing. Ultrasonic guided waves have a great potential to increase inspection speed for defect detection, although sizing is still under development. For inspection of ferromagnetic tubes, a method based on magnetic flux leakage has been used. In addition to the basic techniques visualisation of the measured data is one of the. key factors for improved exploitation of the inspection results. (orig.)

  4. A mechanism of aftershock generation based on progressive material softening

    Science.gov (United States)

    Dyskin, Arcady; Pasternak, Elena; Bunger, Andrew; Kear, James

    2015-04-01

    Observations of aftershocks after major seismic events show that the rate of aftershock generation reduces according to the generalised Omori's law. This law reproduces itself at a variety of scales starting from the scales of the earthquakes to the laboratory scale. Furthermore, the Omori's law holds for different types of fracture event from shear fracture propagation over the faults to failure in compression to failure in tension. In particular our tests show that the Omori's law describes the aftershocks in crystalline rocks in a laboratory model of hydraulic fracture and after bending failure of beams. We propose a new universal mechanism of aftershock generation that reproduces the Omori's law. We firstly note that it is not the residual stress, as conventionally assumed, but the residual strain that is created by the preceding fracture process. The aftershocks are created by the residual stress that is related to the residual strain through elastic moduli. The accumulation of the aftershock-related microcracks reduces the elastic moduli and thus reduces the residual stress. This overall reduction of the residual stress with the number of aftershocks is the reason for the rate reduction in aftershock generation. Naturally this process might be accompanied by the reduction in wave velocities, albeit, as we show, the reduction is rather low. The effect the accumulated microcracks have on the moduli considerably depends on the microcrack distribution over both positions and orientations. We found that (a) if the microcracks have isotropic distribution over orientations the classical Omori's law is reproduced; (b) if the microcracks are shear and parallel to each other but randomly situated in space the generalised Omori's law is reproduced with the exponent p1. The main feature of the latter case is the existence of a critical value of the number of sliding zones: when it is reached a large-scale sliding zone is formed.

  5. Next Generation Nuclear Plant Materials Research and Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    G. O. Hayner; E.L. Shaber

    2004-09-01

    The U.S Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed, thermal neutron spectrum reactor that will produce electricity and hydrogen in a state-of-the-art thermodynamically efficient manner. The NGNP will use very high burn-up, low-enriched uranium, TRISO-coated fuel and have a projected plant design service life of 60 years.

  6. Next Generation Nuclear Plant Materials Selection and Qualification Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    R. Doug Hamelin; G. O. Hayner

    2004-11-01

    The U.S. Department of Energy (DOE) has selected the Very High Temperature Reactor (VHTR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production without greenhouse gas emissions. The reactor design is a graphite-moderated, helium-cooled, prismatic or pebble bed thermal neutron spectrum reactor with an average reactor outlet temperature of at least 1000 C. The NGNP will use very high burn up, lowenriched uranium, TRISO-Coated fuel in a once-through fuel cycle. The design service life of the NGNP is 60 years.

  7. New Material System for 3rd Generation IR Applications

    Science.gov (United States)

    2010-12-01

    misfit dislocations need to be generated somewhere in the thin film stack to alleviate this energy which ultimately propagates into the IR-absorbing...Laboratory ARO U.S. Army Research Office As arsenic Cd cadmium CdSe cadmium selenide CdTe cadmium telluride CdZnTe cadmium zinc telluride CHM...Laboratory (ARL) has begun investigating mercury cadmium selenide (HgCdSe) for infrared (IR) applications. Analogous to HgCdTe, HgCdSe is a tunable

  8. Data for the inhibition effects of recombinant lamprey CRBGP on the tube formation of HUVECs and new blood vessel generation in CAM models

    Directory of Open Access Journals (Sweden)

    Qi Jiang

    2016-03-01

    Full Text Available In the present data article, lamprey cysteine-rich buccal gland protein (CRBGP which belongs to cysteine-rich secretory proteins (CRISPs family was recombinant and expressed in Rosetta blue cells. After identification, the recombinant protein was purified through affinity chromatograph. The inhibition effects of recombinant lamprey CRBGP (rL-CRBGP on tube formation of human umbilical vein endothelial cells (HUVECs and new blood vessel generation in chick chorioallantoic membrane (CAM models were analyzed. This paper contains data related to research concurrently published in “Anti-angiogenic activities of CRBGP from buccal glands of lampreys (Lampetra japonica” [1].

  9. Sound Tube Fixation Method of Micro Ringtone Airflow Piezoelectric Generator%微环音气流压电发电机声管固定方法

    Institute of Scientific and Technical Information of China (English)

    邹华杰; 陈荷娟; 赖长缨; 孙剑韬; 姜琦

    2014-01-01

    针对声管固定方法对微环音气流压电发电机最大输入功率的影响,提出了应用有限元和间边界元相结合的方法,对不同固定方法下的声管,数值模拟腔体受谐波(正弦波)激励的振动响应。在满足压电换能器最大机械功率条件下,选择合适的声管固定方法。结果表明:结构尺寸一定时,固支-固支固定有利于提高固有频率;结构尺寸越小,不同固定方法所对应的固有频率差异越大;固支-固支固定下,声管的基频较高且其偏差影响小。不同固定方法和不同尺寸下声管的谐响应和基频变化趋势,为微环音气流压电发电机的设计提供参考,也为进一步的换能器设计和验证实验提供了依据。%Methods of sound tube fixation the have great effect on the input power of micro-ringtone airflow piezoelectric generator.A finite element method combined with indirect boundary element method was proposed, harmonic responses of the sound tube with various fixation methods were analyzed.To maximize mechanical power of piezoelectric transducer,it should be choosing proper fixation methods of the sound tube.The result showed that:for the given structure size,clamped-clamped fixation method was beneficial to improve the natural frequency;the smaller size,the greater difference of natural frequency corresponded to various fixation meth-ods;clamped-clamped sound tube possessed higher fundamental frequency,and its deviation was small.The harmonic response and trend of fundamental frequency of sound tube with various fixing boundaries and different diameters could provide valuable reference for the design of micro-ringtone airflow piezoelectric generator;and it also provided the basis for further the design of transducer and experimental verification.

  10. A new generation of B(n)N(n) rings as a supplement to boron nitride tubes and cages.

    Science.gov (United States)

    Monajjemi, Majid; Boggs, James E

    2013-02-21

    In B(n)N(n) cages or tubes, when the quasi-borazine rings are attached to each other through a pair of common atoms of B and N, the bonding structure is named class A. On the other hand, there are some B(n)N(n) rings including a covalent bond between two atoms of B and N, which are named class B. In all previous studies, both reports of synthesis and theoretical calculation of boron nitride tubes and cages, the quasi-borazine units are attached together like class A. There are no theoretical or experimental reports from class B compounds except for a brief study in our previous works (Struct. Chem. 2012, 23, 551-580; J. Phys. Chem. C 2010, 114, 15315.). In this study, we have used two kinds of boron nitride rings from a twisted BN sheet in the same chirality created by different mechanisms. For (4, 4) chirality, the molecules B(16)N(16) and B(15)N(15) are found to respectively represent class A and B, and for (5, 5) chirality the molecules B(20)N(20) and B(18)N(18) are respectively again of class A and B. The structure of class A rings is similar to boron nitride tubes, but we have shown that it is impossible to produce a macromolecule of class B form as tubes or cages, because there is much more instability and intermolecular tension in macro forms of class B. This is the main reason that the class B molecules are rare and, because of their small size, have not yet been synthesized, although we have some suggestions for the synthesis of these kinds of molecules. The stability and electromagnetic properties with hybrid density functional theory using the EPR-III and EPR-II basis sets for explanation of hyperfine parameters and spin densities, electrical potential, and isotropic Fermi coupling constant of these rings have been studied by the nonbonded interaction models. Normal mode analyses including aromaticity have been investigated by using the nucleus independent chemical shift values at the ring center. Interaction energy and gain in energy aid in describing

  11. Field survey and laboratory tests on composite materials case of GRP (Glass Fiber Reinforced Polyester tubes for water suply

    Directory of Open Access Journals (Sweden)

    Radu Hariga

    2013-09-01

    Full Text Available In the Moldova land, were made two lines of water adduction, having 6000 m length and 40 m slope, or 1/150 slope. The water supply component tubes were disposed under the plant: The tubes are made of glass – reinforced thermosetting plastics (GRP. After about 180 days of operation, one of the lines showed severe deterioration of the quality pipe components. This paper deals with some laboratory tests in order to detect the failure cases of the pipelines components.

  12. Selective molecularly imprinted polymer combined with restricted access material for in-tube SPME/UHPLC-MS/MS of parabens in breast milk samples.

    Science.gov (United States)

    Souza, Israel D; Melo, Lidervan P; Jardim, Isabel C S F; Monteiro, Juliana C S; Nakano, Ana Marcia S; Queiroz, Maria Eugênia C

    2016-08-17

    A new molecularly imprinted polymer modified with restricted access material (a hydrophilic external layer), (MIP-RAM) was synthesized via polymerization in situ in an open fused silica capillary. This stationary phase was used as sorbent for in-tube solid phase microextraction (in-tube SPME) to determine parabens in breast milk samples by ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Scanning electron micrographs (SEM) illustrate MIP surface modification after glycerol dimethacrylate (hydrophilic monomer) incorporation. The interaction between parabens and MIP-RAM was investigated by Fourier-transform infrared (FTIR) spectroscopy. The Scatchard plot for MIP-RAM presented two linear parts with different slopes, illustrating binding sites with high- and low-affinity. Endogenous compounds exclusion from the MIP-RAM capillary was demonstrated by in-tube SPME/LC-UV assays carried out with blank milk samples. The in-tube SPME/UHPLC-MS/MS method presented linear range from 10 ng mL(-1) (LLOQ) to 400 ng mL(-1) with coefficients of determination higher than 0.99, inter-assay precision with coefficient of variation (CV) values ranging from 2 to 15%, and inter-assay accuracy with relative standard deviation (RSD) values ranging from -1% to 19%. Analytical validation parameters attested that in-tube SPME/UHPLC-MS/MS is an appropriate method to determine parabens in human milk samples to assess human exposure to these compounds. Analysis of breast milk samples from lactating women demonstrated that the proposed method is effective.

  13. Raw material generated from pet bottle recycling and its derivatives

    Directory of Open Access Journals (Sweden)

    João Almeida Santos

    2015-08-01

    Full Text Available The recycling process is no longer a pejorative connotation business to become the main business of any company not only because of the need to conserve virgin resources, but mainly because of the benefits to the environment. In this sense, this paper aims at assessing the possibility of exports of polyethylene terephthalate - PET known for - a type of product that can be recycled and reprocessed into products of various types and applications. This article has been structured based on exploratory research bibliographic database of scientific articles, books, newspapers and magazines where we analyze the main steps involved in the recycling of PET and its exploitation for export. Support of organizations and associations such as the Brazilian Association of PET (ABIPET contributed to the development of theoretical framework. The market operated and what can still be very large, with the possibility of exponential growth supported by: the economy in the use of virgin resources reduces the impact of chemicals in the environment, saving energy used in the production process, reducing the use of financial resources allocated to the reuse of materials.

  14. Effect of hydrogen isotope content on tensile flow behavior of Zr-2.5Nb pressure tube material between 25 and 300 °C

    Energy Technology Data Exchange (ETDEWEB)

    Bind, A.K. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 (India); Sunil, S. [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Singh, R.N., E-mail: rnsingh@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085 (India); Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094 (India)

    2016-08-01

    Tensile properties of autoclaved Zr-2.5Nb pressure tube material containing hydrogen isotope between 5 and 200 wppm were evaluated between 25 and 300 °C using specimens with its axis oriented along longitudinal direction of the tube. Analysis of tensile test results showed that both YS and UTS of this alloy decreased linearly with increasing test temperature. The uniform and total plastic strain decreased marginally with increase in test temperature. At all test temperatures, before necking tensile properties were unaffected by hydrogen isotope concentration whereas hydrogen isotope had clear effect on post-necking tensile properties especially at 25 and 100 °C. Post-necking ductility showed a transition behavior at 25 and 100 °C and it was able to capture the effect of hydride embrittlement in this material. - Highlights: • Tensile properties of Zr-2.5Nb pressure tube alloy were evaluated. • Effect of deuterium content and test temperature were studied. • Pre-necking tensile properties appeared to unaffected by the deuterium content. • Post-necking tensile properties captured the effect of hydride embrittlement.

  15. High-throughput Z T predictions of nanoporous bulk materials as next-generation thermoelectric materials: A material genome approach

    Science.gov (United States)

    Hao, Qing; Xu, Dongchao; Lu, Na; Zhao, Hongbo

    2016-05-01

    The advancement of computational tools for material property predictions enables a broad search of novel materials for various energy-related applications. However, challenges still exist in accurately predicting the mean free paths of electrons and phonons in a high-throughput frame for thermoelectric property predictions, which largely hinders the computation-driven material search for novel materials. In this work, this need is eliminated under the limit of reduced nanostructure size within a bulk material, in which these mean free paths are restricted by the nanostructure size. A criterion for Z T evaluation is proposed for general nanoporous bulk materials and is demonstrated with representative oxides.

  16. Effect of the sequence of tube rolling in a tube bundle of a shell and tube heat exchanger on the stress-deformed state of the tube sheet

    Science.gov (United States)

    Tselishchev, M. F.; Plotnikov, P. N.; Brodov, Yu. M.

    2015-11-01

    Rolling the tube sheet of a heat exchanger with U-shaped tubes, as exemplified by the vapor cooler GP-24, was simulated. The simulation was performed using the finite element method with account of elas- tic-plastic properties of the tube and tube sheet materials. The simulation consisted of two stages; at the first stage, maximum and residual contact stress in the conjunction of a separate tube and the tube sheet was determined using the "equivalent sleeve" model; at the second stage, the obtained contact stress was applied to the hole surface in the tube sheet. Thus, different tube rolling sequences were simulated: from the center to the periphery of the tube sheet and from the periphery to the center along a spiral line. The studies showed that the tube rolling sequence noticeably influences the value of the tube sheet residual deflection for the same rolling parameters of separate tubes. Residual deflection of the tube sheet in different planes was determined. It was established that the smallest residual deflection corresponds to the tube rolling sequence from the periphery to the center of the tube sheet. The following dependences were obtained for different rolling sequences: maximum deformation of the tube sheet as a function of the number of rolled tubes, residual deformation of the tube sheet along its surface, and residual deflection of the tube sheet as a function of the rotation angle at the periphery. The preferred sequence of tube rolling for minimizing the tube sheet deformation is indicated.

  17. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    Science.gov (United States)

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  18. Categorising YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2011-01-01

    This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC) of YouTube. The article investigates the construction of navigation processes on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s...... technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition...... and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within...

  19. Method for generation of THz frequency radiation and sensing of large amplitude material strain waves in piezoelectric materials

    Science.gov (United States)

    Reed, Evan J.; Armstrong, Michael R.

    2010-09-07

    Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.

  20. Molybdenum Tube Characterization report

    Energy Technology Data Exchange (ETDEWEB)

    Beaux II, Miles Frank [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-07

    Chemical vapor deposition (CVD) techniques have been utilized to produce free-standing molybdenum tubes with the end goal of nuclear fuel clad applications. In order to produce tubes with properties desirable for this application, deposition rates were lowered requiring long deposition durations on the order of 50 hours. Standard CVD methods as well as fluidized-bed CVD (FBCVD) methods were applied towards these objectives. Characterization of the tubes produced in this manner revealed material suitable for fuel clad applications, but lacking necessary uniformity across the length of the tubes. The production of freestanding Mo tubes that possess the desired properties across their entire length represents an engineering challenge that can be overcome in a next iteration of the deposition system.

  1. Power generator models of piezoelectric materials; Modelizacion de materiales piezoelectricos como generadores de energia

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Rodriguez, M.; Jimenez Martinez, F. J.; Frutos, J. de

    2012-07-01

    This paper presents the method to determine electrical equivalent models of piezoelectric materials used as electric power generating elements. The models developed from the experimental results have been used to obtain the type, amount and optimal topological structure of semiconductor elements needed in the input stage of the power generation system, and its behaviour under variable power supply demand. (Author) 31 refs.

  2. Tracheostomy tubes.

    Science.gov (United States)

    Hess, Dean R; Altobelli, Neila P

    2014-06-01

    Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. Differences in dimensions between tubes with the same inner diameter from different manufacturers are not commonly appreciated but may have important clinical implications. Tracheostomy tubes can be cuffed or uncuffed and may be fenestrated. Some tracheostomy tubes are designed with an inner cannula. It is important for clinicians caring for patients with a tracheostomy tube to appreciate the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient. The optimal frequency of changing a chronic tracheostomy tube is controversial. Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech. Copyright © 2014 by Daedalus Enterprises.

  3. Third harmonic generation as a rapid selection tool for organic materials for nonlinear integrated optics devices

    NARCIS (Netherlands)

    Blom, F.C.; Driessen, A.; Hoekstra, Hugo; van Schoot, J.B.P.; van Schoot, Jan B.P.; Popma, T.J.A.

    1999-01-01

    In the long trajectory from the synthesis of organic nonlinear optical materials to the completed all-optical device it is highly desirable to be able to concentrate already in an early state on only a few promising materials. Third harmonic generation (THG) is a very convenient method as it allows

  4. "ASTRO 101" Course Materials 2.0: Next Generation Lecture Tutorials and Beyond

    Science.gov (United States)

    Slater, Stephanie; Grazier, Kevin

    2015-01-01

    Early efforts to create course materials were often local in scale and were based on "gut instinct," and classroom experience and observation. While subsequent efforts were often based on those same instincts and observations of classrooms, they also incorporated the results of many years of education research. These "second generation" course materials, such as lecture tutorials, relied heavily on research indicating that instructors need to actively engage students in the learning process. While imperfect, these curricular innovations, have provided evidence that research-based materials can be constructed, can easily be disseminated to a broad audience, and can provide measureable improvement in student learning across many settings. In order to improve upon this prior work, next generation materials must build upon the strengths of these innovations while engineering in findings from education research, cognitive science, and instructor feedback. A next wave of materials, including a set of next generation lecture tutorials, have been constructed with attention to the body of research on student motivation, and cognitive load; and they are responsive to our body of knowledge on learning difficulties related to specific content in the domain. From instructor feedback, these materials have been constructed to have broader coverage of the materials typically taught in an ASTRO 101 course, to take less class time, and to be more affordable for students. This next generation of lecture tutorials may serve as a template of the ways in which course materials can be reengineered to respond to current instructor and student needs.

  5. Third harmonic generation as a rapid selection tool for organic materials for nonlinear integrated optics devices

    NARCIS (Netherlands)

    Blom, Freek C.; Driessen, Alfred; Hoekstra, Hugo J.W.M.; Schoot, van Jan B.P.; Popma, Th.J.A.

    1999-01-01

    In the long trajectory from the synthesis of organic nonlinear optical materials to the completed all-optical device it is highly desirable to be able to concentrate already in an early state on only a few promising materials. Third harmonic generation (THG) is a very convenient method as it allows

  6. Method for producing a tube

    Science.gov (United States)

    Peterson, Kenneth A.; Rohde, Steven B.; Pfeifer, Kent B.; Turner, Timothy S.

    2007-01-02

    A method is described for producing tubular substrates having parallel spaced concentric rings of electrical conductors that can be used as the drift tube of an Ion Mobility Spectrometer (IMS). The invention comprises providing electrodes on the inside of a tube that are electrically connected to the outside of the tube through conductors that extend between adjacent plies of substrate that are combined to form the tube. Tubular substrates are formed from flexible polymeric printed wiring board materials, ceramic materials and material compositions of glass and ceramic, commonly known as Low Temperature Co-Fired Ceramic (LTCC). The adjacent plies are sealed together around the electrode.

  7. Next Generation, Si-Compatible Materials and Devices in the Si-Ge-Sn System

    Science.gov (United States)

    2015-10-09

    performed extensive growth studies aimed to create entire new families of Ge1-x-ySixSny materials on industrially compatible group IV platforms ( Si , Ge and...AFRL-AFOSR-VA-TR-2016-0044 Next generation, Si -compatible materials and devices in the Si -Ge-Sn system John Kouvetakis ARIZONA STATE UNIVERSITY Final...4. TITLE AND SUBTITLE Next generation, Si -compatible materials and devices in the Si -Ge-Sn system 5a. CONTRACT NUMBER FA9550-12-1-0208 5b. GRANT

  8. Supplemental material: afterburner for generating light (anti-)nuclei with QCD-inspired event generators in pp collisions

    CERN Document Server

    2017-01-01

    This note complements the paper titled: ``Production of deuterons, tritons, $^{3}$He nuclei and their anti-nuclei in pp collisions at $\\sqrt{s}$~=~0.9, 2.76 and 7~TeV'' with additional material related to Monte Carlo simulations necessary to compare the results with lower energy experiments. It describes a coalescence-based afterburner for QCD-inspired event generators, which allows the generation of light nuclei, hyper-nuclei and their charge conjugates in proton--proton (pp) collisions at LHC energies. The event generators with the afterburner are able to reproduce the differential cross sections of light (anti-)nuclei ($A<4)$ with the same degree of agreement as those of protons and anti-protons at the same momentum per nucleon. They also explain the transverse momentum dependence of the coalescence parameters as the result of hard scattering effects.

  9. Data bank on hydrodynamics, thermal tests and tube temperature regimes of PGV-4 and PVG-1000 natural steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Ageev, A.G.; Vasileva, R.V.; Nigmatulin, B.I.; Titov, V.F.; Tarankov, G.N. [EREC Electrogorsk Research and Engineering Centre of Nuclear Plants Safety, Moscow (Russian Federation)

    1995-12-31

    The data bank was prepared by EREC, OKB `Hydropress` using results of static and dynamic tests of PGV-4 and PGV- 1000 natural steam generators cared out at Kolskaya, Novo-Voronezhskaya, Ugno-Ukrainskaya, Balakov-skaya and Hmelnitskaya NPP within period of 1974-1993. It is destined for making calculation codes verification. (authors).

  10. Power vacuum tubes handbook

    CERN Document Server

    Whitaker, Jerry

    2012-01-01

    Providing examples of applications, Power Vacuum Tubes Handbook, Third Edition examines the underlying technology of each type of power vacuum tube device in common use today. The author presents basic principles, reports on new development efforts, and discusses implementation and maintenance considerations. Supporting mathematical equations and extensive technical illustrations and schematic diagrams help readers understand the material. Translate Principles into Specific Applications This one-stop reference is a hands-on guide for engineering personnel involved in the design, specification,

  11. Supporting Infrastructure and Acceptability Issues for Materials Used in New Generation Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Curlee, T.R.; Jones, D.W.; Leiby, P.E.; Rubin, J.D.; Schexnayder, S.M.; Vogt, D.P.; Wolfe, A.K.

    1999-03-01

    To achieve its goal of producing vehicles that use two thirds less fuel than current vehicles, the Partnership of a New Generation of Vehicles (PNGV) is designing vehicles that will use lightweight materials in place of heavier materials used in current vehicles. using new materials in automobiles will require the development of a supporting infrastructure to produce both the substitute materials and the components of the substitute materials, as well as the automotive parts constructed from the new materials. This report documents a set of analyses that attempt to identify potential barriers--economic, infrastructure, and public acceptance barriers--to the materials substitution in New Generation Vehicles. The analyses rely on hypothetical vehicle market penetration scenarios and material composition. The approach is comprehensive, examining issues ranging from materials availability to their eventual disposition and its effect on the automobile recycling industry, and from supporting industries' capacity to the public acceptability of these vehicles. The analyses focus on two likely substitute materials, aluminum and glass-reinforced polymer composites.

  12. European cross-cutting research on structural materials for Generation IV and transmutation systems

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, C., E-mail: concetta.fazio@nuklear.fzk.d [Forschungszentrum Karlsruhe, Program Nuklear, P.O. Box 3640, 76021 Karlsruhe (Germany); Alamo, A. [Commissariat a l' Energie Atomique, Saclay, 91191 Gif sur Yvette cedex (France); Almazouzi, A. [Studiecentrum voor Kernenergie - Centre D' Etude de L' Energie Nucleaire, Boeretang 200, 2400 Mol (Belgium); De Grandis, S. [Ente per le Nuove Tecnologie l' Energia e l' Ambiente, CR Brasimone, 40032 Camugnano Bologna (Italy); Gomez-Briceno, D. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas, Avenida Complutense 22, 28040 Madrid (Spain); Henry, J. [Commissariat a l' Energie Atomique, Saclay, 91191 Gif sur Yvette cedex (France); Malerba, L. [Studiecentrum voor Kernenergie - Centre D' Etude de L' Energie Nucleaire, Boeretang 200, 2400 Mol (Belgium); Rieth, M. [Forschungszentrum Karlsruhe, Program Nuklear, P.O. Box 3640, 76021 Karlsruhe (Germany)

    2009-07-15

    It has been internationally recognized that materials science and materials development are key issues for the implementation of innovative reactor systems such as those defined in the framework of the Generation IV and advanced fuel cycle initiatives. In Europe, materials studies are considered within the Strategic Research Agenda of the Sustainable Nuclear Energy Technology Platform. Moreover, the European Commission has recently launched a 7th Framework Programme Research Project, named 'Generation IV and Transmutation Materials', that has the objective of addressing materials issues which are cross-cutting for more than one type of innovative reactor systems. The present work has been prepared with the aim of describing the rationale, the objectives, the work plan and the expected results of this research project.

  13. Prospectively ECG-triggered high-pitch coronary angiography with third-generation dual-source CT at 70 kVp tube voltage: feasibility, image quality, radiation dose, and effect of iterative reconstruction.

    Science.gov (United States)

    Hell, Michaela M; Bittner, Daniel; Schuhbaeck, Annika; Muschiol, Gerd; Brand, Michael; Lell, Michael; Uder, Michael; Achenbach, Stephan; Marwan, Mohamed

    2014-01-01

    Low tube voltage reduces radiation exposure in coronary CT angiography (CTA). Using 70 kVp tube potential has so far not been possible because CT systems were unable to provide sufficiently high tube current with low voltage. We evaluated feasibility, image quality (IQ), and radiation dose of coronary CTA using a third-generation dual-source CT system capable of producing 450 mAs tube current at 70 kVp tube voltage. Coronary CTA was performed in 26 consecutive patients with suspected coronary artery disease, selected for body weight Image noise was lower in IR vs FBP (60 ± 10 HU vs 74 ± 8 HU; P < .001). In patients <100 kg and with a regular heart rate <60 beats/min, third-generation dual-source CT using high-pitch spiral acquisition and 70 kVp tube voltage is feasible and provides both robust IQ and very low radiation exposure. Copyright © 2014 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.

  14. Composite Materials under Extreme Radiation and Temperature Environments of the Next Generation Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Simos, N.

    2011-05-01

    In the nuclear energy renaissance, driven by fission reactor concepts utilizing very high temperatures and fast neutron spectra, materials with enhanced performance that exceeds are expected to play a central role. With the operating temperatures of the Generation III reactors bringing the classical reactor materials close to their performance limits there is an urgent need to develop and qualify new alloys and composites. Efforts have been focused on the intricate relations and the high demands placed on materials at the anticipated extreme states within the next generation fusion and fission reactors which combine high radiation fluxes, elevated temperatures and aggressive environments. While nuclear reactors have been in operation for several decades, the structural materials associated with the next generation options need to endure much higher temperatures (1200 C), higher neutron doses (tens of displacements per atom, dpa), and extremely corrosive environments, which are beyond the experience on materials accumulated to-date. The most important consideration is the performance and reliability of structural materials for both in-core and out-of-core functions. While there exists a great body of nuclear materials research and operating experience/performance from fission reactors where epithermal and thermal neutrons interact with materials and alter their physio-mechanical properties, a process that is well understood by now, there are no operating or even experimental facilities that will facilitate the extreme conditions of flux and temperature anticipated and thus provide insights into the behaviour of these well understood materials. Materials, however, still need to be developed and their interaction and damage potential or lifetime to be quantified for the next generation nuclear energy. Based on material development advances, composites, and in particular ceramic composites, seem to inherently possess properties suitable for key functions within the

  15. The thermal tube

    Energy Technology Data Exchange (ETDEWEB)

    Semena, M.G.

    1980-08-30

    A thermal tube is proposed which contains a layer of dielectric, capillary porous material located on the internal surface of the body. To increase the heat transmitting capability, the layer of capillary porous material is made in the form of a felting, formed by hollow fibers from a non-alkaline, borosilicate glass.

  16. Eddy-current tests on operational evaluation of steam generator tubes in nuclear power plants; Ensaios de Eddy-current na avaliacao do estado operacional de tubos de geradores de vapor de centrais nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Luiz Antonio Negro Martin [Faculdade de Engenharia Industrial (FEI), Sao Paulo, SP (Brazil). Dept. de Energetica]. E-mail: luizlope@cci.fei.br; Ting, Daniel Kao Sun [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil). Dept. Engenharia de Reatores]. E-mail: dksting@net.ipen.br

    2000-07-01

    This paper presents a worldwide research on the technical and economical impacts due to failure in tube bundles of nuclear power plant steam generators. An Eddy current non destructive test using Foucault currents for the inspection and failure detection on the tubes, and also the main type of defects. The paper also presents the signals generated by a Zetec MIZ-40 test equipment. This paper also presents a brief description of an automatic system for data analysis which is under development by using a fuzzy logic and artificial intelligence.

  17. The criterion for blanking-off heat-transfer tubes in the steam generators at VVER-based nuclear power plants based on the results of eddy-current examination

    Science.gov (United States)

    Lunin, V. P.; Zhdanov, A. G.; Chegodaev, V. V.; Stolyarov, A. A.

    2015-05-01

    The problem of defining the criterion for blanking off heat-transfer tubes in the steam generators at nuclear power plants on the basis of signals obtained from the standard multifrequency eddy-current examination is considered. The decision about blanking off one or another tube is presently made with reference to one parameter of the relevant signal at the working frequency, namely, with reference to its phase, which directly depends on the depth of the flaw being detected, i.e., a crack in the tube. The crack depth equal to 60% of the tube wall thickness is regarded to be the critical one, at which a decision about withdrawing such a tube out from operation (blanking off) must be taken. However, since mechanical tensile rupture tests of heat-transfer tubes show the possibility of their further use with such flaws, the secondary parameter of the signal, namely, its amplitude, must be used for determining the blanking-off criterion. The signals produced by the standard flow-type transducers in response to flaws in the form of a longitudinal crack having the depth and length within the limits permitted by the relevant regulations were calculated using 3D finite-element modeling. Based on the obtained results, the values of the eddy-current signal amplitude were determined, which, together with the signal phase value, form a new amplitude-phase criterion for blanking off heat-transfer tubes. For confirming the effectiveness of this technique, the algorithm for revealing the signal indications satisfying the proposed amplitude-phase criterion was tested on real signals obtained from operational eddy-current examination of the state of steam generator heat-transfer tubes carried out within the framework of planned preventive repair.

  18. Next Generation Nuclear Plant Materials Research and Development Program Plan, Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    G.O. Hayner; R.L. Bratton; R.E. Mizia; W.E. Windes; W.R. Corwin; T.D. Burchell; C.E. Duty; Y. Katoh; J.W. Klett; T.E. McGreevy; R.K. Nanstad; W. Ren; P.L. Rittenhouse; L.L. Snead; R.W. Swindeman; D.F. Wlson

    2007-09-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 950°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, TRISO-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Some of the general and administrative aspects of the R&D Plan include: • Expand American Society of Mechanical Engineers (ASME) Codes and American Society for Testing and Materials (ASTM) Standards in support of the NGNP Materials R&D Program. • Define and develop inspection needs and the procedures for those inspections. • Support selected university materials related R&D activities that would be of direct benefit to the NGNP Project. • Support international materials related collaboration activities through the DOE sponsored Generation IV International Forum (GIF) Materials and Components (M&C) Project Management Board (PMB). • Support document review activities through the Materials Review Committee (MRC) or other suitable forum.

  19. Pump element for a tube pump

    DEFF Research Database (Denmark)

    2011-01-01

    relative to the rod element so as to allow for a fluid flow in the tube through the first valve member, along the rod element, and through the second valve member. The tube comprises an at least partly flexible tube portion between the valve members such that a repeated deformation of the flexible tube...... portion acts to alternately close and open the valve members thereby generating a fluid flow through the tube. The invention further relates to a pump element comprising at least two non-return valve members connected by a rod element, and for insertion in an at least partly flexible tube in such tube...... pump as mentioned above, thereby acting to generate a fluid flow through the tube upon repeated deformation of the tube between the two valve members. The pump element may comprise a connecting part for coupling to another tube and may comprise a sealing part establishing a fluid tight connection...

  20. Effect of various shapes and materials on the generated power for piezoelectric energy harvesting system

    Science.gov (United States)

    Kaur, Sarabjeet; Graak, Pinki; Gupta, Ankita; Chhabra, Priya; Kumar, Dinesh; Shetty, Arjun

    2016-04-01

    Piezoelectric energy harvesting systems are used to convert vicinity vibrations into useful electrical energy. Effect of various shapes and materials open the gateway towards the choice of maximum power generation for the micro and nano world. Comsol Multiphysics was used to simulate the four designed shapes named as Pi, E, Rectangular and T in the size range of less than 1mm but greater than 1 micron. Designed shapes worked under the impact of ambient vibrations using few piezoelectric materials for the maximum power generation so that traditional power sources can be replaced with such piezoelectric energy harvester. A layer of piezoelectric material (PZT-5H, AlN, BaTiO3) of thickness 0.5 µm is added to the cantilever and the base material is silicon of thickness 1.5 µm. Simulations were performed using the piezoelectric device module of Comsol Multiphysics. All three materials were studied for the all four cantilever geometries. The generated power was observed maximum as 382.5 µW in case of the barium titanate material with rectangular shape geometry but the displacement is 0.132 µm which is very less whereas E shape cantilever shows the maximum displacement of 0.6078 µm in case of PZT-5H, Hence rectangular shape with barium titanate material is concluded to be good for maximum power generation but the displacement factor cannot be neglected, hence the cantilever with E shape geometry is considered as the best with a generated power of 49.005 µW and a displacement of 0.6078 µm.

  1. Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method

    Energy Technology Data Exchange (ETDEWEB)

    Ma Yanwei, E-mail: ywma@mail.iee.ac.c [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, P.O. Box 2703, Beijing 100190 (China); Gao Zhaoshun; Qi Yanpeng; Zhang Xianping; Wang Lei; Zhang Zhiyu; Wang Dongliang [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, P.O. Box 2703, Beijing 100190 (China)

    2009-05-01

    The recent discovery of superconductivity in the iron-based superconductors with very high upper critical fields presents a new possibility for practical applications, but fabricating fine-wire is a challenge because of mechanically hard and brittle powders and the toxicity and volatility of arsenic. In this paper, we report the synthesis and the physical characterization of iron pnictide wires and bulks prepared by the powder-in-tube method (PIT). A new class of high-T{sub c} iron pnictide composite wires, such as LaFeAsO{sub 1-x}F{sub x}, SmFeAsO{sub 1-x}F{sub x} and Sr{sub 1-x}K{sub x}FeAs, has been fabricated by the in situ PIT technique using Fe, Ta and Nb tubes. Microscopy and X-ray analysis show that the superconducting core is continuous, and retains phase composition after wire drawing and heat treatment. Furthermore, the wires exhibit a very weak J{sub c}-field dependence behavior even at high temperatures. The upper critical field H{sub c2}(0) value can exceed 100 T, surpassing those of MgB{sub 2} and all the low temperature superconductors and indicating a strong potential for applications requiring very high field. These results demonstrate the feasibility of producing superconducting pnictide composite wire. We also applied the one-step PIT method to synthesize the iron-based bulks, due to its convenience and safety. In fact, by using this technique, we have successfully discovered superconductivity at 35 K and 15 K in Eu{sub 0.7}Na{sub 0.3}Fe{sub 2}As{sub 2} and SmCoFeAsO compounds, respectively. These clearly suggest that the one-step PIT technique is unique and versatile and hence can be tailored easily for other rare earth derivatives of novel iron-based superconductors.

  2. Fabrication and characterization of iron pnictide wires and bulk materials through the powder-in-tube method

    Science.gov (United States)

    Ma, Yanwei; Gao, Zhaoshun; Qi, Yanpeng; Zhang, Xianping; Wang, Lei; Zhang, Zhiyu; Wang, Dongliang

    2009-05-01

    The recent discovery of superconductivity in the iron-based superconductors with very high upper critical fields presents a new possibility for practical applications, but fabricating fine-wire is a challenge because of mechanically hard and brittle powders and the toxicity and volatility of arsenic. In this paper, we report the synthesis and the physical characterization of iron pnictide wires and bulks prepared by the powder-in-tube method (PIT). A new class of high- Tc iron pnictide composite wires, such as LaFeAsO 1-xF x, SmFeAsO 1-xF x and Sr 1-xK xFeAs, has been fabricated by the in situ PIT technique using Fe, Ta and Nb tubes. Microscopy and X-ray analysis show that the superconducting core is continuous, and retains phase composition after wire drawing and heat treatment. Furthermore, the wires exhibit a very weak Jc-field dependence behavior even at high temperatures. The upper critical field Hc2(0) value can exceed 100 T, surpassing those of MgB 2 and all the low temperature superconductors and indicating a strong potential for applications requiring very high field. These results demonstrate the feasibility of producing superconducting pnictide composite wire. We also applied the one-step PIT method to synthesize the iron-based bulks, due to its convenience and safety. In fact, by using this technique, we have successfully discovered superconductivity at 35 K and 15 K in Eu 0.7Na 0.3Fe 2As 2 and SmCoFeAsO compounds, respectively. These clearly suggest that the one-step PIT technique is unique and versatile and hence can be tailored easily for other rare earth derivatives of novel iron-based superconductors.

  3. Performance tests on column materials for {sup 99}Mo-{sup 99m}Tc generator

    Energy Technology Data Exchange (ETDEWEB)

    Sombrito, E.Z.; Bulos, A.D.; Tangonan, M.C. [Chemistry Research Section, Atomic Research Div., Philippine Nuclear Research Inst., Quezon (Philippines)

    1998-10-01

    To meet the need of producing a {sup 99}Mo-{sup 99m}Tc generator, based on low specific activity reactor-produced {sup 99}Mo, different procedures for preparing zirconium molybdate gels were tested. Performance tests were done on molybdate gel columns prepared using the procedures developed by Vietnam and China, and recently, on a polyzirconium compound (PZC) prepared in Japan. The conditions for the batch drying of a large volume of the gel material were studied as well as the conditions in preparing a column to concentrate technetium-99m. The performance of PZC sample as column material for the generator was also evaluated. (author)

  4. Tunable Multicolored Femtosecond Pulse Generation Using Cascaded Four-Wave Mixing in Bulk Materials

    Directory of Open Access Journals (Sweden)

    Jinping He

    2014-09-01

    Full Text Available This paper introduces and discusses the main aspects of multicolored femtosecond pulse generation using cascaded four-wave mixing (CFWM in transparent bulk materials. Theoretical analysis and semi-quantitative calculations, based on the phase-matching condition of the four-wave mixing process, explain the phenomena well. Experimental studies, based on our experiments, have shown the main characteristics of the multicolored pulses, namely, broadband spectra with wide tunability, high stability, short pulse duration and relatively high pulse energy. Two-dimensional multicolored array generation in various materials are also introduced and discussed.

  5. Materialism, status consumption and consumer ethnocentrism amongst black generation Y students in South Africa

    OpenAIRE

    A.L. Bevan-Dye; Garnett, A.; de Klerk, N

    2012-01-01

    The purpose of this study was to investigate the extent to which black Generation Y students’ exhibit status consumption, materialism and consumer ethnocentrism tendencies, and the relationship between these three constructs. The black Generation Y cohort (individuals born between 1980 and 1994) represents a large percentage of the South African market, and those enrolled at tertiary institutions constitute a particularly attractive target market to marketers given that tertiary education wer...

  6. Thermoelectric Figure of Merit of Low-temperature Generator Materials and Possibilities to Improve It

    Directory of Open Access Journals (Sweden)

    A.V. Simkin

    2014-01-01

    Full Text Available The thermoelectric properties of semiconductor material based on the bismuth telluride solid solution manufactured by the extrusion method, which has high mechanical properties, are studied in the work. Using the obtained values of thermoelectric semiconductor parameters, the coefficients of efficiency of generator thermopile of a flat design in the working temperature range are calculated. The ways to improve the efficiency of thermoelectric conversion through the use of bulk nanostructured thermoelectric materials based on bismuth telluride are considered.

  7. Tube-Forming Assays.

    Science.gov (United States)

    Brown, Ryan M; Meah, Christopher J; Heath, Victoria L; Styles, Iain B; Bicknell, Roy

    2016-01-01

    Angiogenesis involves the generation of new blood vessels from the existing vasculature and is dependent on many growth factors and signaling events. In vivo angiogenesis is dynamic and complex, meaning assays are commonly utilized to explore specific targets for research into this area. Tube-forming assays offer an excellent overview of the molecular processes in angiogenesis. The Matrigel tube forming assay is a simple-to-implement but powerful tool for identifying biomolecules involved in angiogenesis. A detailed experimental protocol on the implementation of the assay is described in conjunction with an in-depth review of methods that can be applied to the analysis of the tube formation. In addition, an ImageJ plug-in is presented which allows automatic quantification of tube images reducing analysis times while removing user bias and subjectivity.

  8. Effects of transverse profile of pump field on second harmonic generation in periodic nonlinear materials

    Institute of Scientific and Technical Information of China (English)

    GaoJin-Yue; ZhangHan-Zhuang; YangJian-Bing

    2003-01-01

    We report on a theoreticalanalysis of the effects of a converging pump field of Gaussian transverse profile on second harmonic generation in a periodic nonlinear material with quasi-phase-matching. The outputs of the centre intensity and the intensity flux for second harmonic generation are derived by simulation, based on the parameters of quasi-phase-mismatch, the waist and focus positions of the input pump beam. The results show that when the transverse profile of the pump field is taken into account, the quasi-phase-match value and focus position of input beam for maximal second harmonic generation flollow new criteria.

  9. Effects of transverse profile of pump field on second harmonic generation in periodic nonlinear materials

    Institute of Scientific and Technical Information of China (English)

    张汉壮; 杨建冰; 高锦岳

    2003-01-01

    We report on a theoretical analysis of the effects of a converging pump field of Gaussian transverse profile on second harmonic generation in a periodic nonlinear material with quasi-phase-matching. The outputs of the centre intensity and the intensity flux for second harmonic generation are derived by simulation, based on the parameters of quasi-phase-mismatch, the waist and focus positions of the input pump beam. The results show that when the transverse profile of the pump field is taken into account, the quasi-phase-match value and focus position of input beam for maximal second harmonic generation follow new criteria.

  10. Buckling Analysis for the Shape of the Thin-tube Support of Radioisotope Thermoelectric Generator to investigate structure integrity

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jong Han; Son, Kwang Jae; Hong, Jintae; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Radiation detection using scintillator light produced in materials is one of the oldest and most useful techniques for the detection of a variety of radiations. A detector using plastic scintillators is well known to have an easy operation because it consists of a chemically stable material. In general, a plastic scintillator using a polymer such as polymethylmethacrylate (PMMA), polyvinyltoluene (PVT) or polystyrene (PS) is added to an organic scintillator. As an organic scintillator, the first solute is p-terphenyl or 2.5-diphenyloxazole (PPO), and the second solute is 1,4-bis [5-phenyl-2-oxazol] benzene (POPOP). A method for preparing a plastic scintillator is a mixture of a polymer and organic scintillators used for thermal polymerization. In this study, we prepared a plastic scintillator whose manufacturing process is simple and can be freely shaped. A thin plate of the plastic scintillator was manufactured using epoxy resin as a polymer. The optimal mixture ratio to prepare the plastic scintillator was derived from the above results. Using the derived results, we made the large-area plastic scintillator which can quickly measure the contamination site and evaluated characteristics of the large-area plastic scintillator in the laboratory. A thin plate of a plastic scintillator with a simple preparation process can be freely shaped using epoxy resin and organic scintillators such as PPO and POPOP. PPO emits scintillation of light in the ultraviolet range, and POPOP is a wave shifter for moving the wavelength responsible for the PMT. The mixture ratio of PPO and POPOP was determined using their emission spectra. The optimal weight percentage of PPO and POPOP in an organic scintillator was determined to be 0.2 wt%:0.01 wt%. Based on the above results, the large-area plastic scintillator of the window size of a typical pancake-type surface contamination counter was prepared. We want to evaluate the characteristics of the large-area plastic scintillator. However

  11. Fabrication of Aluminum Tubes Filled with Aluminum Alloy Foam by Friction Welding

    Directory of Open Access Journals (Sweden)

    Yoshihiko Hangai

    2015-10-01

    Full Text Available Aluminum foam is usually used as the core of composite materials by combining it with dense materials, such as in Al foam core sandwich panels and Al-foam-filled tubes, owing to its low tensile and bending strengths. In this study, all-Al foam-filled tubes consisting of ADC12 Al-Si-Cu die-cast aluminum alloy foam and a dense A1050 commercially pure Al tube with metal bonding were fabricated by friction welding. First, it was found that the ADC12 precursor was firmly bonded throughout the inner wall of the A1050 tube without a gap between the precursor and the tube by friction welding. No deformation of the tube or foaming of the precursor was observed during the friction welding. Next, it was shown that by heat treatment of an ADC12-precursor-bonded A1050 tube, gases generated by the decomposition of the blowing agent expand the softened ADC12 to produce the ADC12 foam interior of the dense A1050 tube. A holding time during the foaming process of approximately tH = 8.5 min with a holding temperature of 948 K was found to be suitable for obtaining a sound ADC12-foam-filled A1050 tube with sufficient foaming, almost uniform pore structures over the entire specimen, and no deformation or reduction in the thickness of the tube.

  12. Recent Progress in Nanostructured Oxide TE Materials for Power Generation at High Temperatures

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini; Linderoth, Søren

    Thermoelectric (TE) materials, which can convert waste heat into electricity, could play an important role in a global sustainable energy solution and environmental problems. Metal oxides have been considered as potential TE materials for power generation that can operate at high temperatures on ......σT/κ , where S, σ, T and κ are the Seebeck coefficient, electrical conductivity, absolute temperature and thermal conductivity, respectively). We have fabricated high-quality oxide TE materials based on Ca3Co4O9 by optimizing the method for synthesis, modifying the compositions...

  13. Oxide property of SG tube materials exposed to an alkaline environment as a secondary side of a PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjin; Mun, Byung Hak; Kim, Hong Pyo; Hwang, Seong Sik [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Stress corrosion cracking (SCC) is an issue that should be overcome in nuclear power plants (NPP). Recognizing that cracks initiate and propagate through unavoidable breakdowns and alterations of the surface oxide on Alloy 600, the SCC behavior is closely related to the oxide property. Corrosion resistance against SCC, in particular, was improved through a newly developed heat treatment process from LTMA (low temperature mill annealed) Alloy 600 to HTMA (high temperature mill annealed) Alloy 600, and then TT (thermally treated) Alloy 600. Intra-granular carbide widely spread in LTMA Alloy 600 dissolves, and inter-granular carbide is then formed during high-temperature mill annealing and cooling, which leads to a great SCC resistance enhancement. Inter-granular carbide is well developed, healing chromium depletion at a grain boundary, and residual stress is removed during additional thermal treatment following mill annealing, which improves the SCC resistance more. In spite of this improvement of TT Alloy 600, Seabrook and Vogtle 1 in the US, using TT Alloy 600, also showed SCC due to a non-optimum microstructure, residual stress, Pb existence, and so on over a 20-year operation of an NPP even though SCC occurs less frequently than LTMA and (or) HTMA Alloy 600s. SCC has also occurred for TT Alloy 600 tubes in Korea, whose main causes resemble US cases. The pH at high temperature in the crevice of SG tubes distributes from acidic of 4 to alkaline above 10 at high temperature depending on the impurity concentration such as chloride and hydroxide ions including other corrosive impurities such as Pb known as very detrimental species even though the bulk pH of secondary water is a mild alkaline solution. Regarding the aggressiveness of Pb, even Alloy 690 is also susceptible to SCC in a strong alkaline solution with lead. Therefore, in the present work, the oxides were investigated in a leaded alkaline solution of pH(T) 9.9 at 315 .deg. C as a function of immersion time

  14. Free Piston Double Diaphragm Shock Tube

    OpenAIRE

    OGURA, Eiji; FUNABIKI, Katsushi; SATO, Shunichi; Abe, Takashi; 小倉, 栄二; 船曳, 勝之; 佐藤, 俊逸; 安部, 隆士

    1997-01-01

    A free piston double diaphragm shock tube was newly developed for generation of high Mach number shock wave. Its characteristics was investigated for various operation parameters; such as a strength of the diaphragm at the end of the comparession tube, an initial pressure of low pressure tube, an initial pressure of medium pressure tube and the volume of compression tube. Under the restriction of fixed pressures for the driver high pressure tube (32×10^5Pa) and the low pressure tube (40Pa) in...

  15. Experimental verification of the quasi-steady approximation for aerodynamic sound generation by pulsating jets in tubes.

    Science.gov (United States)

    Zhang, Zhaoyan; Mongeau, Luc; Frankel, Steven H

    2002-10-01

    Voice production involves sound generation by a confined jet flow through an orifice (the glottis) with a time-varying area. Predictive models of speech production are usually based on the so-called quasi-steady approximation. The flow rate through the time-varying orifice is assumed to be the same as a sequence of steady flows through stationary orifices for wall geometries and flow boundary conditions that instantaneously match those of the dynamic, nonstationary problem. Either the flow rate or the pressure drop can then be used to calculate the radiated sound using conventional acoustic radiation models. The quasi-steady approximation allows complex unsteady flows to be modeled as steady flows, which is more cost effective. It has been verified for pulsating open jet flows. The quasi-steady approximation, however, has not yet been rigorously validated for the full range of flows encountered in voice production. To further investigate the range of validity of the quasi-steady approximation for voice production applications, a dynamic mechanical model of the larynx was designed and built. The model dimensions approximated those of human vocal folds. Airflow was supplied by a pressurized, quiet air storage facility and modulated by a driven rubber orifice. The acoustic pressure of waves radiated upstream and downstream of the orifice was measured, along with the orifice area and other time-averaged flow variables. Calculated and measured radiated acoustic pressures were compared. A good agreement was obtained over a range of operating frequencies, flow rates, and orifice shapes, confirming the validity of the quasi-steady approximation for a class of relevant pulsating jet flows.

  16. A Study on Residual Stress of U-Bending Heat Transfer Tube using Rotary Draw Bending Processing

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Ok Gyu; Jang, Kye Hwan; Kim, Won Seok [BHI Co., Haman (Korea, Republic of); Ku, Tae Wan [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The heat transfer tubes can be considered a kind of heat exchange boundary that is direct heat exchange from inside the steam generator. The heat transfer tubes of the steam generator have various bending radius. The heat transfer tubes have the U-shape and L-shape, depending on installed location and arrangement. The forming of the heat transfer tubes can be applied to process of rotary draw bending, roll bending, ram bending and etc. The rotary draw bending process is mainly used, when the bending radius is small. Recently, Alloy 600 or Alloy 690 tubes have been used as material for the heat transfer tubes of the steam generator. The purpose of this study is to evaluate the residual stress of the heat transfer row-1 tubes for deriving the remaining residual stress after U-Bending processing, as a primary study. In this study, the samples of U-Bending tube were made using Rotary Draw Bending Machine by Alloy690 straight tube. This study was measured Residual Stresses of the Row-1 Heat Transfer Tube in Steam Generator. The measurement methods are used two type of the analytical method (FEM) and experimental method (HDM). It was confirmed that the correlation of the measurement of the FEM and HDM methods. The FEM and HDM both methods showed compressive residual stresses. In numerical terms, the HDM is shown that higher value than the FEM.

  17. Once-through steam generator (OTSG) materials and water chemistry. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Pocock, F.J.; Levstek, D.F.

    1974-01-01

    Materials and water chemistry research results associated with the development of the Oconee-1 Reactor steam generator are presented. A summary of water chemistry data acquired during preoperational testing and power operation to date is also included. These data confirm the operational practicality of the nuclear once-through concept using volatile water treatment and high purity condensate demineralized feedwater.

  18. Nanostructured oxide materials and modules for high temperature power generation from waste heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    2013-01-01

    A large amount of thermal energy that emitted from many industrial processes is available as waste heat. Thermoelectric power generators that convert heat directly into electricity can offer a very promising way for waste heat recovery. However, the requirements for this task place in the materials...

  19. Influence of Fe content on corrosion and hydrogen pick up behavior of Zr–2.5Nb pressure tube material

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Gargi, E-mail: gargi@barc.gov.in [Quality Assurance Division, BARC, Mumbai 400 085 (India); Jagannath [Theoretical Physics Division, BARC, Mumbai 400 085 (India); Kiran Kumar, M.; Kain, V.; Srivastava, D. [Material Science Division, BARC, Mumbai 400 085 (India); Basu, S. [Solid State Physics Division, BARC, Mumbai 400 085 (India); Shah, B.K. [Quality Assurance Division, BARC, Mumbai 400 085 (India); Saibaba, N. [Nuclear Fuel Complex, Hyderabad 500 062 (India); Dey, G.K. [Material Science Division, BARC, Mumbai 400 085 (India)

    2013-10-15

    The effects of Fe addition in the range of 300–1250 ppm in cold worked stress-relieved Zr–2.5Nb pressure tube on oxidation and hydrogen pick up behavior have been studied after 415 °C steam autoclaving. Microstructure and micro-chemistry of second phase and precipitates were characterized using electron microscope. Addition of 800 ppm Fe in Zr–2.5Nb alloy led to better oxidation resistance. With further addition of Fe no significant improvement of oxidation resistance was observed but hydrogen-pickup was found to increase. Zr–Nb–Fe bearing precipitates were observed in Zr–2.5Nb alloy containing 800 ppm Fe. Further addition of Fe led to formation of Zr–Fe intermetallic. The chemical state of oxide has been determined by X-ray photo electron spectroscopy. Grazing Incidence X-ray Diffraction revealed that oxide in alloys with higher Fe, contained a higher fraction of tetragonal-Zirconia which is indicative of a protective oxide film and hence better oxidation resistance of the alloy.

  20. Enhanced Flexible Thermoelectric Generators Based on Oxide-Metal Composite Materials

    Science.gov (United States)

    Geppert, Benjamin; Brittner, Artur; Helmich, Lailah; Bittner, Michael; Feldhoff, Armin

    2017-04-01

    The thermoelectric performance of flexible thermoelectric generator stripes was investigated in terms of different material combinations. The thermoelectric generators were constructed using Cu-Ni-Mn alloy as n-type legs while varying the p-type leg material by including a metallic silver phase and an oxidic copper phase. For the synthesis of Ca_3Co_4O9/CuO/Ag ceramic-based composite materials, silver and the copper were added to the sol-gel batches in the form of nitrates. For both additional elements, the isothermal specific electronic conductivity increases with increasing amounts of Ag and CuO in the samples. The amounts for Ag and Cu were 0 mol.%, 2 mol.%, 5 mol.%, 10 mol.%, and 20 mol.%. The phases were confirmed by x-ray diffraction. Furthermore, secondary electron microscopy including energy dispersive x-ray spectroscopy were processed in the scanning electron microscope and the transmission electron microscope. For each p-type material, the data for the thermoelectric parameters, isothermal specific electronic conductivity σ and the Seebeck coefficient α, were determined. The p-type material with a content of 5 mol.% Ag and Cu exhibited a local maximum of the power factor and led to the generator with the highest electric power output P_el.

  1. Using Electronic Neutron Generators in Active Interrogation to Detect Shielded Fissionable Material

    Energy Technology Data Exchange (ETDEWEB)

    D. L. Chichester; E. H. Seabury

    2008-10-01

    Experiments have been performed at Idaho National Laboratory to study methodology and instrumentation for performing neutron active interrogation die-away analyses for the purpose of detecting shielded fissionable material. Here we report initial work using a portable DT electronic neutron generator with a He-3 fast neutron detector to detect shielded fissionable material including >2 kg quantities of enriched uranium and plutonium. Measurements have been taken of bare material as well as of material hidden within a large plywood cube. Results from this work have demonstrated the efficacy of the die-away neutron measurement technique for quickly detecting the presence of special nuclear material hidden within plywood shields by analyzing the time dependent neutron signals in-between neutron generator pulses. Using a DT electronic neutron generator operating at 300 Hz with a yield of approximately 0.36 x 10**8 neutrons per second, 2.2 kg of enriched uranium hidden within a 0.60 m x 0.60 m x 0.70 m volume of plywood was positively detected with a measurement signal 2-sigma above the passive background within 1 second. Similarly, for a 500 second measurement period a lower detection limit of approaching the gram level could be expected with the same simple set-up.

  2. Use of Photothermally Generated Seebeck Voltage for Thermal Characterization of Thermoelectric Materials

    Science.gov (United States)

    Kuriakose, Maju; Depriester, Michael; King, Roch Chan Yu; Roussel, Frédérick; Sahraoui, Abdelhak Hadj

    2014-06-01

    A simple and accurate experimental procedure to measure simultaneously the thermal properties (conductivity, diffusivity, and effusivity) of thermoelectric (TE) materials using their Seebeck voltage is proposed. The technique is based on analysis of a periodically oscillating thermoelectric signal generated from a TE material when it is thermally excited using an intensity-modulated laser source. A self-normalization procedure is implemented in the presented method using TE signals generated by changing the laser heating from one side to another of the TE material. Experiments are done on a polyaniline carbon nanohybrid (6.6 wt.% carbon nanotubes), yielding a thermal conductivity of 1.106 ± 0.001 W/m-K. The results are compared with the results from photothermal infrared radiometry experiments.

  3. The role of time-dependent deformation in intergranular crack initiation of alloy 600 steam generator tubing material

    Energy Technology Data Exchange (ETDEWEB)

    Was, G.S.; Lian, K.

    1998-03-01

    Intergranular stress corrosion cracking (IGSCC) of two commercial alloy 600 conditions (600LT, 600HT) and controlled- purity Ni-18Cr-9Fe alloys (CDMA, CDTT) were investigated using constant extension rate tensile (CERT) tests in primary water (0.01M LiOH+0.01M H{sub 3}BO{sub 3}) with 1 bar hydrogen overpressure at 360{degrees}C and 320{degrees}C. Heat treatments produced two types of microstructures in both commercial and controlled-purity alloys: one dominated by grain boundary carbides (600HT and CDTT) and one dominated by intragranular carbides (600LT and CDMA). CERT tests were conducted over a range of strain rates and at two temperatures with interruptions at specific strains to determine the crack depth distributions. Results show that in all samples, IGSCC was the dominant failure mode. For both the commercial alloy and the controlled-purity alloys, the microstructure with grain boundary carbides showed delayed crack initiation and shallower crack depths than did the intragranular carbide microstructure under all experimental conditions. This data indicates that a grain boundary carbide microstructure is more resistant to IGSCC than an intragranular carbide microstructure. Observations support both the film rupture/slip dissolution mechanism and enhanced localized plasticity. The advantage of these results over previous studies is that the different carbide distributions were obtained in the same commercial alloy using different heat treatments, and in the other case, in nearly identical controlled-purity alloys. Therefore, observations of the effects of carbide distribution on IGSCC can more confidently be attributed to the carbide distribution alone rather than other potentially significant differences in microstructure or composition.

  4. “People power” or “pester power”? YouTube as a forum for the generation of evidence and patient advocacy☆

    Science.gov (United States)

    Mazanderani, Fadhila; O’Neill, Braden; Powell, John

    2013-01-01

    Objective Venoplasty has been proposed, alongside the theory of chronic cerebrospinal venous insufficiency (CCSVI), as a treatment for multiple sclerosis (MS). Despite concerns about its efficacy and safety, thousands of patients have undergone the procedure. This paper analyses YouTube videos where patients have shared their treatment experiences. Methods Content analysis on the 100 most viewed videos from over 4000 identified in a search for ‘CCSVI’, and qualitative thematic analysis on popular ‘channels’ demonstrating patients’ experiences. Results Videos adopt an overwhelmingly positive stance towards CCSVI; many were uploaded by patients and present pre- and/or post-treatment experiences. Patients demonstrate rather than merely describe their symptoms, performing tests on themselves before and after treatment to quantify improvement. Videos combine medical terminology and tests with personal experiences of living with MS. Conclusion Social media technologies provide patients with novel opportunities for advocating for particular treatments; generating alternative forms of ‘evidence’ built on a hybrid of personal experience and medical knowledge. Practice implications Healthcare practitioners need to engage with new digital forms of content, including online social media. Instead of disregarding sources not considered ‘evidence-based’, practitioners should enhance their understanding of what ‘experiential-evidence’ is deemed significant to patients, particularly in contested areas of healthcare. PMID:23830239

  5. Aeronautical tubes and pipes

    Science.gov (United States)

    Beauclair, N.

    1984-12-01

    The main and subcomponent French suppliers of aircraft tubes and pipes are discussed, and the state of the industry is analyzed. Quality control is essential for tubes with regard to their i.d. and metallurgical compositions. French regulations do not allow welded seam tubes in hydraulic circuits unless no other form is available, and then rustproofed steel must be installed. The actual low level of orders for any run of tubes dictates that the product is only one of several among the manufacturers' line. Automation, both in NDT and quality control, assures that the tubes meet specifications. A total of 10 French companies participate in the industry, serving both civil and military needs, with some companies specializing only in titanium, steel, or aluminum materials. Concerns wishing to enter the market must upgrade their equipment to meet the higher aeronautical specifications and be prepared to furnish tubes and pipes that serve both functional and structural purposes simultaneously. Additionally, pipe-bending machines must also perform to tight specifications. Pipes can range from 0.2 mm exterior diameter to 40 mm, with wall thicknesses from 0.02 mm to 3 mm. A chart containing a list of manufacturers and their respective specifications and characteristics is presented, and a downtrend in production with reduction of personnel is noted.

  6. The Effect of Circular Finned Tube Heat Transfer Enhancement by Using Longitudinal Vortex Generators%纵向涡发生器对圆形翅片管换热强化的影响

    Institute of Scientific and Technical Information of China (English)

    于恩播; 孙铁; 张素香

    2012-01-01

    The fluid flow and heat transfer process of circular finned tube with longitudinal vortex generators(LVGs) were numerically simulated with the CFD calculation software FLUENT, then compared with the normal circular finned tube. The simulation results show that the performance of circular finned tube with longitudinal vortex generators is far better than that of the normal circular finned tube. It can be explained from the view point of field synergy principle, which says that the longitudinal vortex generators can enhance effect of heat transfer because it reduces the angle between velocity and fluid temperature gradient.%利用CFD计算软件FLUENT对带有纵向涡发生器的圆形翅片管的流体流动和传热过程进行数值模拟,并与普通圆形翅片管加以对比.结果表明,带有纵向涡发生器的翅片管换热效果明显优于普通翅片管.应用场协同原理解释认为,纵向涡发生器使流体速度和温度梯度之间夹角减小,改善了速度场和温度场的协同性,从而增强了换热效果.

  7. Technical analysis of failure of catalyst support of reformer furnace tube of a hydrogen generation unit%制氢装置转化炉炉管催化剂支托失效分析

    Institute of Scientific and Technical Information of China (English)

    齐庆轩; 冯岩

    2012-01-01

    The damages of catalyst support of reformer furnace tubes of No. 1 hydrogen generation unit in SINOPEC Shijiazhuang Refining & Chemical Co. , Ltd. in two maintenances were introduced. The composition analysis of catalyst support, the study on the macroscopic photo, the analysis of damaged surface of catalyst support of Incoloy800H, the metallographic analysis, energy dispersion spectrum (EDS) analysis, and scanning electron microscope analysis of support' s section area as well as study on the anti-caburization performances of Cr25Ni20 and Incoloy800H materials have concluded the following: The damages of catalyst support was caused by surface carburization of catalyst support material under high temperature in the presence of hydrogen, which led to phase changes of material surface structure, material stratification, loosening and bulging of surface material structure, large amount of micro-crackings in grain boundary at surface area and eduction of large amount of carbides. All these will reduce the ductility and plasticity of material. Therefore, it is difficult for the catalyst support to restore its original state after thermal expansion, which explains why there are some bulges on the tube of failed support. The anti-carburization performance is greatly improved after application of Cr25Ni20 steel material.%对两次检修中所发现的中国石油化工股份有限公司石家庄炼化分公司l号制氢装置转化炉炉管催化剂支托出现损坏的情况做了介绍,并对两种批次的催化剂支托进行了成分分析,对使用Incoloy800H材料、损坏严重的催化剂支托表面宏观照片进行了分析,对损伤支托的横截面进行金相、电镜及能谱检验分析.通过对Cr25Ni20和lncoloy800H两种材料的抗渗碳能力的比较,得出了以下结论:催化剂支托损伤的原因是材料在含氢高温环境下发生了表面渗碳现象,直接导致材料表面组织相变、材料分层、表现材料组织疏松和隆起,

  8. Computation of a leakage in a stream generator heating tube with realistic initial and boundary conditions; Berechnung eines Dampferzeugerheizrohrlecks mit realistischen Anfangs- und Randbedingungen

    Energy Technology Data Exchange (ETDEWEB)

    Sarkadi, Peter; Schaffrath, Andreas [TUEV NORD SysTec GmbH und Co. KG, Hamburg (Germany)

    2009-02-15

    Within the framework of the safety review of a pressurized water reactor, TUeV NORD SysTec GmbH and Co.KG analyzed plant behavior for the case of a leakage in a steam generator heating tube by means of the ATHLET thermohydraulic code system using realistic initial and boundary conditions. The analysis was performed to show that operation of the safety injection pumps avoids 2 out of 3 emergency cooling criteria being triggered. After coolant transfer from the primary to the secondary side, activity retention is ensured only if the coolant is contained by the components of the secondary system. This requires the pressure in the failed steam generator to remain below the level of 88.3 bar at which the safety valves respond. Startup of the safety injection pumps would jeopardize activity retention because of the zero head of these pumps. Analysis indicated the filling level of the pressurizer to be above 3.6 m during the accident. The minimum margin from the ''pressurizer level <2.28 m'' reactor protection limit is around 1.3 m. Consequently, only the first of the 3 emergency cooling criteria (in this case, 'coolant pressure <132 bar') will respond. This avoids unwanted boosting of the coolant pressure due to connection of the safety injection pumps. By the end of the period of observation, approx. 36 Mg of coolant are transferred to the secondary side. Activity retention is ensured by the components of the secondary system. (orig.)

  9. Non-destructive research methods applied on materials for the new generation of nuclear reactors

    Science.gov (United States)

    Bartošová, I.; Slugeň, V.; Veterníková, J.; Sojak, S.; Petriska, M.; Bouhaddane, A.

    2014-06-01

    The paper is aimed on non-destructive experimental techniques applied on materials for the new generation of nuclear reactors (GEN IV). With the development of these reactors, also materials have to be developed in order to guarantee high standard properties needed for construction. These properties are high temperature resistance, radiation resistance and resistance to other negative effects. Nevertheless the changes in their mechanical properties should be only minimal. Materials, that fulfil these requirements, are analysed in this work. The ferritic-martensitic (FM) steels and ODS steels are studied in details. Microstructural defects, which can occur in structural materials and can be also accumulated during irradiation due to neutron flux or alpha, beta and gamma radiation, were analysed using different spectroscopic methods as positron annihilation spectroscopy and Barkhausen noise, which were applied for measurements of three different FM steels (T91, P91 and E97) as well as one ODS steel (ODS Eurofer).

  10. Effect of thermal conductivity of tube material on overall heat transfer coefficient of condenser, proposal for correction of HEI code

    Energy Technology Data Exchange (ETDEWEB)

    Banquet, F. [Electricite de France, Villeurbanne (France)

    1996-08-01

    The HEI code, 8th edition, addendum n{degrees}1, which was used for condenser design, makes no distinction between grade 2 titanium characteristics and those of 304L and 316L stainless steels. In 1993 the Electric Power Research Institute (EPRI) published the results of a study on a test condenser: these suggest that the overall heat transfer coefficient of a titanium bundle is substantially higher than that of the same bundle made from stainless steel. The EPRI study inspired the 9th edition of the HEI Standards. To form its own opinion, EDF conducted a study to compare these various design methods and, in particular, to evaluate the effect of the thermal conductivity of materials on the overall heat transfer coefficient; a two-dimensional thermohydraulic code was used, considering different condensers from EDF nuclear power plants. During the study EDF observed that the thermal conductivity values of materials varied greatly depending on the sources, mainly grade 2 titanium and, to a lesser extent, 304L and 316L. It had the thermal conductivity of these materials measured using a highly accurate method in a manufacturer-independent laboratory. In conclusion, EDF considers: The EPRI correction method is wholly acceptable, The HEI 9 code is acceptable on condition that the material correction factors are slightly modified. 5 refs., 11 tabs.

  11. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. (Science Applications International Corp., Idaho Falls, ID (United States))

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  12. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.K.; Gitt, M.; Williams, G.A.; Branch, S. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Otis, M.D.; McKenzie-Carter, M.A.; Schurman, D.L. [Science Applications International Corp., Idaho Falls, ID (United States)

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations. This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.

  13. Materials development for solar thermoelectric generators, SOLAR-TEP - 2007 Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Bocher, L.; Weidenkaff, A.

    2007-07-01

    This annual report for the Swiss Federal Office of Energy (SFOE) takes a look at the work done at the Swiss Federal Laboratories for Materials Science and Technology EMPA in 2007 on Thermoelectric applications that are emerging as a potential technology that allows the conversion of heat into electric power. This energy conversion procedure uses the Seebeck effect to generate electricity without using moving parts or any chemical conversion. The Solar-TEP project is based on the idea of the potential use of concentrated solar heat as a source of energy for Solar Thermoelectric Generators (Solar-TEG). The development of novel functional materials with enhanced figures of merit, high temperature stability, and without harmful effects is commented on. The authors state that oxide ceramics can be used at high temperatures due to their chemical stability and their resistance to thermal oxidation in air. The advantages offered by thermoelectric modules based on oxide materials for the generation of power with increased temperature operating ranges are discussed. Additionally, thermoelectric oxide devices which can be realised on the basis of low-cost materials with low toxicity are discussed.

  14. Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials

    Science.gov (United States)

    Yu, Woo Jong; Liu, Yuan; Zhou, Hailong; Yin, Anxiang; Li, Zheng; Huang, Yu; Duan, Xiangfeng

    2013-12-01

    Layered materials of graphene and MoS2, for example, have recently emerged as an exciting material system for future electronics and optoelectronics. Vertical integration of layered materials can enable the design of novel electronic and photonic devices. Here, we report highly efficient photocurrent generation from vertical heterostructures of layered materials. We show that vertically stacked graphene-MoS2-graphene and graphene-MoS2-metal junctions can be created with a broad junction area for efficient photon harvesting. The weak electrostatic screening effect of graphene allows the integration of single or dual gates under and/or above the vertical heterostructure to tune the band slope and photocurrent generation. We demonstrate that the amplitude and polarity of the photocurrent in the gated vertical heterostructures can be readily modulated by the electric field of an external gate to achieve a maximum external quantum efficiency of 55% and internal quantum efficiency up to 85%. Our study establishes a method to control photocarrier generation, separation and transport processes using an external electric field.

  15. Effects of different blasting materials on charge generation and decay on titanium surface after sandblasting.

    Science.gov (United States)

    Guo, Cecilia Yan; Hong Tang, Alexander Tin; Hon Tsoi, James Kit; Matinlinna, Jukka Pekka

    2014-04-01

    It has been reported that sandblasting titanium with alumina (Al2O3) powder could generate a negative electric charge on titanium surface. This has been proven to promote osteoblast activities and possibly osseointegration. The purpose of this pilot study was to investigate the effects of different blasting materials, in terms of the grit sizes and electro-negativity, on the generation of a negative charge on the titanium surface. The aim was also to make use of these results to deduct the underlying mechanism of charge generation by sandblasting. Together 60 c.p. 2 titanium plates were machine-cut and polished for sandblasting, and divided into 6 groups with 10 plates in each. Every plate in the study groups was sandblasted with one of the following 6 powder materials: 110µm Al2O3 grits, 50µm Al2O3 grits, 150-300µm glass beads, 45-75µm glass beads, 250µm Al powder and 44µm Al powder. The static voltage on the surface of every titanium plate was measured immediately after sandblasting. The static voltages of the titanium plates were recorded and processed using statistical analysis. The results suggested that only sandblasting with 45-75µm glass beads generated a positive charge on titanium, while using all other blasting materials lead to a negative charge. Furthermore, blasting grits of the same powder material but of different sizes might lead to different amount and polarity of the charges. This triboelectric effect is likely to be the main mechanism for charge generation through sandblasting.

  16. Hot spots in energetic materials generated by infrared and ultrasound, detected by thermal imaging microscopy.

    Science.gov (United States)

    Chen, Ming-Wei; You, Sizhu; Suslick, Kenneth S; Dlott, Dana D

    2014-02-01

    We have observed and characterized hot spot formation and hot-spot ignition of energetic materials (EM), where hot spots were created by ultrasonic or long-wavelength infrared (LWIR) exposure, and were detected by high-speed thermal microscopy. The microscope had 15-20 μm spatial resolution and 8.3 ms temporal resolution. LWIR was generated by a CO2 laser (tunable near 10.6 μm or 28.3 THz) and ultrasound by a 20 kHz acoustic horn. Both methods of energy input created spatially homogeneous energy fields, allowing hot spots to develop spontaneously due to the microstructure of the sample materials. We observed formation of hot spots which grew and caused the EM to ignite. The EM studied here consisted of composite solids with 1,3,5-trinitroperhydro-1,3,5-triazine crystals and polymer binders. EM simulants based on sucrose crystals in binders were also examined. The mechanisms of hot spot generation were different with LWIR and ultrasound. With LWIR, hot spots were most efficiently generated within the EM crystals at LWIR wavelengths having longer absorption depths of ∼25 μm, suggesting that hot spot generation mechanisms involved localized absorbing defects within the crystals, LWIR focusing in the crystals or LWIR interference in the crystals. With ultrasound, hot spots were primarily generated in regions of the polymer binder immediately adjacent to crystal surfaces, rather than inside the EM crystals.

  17. TERA-MIR radiation: materials, generation, detection and applications III (Conference Presentation)

    Science.gov (United States)

    Pereira, Mauro F.

    2016-10-01

    This talk summarizes the achievements of COST ACTION MP1204 during the last four years. [M.F. Pereira, Opt Quant Electron 47, 815-820 (2015).]. TERA-MIR main objectives are to advance novel materials, concepts and device designs for generating and detecting THz and Mid Infrared radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. We used the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We created a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. The main emphasis has been on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up Companies and hospitals. Results are presented along our main lines of research: Intersubband materials and devices with applications to fingerprint spectroscopy; Metamaterials, photonic crystals and new functionalities; Nonlinearities and interaction of radiation with matter including biomaterials; Generation and Detection based on Nitrides and Bismides. The talk is closed by indicating the future direction of the network that will remain active beyond the funding period and our expectations for future joint research.

  18. On the Inhibition of Linear Absorption in Opaque Materials Using Phase-Locked Harmonic Generation

    CERN Document Server

    Centini, Marco; Fazio, Eugenio; Pettazzi, Federico; Sibilia, Concita; Haus, Joseph W; Foreman, John V; Akozbek, Neset; Bloemer, Mark J; Scalora, Michael

    2008-01-01

    We theoretically predict and experimentally demonstrate inhibition of linear absorption for phase and group velocity mismatched second and third harmonic generation in strongly absorbing materials, GaAs in particular, at frequencies above the absorption edge. A 100-fs pump pulse tuned to 1300nm generates 650nm and 435nm second and third harmonic pulses that propagate across a 450 micron-thick GaAs substrate without being absorbed. We attribute this to a phase-locking mechanism that causes the pump to trap the harmonics and to impress them with its dispersive properties.

  19. Generation and characterization of microcracks in structural materials; Generacion y Caracterizacion de Microgrietas en materiales estructurales

    Energy Technology Data Exchange (ETDEWEB)

    Menendez, E.; Frutos, J. de

    2012-07-01

    In this paper, we study how to generate and accelerate, expansive phenomena within cementitious composites, considering elements of addiction using both fly ash and slag. We present results of monitoring of these processes from the beginning and characterize chemical, microstructural, and crystallographic by X-ray diffraction, backscattering electron microscopy, X-ray dispersive energy and mercury porosimetry. These data are supplemented with values of mechanical behavior of materials to determine their functionality. As a result of these studies, we propose a model for the generation and progression of microcracks for each alteration processes studied. (Author) 7 refs.

  20. Magnesium tube hydroforming

    Energy Technology Data Exchange (ETDEWEB)

    Liewald, M.; Pop, R. [Institute for Metal Forming Technology (IFU), Stuttgart (Germany)

    2008-04-15

    Magnesium alloys reveal a good strength-to-weight ratio in the family of lightweight metals and gains potential to provide up to 30% mass savings compared to aluminium and up to 75 % compared to steel. The use of sheet magnesium alloys for auto body applications is however limited due to the relatively low formability at room temperature. Within the scope of this paper, extruded magnesium tubes, which are suitable for hydroforming applications, have been investigated. Results obtained at room temperature using magnesium AZ31 tubes show that circumferential strains are limited to a maximal value of 4%. In order to examine the influence of the forming temperature on tube formability, investigations have been carried out with a new die set for hot internal high pressure (IHP) forming at temperatures up to 400 C. Earlier investigations with magnesium AZ31 tubes have shown that fractures occur along the welding line at tubes extruded over a spider die, whereby a non-uniform expansion at bursting with an elongation value of 24% can be observed. A maximum circumferential strain of approx. 60% could be attained when seamless, mechanically pre-expanded and annealed tubes of the same alloy have been used. The effect of annealing time on materials forming properties shows a fine grained structure for sufficient annealing times as well as deterioration with a large increase at same time. Hence, seamless ZM21 tubes have been used in the current investigations. With these tubes, an increased tensile fracture strain of 116% at 350 C is observed as against 19% at 20 C, obtained by tensile testing of milled specimens from the extruded tubes. This behaviour is also seen under the condition of tool contact during the IHP forming process. To determine the maximum circumferential strain at different forming temperatures and strain rates, the tubes are initially bulged in a die with square cross-section under plane stress conditions. Thereafter, the tubes are calibrated by using an

  1. Gastrostomy Tube (G-Tube)

    Science.gov (United States)

    ... the recovery room, sometimes called the "post-op" (post-operative) room or PACU (post-anesthesia care unit), and ... site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site ...

  2. Organic inclusion complex novel materials for optical second-harmonic generation in ultraviolet region

    Science.gov (United States)

    Meng, Fanqing; Lu, Mengkai

    1996-10-01

    Herein is presented a new class of materials for second harmonic generation (SHG) -- organic inclusion complex, in which 'SHG-active units' (guest) are incorporated into chiral handle polycondensed anions (host) through short hydrogen bonds. The former can provide nonlinear optical response. The latter is expected to produce noncentrosymmetric structural 'molecular framework' and improve fundamental properties of materials such as thermal stability, mechanical strength and fabrication behavior, et al. Several new SHG active inclusion complexes were synthesized. In particular, optically fine bulk crystals of urea-(d)tartaric acid (UDT) and urea-(dl)tartaric acid (UDLT) have been obtained. They have good powder SHG intensity and short cutoff wavelengths.

  3. Safety research of insulating materials of cable for nuclear power generating station

    Science.gov (United States)

    Lee, C. K.; Choi, J. H.; Kong, Y. K.; Chang, H. S.

    1988-01-01

    The polymers PE, EPR, PVC, Neoprene, CSP, CLPE, EP and other similar substances are frequently used as insulation and protective covering for cables used in nuclear power generating stations. In order to test these materials for flame retardation, environmental resistance, and cable specifications, they were given the cable normal test, flame test, chemical tests, and subjected to design analysis and loss of coolant accident tests. Material was collected on spark tests and actual experience standards were established through these contributions and technology was accumulated.

  4. Micro- and Nanoscale Energetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators.

    Science.gov (United States)

    Kim, Sang Beom; Kim, Kyung Ju; Cho, Myung Hoon; Kim, Ji Hoon; Kim, Kyung Tae; Kim, Soo Hyung

    2016-04-13

    In this study, we systematically investigated the effect of micro- and nanoscale energetic materials in formulations of aluminum microparticles (Al MPs; heat source)/aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ∼0.3 m/s. However, the addition of Al MPs and Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ∼1.5 and ∼5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ∼0.6 L/s, which was significantly increased to ∼1.4 and ∼3.9 L/s by adding Al MPs and Al NPs, respectively, to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive Al MPs and NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were more effective than Al MPs in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ∼140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ∼50 ms for airbag inflation.

  5. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, William R [ORNL; Burchell, Timothy D [ORNL; Halsey, William [Lawrence Livermore National Laboratory (LLNL); Hayner, George [Idaho National Laboratory (INL); Katoh, Yutai [ORNL; Klett, James William [ORNL; McGreevy, Timothy E [ORNL; Nanstad, Randy K [ORNL; Ren, Weiju [ORNL; Snead, Lance Lewis [ORNL; Stoller, Roger E [ORNL; Wilson, Dane F [ORNL

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  6. Pre- and post-remediation characterization of acid-generating fluvial tailings material

    Science.gov (United States)

    Smith, Kathleen S.; Walton-Day, Katherine; Hoal, Karin O.; Driscoll, Rhonda L.; Pietersen, K.

    2012-01-01

    The upper Arkansas River south of Leadville, Colorado, USA, contains deposits of fluvial tailings from historical mining operations in the Leadville area. These deposits are potential non-point sources of acid and metal contamination to surface- and groundwater systems. We are investigating a site that recently underwent in situ remediation treatment with lime, fertilizer, and compost. Pre- and post-remediation fluvial tailings material was collected from a variety of depths to examine changes in mineralogy, acid generation, and extractable nutrients. Results indicate sufficient nutrient availability in the post-remediation near-surface material, but pyrite and acid generation persist below the depth of lime and fertilizer addition. Mineralogical characterization performed using semi-quantitative X-ray diffraction and quantitative SEM-based micro-mineralogy (Mineral Liberation Analysis, MLA) reveal formation of gypsum, jarosite, and complex coatings surrounding mineral grains in post-remediation samples.

  7. Viability of thin wall tube forming of ATF FeCrAl

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident-tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  8. Viability of thin wall tube forming of ATF FeCrAl

    Energy Technology Data Exchange (ETDEWEB)

    Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Anderoglu, Osman [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lavender, Curt [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Yamamoto, Yukinori [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-16

    Fabrication of thin walled tubing of FeCrAl alloys is critical to its success as a candidate enhanced accident tolerant fuel cladding material. Alloys that are being investigated are Generation I and Generation II FeCrAl alloys produced at ORNL and an ODS FeCrAl alloy, MA-956 produced by Special Metals. Gen I and Gen II FeCrAl alloys were provided by ORNL and MA-956 was provided by LANL (initially produced by Special Metals). Three tube development efforts were undertaken. ORNL led the FeCrAl Gen I and Gen II alloy development and tube processing studies through drawing tubes at Rhenium Corporation. LANL received alloys from ORNL and led tube processing studies through drawing tubes at Century Tubing. PNNL led the development of tube processing studies on MA-956 through pilger processing working with Sandvik Corporation. A summary of the recent progress on tube development is provided in the following report and a separate ORNL report: ORNL/TM-2015/478, “Development and Quality Assessments of Commercial Heat Production of ATF FeCrAl Tubes”.

  9. Nanostructured Thermoelectric Oxide Materials for Effective Power Generation from Waste Heat

    DEFF Research Database (Denmark)

    Van Nong, Ngo; Pryds, Nini

    9+δ and n-type doped-ZnO oxide systems is presented. The thermoelectric generator (TEG) devices based on these oxide materials were fabricated, examined, and demonstrated with various output applications. At a ΔT = 500 K, the maximum output power of our TEG composed of 32 p-n couples reached 1W......, which is among the best one so far and is enough for a practical application such as phone charge or GPS device (see Fig. 1)....

  10. Development of an Integrity Assessment Procedure for CANDU Pressure Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Han Sub [Korea Electric Power Research Institute, Daejeon (Korea, Republic of)

    2010-10-15

    The pressure tubes used in a CANDU reactor are made from Zr-2.5Nb. During service the pressure tubes operate at temperatures between about 150 and 310 .deg. C, and with variable coolant pressures up to 11MPa corresponding to hoop stress of up to 130MPa. The maximum flux of fast neutrons (E>1MeV) from the fuel is about 4X10{sup 17}nm{sup -2}{sub s}{sup -1}. The pressure tubes are exposed to very severe degradation environment. The aging degradation of the pressure tubes are summarized as below. - Geometric deformation; axial elongation, diametric creep, and wall thinning. - Deuterium uptake; some fraction of the deuterium generated by the corrosion of pressure tubes is absorbed into the pressure tubes. Total equivalent hydrogen content in the pressure tube is the sum of the initial hydrogen content before operation and the deuterium uptake during operation. High concentration of hydrogen inside the pressure tubes makes the metal susceptible to Delayed Hydride Cracking. The DHC is a degradation mechanism of prime importance for CANDU pressure tubes. Mechanical properties, in particular fracture toughness, are deteriorated by high concentration of dissolved hydrogen. - Flaws; volumetric flaws are generated during operation. Wear scars by debris fretting, and bearing pad fretting are common. These volumetric flaws can be a site of crack initiation by fatigue or DHC. Cracks can propagate by DHC or fatigue crack propagation if conditions are met. - Material properties degradation; mechanical properties are affected by neutron irradiation. Yield strength and tensile strength are increased, and fracture toughness is deteriorated. The susceptibility to DHC is also affected. The integrity assessment of the pressure tube is a procedure to determine if the risk of pressure tube failure is controlled to maintain acceptably low. CSA N285.4 and 285.8 are two important guidelines regarding the integrity of pressure tubes. N285.4 is to guide in-service inspection, and N285

  11. Mathematical treatment of melting and solidification of phase change materials between circumferentially finned tubes. Analytische Behandlung des Schmelzens und Erstarrens von Latentwaermespeichermaterialien in Rippenrohrgeometrien

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, M.

    1987-01-01

    The following study deals with the theoretical investigation of heat transfer in a latent heat store. The object of the investigation is a heat exchanger element with a circumferentially finned tube, in which the space between the fins is filled with storage material. An analytical method, employing Green's function, was developed for this arrangement in order to solve the two dimensional (r,z-coordinates) transient heat conduction in inhomogenous materials with simultaneous phase change. When compared with other well-known analytical methods, the most important advantages are that the Fourier heat conduction equation and the boundary conditions at the phase front are simultaneously fulfilled by the final solution, as well as the fact that the initial temperature is independent of a given phase change temperature. A fundamental advantage can also be seen in the very small number of time steps for calculating the transient charging/discharging processes and hence shorter calculation times. Two special extreme cases were designed where the results agree well with literature data. In comparison with the numerically calculated melting and solidification behaviour only small variations were observed.

  12. Advances in Tube Hydroforming - An Enabling Technology for Low-Mass Vehicle Manufacturing - Material, Lubrication,Loading, Simulation Issues, and Alternatives

    Institute of Scientific and Technical Information of China (English)

    Muammer Ko(c)

    2004-01-01

    The tube hydroforming process (THF) has recently found a wide application opportunity in the automotive industry, and is of increasing interest to other industries as well. The increased interest stems from the fact that, through the THF process, manufacturers are able to produce complex, consolidated, lightweight parts with reduced number of post-processing than through alternative metal forming techniques. In order to fully realize the benefits of this technology, various aspects have been under investigation in academia and industry world-wide. In this paper, effect of loading path, incoming material variation, and lubrication on the robustness of the hydroforming process and final part specifications are summarized based on previous experimental and computational work. In addition, the simulation of hydroforming and examples are presented in comparison with experimental findings. Briefly, results emphasized the importance of the loading path design whereas material variation within the experimentally tested range was not found to be significantly effective on the final part specifications. Selection of a lubricant for hydroforming of a frame rail part was presented demonstrating several aspects of lubrication selection methodology. Results of friction experiments show that only thickness, axial feeding, and force measurements are good indications of lubricant performance as these are found to be strongly discriminative.

  13. COMGEN: A computer program for generating finite element models of composite materials at the micro level

    Science.gov (United States)

    Melis, Matthew E.

    1990-01-01

    COMGEN (Composite Model Generator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or session files to be submitted to the finite element pre- and postprocessor PATRAN based on a few simple user inputs such as fiber diameter and percent fiber volume fraction of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned easily to the models within COMGEN. PATRAN uses a session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC.

  14. Characterization of material ablation driven by laser generated intense extreme ultraviolet light

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Nozomi, E-mail: tanaka-n@ile.osaka-u.ac.jp; Masuda, Masaya; Deguchi, Ryo; Murakami, Masakatsu; Fujioka, Shinsuke; Yogo, Akifumi; Nishimura, Hiroaki [Institute of Laser Engineering, Osaka University, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sunahara, Atsushi [Institute for Laser Technology, 2-6 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2015-09-14

    We present a comparative study on the hydrodynamic behaviour of plasmas generated by material ablation by the irradiation of nanosecond extreme ultraviolet (EUV or XUV) or infrared laser pulses on solid samples. It was clarified that the difference in the photon energy deposition and following material heating mechanism between these two lights result in the difference in the plasma parameters and plasma expansion characteristics. Silicon plate was ablated by either focused intense EUV pulse (λ = 9–25 nm, 10 ns) or laser pulse (λ = 1064 nm, 10 ns), both with an intensity of ∼10{sup 9 }W/cm{sup 2}. Both the angular distributions and energy spectra of the expanding ions revealed that the photoionized plasma generated by the EUV light differs significantly from that produced by the laser. The laser-generated plasma undergoes spherical expansion, whereas the EUV-generated plasma undergoes planar expansion in a comparatively narrow angular range. It is presumed that the EUV radiation is transmitted through the expanding plasma and directly photoionizes the samples in the solid phase, consequently forming a high-density and high-pressure plasma. Due to a steep pressure gradient along the direction of the target normal, the EUV plasma expands straightforward resulting in the narrower angular distribution observed.

  15. Materials characterization of dusts generated by the collapse of the World Trade Center

    Science.gov (United States)

    Meeker, Gregory P.; Sutley, Stephen J.; Brownfield, Isabelle; Lowers, Heather; Bern, Amy M.; Swayze, Gregg A.; Hoefen, Todd M.; Plumlee, Geoffrey S.; Clark, Roger N.; Gent, Carol A.

    2009-01-01

    The major inorganic components of the dusts generated from the collapse of the World Trade Center buildings on September 11, 2001 were concrete materials, gypsum, and man-made vitreous fibers. These components were likely derived from lightweight Portland cement concrete floors, gypsum wallboard, and spray-on fireproofing and ceiling tiles, respectively. All of the 36 samples collected by the USGS team had these materials as the three major inorganic components of the dust. Components found at minor and trace levels include chrysotile asbestos, lead, crystalline silica, and particles of iron and zinc oxides. Other heavy metals, such as lead, bismuth, copper, molybdenum, chromium, and nickel, were present at much lower levels occurring in a variety of chemical forms. Several of these materials have health implications based on their chemical composition, morphology, and bioaccessibility.

  16. Impact of next-generation synchrotron radiation sources on materials research

    CERN Document Server

    Shenoy, G K

    2003-01-01

    Three generations of synchrotron radiation sources have revolutionized our understanding of various correlations in the equilibrium phase of materials through X-ray imaging, spectroscopy and scattering techniques. It is anticipated that new sources based on energy-recovery linacs and X-ray free-electron lasers will deliver X-ray pulses that are below a few-hundred femtoseconds in length and have very high coherence. These sources will extend and broaden our current knowledge of materials science. But more importantly, it is expected that these sources will provide the first glimpse of nonequilibrium processes in materials, including nonthermal melting, metal-insulator transitions involving nonequilibrium phases, laser-induced catalytic oxidation, and determining the structure of imperfect nanoparticles lacking crystalline structure.

  17. Heat transport by phonons and the generation of heat by fast phonon processes in ferroelastic materials

    Directory of Open Access Journals (Sweden)

    X. Ding

    2015-05-01

    Full Text Available Thermal conductivity of ferroelastic device materials can be reversibly controlled by strain. The nucleation and growth of twin boundaries reduces thermal conductivity if the heat flow is perpendicular to the twin wall. The twin walls act as phonon barriers whereby the thermal conductivity decreases linearly with the number of such phonon barriers. Ferroelastic materials also show elasto-caloric properties with a high frequency dynamics. The upper frequency limit is determined by heat generation on a time scale, which is some 5 orders of magnitude below the typical bulk phonon times. Some of these nano-structural processes are irreversible under stress release (but remain reversible under temperature cycling, in particular the annihilation of needle domains that are a key indicator for ferroelastic behaviour in multiferroic materials.

  18. Theory of enhanced second-harmonic generation in some artificial materials

    Institute of Scientific and Technical Information of China (English)

    HUANG Ji-ping

    2007-01-01

    We review the recent theoretical investigation on enhanced second-harmonic generation (SHG) in soft nonlinear optical materials based on ferrofluids, graded metallic films, and graded metal-dielectric films of anisotropic particles. The SHG of soft ferrofluid-based nonlinear optical materials possess magnetic-field controllabilities, i.e., magnetic-field-controllable anisotropy, red-shift and enhancement, which are caused to appear by the shift of a resonant plasmon frequency due to the formation of the chains of the coated nanoparticles. Both graded metallic films and graded metal-dielectric films of anisotropic particles can serve as a novel optical material for producing a broad structure in both the linear and SHG response and an enhancement in the SHG signal, due to the local field effects.

  19. Integrated Computational Materials Engineering (ICME) for Third Generation Advanced High-Strength Steel Development

    Energy Technology Data Exchange (ETDEWEB)

    Savic, Vesna; Hector, Louis G.; Ezzat, Hesham; Sachdev, Anil K.; Quinn, James; Krupitzer, Ronald; Sun, Xin

    2015-06-01

    This paper presents an overview of a four-year project focused on development of an integrated computational materials engineering (ICME) toolset for third generation advanced high-strength steels (3GAHSS). Following a brief look at ICME as an emerging discipline within the Materials Genome Initiative, technical tasks in the ICME project will be discussed. Specific aims of the individual tasks are multi-scale, microstructure-based material model development using state-of-the-art computational and experimental techniques, forming, toolset assembly, design optimization, integration and technical cost modeling. The integrated approach is initially illustrated using a 980 grade transformation induced plasticity (TRIP) steel, subject to a two-step quenching and partitioning (Q&P) heat treatment, as an example.

  20. Materials used in new generation vehicles: supplies, shifts, and supporting infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.; Curlee, T.R. [Oak Ridge National Lab., TN (United States); Schexnayder, S.M. [Univ. of Tennessee, Knoxville, (United States)

    1997-08-01

    The Partnership for a New Generation of Vehicles (PNGV) program intends to develop new designs for automobiles that will reduce fuel consumption by two thirds but otherwise have price, comfort, safety, and other measures of performance similar to the typical automobile now on the market. PNGV vehicle designs are expected to substitute lightweight materials, such as aluminum, magnesium, carbon-reinforced polymer composites, glass-reinforced polymer composites, and ultra- light steel, for heavier materials such as steel and iron in automobile components. The target mass of a PNGV vehicle is 1,960 pounds, as compared to the average current vehicle that weights 3,240 pounds. Other changes could include the use of different ferrous alloys, engineering changes, or incorporation of advanced ceramic components. Widespread adoption of these vehicle designs would affect materials markets and require concurrent development and adoption of supporting technologies to supply the materials and to use and maintain them in automobiles. This report identifies what would be required to bring about these changes and developments in materials substitution; identifies reasons that might make these substitutions difficult to accomplish within the overall objectives and timetable of the PNGV program; and identifies any issues arising from the substitution that could prompt consideration of policies to deal with them. The analysis in this paper uses scenarios that assume the production of new generation vehicles will begin in 2007 and that their market share will increase gradually over the following 25 years. The scenarios on which the analysis is based assume a maximum substitution of each potential replacement material considered. This maximum substitution of individual materials (i.e., the amount of replacement material by weight that would be added to the baseline vehicle`s composition) is as follows: ULSAB (high strength steel), 298 lbs.; glass-reinforced composites, 653 lbs.; carbon

  1. Structural Safety Analysis on Tube Sheet With Deviated Holes in Steam Generator%蒸汽发生器管板孔桥超差情况下的结构安全性分析

    Institute of Scientific and Technical Information of China (English)

    李海龙; 王庆; 徐宇; 熊冬庆; 王臣; 张跃

    2014-01-01

    蒸汽发生器制造过程中对管板进行深孔钻时,发生管板孔桥超差。管板二次侧的3个管孔C165‐R59、C167‐R59、C168‐R58不能满足设计要求,管板一次侧的这些管孔满足设计要求。针对该不符合项,核审评单位联合蒸汽发生器制造单位和设计单位,从管板的强度、管板孔桥超差不符合项对流致振动的影响、堵管后的传热管应力分析、传热管堵管的压差对孔桥强度的影响、孔桥超差导致的传热管接触磨损等角度进行了结构安全性分析。分析结果表明,目前的堵管方案合理可行,但需加强在役阶段的跟踪检查,以保证修复的可靠性和质量。%During the manufacturing process of the steam generator ,deviated holes were detected w hen drilling the tube sheet . T he sizes of three holes including C165‐R59 , C167‐R59 and C168‐R58 on the secondary side of the tube sheet don’t meet the design requirements ,while the sizes and positions of those holes on the primary side are within design requirements . The structural safety analyses ,including tube sheet strength , influence of tube sheet with deviated holes on flow induced vibration (FIV ) , stress analysis of plugged tubes ,influence of the differential pressure between the plugged tubes and the unplugged tubes on the strength ,and fretting wear between tubes caused by deviated holes ,were done by the nuclear safety reviewer combined with the manufac‐turer and the designer .T he results show that the repair plan is reasonable and feasibili‐ty .Meanwhile ,in‐service follow‐up inspections must be strengthened to insure the quality and reliability of plugged tubes .

  2. Phenomena identification and ranking tables for Westinghouse AP600 small break loss-of-coolant accident, main steam line break, and steam generator tube rupture scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.E.; Fletcher, C.D.; Davis, C.B. [and others

    1997-06-01

    This report revision incorporates new experimental evidence regarding AP600 behavior during small break loss-of-coolant accidents. This report documents the results of Phenomena Identification and Ranking Table (PIRT) efforts for the Westinghouse AP600 reactor. The purpose of this PIRT is to identify important phenomena so that they may be addressed in both the experimental programs and the RELAP5/MOD3 systems analysis computer code. In Revision of this report, the responses of AP600 during small break loss-of-coolant accident, main steam line break, and steam generator tube rupture accident scenarios were evaluated by a committee of thermal-hydraulic experts. Committee membership included Idaho National Engineering and Environmental Laboratory staff and recognized thermal-hydraulic experts from outside of the laboratory. Each of the accident scenarios was subdivided into separate, sequential periods or phases. Within each phase, the plant behavior is controlled by, at most, a few thermal-hydraulic processes. The committee identified the phenomena influencing those processes, and ranked & influences as being of high, medium, low, or insignificant importance. The primary product of this effort is a series of tables, one for each phase of each accident scenario, describing the thermal-hydraulic phenomena judged by the committee to be important, and the relative ranking of that importance. The rationales for the phenomena selected and their rankings are provided. This document issue incorporates an update of the small break loss-of-coolant accident portion of the report. This revision is the result of the release of experimental evidence from AP600-related integral test facilities (ROSA/AP600, OSU, and SPES) and thermal-hydraulic expert review. The activities associated with this update were performed during the period from June 1995 through November 1996. 8 refs., 26 figs., 42 tabs.

  3. A study on the Pb-SCC characteristics of Korean-made S/G tube materials

    Energy Technology Data Exchange (ETDEWEB)

    Park, I. G.; Lee, C. S. [Sunmoon Univ., Cheonan (Korea)

    2001-04-01

    Stress corrosion cracking(SCC) tests were performed using C-ring specimens for commercial and korean-made Alloys 600 and 690, in order to evaluate the SCC resistance in caustic environments with electrochemical potential of +125mV at 315 deg C for 480 hrs. Different cracking phenomenon was observed with NaOH concentrations. No SCC crack was observed in 4% and 50% NaOH solutions, while intergranular stress corrosion cracking(IGSCC) was found for commercial Alloy 600 MA in 10%, 20%, and 30% NaOH solutions. Caustic SCC was most severe in 30% NaOH solution. Interestingly, in 30% NaOH solution, transgranular stress corrosion cracking was detected from C690TT, contrary to the previous results. In case of two times duration(1,000 rs), transgranular stress corrosion cracking(TGSCC) was also detected. This crack nucleation stage of TGSCC has changed to the crack propagation stage of IGSCC in the longer immersion time of 3,000 hrs. SCC resistance of korean-made Alloy 690 TT was found out to be much superior to that of the other alloys. C-ring tests were also carried out to analyze the effect of Pb on SCC in 4% NaOH solution at 345 deg C with the variation of Pb concentration. It seemed that Pb-SCC occurred when Pb concentration was above at least 100 ppm. Pb-SCC resistance was increased with Cr concentration in alloy compositions. Korean-made materials were better than commercial materials for caustic SCC and Pb-SCC resistance. 54 refs., 28 figs., 11 tabs. (Author)

  4. Ubiquitous Solar Eruptions Driven by Magnetized Vortex Tubes

    CERN Document Server

    Kitiashvili, I N; Lele, S K; Mansour, N N; Wray, A A

    2013-01-01

    The solar surface is covered by high-speed jets transporting mass and energy into the solar corona and feeding the solar wind. The most prominent of these jets have been known as spicules. However, the mechanism initiating these eruptions events is still unknown. Using realistic numerical simulations we find that small-scale eruptions are produced by ubiquitous magnetized vortex tubes generated by the Sun's turbulent convection in subsurface layers. The swirling vortex tubes (resembling tornadoes) penetrate into the solar atmosphere, capture and stretch background magnetic field, and push surrounding material up, generating quasiperiodic shocks. Our simulations reveal a complicated high-speed flow patterns, and thermodynamic and magnetic structure in the erupting vortex tubes. We found that the eruptions are initiated in the subsurface layers and are driven by the high-pressure gradients in the subphotosphere and photosphere, and by the Lorentz force in the higher atmosphere layers.

  5. High-Temperature Structures, Adhesives, and Advanced Thermal Protection Materials for Next-Generation Aeroshell Design

    Science.gov (United States)

    Collins, Timothy J.; Congdon, William M.; Smeltzer, Stanley S.; Whitley, Karen S.

    2005-01-01

    The next generation of planetary exploration vehicles will rely heavily on robust aero-assist technologies, especially those that include aerocapture. This paper provides an overview of an ongoing development program, led by NASA Langley Research Center (LaRC) and aimed at introducing high-temperature structures, adhesives, and advanced thermal protection system (TPS) materials into the aeroshell design process. The purpose of this work is to demonstrate TPS materials that can withstand the higher heating rates of NASA's next generation planetary missions, and to validate high-temperature structures and adhesives that can reduce required TPS thickness and total aeroshell mass, thus allowing for larger science payloads. The effort described consists of parallel work in several advanced aeroshell technology areas. The areas of work include high-temperature adhesives, high-temperature composite materials, advanced ablator (TPS) materials, sub-scale demonstration test articles, and aeroshell modeling and analysis. The status of screening test results for a broad selection of available higher-temperature adhesives is presented. It appears that at least one (and perhaps a few) adhesives have working temperatures ranging from 315-400 C (600-750 F), and are suitable for TPS-to-structure bondline temperatures that are significantly above the traditional allowable of 250 C (482 F). The status of mechanical testing of advanced high-temperature composite materials is also summarized. To date, these tests indicate the potential for good material performance at temperatures of at least 600 F. Application of these materials and adhesives to aeroshell systems that incorporate advanced TPS materials may reduce aeroshell TPS mass by 15% - 30%. A brief outline is given of work scheduled for completion in 2006 that will include fabrication and testing of large panels and subscale aeroshell test articles at the Solar-Tower Test Facility located at Kirtland AFB and operated by Sandia

  6. Categorising YouTube

    Directory of Open Access Journals (Sweden)

    Thomas Mosebo Simonsen

    2011-09-01

    Full Text Available This article provides a genre analytical approach to creating a typology of the User Generated Content (UGC of YouTube. The article investigates the construction of navigationprocesses on the YouTube website. It suggests a pragmatic genre approach that is expanded through a focus on YouTube’s technological affordances. Through an analysis of the different pragmatic contexts of YouTube, it is argued that a taxonomic understanding of YouTube must be analysed in regards to the vacillation of a user-driven bottom-up folksonomy and a hierarchical browsing system that emphasises a culture of competition and which favours the already popular content of YouTube. With this taxonomic approach, the UGC videos are registered and analysed in terms of empirically based observations. The article identifies various UGC categories and their principal characteristics. Furthermore, general tendencies of the UGC within the interacting relationship of new and old genres are discussed. It is argued that the utility of a conventional categorical system is primarily of analytical and theoretical interest rather than as a practical instrument.

  7. In-situ tube burst testing and high-temperature deformation behavior of candidate materials for accident tolerant fuel cladding

    Science.gov (United States)

    Gussev, M. N.; Byun, T. S.; Yamamoto, Y.; Maloy, S. A.; Terrani, K. A.

    2015-11-01

    One of the most essential properties of accident tolerant fuel (ATF) for maintaining structural integrity during a loss-of-coolant accident (LOCA) is high resistance of the cladding to plastic deformation and burst failure, since the deformation and burst behavior governs the cooling efficiency of flow channels and the process of fission product release. To simulate and evaluate the deformation and burst process of thin-walled cladding, an in-situ testing and evaluation method has been developed on the basis of visual imaging and image analysis techniques. The method uses a specialized optics system consisting of a high-resolution video camera, a light filtering unit, and monochromatic light sources. The in-situ testing is performed using a 50 mm long pressurized thin-walled tubular specimen set in a programmable furnace. As the first application, ten (10) candidate cladding materials for ATF, i.e., five FeCrAl alloys and five nanostructured steels, were tested using the newly developed method, and the time-dependent images were analyzed to produce detailed deformation and burst data such as true hoop stress, strain (creep) rate, and failure stress. Relatively soft FeCrAl alloys deformed and burst below 800 °C, while negligible strain rates were measured for higher strength alloys.

  8. Ferroelectric HfO2-based materials for next-generation ferroelectric memories

    Science.gov (United States)

    Fan, Zhen; Chen, Jingsheng; Wang, John

    2016-05-01

    Ferroelectric random access memory (FeRAM) based on conventional ferroelectric perovskites, such as Pb(Zr,Ti)O3 and SrBi2Ta2O9, has encountered bottlenecks on memory density and cost, because those conventional perovskites suffer from various issues mainly including poor complementary metal-oxide-semiconductor (CMOS)-compatibility and limited scalability. Next-generation cost-efficient, high-density FeRAM shall therefore rely on a material revolution. Since the discovery of ferroelectricity in Si:HfO2 thin films in 2011, HfO2-based materials have aroused widespread interest in the field of FeRAM, because they are CMOS-compatible and can exhibit robust ferroelectricity even when the film thickness is scaled down to below 10 nm. A review on this new class of ferroelectric materials is therefore of great interest. In this paper, the most appealing topics about ferroelectric HfO2-based materials including origins of ferroelectricity, advantageous material properties, and current and potential applications in FeRAM, are briefly reviewed.

  9. Effects of Electrode Material on the Voltage of a Tree-Based Energy Generator.

    Directory of Open Access Journals (Sweden)

    Zhibin Hao

    Full Text Available The voltage between a standing tree and its surrounding soil is regarded as an innovative renewable energy source. This source is expected to provide a new power generation system for the low-power electrical equipment used in forestry. However, the voltage is weak, which has caused great difficulty in application. Consequently, the development of a method to increase the voltage is a key issue that must be addressed in this area of applied research. As the front-end component for energy harvesting, a metal electrode has a material effect on the level and stability of the voltage obtained. This study aimed to preliminarily ascertain the rules and mechanisms that underlie the effects of electrode material on voltage. Electrodes of different materials were used to measure the tree-source voltage, and the data were employed in a comparative analysis. The results indicate that the conductivity of the metal electrode significantly affects the contact resistance of the electrode-soil and electrode-trunk contact surfaces, thereby influencing the voltage level. The metal reactivity of the electrode has no significant effect on the voltage. However, passivation of the electrode materials markedly reduces the voltage. Suitable electrode materials are demonstrated and recommended.

  10. Evaluation of cytotoxicity and pH changes generated by various dental pulp capping materials - an in vitro study.

    Science.gov (United States)

    Luczaj-Cepowicz, Elzbieta; Marczuk-Kolada, Grazyna; Pawinska, Malgorzata; Obidzinska, Marta; Holownia, Adam

    2017-01-01

    Various materials are used in direct dental pulp capping method. Their biocompatibility and alkalizing abilities are of primary importance affecting therapeutic effects. The aim of this study was to evaluate and compare the cytotoxicity of various pulp-capping materials on human gingival fibroblasts and investigate the pH changes induced by these materials. Human gingival fibroblasts were cultured with nine direct pulp materials using culture plate inserts. The cytotoxic effects were recorded by using an MTT-based colorimetric assay after 3 and 24 h. In the second part of the experiment, the materials were inserted in dialysis tubes and transferred into plastic vials containing deionized water. The changes of the medium pH were measured after 3 and 24 h. We showed differences in cell viability of gingival fibroblasts after varied time of exposition for the tested materials. Cell viability after 24 h increased for Dycal, Biopulp, and Calcipro, and decreased for Calcipulpe, Angelus, Angelus White, and ProRoot Regular. Cell viability for ProRoot and Life did not change. Non-setting calcium hydroxide preparations followed by the MTA group and setting calcium hydroxide materials produced the highest pH. All the tested materials significantly increased pH (p materials varied in their cytotoxicity relative to human gingival fibroblasts and their alkalizing capacities. Since most likely pH does not affect the viability of cultured cells, further investigations are required to determine physicochemical properties of these materials and the biological activity of the dental pulp.

  11. Second harmonic generation of near millimeter wave radiation by nonlinear bulk material

    Science.gov (United States)

    Ahn, B. H.

    1980-06-01

    Bulk crystals have been used frequently to obtain second harmonic generation (SHG) and third harmonic generation (THG) of radiation from the fundamental input frequency, particularly in the optical region. For example ammonium dihydrogen phosphate, potassium dihydrogen phosphate, semiconductor materials, and ferroelectric materials were used for the SHG of input laser beams. SHG and THG have also been realized in the microwave region. Boyd, et. al., reported on the nonlinear coefficients and other important parameters at 55 GHz. Later, Boyd and Pollack published a comprehensive paper on the nonlinear coefficients of LiTaO3 and LiNbO3 in the microwave region. DiDomenico, Jrl, et. al., obtained a 9 GHz TH output with an efficiency of 8.5% from a 2200 watt 3 GHz source by use of a 73% BaTiO3 - 27% SrTiO3 ceramic in a coaxial cavity configuration. Impetus for bulk harmonic generation in the microwave region was given by the discovery that some ferroelectric crystals have very large nonlinear coefficients, large enough to compensate for the lower frequencies of the microwave region in comparison to those of the optical region.

  12. Empirical Evaluation of Construction Material Waste Generated on Sites in Nigeria

    Directory of Open Access Journals (Sweden)

    Adewuyi, T.O.

    2014-01-01

    Full Text Available The study investigates the level of construction material waste generated on building sites in South-South, Nigeria. The objective is to empirically establish the level of waste generated on building sites and compare such with the allowable value in estimates. Data were collected from 30 on-going public building projects for six months. The level of material waste was calculated in percentages while one way ANOVA was employed to compare the waste values among the States in the zone. The significant difference between actual and allowable values of waste was tested using paired t-test. The level of material waste was found to be 11.69, 12.10, 10.45, 14.54, and 12.07 for concrete blocks, steel reinforcement, timber, and tiles respectively. It was concluded that these values are significantly different, with p-values < 0.05, from the allowable waste. The study recommends that the values of waste derived by this study be adopted in estimates

  13. Health assessment of gasoline and fuel oxygenate vapors: generation and characterization of test materials.

    Science.gov (United States)

    Henley, Michael; Letinski, Daniel J; Carr, John; Caro, Mario L; Daughtrey, Wayne; White, Russell

    2014-11-01

    In compliance with the Clean Air Act regulations for fuel and fuel additive registration, the petroleum industry, additive manufacturers, and oxygenate manufacturers have conducted comparative toxicology testing on evaporative emissions of gasoline alone and gasoline containing fuel oxygenates. To mimic real world exposures, a generation method was developed that produced test material similar in composition to the re-fueling vapor from an automotive fuel tank at near maximum in-use temperatures. Gasoline vapor was generated by a single-step distillation from a 1000-gallon glass-lined kettle wherein approximately 15-23% of the starting material was slowly vaporized, separated, condensed and recovered as test article. This fraction was termed vapor condensate (VC) and was prepared for each of the seven test materials, namely: baseline gasoline alone (BGVC), or gasoline plus an ether (G/MTBE, G/ETBE, G/TAME, or G/DIPE), or gasoline plus an alcohol (G/EtOH or G/TBA). The VC test articles were used for the inhalation toxicology studies described in the accompanying series of papers in this journal. These studies included evaluations of subchronic toxicity, neurotoxicity, immunotoxicity, genotoxicity, reproductive and developmental toxicity. Results of these studies will be used for comparative risk assessments of gasoline and gasoline/oxygenate blends by the US Environmental Protection Agency.

  14. Material specific effects and limitations during ps-laser generation of micro structures

    Science.gov (United States)

    Hildenhagen, J.; Engelhardt, U.; Smarra, M.; Dickmann, K.

    2012-01-01

    The use of picosecond lasers for microstructuring, especially in the combination with scanner optics, leads to undesired effects with increasing ablation depths. The cavity edges slope to a degree ranging between 50° and 85°, depending on the material. With highly reflective substrates, ditches of up to 20% of their total depth can be formed on its ground structure. In certain materials also diverse substructures such as holes, canals, or grooves can be developed. These could impact the precision of the ablation geometry partially. A systematic study of the specific ablation characteristics is needed to achieve a defined depth of the structure. Considering a huge number of influential parameters, an automation of such measurements would be meaningful. For a study of eight different materials (high-alloy steels, copper, titanium, aluminum, PMMA, Al2O3 ceramics, silicon and fused quartz), an industrial ps-laser coupled with a chromatic sensor for distance measurement was used. Hence a direct acquisition of the generated structures as well as an automatic evaluation of the parameters is possible. Furthermore an online quality control and a local post processing can be implemented. In this way the generation of complex structures with a higher precision is possible.

  15. Use of self-organizing maps for classification of defects in the tubes from the steam generator of nuclear power plants; Classificacao de defeitos em tubos de gerador de vapor de plantas nucleares utilizando mapas auto-organizaveis

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Roberto Navarro de

    2002-07-01

    This thesis obtains a new classification method for different steam generator tube defects in nuclear power plants using Eddy Current Test signals. The method uses self-organizing maps to compare different signal characteristics efficiency to identify and classify these defects. A multiple inference system is proposed which composes the different extracted characteristic trained maps classification to infer the final defect type. The feature extraction methods used are the Wavelet zero-crossings representation, the linear predictive coding (LPC), and other basic signal representations on time like module and phase. Many characteristic vectors are obtained with combinations of these extracted characteristics. These vectors are tested to classify the defects and the best ones are applied to the multiple inference system. A systematic study of pre-processing, calibration and analysis methods for the steam generator tube defect signals in nuclear power plants is done. The method efficiency is demonstrated and characteristic maps with the main prototypes are obtained for each steam generator tube defect type. (author)

  16. Cladding tube manufacturing technology

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, R. [Kraftwerk Union AG, Mulheim (Germany); Jeong, Y.H.; Baek, B.J.; Kim, K.H.; Kim, S.J.; Choi, B.K.; Kim, J.M. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-04-01

    This report gives an overview of the manufacturing routine of PWR cladding tubes. The routine essentially consists of a series of deformation and annealing processes which are necessary to transform the ingot geometry to tube dimensions. By changing shape, microstructure and structure-related properties are altered simultaneously. First, a short overview of the basics of that part of deformation geometry is given which is related to tube reducing operations. Then those processes of the manufacturing routine which change the microstructure are depicted, and the influence of certain process parameters on microstructure and material properties are shown. The influence of the resulting microstructure on material properties is not discussed in detail, since it is described in my previous report 'Alloy Development for High Burnup Cladding.' Because of their paramount importance still up to now, and because manufacturing data and their influence on properties for other alloys are not so well established or published, the descriptions are mostly related to Zry4 tube manufacturing, and are only in short for other alloys. (author). 9 refs., 46 figs.

  17. Experimental Evaluation of a Paraffin as Phase Change Material for Thermal Energy Storage in Laboratory Equipment and in a Shell-and-Tube Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Jaume Gasia

    2016-04-01

    Full Text Available The thermal behavior of a commercial paraffin with a melting temperature of 58 °C is analyzed as a phase change material (PCM candidate for industrial waste heat recovery and domestic hot water applications. A full and complete characterization of this PCM is performed based on two different approaches: a laboratory characterization (mass range of milligrams and an analysis in a pilot plant (mass range of kilograms. In the laboratory characterization, its thermal and cycling stability, its health hazard as well as its phase change thermal range, enthalpy and specific heat are analyzed using a differential scanning calorimeter, thermogravimetric analysis, thermocycling and infrared spectroscopy. Laboratory analyses showed its suitability up to 80 °C and for 1200 cycles. In the pilot plant analysis, its thermal behavior was analyzed in a shell-and-tube heat exchanger under different heat transfer fluid mass flow rates in terms of temperature, power and energy rates. Results from the pilot plant analysis allowed understanding the different methods of heat transfer in real charging and discharging processes as well as the influence of the geometry of the tank on the energy transferred and required time for charging and discharging processes.

  18. Experiments in the EMRP project KEY-VOCs: Adsorption/desorption effects of VOCs in different tubing materials and preparation and analysis of a zero gas

    Science.gov (United States)

    Englert, Jennifer; Claude, Anja; Kubistin, Dagmar; Tensing, Erasmus; Michl, Katja; Plass-Duelmer, Christian

    2017-04-01

    Atmospheric chemistry and composition are influenced by volatile organic compounds (VOCs) emitted from natural and anthropogenic sources. Due to their toxicity and their crucial role in ozone and aerosol formation VOCs impact air quality and climate change and high quality observations are demanded. The European Metrology Research Programme (EMRP) project KEY-VOCs has targeted the improvement of VOC measurement capabilities with the focus on VOCs relevant for indoor air as well as for air quality and climate monitoring programmes. One major uncertainty is the influence of surface effects of the measurement devices. By developing a test system the adsorption/desorption effects of certain VOCs can be systematically examined. Different tubing materials e.g. stainless steel and PFA were analysed with the oxygenated VOC methanol and results of these experiments will be presented. In air quality monitoring very low levels of VOCs have to be measured. Purified air or nitrogen is widely used as a zero gas to characterize measurement systems and procedures as well as for instrument calibration. A high quality zero gas is an important contributor to the quality of the measurements and generally achieved by using state-of-the-art purification technologies. The efficiency of several air purifiers was assessed and the results have been analysed.

  19. Explosive welding of a tube into a tube sheet

    Energy Technology Data Exchange (ETDEWEB)

    Green, Sheryll C. (London, OH); Linse, Vonne D. (Columbus, OH)

    1978-10-03

    A cartridge containing an explosive charge is placed within a tube assembled within a tube sheet. The charge is detonated through use of a detonator cord containing a minimum but effective amount of explosive material. The cord is contained inside a tubular shield throughout most of its length within the cartridge. A small length of the cord extends beyond the tubular shield to contact and detonate the explosive charge in its rear portion near the cartridge base. The cartridge base is provided of substantial mass and thickness in respect to side and front walls of the cartridge to minimize bulging beyond the rear face of the tube sheet. For remote activation an electrically activated detonator of higher charge density than the cord is attached to the cord at a location spaced from the tube sheet, cartridge and tube.

  20. Explosive welding of a tube into a tube sheet

    Energy Technology Data Exchange (ETDEWEB)

    Green, S.C.; Linse, V.D.

    1978-10-03

    A cartridge containing an explosive charge is placed within a tube assembled within a tube sheet. The charge is detonated through use of a detonator cord containing a minimum but effective amount of explosive material. The cord is contained inside a tubular shield throughout most of its length within the cartridge. A small length of the cord extends beyond the tublar shield to contact and detonate the explosive charge in its rear portion near the cartridge base. The cartridge base is provided of substantial mass and thickness in respect to side and front walls of the cartridge to minimize bulging beyond the rear face of the tube sheet. For remote activation an electrically activated detonator of higher charge density than the cord is attached to the cord at a location spaced from the tube sheet, cartridge and tube.

  1. Protective Effects of N-Acetyl Cysteine against Diesel Exhaust Particles-Induced Intracellular ROS Generates Pro-Inflammatory Cytokines to Mediate the Vascular Permeability of Capillary-Like Endothelial Tubes.

    Directory of Open Access Journals (Sweden)

    Chia-Yi Tseng

    Full Text Available Exposure to diesel exhaust particles (DEP is associated with pulmonary and cardiovascular diseases. Previous studies using in vitro endothelial tubes as a simplified model of capillaries have found that DEP-induced ROS increase vascular permeability with rearrangement or internalization of adherens junctional VE-cadherin away from the plasma membrane. This allows DEPs to penetrate into the cell and capillary lumen. In addition, pro-inflammatory cytokines are up-regulated and mediate vascular permeability in response to DEP. However, the mechanisms through which these DEP-induced pro-inflammatory cytokines increase vascular permeability remain unknown. Hence, we examined the ability of DEP to induce permeability of human umbilical vein endothelial cell tube cells to investigate these mechanisms. Furthermore, supplementation with NAC reduces ROS production following exposure to DEP. HUVEC tube cells contributed to a pro-inflammatory response to DEP-induced intracellular ROS generation. Endothelial oxidative stress induced the release of TNF-α and IL-6 from tube cells, subsequently stimulating the secretion of VEGF-A independent of HO-1. Our data suggests that DEP-induced intracellular ROS and release of the pro-inflammatory cytokines TNF- α and IL-6, which would contribute to VEGF-A secretion and disrupt cell-cell borders and increase vasculature permeability. Addition of NAC suppresses DEP-induced ROS efficiently and reduces subsequent damages by increasing endogenous glutathione.

  2. Acoustical breakdown of materials by focusing of laser-generated Rayleigh surface waves

    Science.gov (United States)

    Veysset, David; Maznev, A. A.; Veres, István A.; Pezeril, Thomas; Kooi, Steven E.; Lomonosov, Alexey M.; Nelson, Keith A.

    2017-07-01

    Focusing of high-amplitude surface acoustic waves leading to material damage is visualized in an all-optical experiment. The optical setup includes a lens and an axicon that focuses an intense picosecond excitation pulse into a ring-shaped pattern at the surface of a gold-coated glass substrate. Optical excitation induces a surface acoustic wave (SAW) that propagates in the plane of the sample and converges toward the center. The evolution of the SAW profile is monitored using interferometry with a femtosecond probe pulse at variable time delays. The quantitative analysis of the full-field images provides direct information about the surface displacement profiles, which are compared to calculations. The high stress at the focal point leads to the removal of the gold coating and, at higher excitation energies, to damage of the glass substrate. The results open the prospect for testing material strength on the microscale using laser-generated SAWs.

  3. NATO Advanced Study Institute on Materials Issues for Generation IV Systems : Status, Open Questions and Challenges

    CERN Document Server

    Gorse, Dominique; Mazière, Dominique; Pontikis, Vassilis

    2008-01-01

    Global warming, shortage of low-cost oil resources and the increasing demand for energy are currently controlling the world's economic expansion while often opposing desires for sustainable and peaceful development. In this context, atomic energy satisfactorily fulfills the criteria of low carbon gas production and high overall yield. However, in the absence of industrial fast-breeders the use of nuclear fuel is not optimal, and the production of high activity waste materials is at a maximum. These are the principal reasons for the development of a new, fourth generation of nuclear reactors, minimizing the undesirable side-effects of current nuclear energy production technology while increasing yields by increasing operation temperatures and opening the way for the industrial production of hydrogen through the decomposition of water. The construction and use of such reactors is hindered by several factors, including performance limitations of known structural materials, particularly if the life of the project...

  4. Single-tube-genotyping of gastric cancer related SNPs by directly using whole blood and paper-dried blood as starting materials

    Institute of Scientific and Technical Information of China (English)

    Huan Huang; Ying Bu; Guo-Hua Zhou

    2006-01-01

    AIM: To demonstrate an inexpensive method for typing gastric cancer related single nucleotide polymorphisms (SNPs) using whole blood or paper-dried blood as starting materials.METHODS: PCR amplification is directly carried out from the whole blood or paper-dried blood sample without any DNA extraction step. Before PCR, a blood sample, four primers, and all of biological reagents necessary for PCR were added at a time; After PCR, the amplified products were directly separated by slab gel electrophoresis or microchip CE without any purification. SNP typing was performed by tetra-primer PCR with two inner primers specific to each allele and two outer primers defining the length of allele-specific amplicons. Genotypes were directly discriminated by the size of amplicons specific to each allele, thereby avoiding any post-PCR process.RESULTS: Using a special PCR buffer, inhibitory substances in blood (including the anticoagulant in blood) and filter paper were effectively suppressed;a "true" single-tube-genotyping is thus realized. We successfully determined genotypes IL-1B-511 and IL-1B-31 polymorphisms at the gene IL-1B by using whole-blood and paper-dried blood samples as starting materials respectively. The method is so sensitive that 0.5-1.0 μL of blood sample is enough to give a satisfactory typing results. The genotyping results were confirmed by RFLP-PCR using purified genome DNA,indicating that amplification specificity was not affected by inhibitory components (including coagulants) in blood or filter paper.CONCLUSION: Compared with SNP typing methods based on purified DNA, the proposed method is laborsaving, simple, inexpensive, and less cross-contaminated.It is promising to use this method to type other SNPs.

  5. Using SERC for creating and publishing student generated hydrology instruction materials

    Science.gov (United States)

    Merwade, V.; Rajib, A.; Ruddell, B.; Fox, S.

    2016-12-01

    Hydrology instruction typically involves teaching of the hydrologic cycle and the processes associated with it such as precipitation, evapotranspiration, infiltration, runoff generation and hydrograph analysis. With the availability of observed and remotely sensed data in public domain, there is an opportunity to incorporate place-based learning in hydrology classrooms. However, it is not always easy and possible for an instructor to complement an existing hydrology course with new material that requires both time and technical expertise, which the instructor may not have. The work presented here describes an effort where students created the data and modeling driven instruction materials as part of their class assignment for a hydrology course at Purdue University. Students in the class were divided into groups, and each group was assigned a topic such as precipitation, evapotranspiration, streamflow, flow duration curve and flood frequency analysis. Each of the student groups was then instructed to produce an instruction material showing ways to extract/process relevant data and perform some analysis for an area with specific land use characteristic. The student contributions were then organized into learning units such that someone can do a flow duration curve analysis or flood frequency analysis and see how it changes for rural area versus urban area. Science Education Resource Center (SERC) is used as a platform to publish and share these instruction materials so it can be used as-is or through modification by any instructor or student in relevant coursework anywhere in the world.

  6. Chest tube insertion

    Science.gov (United States)

    ... tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... Kirsch TD, Sax J. Tube thoracostomy. In: Roberts JR, ed. Roberts and ... . 6th ed. Philadelphia, PA: Elsevier Saunders; 2014:chap 10.

  7. Jejunostomy feeding tube

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/patientinstructions/000181.htm Jejunostomy feeding tube To use the sharing features on this ... vomiting Your child's stomach is bloated Alternate Names Feeding - jejunostomy tube; G-J tube; J-tube; Jejunum ...

  8. Infrared imaging of LED lighting tubes and fluorescent tubes

    Science.gov (United States)

    Siikanen, Sami; Kivi, Sini; Kauppinen, Timo; Juuti, Mikko

    2011-05-01

    The low energy efficiency of conventional light sources is mainly caused by generation of waste heat. We used infrared (IR) imaging in order to monitor the heating of both LED tube luminaires and ordinary T8 fluorescent tubes. The IR images showed clearly how the surface temperatures of the fluorescent tube ends quickly rose up to about +50...+70°C, whereas the highest surface temperatures seen on the LED tubes were only about +30...+40°C. The IR images demonstrated how the heat produced by the individual LED chips can be efficiently guided to the supporting structure in order to keep the LED emitters cool and hence maintain efficient operation. The consumed electrical power and produced illuminance were also recorded during 24 hour measurements. In order to assess the total luminous efficacy of the luminaires, separate luminous flux measurements were made in a large integrating sphere. The currently available LED tubes showed efficacies of up to 88 lm/W, whereas a standard "cool white" T8 fluorescent tube produced ca. 75 lm/W. Both lamp types gave ca. 110 - 130 lx right below the ceiling-mounted luminaire, but the LED tubes consume only 40 - 55% of the electric power compared to fluorescent tubes.

  9. Hybrid endotracheal tubes

    Science.gov (United States)

    Sakezles, Christopher Thomas

    Intubation involves the placement of a tube into the tracheal lumen and is prescribed in any setting in which the airway must be stabilized or the patient anesthetized. The purpose of the endotracheal tube in these procedures is to maintain a viable airway, facilitate mechanical ventilation, allow the administration of anesthetics, and prevent the reflux of vomitus into the lungs. In order to satisfy these requirements a nearly airtight seal must be maintained between the tube and the tracheal lining. Most conventional endotracheal tubes provide this seal by employing a cuff that is inflated once the tube is in place. However, the design of this cuff and properties of the material are a source of irritation and injury to the tracheal tissues. In fact, the complication rate for endotracheal intubation is reported to be between 10 and 60%, with manifestations ranging from severe sore throat to erosion through the tracheal wall. These complications are caused by a combination of the materials employed and the forces exerted by the cuff on the tracheal tissues. In particular, the abrasive action of the cuff shears cells from the lining, epithelium adhering to the cuff is removed during extubation, and normal forces exerted on the basement tissues disrupt the blood supply and cause pressure necrosis. The complications associated with tracheal intubation may be reduced or eliminated by employing airway devices constructed from hydrogel materials. Hydrogels are a class of crosslinked polymers which swell in the presence of moisture, and may contain more than 95% water by weight. For the current study, several prototype airway devices were constructed from hydrogel materials including poly(vinyl alcohol), poly(hydroxyethyl methacrylate), and poly(vinyl pyrrolidone). The raw hydrogel materials from this group were subjected to tensile, swelling, and biocompatibility testing, while the finished devices were subjected to extensive mechanical simulation and animal trials

  10. High-frequency Pulse-tube Refrigerator for 4 K

    Science.gov (United States)

    Tanaeva, I. A.; Klaasse Bos, C. G.; de Waele, A. T. A. M.

    2006-04-01

    At present pulse-tube refrigerators (PTRs), used for the important temperature region of 4 K, are of the Gifford-McMahon (GM)-type. The main sources of losses in GM-type PTRs are the compressor and the rotary valve. The efficiency of the combination of the compressor and the rotary valve is only about 30%. In addition to that GM-type compressors are heavy and need periodic maintenance. The main goal of this research is to develop a Stirling-type 4-K pulse-tube refrigerator. This implies higher operating frequencies, compared to the usual 1-2 Hz. At higher frequencies a number of properties of a pulse-tube system, such as length-to-diameter ratios of the pulse tubes and the regenerator, volume and configuration of a regenerator material, phase-shift control method, etc., change significantly, and, therefore, require detailed study. The interactions between various parameters of the pulse tube and of the linear compressor are very complicated. Therefore, as a first part of this research, we study the pulse tube at high frequencies, independent of the compressor. We generate high-frequency pressure oscillations, using a GM-type compressor and a special type of rotary valve, which enables us to operate at frequencies up to 20 Hz. Results of this work are described in this contribution.

  11. New liquid crystalline materials based on two generations of dendronised cyclophosphazenes.

    Science.gov (United States)

    Jiménez, Josefina; Laguna, Antonio; Gascón, Elena; Sanz, José Antonio; Serrano, José Luis; Barberá, Joaquín; Oriol, Luis

    2012-12-21

    A divergent approach was used for the synthesis of dendritic structures based on a cyclotriphosphazene core with 12 or 24 hydroxyl groups, by starting from [N(3)P(3)(OC(6)H(4)OH-4)(6)] and using an acetal-protected 2,2-di(hydroxymethyl)propionic anhydride as the acylating agent. Hydroxyl groups in these first- and second-generation dendrimers, G1-(OH)(12) or G2-(OH)(24), were then condensed in turn with mono- or polycatenar pro-mesogenic acids to study their ability to promote self-assembly into liquid crystalline structures. Reactions were monitored by using (31)P{(1)H} and (1)H NMR spectroscopy and the chemical structure of the resulting materials was confirmed by using different spectroscopic techniques and mass spectrometry (MALDI-TOF MS). The results were in accordance with monodisperse, fully functionalised cyclotriphosphazene dendrimers. Thermal and liquid crystalline properties were studied by using optical microscopy, differential scanning calorimetry and X-ray diffraction. The dendrimer with 12 4-pentylbiphenyl mesogenic units gives rise to columnar rectangular organisation, whereas the one with 24 pentylbiphenyl units does not exhibit mesomorphic behaviour. In the case of materials that contain polycatenar pro-mesogenic units with two aromatic rings (A4 vs. A5), the incorporation of a short flexible spacer connected to the periphery of the dendron (acid A5) was needed to achieve mesomorphic organisation. In this case, both dendrimer generations G1 A5 and G2 A5 exhibit a hexagonal columnar mesophase.

  12. Heat generation caused by ablation of dental restorative materials with an ultra short pulse laser (USPL) system

    Science.gov (United States)

    Braun, Andreas; Wehry, Richard; Brede, Olivier; Frentzen, Matthias; Schelle, Florian

    2011-03-01

    The aim of this study was to assess heat generation in dental restoration materials following laser ablation using an Ultra Short Pulse Laser (USPL) system. Specimens of phosphate cement (PC), ceramic (CE) and composite (C) were used. Ablation was performed with an Nd:YVO4 laser at 1064 nm and a pulse length of 8 ps. Heat generation during laser ablation depended on the thickness of the restoration material. A time delay for temperature increase was observed in the PC and C group. Employing the USPL system for removal of restorative materials, heat generation has to be considered.

  13. A computational model for reliability calculation of steam generators from defects in its tubes; Um modelo computacional para o calculo da confiabilidade de geradores de vapor a partir de defeitos em seus tubos

    Energy Technology Data Exchange (ETDEWEB)

    Rivero, Paulo C.M.; Melo, P.F. Frutuoso e [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear

    2000-07-01

    Nowadays, probability approaches are employed for calculating the reliability of steam generators as a function of defects in their tubes without any deterministic association with warranty assurance. Unfortunately, probability models produce large failure values, as opposed to the recommendation of the U.S. Code of Federal Regulations, that is, failure probabilities must be as small as possible In this paper, we propose the association of the deterministic methodology with the probabilistic one. At first, the failure probability evaluation of steam generators follows a probabilistic methodology: to find the failure probability, critical cracks - obtained from Monte Carlo simulations - are limited to have length's in the interval defined by their lower value and the plugging limit one, so as to obtain a failure probability of at most 1%. The distribution employed for modeling the observed (measured) cracks considers the same interval. Any length outside the mentioned interval is not considered for the probability evaluation: it is approached by the deterministic model. The deterministic approach is to plug the tube when any anomalous crack is detected in it. Such a crack is an observed one placed in the third region on the plot of the logarithmic time derivative of crack lengths versus the mode I stress intensity factor, while for normal cracks the plugging of tubes occurs in the second region of that plot - if they are dangerous, of course, considering their random evolution. A methodology for identifying anomalous cracks is also presented. (author)

  14. Effect of turbine materials on power generation efficiency from free water vortex hydro power plant

    Science.gov (United States)

    Sritram, P.; Treedet, W.; Suntivarakorn, R.

    2015-12-01

    The objective of this research was to study the effect of turbine materials on power generation efficiency from the water free vortex hydro power plant made of steel and aluminium. These turbines consisted of five blades and were twisted with angles along the height of water. These blades were the maximum width of 45 cm. and height of 32 cm. These turbines were made and experimented for the water free vortex hydro power plant in the laboratory with the water flow rate of 0.68, 1.33, 1.61, 2.31, 2.96 and 3.63 m3/min and an electrical load of 20, 40, 60, 80 and 100 W respectively. The experimental results were calculated to find out the torque, electric power, and electricity production efficiency. From the experiment, the results showed that the maximum power generation efficiency of steel and aluminium turbine were 33.56% and 34.79% respectively. From the result at the maximum water flow rate of 3.63 m3/min, it was found that the torque value and electricity production efficiency of aluminium turbine was higher than that of steel turbine at the average of 8.4% and 8.14%, respectively. This result showed that light weight of water turbine can increase the torque and power generation efficiency.

  15. Particle Morphology and Elemental Composition of Smoke Generated by Overheating Common Spacecraft Materials

    Science.gov (United States)

    Meyer, Marit E.

    2015-01-01

    Fire safety in the indoor spacecraft environment is concerned with a unique set of fuels which are designed to not combust. Unlike terrestrial flaming fires, which often can consume an abundance of wood, paper and cloth, spacecraft fires are expected to be generated from overheating electronics consisting of flame resistant materials. Therefore, NASA prioritizes fire characterization research for these fuels undergoing oxidative pyrolysis in order to improve spacecraft fire detector design. A thermal precipitator designed and built for spacecraft fire safety test campaigns at the NASA White Sands Test Facility (WSTF) successfully collected an abundance of smoke particles from oxidative pyrolysis. A thorough microscopic characterization has been performed for ten types of smoke from common spacecraft materials or mixed materials heated at multiple temperatures using the following techniques: SEM, TEM, high resolution TEM, high resolution STEM and EDS. Resulting smoke particle morphologies and elemental compositions have been observed which are consistent with known thermal decomposition mechanisms in the literature and chemical make-up of the spacecraft fuels. Some conclusions about particle formation mechanisms are explored based on images of the microstructure of Teflon smoke particles and tar ball-like particles from Nomex fabric smoke.

  16. Operational Readiness Review Plan for the Radioisotope Thermoelectric Generator Materials Production Tasks

    Science.gov (United States)

    Cooper, R. H.; Martin, M. M.; Riggs, C. R.; Beatty, R. L.; Ohriner, E. K.; Escher, R. N.

    1990-04-19

    In October 1989, a US shuttle lifted off from Cape Kennedy carrying the spacecraft Galileo on its mission to Jupiter. In November 1990, a second spacecraft, Ulysses, will be launched from Cape Kennedy with a mission to study the polar regions of the sun. The prime source of power for both spacecraft is a series of radioisotope thermoelectric generators (RTGs), which use plutonium oxide (plutonia) as a heat source. Several of the key components in this power system are required to ensure the safety of both the public and the environment and were manufactured at Oak Ridge National Laboratory (ORNL) in the 1980 to 1983 period. For these two missions, Martin Marietta Energy Systems, Inc. (Energy Systems), will provide an iridium alloy component used to contain the plutonia heat source and a carbon composite material that serves as a thermal insulator. ORNL alone will continue to fabricate the carbon composite material. Because of the importance to DOE that Energy Systems deliver these high quality components on time, performance of an Operational Readiness Review (ORR) of these manufacturing activities is necessary. Energy Systems Policy GP 24 entitled "Operational Readiness Process" describes the formal and comprehensive process by which appropriate Energy Systems activities are to be reviewed to ensure their readiness. This Energy System policy is aimed at reducing the risks associated with mission success and requires a management approved "readiness plan" to be issued. This document is the readiness plan for the RTG materials production tasks.

  17. Acoustical studies on corrugated tubes

    Science.gov (United States)

    Balaguru, Rajavel

    Corrugated tubes and pipes offer greater global flexibility combined with local rigidity. They are used in numerous engineering applications such as vacuum cleaner hosing, air conditioning systems of aircraft and automobiles, HVAC control systems of heating ducts in buildings, compact heat exchangers, medical equipment and offshore gas and oil transportation flexible riser pipelines. Recently there has been a renewed research interest in analyzing the flow through a corrugated tube to understand the underlying mechanism of so called whistling, although the whistling in such a tube was identified in early twentieth century. The phenomenon of whistling in a corrugated tube is interesting because an airflow through a smooth walled tube of similar dimensions will not generate any whistling tones. Study of whistling in corrugated tubes is important because, it not only causes an undesirable noise problem but also results in flow-acoustic coupling. Such a coupling can cause significant structural vibrations due to flow-acoustic-structure interaction. This interaction would cause flow-induced vibrations that could result in severe damage to mechanical systems having corrugated tubes. In this research work, sound generation (whistling) in corrugated tubes due to airflow is analyzed using experimental as well as Computational Fluid Dynamics-Large Eddy Simulation (CFD-LES) techniques. Sound generation mechanisms resulting in whistling have been investigated. The whistling in terms of frequencies and sound pressure levels for different flow velocities are studied. The analytical and experimental studies are carried out to understand the influence of various parameters of corrugated tubes such as cavity length, cavity width, cavity depth, pitch, Reynolds numbers and number of corrugations. The results indicate that there is a good agreement between theoretically calculated, computationally predicted and experimentally measured whistling frequencies and sound pressure levels

  18. The Functionality of Paratexts on YouTube

    DEFF Research Database (Denmark)

    Simonsen, Thomas Mosebo

    2014-01-01

    This chapter investigates paratexts and their functionality on YouTube. It is argued that YouTube content is in fact characterized by its dependence and usage of paratexts as part of YouTube's infrastructure. Paratexts are presented as being either auto-generated by YouTube or created by its user...

  19. Numerical Modeling of Tube Forming by HPTR Cold Pilgering Process

    Science.gov (United States)

    Sornin, D.; Pachón-Rodríguez, E. A.; Vanegas-Márquez, E.; Mocellin, K.; Logé, R.

    2016-09-01

    For new fast-neutron sodium-cooled Generation IV nuclear reactors, the candidate cladding materials for the very strong burn-up are ferritic and martensitic oxide dispersion strengthened grades. Classically, the cladding tube is cold formed by a sequence of cold pilger milling passes with intermediate heat treatments. This process acts upon the geometry and the microstructure of the tubes. Consequently, crystallographic texture, grain sizes and morphologies, and tube integrity are highly dependent on the pilgering parameters. In order to optimize the resulting mechanical properties of cold-rolled cladding tubes, it is essential to have a thorough understanding of the pilgering process. Finite Element Method (FEM) models are used for the numerical predictions of this task; however, the accuracy of the numerical predictions depends not only on the type of constitutive laws but also on the quality of the material parameters identification. Therefore, a Chaboche-type law which parameters have been identified on experimental observation of the mechanical behavior of the material is used here. As a complete three-dimensional FEM mechanical analysis of the high-precision tube rolling (HPTR) cold pilgering of tubes could be very expensive, only the evolution of geometry and deformation is addressed in this work. The computed geometry is compared to the experimental one. It is shown that the evolution of the geometry and deformation is not homogeneous over the circumference. Moreover, it is exposed that the strain is nonhomogeneous in the radial, tangential, and axial directions. Finally, it is seen that the dominant deformation mode of a material point evolves during HPTR cold pilgering forming.

  20. Broadcast yourself on YouTube - really?

    NARCIS (Netherlands)

    Kruitbosch, G.; Nack, F.

    2008-01-01

    One essential reason for people to publish on the web is to express themselves freely. YouTube facilitates this self-expression by allowing users to upload video content they generated. This paper investigates to what extent the videos on YouTube are self-generated content, instead of amalgamated

  1. Broadcast yourself on YouTube - really?

    NARCIS (Netherlands)

    Kruitbosch, G.; Nack, F.

    2008-01-01

    One essential reason for people to publish on the web is to express themselves freely. YouTube facilitates this self-expression by allowing users to upload video content they generated. This paper investigates to what extent the videos on YouTube are self-generated content, instead of amalgamated co

  2. Effect of tube-support interaction on the dynamic responses of heat exchanger tubes. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y.S.; Jendrzejczyk, J.A.; Wambsganss, M.W.

    1977-01-01

    Operating heat exchangers have experienced tube damages due to excessive flow-induced vibration. The relatively small inherent tube-to-baffle hole clearances associated with manufacturing tolerances in heat exchangers affect the tube vibrational characteristics. In attempting a theoretical analysis, questions arise as to the effects of tube-baffle impacting on dynamic responses. Experiments were performed to determine the effects of tube-baffle impacting in vertical/horizontal tube orientation, and in air/water medium on the vibrational characteristics (resonant frequencies, mode shapes, and damping) and displacement response amplitudes of a seven-span tube model. The tube and support conditions were prototypic, and overall length approximately one-third that of a straight tube segment of the steam generator designed for the CRBR. The test results were compared with the analytical results based on the multispan beam with ''knife-edge'' supports.

  3. Next Generation Nuclear Plant Intermediate Heat Exchanger Materials Research and Development Plan (PLN-2804)

    Energy Technology Data Exchange (ETDEWEB)

    J. K. Wright

    2008-04-01

    DOE has selected the High Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development (R&D) Program is responsible for performing R&D on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Today’s high-temperature alloys and associated ASME Codes for reactor applications are approved up to 760°C. However, some primary system components, such as the Intermediate Heat Exchanger (IHX) for the NGNP will require use of materials that can withstand higher temperatures. The thermal, environmental, and service life conditions of the NGNP will make selection and qualification of some high-temperature materials a significant challenge. Examples include materials for the core barrel and core internals, such as the control rod sleeves. The requirements of the materials for the IHX are among the most demanding. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while at the same time setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. A number of solid solution strengthened nickel based alloys have been considered for

  4. Modeling and experiments with low-frequency pressure wave propagation in liquid-filled, flexible tubes

    DEFF Research Database (Denmark)

    Bjelland, C; Bjarnø, Leif

    1992-01-01

    A model for wave propagation in a liquid-filled viscoelastic tube with arrays of receivers inside, is being used to analyze the influence of noise generated by in-line vibrational noise sources. In this model, distensibility is of greater importance than compressibility of the liquid....... The dispersion and attenuation is shown to be strongly dependent on the viscoelastic properties of the tube wall. The complex, frequency-dependent moduli of relevant tube materials have been measured in stress wave transfer function experiments. The moduli are used in the model to produce realistic dispersion...... relations and frequency-dependent attenuation. A 12-m-long, liquid-filled tube with interior stress members and connectors in each end is hanging vertically from an upper fixture. The lower end connector is excited by a power vibrator to generate the relevant wave modes. Measurements with reference...

  5. Modelling the flow and the two-phase science of heat inside a cross-section tube of a `once through` vapor generator overheated with sodium; Modelisation de l`ecoulement et de la thermique double phase a l`interieur d`un tube droit de generateur de vapeur `once-through` a surchauffe chauffe au sodium

    Energy Technology Data Exchange (ETDEWEB)

    Mutelle, H

    1997-11-28

    Concerning the future fast neutrons reactors, studied in the frame of the European Fast Reactor (E.F.R.) project, several innovations have been proposed particularly in the field of vapor generators. These vapor generators have the particularity to use two different exchange fluids which can react violently one with the other. The thermodynamic fluid or secondary fluid is water under high pressure (18.5 MPa) which comes under saturated in the inlet of the device, warms and vaporizes inside the nest of boiler-tubes. At the outlet, vapor is overheated. The primary fluid is a liquid metal (sodium for French reactors) which flows outside the nest of boiler-tubes in the opposite direction of the secondary fluid. Several vapor generators models have been carried out. Concerning the European Fast Reactor project, the tubes have a cross-section and are in ferritic steel. Inside the boiler-tubes, the water-vapor flow can be divided into three areas. The first one is the liquid monophasic rate. It ends by the start of the boiling which is nucleated in the shell. Downstream, the two-phase flow passes from a bubbles flow to an annular flow. The liquid is then on the form of shell film and on the form of droplets carried along by the vapor flux. The dryout of the annular film is the start of the third area where there is vapor forced convection. At the present time, there is still no thermohydraulic code in the conditions of the E.F.R. vapor generator. In order to have a reliable size tool, the members of the E.F.R. project have then decided to do a two-phase flow model and have experimented a mono tubular scale model called ``ATLAS`` which represents well the real component for size, fluids and running conditions. The aim of the present work is then, in the frame of this experimental program, to 1)qualify the heat exchange and friction laws which will be later introduced in the thermohydraulic codes of cross-sections vapor generators 2)characterize the dryout phenomenon 3

  6. Accident Generated Particulate Materials and Their Characteristics -- A Review of Background Information

    Energy Technology Data Exchange (ETDEWEB)

    Sutter, S. L.

    1982-05-01

    Safety assessments and environmental impact statements for nuclear fuel cycle facilities require an estimate of the amount of radioactive particulate material initially airborne (source term) during accidents. Pacific Northwest Laboratory (PNL) has surveyed the literature, gathering information on the amount and size of these particles that has been developed from limited experimental work, measurements made from operational accidents, and known aerosol behavior. Information useful for calculating both liquid and powder source terms is compiled in this report. Potential aerosol generating events discussed are spills, resuspension, aerodynamic entrainment, explosions and pressurized releases, comminution, and airborne chemical reactions. A discussion of liquid behavior in sprays, sparging, evaporation, and condensation as applied to accident situations is also included.

  7. Geospatial analyses and system architectures for the next generation of radioactive materials risk assessment and routing

    Energy Technology Data Exchange (ETDEWEB)

    Ganter, J.H.

    1996-02-01

    This paper suggests that inexorable changes in the society are presenting both challenges and a rich selection of technologies for responding to these challenges. The citizen is more demanding of environmental and personal protection, and of information. Simultaneously, the commercial and government information technologies markets are providing new technologies like commercial off-the-shelf (COTS) software, common datasets, ``open`` GIS, recordable CD-ROM, and the World Wide Web. Thus one has the raw ingredients for creating new techniques and tools for spatial analysis, and these tools can support participative study and decision-making. By carrying out a strategy of thorough and demonstrably correct science, design, and development, can move forward into a new generation of participative risk assessment and routing for radioactive and hazardous materials.

  8. Ionic liquids and their solid-state analogues as materials for energy generation and storage

    Science.gov (United States)

    Macfarlane, Douglas R.; Forsyth, Maria; Howlett, Patrick C.; Kar, Mega; Passerini, Stefano; Pringle, Jennifer M.; Ohno, Hiroyuki; Watanabe, Masayoshi; Yan, Feng; Zheng, Wenjun; Zhang, Shiguo; Zhang, Jie

    2016-02-01

    Salts that are liquid at room temperature, now commonly called ionic liquids, have been known for more than 100 years; however, their unique properties have only come to light in the past two decades. In this Review, we examine recent work in which the properties of ionic liquids have enabled important advances to be made in sustainable energy generation and storage. We discuss the use of ionic liquids as media for synthesis of electromaterials, for example, in the preparation of doped carbons, conducting polymers and intercalation electrode materials. Focusing on their intrinsic ionic conductivity, we examine recent reports of ionic liquids used as electrolytes in emerging high-energy-density and low-cost batteries, including Li-ion, Li-O2, Li-S, Na-ion and Al-ion batteries. Similar developments in electrolyte applications in dye-sensitized solar cells, thermo-electrochemical cells, double-layer capacitors and CO2 reduction are also discussed.

  9. Photo-generated THz antennas: All-optical control of plasmonic materials

    CERN Document Server

    Georgiou, Giorgos; Mulder, Peter; Bauhuis, Gerard J; Schermer, John J; Rivas, Jaime Gómez

    2013-01-01

    Localized surface plasmon polaritons in conducting structures give rise to enhancements of electromagnetic local fields and extinction efficiencies. Resonant conducting structures are conventionally fabricated with a fixed geometry that determines their plasmonic response. Here, we challenge this conventional approach by demonstrating the photo-generation of plasmonic materials (THz plasmonic antennas) on a flat semiconductor layer by the structured optical illumination through a spatial light modulator. Free charge carriers are photo-excited only on selected areas, which enables the definition of different plasmonic antennas on the same sample by simply changing the illumination pattern, thus without the need of physically structuring the sample. These results open a wide range of possibilities for an all-optical spatial and temporal control of resonances on plasmonic surfaces and the concomitant control of THz extinction and local field enhancements.

  10. Materials Innovation for Next-Generation T&D Grid Components. Workshop Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Emmanuel [Energetics Incorporated, Columbia, MD (United States); Kramer, Caroline [Energetics Incorporated, Columbia, MD (United States); Marchionini, Brian [Energetics Incorporated, Columbia, MD (United States); Sabouni, Ridah [Energetics Incorporated, Columbia, MD (United States); Cheung, Kerry [U.S. Department of Energy (DOE), Washington, DC (United States). Office of Electricity Delivery and Energy Reliability (OE); Lee, Dominic F [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The Materials Innovations for Next-Generation T&D Grid Components Workshop was co-sponsored by the U.S. Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability and the Oak Ridge National Laboratory (ORNL) and held on August 26 27, 2015, at the ORNL campus in Oak Ridge, Tennessee. The workshop was planned and executed under the direction of workshop co-chair Dr. Kerry Cheung (DOE) and co-chair Dr. Dominic Lee (ORNL). The information contained herein is based on the results of the workshop, which was attended by nearly 50 experts from government, industry, and academia. The research needs and pathways described in this report reflect the expert opinions of workshop participants, but they are not intended to represent the views of the entire electric power community.

  11. The third generation multi-purpose plasma immersion ion implanter for surface modification of materials

    CERN Document Server

    Tang Bao Yin; Wang Xiao Feng; Gan Kong Yin; Wang Song Yan; Chu, P K; Huang Nian Ning; Sun Hong

    2002-01-01

    The third generation multi-purpose plasma immersion ion implantation (PIII) equipment has been successfully used for research and development of surface modification of biomedical materials, metals and their alloys in the Southwest Jiaotong University. The implanter equipped with intense current, pulsed cathodic arc metal plasma sources which have both strong coating function and gas and metal ion implantation function. Its pulse high voltage power supply can provide big output current. It can acquire very good implantation dose uniformity. The equipment can both perform ion implantation and combine ion implantation with sputtering deposition and coating to form many kinds of synthetic surface modification techniques. The main design principles, features of important components and achievement of research works in recent time have been described

  12. Numerical Modeling of Thermoelectric Generators with Varing Material Properties in a Circuit Simulator

    DEFF Research Database (Denmark)

    Chen, Min; Rosendahl, Lasse; Condra, Thomas

    2009-01-01

    -compatible environment. This model of thermoelectric battery accounts for all temperature-dependent characteristics of the thermoelectric materials to include the nonlinear voltage, current, and electrother